Trust Based Dynamic Source Routing in

Mobile Ad Hoc Networks

John Keane
A dissertation submitted to the University of Dublin in partial

fulfilment of the requirements for the degree of Master of Science

in Computer Science

September 16™ 2002

Declaration

I declare that the work described in this dissertation is, except where otherwise
stated, entirely my own work and has not been submitted as an exercise for a

degree at this or any other university.

Signed:

John Keane

Date: September 16™ 2002

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon

request.

Signed:

John Keane

Date: September 16™ 2002

Abstract

The notion of an ad-hoc network is a new paradigm that allows mobile hosts (called
nodes) to communicate without relying on a predefined infrastructure to keep the
network connected. Most nodes are assumed to be mobile and communication is
generally assumed to be wireless. Ad-hoc networks are collaborative in the sense that
each node is assumed to relay packets for other nodes that will in return relay their
packets. Thus, all nodes in an ad-hoc network form part of the network's routing
infrastructure. The mobility of nodes in an ad-hoc network means that both the
population and the topology of the network are highly dynamic.

In traditional networks, the network infrastructure is provided by a few trusted
operators. This is no longer the case in an ad-hoc network where every mobile node
becomes part of the network fabric. It is thus necessary to define new security
mechanisms for the routing protocols in such networks.

This project involves the analysis, design, implementation, and evaluation of one such
mechanism based on the notion of trust. Each node records their experience with
routing through particular nodes. Nodes will be regarded as trustworthy, if the
relayed packets reach their final destination. An evaluation of the trustworthiness of
the other nodes allows the sending node to identify and use the route with the highest
probability of packets reaching their destination.

The trust based route selection system developed is evaluated using the NS-2 network
simulator. Results have proved that malfunctioning or malicious nodes can be clearly
identified by other nodes in the network. However, the route selection algorithm that
makes use of this identification information is only outperforming existing routing
protocols in a restricted number of instances.

Acknowledgments

I would like to thank my supervisor Christian Jensen for the help and support he
offered me throughout the year. I would also like to thank the MSc NDS class for

making this year a very enjoyable one.

Contents

1. INtrOdUCHION. .euuueiieeereeenneseeeereeeeneseeeesesssssssosesesssssssssasannsnee

1.1
1.2
1.3
1.4

2.1

2.2

23

24

Preamble.oooiiiiiiii

Ad-HOC NetWOrKS. .. e

OOt IVE. 1ttt e

Document StruCtULE. ...ttt ieiiaeeeeeens

LIterature ReVIEW..uveeeuuiiieeereeeneeseeeereeesseesseesssassssssocsssasssnns

Traditional Security Approaches............cccoevveiiiiiiiniinnn.

2.1.1
2.1.2

Encryption.......ccooiiiiiiiiiiiiici e

Authentication........ooviiiiiiiiiii e,

2.1.2.1 Public Key Certificates.............cooevviiiiiiiiiiiininnn.
2.1.2.2 Pretty Good Privacy.......cccvviiiiiiiiiiiiiiiiiineeieenn,

2.13

Access CONIOL. ..o,

Routing in Ad-hoc Networks.........c.ccooviiiiiiiiiiiiiiiiinn.,

2.2.1
222
223
224
225

Dynamic Source Routing (DSR).........ccocviiiiiiiiiinnnn..
Destination-Sequenced Distance Vector (DSDV).............
Temporally-Ordered Routing Algorithm (TORA)................
Ad-Hoc On Demand Distance Vector (AODV)...............

Comparison of Routing Protocols..................ccoenenne.

Security in Ad-hoc Networks..........ccoovviiiiiiiiiiiiiiniannn..

2.3.1
232

Security Challenges...........cooeviiiiiiiiiiiiiiiiieieee

Secure RoOUting.........cooviiiiiiiiiiiiiiii e

Defining Trust.......oooiiiiiiiiii e,
Properties Of Trust........c.oovviriiiiiiiiiiiiiiiiiii e,
Trust Values.......covueiniiiiiiii e

Trust FOrmation.oooiiiiiiiiiii e,

A2 B N =

2.5

2.6

3.3

4.1

4.2

43
4.4
4.5

. Evaluation

5.1
5.2
5.3

5.4

Trust Management Systems...........ccoviiiiiiiiiiiiiieniiiennnenn.
2,51 KeYNOTE. ..ttt e
252 REFEREE......co e,

Design of Trust Based Route Selection System...................

3.2.1 Trust

FOrmation.......ovviiiiiieiieaeens

3.2.1.1 Trust Establishment..........cccoeeiiiiiiiiiiiiiiiiiiaiann..

3.2.1.2 Updating of Trust Information..............................

3.2.2 Trust

Management...........cceviiiiiiiiiiieiiii e

3.2.3 RoOULE SeleCtioN.,

. Implementation

The NS-2 Network Simulator.........oovvviveiieiieiiiieann.s

A.1.1 OVEIVIEW. .ttt
4.1.2 ATChItECTUTE. ..o evveteeieeiee e eeeeeeens
4.1.3 The CMU Monarch EXtensions.cceeeeeeeeeeieeeeanannn..

Trust FOrmation.oooiiiiiiiiie e

42.1 Trust

Establishment.........coooiiiiiiiiiiiiiiiiiiiieneen,

4.2.2 Updating of Trust Information..................c..coeeinenn..

Trust Management..........oooiiiiiiiiiiiiiii i,

Route SEleCtion.oovveeieeiee e

Measurement AQMIS.veeeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenees

Simulation Model.

Results...

5.3.1 Identification of Misbehaving Nodes
5.3.2 Packet Delivery Ratios.........cccevviiiiiiiiiiiiiiiiiiian,

25
26
27
28

29
29
31
31
31
32
33
36
37

38
38
38
39
40
40
41
41
43
44
46

47
47
48
50
50
55
59

LT 1) 1 16 11 1) 1) 11

6.1 FUtUrE WOrK . .o,

Bibliography

List of Figures

1
2
3
4
5
6-11

A simple ad-hoc network
Source Routing in DSR

Route Request in DSR

Trust Based DSR Architecture
Simulation Parameters

Trust Value Graphs

12-16 Packet Delivery Ratio Graphs

Chapter 1

Introduction

1.1 Preamble

Wireless communications technologies are developing rapidly and are undergoing a
tremendous rise in popularity. The continuing rise in processing power and the
miniaturisation of hardware, coupled with the fact that people want to increasingly
retain a high degree of connectivity to the Internet, is leading this substantial shift to

mobile computing.

In today’s age of pervasive mobile computing, wireless technologies play a key role
in connecting ubiquitous devices. The primitive wireless services originally offered
by mobile phones and pagers have given way to a sophisticated set of services offered
by wireless local area networks and intricate telecommunications networks (GPRS &
UMTS/3G) which will soon be accessible by mobile phone and personal digital
assistant (PDA).

As wireless devices of all types proliferate and their cost is reduced, users will
increasingly demand access to information services and applications even when they
are not able to connect to the traditional Internet or it is not necessary to do so. For
example, people with laptops at a conference in a hotel may wish to communicate in
an ad-hoc manner, without having to make use of any fixed infrastructure network.
The concept of such an ad-hoc network is new and it is this type of mobile computing

network that forms the basis for this thesis.

10

1.2 Ad-Hoc Networks

The Internet Engineering Task Force Working Group on Mobile Ad-Hoc Networks
[TIETF MANET WG] defines an ad-hoc network as:

A “mobile ad hoc network” (MANET) is an autonomous system of mobile routers
(and associated hosts) connected by wireless links — the union of which form an
arbitrary graph. The routers are free to move randomly and organise themselves
arbitrarily; thus the network’s wireless topology may change rapidly and
unpredictably. Such a network may operate in a stand-alone fashion, or may be

connected to the larger Internet.

The notion of an ad-hoc network is a new paradigm in which a collection of mobile
nodes collaborate to form a temporary wireless network. Communication is achieved
without reliance on a predefined fixed infrastructure. Both the topology and
population of an ad-hoc network are highly dynamic due to the mobility of the nodes

mvolved.

Ad-hoc networks are collaborative in the sense that each node is assumed to forward
packets for other nodes and will in turn get its packets forwarded for it. It is thus
evident that all nodes in an ad-hoc network from part of the routing infrastructure, i.e.
all nodes act as routers. This means that traditional routing protocols are inadequate
for ad-hoc networks and a number of new routing protocols have been developed for

such networks (see chapter 2).

Figure 1 shows a scenario in which node A transmits data to node C via node B, since

A’s transmission range is not sufficient to send data directly to C.

11

Zircle represents transmission range

Figure 1: A simple ad-hoc network

This process of routing data through intermediate nodes until the destination node is
reached is known as multi-hop. Most packet switching networks including the
Internet work in a multi-hop fashion. With traditional networks, both wireline and
mobile wireless, the intermediate nodes through which data is sent in order to reach
the destination node are routers that are owned and managed by trusted operators.
However, in an ad-hoc network the intermediate nodes through which data is sent
may be unknown and may potentially be malfunctioning or malicious. Such nodes
may disrupt service in the network. This problem is the essential motivation for this

thesis and is described and discussed in detail in chapter 2.
There are a large number of potential applications for ad-hoc networks and some of

the most cited include: military communications in a battlefield scenario where no

infrastructure is present, disaster relief or rescue operations, and conferencing.

12

1.3 Objective

The basic objective of this project is to design, implement, and evaluate an extension
to an existing routing protocol for ad-hoc networks that will address some of the
security and reliability wvulnerabilities that were mentioned above. These
vulnerabilities will be examined in further depth in chapter 2 and at that point both the

motivations and the objectives of this project will be more clearly highlighted.

1.4 Document Structure

This document consists of the following chapters:

Chapter 1: Introduction gives a brief insight into mobile communications and ad-

hoc networks.

Chapter 2: Literature Review examines key technologies and issues that are

relevant to this study.

Chapter 3: Design describes the architecture and operation of the trust based route

selection system under study.

Chapter 4: Implementation looks at the manner in which the design is implemented

and the technologies that are used.

Chapter 5: Evaluation presents and discusses the results of the simulations that were

carried out in order to determine the success of the new system.

Chapter 6: Conclusions summarises the findings of this thesis and suggest future

work that could be done in this area.

13

Chapter 2

Literature Review

The aim of this chapter is to provide a basis and motivation for the design and
implementation of a trust based route selection system by exploring and outlining
some of the key associated technologies, issues, and problems. Information on
relevant background and state of the art technologies is presented. The reliability and
security problems associated with routing in ad-hoc networks will be exposed and

concepts that will aid in the design of the new system will be examined.

This chapter is organised as follows. Section 2.1 describes traditional security
approaches used for both fixed wireline and mobile wireless networks that rely on a
fixed infrastructure. Section 2.2 discusses routing issues in ad-hoc networks and
describes the most prominent routing protocols. DSR and some of its optimisations
are examined in depth. Section 2.3 outlines the security challenges facing ad-hoc
networks and exposes the security vulnerabilities present in such networks. State of
the art work that addresses problems with routing security is presented. Section 2.4
and 2.5 document the concept of trust and the use of trust management systems

respectively. This chapter is then concluded with a summary in section 2.6.

