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Abstract

This thesis investigates methods used to predict long-term survival of observations (typically
survival times) beyond the time at which data follow-up is available. Current practice is
to use parametric survival models; however, different models can produce different survival
predictions, particularly if the lifetimes of many of the observations are censored.

We focus on applying novel statistical techniques to improve existing methods to predict
survival. One existing predictive approach assumes that after a certain timepoint, the
hazards are approximately constant, and a constant hazard after this timepoint is used
to estimate long-term survival. The choice of this timepoint is arbitrary and subject to
considerable uncertainty. To improve on this methodology we estimate a statistical model
known as a change-point survival model. This model allows the observed data to inform
the timepoint after which the constant hazard is appropriate. Statistical goodness of fit
measures can identify if the addition complexity associated with the inclusion of a change-
point is warranted. We also estimate other more complex change-point survival models
which allow us to model multiple treatments.

Another topic which was investigated is the incorporation of expert opinion with statistical
models. In the case of survival predictions, even if the survival is not observed at a timepoint,
there are often opinions on the plausible ranges that these values may take. In this thesis,
we investigate how these opinions can be incorporated in a robust manner, allowing for the
predicted survival to take account of the precision of the expert’s opinion and the sample
size of the observed data. We also estimate how to quantify the strength of an expert’s
opinion to allow for appropriate calibration of their opinions at the elicitation stage.

We found that the change-point model we estimated can robustly detect the timepoint at
which a constant hazard is appropriate. In several real-world applications, it provided the
closest predictions to the follow-up survival data. The proposed method for incorporation of
expert opinion allowed for the straightforward synthesis of different types of expert opinions
with data. We demonstrate by way of a simulation study that including expert opinion can
more accurate survival predictions, even when the expert’s belief is biased away from the
true estimate. By numerically quantifying the strength of expert’s beliefs, we more easily
identify situations where expert’s opinions are overconfident, allowing for re-calibration of
their beliefs.

The key methods from the thesis are implemented as open-source software packages to
allow the methods to be used in practical applications. The ideas in this thesis can also be
extended and improved upon in future research. We believe that the methods illustrated
in this work will improve the ability of decision makers to model hypotheses relating to the
prediction of long-term survival outcomes.
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Lay Abstract

In this research, we aim to improve the prediction of survival outcomes by applying a variety
of novel statistical techniques. Often, information on survival outcomes is incomplete with
observations (or patients) still alive at the end of a study. To obtain long-term survival
predictions we can use one of several statistical models. The challenge is to identify which
statistical model is most appropriate, especially since different models can provide quite
different predictions.

One technique is to assume that after a certain timepoint, the annual probability of surviving
is the same for every time interval. That is, the probability of surviving from 2 years to
3 years is the same as surviving from 5 years to 6 years. We estimate a statistical model
that allows us to determine this timepoint from the data rather than requiring it is chosen
manually. In subsequent research, we estimate more complex models which allow us to
determine the timepoint after which each treatment is equally effective.

Another topic investigated is the incorporation of expert opinion with statistical models.
Experts may have a variety of beliefs that they would like the statistical model to reflect.
We develop methods which allow for these beliefs to be incorporated with data, allowing
for a final model which is a true reflection of what the expert believes and what is observed
from the data.

By applying our methods to real world examples and computer simulations we find that
our approaches provide more robust predictions of long-term survival. We have produced
software programmes which allow for the widespread use of our methods by non-experts,
therefore, enhancing the impact of this research. This thesis poses several new avenues for
further research in the topic of predicting survival times.
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1 Introduction

The primary aim of many studies is to analyse the time until a pre-specified event of
interest occurs. In these settings, the response variable is the time until that event, which
is often called failure time, survival time, or event time. Time-to-event data are usually
not observed for all observations under study, primarily because the data from a study are
analysed at a point in time when some individuals are still alive, resulting in these
observations being censored.

In clinical trials that have time-to-event outcomes, the primary objective is to identify if
there is a statistically significant difference in the expected survival times of the treatment
arms. In other disciplines such as health economics, the primary focus is to assess the
long-term expected survival of both treatment groups so that the incremental health
outcome of an intervention can be calculated. Except in situations where we are willing to
assume that the long-term difference in health outcomes is similar to the differences in
survival observed in the trial (see Monnickendam et al. (2019)), we are required to assume
a parametric model for the data generating process. These parametric models provide
survival functions to predict (or extrapolate) the long-term survival and calculate the
average time survived.

Any valid probability distribution that has a support from [0,∞) can in principle be used
for this purpose, and each distribution implies a particular functional form of the hazard
function. From the exponential distribution, which assumes a constant hazard, to the
four-parameter generalized-F distribution which can accommodate bathtub type hazards,
the choice of model will determine the hazard function and consequently the expected
survival. Differences in long-term predictions can be particularly pronounced when a high
proportion of survival times are censored and may produce clinically implausible survival
estimates. This issue has been discussed by Davies et al. (2013) among others, and
several solutions have been proposed, including model averaging (Jackson et al., 2010),
using external data (Guyot et al., 2017), and expert opinion (Cope et al., 2019). In this
thesis, the primary focus is the prediction of long-term survival using novel statistical
methods in the decision modelling of health interventions, which we will refer to as Health
Technology Assessment (HTA). It should be noted that the methods described in this
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thesis could also be considered in the field of reliability analysis and, in particular, the work
on expert opinion can be applied to almost any area employing statistical models.

1.1 Overview and Motivation

Various stakeholders such as clinicians, patient groups and pharmaceutical companies, are
interested in the long-term survival associated with various treatment options, however,
this is arguably most important for decision makers who decide which treatments should
be made available through publicly funded health services.

Consequently, decision makers such as NICE provide guidelines for HTA in general and
more specifically regarding the extrapolation of long-term survival outcomes. Other
guidelines are provided by special interest groups such as ISPOR (The Professional
Society for Health Economics and Outcomes Research) and in publications in journals
with a focus on HTA. The primary guidance documents for extrapolation of long-term
survival functions are Latimer (2013) and more recent work by Rutherford et al. (2020)
along with an alternative approach considered by Bagust and Beale (2014). Other papers
expand upon topics covered in these documents and a more thorough overview is provided
in Chapter 2. In the subsequent section we highlight approaches detailed in these
documents that can be enhanced using modern statistical techniques.

The first topic which is researched in this thesis relates to estimating change-point models
for the hazard function, a particular type of parametric survival model. These models are
investigated as a potential alternative to the piecewise models that are sometimes used
when extrapolating survival outcomes. Piecewise models are discussed by Rutherford
et al. (2020) and defined as having different survival models for each time period, which
are typically implemented with an arbitrary number of change-points and without robust
justification for the change-point locations. Another potential use case of change-point
models is in improving an approach considered by Bagust and Beale (2014), which
describes visually inspecting the log-cumulative hazard plot to identify a section of local
linearity. This interval is then used to estimate a constant hazard (exponential) model
which is used for long-term extrapolation. Both these approaches could be more
appropriately estimated using change-point models which estimate both the number and
change-point locations directly from the data, allowing full uncertainty in these
parameters to be considered rather than fixing them at a subjective location. Estimation
of parametric change-point models is discussed in Chapters 3 & 4, with other more
complex parametric models considered in Chapter 5.

Another topic which is mentioned in Rutherford et al. (2020) as a research objective is the
use of expert opinion to inform extrapolation. This topic forms the second part of the
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thesis. A general method for including expert opinion on observable outcomes in
statistical analyses is developed in Chapter 6, and in Chapter 7 a specific application to
survival extrapolation is considered.

Chapter 8 provides an overview of the software packages that have been developed to
implement the methods described in this thesis.

Target audience:

The intended audience for this thesis are health economic modellers, who typically
possess some level of statistical training. Specifically, we focus on those whose work
involves modelling time-to-event outcomes. Throughout the thesis, our goal is to justify
why we employ various types of statistical software and overall statistical methodology.
This includes discussing choices such as priors and goodness-of-fit statistics. By providing
this rationale, practitioners using the methods developed in this thesis will be equipped
with the necessary justification to support their modelling decisions when communicating
with decision makers and other stakeholders.

1.2 Current problems and scope of present work

Piecewise models are typically employed when there is an apparent lack of fit of survival
models to the observed survival data. By partitioning time into a number of intervals and
fitting a survival model (including non-parametric estimators) to each of these intervals, a
good fit to the observed survival data can be obtained. Manually selecting the locations
for these intervals is subjective and artificially reduces the uncertainty associated with the
extrapolated survival. By considering fully parametric change-point survival models whose
locations are estimated from the data (and potentially informed by subjective opinion)
both of the above issues can be addressed. Currently there are few published software
programs to estimate this class of problems, and fewer still fully propagate the uncertainty
associated with the extrapolated survival as they consider a frequentist framework.
Change-point models have the advantage that they can be used to model biologically
plausible hypotheses, such as treatment delay or waning which is particularly important
when jointly modelling the survival of a treatment and comparator.

The goal of Part II of the thesis is to achieve a method for estimating these models that
could meet the following criteria:

1. Data driven selection of the change-points for survival models

2. Fully propagate the uncertainty associated with the model parameters to the
extrapolated survival

3. Compare change-point models with a wide class of parametric survival models
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which are typically considered in survival extrapolation

4. Develop Software programs which easily output the required outputs for HTA
decision modelling (e.g. extrapolated survival)

Another topic which is researched in this thesis is that of expert opinion. Given the
intrinsic uncertainty in predicting long-term survival outcomes when expert clinical opinion
is available, it is important to use this information in the modelling process. Such opinions
are often not integrated in a formal way, for example, survival models are typically
estimated using maximum likelihood (i.e., based on the data alone) before choosing the
parametric model for which expected survival appears to be compatible with the expert
opinion. This approach has a number of weaknesses. Primarily, it is difficult to identify
the most appropriate model if several models appear consistent with the expert opinion.
In the opposite scenario, when none of the models meet the expert’s criteria, the best
choice of model is again unclear. It would be preferable to include a measure of statistical
fit that takes account of the degree of agreement with the expert opinion as well as the
observed data, rather than making a decision based solely on whether the predicted
quantity from the model is within the expert’s plausible range. Existing methods which
incorporate expert opinion with survival models (and statistical models more generally)
typically consider only one class of statistical model and one type of expert opinion, rather
than a general approach which could easily be applied to a variety of opinion and model
types.

Regarding Part III of the thesis we aim to provide a framework for incorporating expert
opinion into statistical analysis which is:

1. Widely applicable in terms of the expert opinion and statistical models which can be
considered.

2. Implementable with standard commonly used statistical tools without much
additional programming.

3. Compatible with the output of commonly used methods for eliciting expert opinion
(i.e. SHELF).

The attributes of the method described in Part III align with Mikkola et al. (2023), who
specify the criteria for improved techniques relating to incorporating expert opinion.

We connect the findings from Part II to those in Part III, illustrating this with an example
that incorporates expert opinion using a change-point survival model.

An overarching objective of this thesis was to make the key contributions available as
R-packages which we hope will aid implementation of the methods and allow for further
research and improvements of the methods. Chapter 8 is the sole chapter in Part IV and
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describes in detail the two R-packages, PiecewiseChangepoint and expertsurv that
have been written to implement the piecewise exponential change-point model and
incorporate expert opinion with parametric survival models respectively.

1.3 Summary of contributions

In this thesis we propose to estimate a wide variety of change-point survival models using
Bayesian framework which allows for estimation and propagation of change-point
uncertainty. In particular we consider a change-point model known as the piecewise
exponential survival model which we show is an appropriate method to estimate the
timepoint after which constant hazards may be considered approximately constant. The
identification of this timepoint is a key consideration in the method to extrapolate survival
outcomes presented by Bagust and Beale (2014).

We then estimate change-point models for a variety of survival models allowing for the
introduction of covariates, treatment delay, loss of treatment effect and treatment waning.
We apply this to real world examples showing how these change-point models can
adequately model the survival function and produce sensible extrapolations, in contrast to
other complex parametric models which may fail to do so.

In the second part of the thesis, we describe a general solution for incorporating expert
opinion within statistical models. The focus is on expert opinion on the observable space
(i.e. quantities such as survival probabilities) rather than the parameter space (i.e.
regression coefficients). We introduce the general framework on how to incorporate such
opinions into statistical models, providing examples for important classes of statistical
models. We then consider a worked example specific to the extrapolation of survival
outcomes.

The work carried out in this thesis has been published in the following articles, R-packages
and conferences listed below:

1. Cooney P, White A. Direct Incorporation of Expert Opinion into Parametric Survival
Models to Inform Survival Extrapolation. Medical Decision Making.
2023;43(3):325-336.

2. Cooney P, White A. Extending beyond Bagust and Beale: Fully Parametric
Piecewise Exponential Models for Extrapolation of Survival Outcomes in Health
Technology Assessment. Value in Health, In Press: available online.

3. Cooney P, White A. Incorporating Expert Opinion on Observable Quantities into
Statistical Models - A General Framework. Under Review in Bayesian Analysis.
Submitted May 2023.
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4. Cooney P, White A (2023). expertsurv: Incorporate Expert Opinion with Parametric
Survival Models. R package version 1.1.0. Available on Comprehensive R Archive
Network (CRAN) [link].

5. Cooney P, White A (2023). PiecewiseChangepoint: Bayesian Change-point
Analysis. Available on GitHub.[link]

6. Cooney P (2023), Expertsurv: A Shiny Application for Direct Incorporation of
Expert Opinion into Survival Models. R in HTA conference. [link]

7. Cooney P (2020), Incorporating clinical opinion into survival extrapolations with
visualisations through RShiny. R in HTA conference. [link]

The contributions of this thesis have relevance for a variety of research areas. For HTA of
treatments with survival outcomes the thesis uses change-point models to investigate
hypotheses, primarily related to constant hazard extrapolation but also more complex
phenomenon when jointly modelling the survival of treatment and comparator arms. The
work including expert opinion with survival models helps integrate both data and
subjective opinions in a principled manner. More generally, the contributions of these
thesis are of relevance for other research areas such as reliability analysis and even
logistical planning purposes of clinical trials (Fang and Su, 2011). In terms of (particularly
Bayesian) statistics, the work in this thesis provides a general framework for incorporating
expert opinion with statistical models. This approach while straightforward to implement
has been demonstrated on a number of important classes of statistical models. This thesis
also presents a novel approach to estimating piecewise exponential models, specifically
allowing the number of change-points to be treated as a parameter to be estimated. We
also estimate more complex change-point survival models using modern Bayesian software
programs. Using the code we have written for these models allows future users to easily
extend the methods and avoid focusing on computational concerns relating to estimation
of the parameters. The analysis conducted during this thesis can be replicated using R
code made freely available at Github. Furthermore the fully functioning R-packages
(PiecewiseChangepoint and expertsurv) allow for application of the methods to
real-world problems. This include a web application which allows users with very limited
programming abilities to conduct elicitation of expert beliefs, incorporate these beliefs
with observed trial data and subsequently produce reproducible reports.

