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Diversity in Ensemble Feature Selection 

Abstract 
 

Ensembles of learnt models constitute one of the main current directions in machine learning and data 

mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single 

models. It was shown theoretically and experimentally that in order for an ensemble to be effective, it 

should consist of high-accuracy base classifiers that should have high diversity in their predictions. One 

technique, which proved to be effective for constructing an ensemble of accurate and diverse base 

classifiers, is to use different feature subsets, or so-called ensemble feature selection. Many ensemble 

feature selection strategies incorporate diversity as a component of the fitness function in the search for 

the best collection of feature subsets. There are known a number of ways to quantify diversity in 

ensembles of classifiers, and little research has been done about their appropriateness to ensemble 

feature selection. In this paper, we compare seven measures of diversity with regard to their possible 

use in ensemble feature selection. We conduct experiments on 21 data sets from the UCI machine 

learning repository, comparing the ensemble accuracy and other characteristics for the ensembles built 

with ensemble feature selection based on the considered measures of diversity. We consider five search 

strategies for ensemble feature selection: simple random subsampling, genetic search, hill-climbing, 

ensemble forward and backward sequential selection. In the experiments, we show that, in some cases, 

the ensemble feature selection process can be sensitive to the choice of the diversity measure, and that 

the question of the superiority of a particular measure depends on the context of the use of diversity and 

on the data being processed. 

 

Keywords: Ensemble of classifiers; Ensemble diversity; Feature selection; Search strategy; Dynamic 

integration of classifiers 

 
1 Introduction 
 

Current electronic data repositories are growing quickly and contain a huge amount of data from 

commercial, scientific, and other domain areas. This data includes also currently unknown and 

potentially interesting patterns and relations, which can be uncovered using knowledge discovery and 

data mining methods [13].  

A popular method for creating an accurate classifier from a set of training data is to train several 

different classifiers, and then to combine their predictions. The integration of multiple classifiers, to 
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improve classification results, is currently an active research area in the machine learning and neural 

networks communities [2, 4 – 11, 14 – 17, 20 – 31, 34 – 43]. Dietterich [10] has presented the 

integration of multiple classifiers as one of the four most important directions in the machine learning 

research. It was shown in many domains that an ensemble is often more accurate than any of the single 

classifiers in the ensemble. 

Both theoretical and empirical research have demonstrated that a good ensemble is one where the 

base classifiers in the ensemble are both accurate and tend to err in different parts of the instance space 

(that is have high diversity in their predictions). Another important issue in creating an effective 

ensemble is the choice of the function for combining the predictions of the base classifiers. It was 

shown that increasing coverage of an ensemble through diversity is not enough to ensure increased 

prediction accuracy – if the integration method does not utilize coverage, then no benefit arises from 

integrating multiple models [4]. 

One effective approach for generating an ensemble of accurate and diverse base classifiers is to use 

different feature subsets, or so-called ensemble feature selection [27]. By varying the feature subsets 

used to generate the base classifiers, it is possible to promote diversity and produce base classifiers that 

tend to err in different subareas of the instance space. While traditional feature selection algorithms 

have the goal of finding the best feature subset that is relevant to both the learning task and the selected 

inductive learning algorithm, the task of ensemble feature selection has the additional goal of finding a 

set of feature subsets that will promote disagreement among the base classifiers [27]. 

Ho [17] has shown that simple random selection of feature subsets may be an effective technique for 

ensemble feature selection because the lack of accuracy in the ensemble members is compensated for 

by their diversity. Random subspacing is used as a base in a number of ensemble feature selection 

strategies, e.g. GEFS [27] and HC [8]. 

Feature selection algorithms, including ensemble feature selection, are typically composed of the 

following components [1, 27]: (1) search strategy, that searches the space of feature subsets; and (2) 

fitness function, that inputs a feature subset and outputs a numeric evaluation. The search strategy’s 

goal is to find a feature subset maximizing this function. 

As it is acknowledged that an effective ensemble should consist of high-accuracy classifiers that 

disagree on their predictions, many fitness functions in ensemble feature selection include explicitly or 

implicitly both accuracy and diversity. One measure of fitness, which was proposed by Opitz [27], 

defines the fitness Fitnessi of a classifier i corresponding to a feature subset i to be proportional to the 

classification accuracy acci and the diversity divi of the classifier (in fact, it is the contribution of the 
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classifier i to the total ensemble diversity, which can be measured as the average pairwise diversity for 

all the pairs of classifiers including i): 

 iii divaccFitness ⋅+= α , (1) 

where α  is the coefficient of the degree of the influence of diversity. This fitness function was also 

used in experiments in [39], and we use it in our experiments in this paper. 

A common measure of classification accuracy is the percentage of correct classifications on the test 

data set, or average within-class accuracy, the average percentage of correct classifications within each 

class, if the class distributions are significantly uneven. The simple “percentage of correct 

classifications” measure is successfully used in the vast majority of cases, as it reflects well the 

classification performance. For diversity, the situation is not that straightforward – there are known a 

number of ways to measure diversity in ensembles of classifiers, and not much research has been done 

about the appropriateness and superiority of one measure over another. 

In this paper, we consider different measures of ensemble diversity, which could be used as a 

component of the fitness function (1), and which could also be used to measure total ensemble 

diversity, as a general characteristic of ensemble goodness. The goal of this paper is to compare the 

considered measures of diversity in the context of ensemble feature selection for these two particular 

tasks. To our knowledge, in all the existent research papers, comparing different measures of ensemble 

diversity, as [22, 34], the only common way of the comparison is to analyze the correlation of those 

measures of diversity with different other ensemble characteristic, as the ensemble accuracy, the 

difference between the ensemble accuracy and the average base classifier accuracy, the difference 

between the ensemble accuracy and the maximal base classifier accuracy, etc. In contrast to that 

common way, in this paper we compare the measures of diversity using the wrapper approach, 

applying them as a component of the fitness function guiding the search in ensemble feature selection, 

and comparing the resulting accuracies and other ensemble characteristics. 

The paper is organized as follows. In Section 2 we consider the general task of constructing an 

effective ensemble, review different techniques for generating the base classifiers, and especially 

ensemble feature selection, and present four strategies for ensemble feature selection. In Section 3 we 

consider the question of integration of an ensemble of classifiers and review different integration 

methods. In Section 4 we present seven different measures for diversity in classification ensembles. In 

Section 5 we present our experiments with these measures and conclude in Section 6 with a summary 

and further research topics. 
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2 An ensemble and its diversity 
 

In this section, we consider: the question of what constitutes a good ensemble, effective techniques 

for generating the base classifiers in ensembles, the place of ensemble feature selection among them, 

and search strategies for ensemble feature selection, which we shall use in our experiments. 

 
2.1 Ensemble goodness criteria and their interrelation 
 

An ensemble is generally more accurate than any of the base classifiers in the ensemble. Both 

theoretical and empirical research have shown that an effective ensemble should consist of base 

classifiers that not only have high classification accuracy, but that also make their errors in different 

parts of the input space [4, 9, 15, 21, 41]. Brodley and Lane [4] show that the main objective when 

generating the base classifiers is to maximize the coverage on the data, which is the percentage of the 

instances that at least one base classifier can classify correctly. Achieving coverage greater than the 

accuracy of the best base classifier requires diversity among the base classifiers. Several researchers 

have presented theoretical evidence supporting this claim [15, 21, 41]. 