2.1 Traditional Security Approaches

Computer security is primarily concerned with the maintenance of three
characteristics: confidentiality, integrity, and availability. Confidentiality, which is
often referred to as privacy or secrecy, ensures that the assets of a system are

accessible only by authorised parties. This can be achieved by encrypting data and by

14

controlling access to data. Integrity implies that assets can be modified only by
authorised parties and only in an authorised manner. Integrity can be enforced by
rigorous control of who can access which resources in what ways. Availability refers
to the fact that an authorised party should not be prevented from accessing objects to
which legitimate access should be allowed. Denial of service, the opposite of
availability, means that assets are inaccessible to authorised parties. Awvailability is a
complex subject and the security community is only beginning to understand what
availability implies and how to ensure it. Most of the success in computer security

has been in the areas of confidentiality and integrity [Pfleeger].

In traditional networks, such as an infrastructure-based local area network, various
security mechanisms are used to achieve confidentiality, integrity, and availability.
Most of these mechanisms depend upon either the authenticated identity of the user or
some form of credentials that authorise the user to perform certain actions. In many

cases these mechanisms rely on a public key infrastructure (PKI).

Security mechanisms implemented by a PKI do provide a capability to build in a
certain level of trust into communications. Examples include cryptographic
algorithms for privacy and digital signatures, and authentication protocols for proving
authenticity. However, these mechanisms do not manage the more general concept of
‘trustworthiness’. For example, a signed public-key certificate does not tell you if the

owner of the certificate is trustworthy.

The rest of this section will focus on the primary mechanisms used in the traditional

approach to achieving the aforementioned three goals of computer security.

2.1.1 Encryption
Encryption is commonly used to provide confidentiality of data. Additionally,

because data that cannot be read generally also cannot be altered in a meaningful

manner, encryption can be used to achieve integrity. Furthermore, encryption is the

15

basis for some protocols that ensure availability of resources. Thus, encryption is the

core mechanism used to achieve the three goals of computer security [Pfleeger].

In a network environment, encryption can by applied between two hosts or two
applications. In link encryption, data is encrypted in either the physical layer or the
data link layer. The data is thus protected while in transit between two hosts, but is in
the form of plaintext while inside the hosts. In end-to-end encryption, data is
encrypted at the application layer and hence security is provided from one end of a
transmission through to the other. If a lower layer should fail to implement security,
the secrecy of the data is not endangered. With link encryption, encryption is carried
out for all transmissions along a particular link. Part of the advantage is lost if a
message is only encrypted on some links in a network, and link encryption is
therefore used on all links in a network if it is performed at all. By contrast, end-to-
end encryption is only applied to logical links between processes, and hence the
intermediate hosts along the transmission path have no need for cryptographic
facilities. Furthermore, the encryption can be done with software and can hence be
applied selectively. To satisfy the requirements of an application, there is no need for
the lower layers to automatically encrypt all traffic. However, Saltzer et al. [Saltzer]
suggest that the communication subsystem may be required to automatically encrypt
all traffic to ensure that a misbehaving user or program does not deliberately transmit
information that should not be exposed. There is thus a need for both link encryption

and end-to-end encryption, and it is not uncommon for both forms to be applied.

Both symmetric and asymmetric cryptosystems may be used to encrypt data. The
Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) are
two of the most well know symmetric cryptographic algorithms. However, all such
cryptosystems suffer from the complex and costly problem of key distribution. Key
distribution is not a problem with asymmetric cryptographic algorithms such as RSA.
Public key infrastructures make use of asymmetric public key cryptosystems to allow
for confidentiality and for digital signatures. Hybrid cryptosystems such as Secure
Socket Layer (SSL) allow the encryption and distribution of a symmetric key via
asymmetric encryption. Such cryptosystems are in common use and provide secure
communications with little delay. However, despite the confidence placed in such

cryptosystems, the necessity to authenticate public keys still persists. A trusted third

16

party such as a key distribution centre is still necessary and hence the issue of trust is

still present.

2.1.2 Authentication

Authentication is the verification of the identity of a remote entity, which may be
performed by means of a password, a trusted authentication service, or by using
digital certificates. Authentication of an entity allows us to ensure that an
unauthorised user does not gain access to data. This is necessary to maintain both

confidentiality and integrity of data.

In a small-scale system it is possible for an administrator to assign a unique identifier
to each user of the system, but this solution does not scale well. Public key
cryptography is used in large-scale distributed systems to create a unique key for
every user. We will now examine two public key encryption based systems that are

used for authentication in distributed systems.

2.1.2.1 Public Key Certificates

The development of a global key management system became possible as system
administrators accepted a trusted third party statement that a particular key belonged
to a particular user. The trusted third parties, known as Certification Authorities (CA),
create digital certificates that verify that a public key is owned by a particular entity.
The issuing of a certificate by a CA implies nothing about the ‘trustworthiness’ of the

key owner involved.

X.509 is the de facto standard digital certificate model that has been adopted on a
global scale. It was originally developed by the International Telecommunications
Union (ITU) and has since been adopted by the International Standardisation
Organisation (ISO). The X.509 standard defines what information is contained in a

certificate, and the data format of this information. Public key infrastructures

17

commonly make use of X.509 certificates, and they are widely visible in web

browsers that support the Secure Socket Layer (SSL) protocol.

The X.509 model is a strictly hierarchical trust model. Each entity must have a
certificate that is signed by the central certification authority or another authority,
which has been directly or indirectly certified by it. This model assumes that

certification authorities are organised into a universal “certification authority tree”.

The major fault with the X.509 system is that a low-level CA can bind very detailed
information about a user in the certificate that they issue, whereas a higher-level CA
cannot capture much detailed information. Despite the fact that the CA is used to
form a trust relationship, it can never be adequate as an authority for everyone in a
large distributed system. Credibility is a major issue, and unfortunately the credibility
of a certificate will decrease and its recommendations will increase in uncertainty as

the size of the distributed system grows [Khare].

2.1.2.2 Pretty Good Privacy

The Pretty Good Privacy (PGP) system allows users to create a decentralised trust
hierarchy by locally binding user identities to public keys. The key management for
PGP is ad-hoc and is based on the notion of a “web of trust” [Abdul]. As a user
interacts with other users in the distributed system, they will exchange public keys
with individuals that they trust, i.e. believe to be authentic. This is achieved by the
signing of certificates. The system allows a user to designate users, that they trust, to
act as introducers, and to define a level of trust that they associate with each
introducer. When a user interacts with an individual who is unknown to them, but
who’s certificate is signed by a number of known introducers, the user can have a
certain amount of confidence in the authenticity of the unknown users public key,
based on the trust relationship that exists with the introducers. Due to PGP’s lack of
official mechanisms for the creation, acquisition, and distribution of certificates, it is
considered unreliable for e-commerce, but appropriate for personal communications
[Grandison]. The question of why an individual is trusted is not addressed by the

PGP system. It should be noted that no trusted third party is used in PGP.

18

2.1.3 Access Control

Access control systems enforce the policy that the manager of a resource applies to
parties that request access to that resource. The policy refers to a particular resource,
and specifies who can have access to the resource and what type of access they can
have [O Connell]. Access control systems prevent unauthorised access to system
resources, which may compromise both confidentiality and integrity of data.
Additionally, unauthorised access may impinge availability by denying service to a

legitimate user.

The most prevalent traditional mechanism for implementing access control is the
Access Control List (ACL). An ACL is associated with every protected resource. It
lists all users who have access to that particular resource, and what level of access

they have.

There are a number of problematic issues surrounding the use of access control lists.
The fundamental problem relates to the flexibility of the system. Whenever a new
user has to be added or a privilege granted, the administrator has to directly modify
the list. Access control lists have been used extensively in large-scale distributed
systems, primarily because of the familiarity of the concept. However, the ACL
system does not scale well and is thus not suited to any environment where there are a
large number of users. An ad-hoc network may consist of a large number of users and
hence the notion of an ACL in such a network has limited potential. The maintaining
of individual mappings of identities to access rights is impractical in such

circumstances.

2.2 Routing in Ad-Hoc Networks

In an ad-hoc network, nodes cooperate with each other by forwarding data packets for
one another around the network. It is this cooperation that enables nodes to send
packets to destinations beyond their physical transmission range. However, this

multi-hop routing approach does present problems. A transmitting node must depend

19

on intermediate nodes to be both reliable and trustworthy, in the forwarding of
packets. Many different protocols have been proposed to solve the various multi-hop
routing problems in ad-hoc networks. However, there is still no single routing
protocol that could be characterised as the de-facto standard in the domain of ad-hoc

networking.

Each routing protocol is based on different assumptions and different design choices.
The first major design choice is that of on-demand vs. periodic advertisements. An
on-demand protocol is reactive in nature, in that routing activities are only initiated
when a data packet is in need of a route. Traditionally, routing protocols have been
proactive, in which case all nodes find (via periodic message passing) all source-
destination routes regardless of the use for such routes. The key advantage of the on-
demand approach is the reduction of the routing information load, which is usually
significant in low-bandwidth wireless links. The second major design choice is
source routing vs. hop-by-hop routing. With source routing the sender enumerates all
hops on the route to the destination, whereas in hop-by-hop routing the sender is

simply aware of the neighbour to which the data packets are sent.

In the rest of this section we will examine four routing protocols that cover a wide
range of design choices. Particular emphasis will be placed on the dynamic source
routing (DSR) protocol, as that is the protocol that will be extended in this dissertation.
Trust based route selection could potentially be added to most ad-hoc network routing
protocols, where the sender is presented with a number of potential routes to the
destination. However, trust based route selection is particularly amenable to a source
routing protocol such as DSR. With such a protocol, the sending node must have
knowledge about all the nodes on the route to the destination, not simply its

neighbouring nodes.

2.2.1 Dynamic Source Routing (DSR)

Dynamic Source Routing is a routing protocol specifically designed for wireless
mobile ad-hoc networks. Its specification was published originally in [Johnson 1].

The latest version of the protocol was made as an Internet draft [Johnson 2].

20

The key distinguishing feature of DSR is that it uses source routing rather than hop-
by-hop routing [Perkins 1]. The sender knows the complete hop-by-hop route to the
destination, and these routes are stored in a Route Cache. Each data packet carries the
source route in the packet header, i.e. the ordered list of nodes through which the
packet must pass so as to reach its destination. Intermediate nodes do not need to
maintain up to date routing information in order to route the packets forward, since
the packets themselves already contain all necessary routing information. Figure 2

shows an example of how source routing works.

Figure 2: Source Routing in DSR

DSR is an on-demand protocol: it establishes routes dynamically whenever a packet
needs to be forwarded to a destination. This is in contrast to distance vector or link
state protocols, which try to continuously monitor and update their lists of paths

towards possible destinations.

21

Many assumptions have been made in the design of DSR. It is assumed that all nodes
in the network are willing to respect the routing protocol of the network, and in
particular that all nodes are assumed to cooperate in the forwarding of packets for
other nodes [Johnson 2]. These assumptions generate major security concerns:
trusting all nodes in the network to conform to the routing protocol and to forward
packets appropriately would expose individual nodes to a wide variety of
vulnerabilities. Other assumptions made in the design of DSR include: the speed at
which nodes migrate throughout the network is small relative to the rate at which
packets are transmitted, communications work equally well in both directions, and

nodes have the ability to detect any corrupted packets received.

The DSR protocol consists of two mechanisms: Route Discovery and Route
Maintenance. These mechanisms allow for the discovery and maintenance of source

routes to a dynamic set of nodes.

