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We introduce a compact cluster expansion method constructed over Jacobi and Legendre polyno-
mials to generate highly accurate and flexible machine-learning force fields. The constituent many-
body contributions are separated, interpretable, and adaptable to replicate the physical knowledge
of the system. In fact, the flexibility introduced by the use of the Jacobi polynomials allows us
to impose, in a natural way, constraints and symmetries to the cluster expansion. This has the
effect of reducing the number of parameters needed for the fit and of enforcing desired behaviors of
the potential. For instance, we show that our Jacobi-Legendre cluster expansion can be designed to
generate potentials with a repulsive tail at short interatomic distances, without the need of imposing
any external function. Our method is here continuously compared with available machine-learning
potential schemes, such as the atomic cluster expansion and potentials built over the bispectrum.
As an example, we construct a Jacobi-Legendre potential for carbon by training a slim and accu-
rate model capable of describing crystalline graphite and diamond, as well as liquid and amorphous
elemental carbon.

I. INTRODUCTION

Machine-learning potentials (MLPs) are rapidly be-
coming the gold standard for molecular dynamics and
thermodynamical sampling in materials science [1–4].
The general idea is that of performing a high-dimension
fit of the potential energy surface (PES) computed with
an electronic ab-initio method, for instance, with density
functional theory (DFT), to obtain a numerical atomic
energy functional for large-scale simulations. In partic-
ular, one aims at using a conveniently limited number
of electronic structure data to interpolate the PES at an
accuracy comparable with that of the electronic method
itself. MLPs can thus be defined as parametric functions
that associate to a given chemical structure the system
energy. The mathematical relation between the input
features describing a structure, often called descriptors,
and the output target can be either linear [5–7] or non lin-
ear [8–10]. Furthermore, the target quantity may be dif-
ferent from the energy and may include electronic prop-
erties [11–14], or even tensorial quantities [15–17].

The specific descriptors choice is crucial to the con-
struction of a MLP. It is commonly agreed that a strat-
egy to drastically reduce the size of the training set and
to improve the model accuracy is that of designing de-
scriptors invariant with respect to the symmetries of the
target quantity. In the case of the total energy, this re-
sults in descriptors which are invariant for translations,
rotations, and permutations of identical atoms. In princi-
ple, one can then combine any choice of descriptors with
any desired machine-learning model, going from simple
regressions to neural networks of various complexity to
kernel-based schemes. Typically, there is a subtle tradeoff
between the model complexity, the descriptor type, and
the size and composition of the data set needed to con-
struct the MLP. Complex many-body descriptors [18] are
usually combined with linear models, while simpler struc-
ture representations are used as input to deep-learning

algorithms. In both cases, there may be issues of in-
terpretability, namely, it is not always transparent what
the level of physics learned by the model itself is. As
a consequence one often relies on numerical techniques
to establish whether a particular atomic configuration is
interpolated or extrapolated by the model [19].

In this paper we introduce a linear model built over
a set of descriptors derived from the energy cluster ex-
pansion. Our MLP, that we name the Jacobi-Legendre
potential (JLP), is close in spirit to the recently intro-
duced Atomic Cluster Expansion (ACE) [5, 20]. In fact,
given the completeness of the ACE [21], one can establish
a one-to-one mapping between the two potentials. Im-
portantly, our JLPs adopt internal coordinates, so they
are, in essence, expansions of the N -body potentials in
orthogonal polynomials evaluated on distances and an-
gles between atoms. As such, the JLPs are not affected
by issues concerning the invariant coupling of different
angular momenta channels [9, 22]. Our use of the inter-
nal coordinates is closer to the recently developed proper
orthogonal descriptors (PODs) [23, 24]. Here, however,
we retain the spherical harmonics formalism by mean of
the Legendre polynomials, so a comparison between the
JLPs and other well-known potentials can be naturally
drawn. Our scheme also makes extensive use of Jacobi
polynomials, of which the Legendre ones are a particular
case.

Given a central atom, one of the most important prop-
erties of MLPs is the achievement of linear scaling for
the time required to compute the local descriptors with
respect to the number of surrounding atoms, up to an
optimized cutoff distance. Here, we will show that linear
scaling can be achieved for the JLPs too and, in doing
so, we will establish a link between well-known MLPs and
the internal coordinate representation adopted in this pa-
per.

The use of an explicit expansion over orthogonal and
complete polynomials gives several advantages, such as
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the enforcement of symmetries and local constraints. In-
deed, our potentials are constructed so key properties,
such as the smooth vanishing contribution at the cut-off
radius, arise naturally without the need of introducing
ad hoc cutoff functions. In fact, these properties are en-
forced by applying constraints on the expansion coeffi-
cients. Crucially, the procedure introduced in our paper
is completely general, so not only the number of coeffi-
cients to learn can be substantially reduced but also the
physical knowledge of the PESs can be introduced in a
natural way.

For instance, a desired feature arising from the choice
of the Jacobi polynomials and of the constraining proce-
dure, is that, by appropriately tuning the hyperparame-
ters, a repulsive behavior naturally emerges for the po-
tential at small distances. This is obtained without intro-
ducing any external repulsive function. Moreover, while
it is not generally possible to completely separate the
body-order contributions, we formally avoid any mixing
between them. This allows us to reconstruct the N -body
functional dependence in terms of the learned coefficients.
As a consequence, by combining these two properties, one
can introduce an inductive bias in the models by select-
ing, for example, only the hyperparameters that lead to
a repulsive short-range behavior of the two-body (2B) in-
teraction. Since small distances are usually absent from
the training set, a direct consequence is that the poten-
tials naturally possess a physically meaningful behavior
in this extrapolated regime.

The paper is organized as follows. An extensive Meth-
ods section presents in detail each body order of the ex-
pansion, with a discussion on the relevant properties of
each term. Then, the potential is fitted to the carbon
data set used to train the GAP17 potential of Ref. [25].
The result of the fit on energies, forces, and stress are
reported. Furthermore, we will close this case study by
presenting the phonon dispersion curves for graphene and
diamond, as predicted by the trained JLP model.

II. METHODS

In this section, we introduce the JLPs. This class of po-
tentials is based on the total energy cluster (many-body)
expansion. Therefore, after a discussion of the main idea
behind such a strategy, we will proceed with the sys-
tematic introduction of each many-body term and their
associated technical details. Note that a similar strat-
egy can also be used to construct a JLP-like model for
quantities different from the energy, such as the charge
density at a particular point in space [26].

A. Introduction

An overview of the strategy behind the construction of
the JLPs is provided in Fig. 1. In general, it is reasonable
to assume that the total energy of a system, E, can be

partitioned into a short- and a long-range contribution.
Our proposed MLP accounts only for the short-ranged
part, Eshort, that can be further expanded over terms
vanishing at distances larger than a characteristic inter-
action range. In particular, we follow the well-known
strategy of a multi-body expansion for the energy and
write

Eshort = E1 + E2 + E3 + E4 . . . . (1)

Here the single-body contribution, E1, is an energy offset
depending on the number of atomic species present in the
system, E2 is the 2B energy, depending only on atoms
pairs, E3 is the three-body (3B) energy, depending on
triplets of atoms and, in general, En describes the n-
body (nB) energy term.

A second essential assumption is that we can decom-
pose each of the nB energy terms in local quantities, such
that each term can be written as a sum of atom-centered
contributions. Explicitly, this writes

En =

atoms∑
i

ε
(n)
i , (2)

with n ≥ 2, and where the sum runs over all possible
atoms in the system. Each local contribution to the nB
energy, ε(n)i , depends only on the local neighborhood of
the i-th atom (the red atom in Fig. 1), up to a cut-off
distance rcut.