For example, Hansen and Salamon [15] proved that, if the average classification error rate for an 

instance is less than 50% and the base classifiers in the ensemble are independent in the production of 

their errors, then the expected error for that instance can be reduced to zero as the number of base 

classifiers included into the ensemble goes to infinity, when majority voting is used for integration. 

Such assumptions rarely hold in practice (for example, an outlier may easily have predicted 

classification error rate that is higher than 50%), and then the classification error rate over all the 

instances cannot necessarily be reduced to zero. But if we assume a significant percentage of the 

instances are predicted with less than 50% average error, gains in generalization will be achieved. A 

key assumption in this analysis is that the base classifiers should be independent in their production of 

errors. 

Krogh and Vedelsby [21] have shown that the classification error for an ensemble of neural network 

base predictors is related to the generalization error of the base networks and to how much 

disagreement there is between them. They have proved that AEE −= , where E  is the ensemble 

generalization error, E  is the average of the generalization errors of the base networks weighted by 

corresponding beliefs, and A  is the ensemble ambiguity measured as the weighted average of the 

squared differences in the predictions of the base networks and the ensemble. The ambiguity A  that 

they used as a way to measure the disagreement, is common when disagreement among numeric 

predictors such as neural networks is measured. 
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A similar dependency derived by Tumer and Ghosh [41] for classifiers that predict the a posteriori 

probabilities of the output classes is: 

 E
S
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=
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,  (2) 

where E  is the ensemble generalization error (beyond the optimal Bayesian error), S is the size of the 

ensemble, Pi is the prior probability of class i, iδ  is the average correlation factor among the 

classifiers in the prediction of the a posteriori probabilities of class i, and E  is the average error of the 

base classifier. Here the disagreement is measured as the correlation in the predictions of the a 

posteriori probabilities. 

While these theoretical results hold true for regression systems and classifiers that predict a posteriori 

probabilities, no similar dependencies are known for the more common case of classifiers with crisp 

predictions, which is the focus of the paper. However, there are a number of approaches to quantify 

ensemble diversity for the case of crisp classification, which we consider in Section 4. 

 
2.2 Techniques for the generation of base classifiers in ensembles 
 

The task of using an ensemble of models can be broken down into two basic questions: (1) what set 

of learned models should be generated?; and (2) how should the predictions of the learned models be 

integrated? [24]. To generate a set of accurate and diverse learned models, several approaches have 

been tried. 

One way of generating a diverse set of models is to use learning algorithms with heterogeneous 

representations and search biases [24], such as decision trees, neural networks, instance-based learning, 

etc.  

Another approach is to use models with homogeneous representations that differ in their method of 

search or in the data on which they are trained. This approach includes several techniques for 

generating base models, such as learning base models from different subsets of the training data. For 

example, two well-known ensemble methods of this type are bagging and boosting [31]. 

The base models with homogeneous representations may be binary classifiers that are integrated to 

implement a multiclass learner (i.e., where the number of class labels is greater than 2). Each classifier 

in such an ensemble is learnt to distinguish one class label from the others. For example, Dietterich and 

Bakiri [11] map each class label onto a bit string prior to learning. Bit strings for class labels are 

designed to be well separated, thus serving as error-correcting output codes (ECOC). An off-the-shelf 

system for learning binary classifications (e.g., 0 or 1) can be used to build multiple classifiers, one for 
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each bit in the output code. An instance is classified by predicting each bit of its output code (i.e., 

label), and then classifying the instance as the label with the “closest” matching output code. 

Also, natural randomisation in the process of model search (e.g., random weight setting in the 

backpropagation algorithm for training neural networks) can be used to build different models with 

homogeneous representation. The randomisation can also be injected artificially. For example, in [16] a 

randomised decision tree induction algorithm, which generates different decision trees every time it is 

run, was used for that purpose. 

Another way for building models with homogeneous representations, which proved to be effective, is 

the use of different subsets of features for each model. For example, in [29] base classifiers are built on 

different feature subsets, where each feature subset includes features relevant for distinguishing one 

class label from the others (the number of base classifiers is equal to the number of classes). Finding a 

set of feature subsets for constructing an ensemble of accurate and diverse base models is also known 

as ensemble feature selection [27].  

Sometimes, a combination of the techniques considered above can be useful in order to provide the 

desired characteristics of the generated models. For example, a combination of boosting and wagging 

(which is a kind of bagging technique) is considered by Webb [42]. 

In addition to these general-purpose methods for generating a diverse ensemble of models, there are 

learning algorithm-specific techniques. For example, Opitz and Shavlik [28] employ a genetic 

algorithm in backpropagation to search for a good population of neural network classifiers. 

Ensemble feature selection is the focus of this paper, and in next section we consider search strategies 

used in our experiments. 

 
2.3 Search strategies for ensemble feature selection 
 

In this section, we consider four different search strategies for ensemble feature selection: (1) Hill 

Climbing (HC); (2) a Genetic Algorithm for ensemble feature selection (GA); (3) Ensemble Forward 

Sequential Selection (EFSS); and (4) Ensemble Backward Sequential Selection (EBSS). 

The use of a hill-climbing search as a local-search wrapper-based approach has been shown to be 

effective for a single feature subset selection [18]. The Hill Climbing (HC) ensemble feature selection 

strategy, which we use in this research, proposed in [8], is composed of two major phases: (1) 

construction of the initial ensemble by random subspacing; and (2) iterative refinement of the ensemble 

members with sequential-mutation hill climbing. Initial feature subsets are constructed using the 

random subspace method. Then, the initial ensemble is formed. Further, an iterative refinement of the 

ensemble members is used to improve the accuracy and diversity of the base classifiers. The iterative 
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refinement is based on a hill-climbing search. For all the feature subsets, an attempt is made to switch 

(include or delete) each feature. If the resulting feature subset produces better performance on the 

validation set (the fitness function returns a better value for it), that change is kept. This process is 

continued until no further improvements are possible. Normally, no more than 4 passes are necessary. 

The use of genetic search has also been an important direction in the feature selection research. 

Genetic algorithms have been shown to be effective global optimization techniques in feature subset 

selection. The use of genetic algorithms for ensemble feature selection was first proposed in [27]. The 

Genetic Algorithm for ensemble feature selection (GA) strategy [27] begins, as HC, with creating an 

initial population of classifiers where each classifier is generated by randomly selecting a different 

subset of features. Then, new candidate classifiers are continually produced by using the genetic 

operators of crossover and mutation on the feature subsets. After producing a certain number of 

individuals the process continues with selecting a new subset of candidates by selecting the members 

randomly with a probability proportional to fitness (it is known as roulette-wheel selection). The 

process of producing new classifiers and selecting a subset of them (a generation) continues a number 

of times, known as the number of generations. After a predefined number of generations, the fittest 

individuals make up the population, which comprises the ensemble [27]. In our implementation, the 

representation of each individual (a feature subset) is simply a constant-length string of bits, where 

each bit corresponds to a particular feature. The crossover operator uses uniform crossover, in which 

each feature of the two children takes randomly a value from one of the parents. The feature subsets of 

two individuals in the current population are chosen randomly with a probability proportional to 

(1+fitness). The mutation operator randomly toggles a percentage of bits in an individual. 