2.2.1.1 Route Discovery

Route Discovery is the mechanism by which a node wishing to send a packet to a
destination node obtains a source route to this destination node. This process is only
carried out if the route cache does not already contain the source route. Route
Discovery is achieved by the broadcasting of a route request to all nodes within
communication range. Each route request message contains the identity of the
initiator of the request, a unique request identification, and a route record of the nodes
through which the request has been forwarded. This request is flooded through the
network (i.e. continuously relayed from each node to all of its neighbours) and is
eventually answered by a route reply packet from either the destination node or
another node that knows a route to the destination. To ensure that a route request
does not propagate ad infinitum throughout the network, a limit is placed on the
number of route requests made for any packet. This limit is embedded in the route
request message. If the limit is exceeded, the packet will be discarded. Figure 3
illustrates an example where initiator node 2 starts a route discovery to find a path (or

multiple paths) to destination node 5.

22

Route Request
sre=2, dst=5, id=2

e _m
=

{ 2]
‘{.?_-;_F"-/

e

W
tho 3 j!
Foute Request ot

sre=2, dst=5, id=2
2 o Route Request

e Route Request sre=2. dst=3. id=2
— sre=2, dst=5, id=2

]

-

e
.-':;ﬁ_;':
e

PR

N

Figure 3: Route Request in DSR

2.2.1.2 Route Maintenance

Route maintenance is the mechanism by which a packet’s sender detects if the
network configuration has changed so that it can no longer make use of its route to a
destination. Each node that transmits a packet is responsible for confirming that the
packet has been received by the next hop on the source route. If no confirmation has
been received after a set number of attempts, a route error message is returned to the
original sender of the packet. A route error packet indicates that a source route has
been broken, and a sender will at this point attempt to use another route to the
destination node that is already in its cache, or invoke route discovery to find a new

route.

Confirmation can be achieved in a variety of manners. By monitoring failure
notifications provided by the data link layer, nodes can determine if the packet was
successfully received. If bi-directionality is permitted, confirmation can be achieved

when a node overhears the next node transmitting the packet to the next node after it.

23

Finally, an explicit request for an acknowledgement can be make by embedding an

acknowledgment request in the packet header.

2.2.1.3 Optimisation Techniques

Several optimisations to the DSR protocol have been proposed and evaluated to be
very effective. The majority of these optimisations rely on DSR’s very aggressive use
of source routing and route caching. The following paragraphs summarise some of

these optimisations.

Salvaging
When a data packet meets a failed link on its source route, the intermediate node at

which the link failure exists can use an alternative route from its own route cache.

Gratuitous Route Repair
A source node that receives a route error packet may piggyback the route error
packet in its following route request. This helps clean up the caches of other nodes in

the network that may have the failed link in one of the cached source routes.

Promiscuous Listening

When a node overhears a packet not addressed to itself it checks to see whether or not
the packet could be routed through itself so as to shorten the overall route. If this is
the case, it sends a gratuitous route reply to the source node informing it of the shorter
route. Promiscuous listening also allows DSR to “snoop” on any packet it receives
and extract information from the packet’s header. This allows for a node to learn

different routes without being directly involved in the routing process.

2.2.2 Destination-Sequenced Distance Vector (DSDV)

DSDV is a hop-by-hop distance vector routing protocol requiring each node to
periodically broadcast routing updates. Loop freedom is guaranteed by DSDV and

this is its key advantage over traditional distance vector protocols [Broch].

24

Each DSDV node maintains a routing table, which lists the next hop for all
destinations. All routes are tagged with a sequence number. A route with a higher
sequence number is considered more favourable than one with a lower sequence
number, and in the case where two routes have the same sequence number, the route
with the lower metric is considered more favourable. Each node in the network
periodically advertises a monotonically increasing even sequence number for itself. If
a node decides that its route to a particular destination node has broken, it advertises
the route to that destination with an infinite metric and a sequence number that is one
greater than its sequence number for that route (i.e. an odd sequence number). Any
node that is routing packets to the destination node, via the node that decided that the
route had broken, incorporates the infinite metric route into its routing table, until it

discovers a route to the destination node with a higher sequence number.

2.2.3 Temporally-Ordered Routing Algorithm (TORA)

TORA is an on-demand routing protocol based on a “link reversal” algorithm. It is
designed to discover multiple routes to a destination quickly and to minimise
communication load by localising algorithmic reaction to configuration changes
whenever possible. Routing via the shortest path is not considered of primary
importance. TORA frequently makes use of longer routes in order to avoid the

communication overhead that is required to discover new routes.

Broch et al. [Broch] describe the actions taken by TORA in terms of water flowing
downhill through a network of tubes. The tubes represent the links between the nodes
in the network, the junctions of tubes represent the nodes, and water in the tubes
represents data packets. The routing protocol computes the height of each node with
respect to the appropriate destination. If a tube between a sending node and a
destination node becomes blocked, the height of the sending node is set to a height
that is greater than any of its neighbours. This will cause water to flow back out of
the sending node, and towards other nodes that had been routing packets to the

destination node, via the sending node in question.

25

2.2.4 Ad-Hoc On Demand Distance Vector (AODYV)

AODV may be considered a combination of both DSR and DSDV. It shares with
DSR an on-demand characteristic in that it also discovers routes in a reactive manner,
i.e. on an as needed basis. AODV employs a similar route discovery process to DSR,
but maintains routing information in a very different manner. Whereas DSR adopts
source routing, AODV makes use of hop-by-hop routing and various other

mechanisms offered by DSDV.

An important feature of AODV is the maintenance of timer-based states in each node,
regarding utilisation of individual routing table entries. If a routing table has not been
used recently, it is expired. For each routing table entry, a set of predecessor nodes is
maintained. These indicate the set of neighbouring nodes which use that entry to
route data packets. When a next hop link is broken, these nodes are notified. Each
predecessor node, in turn, notifies its own set of predecessors, and this has the effect
of erasing all routes that were making use of the broken link. Perkins et al. [Perkins 1]
suggests that route error propagation in AODV can be visualised conceptually as a
tree whose route is the node at the point of failure, and all sources using the failed link

as the leaves.

2.2.5 Comparison of Routing Protocols

Despite the fact that several comparisons of ad-hoc routing protocols have been

conducted, there has yet to be adopted a popular standard.

Broch et al. [Broch] conclude from their performance comparison research that each
of the DSDV, TORA, DSR, and AODV protocols, perform well in some cases, yet
have certain drawbacks in other cases. Perkins et al. [Perkins 1] observe from their
simulations that DSR outperforms AODV in low “stress” situations (e.g. small
number of nodes, low amount of mobility), but that AODV outperforms DSR in
“high” stress situations. Both of the aforementioned studies conclude however, that

DSR consistently generates less routing overload than AODV.

26

2.3 Security in Ad-Hoc Networks

The security characteristics of ad-hoc networks are very different to those of
traditional infrastructure based wireless networks. The absence of a fixed
infrastructure implies that nodes cannot rely on information from trusted servers such

as certification authorities.

Security in ad-hoc networks is particularly difficult to achieve, principally because of
the vulnerability of the links, the erratic nature of connectivity, the limited physical
protection of the nodes, the dynamically changing topology, and the absence of a

trusted third party such as a certification authority.

When one examines security in relation to ad-hoc networks, one is obliged to consider
the topic of routing mechanisms. Routing mechanisms are much more vulnerable in
ad-hoc networks than in traditional networks and thus are a major consideration in

any analysis of security.

In this section, we shall examine the security challenges facing ad-hoc networks.
Given that routing mechanisms comprise one of these principle challenges, we shall

then consider the issue of secure routing.

2.3.1 Security Challenges

The nature of ad-hoc networks poses new security challenges that we will now

examine.

The use of wireless links renders an ad-hoc network vulnerable to link attacks,
ranging from passive eavesdropping to active interference. Eavesdropping may
violate confidentiality of information transmitted across the network, whereas active
attacks might allow an adversary to delete messages, to modify messages, to generate
erroneous messages, to replay old messages, and to impersonate a node. This

problem has been thoroughly researched for wireless networks in general (it is not

27

specific to ad-hoc networks) and many solutions have been proposed and deployed

such as frequency hopping spread spectrum communications.

As opposed to traditional wire-line networks where nodes may be physically secured
(for example, by being locked into a cabinet), nodes in an ad-hoc network do not have
good physical protection. This lack of physical security is further increased in a
hostile environment. It is thus necessary to not only consider malicious attacks from
the outside, but to also consider the issue of malicious attacks being launched from
within the network. Hubaux et al. [Hubaux] suggest that if a device is at risk of being
captured or hijacked, the conventional manner in which it is protected is by
implementing it in tamper resistant hardware. Cryptographic information (typically a
secret key) could be embedded in a smart card that could be plugged into and
removed from the node in question (an example of this is the SIM card based solution
for GSM). Routing mechanisms embedded in a node could be protected in a similar

manner by storing the related software on a smart card.

One of the fundamental security problems in ad-hoc networks is that the presence of a
trusted third party, such as a certification authority, cannot be assumed. Many of the
security services offered by a public key infrastructure in the domain of traditional
infrastructure based networks are reliant on the presence of a trusted third party. The
use of digital certificates, public key cryptography, digital signatures and other
traditional security mechanisms can no longer be taken for granted in the ad-hoc
domain. In such an environment, the lack of trusted third parties makes it necessary

to establish trust in alternative ways.

Due to the fact that each node in an ad-hoc network acts as a relay, the routing
mechanisms used in such networks are more vulnerable than their conventional
counterparts. An adversary who hijacks an ad-hoc node could paralyse the entire
network by disseminating false routing information. Node selfishness is a more
subtle form of malicious behaviour where nodes do not relay packets (e.g. so as to
conserve their own battery power). Another problem that weaknesses in a routing
protocol might present is that of malicious neighbour discovery. Researchers have
recently shown how this kind of attack can be performed against a Bluetooth device

[Hubaux]. We will now examine in greater detail the issue of secure routing

28

2.3.2 Secure Routing

A routing protocol requires two properties so as to achieve availability in the network:
robustness against a dynamically changing topology, and an ability to cope with
malicious attacks. Several routing protocols (see section 2.2) cope well with a
dynamically changing topology. However, little research to date has focused on the
area of developing or extending a routing protocol so as to include mechanisms that

defend against malicious attacks.

Zhou and Haas [Zhou] suggest that there are two sources of threats to routing
protocols. The first comes from external attackers who could successfully partition a
network or introduce an excessive traffic load into the network by causing
retransmissions and inefficient routing. To defend against such a threat, nodes can
protect routing information through the use of cryptographic schemes such as digital
signatures. However, this defence is ineffective against the second and more severe
potential threat that the routing protocol is faced with: compromised nodes.
Compromised nodes have the ability to advertise incorrect routing information to
other nodes. The detection of this type of incorrect routing information is very
difficult due to the dynamic topology of ad-hoc networks: when a piece of routing
information is found to be incorrect, it may be incorrect because it was generated by a

compromised node, or it may be incorrect as a result of topology changes over time.

Having considered the various threats to routing protocols in ad-hoc networks, Zhou
and Haas [Zhou] have proposed a security mechanism that could be used for the
benefit of a single organisation. This mechanism ensures confidentiality, integrity,
and availability in the network by making use of threshold cryptography and secret
sharing. It is assumed that a trusted certificate authority is present in the network,
whose public key is known by all nodes in the network. We do not believe these
assumptions are realistic in the case of a spontaneously generated ad-hoc network that

may span organisational boundaries.