1.4 Outline of Thesis

The work carried out in this thesis is structured in eight chapters across three parts. Part
I contains the current chapter, while Chapter 2 introduces the relevant concepts of health
technology assessment and survival analysis, summarising approaches to extrapolation of
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survival outcomes. A discussion about the challenges of predicting long-term survival and
limitations of existing methods is provided. The subsequent five chapters contain the
contributions of this thesis (Chapter 3 to Chapter 8). They are classified in three
parts.

Part II includes Chapters 3 to 5. Here, we describe Bayesian methods to estimate
change-point survival models.

In Chapter 3 we consider with the constant hazard change-point model reviewing previous
literature and motivating the advantages of Bayesian methods for this class of problems.
We develop two Bayesian approaches to estimate both the number and change-point
locations.

In Chapter 4 we consider the application of the piecewise change-point model developed
in Chapter 3 to estimate the time at which a constant hazard appears plausible. We
compare those estimates to those obtained when using an alternative methodology
described by Bagust and Beale (2014).

In Chapter 5 we describe more complex change-point models which can be estimated
using modern Bayesian programs. We apply these change-point models to survival data
exhibiting characteristics which alternative survival models fail to model correctly,
specifically changes in the relative treatment effects.

Part III contains Chapters 6 & 7 and describes the research on including expert opinion
with statistical models. Chapter 6 describes the general framework applied to a variety of
statistical problems and discusses considerations around estimating the relative strength of
expert opinion compared with observed data.

Chapter 7 describes the inclusion of expert opinion with a variety of survival models, over
a number of timepoints, considering how to resolve/combine the opinion of multiple
experts, while also assessing the informativeness of an expert’s opinion.

Part IV contains one chapter (Chapter 8) and presents the R-packages used to implement
the methods described in Parts II and III, primarily those described in Chapters 3 and
7.

Part V contains the conclusions of this thesis and Part VI.
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2 Overview of Survival Analysis
relevant to HTA

In this chapter we present an overview of health technology assessment and of survival
analysis and its applications to health technology assessment. For those readers who are
unfamiliar with HTA, an overview is provided in Section 2.1, explaining why long-term
predictions of survival are required.

Subsequently, in Section 2.2 we first define the fundamental concepts of survival analysis.
Following this, we present the rationale for and a brief review of the different approaches
for extrapolating survival outcomes beyond observed data. In particular we focus on the
approaches which are improved upon in this thesis.

2.1 Overview of Health Technology Assessment

The primary objective of this thesis is to investigate statistical techniques to inform
extrapolation of time-to-event data from clinical trials for the purposes of economic
evaluation of therapies. Therefore, it is useful to provide a brief overview of economic
evaluation of medical interventions.

In many countries, health is primarily or substantially funded by the government. The
basic idea of economic evaluation is to make a value judgement on a project (e.g. making
a new pharmaceutical therapy publicly available) involving public expenditure, given a
finite budget and other potential investment choices. Other potential investment choices
could be other medicinal therapies or more broadly additional health care staff or
infrastructure.

Economic evaluation can be defined as a comparison of alternative options in terms of
their costs and consequences (Drummond et al., 2015). Costs can be thought of as the
value of the resources involved in providing a treatment or intervention; this would
invariably include health care resources, and might be extended to include social care
resources, those provided by other agencies, and possibly the time and other costs
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incurred by patients and their families or other informal carers. Consequences can be
thought of as the health effects of the intervention. Two of the primary methods of
economic evaluation are discussed in the subsequent sections.

2.1.1 Cost-effectiveness analysis (CEA)

In cost-effectiveness analysis we first calculate the costs and effects of an intervention and
one or more alternatives, then calculate the differences in cost and differences in effect,
and finally present these differences in the form of a ratio, i.e. the cost per unit of health
outcome or effect (Weinstein and Stason, 1977). Because the focus is on differences
between two (or more) options or treatments, analysts typically refer to incremental costs,
incremental effects, and the incremental cost-effectiveness ratio (ICER). Thus, if we have
two options a and b, we calculate their respective costs and effects, then calculate the
difference in costs and difference in effects, and then calculate the ICER as the difference
in costs divided by the difference in effects:

ICER =
Costa − Costb

Effecta − Effectb
=

∆Cost

∆Effect

The effects of each intervention can be calculated using many different types of
measurement unit. Two diagnostic tests could be compared in terms of the cost per case
detected, two blood pressure interventions by the cost per 1 mmHg reduction in systolic
blood pressure, and two vaccination options by the cost per case prevented. However,
decision-makers will typically be interested in resource allocation decisions across different
areas of health care: for example, whether to spend more on a new vaccination
programme or on a new blood pressure treatment. Consequently a measure of outcome
that can be used across different areas is particularly useful, and the measure that has so
far gained widest use is the quality-adjusted life-year (QALY).

2.1.2 Cost-benefit analysis (CBA)

As stated in the previous paragraph, a key distinction between CEA and CBA is the
QALY. The QALY attempts to capture in one metric the two most important features of
a health intervention: its effect on survival measured in terms of life-years, and its effect
on quality of life.

The other key distinction is the concept of monetary value of health. CEA places no
monetary value on the health outcomes it is comparing. It does not measure or attempt
to measure the underlying worth or value to society of gaining additional health benefits,
but simply indicates which options will permit more health benefits to be gained than
others with the same resources.
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In contrast, CBA attempts to place some monetary valuation on health outcomes as well
as on health care resources. If a new surgical procedure reduces operative mortality by
5%, a cost-benefit approach would try to estimate whether each death averted had a
value of €5000 or €500,000 or €5 million, and then assess whether the monetary value
of the benefits was greater or less than the costs of obtaining these benefits.

Typically in Ireland figures of €20,000 and €45,000 per QALY are defined as the
willingess to pay threshold, i.e. how much the decision-maker is willing to spend to get an
extra QALY. Although budget constraints are an important consideration, Irish decision
makers will typically fund new interventions that fall below this €45,000 per QALY
threshold (Health Information and Quality Authority, 2020).

CBA allows for allocative efficiency, and (in theory) prioritize the reimbursement of
different therapies across disease areas in terms of their cost-benefit ratio to make sure
that the available resource are directed towards the therapies offering the largest health
improvements.

2.1.3 Cost-effectiveness plane

When making assessments about CBA (which in a slight abuse of notation is often
referred to as cost-effectiveness), a new therapy will be compared against the current
standard of care. This can be represented graphically in the form of the cost-effectiveness
plane shown in Figure 2.1.
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Figure 2.1: Cost-effectiveness plane illustrating the quadrants and their interpretations.
Reproduced from Briggs and Tambour (1998).

The most common situations arise in the north-east and south-west quadrants, where the
new intervention is more effective but also more costly (the north-east quadrant, quadrant
1), or is less effective but also less costly (the south-west quadrant, or quadrant 3). In
these areas of the figure, there is a trade-off between effect and cost: additional health
benefit can be obtained but at higher cost (north-east), or savings can be made but only
by surrendering some health benefit (south-west). In general if the ICER result is below
the cost-effectiveness threshold it will be deemed cost-effective.

2.1.4 Valuing Health - QALY

QALYs are a measure of outcome which typically assigns to each period of time a weight
corresponding to the health-related quality of life during that period. Normally the weight
1 corresponds to full health and the weight 0 corresponds to a health state equivalent to
dead. Figure 2.2 provides a graphical representation of the QALY approach, in which the
life courses of two hypothetical individuals are plotted, with quality of life on the y-axis
and time or survival on the x-axis. In this figure, both patients start with similar level of
quality of life of 0.8 on a 0–1 scale. Over a period of time the patient not on the
intervention has a series of complications which reduces her quality of life with the final
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one being fatal. In contrast the second patient (on the intervention) experiences
complications later than the first patient, including the fatal complication.

Figure 2.2: Health profile of two individuals in quality and quantity of life dimensions.
Reproduced from Drummond et al. (2015).

As discussed by Drummond et al. (2015) it can be seen that it would be possible to
measure the difference between these two hypothetical patients in several different ways:
by time to first event or complication-free time (a common measure in clinical trials), by
time to death, or by number of complications. In this instance any of these would show
some benefit to the patient receiving the intervention.

However, all these are partial measures of the differences observed, and measuring the
effect of the intervention using any single one of these metrics could be seriously
misleading. In contrast, the area under each of the two curves or profiles captures survival
as well as the timing and number of non-fatal events and their health impact, and
therefore the difference represented by the shaded area is a measure of QALYs gained.
Parallels can be made to clinical trials in oncology, where, patients who are progression
free have a certain level of quality of life, and which typically is reduced when they
progress. Hence it is important to not only be able to estimate expected overall survival,
but also expected progression free survival (or more generally any state of health that is
expected to be meaningful different in terms of the QALY weight attached to it).

2.1.5 Cost effectiveness models

In order to use the information from a clinical to obtain cost-effectiveness results (i.e.
ICER), a decision-analytic model (typically referred to as a cost-effectiveness model) is
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typically used. It has been noted that relying on a randomized trial as the single vehicle
for economic evaluation has a number of limitations (Sculpher et al., 2006). As a result,
economic evaluation for decision-making will usually need to draw on evidence from a
range of sources. These could include clinical, resource use, and outcome data collected
alongside randomized trials, but are also likely to include evidence from other types of
studies such as cohort studies and surveys. A decision-analytic model provides a means of
bringing together this full range of evidence and directing it at a specific decision problem
being addressed by a health system at a given point in time and in a particular
jurisdiction.

As discussed by Drummond et al. (2015), cost-effectiveness (CE) models fulfill six main
requirements of economic evaluation:

• Comparing all treatment options

• Reflecting all relevant evidence

• Linking intermediate to final endpoints

• Generalizing results to the decision-making context

• Assessment of heterogeneity

and most importantly in the context of this PhD:

• Extrapolating over the appropriate time horizon of the evaluation

In summary, the cost-effectiveness model is the vehicle by which clinical trial data is
combined with other information external to the trial, to obtain a cost-effectiveness result
which is relevant to the jurisdiction of interest.

2.1.6 Expected Health Benefits and Costs

The expected values of the outcomes from a decision model represents the best estimate
of the endpoints of interest for decision-making (Drummond et al., 2015). It is the mean
cost and effect, when multiplied by the number of patients treated, gives the total cost
and overall health gain for that patient group and therefore, the ICER is based on the
Expected (or mean) Cost and QALYs.

This provides the primary motivation for this PhD research. As discussed in Section 2.2
and presented in Equation 2.2, calculation of the mean survival (to which we ascribe
QALY weights) requires us to define the survival function across the time horizon of
interest. Because of censoring the full survival distribution is typically not available when
making an assessment of the cost-effectiveness of a therapy. Therefore, some type of
extrapolation of the survival function is required in order to obtain the expected benefits
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of a treatment. Additionally, because time to treatment discontinuation may also be
censored, extrapolation of this function is also required to obtain the expected costs of
the intervention.

2.2 Fundamentals of Survival Analysis

This section can be omitted by those familiar with survival analysis.

2.2.1 Study time and patient time

Time-to-event data has two features which require specific statistical methods and the
first one is that survival data are generally not symmetrically distributed. Typically, a
histogram constructed from the survival times of a group of similar individuals will tend to
be positively skewed, that is, the histogram will have a longer tail to the right of the
interval that contains the largest number of observations. Secondly the time-to-event
data are typically not observed for all observations under study, and the time-to-events for
these observations are censored. Often this occurs because the data from a study are to
be analysed at a point in time when some individuals are still alive. Alternatively, the
survival status of an individual at the time of the analysis might not be known because
that individual has been lost to follow-up.

In a typical study, patients are not all recruited at exactly the same time but accrue over a
period of months or even years. After recruitment, patients are followed up until they die,
or until a point in calendar time that marks the end of the study, when the data are
analysed. Although the actual survival times will be observed for a number of patients,
after recruitment some patients may be lost to follow-up, while others will still be alive at
the end of the study.

The calendar time period in which an individual is in the study is known as the study
time. The study time for eight individuals in a clinical trial is illustrated diagrammatically
in Figure 2.3, in which the time of entry to the study is represented by a (•).

This figure shows that individuals 1, 4, 5 and 8 die (D) during the course of the study,
individuals 2 and 7 are lost to follow-up (L), and individuals 3 and 6 are still alive (A) at
the end of the observation period. As far as each patient is concerned, the trial begins at
some time t0. The corresponding survival times for the eight individuals depicted in Figure
2.3 are shown in order in Figure 2.4. The period of time that a patient spends in the
study, measured from that patient’s time origin, is often referred to as patient time. The
period of time from the time origin to the death of a patient (D) is then the survival time,
and this is recorded for individuals 1, 4, 5 and 8. The survival times of the remaining
individuals are right-censored (C).
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Figure 2.3: Study time for eight patients in a survival study. Reproduced from Collett
(2015).

Figure 2.4: Patient time for eight patients in a survival study. Reproduced from Collett
(2015).

2.2.2 Survival function

Let T be the random variable for a person’s survival time. Since T denotes time, its
possible values include all non-negative numbers; that is, T can be any number greater
than zero. We let ν denote a {0, 1} random variable indicating either failure or
censorship. That is, ν = 1 for failure if the event occurs during the study period, or ν = 0
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if the survival time is censored. Note that if a person does not fail, that is, does not get
the event during the study period, censorship is the only remaining possibility for that
person’s survival time. That is, ν = 0 if and only if one of the following happens: a
person survives until the study ends, a person is lost to follow-up, or a person withdraws
during the study period.

We assume that T has a probability density function (p.d.f.) f (t) and cumulative
distribution function (c.d.f.) F (t) = Pr(T ≤ t), given the probability that the event has
occurred by duration t. The survival function S(t) gives the probability that a person
survives longer than some specified time t: that is, S(t) gives the probability that the
random variable T exceeds the specified time t (i.e. the complement of the c.d.f
function).

S(t) = Pr(T > t) = 1− F (t) =

∫ ∞

t

f (x) dx (2.1)

Theoretically, as t ranges from 0 up to ∞, the survival function can be graphed as a
smooth curve. As illustrated by the graph, where t identifies the x-axis, all survival
functions have the following characteristics (illustrated in Figure 2.5):

1. they are non-increasing; that is, they head downward as t increases;

2. at time t = 0, S(t) = S(0) = 1; that is, at the start of the study, since no one has
gotten the event yet, the probability of surviving past time 0 is one;

3. at time t = ∞ , S(t) = S(∞) = 0; that is, theoretically, if the study period
increased without limit, eventually nobody would survive, so the survival function
must eventually fall to zero.
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Figure 2.5: Theoretical properties of the survival function. Reproduced from Klienbaum
and Klein (2016).

Another useful statistic that can be derived from Survival function is the mean µ or
expected value of T . By definition, the expectation of a random variable is calculated by
multiplying t by the density f (t) and integrating, so

µ =

∫ ∞

0

tf (t)dt.

Integrating by parts, it can be shown that (for any distribution) that

µ =

∫ ∞

0

S(t)dt. (2.2)

2.2.3 Observed Survival function

When using statistical models to describe survival data we usually consider the probability
of survival vs time to be a smooth continuous function (as in Figure 2.5). In practice,
when using actual data, we usually obtain graphs that are step functions, as illustrated in
Figure 2.6, rather than smooth functions. Moreover, because the study period is never
infinite in length and there may be competing risks for failure, it is possible that not
everyone studied gets the event. The estimated survival function, denoted by a Ŝ(t) in
the graph, thus may not go all the way down to zero at the end of the study.
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Figure 2.6: Real life survival function. Reproduced from Klienbaum and Klein (2016).