EFSS and EBSS are sequential feature selection strategies, which add or delete features using a hill-

climbing procedure, and have polynomial complexity. The most frequently studied variants of plain 

sequential feature selections algorithms (which select a single feature subset) are forward and backward 

sequential selection, FSS and BSS [1]. FSS begins with zero attributes, evaluates all feature subsets 

with exactly one feature, and selects the one with the best performance. It then adds to this subset the 

feature that yields the best performance for subsets of the next larger size. The cycle repeats until no 

improvement is obtained from extending the current subset. BSS instead begins with all features and 

repeatedly removes a feature whose removal yields the maximal performance improvement [1]. EFSS 

and EBSS iteratively apply FSS or BSS to form each of the base classifiers using a predefined fitness 

function.  

EFSS and EBSS have polynomial complexity with regard to the number of features: )( FFSO ′⋅⋅ , 

where S is the number of base classifiers, F is the total number of features, and F ′  is the number of 
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features included or deleted on average in an FSS or BSS search. HC has similar polynomial 

complexity )( passesNFSO ⋅⋅ , where passesN  is the average number of passes through the feature 

subsets in HC until there is some improvement (usually no more than 4). The complexity of GEFS does 

not depend on the number of features, and is )( genNSO ⋅′ , where S ′  is the number of individuals 

(feature subsets) in one generation, and genN  is the number of generations. 

In our experiments, on average, each of the strategies looks through about 1000 feature subsets 

(given that the number of base classifiers is 25, the average number of features is 10, the average 

percentage included or deleted features in EFSS and EBSS is 40%, the number of passes in HC is 4, the 

number of individuals in a population in the GA is 100, and the number of generations is 10). 

Comparative experiments with these four strategies on a collection of data sets from the medical 

field of acute abdominal pain classification were considered in [38]. The best search strategy in that 

context was EFSS (it was the best for every data set considered), generating more diverse ensembles 

with more compact base classifiers. EFSS generated extremely compact base classifiers, including from 

9% to 13% features on average (less than 3 features). The results with genetic search were found to be 

disappointing, not being improved with generations. 

In comparison with [38] we have made a number of changes in the genetic search-based strategy. In 

our new version considered in this paper no full feature sets are allowed in random subspacing nor may 

the crossover operator produce a full feature subset. Individuals for crossover are selected randomly 

proportional to log(1+fitness) instead of just fitness, which adds more diversity into the new 

population. The generation of children identical to their parents is prohibited in the crossover operator – 

if a child is the same as one of its parents, the mutation operator is applied to it. To provide a better 

diversity in the length of the feature subsets and the population in general, we use two different 

mutation operators, one of which always adds features randomly with a given probability, and the other 

– deletes features. Each operator is applied to exactly a half (25 of 50) of the individuals being mutated. 

Our pilot studies have shown that these minor changes help us to significantly improve the work of GA 

so that it does not converge after a single generation already to a local extremum (as it was in [27, 38]). 

Parameter settings for our implementation of the genetic search in GA include a mutation rate of 

50% (as proposed in [27]), a population size of 25, a search length of 100 feature subsets, of which 50 

are offsprings of the current population of 25 classifiers generated with the crossover operator, and 50 

are mutated offsprings. 10 generations of individuals were produced, as our pilot studies have shown 

that in most cases, with this configuration, the ensemble accuracy does not improve after 10 

generations, due to overfitting the training data. 
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3 Techniques for integration of an ensemble of models 
 

Brodley and Lane [4] have shown that simply increasing coverage of an ensemble through diversity 

is not enough to insure increased prediction accuracy. If the integration method does not utilize the 

coverage, then no benefit arises from integrating multiple classifiers. Thus, the diversity and coverage 

of an ensemble are not in themselves sufficient conditions for ensemble accuracy. It is also important 

for ensemble accuracy to have a good integration method that will utilize the diversity of the base 

models. 

The challenging problem of integration is to decide which one(s) of the classifiers to rely on or how 

to combine the results produced by the base classifiers. Techniques using two basic approaches have 

been suggested as a solution to the integration problem: (1) a combination approach, where the base 

classifiers produce their classifications and the final classification is composed using them; and (2) a 

selection approach, where one of the classifiers is selected and the final classification is the result 

produced by it.  

Several effective techniques for the combination of classifiers have been proposed. One of the most 

popular and simplest techniques used to combine the results of the base classifiers, is simple voting 

(also called majority voting and select all majority (SAM)) [2]. In the voting technique, the 

classification of each base classifier is considered as an equally weighted vote for that particular 

classification. The classification that receives the biggest number of votes is selected as the final 

classification (ties are solved arbitrarily). Often, weighted voting is used: each vote receives a weight, 

which is usually proportional to the estimated generalization performance of the corresponding 

classifier. Weighted Voting (WV) works usually much better than simple majority voting [2]. 

More sophisticated combination techniques include the SCANN method based on the correspondence 

analysis and using the nearest neighbor search in the correspondence analysis results [24, 26]; and 

techniques to combine minimal nearest neighbor classifiers within the stacked generalization 

framework [35]. Two effective classifier combination techniques based on stacked generalization 

called “arbiter” and “combiner” were presented by Chan [5]. Hierarchical classifier combination has 

also been considered. Experimental results of Chan and Stolfo [5, 6] showed that the hierarchical 

(multi-level) combination approach, where the dataset was distributed among a number of sites, was 

often able to sustain the same level of accuracy as a global classifier trained on the entire dataset. 

A number of selection techniques have also been proposed to solve the integration problem. One of 

the most popular and simplest selection techniques is the cross-validation majority (CVM, we call it 

simply Static Selection, SS, in our experiments) [33]. In CVM, the cross-validation accuracy for each 
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base classifier is estimated using the training set, and then the classifier with the highest accuracy is 

selected (ties are solved using voting). More sophisticated selection approaches include estimation of 

the local accuracy of the base classifiers by considering errors made in instances with similar 

predictions [25], learning a number of meta-level classifiers (“ referees” ) that predict whether the 

corresponding base classifiers are correct or not for new instances (each “ referee”  is a C4.5 tree that 

recognizes two classes) [20]. Todorovski and Dzeroski [37] trained a meta-level decision tree, which 

dynamically selected a base model to be applied to the considered instance, using the level of 

confidence of the base models in correctly classifying the instance.  

The approaches to classifier selection can be divided into two subsets: static and dynamic selection. 

The static approaches propose one “ best”  method for the whole data space, while the dynamic 

approaches take into account each new instance to be classified and its neighbourhood only. The CVM 

is an example of the static approach, while the other selection techniques considered above are 

examples of the dynamic approach. 

Techniques for combining classifiers can be static or dynamic as well. For example, widely used 

weighted voting [2] is a static approach. The weights for each base classifier’s vote do not depend on 

the instance to be classified. In contrast, the reliability-based weighted voting (RBWV) introduced in 

[7] is a dynamic voting approach. It uses classifier-dependent estimation of the reliability of predictions 

for each particular instance. Usually, better results can be achieved if the classifier integration is done 

dynamically taking into account the characteristics of each new instance. 

We consider in our experiments three dynamic approaches based on the local accuracy estimates: 

Dynamic Selection (DS) [30], Dynamic Voting (DV) [30], and Dynamic Voting with Selection (DVS) 

[40]. All these are based on the same local accuracy estimates. DS simply selects a classifier with the 

least predicted local classification error, as was also proposed in [14]. In DV, each base classifier 

receives a weight that is proportional to the estimated local accuracy of the base classifier, and the final 

classification is produced by combining the votes of each classifier with their weights.  In DVS, the 

base classifiers with highest local classification errors are discarded (the classifiers with errors that fall 

into the upper half of the error interval of the base classifiers) and locally weighted voting (DV) is 

applied to the remaining base classifiers. 