In essence, the JLPs consist of a linear expansion of the
ε
(n)
i contributions. As such, at the core, the JLP is closely

related to linear MLPs such as the spectral neighbor anal-
ysis potential (SNAP)[6], the moment tensor potentials
(MTPs) [7], and the ACE [5, 20]. Since the successful
generalization of the coupling scheme of the power spec-
trum (a 3B representation) and the bispectrum [a four-
body representation] [9, 22] to any higher-body order,
first introduced in the ACE potentials, all new potentials
build from the same set of assumptions (many-body ex-
pansion of the energy and locality), differ in the way of
constructing the basis functions, or on the introduction of
completely new basis sets [1, 2]. The JLPs are not differ-
ent in these regards. Based on a particular choice of basis
functions (radial and angular), they are also complete, so
a one-to-one mapping between the terms of a JLP and
the analogous ones of the ACE is possible. In particular,
as the name suggests, we chose the Jacobi polynomials
as the radial basis and the Legendre polynomials as the
angular one.

The choice of Jacobi polynomials [27], P (α,β)
n (x), is mo-

tivated by their dependence on the two real parameters,
α and β, which can lead to a broad selection of differ-
ent orthogonal polynomials. Two classical examples are
the Legendre polynomials (α = β = 0) and the Cheby-
shev polynomials of the second kind (α = β = 1/2).
Thus, treating α and β as hyper-parameters allows one
to optimize the radial basis set, and removes the need for
manually choosing the best basis. In contrast, we have
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FIG. 1. The workflow of the linear model presented in this paper. We first decompose the total energy over the terms of
a local multibody expansion, as in Eq. (1). Each contribution is then further expanded over atomic contributions [Eq. (2)],
ε
(n)
i , which depend on the distances and the angles between a central atom (in red) and atoms in its neighborhood (in black).

For instance, the two-body term consists only of one distance, the three-body one of two distances and one angle, etc. By
assuming short-range interaction, the distances are then mapped onto the interval [−1, 1], so each distance-dependent term can
be expanded as products of Jacobi polynomials. The angles are then mapped onto scalar products, so the functional dependence
on the angles can be similarly expanded in terms of Legendre polynomials. Crucially, the expansions on the distances is locally
constrained, so effective polynomials will be employed in place of the Jacobi polynomials.

chosen the Legendre polynomials not only since they lead
to a certain homogeneity in the representation (being the
Legendre polynomials a particular instance of the Jacobi
ones), but also for their strong relation with the spher-
ical harmonics. This means that a spherical harmonics
decomposition can always be performed, a key feature
for achieving computational-linear scaling with respect
to the number of atoms (neighbors) inside the interac-
tion cut-off sphere.

After performing the expansion over the chosen basis,
we will present a general way for constraining the ex-
pansion coefficients, so known physical (and local) prop-
erties of the system can be encoded directly in the de-
scriptors at any body order. As a byproduct of applying
the constraint on Jacobi polynomials, we will show the
natural emergence of the widely used cut off function,
fc = (1 − cos(x))/2. In this case, a cut-off function, fc,
is not externally imposed on the basis set, but instead
emerges naturally from the formalism.

Finally, since it has been proved that all 4B descriptors
mentioned before are not complete, in the sense that one
could find two distinct local environments with the same
set of descriptors [28], or manifold with slow-varying fin-
gerprints with respect to a similarity measure [29, 30],
we will explicitly investigate the JLP up to the five-body
(5B) order term, E5. However, we anticipate that the
choice of the Jacobi polynomial as a basis set, and the
associated constraining procedure, can also be applied to
other potentials. Indeed, they can be exported easily to
other multibody expansion approaches, so, for example,
one could use the constrained-Jacobi basis as a radial
basis for ACE.

B. The Two-Body Term

In this section, we introduce the expansion of the 2B
energy term, E2. Since the total energy is a scalar, it
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FIG. 2. First five Jacobi polynomials, P (α,β)
n , with α = β =

1. In the plot, the functions are composed with a cosine,
to provide a better idea of the representation used in the
expansion of Eq. (8). It can be appreciated how the derivative
is zero at both edges of the domain.

must be invariant under translations and rotations of the
reference frame. A possible way to satisfy such invari-
ance is to assume that the energy depends only on the
distances between atom pairs, and that this dependency
is realized by a continuous function (potential), v(2). Fur-
thermore, we assume that the actual functional form de-
pends only on the atomic species of the atoms involved,
so, if Zi is the atomic number of the atom located at the
position ri, and rji = |rj − ri|, we have

v(2) ≡ v(2)(rji;Zj , Zi) ≡ v
(2)
ZjZi

(rji), (3)

and

E2 =
∑
ij
j ̸=i

v
(2)
ZjZi

(rji) . (4)

The 2B potential, v(2)ZjZi
, is thus defined symmetric un-

der the exchange Zj ↔ Zi, namely, v(2)ZjZi
= v

(2)
ZiZj

. Note
that, in principle, one can still explicitly distinguish non-
equivalent atoms belonging to the same species, by intro-
ducing “virtual” species.

It is useful to remark that the 2B term in Eq. (4)
can be recast in the form of Eq. (2), where ε

(2)
i =∑

j ̸=i v
(2)
ZjZi

(rji) is the energy associated to the i-th atom
resulting from the pairwise interaction with its local
atomic neighborhood. Note that these local contribu-
tions are well-defined because of the short-ranged nature
of the interaction. Thus, there exists a natural cut-off
radius rcut, such that vZjZi(rji) ≃ 0 for rji > rcut.

We now provide the proposed expansion for the po-
tentials v

(2)
ZjZi

, followed by its derivation. The expansion

FIG. 3. First five vanishing-Jacobi polynomials, P̃ (α,β)
n (α =

β = 1) as defined in Eq. (6), derived from the Jacobi polyno-
mials of Fig. 2. These polynomials are constrained to vanish
at the right-hand side edge of the domain.

is

v
(2)
ZjZi

(rji) =

nmax∑
n=1

aZjZi
n P̃ (α,β)

n

(
cos

(
π
rji − rmin

rcut − rmin

))
,

(5)
where the sum is truncated to a suitable polynomial or-
der, nmax, and where a

ZjZi
n are the expansion coefficients

for the n-th order. The vanishing-Jacobi polynomials,
P̃

(α,β)
n , employed here, are defined in terms of the Jacobi

polynomials, P (α,β)
n , as

P̃ (α,β)
n (x) = P (α,β)

n (x)− P (α,β)
n (−1) for − 1 ≤ x ≤ 1 ,

(6)
for n ≥ 1. Thus, the P̃ (α,β)

n have the property to vanish at
the right-hand side extreme of their domain, namely, at
rcut. The Jacobi polynomials are shown in Fig. (2), while
the corresponding vanishing-Jacobi polynomials are in
Fig. 3. The expansion presents five hyper-parameters,
α, β, rcut, rmin, and nmax, with α and β being real num-
bers greater than −1. We will refer to Eq. (5) as the
2B-Jacobi-Legendre (2B-JL) expansion.

At this point, it should be noted that there can be a
different set of hyperparameters for each different atomic
species. As such, in the case of many-species compounds,
the hyper-parameter space can potentially become rather
large. Then, it may be desirable to take system-based
approximations or to perform feature selection.