2.2.4 Hazard and Cumulative hazard function

The hazard function, denoted by h(t), is given by the formula: h(t) equals the limit, as t
approaches zero, of a probability statement about survival, divided by dt, where dt

denotes a small interval of time:

h(t) = lim
dt→ 0

P(t ≤ T < t + dt|T ≥ t)

dt
. (2.3)

The hazard function h(t) gives the instantaneous potential per unit time for the event to
occur, given that the individual has survived up to time t.

The conditional probability in the numerator may be written as the ratio of the joint
probability that T is in the interval [t, t + dt) and T ≥ t (which is, of course, the same
as the probability that t is in the interval), to the probability of the condition T ≥ t. The
former may be written as f (t)dt for small dt, while the latter is S(t) by definition.
Dividing by dt and passing to the limit gives the useful result:

h(t) =
f (t)

S(t)
. (2.4)

From the definition of S(t) in Equation 2.1 it can be seen that −f (t) is the derivative of
S(t). Noting that

∫
1
x
dx = log |x |+ C allows us to rewrite the Equation 2.4 as:

h(t) = − d

dt
log S(t). (2.5)
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With some further manipulation of Equation 2.5 the following equation for S(t) is
obtained:

S(t) = exp{−
∫ t

0

h(x)dx}. (2.6)

Another function that is closely related to the hazard and survival function is the
cumulative hazard H(t), which can be considered the sum of the risks you face going
from duration 0 to t:

H(t) =

∫ t

0

h(x)dx = − log S(t). (2.7)

An important point to note is that throughout our analysis we assume non-informative
censoring. This means that the actual survival time of an individual, t, does not depend
on any mechanism that causes that individual’s survival time to be censored at time c ,
where c < t. Statistical methods in survival analysis typically make this assumption by
default, because analogous to not missing at random (MNAR) longitudinal data, little
meaningful analysis can be performed with the introduction of external
assumptions/information.

2.3 Parametric Analysis of Right-censored data

In time-to-event analysis we typically deal with right-censored data. Supposing there are n

subjects under study, and that associated with the i th individual is a survival time ti . The
ti ’s are assumed to be independent and identically distributed (i.i.d) with density f (t) and
survival function S(t). The survival time ti can be censored which we represent by an
indicator function νi which

νi =

1 if event

0 if censored.
(2.8)

Considering a parametric survival model, let θ = (θ1, ... , θp)
′ be a p-dimensional vector of

parameters, the likelihood function the survival model given the observed data D, is

L(θ|D) =
∏n

i=1 f (ti)
νiS(ti)

1−νi =
∏n

i=1 h(ti)
νiS(ti).

Because we require predictions for the survival beyond the observed data we require
models in which the distribution of the outcome (i.e., the time-to-event) is specified in
terms of parameters. Consequently partial likelihood approaches such as the
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Cox-proportional hazard model cannot be used as they treat the baseline hazard as a
nuisance parameter (See Section 2.4).

In HTA the parametric models which are typically considered are presented in Table D.6.
Covariates (typically treatment status) can be included on any of the parameters;
however, they are almost exclusively placed on the location parameter. Introducing
covariates in this fashion produces parametric models which can be acceleration failure
time (AFT) models or proportional hazard models (PH), or neither if placed on the
ancillary parameters. The underlying assumption for AFT models is that the effect of
covariates are multiplicative (proportional) with respect to survival time, whereas for PH
models the underlying assumption is that the effect of covariates is multiplicative with
respect to the hazard. For example a Weibull model can be either an AFT or PH model,
however, the parameterization is different (see Table D.6).

2.3.1 Frequentist Approach to estimation

In a frequentist approach we seek to maximize the likelihood of the data given the model
parameters of dimension m. The parameters which achieve this maximum are denoted as
θ̂ = argmax L(θ|D). In the presence of a sufficiently large sample size n the standard
approximate 1− α confidence region for θ is given by
A = {θ : n(θ̂n − θ)tΣ̂−1

n (θ̂n − θ) ≤ q1−α}, where q1−α is α quantile of the chi-squared
distribution with m degrees of freedom and Σ̂n is a consistent estimator for the
asymptotic variance which is usually the variance-covariance at θ̂.

A commonly used package implementing a wide range of parametric survival models is the
flexsurv package (Jackson, 2016). In this package the maximum likelihood of the
parameters and associated Hessian matrix (which is then converted to the
variance-covariance matrix) are estimated using the optim function from the stats

package (R Core Team, 2021). The default optimization procedure is “BFGS” method,
however, other approaches can also be considered (Nocedal and Wright, 2006).
Parameter uncertainty for functions of the parameters such as survival and hazard
functions are estimated using simulation-based approximations (Mandel, 2013).

2.3.2 Bayesian Approach to estimation

In a Bayesian analysis we assume a prior probability distribution for θ denoted by p(θ).
Knowledge before observing the data as prior information, and to that obtaining after
observing the data as posterior information. The posterior distribution is then
π(θ|D) ∝ L(θ|D)p(θ). Central to the Bayesian philosophy is that all unknown quantities
are described probabilistically, even before the data has been observed. In frequentist
statistics, parameters cannot be random variables, and it is not legitimate to make
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probability statements about them. The prior and posterior distributions gives the full
probability distribution of the parameters before and after observing the data, and
statements such as “the probability that the parameter is within the interval (x , y) is z%”
are valid in contrast to the frequentist method. It is the treatment of unknown parameters
as random variables or fixed values that is defining characteristic between Bayesian and
frequentist inference, rather than the prior distribution which was typically the point of
criticism of Bayesian methods (O’Hagan, 2008).

Much of the controversy about regarding to Bayesian inference has centered on the
subjectivity of the prior distribution and that different priors would result in different
posteriors. A counter argument is that in every field of science and research there are
differences of opinion over topics of current interest. Through use of priors the Bayesian
approach allows us to formally include these opinions. These opinions can be on the
parameters of a parametric model or on potentially observable quantities that arise from a
model. For example, rather than eliciting a distribution for a binomial probability
parameter directly “parameter space”, an expert may instead be asked to consider
hypothetical observations, which are then used to infer a subjective probability distribution
for the probability parameter “observable space”. It should be noted that although expert
opinion is more commonly associated with the Bayesian paradigm it is also possible to
include certain beliefs under a frequentist approach primarily through the use of
psuedo-observations.

Bayesian approaches are more computationally intensive than frequentist approaches,
however, there are a number of different modern software programs available to reliably
estimate the posterior distribution. One available R-package with a focus on Bayesian
survival analysis is survHE (Baio, 2020) which can fit many of the survival models
considered in the flexsurv package.

For the models estimated using the Bayesian approaches we consider a variety of different
approaches. In Chapter 3 we use Gibbs sampling to find the parameters of a piecewise
exponential model assuming a fixed number of change-points. We then generalize this
model to include a Metropolis-Hasting step when moving between models with different
change-point numbers. In Chapter 8 we describe how we optimized estimation of these
models using bespoke code written in the C++ programming language.

In later chapters we estimate Bayesian models using statistical programs such as JAGS
and Stan (Plummer, 2003; Stan Development Team, 2020). This allows us to construct
the model with purpose built robust, validated software rather than writing a bespoke
sampling scheme. Models in JAGS are primarily estimated using slice sampling (Neal,
2003) (except when conjugate distributions are available) and models in Stan use
Hamiltonian Monte-Carlo (HMC).

24



Computational methods for Bayesian analysis is a deep topic of research and outside the
scope of this thesis. Accessible explanations of Random-Walk Metropolis-Hasting, Gibbs
sampling, slice sampling and HMC are provided by Bishop (2006). These methods and
other modern advancements of these techniques are documented in detail by Brooks et al.
(2011).

Typically, there is a trade-off between the computational complexity of the method and
efficiency (per step/simulation) at which the sampler explores the posterior distribution,
however, this is situation specific. Generally speaking, Random-Walk Metropolis is the
most general approach, however, the choice of step size for the proposed parameters has
substantial impact on the acceptance rate and correlation of the accepted parameters.
Gibbs sampling is a special case of the Metropolis-Hasting algorithm in which every
proposed move is accepted as sampling is done from a conjugate distribution.

Slice sampling is related to Gibbs sampling (as each move is accepted) which does not
require conjugacy but requires a number of calculations to define the “slice” from which
the parameters are sampled from.

HMC uses information about the gradient of the log probability distribution as well as
about the distribution itself to produce more efficient sampling than that typically achieved
by Random-Walk Metropolis-Hastings and scales well to high dimensional problems.
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Bayesian Software:

In this thesis, two different Bayesian computational software programs are used.
The primary software used is Stan, which uses Hamiltonian Monte Carlo (HMC) for
computing the posterior distribution. Generally speaking, Stan has been used to estimate
a wide variety of statistical models, including models with relatively high numbers of
parameters. Estimating the posterior using HMC does come at the cost of increased
computation time per sample from the posterior. While HMC can compute the posterior
distributions for a wide range of statistical models, there are certain models that we
could not program in Stan. Specifically, change-point models with discontinuities in the
likelihood result in HMC failing to explore the posterior.
In these instances, we considered an alternative software known as JAGS. The JAGS
program primarily uses slice sampling, but when the appropriate likelihood/prior
combination is used, the program will use Gibbs sampling.
Although the estimation techniques are different the workflow for each software program
is similar. A model script is defined by the user, in which the user expresses the joint
relationship between all known (often data) and unknown quantities (parameters) in a
model through a series of simple local relationships. Doing so can be more straightforward
that directly specifying the complete likelihood function, although this is also a possibility
(at least indirectly). The model script and data are then supplied as arguments to an
R function which compiles the model in C++ for computational efficiency. Statistical
inference is conducted and samples from the posterior distribution are returned. Although
there are differences in model syntax, changing an existing model file so that it can be
estimated by another program is often straightforward.
The adaptability of these programs is evident in how they handle the methodology for
integrating expert opinion described in this thesis. Although this approach necessitates
specifying a loss function, it can be seamlessly applied in both Stan and JAGS with minimal
adjustments to the standard model files.

2.3.3 Goodness of Fit statistics for Frequentist and Bayesian

Models

There are a variety of criteria which can be used to assess the relative fit of alternative
models to the data. Generally, they make a trade off regarding how well the model fits the
data along with a penalty term accounting for the number of parameters used to estimate
the model.

Under the frequentist approach, commonly used criteria are the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) (Akaike, 1998; Schwarz,
1978). AIC includes the log-likelihood at the MLE (log L(θ̂|D)) multiplied by -2 with the
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penalty term of 2 times the number of parameters:

AIC = −2 log L(θ̂|D) + 2p.

BIC is similarity defined expect for the penalty term for which n is the number of
observations:

BIC = −2 log L(θ̂|D) + log(n)p.

The interpretation of n is unclear as censored events contribute “less” to the likelihood i.e.
only the survival function and not the hazard function. Although Volinsky and Raftery
(2000) show that the number of uncensored events is a more appropriate choice (at least
for the exponential model), using the BIC function from the stats package (R Core
Team, 2021) will include censored events in the calculation of n.

For Bayesian analysis one common criterion is Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). DIC uses the value of the log-likelihood at the posterior mean
of the parameters log L(θ̄|D), adjusting for the effective number of parameters pD :

DIC = −2 log L(θ̄|D) + 2pD .

The number of parameters pD is defined as two times the log-likelihood at the posterior
mean of the parameters minus the average log-likelihood over the posterior distribution.
Therefore, pD is calculated using simulations θ{s}, s = 1, ... , S as:
pD = 2(log L(θ̄|D)− 1

S

∑S
s=1 log L(θ

{s}|D)). DIC can be seen as a generalization of
Akaike’s criterion: for models with weak prior information, θ̄ ≈ θ̂, and hence pD ≈ p and
DIC ≈ AIC. DIC has two primary limitations, namely, that it is not invariant to
parameterization of the model and can estimate a negative value for the effective number
of parameters. A negative value for the effective number of parameters occurs when the
posterior mode of the parameters is far from the posterior mean (which can occur in
change-point models that we investigate in this thesis).1

For these reasons in this thesis we prefer Widely Applicable Information Criterion (WAIC)
when assessing goodness of fit in a Bayesian context (Watanabe, 2010). WAIC is
constructed as:

WAIC = −2llpd + 2pWAIC.

The lppd (log pointwise predictive density) is defined as the expected value of the
likelihood for each individual were Di is the data for individual i (across the posterior

1There is an alternative definition of the effective number of parameters which ensures the number of
parameters is positive.
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simulations), the logarithm is then taken and summed:

llpd =
n∑

i=1

log

(
1

S

S∑
s=1

L(θ{s}|Di)

)
.

The number of parameters pWAIC is defined as follows:

pWAIC = 2
n∑

i=1

(
log

(
1

S

S∑
s=1

L(θ{s}|Di)

)
− 1

S

S∑
s=1

log L(θ{s}|Di)

)
.

Given a matrix of the log-likelihood for each observation for all simulations the waic

function from the loo package calculates the WAIC (Vehtari et al., 2020).

Another criterion, Pseudo-Marginal Likelihood (PML) described by A. E. Gelfand (1994)
has been used for the purposes of averaging competing models in HTA (Jackson et al.,
2010), and is defined as:

PML =
n∑

i=1

log

(
S∑S

s=1
1

L(θ{s}|Di )

)
.

In other to place PML on the same scale as the other criterion we typically present
−2× PML. For −2× PML and all other criteria detailed above a lower value indicates
better fit.

Note that DIC, WAIC, and −2× PML all are motivated as approximations to the
out-of-sample predictive accuracy of the model. In our experience, WAIC and −2× PML
provide very similar estimates of model fit (e.g., equal to one decimal place as in Table
3.7) for standard parametric survival models. However, this may not be the case for other
statistical models.

Another possibility is to evaluate the probability of the data under the model, which is
known as the marginal likelihood:

π(D) =

∫
θ

π(D|θ)π(θ)dθ.

BIC described earlier is an asymptotic approximation of the marginal likelihood under unit
information priors (Schwarz, 1978). In contrast to the other measures, the marginal
likelihood does not require an explicit penalty term as the approach compares the average
fit of a model. This imposes a “natural” penalty for parameters, because each additional
parameter introduces a dimension that must be averaged over. If that dimension
introduces substantial parameter space with small likelihood, and little space that
improves the likelihood, it will decrease the marginal likelihood.
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Because marginal likelihood integrates the likelihood with respect to the prior, the choice
of prior will affect the final probability. This can be considered a disadvantage when the
choice of prior (in terms of its strength or functional form) is unclear. Kass and Raftery
(1995) provide a comprehensive overview of Bayes Factors, which represent the ratios of
marginal likelihoods for various models. The authors also offer guidance on specifying
priors for models where Bayes Factors are computed, even in cases where prior
information about model parameters is scarce.

In Chapter 3 we use Bayes Factors to choose between models with different change-point
numbers, also providing an approach which reduces some of the sensitivity of the final
result to the choice of the priors on the parameters.