 
4 Diversities  
 

There are a number of ways to quantify ensemble diversity. In this section we consider seven 

different measures of ensemble diversity, five of which are pairwise as they are able to measure 

diversity in predictions of a pair of classifiers, and the total ensemble diversity is the average of all the 
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classifier pairs in the ensemble (plain disagreement, fail/non-fail disagreement, the Q statistic, the 

correlation coefficient, and the kappa statistic), and the other two are non-pairwise as they measure 

diversity in predictions of the whole ensemble only (entropy and ambiguity). In our experiments in this 

paper, we compare the use of the pairwise measures as the guiding diversity in the ensemble training 

process (as a component of the fitness function (1)), and consider the correlation of the total average 

ensemble diversity for all the seven measures with the difference between the ensemble accuracy and 

the average base classifier accuracy. 

 
4.1 The plain disagreement measure 
 

The plain disagreement measure of diversity is, probably, the most commonly used measure for 

diversity in the ensembles of classifiers with crisp predictions. For example, in [17] it was used for 

measuring the diversity of decision forests, and its correlation with the forests’ accuracy. In [39, 43] it 

was used as a component of the fitness function guiding the process of ensemble construction. 

For two classifiers i and j, the plain disagreement is equal to the ratio between the number of instances 

on which the classifiers make different predictions, to the total number of instances in question: 

 ∑
=

=
N

k
kjkii,j N

div_plain
1

))(C),(Diff(C
1

xx , (3) 

where N is the number of instances in the data set, )(C ki x  is the class assigned by classifier i to 

instance k, and Diff(a,b)=0, if a=b, otherwise Diff(a,b)=1. 

The plain disagreement varies from 0 to 1. This measure is equal to 0, when the classifiers return the 

same classes for each instance, and it is equal to 1 when the predictions are always different. 

 

4.2 The fail/non-fail disagreement measure 
 

The fail/non-fail disagreement was defined in [36] as the percentage of test instances for which the 

classifiers make different predictions but for which one of them is correct: 
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where Nab is the number of instances in the data set, classified correctly (a=1) or incorrectly (a=0) by 

the classifier i, and correctly (b=1) or incorrectly (b=0) by the classifier j. The denominator in (4) is 

equal to the total number of instances N. (4) is equal to (3) for binary classification problems, where the 



 13

number of classes is 2. It can be also shown that jii,j plaindivdisdiv ,__ ≤ , as the instances 

contributing to this disagreement measure form a subset of instances contributing to the plain 

disagreement.  

The fail/non-fail disagreement varies from 0 to 1. This measure is equal to 0, when the classifiers 

return the same classes for each instance, or different but incorrect classes, and it is equal to 1 when the 

predictions are always different and one of them is correct. 

 

4.3 The Q statistic 
 

This measure is based on Yule’s Q statistic used to assess the similarity of two classifiers’ outputs 

[22]: 

 
10010011

10010011
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NNNN

NNNN
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where Nab has the same meaning as in (4). For statistically independent classifiers, the expected value 

of Q is 0. Q varies between –1 and 1. Classifiers that tend to recognize the same objects correctly will 

have positive values of Q, and those which commit errors on different objects will render Q negative 

[22]. In the case of undefined value with division by zero, we assume the diversity is minimal, equal to 

1.  

In our experiments with diversity as a component of the fitness function we normalize this measure to 

vary from 0 to 1, where 1 corresponds to the maximum of diversity: 

 
2

_1
_ * Qdiv

Qdiv
−= . (6) 

In [22], after comparative experiments on the UCI Breast cancer Wisconsin data set, the Phoneme 

recognition and the Cone-torus data sets, and two experiments with emulated ensembles (artificially 

generating possible cases of the base classifiers’ outputs), Q was recommended as the best measure for 

the purposes of developing committees that minimize error, taking into account the experimental 

results, its simplicity and comprehensibility (or the ease of interpretation). In our experiments, we show 

that the question of the superiority of a particular measure depends on the context of the use of 

diversity, and on the data being processed. 

One problem, which we have noticed with this measure in our pilot studies, was its insensitivity on 

small data sets. It is quite an often the case for a small number of instances that N00 is equal to 0. Q in 

this case is equal to –1 (maximal diversity) no matter how big the values of N01 and N10 are, which is 

often not a good reflection of the real diversity in classifiers’ outputs.  
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4.4 The correlation coefficient 
 

The correlation between the outputs of two classifiers i and j can be measured as [22]:  
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++++

−= , (7) 

where Nab have the same meaning as in (4) and (5).  

The numerator in (7) is the same as in (5), and for any two classifiers i and j, div_corri,j and div_Qi,j 

have the same sign, and it can be proven that jiji Qdivcorrdiv ,, __ ≤  [22]. We normalize this 

measure to vary from 0 to 1 in the same way we do it for Q (5). 

This measure, as well as the fail/non-fail disagreement and the Q statistic were considered among the 

group of 10 measures in the comparative experiments in [22]. 

 

4.5 The kappa degree-of-agreement statistic 
 

Let Nij be the number of instances in the data set, recognized as class i by the first classifier and as 

class j by the second one, Ni* is the number of instances recognized as i by the first classifier, and N*i is 

the number of instances recognized as i�E\�WKH�VHFRQG�FODVVLILHU��'HILQH�WKHQ� 1�DQG� 2 as  
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ZKHUH�1�LV�WKH�WRWDO�QXPEHU�RI�LQVWDQFHV�� 1 estimates the probability that the two classifiers agree, and 

2�LV�D�FRUUHFWLRQ�WHUP�IRU� 1, which estimates the probability that the two classifiers agree simply by 

chance (in the case where each classifier chooses to assign a class label randomly). The pairwise 

diversity div_kappai,j is defined as follows [9]: 
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1
_
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Θ−Θ

=i,jkappadiv . (9) 

Kappa is equal to 0 when the agreement of the two classifiers equals to that expected by chance, and 

kappa is equal to 1 when the two classifiers agree on every example. Negative values occur when 

agreement is less than expected by chance – that is, there is systematic disagreement between the 

classifiers [9]. Kappa is able to track negative correlations in a similar manner to Q and correlation. We 

normalize this measure to vary from 0 to 1 in the same way we do for Q and correlation (5), (7). 
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Dietterich [9] used this measure in scatter plots called “ -error diagrams” , where kappa was plotted 

against mean accuracy of the classifier pair. -error diagrams, introduced in [23] is a useful tool for 

visualising ensembles. 

 

4.6 Entropy 
 

A non-pairwise measure of diversity, associated with a conditional-entropy error measure, is based on 

the concept of entropy [8]: 
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where N is the number of instances in the data set, S is the number of base classifiers, l is the number of 

classes, and i
kN  is the number of base classifiers that assign instance i to class k. To keep this measure 

of diversity within the range [0,1] the logarithm should be taken to the base l. 

This measure was evaluated on a medical prediction problem and was shown to predict the accuracy 

of the ensemble well [8]. It was also shown that the entropy measure of diversity has the added 

advantage that it models the change in diversity with the size of the ensemble. 

While this may be a useful measure of diversity, it does not allow us to gauge the contribution of an 

individual classifier to diversity because it is not a pairwise measure [43]. Thus, we shall use this total 

measure of diversity only in our experiments on the correlation between the total ensemble diversity 

and the difference in ensemble accuracy and the base classifier accuracy. 