We will now present the arguments leading to Eq. (5).
To make the formalism more readable, we define the com-
pact notation

P̃
(α,β)
nji ≡ P̃ (α,β)

n

(
cos

(
π
rji − rmin

rcut − rmin

))
, (7)

which will be widely used throughout this paper. As
already remarked, the potentials should vanish for dis-
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tances larger than the interaction cut-off radius. With
only this constraint in mind, we can expand the poten-
tial in terms of Jacobi polynomials as

v(2)(r) =

nmax∑
n=0

anP
(α,β)
n (cos (πr/rcut)) , (8)

where, for simplicity, we set rmin = 0 and omit the ex-
plicit dependence on the atomic species.

We have chosen the Jacobi polynomials, P
(α,β)
n (x),

since they are complete and orthogonal over the inter-
val x ∈ [−1, 1], with respect to the weight function
wαβ(x) = (1 − x)α(1 + x)β . Furthermore, as already
noted, their generality, parameterized through the real
coefficients α and β, allows one to perform automatic
searches of the most efficient basis set, without any ad-
ditional hypothesis. We found that, in most cases, there
is a large range of optimal α and β values, so we usually
reduce the number of hyperparameters by constraining
the search to α = β.

Note that we are not introducing any cut-off function
in the expansion to force a smooth-vanishing behavior at
the cut-off radius. Also, the a0 coefficient is not present
in the sum of Eq. (5), while it still appears in Eq. (8).
We will now impose the right behavior on the expan-
sion coefficients, so the resulting potential vanishes by
construction at the cut-off radius. The result of this ap-
proach is similar, in a sense, to models with naturally
vanishing radial functions, such as the spherical-Bessel
descriptors [31]. Explicitly, we constrain the expression
in Eq. (8) to satisfy the condition v(2)(rcut) = 0. Then,
since P

(α,β)
0 = 1, we obtain that the first coefficient must

satisfy

a0 = −
nmax∑
n≥1

anP
(α,β)
n (−1) . (9)

By inserting this expression back into Eq. (8), we finally
obtain Eq. (5). It is worth mentioning that this proce-
dure can be easily generalized to impose any constraint
to the functional form of the potential, so local physical
knowledge of the system can be enforced in the descrip-
tion itself. An example of a further constraint will be
shown for higher-body terms.

We can then interpret the vanishing Jacobi polyno-
mials, defined in Eq. (6), as the radial basis obtained
when expanding functions vanishing at the left-hand side
limit of the interval [−1, 1] (in our mapping, the point
x = −1 is mapped onto the cut-off distance). As a fi-
nal remark, the expansion coefficients a

ZjZi
n inherit the

same symmetry properties of the potential, namely, they
are symmetric under the exchange of the atomic species,
a
ZjZi
n = a

ZiZj
n .

In closing this section, it must be mentioned that the
2B-JL expansion suffers from the same scaling problem
of most of the established MLPs when dealing with mul-
tiple species. In fact, the number of pair-wise potentials

that one can define scales quadratically with the number
of species, so system-based approximations are required
for complex chemical compositions. This problem will
become more severe for the higher-body terms. Despite
the fact that the current implementation of the JLP can
already deal with multi-species compounds, in this paper
we will show an application for a single-species (carbon)
system, postponing the explicit investigation of multi-
species potentials to future works.

Emergence of the cut-off function from the constraints

A relevant property of the 2B-JL expansion is that, as
rigorously proved in Appendix A, we can factorize the
vanishing Jacobi polynomials as

P̃ (α,β)
n (cosx) = fc(x)Q

(α,β)
n (cos(x)) , (10)

where fc(x) is the well-know cut-off function fc(x) = (1+

cos(x))/2, introduced in Ref. [8], and the Q
(α,β)
n (cos(x))

are functions explicitly defined in Appendix A. As far as
we know, the functions Q(α,β)

n are not equivalent to other
functions already used in the MLPs literature. While
the property described by Eq. (10) establishes a strong
connection between our expansion and other potentials
which use the cut-off function, it is important to stress
that, within the JLPs, fc(x) arises naturally from the
choice of the radial basis and the constraining method
implemented. As such, it is not an embedding function,
as one can clearly see in Fig. 3. Among the advantages
of this approach there is that, since the Jacobi polyno-
mials are already complete and orthogonal, no further
orthogonalization procedure has to take place. Also, we
do not have to explicitly evaluate the derivative of the
cut-off function when calculating the forces, since we can
simply use the derivative of the (vanishing-) Jacobi poly-
nomials. Finally, by imposing the constraint of Eq. (9),
we are reducing the number of coefficients to learn: this
is particularly relevant for higher-body terms, as will be
shown in the following sections.

C. The Three-Body Term

In this section, we will discuss the linear expansion of
the 3B energy term, E3. While the core strategy is the
same as the one employed in the previous section, we
will introduce here a Legendre expansion for the angular
dependence of the cluster. We will also impose a further
constraint on the Jacobi polynomials and we will discuss
the role of symmetries when considering atoms of the
same species.

Following the same approach introduced in the previ-
ous section, we assume that E3 can be written as a sum
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FIG. 4. The first five double-vanishing Jacobi polynomials,
P

(α,β)
n (here plotted for α = β = 1), as defined in Eq. (13),

and derived from the vanishing ones shown in Fig. 3. The
polynomials are constrained to vanish at both edges of the
domain.

of local 3B potentials, v(3), as

E3 =

atoms∑
i

∑
(j,k)i

v
(3)
ZjZkZi

(rji, rki, r̂ji · r̂ki) , (11)

where the first sum runs over all the atoms in the sys-
tem and the second one runs over all the atoms pairs in
the neighborhood (within rcut) of the i-th atom (the red
atom in Fig. 1). Here, to ensure the translational and
rotational invariance of the descriptors, we consider only
internal coordinates between the central atom i and the
atoms j and k in the surroundings. Therefore, only the
distances rji and rki and the scalar products r̂ji · r̂ki (es-
sentially the angle defining a 3B cluster), are taken into
consideration.

The functional form of the potential v(3)ZjZkZi
depends

on the ordering of the atomic species numbers Zj , Zk,
and Zi. Specifically, the first atomic species refers to the
first distance, the second atomic species to the second
distance, while the last one refers to the central atom.
Thus, it holds that

v
(3)
ZkZjZi

(rki, rji, sjki) = v
(3)
ZjZkZi

(rji, rki, sjki) , (12)

where sjki is a short-hand notation for r̂ji · r̂ki. Put into
words, if we exchange the species of the atoms in the en-
vironment, we will also have to exchange their distances.
From now on, we will use v

(3)
jki as shorthand notation for

v
(3)
ZjZkZi

.
By adopting the same workflow followed in construct-

ing the 2B case, we now give an expression for the 3B
JL expansion, and then we provide its derivation. The

3B-JL expansion reads

v
(3)
jki(rji, rki, sjki) =

nmax∑
n1,n2=2

lmax∑
l=0

ajkin1n2l
P

(α,β)

n1ji P
(α,β)

n2ki P
jki
l ,

(13)
where P jki

l = Pl(sjki) is the Legendre Polynomial, Pl,
evaluated on the scalar product sjki. The first sum runs
on all the n1 and n2 in the interval [2,nmax]. The 3B
expansion introduces a new hyperparameter, lmax, which
sets the level of truncation of the angular expansion. The
coefficients ajkin1n2l

have to be intended as a compact form
for a

ZjZkZi

n1n2l
. Crucially, we use here the double-vanishing

Jacobi polynomials, P
(α,β)

n (x), which can be defined in
terms of the vanishing ones as (see Fig. 4)

P
(α,β)

n (x) = P̃ (α,β)
n (x)− P̃

(α,β)
n (1)

P̃
(α,β)
1 (1)

P̃
(α,β)
1 (x) , (14)

for n ≥ 2. From this definition, it can be seen that the
double-vanishing polynomials not only vanish smoothly
at the cut-off distance (x = −1) but also for small dis-
tances (x = 1). By employing these polynomials, the
repulsive behavior at short distances is not influenced by
the 3B-JL expansion and, as such, is completely deter-
mined by the 2B expansion. Note that these polynomials
have been devised for the case in which rmin is small. If
this hypothesis does not hold, we suggest a case-by-case
investigation of the most appropriate polynomials or con-
straints to use.