2.4 Cox Semi-Parametric Survival Model

Although parametric survival models are the focus of this thesis (due to their ability to
predict long-term survival), semi-parametric Cox models are commonly used to estimate
relative treatment effects (i.e. hazard ratios) when are then used in decision modelling. As
discussed by Dias et al. (2011) a cost-effectiveness analyses (CEAs) consist of two
separate components: a baseline model that represents the absolute natural history under
a standard treatment in the comparator set, and a model for relative treatment
effects.

The former may be based on trial or cohort evidence, while the latter is generally based on
randomised controlled trial (RCT) data. In survival modelling, we may have local registry
data which represents the natural history and only wish to use the hazard ratio from the
clinical trial. Even if the clinical trial population is different to the natural history
population, often the relative treatment effective can remain stable across
populations.

The Cox PH model is usually written in terms of the hazard model formula
h(t,Z) = h0(t) exp (

∑p
i=1 Ziβi) , with Z a 1× p vector which is a collection of

explanatory/predictor variables that is being modeled to predict an individual’s hazard and
βi the covariate for the ith predictor variable. The Cox model formula states that the
hazard at time t is a product of two quantities. The first of these, h0(t), is called the
baseline hazard function. The second quantity is the exponential expression to the linear
sum of Ziβi . An important feature of this formula, which concerns the proportional
hazards (PH) assumption, is that the baseline hazard is a function of t, but does not
involve the explanatory variables. In contrast the exponential expression, involve the
explanatory variables but not t (i.e. time-independent). It is possible, nevertheless, to
consider explanatory variables which do involve t and are called time-dependent.
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Advantages of the Cox model is that the model is a “robust” model, so that the results
from using the Cox model will closely approximate the results for the correct parametric
model (if such a model exists) (Klienbaum and Klein, 2016). The proportional hazard
assumption is also intuitive and extends to multiple variables. Because of these properties
this model is extensively used when presenting results from clinical trials and one of the
most commonly cited statistical methods (Cox, 1972).

2.5 Methods to Extrapolate Long-term survival

outcomes

HTA requires a comparison of the incremental costs and health effects of competing
interventions. For oncology treatments with survival endpoints, long-term outcomes are
typically uncertain at the time of both regulatory and reimbursement assessment.
Extrapolating survival to a lifetime horizon is explicitly recommended by multiple HTA
authorities for economic evaluations of oncology drugs to assess the long-term
consequences of the compared strategies such as Canadian Agency for Drugs and
Technologies in Health (2017); Haute Autorité de Santé (2020); National Institute for
Health and Care Excellence (2022) and Pharmaceutical Benefits Advisory Committee
(2016).

As mentioned in Chapter 1 the primary challenge in survival analysis in HTA is the
selection of an appropriate survival model. Although model averaging across a number of
parametric survival models is possible, typically one survival model is chosen as a
“basecase” and others considered in scenario-analysis. We describe two commonly cited
alternative methodologies to selecting a basecase model to extrapolate time-to-event
outcomes along, we also describe further work which expands upon topics mentioned but
not fully implemented in the each the methodologies.

2.5.1 Technical Support Documents

The National Institute for Health and Care Excellence (NICE) with makes reimbursement
decisions for the English health service is widely considered a world leader in HTA and
publishes of detailed guidance on methodology, including Technical Support Document
(TSD) series (Stevens and Longson, 2013). TSD 14 by Latimer (2013) provides
methodological guidance on extrapolation of survival outcomes and is cited within several
HTA guidance documents (Canadian Agency for Drugs and Technologies in Health, 2017;
Haute Autorité de Santé, 2020; National Institute for Health and Care Excellence, 2022;
Pharmaceutical Benefits Advisory Committee, 2016). Guidance within NICE TSD 14
focuses on considering which parametric models are appropriate given the shape of the
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hazard and survival functions. The author suggests that the choice can be supported by
goodness of fit, both by visually inspecting the log-cumulative hazard plots and by
statistical goodness of fit.

Log-cumulative hazard plots presenting an approximately linear trend which may be
suggestive of a particular parametric model (i.e. exponential or Weibull), however, it is
also worth highlighting that there is considerable subjectivity in the assessment of these
plots and there are many different candidate models other than exponential and Weibull
models. Measures of statistical fit are often used for model selection as they are
quantitative and can compare the full range of parametric models. Because the
frequentist approach is the most commonly used in HTAs of survival outcomes AIC and
BIC are discussed in most detail. In comparison Bayesian methods are less frequently used
in survival analysis for HTA, however, the author did suggest DIC as a possible criterion
for model selection. Irrespective of the criterion used, the author emphasize that it will
only measure goodness of fit to the observed data and may still be a poor fit to the true
(unknown) long-term survival. Therefore consideration is also given to more subjective
assessments such as clinical plausibility of long-term extrapolations (based on similar
treatments in the disease area) and biological hypothesis.

External validity is also emphasized in this TSD by comparing the extrapolated hazards to
background mortality and survival with data from other studies, such as longer-term
follow-up studies or registries where available or expert opinion. This information includes
both “hard” data such as registries or “soft” data such as opinion of the analyst or expert
and in some situations both types of evidence can be incorporated in to the analysis. A
later NICE TSD 21 Rutherford et al. (2020) focused on a range of advanced survival
techniques which were not covered in NICE TSD 14, including spline and piecewise
models along with posing a number of research objectives.

In both TSD 14 and 21 there are a number of references to expert opinion, however,
details on how this can be incorporated with survival models is lacking and TSD 21
explicitly highlights this topic in its recommendations for research. In TSD 21 piecewise
models are discussed at some length and are critiqued as they require justifications for the
time-intervals used, however, no guidance is provided on methods to select the
appropriate intervals.

2.5.2 Bagust and Beale Framework

An alternative framework to the default use of parametric survival models was suggested
by Bagust and Beale (2014), based on their extensive experience in conducting HTA of
treatments which potentially extend survival. They suggest examining the clinical trial for
biologically plausible hypotheses rather than assuming the data is best described by one of
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the standard parametric survival models. A more detailed overview of the framework is
provided in Appendix B.1, however of particular interest to this thesis is their hypothesis
that the trial protocol (or disease processes) may induce transient effects on the hazard of
an event. These effects can either suppress or elevate observed hazards e.g., exclusion
criteria may ensure that the risk of any patient experiencing a target event (death, disease
progression, or acute crisis) is artificially suppressed for several months. Additionally
(although not directly described in Bagust and Beale (2014)), this could also occur due to
the disease process, such as HIV-1 infected patients treated with anti-retroviral therapy,
for whom the risk of an event (death/AIDS) becomes relatively stable after several
months of treatment (Egger et al., 2002). After these transient effects dissipate a
parsimonious choice is to extrapolate survival using a constant hazard model.

Bagust and Beale suggest visually inspecting the empirical cumulative hazard function,
that is, the negative logarithm of the Kaplan-Meier (KM) survival function plotted against
time, to identify a timepoint after which there is evidence of a long-term linear trend.
Once identified, a constant hazard (exponential) model should be fit to the data after this
timepoint, a methodology which we hereafter refer to as Bagust and Beale (B&B)
approach. This approach assumes that the hazards observed in the clinical trial (after any
transient effects have dissipated) are the best estimate of the predicted long-term hazards.
This is in contrast to parametric models (other than the exponential model) which assume
that the trend in the hazard function (either increasing or decreasing) is valid beyond the
observed trial data.

Several important issues are associated with the B&B approach including:

• identification of the timepoint after which a long-term constant hazard is considered
plausible;

• incorporation of uncertainty regarding the location of the timepoint into survival
projections;

• objective comparison of the B&B approach with fully parametric models

• assumption of constant hazards may lack face-validy over the course of the lifetime
horizon

The subjectivity of the approach is highlighted by Figure 2.7. This shows the cumulative
hazard function for data simulated from a piecewise exponential model in which the
hazard decreases from 0.75 to 0.25 at time equal 1. Based on visual inspection alone it
might be difficult to identify this change-point.

Another related scenario considered by Bagust and Beale (2014) is assuming common
hazards for both treatment and control arms after a certain period. Although a
potentially parsimonious method of modelling the survival data, the choice of this
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Figure 2.7: Cumulative Hazard plot of data generated from a piecewise exponential model
with change-point at time equal to one.

timepoint is again subjective and in Bagust and Beale (2014) is again made through the
cumulative hazard function.

2.5.3 Additional approaches and methods to extrapolating

survival

As TSD 14 was a guidance document which also sought to direct future research, topics
such as inclusion of external information and expert opinion were mentioned without
reference to worked examples. Subsequent research such as Guyot et al. (2017)
considered using a flexible parametric model fitted to trial data along with registry data
and the opinion that both treatments would have equal hazards after a certain period of
time. Jackson et al. (2017) describe a variety of different approaches when modelling a
treatment and control arm, from the standard proportional hazards, to alternatives such
as converging hazards, proportional cause-specific hazards, however, worked examples of
these scenarios are not provided. Che et al. (2023) consider another approach where the
survival functions (rather than the hazard function) are assumed to converge after a fixed
timepoint. One potential criticism of the above approaches is that results are potentially
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sensitive to the user defined input and do not allow for the observed data to influence
these user defined inputs. For example in Guyot et al. (2017), the point at which a
common hazard is assumed is a user defined input. In some situations it might be valid to
see if the currently observed data supports that assumption, and if so the timepoint at
which this is plausible (given the observed data). In both parts of this thesis we will show
how the use of change-point models and our approach to incorporating expert opinion
into statistical models can allow for the synthesis of the decision maker/expert’s belief
with the observed data, rather than relying exclusively on one or the other.

2.6 Data used in the Thesis

There are a number of datasets used in the thesis and are sourced from the
following:

• Data presented in publications or textbooks

• Pseudo-data generated from published Kaplan-Meier survival functions using the
Guyot et al. (2012) algorithm and digitise function from the survHE package
(Baio, 2020).

• Data available in R-packages

These datasets are presented in Table 2.1.
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Table 2.1: Overview of datasets used in thesis

Data Description Chapter
Used

Data-source Reference

Leukaemia Remission
Times

Chapter 3 Publication Matthews and Farewell
(1982)

Glioblastoma Survival Chapter 3 R package Kosinski and Biecek
(2020)

Stanford Heart Survival Chapter 3 Publication Miller and Halpern (1982)
Survival Data used
Technology Appraisals

Chapter 4 Digitised
from publicly
available
sources

Multiple - See Chapters 4
and 5

E1690 and E1684 trial
data

Chapter 5 Sourced from
textbook

Ibrahim et al. (2001)

Trial on Exercise
programs

Chapter 6 Publication Littell (1990)

Tisagenlecleucel
Survival data

Chapter 7 Digitised from
publication

Cope et al. (2019)

2.7 Summary

The challenge of extrapolating survival outcomes beyond observed data is one which is
multi-faceted in terms of challenges and potential solutions. Over the course of this thesis
we will primarily address the gaps in methodology relating to two topics, improved
estimation of the piecewise models (used in the Bagust and Beale approach and more
generally to model scenarios relating to treatment effects) and incorporation of expert
opinion with survival models.

We propose a statistical method which addresses the limitations of the B&B approach by
way of change-point survival models. The approach considered by Bagust and Beale
(2014) is non-parametric and emphasizes the use of less complex models for projective
modelling of survival outcomes. This is in contrast the approach recommended by Latimer
(2013) (TSD 14) who focuses on considering parametric models allow for a wide range of
scenarios to be considered and are the default practice in survival modelling in HTA. By
considering change-point models which are fully parametric, we will allow comparison with
the parametric models considered NICE TSD 14. These models objectively identify the
timepoint after which a constant hazard appears plausible allowing for the focus to remain
on justification of the underlying model, rather than the value of the timepoint at which
constant hazards are assumed plausible.
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In Chapter 5 we estimate change-point models with a Weibull likelihood for each segment
which can be further extended to other parametric survival models. A key motivation is
the observation that in many trials the survival data cannot be adequately described by
(even complex) parametric survival models. Analysts typically resort to modelling the data
similar to the B&B approach but with a parametric model other than the exponential for
extrapolating the long-term survival. Similar to the limitations of the B&B approach
described above and as noted in TSD 21, the uncertainty of the point after which the
parametric survival model is fit to the data to inform the extrapolated survival is not
captured. Therefore the models estimated in Chapter 5 address many of the limitations of
piecewise methods described in TSD 21.

The authors of TSD 21 acknowledge that the “approaches that we have outlined have
largely tried to capture and extrapolate the marginal hazard and survival functions without
trying to compartmentalise the mechanisms driving changes in these functions.” A fully
parametric change-point model which can capture changes in the model parameters (i.e.
shape and scale for Weibull) and the hazard ratios for treatments would capture
phenomena such as treatment effect delay and treatment waning along with changes in
the disease process which would allow various competing assumptions to be tested.

We also consider the estimation of semi-parametric change-point models. This is
important in situations where the relative treatment effect is the focus and the
proportional hazards assumption does not hold.

Complementary to this work-stream is the requirement for a more general approach to
including expert opinion with survival models. There is a requirement for any opinions to
be incorporated in a transparent manner which allows for both the data opinion and expert
opinion to influence the result in a manner which is proportional to their relative strengths.
Furthermore, efforts should be made to quantify the strength of an elicited opinion relative
to the existing data so that experts know the expected impact of their beliefs on the final
result. This may allow for appropriate calibration of the expert’s opinion at the elicitation
stage; rather than re-weighting opinions in a post-hoc manner at the analysis stage.

As HTA is conducted by a variety of stakeholders with varying degrees of programming
and statistical knowledge it is important to provide open source software for the proposed
methods. The two R packages are described in detail highlight two which implement
many of the analysis conducted in this thesis along with a custom built web application
which can be used to conduct both elicitation of expert’s belief on survival outcomes and
analyse the resulting expert opinion with the survival data.
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Part II

Change-point Survival Models
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3 Constant Hazard Change-point
Survival Models

3.1 Introduction

There are a variety of applications for statistical models which assess how the parameters
underlying a data generating process may change over time. Wyse and Friel (2010)
provide an accessible review of change-point analysis applied to a variety of data types.
One particular function which is subject to change is the hazard rate in survival analysis.
As described in Chapter 1 the hazard rate quantifies the instantaneous failure rate of a
subject who has not failed at a given time point. Because the survival probabilities are
directly related to the integral of the hazard function, changes in this function over time
are of interest in a variety of situations. Matthews and Farewell (1982) suggest a real
world application whereby physicians are interested in determining whether the hazard of
relapse in leukaemia is constant or time varying. Another motivation is the extrapolation
(or prediction) of survival outcomes for data in which a substantial number of events are
unobserved, the primary focus of this thesis.

Both frequentist and Bayesian methods exist for change-point analysis of hazard
functions. Frequentist methods primarily consider likelihood ratio, score or Wald tests
that are based on analytical approximations for the asymptotic null distribution of the
respective test. However, the justification for these limiting distributions often requires
some technical assumptions and conditions that are difficult to verify in practice and may
not hold for small-to-moderate sample sizes. Even in the presence of larger sample sizes
Raftery (1986) notes that likelihood ratio tests will favour the more complex model even if
the simpler model fits the data adequately.