 

4.7 A variance-based measure: Ambiguity 
 

This non-pairwise measure of diversity is associated with the variance-based measure of diversity 

proposed for regression problems in [21], called ambiguity. This diversity has been proven to have a 

direct relation with the ensemble error and this motivated us to use an associated diversity measure for 

classification also. The classification task can be decomposed into l regression tasks, where l is the 

number of classes. The output in the regression tasks will be the class membership of the instance 

(binary output 0/1 in the case of crisp classification considered in this paper). The diversity of the 

classification ensemble can then be calculated as the average ambiguity over these pseudo-regression 

tasks for each of the instances: 
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where l is the number of classes, N is the number of instances, S is the number of base classifiers, j
iN  

is the number of base classifiers that assign instance j to class i, )(C jk x  is the class assigned by 

classifier k to instance j, and Is() is a truth predicate. 

As with entropy, this is a non-pairwise measure, and we shall use it only in our experiments on the 

correlation between the total ensemble diversity and the difference in the ensemble accuracy and the 

base classifier accuracy. 

 

5 Experimental investigations 
 

In this section, our experiments with the seven measures of diversity in ensemble feature selection are 

presented. First, the experimental setting is described, then the results of the experiments are presented. 

The experiments are conducted on 21 data sets taken from the UCI machine learning repository [3]. 

These data sets include real-world and synthetic problems, vary in characteristics, and were previously 

investigated by other researchers. 

The main characteristics of the 21 data sets are presented in Table 1. The table includes the name of a 

data set, the number of instances included in the data set, the number of different classes of instances in 

the data set, and the numbers of different kinds of features included in the instances of the data set. 

In [32] the use of the data sets from the UCI repository was strongly criticized. Any new experiments 

on the UCI data sets run the risk of finding “ significant”  results that are no more than statistical 

accidents. However, we do believe that nevertheless, the UCI data sets provide useful benchmark 

estimates that can be of great help in experimental analysis and comparisons of learning methods, even 

though these results must be looked at carefully before final conclusions are made. 

Table 1. Data sets and their characteristics 

Features Data set Instances Classes 
Categorical Numerical 

Balance 625 3 0 4 
Breast Cancer Ljubljana 286 2 9 0 
Car 1728 4 6 0 
Pima Indians Diabetes 768 2 0 8 
Glass Recognition 214 6 0 9 
Heart Disease 270 2 0 13 
Ionosphere 351 2 0 34 
Iris Plants 150 3 0 4 
LED 300 10 7 0 
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LED17 300 10 24 0 
Liver Disorders 345 2 0 6 
Lymphography 148 4 15 3 
MONK-1 432 2 6 0 
MONK-2 432 2 6 0 
MONK-3 432 2 6 0 
Soybean 47 4 0 35 
Thyroid 215 3 0 5 
Tic-Tac-Toe Endgame 958 2 9 0 
Vehicle 846 4 0 18 
Voting 435 2 16 0 
Zoo 101 7 16 0 

 

5.1 Experimental setting 
 

For our experiments, we used an updated version of the setting presented in [39] to test the EFS_SBC 

algorithm (Ensemble Feature Selection with the Simple Bayesian Classification). We extended the 

EFS_SBC setting with an implementation of three new search strategies besides the existing HC: GA, 

EFSS, and EBSS (Section 2.3), and with an implementation of six new measures of diversity besides 

the existing plain disagreement: the fail/non-fail disagreement, the Q statistic, the correlation 

coefficient, the kappa statistic, entropy and ambiguity (Section 4). 

We used the simple Bayesian classification as the base classifiers in the ensembles. It has been 

recently shown experimentally and theoretically that the simple Bayes can be optimal even when the 

“ naïve”  feature-independence assumption is violated by a wide margin [12]. Second, when the simple 

Bayes is applied to the subproblems of lower dimensionalities as in random subspacing, the error bias 

of the Bayesian probability estimates caused by the feature-independence assumption becomes smaller. 

It also can easily handle missing feature values of a learning instance allowing the other feature values 

still to contribute. Besides, it has advantages in terms of simplicity, learning speed, classification speed, 

and storage space, which made it possible to conduct all the experiments within reasonable time. It was 

shown [39] that only one “ global”  contingency table is needed for the whole ensemble when the simple 

Bayes is employed in ensemble feature selection. We believe that the results presented in this paper do 

not depend significantly on the learning algorithm used and would be similar for most known learning 

algorithms. 

To estimate the ensemble accuracy after ensemble feature selection, we have used random-sampling 

cross validation. 70 test runs of EFS_SBC are made for each search strategy, for each diversity 

measure, and on each data set. In each test run the data set is first split into the training set TrS, the 

validation set VS, and the test set TS by stratified random sampling. In stratified random sampling 

(sometimes called proportional random sampling), a simple random sample from instances of each 
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class is taken, so that the class distributions of instances in the resulting sets are approximately the 

same as in the initial data set. It was shown that such sampling often gives better accuracy estimates 

than simple random sampling [18]. Each time 60 percent of instances are assigned to the training set. 

The remaining 40 percent of instances of the data set are divided into two sets of approximately equal 

size (VS and TS). The validation set VS is used in the ensemble refinement to estimate the accuracy 

and diversity guiding the search process. The test set TS is used for the final estimation of the ensemble 

accuracy. We have used the same division of the data into the training, validation and test sets for each 

search strategy and guiding diversity to avoid unnecessary variance and provide better comparison. 

The ensemble size S was selected to be 25. It has been shown that for many ensembles, the biggest 

gain in accuracy is achieved already with this number of base classifiers [2].  

We experimented with seven different values of the diversity coefficient α : 0, 0.25, 0.5, 1, 2, 4, and 

8. At each run of the algorithm, we collect accuracies for the five types of integration of the base 

classifiers (Section 3): Static Selection (SS), Weighted Voting (WV), Dynamic Selection (DS), 

Dynamic Voting (DV), and Dynamic Voting with Selection (DVS). In the dynamic integration 

strategies DS, DV, and DVS, the number of nearest neighbors (k) for the local accuracy estimates was 

pre-selected from the set of seven values: 1, 3, 7, 15, 31, 63, 127 ( 7,...,1,12 =− nn ), for each data set 

separately, if the number of instances in the training set permitted. Such values were chosen, as the 

nearest-neighbor procedure in the dynamic integration is distance-weighted. The distances from the test 

instance to the neighboring training instances were computed and used to calculate the estimates of 

local accuracies. As it was shown in [14], this makes the dynamic integration less sensitive to the 

choice of the number of neighbors, but still the local accuracy estimates are more sensitive to the small 

number of neighbors. Heterogeneous Euclidean-Overlap Metric (HEOM) [30] was used for calculation 

of the distances. In the dynamic integration, we used 10-fold cross validation for building the cross-

validation history for the estimation of the local accuracies of the base classifiers. 

To select the best α  and k, we conducted a separate series of experiments using the wrapper 

approach for each combination of a search strategy, guiding diversity, integration method, and data set. 

After, the experiments were repeated with the pre-selected values of α  and k. 