Initial work on mitigating routing misbehaviour in ad-hoc networks is proposed in
[Marti]. In this paper, the case in which some nodes agree to forward packets but fail

to do so is considered. A node may misbehave in this manner because it is

29

overloaded, selfish, malfunctioning, or malicious. An overloaded node lacks the CPU
cycles, buffer space, or network bandwidth to forward packets. A selfish node is
unwilling to use CPU cycles, battery power, or network bandwidth to forward packets.
A malfunctioning node may have a software fault that prevents it from forwarding
packets. A malicious node may launch a denial of service attack by simply dropping
packets intentionally. Two mechanisms are proposed in order to deal with this
problem: a watchdog, which is responsible for identifying the misbehaving nodes, and
a pathrater, which is responsible for determining the best routes that circumnavigate
these nodes. The paper shows that these two mechanisms allow for the total
throughput of the network to be maintained at an acceptable level, even in the
presence of a high amount of misbehaving nodes (e.g. 40%). In addition, all
simulation scenarios assume no a priori trust relationships. However, several
problems still exist and it is recognised by the authors that this paper simply presents

“initial” work in this previously un-researched area.

Buchegger and Le Boudec [Buchegger] suggest that, despite the fact that ad-hoc
networks only function properly if the participating nodes cooperate in routing and
forwarding, it may be advantageous for individual nodes not to cooperate. They
propose a protocol, called CONFIDANT, which is designed to detect and isolate
misbehaving nodes, thus making it unattractive to deny cooperation: it is based on
selective altruism and utilitarianism. A performance analysis of the Dynamic Source
Routing (DSR) protocol fortified by CONFIDANT is presented and compared to the
regular defenceless DSR. They show that a network with CONFIDANT and up to
60% of misbehaving nodes behaves almost as well as a benign network, in sharp
contrast to a defenceless network. However, it must be noted that the CONFIDANT
protocol assumes that nodes are authenticated and that no node can pretend to be
another in order to get rid of a bad reputation. We do not believe these assumptions to

be realistic in the case of a spontaneously generated ad-hoc network.

Major differences exist between the approach adopted by Buchegger and Le Boudec
and that adopted by Marti et al. The approach adopted by Marti et al. does not punish
malicious nodes that do not cooperate, but rather relieves them of the burden of
routing data for other nodes, and furthermore, continues to forward their messages

without complaint. This approach rewards malicious nodes. In contrast, the

30

CONFIDANT protocol seeks to achieve the opposite. However, whereas the Marti et
al. approach assumes no a priori trust relationships, CONFIDANT assumes that

nodes are authenticated and cannot carry out identity swapping.

2.4 Trust

Trust is a complex subject relating to belief in the honesty, truthfulness, competence,
reliability, etc. of an entity. The main problem with trust is that there are many
different views of what exactly constitutes trust, and there is no consensus in the

literature with regard to what trust is.

We have previously seen that traditional security systems make no attempt to explain
why a user is trusted to perform a certain action. This section will demonstrate that
trust can be used in a framework that will allow a computer system to both quantify
trust and to justify the parameters and contexts on which it has built its trust

assumptions about a user.

2.4.1 Defining Trust

Academics in fields ranging from economics to social psychology have studied the
notion of trust. Many different views on trust exist, and the multiple definitions of

trust presented in this section will illustrate this.

Kini and Choobineh [Kini] examine trust from the perspective of economists,
sociologists, personality theorists and social psychologists. They state that trust, as
defined in the Webster dictionary, is:
e An assumed reliance on some person or thing. A confident dependence on the
character, ability, strength, or truth of someone or something.
e A charge or duty imposed in faith or confidence or as a condition of a
relationship.

e To place confidence (in an entity).

31

Kini and Choobineh create their own definition of trust in a system: “a belief that is
influenced by the individuals opinion about certain critical system features”. It is
evident from these definitions that trust is subjective in nature. Two different entities

may view the same system with different levels of trust.

Another definition of trust is taken from Diego Gambetta (1990). “Trust is a
particular level of the subjective probability with which an agent will perform a
particular action, both before [we] can monitor such an action and in a context in
which it affects [our] own action”. This definition once again highlights the
subjective nature of trust. It also implies that in a situation where all the relevant
information is not available, the quality and amount of information that we can

measure will have an effect on our level of trust.

Trust has been proposed as a mechanism for reducing the level of risk in a situation.
This is possible because of the relationship between trust and risk. In the context of
an e-commerce transaction, the level of trust has an approximate inverse relationship

to the degree of risk [Grandison].

2.4.2 Properties Of Trust

Trust relationships are not absolute. A trustor will never trust a trustee to carry out
any possible action that it may choose. Trust is always associated with a particular
action or context. For example, a person may only be trusted to carry out financial
transactions dealing with less than €10,000. It is also possible that a trust relationship

is not symmetric, i.e. A’s trust in B may not be the same as B’s trust in A.

There is debate in the literature with regard to whether or not trust relationships
should be able to exhibit transitivity. In general, trust is a non-transitive property, but
may demonstrate transitivity when one considers the use of recommendations or
delegation. The following statement demonstrates this point. “If Ann trusts Bob, and
Bob trusts Cathy, then Ann trusts Cathy”. This statement is in general not true, but

may be considered true if the following conditions are true:

32

e Bob explicitly tells Ann that he trusts Cathy (a recommendation).

e Ann trusts Bob as a recommender. If Ann does not trust Bob as a
recommender then she should ignore information Bob supplies her with.

e Ann must be allowed to make a judgement on the quality of Bob’s

recommendation.

2.4.3 Trust Values

Very often, there is a level of trust associated with a relationship. Some entities may
be trusted more to perform an action than others. Although trust has no measurable
units, its value can be measured. Trust can be considered as a commodity like
knowledge or information. However, the major problem with using explicit values to
represent trust is that due to the subjective nature of trust, different entities may

associate different levels of trust with the same service.

Whether the trust value associated with an entity should be discrete or continuous is
not clear. If discrete values are used, then a trust rating of high, medium, or low may
suffice. Some systems support arithmetic operations on trust recommendations, and
in this case numeric quantification such as a value between 0 and 1 may be more
suitable. However, there is still uncertainty relating to the representation of ignorance
(or the unknown) with respect to trust. Several opinion models (e.g. Josang’s Opinion
Model [Jgsang]) have been developed to assign trust values in the presence of
uncertainty. However, major weaknesses have been identified with such models and

hence their use is limited.

2.4.4 Trust Formation

When no prior knowledge about a node exists, the notion of trust formation comes

into play. There are three ways in which trust can be established in an unknown

33

entity: personal experience, recommendations, and reputation. These methods of

forming trust are listed in order of decreasing reliability.

Personal experience in a node is gained when that node is trusted, and this trust is
subsequently either honoured or betrayed. When building personal experience, it is
important that the potential risk of placing trust in an unknown entity is considered.
Personal experience is the most reliable manner in which trust can be established,

simply because it is based on first hand experience with a particular node.

A recommendation is an assessment by a node, of another node’s trustworthiness.
Recommendations accelerate the trust formation process. A particular node may be
introduced to other nodes, which trust a recommendation about that particular node.
Any node may issue a recommendation, and it is necessary for all nodes that receive
this recommendation to make an independent decision about whether or not they trust
it. Similarities are present between this mechanism and the “web of trust” mechanism
in PGP. There is no requirement for a public key infrastructure to make use of

recommendations.

A node’s reputation is an amalgamation of the level of trust that all other nodes place
in that node. Reputational information need not solely be the opinion of others (i.e. a
combination of recommendations from others). Also included is information based

on an individual node’s own personal experience.

2.5 Trust Management Systems

The Trust Management approach of distributed systems security was developed
because of the perceived inadequacy of traditional authorisation mechanisms of
distributed systems. Blaze et al. [Blaze 1] define trust management as “a unified
approach to specifying and interpreting security policies, credentials, and

relationships that allow direct authorisation of security-critical actions”.

34

Most trust management systems focus on protocols for establishing trust in a
particular context. Traditionally, all applications implemented their own security
mechanisms for specifying access control, checking compliance, and binding user
authentication to security-critical operations. This approach was subject to the risk of
application developers making mistakes that might compromise the security of the
system in question. The developers of trust management systems recognised the risks
associated with this approach. The principal motivation in the development of trust
management systems is to produce off the shelf security modules that can be
integrated into any application. The trust management module can be configured to

allow for application specific security policies and credentials.

Trust management systems define languages for expressing authorisation and access
control policies, and provide a trust management engine for determining when a
particular request is authorised. Many different types of trust management systems
have been developed, some focusing on authentication, others for specialised
purposes, others for general-purpose authorisation, and others based on logics. For
the remainder of this section will shall examine two of the most prominent trust

management systems in existence.

2.5.1 KeyNote

KeyNote, the successor to the PolicyMaker trust management system, was developed
by AT&T Research Laboratories to improve on the weaknesses of PolicyMaker.
PolicyMaker was the first tool for processing signed requests that embodied trust
management principles. Input to PolicyMaker included a set of local policy
statements, a collection of credentials, and a string describing a proposed trusted
action. The output consisted of a yes/no result or additional restrictions that would
allow the proposed action possible [Blaze 1]. KeyNote maintains the design
principles of assertions and queries from PolicyMaker, but two additional design
goals are included: standardisation and ease of integration. KeyNote assigns more
responsibility to the trust management engine, making it easier to integrate into

applications [Grandison].

35

KeyNote provides a single, unified language for both local policies and credentials.
These policies and credentials, known as ‘assertions’, contain predicates that describe
the trusted actions permitted by the holders of specific public keys. Assertions are
simply small, highly structured programs. A signed assertion, which can be sent over
an un-trusted network, is called a ‘credential assertion’. Credential assertions, which
also serve the role of certificates, have the same syntax as policy assertions but are
also signed by the principle delegating the trust. KeyNote, like other trust
management engines, does not enforce policy directly, but only provides advice to

applications that call it [Blaze 1].

2.5.2 REFEREE

REFEREE (Rule-Controlled Environment For Evaluation of Rules and Everything
Else) is a trust management system for making access decisions relating to web
documents. It provides both a general policy-evaluation mechanism for web clients

and servers, and a language for specifying trust policies.

REFEREE, like PolicyMaker and KeyNote, is a recommendation based query engine,
and so it needs to be integrated into a host application. It evaluates requests and
returns a value and a statement list. The value is either a true, false, or unknown.
True means that the action in question may be taken because sufficient credentials

exist for the action to be approved.

All trust decisions are placed under explicit policy control in REFEREE: every action,
including evaluation of compliance with policy, happens under the control of some
policy. That is, REFEREE is a system for writing policies about policies, as well as
policies about cryptographic keys, PICS label bureaus, certification authorities, trust
delegation, or anything else [Chul].

36

2.6 Summary

In this chapter we have examined the operation of some traditional security
mechanisms that have a universally recognised importance. We have seen that the
cryptographic protocols and authentication services provided by a public key

infrastructure do allow for a certain level of trust to be built into communications.

However, the traditional security mechanisms outlined were designed primarily with
infrastructure-based networks in mind. In addition to this it is evident that the
services provided by a public key infrastructure are dependant on the use of trusted
third parties and known identities. In an ad-hoc network, the presence of trusted third
parties can no longer be assumed. Hence, the assumption that an underlying public
key infrastructure can provide adequate security is not relevant in the domain of ad-
hoc networking. Indeed, the notion that the routers in the network are owned and

managed by trusted operators is also invalid in an ad-hoc network.

We have examined the principle security threats facing mobile ad-hoc networks and
seen that routing protocols in such networks are more vulnerable than those in
traditional networks. Much research in the area of mobile ad-hoc networks has
concentrated on routing issues, but security on the other hand, has been given a lower
priority. No routing mechanisms have to date been developed that successfully

implement defences against the various types of potential malicious attacks.