In contrast to frequentist methods, the Bayesian approach does not require asymptotics,
instead using a set of prior beliefs which are updated using information from an observed
sample. This updated belief or posterior probability distribution is used as the basis for
inference about the unknown parameters. Bayesian approaches may have advantages in
terms of selecting the appropriate number of change-points. Unlike frequentist approaches
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there are no restrictions on making multiple model comparisons. Bayesian approaches can
readily characterize the uncertainty associated with the hazards and the location of
change-points. Because Bayesian approaches update probability beliefs based on the
observed data, an initial or prior probability is required for each of the parameters.
Depending on the strength of the prior belief, inferences may change based on the use of
different priors, therefore the influence of a prior should be discussed in Bayesian
analyses.

In most Bayesian approaches to hazard change-point detection, the focus is on estimating
the location of a known number of change-points. In many of the frequentist approaches,
the focus is on testing the alternative hypothesis of a one change-point model versus the
null hypothesis of no change-point without consideration for the presence of multiple
change-points. For many real world problems the number of change-points in a hazard
function is considered unknown, therefore, methods which can estimate the number of
change-points and the uncertainty around the number of change-points and their
locations would be a useful advancement on current methods.

In the following chapter we present two novel Bayesian approaches to determining the
location and number of change-points for a hazard function. Gibbs sampling has been
used by Achcar and Loibel (1998) for estimating the location of a single change-point and
is straightforward to extend to multiple change-points. Although this approach can
characterize the uncertainty in the location of the change-points and the hazards within
each interval, it does not directly determine the number of change-points which best
describe the data. We propose to address this by calculating the marginal likelihood for a
number of plausible change-point models (including a no change-point model). Model
selection is based on the Bayes Factors of the competing models using the decision
thresholds of Jeffreys (1961).

Another approach involves extending Markov Chain Monte Carlo (MCMC) so that the
model dimension is treated as a random variable to be estimated as part of the MCMC
procedure. Wyse and Friel (2010) discuss how this method can be implemented for a
number of different types of change-point problems which we now extend to hazard
functions.

In Section 3.2 we highlight the previous literature for hazard change-point models,
specifically for right censored data. In Section 3.3 we describe the Exponential and
Piecewise Exponential models. In Sections 3.4 and 3.5 the required notation and describe
our proposed statistical models. Section 3.6 presents a simulation study to determine the
sample sizes and changes in hazards required for the adequate estimation of the
change-point location and frequency. Section 3.7 highlights potential applications of the
methods using the datasets introduced in Section 3.7.
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3.2 Previous Literature

The majority of the published methods for change-point detection in the hazard function
consider the location of a single change-point and assume constant hazards between
change-points. A review is provided by Anis (2009) with another earlier review provided
by Müller and Wang (1994). Below we provide an overview of some of the most relevant
publications from Frequentist and Bayesian perspectives.

3.2.1 Frequentist approaches

Matthews and Farewell (1982) were the first to consider inference on the time of an
unknown change-point for a piecewise exponential model. They noted that
no-change-point (null) hypothesis (i.e. where the change-point time is equal to 0) is on
the boundary of the parameter space. They considered the problem of testing this null
hypothesis by deriving a likelihood ratio test statistic.

Nguyen et al. (1984) noted that the likelihood function is unbounded when the hazard
before the change-point is greater than the hazard after the change-point. They also note
that the likelihood is also unbounded as the change-point tends towards the final observed
event (if there are no censored observations after this event). They identified a consistent
estimator of the change-point by examining the properties of the change-point likelihood
represented as a mixture and does not have the issues with unboundness described
above.

Several authors described methods on how to avoid the likelihood becoming
unbounded (Matthews and Farewell, 1985; Yao, 1986; Worsley, 1988). Regarding the
question of multiple change-points, Goodman et al. (2011) used a Wald type statistic
with an alpha spending function to preserve Type 1 error when considering multiple
change-point models.

All of the parametric approaches above assume a constant hazard in the intervals between
change-points, however, Palmeros et al. (2018) considered a Weibull change-point model
meaning that the hazard within each interval can monotonically increase or decrease.
Covariates could also be specified within this model, although, no statistical test was
presented to test test the hypothesis of a change-point versus no change-point. Gierz and
Park (2022) allow for the testing of multiple change-points through the use of a
(computationally intensive) bootstrap approximate of the distribution of the likelihood
ratio test statistic.

As illustrated by Figure 3.1 the psuedo-likelihood surface1 of a piecewise exponential

1Parameters representing the interval hazards have been maximized conditional on the change-point
locations.
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change-point mode is non-smooth with many local maxima making optimization using the
optim function from the stats package in R unreliable, especially with higher numbers of
change-points. This necessitates searching for the global optimum at many different
locations, something which would substantially increase the computational burden of the
approach.

Figure 3.1: Pseudo-Maximized Likelihood surface of a 2 change-point piecewise exponential
model

3.2.2 Bayesian approaches

Achcar and Bolfarine (1989) were one of the first to consider hazard change-points from a
Bayesian framework. They found the closed form posterior distribution of a change-point,
assuming that the change-point occurs at discrete events. Using a non-informative prior
for the hazards and a continuous change-point (bounded within a finite interval), Ghosh
et al. (1996) discusses an analytic expression of the marginal posterior distribution for a
single change-point along with its asymptotic distribution. Karasoy and Kadilar (2007)
obtained a Bayes estimate for a change point by considering a prior distribution along
with the least squares method proposed by Gijbels and Gurler (2003). Ghosh and
Ebrahimi (2008) proposed a Bayes estimator based on a continuous change-point. Achcar
and Loibel (1998) presented a Gibbs sampler for a one change-point model, again
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assuming that the change-point occurs at discrete events. The above Bayesian methods
do not consider if the assumption of a change-point is appropriate given the data and
estimate the parameters given the presence of a change-point. Yao (1987) proposed a
Bayesian test which can test the hypothesis of a change-point versus no change-point,
however, it is less efficient than the score test proposed by Matthews et al. (1985).

Kim et al. (2020) use a stochastic approximation Monte Carlo algorithm to identify which
particular number and location of change-points gives the highest log-posterior values.
Similar to the collapsing model presented in this chapter, they allow the sampler to move
between different change-point models as part of the estimation procedure, however, they
do not present the relative probabilities of models with different numbers of change-points.
Another approach by Chapple et al. (2020) also allows for moves between different
change-point models using a technique called Reversible Jump Markov Chain Monte Carlo
(RJMCMC), of which our collapsed approach is a special case. In this chapter we also
present a Gibbs sampler similar to Achcar and Loibel (1998) to estimate models with
multiple change-points and extend this approach to select the best fitting model.

3.3 Exponential and Piecewise Exponential Survival

Models

3.3.1 Exponential model

The density function for an exponential distribution is f (t) = λ exp{−λt} with support
t ∈ [0,∞). The support is the range of values that the random variable t may take and
because the exponential model (like the other distributions considered in this thesis) only
allows positive numbers, it is appropriate for modelling survival times. This is the simplest
possible survival distribution as it assumes a constant risk over time, so the hazard is
h(t) = λ for all t. The corresponding survival function is S(t) = exp{−λt}. Taking the
product of the hazard function and the survival function produces the density function
f (t) = h(t)S(t) which is simply a rearrangement of Equation 2.4 and holds for all survival
distributions.

Consider a sample of n observations of survival times t1:n = (t1, ... , tn) being time
ordered, some of which may be censored. The likelihood function may be written as

L(t1:n|λ) =
n∏

i=1

λνiS(ti),

with νi = 1 if the subject failed and 0 if censored.

Taking the natural logarithms, and noting that the natural logarithm of the survival
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function is equal to the negative cumulative hazard function H(t), we obtain the
log-likelihood function

log L(λ|t1:n) =
n∑

i=1

νi log λ− H(ti).

Letting D =
∑n

i=1 νi denote the total number of observed deaths, and Ttotal =
∑n

i=1 ti

denote the total observation (or exposure) time, we can rewrite the log-likelihood as a
function of these totals.

Lemma 1. The log-likelihood of an exponential model is:
log L(λ|t1:n) = D log λ− λTtotal.

Because the hazard is constant for all t, the cumulative hazard is the integral of a
constant and is λti , therefore di and ti can be replaced with their sums.

Exponentiating the log-likelihood provides the likelihood L(λ|t1:n) = λD exp−λTtotal .

This distribution plays a central role in survival analysis, although it is potentially too
simple to be useful in applications. Therefore, an extension to the exponential model
which allows the hazard to change at various intervals called a piecewise exponential
model is discussed in the subsequent paragraph.

3.3.2 Piecewise Exponential Model

A change-point occurs at observation q if t1, ... , tq are generated differently to tq+1, ... , tn.
In a piecewise constant model with one change-point, this requires that the segments t1:q
and tq+1:n have a constant hazard within the segment, but independent hazards between
segments. It is assumed that the change-points occur at a particular event time (and not
a censoring time). Multiple change-points at specific event times can be denoted as a
vector τ 1:k , with these k change-points splitting the data into k + 1 segments. The
likelihood of the piecewise exponential model can be formulated as follows

L(τ 1:k ,λ1:k+1|t1:n) =
n∏

i=1

{
k+1∏
j=1

λ
δijνi
j exp

{
−δij

[
λj(ti−τj−1)+

j−1∑
g=1

λg (τg−τg−1)

]}}
(3.1)

with vi = 1 if the ith subject was observed to have an event and 0 otherwise (censored).
If the ith subject’s time (either censored or an event) is within the jth interval
(mathematically ti ∈ (τj−1, τj ]), δij = 1 and 0 otherwise.
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The log-likelihood is then

log L(τ 1:k ,λ1:k+1|t1:n) =
n∑

i=1

{
k+1∑
j=1

δijvi log(λj)−δij

[
λj(ti−τj−1)+

j−1∑
g=1

λg (τg −τg−1)

]}
, (3.2)

with
∑k+1

j=1 δijvi log(λj) representing the contribution of the log hazard function for an

individual (across the segments) and
∑k+1

j=1 δij

[
λj(ti − τj−1) +

∑j−1
g=1 λg (τg − τg−1)

]
the

individual cumulative hazard function.

By omitting the potential for covariates and restricting ourselves to discrete
change-points, it should be noted that there is no loss of information in recasting the time
ordered data as times between individual event times. We let d be the number of event
times and n − d right censored survival times. For notational ease, we assume here that
only one individual dies at each time, so that there are no ties in the data, however, the
model implementation allows for tied events. Denote the ordered distinct survival times by
x1, x2, ... , xd , so that xi is the i th ordered survival time. The set of individuals who are at
risk at time xi will be denoted by Ri (the risk-set), so that Ri is the set of individuals
who are event-free and uncensored at a time just prior to xi . |Ri | is the cardinality or
number of individuals in the set. We define yi as the total (sample) time between events
i − 1 and i as

yi = (xi − xi−1)×|Ri |+
n∑

j=1

I (vj = 0, xi−1 < tj < xi)× (xi − ti).

This is the composed of the difference between event times multiplied by the risk set at
the event time plus the difference between any censored observations and the previous
event time xi−1, provided they occurred within the interval (xi−1, xi).

We can re-express the likelihood of the piecewise exponential model in terms of y1:d . Let
s1:k be a vector representing the number of events which have occurred at each of the
elements of τ 1:k , with s0 = 0 and sk+1 = d . The likelihood of interval j is
λ
sj−sj−1

j exp
{
−λj

∑sj
i=sj−1+1 yi

}
. Censored observations are also allowed, providing

exposure time within intervals without an event. The likelihood is then

L(s1:k ,λ1:k+1|y1:d) =
k+1∏
j=1

[
λ
sj−sj−1

j exp

−λj
sj∑

i=sj−1+1

yi


]
.
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3.4 Estimation using Gibbs Sampler

3.4.1 Gibbs sampler implementation

We propose a Gibbs sampler to find the location of a known number of k change-points
with the data recast as a vector of time between events. Noting that a gamma
distribution (G) is conjugate prior to an exponential likelihood, we can obtain a marginal
distribution of the change-point locations by conditioning on the hazards from the
previous step. Choosing a gamma distribution for the hazard parameters is crucial because
if we assumed another prior, such as a log-normal distribution, we would no longer have a
gamma distribution as a posterior to an exponential likelihood. This choice is not limiting
in a practical sense, as the gamma distribution is relatively flexible and its expectation and
variance can be adjusted by specifying its parameters α and β.

A Directed Acyclic Graph (DAG) representing the dependency between the change-point
locations and hazards is presented in Figure 3.2. For interval j, the difference between sj

and sj−1 defines the number of events within that interval (as denoted by a double arrow).
The sum of the number of events and the hyperparameter α determines the first
parameter of the gamma distribution from which the hazard λ is sampled. The
change-point locations sj and sj−1 also define the exposure time within the jth interval
such that

∑sj
i=sj−1+1

yi + β determines the second parameter of the gamma distribution for
the hazard. Repeated parts of the graph are be represented using a “plate”, as shown for
the range of intervals from 1:(k+1) and also for the time between events within in each
interval.

Figure 3.2: Illustration of a Directed Acyclic Graph for Gibbs Change-point Sampler
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We define prior probabilities for the change-point locations and hazards as follows:

p(s1:k |k) =
(
nevents − 1

2k + 1

)−1 k∏
j=0

(sj+1 − sj − 1)

λ1:k+1 ∼ G(α, β).

The discrete prior for the change-point locations was presented in Fearnhead (2006) with
nevents referring to the number of events. This prior has the advantage of ensuring the
change-points are not too close together or near the final event (relative to the sample
size).

Based on the timescale we define α and β, the hyper-parameters for λ1:k+1 (a vector of
hazards of size k + 1). If the timescale is years we consider α = 1 and β = 1, while if the
timescale is in days we define α = 1 and β = 365. Due to the properties of the gamma
distribution, these choices result in a priors with equivalent (scaled) mean and
variances.

The unscaled joint posterior density of the hazards and change-points is the product of
the likelihood, prior on change-point locations and the prior on the hazards:

π(s1:k ,λ1:k+1|y1:n, k ,α, β) ∝ L(s1:k ,λ1:k+1|y1:n)p(s1:k |k)p(λ1:k+1|α, β).

Conditional on the current change-point locations the hazards λ1:k+1 are drawn from
gamma distributions as follows:

λ1|α, β, k ∼ G(α + s1, β +
s1∑
i=1

yi)

λ2|α, β, k ∼ G(α + s2 − s1, β +
s2∑

i=s1+1

yi)

.

.