Besides the test-set classification accuracies of the base classifiers and the ensembles, we collected 

other characteristics as the ensemble accuracies on the validation set (to measure overfitting), the total 

ensemble diversity (using the seven measures presented in Section 4), the ensemble coverage, and the 

average relative number of features in the base classifiers. For the GA strategy all the ensemble 

characteristics were collected after 1, 5, and 10 generations. 
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The test environment was implemented within the MLC++ framework (the machine learning library 

in C++) [19]. A multiplicative factor of 1 was used for the Laplace correction in simple Bayes as in 

[12]. Numeric features were discretized into ten equal-length intervals (or one per observed value, 

whichever was less), as it was done in [12]. Although this approach was found to be slightly less 

accurate than more sophisticated ones, it has the advantage of simplicity, and is sufficient for 

comparing different ensembles of simple Bayesian classifiers with each other, and with the “ global”  

simple Bayesian classifier. The use of more sophisticated discretization approaches could lead to better 

classification accuracies for the base classifiers and ensembles, but should not influence the results of 

the comparison. 

 

5.2 Correlation between the total ensemble diversity and the difference between the ensemble 

accuracy and the average base classifier accuracy 

 
First, we measured correlation between the total ensemble diversity and the difference between the 

ensemble accuracy and the average base classifier accuracy. To measure the correlation we used the 

commonly used Pearson’ s linear correlation coefficient r and a non-parametric counterpart to it - 

Spearman’ s rank correlation coefficient (RCC).  

RCC is a nonparametric (distribution-free) rank statistic proposed by Spearman in 1904 as a measure 

of the strength of the associations between two variables. It is a measure of monotone association that 

is used when the distribution of the data make Pearson's correlation coefficient undesirable or 

misleading. Kuncheva and Whitaker [22] have used RCC in similar experiments, motivating the choice 

by the fact that the relationships were not linear. RCC is based on the difference in ranks of the 

corresponding variables x and y (N here is the number of observations): 
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In our case, N is equal to 70, corresponding to 70 different measures of the total ensemble diversity 

and the difference in the ensemble accuracy and the average base classifier accuracy for the 70 cross-

validation runs for each data set. We have measured these correlations for the four search strategies, 

EBSS, EFSS, GA, and HC, and for simple random subsampling (RS). In the search strategies we have 

used all the five pairwise measures of diversity considered in Section 4. 

Our first finding was that the correlation depends greatly on the data set (varying from –0.374 to 

0.997) and does not depend on the search strategy used (the difference in the corresponding correlation 
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coefficients was not more than 0.017 for every data set), so we continue our analysis only for the 

ensembles built with random subsampling. 

In Table 2, Pearson’ s correlation coefficient (r) is presented that quantifies the correlation between 

the total ensemble diversity and the difference between the ensemble accuracy and the average base 

classifier accuracy for the ensembles built with random subsampling. All the seven diversity measures 

(Section 4) are considered, corresponding to different columns of the table: (1) the plain disagreement, 

div_plain; (2) the fail/non-fail disagreement, div_dis; (3) the Q statistic, div_Q; (4) the correlation 

coefficient, div_corr; (5) the kappa statistic, div_kappa; (6) entropy, div_ent; and (7) ambiguity, 

div_amb. We measured the correlations for three integration methods (DVS, which is the strongest of 

the dynamic integration methods, Weighted Voting, WV, and plain non-weighted Voting), presented in 

the lines of the table. Each cell corresponding to a measure of diversity and an integration method 

contains three values: average, maximal and minimal values of the 21 correlation coefficients, 

calculated for the 21 data sets. Table 3 has the same structure as Table 2 and presents Spearman’ s rank 

correlation coefficients (RCC). 

 

Table 2. Pearson’ s correlation coefficient (r) for the total ensemble diversity and the difference 
between the ensemble accuracy and the average base classifier accuracy (average, maximal and 
minimal values) 
 

r div_plain div_dis div_Q div_corr div_kappa div_ent div_amb 

0.534 0.534 0.383 0.436 0.492 0.527 0.534 
0.997 0.994 0.702 0.810 0.991 0.979 0.997 DVS 

-0.021 -0.011 -0.121 0.007 -0.163 0.021 -0.021 
0.459 0.477 0.380 0.435 0.398 0.462 0.459 
0.997 0.994 0.791 0.910 0.991 0.979 0.997 WV 
0.074 0.108 -0.019 0.040 -0.206 0.108 0.075 
0.363 0.404 0.346 0.382 0.292 0.373 0.362 
0.997 0.994 0.791 0.910 0.991 0.979 0.997 Voting 

-0.312 -0.312 -0.257 -0.360 -0.369 -0.297 -0.312 

 

Table 3. Spearman’ s rank correlation coefficient (RCC) for the total ensemble diversity and the 
difference between the ensemble accuracy and the average base classifier accuracy (average, maximal 
and minimal values) 
 

RCC div_plain div_dis div_Q div_corr div_kappa div_ent div_amb 

0.515 0.516 0.365 0.424 0.479 0.505 0.514 
0.992 0.990 0.679 0.791 0.984 0.970 0.992 DVS 

-0.033 -0.024 -0.224 0.010 -0.098 0.009 -0.030 
0.448 0.469 0.373 0.443 0.398 0.449 0.447 
0.992 0.990 0.682 0.938 0.984 0.970 0.992 WV 
0.049 0.079 -0.083 0.002 -0.235 0.107 0.051 
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0.355 0.399 0.345 0.388 0.288 0.363 0.354 
0.992 0.990 0.682 0.938 0.984 0.970 0.992 Voting 

-0.274 -0.274 -0.219 -0.343 -0.374 -0.262 -0.276 
 

From Tables 2 and 3, it can be seen that the r and RCC coefficients uncover the same dependencies 

for the diversities in this context. In fact, for the vast majority of data sets, the difference between the r 

and RCC was at most only 0.05 (for all the diversities), and more than 0.05 (but no more than 0.11) – 

only for data sets with small negative correlations. The correlations change greatly with the data sets; 

this can be seen from the minimal and maximal values presented. Naturally, for some data sets, where 

ensembles are of little use, the correlations are low or even negative.  

For the DVS integration method (the strongest integration method), the best correlations are shown 

by div_plain, div_dis, div_ent, and div_amb. Div_kappa is very close to the best. Div_Q and div_corr 

behave in a similar way, which reflects the mentioned similarity in their formulae. Div_Q has 

surprisingly the worst average correlation with DVS. However, this correlation does not significantly 

decrease with the change of the integration method to WV and Voting, as it happens with all the other 

diversities (!) besides div_corr. The decrease in the correlations with the change of the integration 

method from DVS to WV, and from WV to Voting can be explained by the fact that DVS better 

utilizes the ensemble diversity in comparison with WV (as it was shown, for example, in [39]), and 

WV better utilizes the ensemble diversity than Voting, and, naturally, the correlation coefficients 

change as well. The fact that div_Q and div_corr do not decrease with the change of integration method 

is surprising, and, probably, can be explained by the different way of calculation of the diversity, but 

this needs further research. Div_dis is the best measure of diversity on average in this context. 

Div_ plain is almost equal to div_amb, the difference between them is at most 0.001 only. Possibly, 

this similarity can be proven theoretically. Div_amb could be a good measure of diversity for classifiers 

that output the a posteriori probability of the output classes – this needs further research.  