Marti et al. [Marti] have investigated the possibility of identifying misbehaving nodes
in an ad-hoc network without a priori trust relationships. Despite the fact that some
success was achieved in this study, the authors identify some outstanding problems
and recognise that their work simply represents ‘initial’ research into this previously
un-researched area. Buchegger and Le Boudec [Buchegger] attempt to make
misbehaviour unattractive with the implementation of the CONFIDANT protocol. A
performance analysis illustrated the success of the CONFIDANT protocol. However,
as with the majority of studies in this area, CONFIDANT assumes that nodes may be

authenticated and that identity swapping cannot take place.

37

Chapter 3

Design

The aim of this project is to design and implement a trust based route selection system
for ad-hoc networks that will allow for the identification of misbehaving nodes and
the improvement of the throughput in the network in the presence of misbehaving
nodes. The design of this system involves the extension of the Dynamic Source
Routing (DSR) protocol so as to incorporate the notion of trust. This extension
should allow for the resulting trust based route selection system to achieve the aims

outlined above.

Section 3.1 will introduce the concept of trust based route selection. The key
processes involved in this system will be identified. Section 3.2 will describe and
discuss each of the three major components in the trust based route selection system.

Finally, section 3.3 summarises the ideas presented in this chapter.

3.1 Overview of Trust Based Route Selection

The process of route selection in DSR involves the selecting of the shortest route to a
destination node. In a trust based route selection system implemented in an ad-hoc
network in which nodes may be misbehaving, the most reliable and secure path to a
destination node is chosen. In such a system, this selection process is based on a local
evaluation of the trustworthiness of all nodes on all known source routes to the
destination. Hence, it is necessary for all nodes to continuously assess the
trustworthiness of other nodes in the network. The route selection module is

responsible for the implementation of the route selection strategy.

38

Because the notion of a priori trust relationships in ad hoc networks cannot be
assumed, a trust based route selection system must have a mechanism for establishing
new trust relationships with unknown nodes. The dynamic nature of an ad-hoc
network’s topology also implies that known nodes will leave the network, that routes
may become invalid over time, and that nodes may become overloaded, compromised,
selfish, or malicious and may begin to misbehave. It is thus clear that a continuous
trust evaluation of all nodes in the network must be carried out so as to reflect the
dynamic nature of trust. The reliability of nodes to forward packets will vary over
time, and this is reflected by a variable trust value that is associated with each known
node in the network. It is the responsibility of the trust formation module to

implement trust establishment and updating of trust values.

The trust management module maintains trust information about all known nodes. It
is because of the potential for a large number of nodes to be present that a separate
module is required to maintain trust data. The design architecture of the trust based
route selection system is shown in figure 4. The extensions to DSR that are required
to incorporate the notion of trust have been added as a layer between DSR and the

application using the routing protocol.

Applications
Trust Trust Route
Formation : * | Management : Selection

! !

Dvnamic Source Routing Protocol

Figure 4: Trust Based DSR Architecture

39

3.2 Design of Trust Based Route Selection

As were identified in the previous section, the three processes that are involved in
trust based route selection are trust formation, trust management, and route selection.

In this section each of these three processes will be examined in detail.

3.2.1 Trust Formation

The function of the trust formation process is to establish trust relationships with
unknown nodes and to continuously update trust values associated with nodes. These

two functions will now be considered in detail.

3.2.1.1 Trust Establishment

In order to establish a trust relationship with an unknown node, it is first necessary to
encounter such a node. This can happen in a variety of ways. The principle manner
in which this will occur is during the route discovery process of DSR. Following the
route discovery process, a node may receive one or more route reply packets. The
trust formation module monitors all incoming packets. When a route reply packet is
received the source route contained in it is examined to see if there are any unknown
nodes in it. This is achieved by the querying of the trust management module so as to
determine if a data entry exists for each node in the source route. If no data entry for
a particular node exists, the trust management module is informed to create a new

data entry for the newly encountered node.

DSR can make use of promiscuous listening that allows the “snooping” of any packet
it receives and the extraction of information from the packet’s header. This technique
may be used to extract source routes from packet headers. Once a source route has
been extracted it may be examined as outlined above. This process will allow for
further encountering of unknown nodes and further establishment of trust

relationships.

40

3.2.1.2 Updating of Trust Information

Once a trust relationship has been established with a node, it is necessary to update
the level of trust associated with that node on a continuous basis. In order to update
this trust value, the behaviour of the node must be observed, i.e. personal experience
with this node must be obtained. Initially, this involves taking a risk by placing trust
in an unknown node. Depending on whether this node subsequently honours or

betrays this trust, its trust value will be incremented or decremented accordingly.

To determine if a packet reaches its destination successfully, it is necessary to attach
an “acknowledgment request” option to the packet header. If a node receives such a
packet for which it is the destination, it is obliged to confirm receipt of the packet by
returning an “acknowledgment” to the source node. If the source node receives this
acknowledgment, this confirms that none of the nodes on the source route are

dropping packets and it increases the trust value of all these nodes.

Conversely, if the source node does not receive this acknowledgment, this implies that
the source route has failed. However, the source node is unable to determine where
on the source route the failure occurred, i.e. which node on the route is dropping
packets. To be able to determine this, it would be necessary to ask every node on the
route for an acknowledgment. We do not believe this to be practical because of the
increased overhead that would result in the network. Indeed, despite the fact that
requesting an acknowledgment for all packets sent is a desirable option, this is also
deemed impractical because of the large increase in network traffic that would result.
DSR, as with most ad-hoc routing protocols is designed with the intention of

minimising the traffic overhead that is needed to operate the protocol.

The only feasible solution to this problem is to decrease the trust value of all nodes on
the source route for which the failure occurred. This appears to be somewhat unfair
because reliable and trustworthy nodes on the route will get their trust values
decremented. However, over time this approach will lead to the identification of
misbehaving nodes and behaving nodes. This is partly due to the fact that
misbehaving nodes have a high probability of being located at the intersection of

source routes on which routing failures occur.

41

Because the trust formation module monitors all incoming packets to a node, it can
also handle the receipt of a route error packet. This type of packet indicates that a link
error has occurred on the source route, and at which node this link error has occurred.
However, this mechanism operates on the assumption that all nodes act in good faith.
It is possible for a malicious node to drop packets on a link, and to subsequently
generate and send a route error packet to the source node and claim that the link error
occurred at the next node in the link. This presents a problem to the source node
which must now make a decision regarding the validity of the route error packet. One
solution to this problem is to make this decision by referring to the trust value of the
node originating the route error packet. If this node has a high trust value, this route
error packet could be trusted. It should be noted that this solution has not been

incorporated into the implementation presented in this dissertation.

Another potential reason for the updating of trust values is based on the exchange of
recommendations between nodes. If a node issues a recommendation to another node
regarding the trustworthiness of another node, the recipient node must decide whether
or not to make use of this recommendation. This decision is based on the
trustworthiness associated with the issuing node. The use of recommendations could
cause a large increase in network traffic. In addition, the use of reputation to establish
trust is deemed less reliable than the use personal experience. The implementation
presented in this dissertation does not make use of recommendations for the updating

of trust values.

3.2.2 Trust Management

It is the responsibility of the trust management module to store trust information
relating to all known nodes in the network. Trust management does not directly
interact with the DSR protocol, but does interact directly with both the trust formation

and route selection modules.

Trust management establishes trust information relating to encountered nodes and
updates this information based on instructions from the trust formation process. Trust

management also provides the route selection process with information when queried.

42

Route selection requires this information to determine the most reliable and

trustworthy route available to a destination node.

The following information about each known node is recorded by the trust
management module: IP address, trust value, time at which relationship was

established, and minimum trust value of this node.

The IP address is used to identify the node in subsequent encounters. However,
because of the assumption that no trusted third party is present in the network, the
problem of identity swapping exists. A node may misbehave, disappear, and then
reappear with a new identity, thus negating any bad reputation it has received. To
solve this problem, the time when the trust relationship was initially established with
the node could be incorporated: the older the trust relationship with the node, the
more trustworthy the node should be considered. Alternatively, the times at which
misbehaving nodes disappear and new nodes appear could be compared with the
intention of identifying identity swapping nodes. If a misbehaving node disappeared
at a certain time and a new node appeared subsequent to this in the same geographical
area, a certain level of suspicion could be associated with this node. This suspicion

could later be cleared depending on the future behaviour of the node.

The trust value is stored as a decimal in the range [0, 1]. 1 represents absolute trust,
whereas 0 represents absolute distrust. We assume no prior knowledge about the
surrounding nodes, so initially all nodes are assigned a trust value of 0.5. The rate at
which a node’s trust value is incremented or decremented is exponential. This assures
that if a node has a low trust value, positive factors may increase its trust value
quickly, whereas if the node has a high trust value, these effects will be less
pronounced. Conversely, if a node has a high trust value, negative factors may
decrease its trust value quickly. This exponential approach is used to mitigate against
nodes that initially behave well so as to gain a high trust value, and then attempt to

take advantage of that high trust value to disrupt service in the network.

The storing of the minimum trust value that a node has ever had may be used by the
route selection process to implement a security policy, e.g. it may choose to ignore all

routes where any node has ever had a trust value of less than 0.3.

43

The amount of trust information relating to a node that should be maintained by the
trust management module is subject to discussion. If only basic trust information is
stored, this will reduce the necessary storage requirements. However, this will also
limit the potential range of selection heuristics that may be implemented. Johnson et
al. [Johnson 2] observe that the limiting factor in ad-hoc networks is not CPU time or
local storage requirements, but is network speed. Based on this observation, it seems
reasonable to store a large amount of trust information about each node, which would

allow for more sophisticated route selection techniques.

It may be desirable to store information about the recent behaviour of a node. If a
node has a high trust value, but all of the most recent experiences with this node have
been negative, the high trust value (despite the exponential rate of decrease of the
trust value) may mask this recent poor behaviour. By storing information about the
recent behaviour, a node will have the option of avoiding nodes that have been

misbehaving recently, despite the fact that their trust value is reasonably high.

If recommendations are being used in the system, it would be beneficial to store this
recommendation information separately from that of observed events, i.e. a node may
have a trust value of 0.66 based on personal experience, but a trust value of 0.72

based on recommendations from other nodes.

Because only a finite and limited amount of data can be stored by the trust
management module, it is necessary to delete trust information once it has become
redundant, i.e. once it has outlived its usefulness. Nodes may eventually stop
interacting with one another and nodes may leave the ad-hoc network at any time. To
reflect this dynamic relationship between nodes, the trust value of a node that is not
being encountered should erode over time until a point is reached where it is assumed
that the node has actually left the network. This approach has two advantages. If a
node has not been encountered for a long period of time, it will be considered less
trustworthy. In addition to this, a node that has migrated from the network will no

longer be included in any source routes.

44

In the implementation of the trust management system, no permanent copy of trust
information is being stored between sessions, i.e. when the user shuts down or leaves
the network, and subsequently reboots or rejoins the network. However, making use
of such permanent storage of trust information would reflect the fact that users of ad-
hoc networks may encounter the same nodes on a daily basis. This would also allow
for the trust based dynamic source routing system to identify and use reliable and
trustworthy routes almost immediately, as opposed to the situation where the system
has to spend a certain period of time achieving personal experience with nodes in

order to establish and update trust relationships.