λn+1|α, β, k ∼ G(α + sk+1 − sk , β +

sk+1∑
i=sk+1

yi)
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The posterior probability of the first change-point is calculated by evaluating the
likelihood of all the possible change-points (from 2 to s2 − 1) conditional on the the
change-point location s2 and λ2. These likelihoods are converted to probabilities by
dividing the likelihood of an individual change-point location by the sum of the likelihoods
from 2 to s2 − 1 as shown in Equation 3.3 where j = 1:

f (si |y1:n, sj−1, sj+1,λj ,λj+1,α,β, k) =
L(λj |ysj−1+1:si )L(λj+1|ysi+1:sj+1)p(s1, ., si , .sk |k)∑sj+1−1

i=sj−1+1 L(ysj−1+1:si |λj)L(ysi+1:sj+1 |λj+1)p(s1, ., si , .sk |k)
(3.3)

Based on these probabilities a new location for the first change-point is sampled.
Conditional on the newly sampled change-point, the hazards are updated and posterior
density of the second change-point is calculated by evaluating the likelihood of the
change-points from s1 + 1 to s3 − 1. The second change-point is sampled from this
posterior and the process continues until all the change-points have been evaluated.
In summary, the model proceeds as follows:

1. Initialize s1:k by random draw of size k from 1:(n-1) events.

2. For each iteration, indexed m = 1, 2, ... ,M repeat the following steps:

(a) For the current values of s1:k , define the number of events and the exposure
time within each interval.

(b) Sample λ ∼ G(α + D, β + T ) for each interval where D is the number of
events and T is the total exposure time in the interval.

(c) For the first change-point, evaluate the likelihood of change-point locations
from s(j−1) + 1 : s(j+1) − 1, where j = 1.

(d) Sample a new change-point sj with the probability of each change-point
location calculated using Equation (3.3).

(e) Conditional on the change-points, re-sample the vector of hazards λ1:k+1 and
repeat the previous four steps for the remaining change-points.

3. Increment m.

Model Selection for Gibbs Sampler

The Gibbs sampler provides a posterior distribution of the change-point locations for a
given number of change-points, however, we require a method of assessing the
appropriate number of change-points. Because the marginal likelihood of the piecewise
exponential intervals are available in a closed form (see Appendix A.1), we can calculate
the marginal likelihood for the a given change-point model (with parameter set θk for a
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given values of the hyperparameters γ) denoted as
π(y1:n|γ, k) =

∫
θk
L(y1:n|θk)p(θk |γ)dθk . This is achieved by simulating a large number

of change-point values from the prior for the change-points. We then calculate the
marginal likelihood for each configuration of change-points simulated from the prior and
then average the result. This expected marginal likelihood can then be used to compute
the Bayes Factor. This can be thought as the magnitude of the evidence for Model 1 over
Model 2 where the models differ with respect to their change-point numbers:

BF1,2 =

∫
θ1
L(y1:n|θ1)p(θ1|γ)dθ1∫

θ2
L(y1:n|θ2)p(θ2|γ)dθ2

.

The marginal likelihood is the mean likelihood obtained by averaging the likelihood across
all parameter values and weighted by the parameter prior. This Bayesian averaging is
exactly how Bayes Factor’s avoids overfitting, that is, by selecting the model with the
highest mean likelihood value, instead of the one with the highest maximum likelihood
value.

Bayes Factor are transitive in that multi-way comparisons are relative. So if we have BF1,2

and BF2,3 then:
BF1,2BF2,3 = BF1,3,

which is useful for multiple model comparisons using the same data.

Regarding interpretation of Bayes Factors, Jeffreys (1961, p.432) propose the following
criteria in Table 3.1, where Model 2 is the more complex model and Model 1 is H0.

Table 3.1: Criteria for model comparisons when using Bayes Factors

log10(B21) B21 Evidence against Model 1 (H0)

0 to 1/2 1 to 3.2 Minimal
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

If we wish to compare across a number of change-point models and select the least
complex model (in terms of change-point numbers) with substantial evidence (i.e.
B21 ≥ 3.2) we propose the following steps.

1. Identify the model with the highest mean marginal likelihood and discard the more
complex models.

2. Compute the logarithm (to the base 10) of the mean marginal likelihood for each
model.
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3. For each of the simpler models subtract the log mean marginal likelihood from the
model with the highest mean marginal likelihood.

4. Check if the difference for any of these models is ≤ 0.5. If yes, choose the simplest
model from this set as the optimal model. If not, the chosen model is the one with
the highest mean marginal likelihood.

3.5 Estimation using Collapsing Change-point

Approach

Markov chain samplers that jump between models with different numbers of change-points
allow us to estimate posterior probabilities for candidate models while also estimating the
location of change-points within each model. Introducing priors for the change-point
numbers, change-point locations and hazards p(k |ξ), p(s1:k |k), p(λ1:k+1|α, β, k)
respectively, means that we can treat the number of change-points k as a random
quantity to be inferred. The model posterior then becomes

π(k , s1:k ,λ1:k+1|y1:d ,α, β, ξ) ∝ L(s1:k ,λ1:k+1|y1:d)p(s1:k |k)p(λ1:k+1|α, β, k)p(k |ξ).
(3.4)

Following the approach outlined by Wyse and Friel (2010), if we regard the hazards λ1:k+1

as nuisance parameters, the posterior density of the change-point number and their
respective locations is proportional to

π(k , s1:k |y ,α, β, ξ) ∝
k+1∏
j=1

π(ysj−1+1:sj
|s1:k ,α, β)p(s1:k |k)p(k |ξ)

where π(ysj−1+1:sj
|s1:k ,α, β) denotes the marginal likelihood of the j th data segment.

Adopting a common, independent Gamma prior λj ∼ G(α, β) for j = 1, ... , k + 1 makes
this quantity straightforward to calculate; see Appendix A.1 for full details.

Because the marginal likelihood of each data segment is available in closed form, a switch
from k to k + 1 change-points, or vice-versa, does not require the design of a bijective
function between support subspaces. Therefore, this model is a special case of a
RJMCMC. Changes to the change-point number are proposed and accepted with
Metropolis-Hastings probability min(1,A) where

A =
π(k + 1, s′1:k+1|y1:d ,α, β, ξ)

π(k , s1:k |y1:d ,α, β, ξ)
× P(k + 1, k)

P(k , k + 1)
. (3.5)

The ratio of the marginal likelihoods is straightforward to compute and can be expressed
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as

π(k + 1, s′1:k+1|y1:d ,α,β, ξ)
π(k , s1:k |y1:d ,α,β, ξ)

=
p(k + 1|ξ)
p(k|ξ)

p(s′1:k+1|k + 1)

p(s1:k |k)

π(ysj−1+1:s
′
j
|α,β)π(ys′j +1:s

′
j+1
|α,β)

π(ysj−1+1:sj |α,β)
, (3.6)

where the location of the additional change-point is denoted by s
′
j . When adding a

change-point in the proposal step, one of d − k − 1 points where there could be a
change-point are randomly selected. If this point occurs in segment j , segments ysj−1+1:s

′
j

and ys′j +1:s
′
j+1

are obtained, from which we calculate the marginal likelihoods and prior
densities in Equation 3.6. When deleting a change-point, one of the k change-points are
randomly selected and ysj−1+1:sj becomes the new data segment where sj = sj+1 before
deletion.

The probability of adding a change-point for a model with k change-points is ak , and rk+1

is the probability of removing a change-point for a model with k + 1 change-points.
Clearly rk = 1− ak , with r0 = 0 and aK = 0, for K the largest change-point number under
consideration, with rk = ak for the other change-point numbers. The proposal one step
transition probabilities for the number of change-points are P(k , k + 1) = ak

d−k−1
and

P(k + 1, k) = rk+1

k+1
.

Following the change-point number proposal step, a single change-point location is also
sampled at each iteration. One of the k change-points is randomly selected, and its
location sampled with probability

π(sj |ysj−1:sj+1
, sj−1, sj+1,α, β, k) ∝ π(ysj−1+1:sj

|sj−1, sj ,α, β)π(ysj+1:sj+1
|sj , sj+1,α, β)p(s1:k |k),

for sj = sj−1 + 1, ... , sj+1 − 1.

Regarding priors we assign a Poisson(ξ) for the number of change-points k . In the
examples that follow, we set ξ = 1. The prior for the change-point locations is as in
Section 3.4.1. For the prior for each hazard, π(λj |α, β), we set α = 1, and the expected
value for β = 1 in the case that the timescale was in years, and β = 365 or 12 for
timescales in days or months respectively. We discuss hyperpriors for β in which provides
more robust inferences in Appendix A.1.1. Although we integrate out the hazard
parameters λ from the model during this estimation scheme, it is possible to estimate the
hazards for a given change-point model using the already sampled change-point locations
by simulating draws from the conditional distribution π(λj |y1:d , sj , sj−1,α, β), for
j = 1, ... , k + 1. In effect, this introduces an extra sampling step, in which the hazards
λ1:k+1 are “uncollapsed” and sampled at each iteration, before once again being collapsed
before the change-point number and locations are sampled, albeit this is done in a
post-hoc fashion. The conditional distribution π(λj |y1:d , sj , sj−1,α, β), has a gamma
distribution G(α′

j , β
′
j), with shape α′

j = sj − sj+1 + α and rate β′
j =

∑sj
i=sj1+1 yi + β.
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3.6 Simulation Study

The technique presented by Castelloe and Zimmerman (2002) was used to determine the
appropriate chain length for all scenarios in the simulation study detailed below. This
technique is a version of the Potential Scale Reduction Factor (PSRF) modified for
RJMCMC samplers. Across many of the example datasets we considered, the PSRF of
the change-point number remained below 1.02 after around 100 iterations of the model.
Although this measure is not definitive (and is dynamic with respect to chain length), it
potentially indicates adequate mixing with respect to the change-point number.
Moreover, because Gibbs sampling is employed for the change-point locations and interval
hazards, every proposed move is accepted, which typically promotes effective exploration
of the posterior.

We ran the model for 20,750 iterations with the first 750 discarded across two chains for
each of the simulation studies detailed below. Because the collapsed model is much more
(computationally) efficient at calculating the relative probabilities of competing models
than estimating all potential models by Gibbs sampling and then calculating marginal
likelihoods, the scenarios are estimated using the collapsing model (with both approaches
expected to give very similar results).

3.6.1 Assessment of Power and Parameter Estimation

We conducted a simulation study to investigate the accuracy with which the collapsing
change-point model estimated the model hazards, identified the locations of the
change-points and selected the correct number of change-points. We simulated data from
models with k = 0, 1, 2 change-points. For each model we varied the sample size and the
characteristics of the hazard function. Data from each scenario was simulated 500
times.

We calculated number of times our models chose the (correct) null model with no
change-points for 500 simulated data sets of a particular sample size
(nsamp ∈ {100, 200}), hazard (λTrue ∈ {0.25, 0.5, 0.75}) and degree of censoring (0% or
50%) within the observable time horizon. Although 0% censoring does not occur in
practical applications, it serves as a reference case for assessing the impact of censoring.
A value of 50% censoring is plausible, especially in trials where long-term survival is likely.
Examples of datasets with approximately 50% censoring include the E1690 and E1684
datasets presented in Section 5.5 in Chapter 5.

For the scenarios with one change-point we simulated datasets with increasing and
decreasing hazards, varying the difference in the hazard between intervals, while for two
change-point models we also considered bathtub and inverted bathtub hazards. In these
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scenarios the sample size was one of nsamp ∈ {200, 300, 500, 1000}, with the true
change-point equal to 0.5 and for two change-point models a change-point at time equal
to 1.

A study follow-up of 2 years was assumed and observations with a survival time greater
than this were censored. As noted above, for some simulation studies we assessed the
impact of censoring within the study. The censoring percentages refer to the expected
proportion of events within the study follow up which are censored. If a censoring
percentage of 50% was required, censoring and event times were generated for 100% (i.e.
double the required percentage) of the dataset with the censored time following the same
piecewise distribution as the event times. This ensured that the censoring of the events
occurred with approximately equal probability throughout the study follow up.

Also presented are a number of simulation study results comparing the power of our
approach referred to as “Collapsing” with the model of Chapple et al. (2020), referred to
as “RJMCMC”.

3.6.2 Assessment of Accuracy of Survival Extrapolation

We evaluate the model’s performance in estimating the Restricted Mean Survival Time
(RMST) when an incorrect number of change-points was specified, compared to when the
correct change-point model was selected. RMST is defined as the integral of the survival
function up to a specified timepoint (Royston and Parmar, 2013).

In contrast to the simulation study assessing the power of the method to determine the
number of change-points, the number of change-points of the PEM was fixed in advance,
however, time maximum observed time was again 2 years with all examples assuming no
censoring. The relative percentage error in RMST (ErrRMST) was calculated as the
absolute difference between the RMST of the PEM (RMSTPEM) and the true RMST of
the data generating process (RMSTTrue) divided by true RMST of the data generating
process; ErrRMST = |RMSTPEM−RMSTTrue|

RMSTTrue
. The RMST was evaluated up to time equal to 15

at which the survival probability would be negligible.

When the true data generating process was a constant hazard (i.e. no change-point) we
calculated the ErrRMST when correctly assuming no change-point versus assuming one
change-point respectively. In the scenarios where the data generating process had one or
two change-points we compared the true change-point model versus a model with one
fewer and one more change-point than the true model. The no change-point examples the
simulated datasets had a sample size nsamp = 100 while in the change-point examples
nsamp = 300.
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3.6.3 Simulation Study Results

We tested the proposed method’s ability to detect the absence of a change-point. Table
3.2 shows that the collapsing model selects the null model approximately 95% of the time,
irrespective of the sample size, hazard or censoring.

Table 3.2: Power test for the no change-point model

True hazard Probability Correct (%) n Censoring (%)

0.25
95.0 100 0
96.8 200 50
95.0 100 50

0.5
95.2 100 0
95.8 200 50
93.4 100 50

0.75
95.8 100 0
96.0 200 50
94.4 100 50

Results for one and two change-point models are reported in Table 3.3 with the same
results represented pictorially in Figures 3.3 and 3.4.

For each scenario (i.e., combination of investigated parameters), we fitted the collapsing
change-point model to 500 simulated datasets. Among these 500 estimated models, we
identified the most probable change-point model. The frequency at which the correct
number of change-points was identified is presented in Table 3.3 as % Correct. Within
this subset of models that correctly identified the model, we report the average value of
τEst, which represents the posterior mean of the change-point(s) (with numbered
subscripts denoting the first or second change-point for two-change-point models). The
associated standard error is presented in parentheses. In Table 3.3, these values are
denoted as E [τEst]. Also reported are λTrue, the simulated hazards for each interval. For
clarity of exposition, we omit the expected posterior mean of the hazards and its standard
error, noting that the accuracy of hazard estimation is determined by the accuracy of the
change-point locations.

For the one and two change-point simulations studies, large sample sizes and/or large
changes in hazards resulted in the correct model being selected with a high probability.
When changes in hazards are relatively large, the correct model is selected with high
probability at all samples, while for smaller changes moderate to large samples are
required. Similarly, E [τEst] is closer to the true values of the change-point(s) and has a
smaller standard error when there are large differences between the hazards and/or large
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sample sizes.