The derivation of the expansion in Eq. (13) follows the
same strategy presented in detail for the derivation of the
2B-JL expansion, Eq. (5). Since the distances and the
scalar product are independent variables, we expand the
functional dependence of the potential on the distances
in terms of a product of two Jacobi polynomials, one for
each distance. Then, the scalar product dependence is
expanded in terms of Legendre polynomials. Analogously
to the constraint adopted in the 2B case, we constrain
the expansion to vanish at the cut-off radius. Here, how-
ever, we impose the potential to vanish when at least one
of the distances approaches the cut-off, independently of
the value of the other distance or of the angular part.
Crucially, applying independent constraints on the vari-
ables at play, allows us to severely reduce the number of
free coefficients, when compared to the 2B case. Indeed,
the constraints explicitly read [please, compare with the
constraint introduced in Eq. (9)]

a0n2l = −
nmax∑
n1≥1

an1n2lP
(α,β)
n1

(−1) for all n2, l,

an10l = −
nmax∑
n2≥1

an1n2lP
(α,β)
n2

(−1) for all n1, l,

so the expression can be re-casted in terms of products
of vanishing Jacobi polynomials and Legendre polynomi-
als only. However, we can further constrain the num-
ber of free coefficients by imposing that the potentials
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also vanish when at least one of the distances approaches
zero. In this way we impose a condition also on the
ajki1n2l

and ajkin11l
coefficients. In doing so, we obtain the

double-vanishing polynomials and the 3B-JL expansion
of Eq. (13). Note that in the unconstrained case we have
(nmax+1)2(lmax+1) free coefficients, while in the double-
constrained one these are only (nmax − 1)2(lmax +1). As
such, we deduce that the reduction in the number of co-
efficients is quite severe for relatively low nmax. Another
relevant reduction in the number of free parameters is
induced through the symmetries of the coefficients, when
atoms of the same species are taken into account, as ex-
plained in detail in the following section.

Symmetries of the coefficients

We can explicitly read the role of the indexes in the
expansion coefficients ajkin1n2l

of Eq. (13), by noting that
the first index, n1, refers to the expansion on the first
argument of the potential v

(3)
jki (the distance between

the atoms j and i), while the second one expands the
second distance. Thus, the symmetry property of the
potentials described by Eq. (12) directly implies that
ajkin1n2l

= akjin2n1l
, namely, that the expansion coefficients

are symmetric with respect to the simultaneous exchange
of the species indexes Zj ↔ Zk and of the Jacobi indexes,
n1 ↔ n2. While this is effectively just a reordering of the
arguments of the potential, with appropriate re-labelling,
it becomes relevant in the case of identical atoms. Indeed,
if the atoms j and k belong to the same atomic species
Z, then they are indistinguishable, making the potential
invariant under the exchange of the first and the second
arguments (the two distances). Then, one needs to en-
force the same symmetry on the coefficients, namely, they
must be symmetric under Jacobi-index exchange alone,
aZZZi

n1n2l
= aZZZi

n2n1l
.

We can then re-cast the 3B-JL expansion for the same
atom species, Zj = Zk = Z, as

v
(3)
ZZZi

(rji, rki, sjki)

=

nmax∑
n1=2

lmax∑
l=0

aZZZi

n1n1l
P

(α,β)

n1ji P
(α,β)

n1ki P
jki
l (15)

+

nmax∑
n1=2
n2=2
n1>n2

lmax∑
l=0

a
ZjZkZi

n1n2l

[
P

(α,β)

n1ji P
(α,β)

n2ki + P
(α,β)

n2ji P
(α,β)

n1ki

]
P jki
l .

Equation (15) explicitly shows the application of the sym-
metries for n1 ̸= n2. Now, we can introduce the more
practical expression

v
(3)
ZjZkZi

(rji, rki, sjki)

=

unique∑
n1n2l

a
ZjZkZi

n1n2l

∑
symm.

(
P

(α,β)

n1ji P
(α,β)

n2ki P
jki
l

)
, (16)

which also encompasses the cases for different species
and is easily generalized to higher-body order expansion
terms. Here, the first sum runs over indexes that lead
to non-equivalent coefficients with respect to the sym-
metries of the potential (in this case, indexes such that
n1 ≥ n2), while the second sum runs over all the permu-
tations of indexes that refers to equivalent coefficients (in
this case the exchange n1 ↔ n2). If the atoms j and k be-
long to two different species, then the expression reduces
to the simple form of Eq. (13). In contrast, if the j-th
and k-th atoms are of the same species, we end up with
the formula in Eq. (15). It must be noted that, not only
is this expression crucial to enforce the role of identical
atoms, but it also roughly halves the number of free coef-
ficients in the expansion. Finally, we conclude by noting
that, while in the case of the 3B expansion there is no dif-
ference between the symmetrization in Eq. (16) and the
lexicographic order introduced for the ACE coefficients
(see Ref. [21] for details), these are indeed different in
the generalization to the 4B case, as will be shown in
Sec. II E.

D. Linear Scaling and the JL Atomic Basis

Before presenting the 4B-JL expansion, we discuss here
the scaling of the 3B-JL expansion, with respect to the
number of neighbors inside the cut-off volume. Indeed,
by inserting Eq. (16) into the expression of Eq. (11) for
the 3B energy, E3, it is clear that the computational
time to evaluate the 3B-JL expansion scales quadrati-
cally with the number of neighbours surrounding a cen-
tral atom. This is because one has to explicitly look
around for all possible pairs of atoms. Such scaling makes
the formalism unpractical, when the number of atoms in-
side the cut-off sphere becomes relatively large. Most of
the MLPs used in literature have solved this problem
by achieving linear scaling with respect to the number
of neighbors. Importantly, the 3B-JL expansion, being
strictly tied to the powerspectrum components [22], can
also be rearranged to reach the same scaling. In this
rather technical section, we will mainly discuss the re-
sults of such “linearization”, laying the formalism for a
similar discussion in the 4B case. The formal derivation
is then presented in the Supplemental Material (SM),
Ref. [32]. As such, what is presented here can be con-
sidered a short review of the results obtained for other
MLPs, in particular, for the power-spectrum case. Cru-
cially, we will maintain the equivalence with the “internal
coordinates representation” of the 3B term, Eq. (16), so
one could freely move between the linear scaling formal-
ism and the internal coordinate one, the latter being more
advantageous for a small number of neighbors inside the
cut-off volume.