3.2.3 Route Selection

When a source node is about to send data to a destination node, it is the responsibility
of the route selection module to select the most reliable and trustworthy route to use.
The DSR route caches are searched for possible source routes to the destination node.
If only one route exists, then the sending node has no choice but to use this route.
However, if multiple routes exist, the sending node may select which route to use
according to some route selection strategy. The trust management module is queried
so as to determine the trust value of all nodes on all routes to the destination node.

This is required so as to determine the trustworthiness of all routes.

There are a wide variety of route selection strategies that may be used. The simplest
strategy, which has been implemented, is to select the route with the highest average
trust value. Because it is generally desirable to minimise the number of nodes in a
route, before the final selection is made, the average trust value of all routes is divided
by the number of nodes on the route, thus favouring shorter routes. Another possible
selection strategy is to avoid un-trusted nodes, preferring to use unknown nodes over
untrustworthy nodes. A third possible strategy is to prefer routes through known
nodes, regardless of their trustworthiness, in order to increase the predictability of the

routing.

The route selection module may also implement a security policy. A simple security

policy that may be used is to exclude all routes which have a node with a trust value

45

of less than 0.3. More complex security policies may be used depending on the
amount of trust information being stored about the nodes. For example, any route
with a node for which a suspicion of identity swapping exists may be excluded, or any
route with a node for which a recommendation has not been received may be

excluded.

3.3 Summary

In this chapter we identified and analysed the design architecture of the trust based

route selection system. An in-depth analysis of the three major processes involved in

trust based route selection was carried out. Finally, some potential problems and

some potential optimisations were discussed.

46

Chapter 4

Implementation

The design and operation of the trust based route selection system was described in
the previous chapter. This chapter describes the implementation of this design.
Section 4.1 offers both an overview and a detailed discussion of the NS-2 network
simulator. NS-2 provides an ideal simulation environment because of its existing
implementation of the DSR protocol. Sections 4.2, 4.3, and 4.4 describe the
implementation of the extensions to the DSR protocol that are required to implement
the trust based route selection system outlined in chapter 3. Section 4.5 concludes the

implementation chapter.

4.1 The NS-2 Network Simulator

4.1.1 Overview

The extensions to the DSR protocol that were described in chapter 3 were
implemented as extensions to the NS-2 network simulator. The NS-2 network
simulator is the latest version of NS, a packet-level, discrete event simulator targeted
at networking research. NS-2 provides substantial support for both wired and
wireless (local and satellite) networks and is used mainly by the research and

academic community for validation purposes.

NS-2 supports networks from the data link layer to the application layer (layer 2 to 7
in the OSI protocol stack). It provides the framework and the implementation of both

47

unicast and multicast routing protocols. Implementations exist for the transmission
control protocol (TCP), the unix datagram protocol (UDP), and constant bit rate (CBR)

transmissions.

NS-2 is available for a multitude of operating systems including Linux, Solaris,

SunOS, FreeBSD, and Windows 95/98/NT.

4.1.2 Architecture

NS-2 is written in C++ and OTcl (Object Tcl). An object oriented approach allows
for maximum scalability and extensibility. The choice of two languages offers a
modular design where a separation exists between the low level data manipulation and
control operations on the state of the simulation. C++ is used to implement low level
algorithms and protocols. This allows for maximum performance. OTcl, a scripting
language, is used to define the simulation scenario — network configuration, traffic
pattern, movement etc. By changing the OTcl script being used it is possible to

change the simulation being run without having to recompile the program.

NS-2 is made up of many components, most of which are implemented as a
C++/OTcl class. Agent objects are at the heart of NS-2. They represent endpoints in
the network where layer packets are constructed or received. Examples of agent
classes implemented in NS-2 include UDP, variations of TCP, and ad-hoc network
routing protocols such as DSDV and DSR. A DSRAgent object encapsulates the
functionality of the DSR protocol. It acts as the interface between each node and the
network. It is thus to the DSRAgent class that the majority of the trust based

extensions have been integrated.

Output from NS-2 simulations is written to special objects called traces. Traces store
information about each packet that is sent, received, or dropped during run-time. This
information is typically written to an output file and post-processed after the

simulation has been executed fully.

48

4.1.3 The CMU Monarch Extensions

Many modifications and additions to the NS network simulator have been made by
the CMU Monarch Project. The majority of the CMU extensions made to NS were
made in order to support ad-hoc networking. NS did not support ad-hoc routing

protocols such as DSR before the advent of the CMU Monarch Project.

The CMU extensions to NS were in the physical, data link, and routing layers. The
components implemented in these layers were as follows.

e Physical Layer: A radio propagation model, omni-directional antennas and a
shared media network interface that makes use of direct sequence spread
spectrum (DSSS).

e Data Link Layer: The IEEE 802.11 distributed coordination function (DCF).

e Routing Layer: The DSR, DSDV, TORA, and AODV routing protocols were

implemented.

Another important contribution by the CMU Monarch Project was a set of scripts that
allow for the generation of both movement and traffic patterns. The scripts offer
either TCP or CBR traffic on the network. The movement patterns are generated
using a random waypoint model. Nodes move in a straight line towards some
randomly generated destination, at a speed between 0 m/s and a maximum value
defined by the user. Between each destination the mobile nodes stop for a certain
period of time referred to as the pause time. The smaller the pause time, the more

dynamic the network will be. The pause time may be set by the user.

4.2 Trust Formation

As stated in the design chapter, the trust formation module is responsible for the
establishing of trust relationships and for the continuous updating of trust information.

The implementation of both these processes will be discussed in this section.

49

The trust formation process must monitor all incoming packets in order to carry out its
two functions. Because the DSRAgent class represents the interface between the
node and the network, the trust formation module is created as part of a DSRAgent

object and is integrated heavily with the DSRAgent class.

4.2.1 Trust Establishment

When a node receives a packet for which it is the intended destination, the
handlePacketReceipt function in the DSRAgent class is invoked. This function
examines the packet header, and, depending on the type of packet it is, will invoke a
particular function to handle the packet. If the packet is a route reply, the
acceptRouteReply function is invoked. This function will add the source route
contained in the packet to the route cache for future use. To determine if any of the
nodes on this source route are unknown to the trust management module, the
processNewPath function is invoked. This function queries the trust management
module to determine if trust information about each of the nodes is already being
stored. This is achieved by invoking the isRegistered function in the trust management
class. If a node does not have an existing trust binding, the registerNode function in
the trust management class is subsequently invoked to add a new entry to the trust

management’s data structure.

4.2.2 Updating of Trust Information

In order to continuously update trust information, it is necessary to continuously
observe the behaviour of the nodes in the network. This is achieved by periodically
requesting destination nodes to acknowledge receipt of packets. The existing DSR
implementation does not allow for the request of such acknowledgements. It was thus
necessary to change the format of DSR packets so as to be able to set a flag which

indicates the desire for an acknowledgment from the destination node.

Packets in DSR are implemented as a SRPacket, which is a C++ structure. The

header of these packets is implemented as a hdr_sr, which is also a C++ structure. In

50

order to periodically request an acknowledgment, it is only necessary to modify the
format of the packet header. To modify the packet header to include the
acknowledgement and acknowledgment request options, an approach similar to that
which was use to implement the route request and route reply options was used. A
value of ‘1’ for the route_request_ field in the hdr sr structure is used to indicate that
the packet is a route request. A value of ‘0’ indicates that the packet is not a route
request. When a route request is made a sequence number is attached to it so that
subsequent route replies can be matched to it. This sequence number is implemented

as an integer field in the hdr_sr structure.

Several fields were added to the hdr sr structure to allow for the request of
acknowledgments from destination nodes. A value of ‘1’ for the ack_request_ field
indicates that the destination node of this packet is obliged to acknowledge receipt of
the packet. A value of ‘0’ indicates that no acknowledgment is necessary. Similarly,
a value of ‘1’ in the ack_ field indicates that the packet is an acknowledgment and a
value of ‘0’ indicates that it is not. Acknowledgments received are matched against
their corresponding acknowledgment requests by the use of an acknowledgment

request sequence number. This is represented as a double field in the hdr_sr structure.

As was previously mentioned, the handlePacketReceipt function in the DSRAgent class
is responsible for dealing with each incoming packet for which the node is the
destination. This function was modified so that any acknowledgment requests and

any acknowledgements may be caught and processed.

On a periodic basis, an acknowledgment request is piggybacked onto a packet. The
trust formation process maintains a record of all acknowledgment request packets sent
so as to be able to subsequently account for any acknowledgments received. If a
response is not received within a certain time limit, the source route on which the
request was sent is deemed to have failed. The trust formation process will then
instruct the trust management process to decrement the trust value of all nodes on the
source route. Conversely, if an acknowledgment is received within the timeout period,
the trust formation process instructs the trust management process to increment the

trust value of all nodes on the source route.

51

If an acknowledgment request packet is received, a new DSRAgent function called
returnAckToRequestor is invoked. This function constructs an acknowledgment packet
with a randomly generated sequence number and places this packet with the scheduler

for transmission.

The percentage of packets sent for which an acknowledgment is requested may be
varied. Too many acknowledgment requests are wasteful of bandwidth. Too few
acknowledgment requests will not allow enough trust information to be gathered. The
optimal number of such requests that should be sent is subject to debate, but may be

approximated by experiment.

4.3 Trust Management

The trust management module is responsible for storing trust information which has
been gathered by the trust formation module. It is also responsible for supplying the

route selection module with this trust information when requested.

Trust information for each known node is stored in a C++ structure which is defined

as follows:

typedef struct trust_values

double val; //Trust value

unsigned long addr; //IP address of node

Time time; / /Time when node was encountered
double lowestVal; / /Lowest trust value ever

Hrust_values;

As was discussed in chapter 3, the potential to store a higher quantity of trust
information exists. However, only the basic information required is being made use
of in this implementation. All trust information structures are stored in a dynamically

sized array.

Several functions exist in the trust management class and will now be discussed. The

function isRegistered allows the trust formation module to determine whether or not

52

the trust management module contains a data entry for a particular node. If no such
data entry exists, the function registerNode will create such an entry. Trust
management provides two functions which allow for trust values to be updated. The
function increaseTrustValue increments the trust value of a node in an exponential

manner. The following equation represents this exponential increase:

new_trust_value = old_trust_value + ((1-old_trust_value) /20);

Similarly, the function decreaseTrustValue decrements the trust value of a node in an

exponential manner. The following equation represents this exponential decrease:

new_trust_value = old_trust_value - (old_trust_value/20);

The nature of these equations ensures that a node that initially behaves so as to gain a
good trust value, and then subsequently misbehaves, will not maintain a good trust
rating for a long period of time. However, these equations may be varied to
implement a variety of alternative strategies. For example, the trust value of a node
may be decreased by a lesser amount if this node has been known for a long period of
time, i.e. the time at which the node was encountered may be incorporated into the

equation.

Finally, the getEntryValue function which is invoked by the route selection module is
responsible for returning the trust value of a particular node. If the route selection
module is to make use of more complex selection algorithms, it is possible for the

trust management module to supply it with further information when queried.

4.4 Route Selection

When a DSRAgent object wishes to send a packet, it queries the DSR route cache to
determine if a source route to the intended destination node is known. The
Mobicache class implements the route cache used in DSR. It is by invoking the

findRoute function in the Mobicache class that the DSRAgent object queries the route

53

cache. If the findRoute function does not return any source routes to the DSRAgent
object, the route discovery process is initiated. If only a single source route is
returned, the DSRAgent object has no choice but to use this route. If multiple source
routes are returned, the DSRAgent object will make use of functions implemented in
the route selection class so as to determine the most reliable and trustworthy route to

the destination node.