The line with the maximal correlations corresponds to the Soybean data set. The dependency is 

almost perfectly linear for this data set for all the diversities besides div_Q and div_corr. This 

behaviour, probably, can be explained by the characteristics of the data set (it is the smallest data set 

including 47 instances only, and it is easy to learn), and needs further research. 
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5.3 Comparison of the test set accuracy for different strategies, diversity metrics, and integration 

methods 

 
In Figure 1, the ensemble accuracy is shown for different search strategies including simple random 

subspacing (RS), and for the five pairwise measures of diversity used within the fitness function (1). 

The best integration method was selected for each data set, and the results were averaged over all the 

21 data sets. 

Figure 1. Average test set accuracy for different search strategies and guiding diversities 
 

From Figure 1, one can see that the GA was the best on average, and the HC strategy was the second 

best. These two strategies are based on random subsampling (RS), which shows very good results on 

these data sets in itself. RS was better than EFSS for all the diversities, and better or equal than EBSS. 

Surprisingly, after it was the best for the Acute Abdominal Pain data sets in [38], EFSS was 

significantly worse than all the other strategies for this collection of data sets. This is more in line with 

the results of Aha and Bankert [1], which show that, for simple feature selection, backward sequential 

selection is often better than forward sequential selection as forward selection is not able to include 

groups of correlated features that do not have high relevance as separate features, only as a group. 

There is no significant difference in the use of the guiding diversities. The only two significant 

dependencies found are: (1) div_Q is significantly worse than the other diversities for EBSS, EFSS, and 

the GA; and (2) div_kappa is better than the other diversities for the GA. The first dependency is 

expected and goes in line with the results presented in Tables 1 and 2. The second dependency is 
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unexpected and can be explained, probably, by the peculiarities of the genetic search. HC is not that 

sensitive to the choice of the guiding diversity, as it starts with the already accurate ensemble (RS), and 

the search is not global as in the GA. 
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Figure 2. Average test set accuracy for different numbers of generations in the GA search strategy with 
different guiding diversities 
 

In Figure 2, the average ensemble accuracy is shown for the GA strategy with the five guiding 

diversities after 1, 5, and 10 generations. From this figure, one can see that ensembles for all the 

diversities show improvement as the search progresses for the number of generations from 1 to 5. Then, 

ensembles built with div_Q and div_corr begin to degenerate, while the other ensembles still improve 

the average accuracy, though this improvement starts to tail off. This corresponds to the results 

presented in Tables 1 and 2, where these two measures of diversity have shown the worst average 

correlation with the difference between the ensemble accuracy and the average base classifier accuracy 

for DVS. As was also shown in the previous figure, the best diversity for the GA is div_kappa. 

For each guiding diversity, for each search strategy, and for each data set we have compared the 

ensemble accuracy of the 70 cross-validation runs using Student’ s t-test for significance of the 

difference in two proportions with the level of significance 0.01. The results of this are presented in 

Table 4. It was shown that the resampled t-test and other commonly used significance tests have an 

unacceptably high probability of detecting a difference in generalization performance when no 

difference exists (Type 1 error) [32]. However, this is still the most commonly used procedure for 

comparing learning methods, and it does provide approximate confidence intervals that can be of great 

help in interpreting experimental comparisons of learning methods. 
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Each cell of Table 4 compares the diversity metric corresponding to the line against the metric 

corresponding to the column, and contains win/tie/loss information over the 21 data sets for the four 

search strategies correspondingly (EBSS, EFSS, GA, and HC), and in total (these numbers are given in 

gray, bold and italic). For each line and for each column we have also calculated the total numbers, 

which compare corresponding diversity against all the others, summing up corresponding cells. 

 
Table 4. Student’ s t-test results comparing guiding diversities for different search strategies on 70 
cross-validation runs 
 

Win/tie/loss 
BSS 
FSS 
GA 
HC 
total 
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1/20/0 
0/20/1 
0/21/0 
0/21/0 
1/82/1 

0/21/0 
1/19/1 
0/21/0 
0/21/0 
1/82/1 

2/19/0 
3/18/0 
3/18/0 
0/21/0 
8/76/0 

1/19/1 
2/17/2 
0/21/0 
2/19/0 
5/76/3 

4/79/1 
6/74/4 
3/81/0 
2/82/0 
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This table supports our conclusions from Figure 1. There is no significant difference in the use of the 

guiding diversities in most cases. However, Div_Q is significantly worse than the others for EBSS (10 

losses and no wins of the 84 comparisons), for EFSS (11 losses and 2 wins), and for GA (8 losses and 

no wins). For HC there is no difference in the use of any diversity. Div_kappa is the best diversity for 
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the GA (6 wins and no losses) and it works well for EBSS (12 wins against 3 losses), however, it is 

very unstable for EFSS (10 wins and 9 losses). The other differences are insignificant. 

As the rest of the dependencies presented in this section do not depend on what guiding diversity is 

used, we consider them only for div_plain as the guiding diversity. In Figure 3, the average ensemble 

accuracies for the five integration methods (SS, WV, DS, DV, and DVS) are shown in combination 

with the four search strategies (EBSS, EFSS, GA, and HC) and RS. 
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Figure 3. Average test set accuracy for different integration methods with different search strategies 
 

From Figure 3, one can see that the dynamic methods always work better on average than the static 

methods, and DVS is the best dynamic method, that supports the conclusions presented in [38, 39]. 

DVS for the GA shows the best accuracy, and DVS with HC is the second best. For each of the 

dynamic methods, the ranking of the search strategies is the same: GA, HC, EBSS, RS, and EFSS. 

 

5.4 Average test set accuracy for different search strategies and integration methods on data sets 

with different numbers of features 

 
In Figures 4 and 5, the same information (the average ensemble accuracy for the four integration 

methods with the four search strategies and RS) as in Figure 3 is shown, but for the two groups of data 

sets: (1) with less than 9 features (10 data sets), and (2) with more or equal to 9 features (11 data sets), 

correspondingly. 
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Figure 4. Average test set accuracy for different integration methods with different search strategies 
for data sets with the number of features less than 9 (10 data sets) 
 

One can see from the figures the same behavior of the search strategies for the two groups, and the 

dependencies between them are almost the same. One interesting finding is that RS for the dynamic 

methods (DS, DV, and DVS) in the first group of data sets works relatively better than RS for the 

dynamic methods in the second group (in the first case only the GA works always better, while for the 

second group the GA, HC, and EBSS are always better than RS for the dynamic methods). This shows 

that RS works better with data sets having smaller numbers of features. However, surprisingly, for the 

static methods RS is relatively better for the second group, which is counterintuitive and may be due to 

the relatively lower diversity of ensembles, generated with RS for the data sets with bigger numbers of 

features. For the data sets with bigger numbers of features, the search strategies are able to achieve 

better diversities than RS, which is also supported by the difference between the accuracy of dynamic 

and static methods: it is about 2% for the first group and 3.5% for the second one. 
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Figure 5. Average test set accuracy for different integration methods with different search strategies 
for data sets with the number of features more than or equal to 9 (11 data sets) 
 

5.5 Integration methods and the GA search strategy 
 

In Figure 6, the average ensemble accuracies are presented for the five integration methods for the 

GA strategy after 1, 5, and 10 generations. One can see from this figure that the static integration 

methods, SS and WV, and the dynamic DS start to overfit the validation data set after 5 generations and 

show lower accuracies, while the accuracies of DV and DVS continue to grow. This shows the 

importance of selection of the appropriate integration method for the GA search strategy. 
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Figure 6. Average test set accuracy for different integration methods with the GA search strategy for 
different numbers of generations 
 