We start by remarking that the choice of Legendre
polynomial as an expansion basis was primarily driven
by its natural decomposition in terms of a sum of prod-
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ucts of spherical harmonics, Y m
l , namely,

Pl(r̂1 · r̂2) =
4π

2l + 1

l∑
m=−l

(−1)mY m
l (r̂1)Y

−m
l (r̂2) . (17)

By exploiting this property, and by combining Eq. (16)
with Eq. (11), one can prove that the 3B local energy
term, ε(3)i , (defined so E3 =

∑
i ε

(3)
i ), can be written as

ε
(3)
i =

∑
Z1Z2
Z1≥Z2

unique∑
n1n2l

bZ1Z2Zi

n1n2l

[
C

(3),Z1Z2

in1n2l
− S

(3),Z1Z2

in1n2

]
, (18)

where the first sum runs over the atomic species present
in the system. The coefficients bZ1Z2Zi

n1n2l
are simply pro-

portional to aZ1Z2Zi

n1n2l
, as shown in the SM [32], so the

equivalence in going from Eqs. (11)-(13) to Eq. (18), is
preserved. We refer to the coefficient C

(3),Z1Z2

in1n2l
as the

coupling term, which is obtained by including, on top
of proper pairs of neighbor atoms, also the degenerate
terms in which the central atom is allowed to interact
twice with the same atom in the environment, namely,
we accept the cases (j, j)i in the sum of Eq. (11). These
“self-interacting” terms, S(3),Z1Z2

in1n2
, must be then removed,

and so they are subtracted in Eq. (18).
Explicitly, the coupling and the self-interacting term

are written as

C
(3),Z1Z2

in1n2l
=

4π

2l + 1

l∑
m=−l

(−1)mAZ1

in1lm
AZ2

in2l−m , (19)

and

S
(3),Z1Z2

in1n2
= δZ1Z2

∑
j∈Z1

P
(α,β)

n1ji P
(α,β)

n2ji , (20)

where δZ1Z2
is the Kronecker-delta. Here, we have

adopted a “species-wise” atomic basis from the one de-
fined for the ACE potential (see Ref. [5]), namely,

AZ
inlm =

∑
j∈Z

P
(α,β)

nji Y m
l (r̂ji) , (21)

where the radial basis has been specialized to the double-
vanishing Jacobi polynomials. Also, we note that
Eq. (19) is proportional to the power-spectrum compo-
nents [22] or to the analogous rotationally invariant prod-
uct B

(2)
in1n2l

introduced for the ACE potential. The cru-
cial point here is that the coupling term in Eq. (19) is
written over the species-wise atomic basis of Eq. (21).
Since the AZ

inlm basis scales linearly with the number of
neighbors of the i-th atom, then we can evaluate the cou-
pling term with a linear cost. This, together with the fact
that the self-energy also scales linearly with respect to the
number of neighbors, makes the computational scaling of
the entire local energy, Eq. (18), linear in the numbers of
neighbor atoms.

Incidentally, we note that we can write the product of
the double-vanishing Jacobi polynomials in Eq. (20) in
terms of a linear combination of double-vanishing Jacobi
polynomials, namely, there are coefficients cn1n2

n , such
that

P
(α,β)

n1ji P
(α,β)

n2ji =

n1+n2∑
n=2

cn1n2
n P

(α,β)

nji . (22)

The coefficients cn1n2
n are usually calculated by numerical

integration. This shows that the self-energy term can be
re-casted as a linear combination of AZ

in00 too, and that
it is, as expected, an effective 2B contribution. However,
given the possible different cut-off radii of the 2B and
3B potentials and the relative different truncation, nmax,
we will keep the body orders as formally separated as
possible, and we will not absorb the self-interaction terms
back into lower body orders [33].

Let us now define a practical extension of the atomic
basis AZ

inlm, so to simplify the discussion for higher-order
terms. We define the JL-atomic basis as

(JpLq)
i,Z
n1...npl1m1...lqmq

=
∑
j∈Z

[ p∏
r=1

P
(α,β)

nrji

][ q∏
s=1

Y ms

ls
(r̂ji)

]
.

(23)
This also includes the atomic basis AZ

inlm, since

(J1L1)
i,Z
nlm = AZ

inlm . (24)

However, the definition in Eq. (24) allows us to take more
than one double-vanishing Jacobi and one Legendre poly-
nomial at once.

By looking at Eq. (22) (the same property holds for the
Legendre polynomials) one could appreciate how all the
components of Eq. (23) can be reduced to linear combina-
tions of AZ

inlm. Therefore, the definition of the JL-basis
could appear unnecessary. However, since the coefficients
cn1n2
n must be evaluated by integration, it can be more

convenient to directly use the JL-atomic basis rather than
performing the necessary integrations and contractions.
It is important to note that evaluating the elements of the
JL-atomic basis is still linear with the number of neigh-
bors of the i-th atom: the only scaling affected is in terms
of the number of the components involved, namely, the
number of polynomials in the product.

Finally, we can now write the coupling term and the
self-energy over the JL-atomic basis as
C

(3),Z1Z2

in1n2l
=

4π

2l + 1

l∑
m=−l

(−1)m(J1L1)
i,Z1

n1lm
(J1L1)

i,Z2

n2l−m ,

S
(3),Z1Z2

in1n2
= δZ1Z2

(J2L0)
i,Z1
n1n2 .

(25)
The JL-atomic basis will be used as the general frame-
work for the analogous analysis of the linear scaling in
the 4B case.
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E. The Four-Body Term

For the 4B case we will follow the very same steps
presented for the 3B one. We start by expanding the 4B
energy contribution, E4, as

E4 =

atoms∑
i

∑
(j,k,p)i

v
(4)
jkpi(rji, rki, rpi, sjki, skpi, sjpi) , (26)

where, analogously to E3 in Eq. (11), the second sum
runs over all the triplets of atoms in the neighborhood of
the i-th atom. As for the 3B case, v(4)jkpi is a shorthand

form for v
(4)
ZjZkZpZi

.
The 4B potential, v(4), depends on three distances and

three angles, so any triplets of atoms in the neighbor-
hood of the i-th one is uniquely determined up to a re-
flection. The JL-4B expansion is then simply obtained
by generalizing Eq. (16) to the case in which we have
three double-vanishing Jacobi polynomials and as many
Legendre polynomials, namely,

v
(4)
jkpi(rji, rki, rpi, sjki, skpi, sjpi) (27)

=

unique∑
n1n2n3
l1l2l3

ajkpin1n2n3
l1l2l3

∑
symm.

(
P

(α,β)

n1ji P
(α,β)

n2ki P
(α,β)

n3pi P
jki
l1

P jpi
l2

P kpi
l3

)
.

The range of the Jacobi indexes is again [2, nmax], while
that of the Legendre ones is [0, lmax], where both nmax
and lmax require optimization. By adopting the same
formalism of Eq. (16), the symmetries of the potential
are implemented in the expansion by construction. As
for the 3B case, we have that ajkpin1n2n3

l1l2l3

is a shorthand for

a
ZjZkZpZi
n1n2n3
l1l2l3

.

It is useful to explicitly investigate the symmetries for
the case in which the atoms in the neighborhood belong
to the same species. By associating the Jacobi indexes
n1, n2 and n3 to the first, second, and third distances,
respectively, and analogously associating the Legendre
indexes to the scalar products, we impose the following
symmetries on the expansion coefficients:

an1n2n3
l1l2l3

= an2n1n3
l1l3l2

= an3n2n1
l3l2l1

= an1n3n2
l2l1l3

= an2n3n1
l3l1l2

= an3n1n2
l2l3l1

. (28)

The first identity states that, when exchanging the first
two atoms, we have to simultaneously exchange the rela-
tive distances from the central atom (swapping the Jacobi
indexes n1 and n2) and the angles formed with the re-
maining atom (exchanging the Legendre indexes l2 and
l3). All the other identities can be interpreted in a simi-
lar way. The equivalences in Eq. (28) give us the unique
set of indexes to use in Eq. (27), so the number of param-
eters to learn is reduced by roughly a factor of 6. The
second sum in Eq. (27) will then run over all the indexes

permutations involved in Eq. (28), mostly resulting in a
sum of six terms, similarly to what was explicitly shown
in Eq. (15).

We conclude this section by remarking that the use
of double-vanishing polynomials in the 4B-JL expansion
allows us to implement an even more severe reduction in
the number of free coefficients compared to the 3B case.