If the findRoute function determines that multiple routes to the destination node are
known, it will invoke a new function called findRoutes. The findRoutes function will
determine the most trustworthy route in both the primary and secondary route caches.
The primary cache contains routes that were discovered following the broadcast of a
route request packet. The secondary route cache stores source routes that were
discovered by “snooping” on packets that were being forwarded on to another node.
If the best route found is from the secondary cache, it will then get promoted to the

primary cache.

In order for the findRoutes function to determine the most trustworthy route available,
it invokes the getRouteTrustValue in the route selection class. The getRouteTrustValue
function implements the route selection strategy that is being used. In this particular
implementation, this involves querying the trust management module to discover the
trust value of all nodes on all potential routes, finding the average trust value for these
routes, and favouring shorter routes by dividing this average trust value by the length
of the route. The getRouteTrustValue returns the most trustworthy source route to the
DSRAgent object that then makes use of this route in the subsequent transmission of

packets.

A security policy may also be incorporated in the getRouteTrustValue function. In this
implementation, a simple security policy was implemented: no source routes that
contain a node with a trust value of less than 0.25 are to be considered. More
complex security policies may be implemented. However, if the security policy is
quite complex, it would be desirable to separate the security policy implementation

from the route selection implementation.

54

4.5 Summary

In this chapter we have discussed the NS-2 network simulator and the manner in
which DSR is implemented within NS-2. The implementation of the DSR extensions
that are required to build a trust based route selection system have also been discussed
in some depth. The next chapter will examine the evaluation of this newly built

system.

55

Chapter 5

Evaluation

After the implementation of the trust based route selection system was completed, the
NS-2 network simulator was used to generate a set of results that allows for
evaluation of the system. This chapter describes the simulation model used and the

results obtained.

Because trust based dynamic source routing is an extension of the DSR protocol, it

makes sense to compare the modified version of DSR against standard DSR.

To execute the simulations, we use a PC (500 MHz Celeron Processor with 256 MB

RAM) running Mandrake Linux 8.1.

5.1 Measurement Aims

The first objective of the trust based route selection system is to identify behaving and
misbehaving nodes, i.e. nodes that can and cannot be relied upon to route packets
respectively. Based on this information, the second objective of the trust based route
selection system is to improve service in the network, i.e. improve the packet delivery

ratios in the network by avoiding misbehaving nodes as much as possible.
In order to determine whether or not nodes in the network are correctly identifying

misbehaving nodes, we record the extent to which nodes consider other nodes

trustworthy and examine how these trustworthiness levels vary over time. Ideally the

56

trustworthiness levels of behaving nodes will increase with time, and the

trustworthiness levels of misbehaving nodes will decrease with time.

The packet delivery ratio (also known as throughput) is the ratio of the number of
packets that are sent to the number of packets that are received by the intended
destination. Packet loss can occur due to general network conditions such as
congestion, link errors, and unreachable nodes, but packets can also be lost because an
intermediate node intentionally drops them. The latter is the only form of packet loss
attributable to misbehaving nodes. Because the simulations used are designed to
minimise congestion, link errors, and unreachable nodes, the packet delivery ratio
provides an indication of the number of packets being dropped by misbehaving nodes
in the network. We expect the packet delivery ratios in the network to decrease as the
number of misbehaving nodes increases. However, the extent to which the trust based
route selection system can cope with misbehaving nodes as compared to standard
DSR is what is of primary interest. A comparison of the packet delivery ratios of the
modified version of DSR and standard DSR with a varying percentage of

misbehaving nodes is thus required.

5.2 Simulation Model

Figure 5 lists both fixed and variable simulation parameters.

In all of our node movement patterns, the nodes choose a destination and move in a
straight line towards the destination at a speed uniformly distributed between 0 and 20
m/s. This is the random waypoint model. The speed distribution chosen offers a
range of users such as fixed location, walking, or driving a car. Once the node
reaches its destination it stops and waits for a certain period of time known as the
pause time. The pause time chosen is a variable so as to simulate networks of varying

dynamicity.

The nodes communicate using constant bit rate (CBR) node to node connections.

CBR is chosen to avoid potential peculiarities associated with more complex

57

protocols such as TCP. The amount of network traffic chosen (i.e. number of
connections made and number of packets sent per connection) simulates an

environment in which few packets are being dropped due to network congestion.

Parameter Value
Application Constant Bit Rate (CBE)
Fadio Range 250t
Packet Size 512 hytes
MAC ald. 11
Application Output Rate 4 packets/s
Metwork Area Variable (Nosthy 800 x 80m)

Pause Time

Mumber of Connections
Transtrussion Fate
Sirmulation Time

Mode Speed

Mumber of Nodes
IMovement Pattern
Traffic Pattern

% Mishehawnng Modes

Variabis

Variabis

2.0 Mhbps

Variable (hostly 600k)
0to 20 s

Variable (Aostly 15)

R andom Waypoint Model
Generated Randomly
Variakle (0 i 40%)

Figure S: Simulation Parameters

Some variable percentage of the nodes in the network are configured to misbehave, i.e.
drop all packets they receive. This percentage begins at 0% and increases to 40% in
small increments. While a network with 40% of misbehaving nodes may seem
unrealistic, it is to gain further information about the system and to simulate highly

hostile environments that this high figure is used. The same random seed is used

58

across the 0% to 40% variation range of misbehaving nodes. This ensures that any
nodes that misbehave in the 20% case also misbehave in the 40% case, i.e. obstacles

present in the lower percentage cases are also present in the higher percentage cases.

Simulations that were executed incorporated the following variable parameters (and

fixed parameters as shown in figure 5):

e Simulation time = 600s, Pause time = 600s, No. of nodes = 15, Area = 600 x 600m
e Simulation time = 600s, Pause time = 300s, No. of nodes = 15, Area = 600 x 600m
e Simulation time = 600s, Pause time = 60s, No. of nodes = 15, Area = 600 x 600m
e Simulation time = 600s, Pause time = 30s, No. of nodes = 15, Area = 600 x 600m
e Simulation time = 300s, Pause time = 300s, No. of nodes = 10, Area = 500 x 500m
e Simulation time = 300s, Pause time = 60s, No. of nodes = 10, Area = 500 x 500m
e Simulation time = 300s, Pause time = 30s, No. of nodes = 10, Area = 500 x 500m
e Simulation time = 500s, Pause time = 500s, No. of nodes = 30, Area = 800 x 800m

For all of the above simulations, the percentage of misbehaving nodes varied as
described above. The wide range of simulation scenarios outlined above was used so

as to gain a reasonable level of insight into the system.

5.3 Results

Two sets of results will now be displayed and discussed. These results correspond to
the measurement aims outlined above, i.e. the variation of trust values of nodes over
time and the variation of packet delivery ratios with a varying percentage of

misbehaving nodes.

5.3.1 Identification of Misbehaving Nodes
In the simulations executed, all nodes in the network recorded their trust ratings of all

other nodes. These trust ratings change continuously over time. The resulting

amount of output data is much too large to be presented here. We will now examine

59

and discuss a sample of this output data. The sample chosen is deemed to be

representative of all the output data generated.

The following graphs measure the variation of trust values of nodes in the network
with time, as perceived by some node in the network. This node is deemed to be
representative of all nodes in the network, i.e. is a typical node whose results are
typical of other nodes. It should be noted that a trust value for a node will not exist

until that node is encountered.

Key for Trust Curves

=> Behaving Node

=> Misbehaving Node

Figure 6: Simulation Time = 500s, Pause Time = 500s, No. of Nodes = 30, Area = 800 x 800m.

Trust Value Vs Time
6.67% Misbehaving nodes (2 nodes)
1
0.9 A
0.8 A
o 0.7
=
® 0.6 1
> /
g 0.5 A
F 04
0.3 A
0.2
0.1 T T T T T T T
77.8 1551 198.1 2419 300.7 3605 4151 4764
Time (s)

60

Figure 7: Simulation Time = 600s, Pause Time = 600s, No. of Nodes = 15, Area = 600 x 600m.

Trust Value Vs Time
33.33% Misbehaving nodes (5 nodes)

Trust Value

165.8 1711 176.3 191.7 2452 3245 4733 598.6

Time (s)

Figure 8: Simulation Time = 600s, Pause Time = 300s, No. of Nodes = 15, Area = 600 x 600m.

Trust Value Vs Time
40% Misbehaving nodes (6 nodes)

Trust Value

4098 4159 4293 4479 4864 5223 554 599.6

Time (s)

Figure 9: Simulation Time = 600s, Pause Time = 300s, No. of Nodes = 15, Area = 600 x 600m.

Trust Value Vs Time
33.33% Misbehaving nodes (5 nodes)

Trust Value

3124 3299 344.5 400.9 442.2 495.8 550.6 599.2

Time (s)

Figure 60: Simulation Time = 600s, Pause Time = 30s, No. of Nodes = 15, Area = 600 x 600m.

Trust Value Vs Time
13.33% Misbehaving nodes (2 nodes)

Trust Value

102 63.7 1206 2184 325.1 400.9 500.2 528.2 599.1

Time (s)

Figure 71: Simulation Time = 600s, Pause Time = 300s, No. of Nodes = 15, Area = 600 x 600m.

Trust Value Vs Time
0% Misbehaving nodes (0 nodes)
1
0.9 -
w 08 N
=
©
> 07
)
[72)
=)
™
F 06 -
05 - V-
04 T T T T T T T
491 1008 1798 2771 3296 4151 5054 598.9
Time (s)

It is clear from the above graphs that in the majority of situations, misbehaving nodes
are being clearly identified by other nodes in the network. In addition, in the majority
of situations, a certain amount of behaving nodes are being clearly identified by other
nodes in the network. However, this is not always the case. In many situations

behaving nodes are being unfairly assigned a low trust value.

There are several reasons why a behaving node may be deemed to be acting
maliciously by other nodes in the network. If a node is unreachable due to its
geographical location, it will not be able to receive packets intended for it and will
receive a poor trust rating. However, using reasonable simulation parameters offsets

the likelihood of this scenario occurring.

If a behaving node is geographically located next to a misbehaving node, the
probability that both nodes are on a high number of the same source routes is high. In
this scenario it is likely that the behaving node will receive a poor trust rating because

of the continued failure of all source routes passing through both nodes. This problem

63

will be further exacerbated when the amount of movement in the network is low, i.e.

when the chosen pause time is high.

When the random traffic pattern is making use of low pause times, there is a potential
for good routes (i.e. routes with no misbehaving nodes) to be broken while being
made use of. In this situation, the source route will be deemed to have failed and the
behaving nodes will have their trust values decremented. However, a possible
solution to this problem involves examining route error packets that are received so as
to determine the cause of failure of the route. A route error packet indicates a broken
link, i.e. an intermediate node did not receive data because it has moved out of range.
This scenario is different to that where an intermediate node drops packets. In this
case, a route error packet will not be generated because the receipt of packets by the
misbehaving node will have been confirmed by the previous node (despite the fact
that the misbehaving node will subsequently drop the packets). By examining route
error packets it is possible to determine if a good route has been broken and hence
possible to not decrease the trust values of the nodes on the relevant route, i.e. it is
possible to distinguish between a route being broken as a result of movement of nodes
and a route containing a node that is dropping packets. This solution has not been

implemented by the author.