Table 3.3: Probability of selecting correct change-point model and estimation of τTrue with
the collapsing approach

Model Parameters nsamp = 200 nsamp = 500 nsim =1000 λTrue E [τTrue]

Increasing Small
E [τEst] 0.60 (0.15) 0.56 (0.12) 0.52 (0.07)

0.5,0.75
0.5

% Correct 38 77 97

Increasing Large
E [τEst] 0.52 (0.04) 0.51 (0.02) 0.5 (0.01)

0.25,0.75
0.5

% Correct 91 96 97

Decreasing Small
E [τEst] 0.52 (0.14) 0.52 (0.11) 0.51 (0.08)

0.75,0.5
0.5

% Correct 44 76 97

Decreasing Large
E [τEst] 0.49 (0.05) 0.49 (0.03) 0.5 (0.01)

0.75,0.25
0.5

% Correct 95 96 98

Increasing
E [τEst1] 0.56 (0.1) 0.52 (0.06) 0.51 (0.03)

0.25,0.5,0.75
0.5,1

E [τEst2] 1.19 (0.14) 1.11 (0.13) 1.03 (0.08)
% Correct 22 57 94

Decreasing
E [τEst1] 0.34 (0.1) 0.42 (0.09) 0.47 (0.06)

0.75,0.5,0.25
0.5,1

E [τEst2] 0.96 (0.1) 1.01 (0.09) 1 (0.05)
% Correct 20 47 90

Bathtub
E [τEst1] 0.48 (0.03) 0.49 (0.02) 0.5 (0.01)

0.75,0.2,0.75
0.5,1

E [τEst2] 1.02 (0.04) 1.01 (0.02) 1 (0.01)
% Correct 89 94 95

Invert Bathtub
E [τEst1] 0.51 (0.03) 0.5 (0.01) 0.5 (0.01)

0.2,0.75,0.2
0.5,1

E [τEst2] 0.99 (0.03) 0.99 (0.03) 1 (0.01)
% Correct 92 95 97

55



Figure 3.3: Simulation study results for the 1 change-point scenario
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Figure 3.4: Simulation study results for the 2 change-point scenario

Considering the comparison between Chapple et al. (2020) and our approach, for each of
the one and two change-point scenarios we found that the collapsing approach had a
higher probability of detecting the correct change-point model as illustrated in Figures 3.5
and 3.6.
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Figure 3.5: Probability of correctly detecting the change-point (1 change-point scenarios)

Figure 3.6: Probability of correctly detecting the change-point (2 change-point scenarios)
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Results for the scenarios predicting long-term survival are presented in Table 3.4. As
expected, the percentage error is reduced when there is a lower survival probability at the
end of follow-up (i.e. models with higher initial hazards). Additionally, the error increases
when the model is incorrectly specified, however, the increase is quite modest, particularly
when an extra change-point is estimated. As noted previously, the prior for the
change-point places lower prior probability on change-point locations where a
change-point is placed close to another change-point or last observation. This means that
the final interval which informs the extrapolated hazard has a relatively large sample size
increasing the robustness of the extrapolations.

Table 3.4: Accuracy in estimating Restricted Mean Survival with different change-point
numbers

ErrRMST%

Model Correct Incorrect - One too few Incorrect - One too many

Constant (λ = 0.25) 8.34 - 11.07
Constant (λ = 0.5) 5.61 - 7.03
Constant (λ = 0.75) 3.75 - 4.85

Increasing Small 2.53 4.16 3.03
Increasing Large 2.27 8.4 2.82
Decreasing Small 4.21 6.24 4.97
Decreasing Large 6.01 22.02 6.61

Increasing 2.67 2.87 3.31
Decreasing 7.98 8.46 8.1
Bathtub 2.55 4.8 2.84

Invert Bathtub 7.37 14.56 7.66

3.7 Applications

In this section we applied the approach to real data sets. In our first application, we
investigate how the method can be used to explore the behaviour of the hazard. In our
second example we assess the performance of the change-point model in comparison with
several popular survival models in the context of survival extrapolation.

3.7.1 Leukaemia Remission times

Matthews and Farewell (1982) present times from remission induction to relapse for 84
patients with acute nonlymphoblastic leukaemia who were treated on a common protocol
at university and private institutions in America (see Glucksberg et al. (1981)). The
author noted that this data set is typical of those encountered in the treatment of acute
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leukaemia, except that 24 of 33 censored observations were censored at six months (182
days) when the patients were randomized to an experimental protocol. Of the 84
patients, 51 patients had an event, with the median time-to-event being 284 days, and
survival times ranging from 24 days to a patient who was censored at 2057 days. One
topic of clinical interest was determining if a treatment provided a reduction in the hazard
of relapse after a period of time, relative to the initial time after induction, which was
typically assumed to have a high constant hazard of relapse.

Matthews and Farewell (1982) considered the detection of a change-point in the hazard of
relapse for leukaemia using a frequentist approach. Using a log-likelihood ratio test the
null hypothesis of no-change-point was rejected. It is however, possible that there are
additional change-points in the data. To be consistent with the analysis of Matthews and
Farewell (1982), we removed observations which are censored at 182 days.

Using the Gibbs sampler detailed in Section 3.4.1, change-point models with 0-4
change-points were fit to the data. Based on diagnostic statistics of pilot runs from
Gelman and Rubin (1992), Raftery and Lewis (1992) and Geweke (1991) each model was
run for 10,100 simulations, with the first 100 discarded. The log mean marginal
likelihoods and corresponding Bayes Factors for the models are presented in Table 3.5.
Using the criteria presented in Table 3.1 there is clear evidence supporting the one
change-point model versus the no-change-point model. Considering model fit using Bayes
Factors, although the models with 3 or more change-points are more probable than the
one change-point model, they do not offer sufficient evidence to favour them over the
simpler one change-point model. When the data was analyzed with the collapsed
change-point model, the 2 change-point model was estimated as being slightly more
probable than the one change-point model, however, there was a substantial posterior
probability for the one change-point model. Models with higher number of change-points
had additional change-points at earlier timepoints, however, the posterior distribution for
final change-point is very similar across all models. This suggests that the final
change-point is at approximately 642 days, however, additional change-points in the early
portion of the data may provide a slightly better fit to the observed data.

Based on this analysis we propose that the hazards experienced by these leukaemia
patients is best described by a one change-point model. Figure 3.7 shows the mean
posterior change-points and survival probabilities (green diamond and purple line) along
with the 95% credible interval for survival (dashed grey line). Table 3.6 confirms that the
hazard falls considerably after 642 days (1.76 years).
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Table 3.5: Marginal Likelihood of change-point models applied to leukaemia remission data

Model Log10 Mean Marginal Likelihood Bayes Factor∗ Posterior Probability†

0 -161.22 1.9 %
1 -159.81 25.4 38.2 %
2 -159.45 2.33 38.6 %
3 -159.29 1.43 16.8 %
4 -159.18 1.28 4.5 %

∗ Bayes Factor versus previous model

† Collapsing change-point Model

Figure 3.7: Survival function of one change-point model applied to leukaemia remission
data.

Table 3.6: Posterior Quantiles for the one change-point model parameters.

Parameter Median [95% Credible Interval]

τ1 (days) 642 [304-697]
λ1 (per year) 0.936 [0.69 - 1.1235]
λ2 (per year) 0.143 [0.021 - 0.473]

Figure 3.8 shows the posterior probabilities of the change-points and the maximum a
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posteriori (MAP) estimate of the change-point is 697 days, which is consistent with the
results from Kim et al. (2020) and Matthews and Farewell (1982) who obtained a
maximum likelihood estimate of 697 days.

Figure 3.8: Posterior probabilities of change-point locations for one change-point model
applied to leukaemia remission data.

3.7.2 Glioblastoma data: Identifying trends in the hazard

function

One potential application of hazard change-point analysis is the visualisation of the hazard
function itself. We compare the hazard function estimated from the Gibbs sampler with
approaches documented by Hagar and Dukic (2015), who review a variety of packages
used to estimate the hazard in time-to-event data for the statistical software R.

We consider data relating to survival times for Glioblastoma, a central nervous system
cancer in which prognosis remains poor. The data is available using the R package RTCGA

developed by Kosinski and Biecek (2020) and contains a sample of 595 patients of which
446 experience death. The median survival is 1 year with approximately 5% of patients
surviving after 5 years.
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Figure 3.9: Step (black-twodash), Smoothed (blue-longdash) and posterior mean (purple-
solid) hazard functions applied to Glioblastoma data.

Figure 3.9 below provides an estimate of the hazard of death for the Glioblastoma data
using three approaches. The first approach, coloured in black (twodash line), divides the
time interval into bins of equal width (in this case one-year intervals), and then estimates
the hazard in each bin as the number of events di in that bin divided by the number of
patients at risk in each interval, ni with the hazard for that interval hi = di

ni
(see R

package muhaz by Hess and Gentleman (2019)). The second approach uses B-splines
from a generalized linear model perspective to estimate a smoothed hazard function along
with confidence regions (see R package bshazard by Rebora et al. (2018)), coloured in
blue (longdash line) with confidence regions in grey. The third approach, plots the
posterior median of the hazard function.

From Figure 3.9 it appears that the hazard peaks at 1-2 years and then falls thereafter.
The posterior distribution of the change-points are concentrated at times 0.85 and 2.25
and their 95% credible intervals do not overlap. The posterior distributions of the hazards
also do not overlap with the posterior distribution of an adjacent interval, suggesting a
clear change in the hazards between each interval. Using the posterior medians of the
parameters we can surmise that there are three distinct intervals; in the first interval up to
approximately 0.85 years, there is a moderately large hazard of approximately 0.6. Then
from the period 0.85 to 2.2 years the hazard peaks around 1 and falls to approximately
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0.4 thereafter. The finding that the hazard is peaked is consistent with Wang et al.
(2015), however, the long-term drop in hazards is more pronounced for patients in this
dataset.

3.7.3 Predicting survival by extrapolating constant hazards

Miller and Halpern (1982) presented survival times for 184 patients who received heart
transplants. Visual inspection of the cumulative hazard plot suggests that after 1 year the
hazards are approximately constant (i.e. linear). Assuming this to be correct, we
artificially censored the data at 2 years and fit the piecewise exponential model and other
commonly used survival distributions to this data estimated with the JAGS and Stan
software programs (Plummer, 2003; Stan Development Team, 2020). For each model we
assessed the statistical fit to the partially observed data and the difference in predicted
survival to the fully observed data.

Figure 3.10: Cumulative Hazard Plot for Stanford Heart Data

Statistical fit was assessed through a number of criterions, namely Pseudo-Marginal
Likelihood (PML) and Widely Applicable Information Criterion (WAIC) with details on
their respective computation available in A. E. Gelfand (1994) and Watanabe
(2010).

Similar to the previous section we “uncollapse” the hazards at each simulation and
calculate the survival function with the mean posterior survival being the average of these

64



survival probabilities at each timepoint. For the piecewise exponential model we found
that the 2 change-point model had the highest posterior probability ≈ 66%. The posterior
mean of the first change-point is 0.18 years at which the hazard falls from a posterior
mean of 1.56 to 0.42. The posterior mean of the second change-point was 0.81 years
after which the posterior mean of the hazard was 0.16. Figure 3.10 highlights the
piecewise exponential model provides a predicted survival similar to the long-term
Kaplan-Meier survival. In Figure 3.10 green diamonds refer to the mean change-point
locations for the change-point model. Dashed line refers to the timepoint at which the
original dataset was artificially censored.

Table 3.7 presents the PML and WAIC (evaluated using the R package loo by Vehtari
et al. (2020)) for each of the models fit to the partially observed data. The table also
presents the RMST evaluated up to 10 years based on the expected extrapolated survival
for each model. The RMST estimated from the (long-term) Kaplan-Meier survival
function (i.e., estimated using the data which were not artificially censored) is also
presented. Because the Kaplan-Meier survival function is an estimator of survival and is
subject to statistical uncertainty, the uncertainty in the survival function was estimated
using a bootstrapping procedure. The RMST was calculated for each bootstrapped
replication and then averaged. To estimate how closely the parametric survival models
predicted the true long-term survival data, we calculated the expected absolute difference
(in years) between the RMST estimated from the bootstrapped replicated Kaplan-Meier
survival function and the RMST for the parametric model (E [|RMSTKM − RMSTModel |]).
Consistent with the hypothesis that the long-term hazards were approximately constant,
the piecewise exponential approach is the best fit to the true data, both in terms of
statistical fit and deviation in terms of RMST.
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Figure 3.11: Long-term survival probabilities for 5 best fitting survival models.

Table 3.7: Goodness of fit statistics for survival models and comparison of RMST between
models and the long-term data

Model -2log(PML)* WAIC RMST E [|RMSTKM − RMSTModel |]
Piecewise Exponential 250.88 250.8 3.31 0.37
Royston-Parmar 1 knot 264.17 264.16 4.04 0.67

Log-Normal 265.72 265.72 3.86 0.54
Log-Logistic 268.95 268.95 3.68 0.47
Gompertz 269.61 269.61 4.91 1.46

Generalized Gamma 271 271 3.52 0.4
Weibull 274.53 274.53 3.38 0.4
Gamma 278.88 278.88 3.15 0.49

Exponential 321.32 321.32 2.21 1.45
True Observations 3.44

* -2log(PML) was calculated to place it on the same scale as WAIC. Lower values indicate

better fit.
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3.8 Discussion

In this chapter we have presented two Bayesian approach to determining the number and
location of change-points in a hazard function including the special case were no
change-point exists. By employing a Bayesian approach, uncertainty around the number
of change-points is automatically computed and is described with a probabilistic
interpretation, allowing us to assess the relative evidence of alternative change-point
models. In the Gibbs sampler approach we fit all candidate change-point models
(including the null model) and select the change-point model using Bayes Factors and the
decision rules suggested by Jeffreys (1961).

In the collapsing model approach we take advantage of the fact that the marginal
likelihood for a piecewise exponential model without covariates can be expressed
analytically. By restricting the change-points to be event times we reduce the complexity
of the parameter space resulting in a simpler and computationally efficient algorithm.
While the approach of Chapple et al. (2020) can be considered more general in that it
allows covariates and continuous change-points, we found that in some examples the
change-points were highly correlated due to the relative infrequency of moves between
model dimensions and that for smaller changes in the hazard change-points were not
detected. Furthermore, as demonstrated in our simulation study the collapsed approach
had a higher probability of detecting the correct change-point model.

It should be noted that evaluating the marginal likelihood and subsequent model selection
using Bayes Factors from the Gibbs sampler model is similar to the collapsing model
which visits the competing change-point models proportional to their marginal likelihood.
For the collapsing change-point model the marginal-likelihood is also multiplied by a prior
for the change-point number (i.e. the Poisson prior), while for the Gibbs sampler the
model selection is based on the marginal likelihood and the decision rule suggested by
Jeffreys.

Our simulation studies demonstrated the ability of the algorithm to detect change-points
when sample size and/or change in hazards is large along with the consistency of the
estimators. As demonstrated by the no change-point simulation study, the model has a
low probability of detecting the presence of change-points when they do not exist. As
with any Bayesian analysis, the inferences are somewhat informed by the choice of prior.
We consider a discrete prior on the change-point locations which has the advantage of
ensuring that the change-points are not too close together or close to the final events,
where there is typically a sparsity of data. Because model selection is based on the
evaluation of the marginal likelihood, this calculation can be sensitive to the
hyperparameters used, and we provide an approach to specify a hyperprior for the β
hyperparameter which we describe in Appendix A.1.1. The Poisson prior on the
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change-point number is reasonably robust to alternative specifications, however, in
individual examples where posterior model probabilities are similar, it will naturally have
some effect.