F. 4B Linear Scaling: connection with the
Bispectrum

A linear scaling with the number of atoms in the neigh-
borhood volume can also be achieved for the 4B case.
Indeed, this is even more important than for lower-body
orders, since otherwise the scaling would be cubic with
the number of neighbors. The backbone of the demon-
stration is similar to the one adopted for the 3B case,
so, by using the property of Eq. (16) and the JL-atomic
basis defined in Eq. (23), we can write the local energy
term, ε(4)i , as

ε
(4)
i =

∑
Z1≥Z2≥Z3

unique∑
n1n2n3
l1l2l3

bZ1Z2Z3Zi
n1n2n3
l1l2l3

(29)

×
[
C

(4),Z1Z2Z3

i,
n1n2n3
l1l2l3

− S
(4),Z1Z2Z3

i,
n1n2n3
l1l2l3

]
,

where the coupling term for the 4B is given by

C
(4),Z1Z2Z3

i,
n1n2n3
l1l2l3

=
(4π)3

(2l1 + 1)(2l2 + 1)(2l3 + 1)
(30)

×
∑

m1m2m3

(−1)m1+m2+m3(J1L2)
i,Z1

n1l1m1l2−m2

×(J1L2)
i,Z2

n2l3m3l1−m1
(J1L2)

i,Z3

n3l2m2l3−m3
.

The corresponding expression for the self-energy, S(4)
i , is

more involved and, for the sake of brevity, is reported in
the SM, Ref. [32]. Here, we just wish to mention that it
is obtained from linear combinations of products of the
basis terms (J1L2), (J2L2), and (J3L0).

The coupling scheme described in Eq. (30) differs from
the bispectrum-component coupling scheme [6, 22], while
being strictly related to it. Indeed, the bispectrum writes
in the ACE flavour [5] as

B
(3),Z1Z2Z3

i
n1n2n3
l1l2l3

=
∑

m1m2m3

(
l1 l2 l3
m1 m2 m3

)
×AZ1

in1l1m1
AZ2

in2l2m2
AZ3

in3l3m3
, (31)

where the 3j-Wigner symbol [34] is introduced and Ainlm

is the atomic basis of Eq. (21). Furthermore, the JL-
atomic basis terms, (J1L2), can be written as a linear
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combination of the AZ
inlm:

(J1L2)
i,Z
nl1m1l2m2

=
∑
lm

(−1)m
√

(2l + 1)(2l1 + 1)(2l2 + 1)

4π
(32)

×
(
l1 l2 l
0 0 0

)(
l1 l2 l
m1 m2 −m

)
AZ

inlm .

This is directly derived from the product rule for two
spherical harmonics. From this expression, one could
write the coupling terms C

(4)
i as a linear combination

of bispectrum components B(3)
i (see SM, Ref. [32]). This

linear combination represents a way of combining the bis-
pectrum components so the final result is explicitly writ-
ten in terms of internal coordinates only. Crucially, our
argument shows that adopting the coupling scheme in
C

(4)
i could give an advantage over the bispectrum com-

ponents, since it allows us to maintain the equivalence
between the expression in Eq. (30) and the analogous one
from Eqs. (26) and (27). Then, an intuitive and equiva-
lent closed expression (in terms of internal coordinates)
remains available for any case in which the number of
atoms in the neighbours is relatively small, so one could
opt between Eq. (29) and Eqs. (26) and (27) as needed.

G. The Five-Body Term

The 5B term can be obtained by direct generaliza-
tion of the 4B case. Indeed, the procedure is analogous,
namely, the energy contribution, E5, is partitioned in
local components, which consist of a sum of local 5B po-
tentials, v(5)jkpqi. These depend on four distances and six
angles, so they can be expanded as a linear combination
of products of four double-vanishing Jacobi polynomials
and six Legendre polynomials. The resulting expression
is analogous to the one obtained in Eq. (18) for the 4B
case. The symmetry properties of the potentials are also
treated in the same way, resulting in a reduction of the
number of coefficients up to roughly a factor of 24 when
dealing with identical atoms.

H. behavior at the origin

A common practice in MLPs is to introduce an external
function to impose a repulsive behavior when the inter-
atomic distance becomes small. Here, since we are using
the double-vanishing Jacobi polynomials for all body or-
ders beyond two, the only term affecting the behavior at
small distances is the 2B, given in Eq. (5). We can then
obtain some insight into the behavior of the potential by
evaluating Eq. (5) at the origin. Indeed, if rmin = 0, we
obtain

v
(2)
ZjZi

(0) =

nmax∑
n=1

aZjZi
n P̃ (α,β)

n (1) . (33)

From the identity

P̃ (α,β)
n (1) =

(
n+ α

n

)
− (−1)n

(
n+ β

n

)
,

we can conclude that the magnitude of the potential at
the origin can become very large for a high enough n.
Therefore, by biasing the hyper-parameters so the poten-
tial is positive at the origin, we can produce a strongly
repulsive behavior almost by construction, with no use
of any external function.

This observation must be checked on a case-by-case
base, an operation that can be performed visually by
simply looking at the potential. Indeed, once the best
expansion coefficients are available, it is possible to plot
the function

v
(2)
ZjZi

(x) =

nmax∑
n=1

aZjZi
n P̃ (α,β)

n (cos (πx/rcut)) , (34)

and analyze the behavior near the origin. Since small
distances are usually in an extrapolation region of the
potential, with little to no data corresponding to such
distances present in the training set, a visual investiga-
tion of the 2B potential could also return us some in-
tuition on the behavior of the model when dealing with
extrapolation attempts to unseen atomic distributions.

I. Forces and Stress

In this section, we outline the general recipe to cal-
culate the forces and the virial-stress tensor. Given the
linearity of the expressions associated with the JL ex-
pansion, one only needs the derivative of the (double-
)vanishing Jacobi and of the Legendre polynomials, from
which all the relevant quantities can be evaluated.

Since the multi-body expansion of the energy, Eqs. (1),
and the fact that E1 is just an energy offset, the n-body
contribution to the force of an atom at position ra, is
given by

F (n)
a = −∂En

∂ra
, (35)

whereas the total force is obtained by summing over all
the n-body contributions, Fa =

∑
n F

(n)
a .

As it can be seen from Eq. (4) and (5), the evalua-
tion of the 2B force contribution, F (2)

a , requires only the
application of the chain rule and the derivative of the
vanishing polynomials, namely,

d

dx
P̃ (α,β)
n (cos(x)) =

d

dx
P (α,β)
n (cos(x)) = (36)

= −α+ β + n+ 1

2
sin(x)P

(α+1,β+1)
n−1 (cos(x)) .

This expression shows that the derivative of the potential
smoothly vanishes (F (2)

a = 0) at the origin and at the cut-
off radius (when x = 0, π). Furthermore, from Eq. (36)
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we can appreciate that the force can be written solely
in terms of Jacobi polynomials. This results in a linear
expansion that can be easily implemented or analytically
investigated.

Analogously, we can evaluate the 3B contribution to
the forces by differentiating the E3 term. This implies
that we need to calculate [see Eqs. (13) and (16)]

∂

∂ra

∑
symm.

(
P

(α,β)

n1ji P
(α,β)

n2ki P
jki
l

)
=

=
∑

symm.