5.6 Overfitting in the search strategies and integration methods 
 

In Figure 7, as a measure of overfitting, we show the average ensemble accuracy on the test and 

validation sets correspondingly for the four search strategies with the DVS integration method. The RS 

ensemble accuracy is shown for the sake of comparison. As one can see from the figure, the highest 

difference between the test set and the validation set accuracies is with the GA and EFSS search 

strategies (0.038), the lowest difference in the test and validation set accuracies is with the HC search 

strategy (0.033), and with the EBSS search strategy the difference is equal to 0.036. 
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Figure 7. Overfitting for different search strategies with the DVS integration method (test set and 
validation set accuracies) 
 

In Figure 8, as a measure of overfitting, we show the average ensemble accuracy on the test and 

validation sets correspondingly for the five integration methods, averaged over the search strategies. As 

one can see from the figure, the highest difference between the test set and validation set accuracies is 

with the WV integration method (0.038). Then we have DV (0.032), SS (0.031), DVS (0.029), and DS 

(0.027). In general, the static integration methods show more overfitting than their dynamic 

counterparts, as was also the case for the GA search strategy (Figure 6). It is worth noting that DVS 

returns the best accuracy on the unseen test data. 
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Figure 8. Overfitting for different integration methods averaged over the search strategies (test set and 
validation set accuracies) 
 

5.7 Pre-selected alpha for integration methods and search strategies 
 

In Figure 9, the pre-selected values of alpha are shown for the five integration methods and the four 

search strategies. Naturally, EBSS has the bigger values of alpha selected, as it needs more diversity to 

achieve better ensemble accuracy, when all the classifiers include mostly identical features. It is not the 

case with the static integration methods, especially WV, as diversity is not that important for them, as 

they do not use diversity to the same extent the dynamic integration does. In general, alpha for the 

dynamic methods is much bigger for all the strategies than for the static ones. The EFSS, HC, and GA 

strategies have almost the same alpha selected on average. 
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Figure 9. Average pre-selected alpha values for different integration methods and search strategies  
 

5.8 Average numbers of features selected for different search strategies and integration methods 
 

In Figure 10, the average relative numbers of features selected in the base classifiers for the four 

search strategies and RS and for the five integration methods are shown. These numbers of features 

correspond to the different alpha values selected for each combination of a search strategy, integration 

method, and data set (in the case of RS these numbers correspond simply to the random sets, and do not 

depend on the integration method). As one can see from the figure, naturally, RS selects exactly half of 

the features on average. Surprisingly, the GA strategy selects the biggest number of features, even 

higher than the EBSS strategy. One possible explanation for this is that, due do the global nature of its 

search, it is able to achieve better diversity even with classifiers including bigger feature subsets having 

more features in common. As expected, the EFSS strategy selects the lowest number of features on 

average. As a rule, more features are selected in the static integration methods than in the dynamic 

ones, corresponding to the bigger alpha values of Figure 9. 
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Figure 10. Average relative numbers of features in the base classifiers for different search strategies 
and integration methods 
 

5.9 Pre-selected neighborhood for dynamic integration 
 

In Figure 11, the average numbers of nearest neighbors (k) pre-selected for the dynamic integration 

methods are shown. As one can see from this figure, DS needs bigger values of k. This can be 

explained by the fact that its prediction is based on only one classifier being selected, and thus, it is 

very unstable. Bigger values of k provide more stability to DS. k is equal to 32 for DS on average, and 

it is only 10 for DV. For DVS, as a hybrid strategy, it is in between at 22. The selected values of k do 

not change significantly with the search strategies. The only “ outlier”  is the k value for DVS with the 

GA strategy. Such a high value can probably again be explained by the differences in the nature of the 

search between the GA and the other strategies. 
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Figure 11. Average numbers of nearest neighbors pre-selected for the dynamic integration methods 
 

Conclusions 
 

In our paper, we have considered seven diversity metrics, five of which are pairwise and can be used 

as a component of the fitness function to guide the process of ensemble training in ensemble feature 

selection (the plain disagreement, div_plain; the fail/non-fail disagreement, div_dis; the Q statistic, 

div_Q; the correlation coefficient, div_corr; and the kappa statistic, div_kappa), and two non-pairwise 

(entropy, div_ent; and ambiguity, div_amb). All the seven measures can be used to measure the total 

ensemble diversity as a characteristic of ensemble goodness.  

We consider four search strategies for ensemble feature selection: Hill Climbing (HC), a Genetic 

Algorithm for ensemble feature selection (GA), Ensemble Forward Sequential Selection (EFSS), and 

Ensemble Backward Sequential Selection (EBSS). In our implementation, all these search strategies 

employ the same fitness function, which is proportional to accuracy and diversity of the corresponding 

base classifier. Diversity in this context can be one of the five pairwise diversities considered. To 

integrate the base classifiers generated with the search strategies, we use five integration methods: 

Static Selection (SS), Weighted Voting (WV), Dynamic Selection (DS), Dynamic Voting (DV), and 

Dynamic Voting with Selection (DVS). 

In our experiments, first, we analyse the total ensemble diversity calculated with the seven considered 

metrics. To check the goodness of each measure of diversity we calculated its correlation with the 
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difference between the ensemble accuracy and the average base classifier accuracy. The correlations 

did not depend on the search strategy used, and depend significantly on the data set. The best 

correlations averaged over the 21 data sets were shown by div_plain, div_dis, div_ent, and div_amb. 

Div_Q and div_corr behaved in a similar way, supported by the similarity of their formulae. 

Surprisingly, div_Q had the worst average correlation. All the correlations besides div_Q and div_corr 

changed with the change of the integration method, showing the different use of diversity by the 

integration methods. The correlation coeffitients for Div_amb were almost the same as for div_plain. 

Then, we have compared ensemble accuracies of the four search strategies for the five pairwise 

diversity metrics, and for the five integration methods being used. For all the diversities, the GA was 

the best strategy on average, and HC was the second best. The power of these strategies can be 

explained by the fact that they are based on random subsampling. Surprisingly, EFSS was significantly 

worse than the other strategies for this collection of data sets. There was no significant difference found 

in the use of the guiding diversities, besides the findings that div_Q was significantly worse on average 

than the other diversities for EBSS, EFSS, and the GA; and div_kappa was better than the other 

diversities for the GA. HC was not sensitive to the choice of the guiding diversity. The results of the 

Student’ s t-test for significance supported these findings. The dynamic integration methods DS, DV, 

and DVS always worked better on average than the static methods SS and WV, and DVS was the best 

dynamic method on average. The GA and DVS was the best combination of a search strategy and 

integration method. 

To analyse overfitting in these ensembles, we have measured all the ensemble accuracies on both the 

validation and test sets. Among the search strategies, GA and EFSS had the biggest overfitting on 

average. For the integration methods, it was discovered that the static integration methods show more 

overfitting than their dynamic counterparts. 

The experimental results presented change very much with the data set, and more data sets are needed 

to check and to analyse the reported findings. More experiments are needed to check how the 

behaviour of the diversity metrics depends on the data set characteristics, and what is the best metric 

for a particular data set. This is an interesting topic for further research. 

Another measure of ensemble diversity, not considered in this paper, that has been shown to have 

high correlation with the ensemble accuracy is Double Fault (DF) measure [22, 34]. It is an interesting 

topic for future research to consider this measure also as the guiding diversity in our experimental 

setting, and to check its correlation with the improvement in accuracy, and with the considered 

measures of diversity. 
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