In general, the performance of the system is better when high pause times are chosen,
i.e. when the network is static. However, it is difficult for trust based DSR to gain a
significant advantage over DSR in this scenario because of the fact that DSR will also

discover reliable routes quickly in a static network.

5.3.2 Packet Delivery Ratios

Traces are special objects in NS-2 that are used to store information about each packet
that is sent, dropped, and received during run-time. This information is written to a
file and is post-processed by a perl script so as to extract the required information. By
determining the number of packets sent, dropped, and received, it is possible to

calculate the packet delivery ratio in the network for a particular simulation.

64

The graphs below show how the packet delivery ratio varies as the number of
misbehaving nodes in the network increases. All graphs depict this information for

both trust based DSR (TBDSR) and standard DSR, so that a comparison can be made.

Each graph represents a different simulation scenario.

Figure 82: Simulation Time = 500s, Pause Time = 500s, No. of Nodes = 30, Area = 800 x 800m.

Packet Delivery Ratio % Vs % Misbehaving Nodes
Simulation time: 500s
Pause time: 500s
100 X
2 90 k - = /‘
0 | =]
:z‘; 80 ‘\i//‘
2 \ \'\ \ ——TBDSR
§ 70 /»—(. —= DSR
% 60 v \
o
>0 VAR
40
0 20 40
% Misbehaving Nodes

Figure 13: Simulation Time = 600s, Pause Time = 600s, No. of Nodes = 15, Area = 600 x 600m.

Packet Delivery Ratio % Vs % Misbehaving Nodes
Simulation time: 600s
Pause time: 600s
100 .
.« 90
® Ne | \\
2 N\
g 80
2 Nty —-TBDSR
2 70 —« DSR
: \
s 60
8
“ 50
40
0 20 40
% Misbehaving Nodes

65

Figure 14:

Simulation Time = 600s, Pause Time = 300s, No. of Nodes = 15, Area = 600 x 600m.

Packet Delivery Ratio %

Packet Delivery Ratio % Vs % Misbehaving Nodes

100
90
80
70
60
50
40
30
20

Simulation time: 600s
Pause time: 300s

—— TBDSR
-+ DSR

% Misbehaving Nodes

| ‘\\“\ e _— -
N
\ \
/
N ™
0 20 40

Figure 15: Simulation Time = 600s, Pause Time = 30s, No. of Nodes = 15, Area = 600 x 600m.

Packet Delivery Ratio %

Packet Delivery Ratio % Vs % Misbehaving Nodes

100
80
60
40
20

0

Simulation time: 600s
Pause time: 30s

—— TBDSR
- DSR

T —sl 1. |
/ST
N—"1
0 20 40

% Misbehaving Nodes

66

Figure 16: Simulation Time = 300s, Pause Time = 60s, No. of Nodes = 10, Area = 500 x 500m.

Packet Delivery Ratio % Vs % Misbehaving Nodes
Simulation time: 300s
Pause time: 60s

100 ~—— |
—

= 90
o I
E \.\\\\\ﬂ
> 80 ~— N ——TBDSR
£ 20 \ - DSR
[a] \
£ 60

50

0 20 40

% Misbehaving Nodes

The above graphs do provide a certain amount of information regarding the ability of
TBDSR to offer an improved service over standard DSR when misbehaving nodes are
present in the network. However, there is also a degree of ambiguity resulting from

the information presented in these graphs.

TBDSR appears to compete with (and in certain cases outperform) DSR when either
the pause time being used is high or the percentage of misbehaving nodes in the
network is low. However, when the network is dynamic (i.e. the pause time is low)
TBDSR does not offer a packet delivery ratio which is as high as that offered by

standard DSR. There are several reasons why this may be the case.

As was discussed in the previous section, in a highly dynamic network there is a
potential for good routes to be broken while they are being used. This may result in
behaving nodes receiving a poor trust rating. If this occurs, the route selection
algorithm cannot function as effectively as it is designed because it may decide to use

unreliable routes over reliable routes for transmission.

67

The implementation of TBDSR outlined in this dissertation does not retain trust
information between sessions. This reflects a scenario in which a node moves to a
new environment between sessions, e.g. a person living in Dublin arrives in New
York and turns on their PDA. We believe that the retention of trust information
between sessions would offer TBDSR a considerable advantage over standard DSR.
In this case TBDSR would know immediately which routes are reliable. In the
present implementation, both TBDSR and DSR may have to try several routes before
finding a reliable route, but TBDSR will have to do more work than DSR for the same
result. The retention of trust information would reflect a scenario in which a node
operates in the same environment on a daily basis, e.g. a person with a PDA goes to

work, goes to the coffee shop for lunch, goes to the gym in the evening etc.

5.4 Summary

In this chapter we have discussed the simulation model used to evaluate trust based
DSR and we have examined the results of this evaluation. The identification of
misbehaving nodes is being achieved with a high degree of success in the majority of
simulation scenarios. However, this success does not facilitate TBDSR
outperforming DSR in the domain of packet delivery ratios. It is only in limited
situations that TBDSR can compete with DSR in the packet delivery ratio achieved.
Some of the possible reasons for this and some of the possible optimisations that

could be implemented have been discussed.

68

Chapter 6

Conclusions

This thesis has described the analysis, design, implementation, and evaluation of a
trust based route selection system for use in mobile ad-hoc networks. The system was
implemented in the NS-2 network simulator as an extension to the existing dynamic

source routing protocol.

In chapter 1 an introduction to mobile ad-hoc networks is presented. This is followed
in chapter 2 by an in depth discussion of the key technologies, issues, and problems
associated with ad-hoc networks. Security and reliability problems and vulnerabilities

of ad-hoc networks are highlighted and this provides the motivation for this thesis.

In an ad-hoc network the presence of a trusted third party such as a certification
authority and the known identity of nodes in the network cannot be assumed. Blindly
trusting nodes that may be malfunctioning or malicious exposes the local node to a
wide variety of vulnerabilities. The first objective of the trust based route selection
system was to clearly identify nodes in the network that misbehave by dropping
packets. The second objective was to incorporate this information in a route selection

algorithm with the intention of improving the reliability of service in the network.

From an examination of the results presented in chapter 5 it is clear that the first
objective has been achieved. Misbehaving nodes in the network are being clearly
identified by other nodes in the majority of situations. However, an improvement in

the reliability of service in the network as measured by the packet delivery ratios

69

being realised is only being achieved in a small portion of cases. To completely fulfil

the second objective it is necessary for future work to be carried out in this area.

6.1 Future Work

In order to further enhance the trust based route selection system so as to improve on
the reliability and security being achieved in ad-hoc networks which contain

misbehaving nodes, work can be directed to the following areas.

e Allow the trust management module to gather and store further trust related
information about nodes encountered. Information about recent behaviour of
nodes, recommendations from trusted nodes, and suspicions about identity
swapping could all be incorporated. This would allow for more complex

selection heuristics and security policies to be implemented.

e Retention of trust information between sessions would allow the trust based
route selection system to identify reliable routes immediately. This would
reflect the scenario in which a node encountered a similar set of nodes on a
regular basis, e.g. a person goes from their house to work, to the gym, and
back to their house on a daily basis. We believe that the immediate
identification of reliable routes would offer trust based DSR a considerable

advantage over standard DSR.

e If the above modifications were to be made to the trust based route selection
system, it could be integrated into other systems such as the CONFIDANT
protocol [Buchegger] outlined in chapter 2. This protocol assumes that nodes
are authenticated and that identity swapping is not allowed. Based on these
assumptions, the CONFIDANT protocol achieves excellent service in an ad-
hoc network in which there are a large number of misbehaving nodes. A
modified version of the trust based route selection system could be
incorporated into the CONFIDANT protocol so that the assumptions outlined

above may no longer be necessary.

70

e Further evaluation such as micro-benchmarking is required to determine the
mechanism overload of trust based DSR and provide further insight into the

mechanism.

71

Bibliography

[Abdul]

[Blaze 1]

[Blaze 2]

[Blaze 3]

[Broch]

[Buchegger]

[Chu]

[Grandison]

[Hubaux]

Alfarez Abdul-Rahman. The PGP Trust Model.

M. Blaze, J. Feigenbaum, J. Lacy. Decentralised Trust Management.
Proc. IEEE Symposium on Security and Privacy, P.164-173, 1996.

M. Blaze, J. Feigenbaum, et al. The Role of Trust Management in
Distributed Systems Security. 1999.

M. Blaze, J.Feigenbaum, A. Keromytis. KeyNote: Trust Management
for Public-Key Infrastructures. 1998.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta
Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad Hoc
Network Routing Protocols. ACM 1998.

Sonja Buchegger, Jean-Yves Le Bouche. Performance Analysis of the
CONFIDANT Protocol Cooperation Of Nodes — Fairness In Dynamic
Ad-hoc Networks. 2002.

Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick,
Martin Strauss. REFEREE: Trust Management for Web Applications.
AT&T Research Labs, 1997.

Tyrone Grandison, Morris Sloman. A Survey Of Trust In Internet
Applications. IEEE Communications Surveys 2000.

Jean-Pierre Hubaux, Levente Buttyan, Srdan Capkun. The Quest for
Security in Mobile Ad Hoc Networks. Proceedings of the ACM 2001.

[IETF MANET WG] http://www.ietf.org/html.charters/manet-charter.html

[Johnson 1]

[Johnson 2]

[Josang]

D. Johnson, D. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. In Mobile Computing, chapter 5, P.153-181, 1996.

D. Johnson, D. Maltz, Yih-Chun Hu, J. Jetcheva. The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks. Internet Draft, IETF
MANET Working Group, 2001.

A. Josang. Prospectives for Modelling Trust in Information Security.
Australasian Conf. Information Security and Privacy, 1997.

72

[Khare]

[Kini]

[Marti]

[Nedos]

[O Connell]

[Perkins 1]

[Perkins 2]

[Pfleeger]

[Saltzer]

[Vanhala]

Rohit Khare, Adam Rifkin. Trust Management On The World Wide
Web. First Monday.

A. Kini and J.Choobineh. Trust in Electronic Commerce; Definition
and Theoretical Considerations. 31% Annual Hawaii Int’l. Conf,
System Sciences 1998.

S. Marti, T. Giuli, K. Lai, M. Baker. Mitigating Routing Misbehaviour
in Mobile Ad Hoc Networks. Proceedings of MOBICOM 2000.

Andronikos Nedos. Direction Based Routing for Mobile Ad Hoc
Networks. Trinity College Dublin, 2001.

Paul O’Connell. Collaborative Ad hoc Applications. Trinity College
Dublin, 2000.

Charles E. Perkins, Elizabeth M. Royer, Samir R. Das, Mahesh K.
Marina. Performance Comparison of Two On-Demand Routing

Protocols for Ad Hoc Networks. IEEE Personal Communications
2001.

Charles E. Perkins, Elizabeth M. Royer. Ad-hoc On-Demand Distance
Vector Routing. Proc. 2" IEEE Wksp. Mobile Comp. Sys. and Apps.,
Feb 1999.

Charles P. Pfleeger. Security in Computing, 2°¢ Ed. Prentice Hall,
1997.

J.H. Saltzer, D.P. Reed, D.D. Clark. End-to-End Arguments in System
Design. M.LI.T Laboratory for Computer Science.

Anne Vanhala. Security in Ad-hoc Networks. University of Helsinki,
2000.

[Zhou] Lidong Zhou, Zygmunt J. Haas. Securing Ad Hoc Networks. IEEE Network,

73