∂

∂ra

(
P

(α,β)

n1ji P
(α,β)

n2ki P
jki
l

)
, (37)

where we are able to exchange the sum and the deriva-
tive, since the former acts only on the Jacobi and Legen-
dre indexes. Therefore, in evaluating the derivative of the
product, we can use again the chain-rule and the differ-
entiation formula for the Legendre polynomials, namely,

d

dx
Pl(x) =

d

dx
P

(0,0)
l (x) =

l + 1

2
P

(1,1)
l−1 (x) , (38)

where we have used the fact that the Legendre polynomi-
als are obtained from the Jacobi polynomials by setting
α = β = 0. Finally, we also need the differentiation rule
for double-vanishing Jacobi polynomials

d

dx
P

(α,β)

n (cos(x)) =

= − sin(x)

2

(
(α+ β + n+ 1)P

(α+1,β+1)
n−1 (cos(x))

−(α+ β + 2)
P̃

(α,β)
n (−1)

P̃
(α,β)
1 (−1)

)
. (39)

The 4B and 5B contributions to the forces are evalu-
ated in the same way, and these do not introduce any
further ingredient to obtain an analytical form. The ex-
pression for the forces in the case of the JL-atomic basis
will be explicitly discussed in future works. Finally, we
can also obtain the virial-stress tensor by means of the
formula discussed in Ref. [35] [see Eq. (25)].

J. Linear Regression

To select the optimal expansion coefficients for each
body term, we minimize the widely used loss function

L = ∥E − JEa∥22 + cF ∥F − JFa∥22 + cW ∥W − JWa∥22 ,

where the vector E represents all the energies in the
training set (obtained by ab-initio calculations), a is the
vector of all the coefficients of the expansion, JE is the
matrix, whose rows contain the set of descriptors for one
configuration of the training set. Similarly F is the vector
of all the forces of the dataset, while JF are the appro-
priate differentiated descriptors. Note that, explicitly, we

Two body Three body Four body

nmax 10 6 4

lmax – 5 3

rcut (Å) 3.7 3.7 3.7

α = β 1 1 1
No. of features 10 90 364

TABLE I. Details of the JLP trained on the carbon dataset
from Ref. [25]. In order to reduce the number of hyperparam-
eters, we fix α and β to be equal, and rmin = 0. The model is
relatively compact and comprises 465 (464 plus the intercept)
features.

will train on each component of the forces for each atom
in the system. This means that, if the i-th configuration
has Ni atoms, we will have 3Ni forces associated with
that configuration. The vector of the components of the
stress tensor for each training point is W . In this case,
we will train independently on each of the six compo-
nents, for any of the configurations in the training set.
Finally, cF and cW are coupling constants to be opti-
mized, and ∥·∥22 is the square of the vector two-norm.
While the use of a multi-target scheme, embedded in a
non-linear function, can be used to increase the accuracy
of the model [36], we remark that we follow here a simple
linear approach.

The minimization procedure that will be adopted for
the remainder of this paper, where results on a mono-
species system are shown, will be based on the singular
value decomposition (SVD). We stress that we will not
regularize the energy offset, E1. Furthermore, instead
of using the total energies, we will always consider the
energy per atom in the training set.

Here we wish to remark that the coupling constants,
cF and cW , can also depend on the specific configuration,
a fact that can be seen as a configuration wise rescaling
of the descriptors and targets. This is useful, in partic-
ular, when the configurations have a different number of
atoms. As a direct example, the loss function used in
the next section, will have all the forces and the relative
descriptors divided by

√
3Ni, where Ni is the number of

atoms in the configuration. This is performed in order to
weigh the energies, forces, and stress, on a similar foot-
ing in the minimization procedure. Another advantage
of such a configuration-wise weighting scheme is that the
energy offset per atom, E1, can be written analytically
in terms of the per-atom average energy, average descrip-
tors, and the linear fitting coefficients.

III. A JLP FOR CARBON

As an application of the method described here, we
have fitted a JLP on the carbon data set used to fit
the GAP17 potential of Ref. [25]. We have opted for
this dataset, since it presents several challenges. Firstly,
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FIG. 5. Parity plots computed over the test set for the (a) energies, (b) forces, (c) virial stress. The mean absolute errors
(MAEs) and root mean square error (RMSE) are reported for each plot, alongside the error on the worst prediction. The color
code indicates the data density (number of points).

the dataset is made of different phases of carbon, rang-
ing from crystalline structures (graphene, graphite, dia-
mond), to surfaces and amorphous phases. In addition,
some phases present a relative large distance for the de-
cay of the forces between two atoms, as explicitly shown
in the same Ref. [25]. This is mirrored in the choice of the
appropriate cut-off radius. For the fit we have removed
all the carbon dimers and any structures with absolute
maximum force components greater than 30 eV/Å. In
total we have thus removed 37 structures of which 30
are the carbon dimers used to fit the 2B GAP and seven
other structures, which do not satisfy the maximum force
criteria. The remaining 4,043 structures are split into a
training set of 2,830 and a testing one of 1,213. The
structure index of all the training and testing structures
are given in the SM, Ref. [32].

We use energy, forces, and virial stress to fit the linear
model. The hyper-parameters for the final potential are
summarized in Table I. Following the analysis on the lo-
cality of Ref. [25], we have kept the same cut-off radius
as for the GAP17 model, namely, 3.7 Å. The coupling
constant cF and cW , of the loss function, are 0.5 and
0.075, respectively. Finally, the descriptors have been
calculated in their internal coordinate form and the clus-
ter expansion is truncated at the 4B order. This gives us
a potential defined over 465 features.

For the fitted model, we find that the training-set
root mean squared errors (RMSEs) are 43.9 meV/atom
for the energy, 0.781 eV/Å for the forces and 6.62 eV
for the stress. As shown in Fig. 5, reporting the par-
ity plots for the test set, the corresponding RMSEs are
46.6 meV/atom for the energy, 0.779 eV/Å for the forces
and 6.15 eV for the stress, namely, they are of the same
quality as for the training set (the parity plots for the
training set are reported in the SM, Ref. [32]). We ob-
serve that the structures, which deviate the most from
the energy-parity plot in Fig. 5(a), correspond to all
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FIG. 6. The cumulative distribution of the test-set predicted
forces. The model shows that approximately 81.97% of the
structures have an error below 1 eV/Å.

carbon in the amorphous phase. These appear to be
slightly more difficult to be dealt with by the JLP. Fur-
thermore, we wish to remark that, as can be appreciated
in Fig. 5(c), the predicted components of the virial-stress
appear to be in good agreement with the DFT ones.

In Fig. 6, we report the cumulative distribution of the
error on the forces for the test set. The curve represents
the percentage of structures, which have an error below
the one indicated. As a reference, we explicitly consider
the case of 1 eV/Å, which was taken as reference for the
GAP17 potential (see Ref. [25]). The remarkably high
value of 81.97%, compared to the 68.3% of the GAP17
potential, shows the capability of the JLP in correctly
predicting the force components.

As remarked in Section II H, the JL potential naturally
shows a repulsive behavior at a short distance, without
the inclusion of any external fast-varying function. This
is made clear in Fig. 7, where we show the C-C poten-
tial obtained by plotting Eq. (34) with the fitted 2B-
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FIG. 7. Reconstruction of the 2B potential from Eq. (34) (red
curve). The inset shows a magnification around the minimum,
while the histogram reports the pair-distance distribution of
the entire data set. Qualitatively, the potential shows a strong
repulsive behavior for small distances and a minimum, which
is consistent with the position of the first peak in the pair-
distances distribution.

expansion coefficients. From the figure one can clearly
identify the short-distance repulsive behavior of the 2B
potential, which arises naturally from the 2B expansion
coefficients. Furthermore, the potential shows a shallow
minimum close to the first peak in the radial distribu-
tion function computed over the fitting data set (blue
shadow). We stress here once again that the repulsive
behavior is completely determined by the 2B coefficients,
since all the other body-order terms are written in term
of the double-vanishing Jacobi polynomials, which van-
ish at short distances. As a consequence, Fig. 7 gives us
complete information about the repulsive behavior of the
entire potential.

We then employed the optimized JLP, to predict the
phonons dispersion curves for graphene and diamond, us-
ing the phono3py package [37, 38]. The results are re-
ported in Fig. 8, where the reference phonon dispersion
for crystalline diamond (mp-66) was obtained from ma-
terials project [39] and for graphene was obtained from
the phonon website [40]. These reference calculations
have been performed using density functional perturba-
tion theory and the abinit code [41].

As one can appreciate from the figure, the agreement
between the JLP-computed phonon bands and the DFT
reference ones is quite remarkable, for both the acous-
tic and optical branches, with no negative frequencies
present at the Γ points. The largest disagreement is
generally found for the optical branches and it is of the
order of 2 cm−1 (see, for instance, the graphene bands
at around 45 cm−1). Note that this is a particularly
challenging test, since the training data set has an en-
ergy spread of several eV/atom, while the energy dif-
ferences computed in the finite-difference scheme used
here are a few meV/atom from the equilibrium energy.
This means that our JLP is able to describe, on the
same footing, both the low-energy physics of crystalline
carbon around equilibrium, and high-energy liquid and
amorphous structures. Qualitatively, the performance
of the JLP is much closer to the one of the more re-
cent and accurate GAP20 potential, as it can be seen

in the Supplemental Material of Ref. [42]. This result is
achieved despite the fact that GAP20 was trained on an
extended version of the GAP17 data set, which specifi-
cally includes, among many others, more graphene data
points (from Ref. [43]). Here we stress again that we did
not add any features to the 465 of Table I, and we did
treat the low energy configurations on the same footing
of the high energy ones, with the weights depending only
on the number of atoms in the configuration, as clarified
at the end of the previous section. Note also that per-
fect agreement is not even expected. In fact, the DFT
data set used to train the JPL model was obtained with
the castep code [44] and the phonon via finite differ-
ences, while our DFT reference has been generated with
abinit [41] and density functional perturbation theory.
Additional differences can also be ascribed to the dif-
ferent pseudopotentials used and to details in the DFT
implementation.

IV. IMPLEMENTATION DETAILS

The JLP is implemented in a Python module, which
is currently undergoing optimization in sight of a future
release. The computationally intensive part of calculat-
ing the descriptors and the polynomial expansions is im-
plemented in Cython. The current implementation is
serial, and, for example, takes 26.8 ms to compute the
descriptors (energies, forces, and stress), for a randomly
selected periodic structure from the training set used in
the previous section. Such structure contains 64 atoms in
the unit cell, while the calculations have been performed
on an Intel i7-9600 processor system with 16GB RAM.
However, we wish to remark that, since the JL formal-
ism presented in this paper keeps the evaluation of the
descriptors for each local environment independent from
the others, future effort will point towards making these
calculations running in parallel, as they are the bottle-
neck of our current implementation. We therefore want
to stress that the calculation time provided here is not
yet informative of the actual optimal performance of the
JL descriptors, as it can still be significantly reduced.

V. CONCLUSIONS

In conclusion, we have introduced all the necessary for-
malism to develop a general cluster expansion for the
total energy, where the different body-order terms are
systematically separated. This is designed for the short-
range chemical-bond-related part of the total energy,
which is written as the sum of individual atomic con-
tributions. The core idea is that of expanding the differ-
ent body-order terms, representing the inter-atomic dis-
tances over Jacobi polynomials and the structural angles
over Legendre polynomials, which are a special case of
the Jacobi ones. This is an extremely general represen-
tation, giving us ample flexibility when constructing the
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FIG. 8. Phonon spectra for (a) graphene and (b) diamond
computed with the optimised JLP described in the text (red
lines). The reference DFT calculations (black lines) have been
obtained with density functional perturbation theory as im-
plemented in the abinit code.

potential.
An important feature is that one can impose both con-

straints and symmetries on the coefficients of the expan-
sion, a practice that allows us to implement desired be-
haviors of the potential in a natural way. For example,
one can impose the potential to vanish at a desired cut-off
distance, by simply imposing a set of conditions over the
zero-order coefficients of the Jacobi polynomial expan-
sion. In a similar way, one can constraint the expansion
of all the body-order terms larger than two to vanish at
the origin, so the short-distance behavior of the poten-
tial is solely determined by the 2B contribution. This,
in turn, can be designed to display repulsive behavior at
short distances.

Furthermore, the implementation of physical symme-
tries over the expansion allows us to drastically reduce
the number of independent coefficients to determine.

Also, the calculation of the descriptors that define the
cluster expansion, is proved to scale linearly with the
number of atoms in the cut-off volume. The demonstra-
tion of such scaling is rooted in the decomposition of the
Legendre polynomials over spherical harmonics, a fea-
ture that allows us to map our representation on known
many-body atomic bases such as the powerspectrum, the
bispectrum and those introduced in the ACE method.

The formalism introduced here is put to the test for
a quite complex dataset, namely, the carbon one used
to construct the GAP17 potential. This comprises crys-
talline graphite and diamond, as well as a multitude of
liquid and amorphous carbon structures. We then show
that a 4B relatively compact model, containing 465 fea-
tures, and trained over energies, forces and stress ten-
sor, is capable of achieving extremely competitive RM-
SEs across all quantities. Furthermore, the same poten-
tial reproduces, quite accurately, the zero-temperature
phonon band structure of both graphene and diamond,
demonstrating accuracy at both low and high energies.
We believe that the JLP introduced here adds to the
burgeoning field of MLPs, bringing a versatile tool where
symmetry and constraints can be implemented in a natu-
ral and efficient way. The ability to separate the different
body orders and the possibility to construct relatively
compact models, make the JLP a strong candidate for
the calculation of PES both in data-rich and data-poor
situations.
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Appendix A: Proof of property (10)

We derive here a series expansion for the vanishing Ja-
cobi polynomials and we will prove the property Eq. (10).
The series expansion for the Jacobi Polynomials is (Ref.
[27])

P (α,β)
n (x) =

1

2n

n∑
j=0

(
n+ α

j

)(
n+ β

n− j

)
(x− 1)n−j(x+1)j .

(A1)
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Performing the substitution x → cosx, where x = π(r −
rmin)/(rrcut − rmin), we get

P (α,β)
n (cosx) (A2)

=

n∑
j=0

(−1)n−j

(
n+ α

j

)(
n+ β

n− j

)
sin2(n−j)(x/2) cos2j(x/2) .

Evaluating the expression at x = π, which means evalu-
ating the polynomial at the cut-off, makes all the terms of
the summation vanish except for the case j = 0. There-
fore, by means of Eq. (6), we get a series expansion for
the vanishing Jacobi polynomials:

P̃ (α,β)
n (cosx) = (A3)

=

n∑
j=1

(−1)n−j

(
n+ α

j

)(
n+ β

n− j

)
sin2(n−j)(x/2) cos2j(x/2)

−(−1)n
(
n+ β

n

)
(sin2n(x/2)− 1) .

Finally, by using the identity

sin2n(x/2)− 1 = − cos2(x/2)

n∑
j=1

sin2(n−j)(x/2), (A4)

we prove the property Eq. (10),

P̃ (α,β)
n (cosx) = fc(x)Q

(α,β)
n (cos(x)) , (A5)

where

Q(α,β)
n (cos(x)) (A6)

=

n∑
j=1

[
(−1)n−j

(
n+ α

j

)(
n+ β

n− j

)
cos2(j−1)(x/2)

+(−1)n
(
n+ β

n

)]
sin2(n−j)(x/2) ,

and fc(x) = cos2(x/2) = (1 + cos(x))/2.
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