In this chapter we have presented real world applications of piecewise change-point
models. For the leukaemia data we considered the relative probability of multiple
change-point models rather than assuming the choice was between a one or no
change-point model. Regarding the Glioblastoma data, our approach segments the hazard
function into distinct intervals which may allow greater interpretability of the trends in the
hazard function even when not considering the piecewise exponential model for survival
extrapolation. In situations where the constant long-term hazards are plausible we believe
that a piecewise exponential model should be considered and in the third example we
compare the extrapolated survival of the piecewise exponential model vs that of other
parametric models. Although we artificially censored the data for the purpose of our
example it is reasonable to hypothesize that these heart transplant patients may be
subject to different hazards as time progresses. Patients are likely subject to high hazards
of death during or immediately after a complex surgical procedure such as a heart
transplant. Over the initial number of months patients are likely to be at an elevated risk
of transplant rejection and many events may occur over this period. If patients do not
reject their transplanted organ, over the long-term they are subject to a lower hazard
associated with all-cause mortality. When considering the lifetime time horizon, piecewise
exponential models (and any parametric model) should always be adjusted to ensure the
extrapolated hazards do not fall below general population mortality which we discuss in
greater detail in the next chapter.

We note the relatively recent Technical Support Document (TSD) regarding flexible
survival models (Rutherford et al., 2020). Regarding the use piecewise exponential models
in health technology assessment, they state that “the cut-points for the various intervals
may be arbitrary and may importantly influence the results of an analysis” and “splitting
the data into sections according to time means that sample sizes are reduced in later
segments of the curve”. We believe our approach addresses both of these limitations as
firstly the location (and number) of change-points is informed by the data and secondly
the prior we use for the change-points reduces the probability that change-points close
together or to the final event will be selected. Rutherford et al. (2020) also highlight
situations in which the Kaplan-Meier survival function is used to represent the initial
section of the survival function and an exponential function is adjoined to a predetermined
point of the Kaplan-Meier. In this situation, our approach could also be used in
determining the final change-point and its associated uncertainty from which the constant
hazard is extrapolated. In order to test this hypothesis, in the subsequent chapter we
review previous applications of Bagust & Beale approach to HTAs and apply the
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collapsing model to the survival outcomes.
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4 Piecewise Survival models in
HTA

4.1 Introduction

As described in Chapter 2, there are a number of methodologies to extrapolate
time-to-event outcomes. One framework developed by Bagust and Beale (2014) suggest
examining the clinical trial for biologically plausible hypotheses rather than assuming the
data are best described by one of the standard parametric models. One key
recommendation of this approach is that the trial protocol (or disease processes) may
induce transient effects on the hazard of an event. Bagust and Beale suggest visually
inspecting the empirical cumulative hazard function to identify a timepoint after which
there is evidence of a long-term linear trend. Once identified, a constant hazard
(exponential) model should be fit to the data after this timepoint.

As highlighted in Section 2.5.2 there are several important issues are associated with the
B&B approach particularly relating to the selection of the timepoint and that the
non-parametric nature precludes comparison with standard parametric models.

We propose to use the statistical method described in Chapter 3 which addresses these
limitations. This method is fully parametric and sits within the framework of NICE TSD
14. It objectively identifies the timepoint after which a constant hazard appears plausible.
We consider the application of the B&B approach in previous HTAs and compare the
concordance of the timepoint estimated by the B&B approach to the proposed method.
In situations where more mature survival data became available after that which was
presented in the HTA, we assessed the accuracy of the extrapolated survival using the
proposed method compared to other parametric models. While the HTAs considered are
those submitted to NICE, the method described is of relevance to a wide range of HTA
authorities whose assessments require extrapolating survival outcomes.
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4.2 Methods

4.2.1 Identification of submissions using Bagust and Beale

approach to extrapolate survival

We identified HTAs which used the B&B approach based on a previous review
by Bell Gorrod et al. (2019). The scope of the review was restricted to completed NICE
single technology appraisals (TAs) for cancer treatments that commenced between July 1,
2011, and June 30, 2017. A TA involves a company submission providing evidence on a
single technology for a single indication for the purpose of making recommendations for
use in the National Health Service (NHS) for England. During the process, the evidence is
assessed by an independent Evidence Review Group (ERG), which produces its own report
and conclusions. The TAs which were screened were identified as those categorized as
“piecewise” in the Bell Gorrod et al. (2019) review. For each of these TAs one of the
authors assessed if the B&B approach was employed for extrapolating survival outcomes.
If the B&B approach was used, information on the timepoint after which constant hazards
were assumed and Kaplan-Meier (KM) survival functions were extracted. The selection of
relevant TAs and accuracy of extracted data was confirmed and verified by the second
author. A three-step process was then performed for each identified KM survival function.
First, the KM survival function was digitized using the WebPlotDigitizer
application (Rohatgi, 2022). Individual patient data was then reproduced using the
algorithm by Guyot et al. (2012) using R version 4.1 (R Development Core Team, 2023).
KM survival functions estimated from the reconstructed patient data were inspected by
both authors to assess agreement with the original KM survival function. Information on
each of the TAs considered in our review and the relevant information extracted from
them are detailed within Appendix B.2.

4.2.2 Alternative to Bagust and Beale approach using a change-

point model

The key step in the B&B approach is the identification of a point at which the hazard
changes and remains relatively constant. Rather than seek to identify this timepoint
subjectively, we estimate this statistically, using a change-point model. A change-point
model assumes that the data generating process can undergo changes over time such that
one model will not be appropriate for all time periods. The times at which the statistical
model undergoes abrupt changes are termed the change-points. These split the data into
contiguous segments. The parametric model assumed for the data usually remains the
same across segments (e.g. exponential model), but changes occur in its model
parameters. Change-point models can also be called “piecewise models/approaches”,
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however, this term has also been used to describe situations in which some portion of the
trial/external data are modelled non-parametrically (i.e. with a KM survival
function) (Bell Gorrod et al., 2019; Latimer, 2013; Rutherford et al., 2020). Therefore
change-point models are more accurately described as a particular type of piecewise
model. Specifically, we consider a particular change-point model called a piecewise
exponential model (PEM), a survival model which assumes that the hazard function is
constant within segments but independent between segments. The PEM, which we
described mathematically in Chapter 3, uses the data directly to estimate the number and
location of change-points. The final segment of the data estimates the constant hazard
used to extrapolate survival. As stated in Chapter 3 the PEM tends to avoid overfitting as
we use a prior belief on the change-point locations which has the advantage of ensuring
that the change-points are not too close together or close to the final events, where there
is typically a sparsity of data. By using a Bayesian approach, the posterior distribution of
the change-point(s) and their locations automatically characterize parameter uncertainty
and can propagate this uncertainty into the survival function. Also produced are the
relative probabilities of each change-point model (i.e. none, one, two change-points)
conditional on the observed data, so that the survival function can be either based on the
most probable change-point model or a weighted average (with weights based on relative
probabilities) of all PEMs. The exponential model is a special case of the PEM, thus we
avoid the issue of identifying a subset of the data as having a constant hazard when the
entire data can be adequately described with a single constant hazard.

As noted in Chapter 3 we verified this property by conducting simulation studies which
show the power to detect a constant hazard model was above 90%. Simulation studies
also show that the capability of the method to estimate the true model parameters
increases with the sample size. Of particular interest to this use case, the relative error in
predicting extrapolated survival when the incorrect number of change-points was chosen
vs when the correct number of change-points was used was also estimated. Estimating
additional change-points resulted in a lower increase in the error associated with
extrapolated survival than assuming a model with too few change-points.

Because the number and location of the change-point(s) are determined by the data, the
PEM can provide a good fit to the data even in situations where there are large decreases
or plateaus in the survival function, which can sometimes be observed at the beginning of
the trial (Bagust and Beale, 2014). The model is fully parametric and can be compared to
other models using information criteria such as the widely applicable information criterion
(WAIC) (Watanabe, 2010). The method is implemented as an R package with
information on its installation along with a guide on its use in Appendix 8.1. Also included
is a Visual Basic Function so that a user can easily calculate the survival of a PEM in
Microsoft Excel given the change-points and segment hazards. The assumption of
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constant hazard for long-term extrapolation is very strong, especially if a proportion of the
trial survive to an age where general population mortality is no longer negligible relative to
the hazard observed in the trial. It could be plausible, however, that once general
population mortality (GPM) has been accounted for, that disease-related hazards can be
relatively constant, with PEMs previously used in this context (Estève et al., 1990). For a
wide range of diseases the Surveillance, Epidemiology, and End Results (SEER) Program
(2023) database provides tools to estimate the annual cancer specific conditional survival.
If the conditional survival probabilities become relatively similar across the time intervals,
it could provide clinical plausibility for (approximately) constant disease specific hazards.
Within the short timeframe of a typical randomized control trial, the disease specific
hazards are often similar to the all-cause mortality rate (Rutherford et al., 2020), and one
possibility is to add GPM hazards to the hazards predicted by the parametric model
beyond the follow-up of the trial (externally additive hazards). A variety of other
approaches are described elsewhere by van Oostrum et al. (2021).

4.2.3 Analysis of reconstructed datasets using Piecewise

Exponential Model

PEMs were fit to the reconstructed datasets which were previously analysed using the
B&B approach with further information provided in Appendix B.2. As part of model
estimation, the relative probabilities for each change-point model (in terms of number of
change-points) were estimated. We reported the mean value of the final change-point
along with its 95% credible interval for the change-point model with the highest
probability.

4.2.4 Comparison of Extrapolated and Observed Survival from

Extended Follow-up

For each TA identified using the B&B approach we identified the pivotal trial used to
estimate the survival models and its associated data-cut off (DCO). We then searched for
any publications which provided updated KM survival functions of the relevant survival
outcomes (through manual searching and by identifying the linked publications
at ClinicalTrials.gov. (2023)) which were digitized using the process previously described.
Parametric survival models were fit to the digitized data derived from the KM survival
functions based on the original submission. Fitted distributions included the exponential,
Weibull, gamma, Gompertz, log-logistic, log-normal, generalized gamma, Royston-Parmar
cubic spline and PEMs. For the Royston-Parmar models, both one and two knots were
considered with the number of knots selected based on WAIC. For the PEM, the number
of change-points was determined by selecting the most probable change-point model. In
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all cases the survival function generated from this most probable model was similar to the
survival function obtained from a weighted average of PEMs. For each of the updated
DCOs, updated survival outcomes were compared against the predicted survival of the
PEM and other parametric models. Statistical goodness of fit was assessed using WAIC
values obtained from the parametric models. We adjusted all survival functions for GPM,
using the external additive hazards mentioned in the previous section with GPM data
sourced from life tables of the United Kingdom, which present the annual mortality
probabilities observed within the general population of the country for males and
females Office for National Statistics (ONS). We considered a cohort approach, whereby
for each timepoint after baseline the age of the cohort is simply the average age in the
trial at baseline plus the time since the baseline. Furthermore, the proportion of males vs
females is assumed to remain constant over the considered time horizon. We converted
the gender-weighted mortality probabilities to hazard rates which were then added to the
extrapolated hazard from the parametric model to obtain the all-cause hazards and
consequently the estimated survival. We discuss other approaches to implementing
general population mortality along with their potential advantages/limitations in Chapter
8.1.3. We also demonstrate in Chapter 8.1.3 that for the examples considered in this
study the different approaches to including GPM will yield almost identical results. To
assess accuracy of the predicted survival we calculated the RMST for all models until the
maximum time in the updated DCO. Because the Kaplan-Meier survival function is
subject to uncertainty, we calculated the (average) RMST based on 1,000 bootstrap
replications. For each of these bootstrapped values we also calculated the absolute
difference between the bootstrapped RMST (from the Kaplan-Meier) and the average
RMST for each parametric model, which was then averaged.

4.3 Results

4.3.1 Previous submissions using the Bagust and Beale

approach

Three of the fourteen TAs categorized as “piecewise” used the B&B approach. As a
justification for their application of the B&B approach, these TAs cited three previous
TAs that also used the B&B approach and were within the scope of the review. All six
TAs are summarized in Table 4.1. We refer to individual TAs using the index number
assigned to them by NICE. In two TAs (TA268, 2012; TA347, 2015) the B&B approach
was applied by the ERG as a scenario analysis rather than the manufacturer’s basecase
submission. Justification for the chosen timepoint at which a constant hazard began was
primarily based on visual inspection of the cumulative hazard function (TA268, 2012;
TA347, 2015; TA269, 2012; TA447, 2017). A linear regression line fit to the identified
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interval of the cumulative hazard function was used for additional justification in TA268
(2012); TA347 (2015) and TA269 (2012). Although TA428 (2017) included cumulative
hazard plots, the primary justification was based on visual fit of the survival function. A
more formal statistical approach using the piece.linear function from the SiZer

package (Sonderegger, 2022), was conducted in TA396 (2016). This approach assumed
that the timepoint for the constant hazard extrapolation was the likelihood-maximising
change-point of the cumulative hazard function. The use of regression methods and linear
modelling assume that points are distributed normally around a line of best fit, which is
not appropriate in survival analysis, as it does not account for censoring or that the
cumulative hazard function is an increasing step function. In most cases (TA268, TA269,
TA396, TA428) there was general agreement between the timepoint chosen in the TAs
and the final change-point from the most probable change-point model, with the chosen
timepoint either having a difference of less than 3 months compared to mean
change-point value and/or being within the final change-point’s 95% credible interval. An
exception to this was TA347 (2015) in which an ERG assumed that for the overall survival
outcome (OS) for nintedanib + docetaxel, the period after about 6 months had
approximately constant hazards. Using the PEM approach, we found that the posterior
probability of a no change-point model was ≈70%, suggesting that an exponential model
adequately fit the observed data. For the docetaxel monotherapy arm there was evidence
of a change-point, however, the mean value of the change-point from the PEM was 2.5
months compared with approximately 9 months as assumed by the ERG. For progression
free survival (PFS), although not identified by the B&B approach, it was assumed that for
both treatment arms there was a common constant hazard after 12 months. Fitting PEMs
to the data, the most probable change-point model indicated average final change-points
at about 7 and 5 months for the nintedanib + docetexal and docetaxel monotherapy arms
respectively. The average hazard after the final change-point was very similar for the
PEMs fitted to each of the treatment arms, supporting the assumption of a pooled
extrapolated hazard. Because the OS and PFS data were quite mature (<20% survival at
end of follow-up) the differences in the extrapolations between the change-point and no
change-point (exponential) model were minimal. Another situation with differences in
results was TA447 (2017) where the applicant assumed that the constant hazard began at
5 months. Using the PEM approach, the most probable change-point model was the no
change-point model, with 80% probability. In TA531 (2018), which superseded TA447
(2017) with a later DCO, the ERG applied exponential extrapolations to both arms at ≈
10 months. Applying the PEM to this data, the most probable model remained the no
change-point model (probability of ≈ 70%). The estimated change-point locations for the
one change-point model where 6 months and 12 months, both similar to the values used
in TA447 and TA531 respectively. Because the survival data were relatively immature
(65% and 45% survival at end of follow-up for the DCOs used in TA447 and TA531
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respectively) and the hazard after the change-point was lower than before the
change-point, there was a difference in predicted survival. For the one-changepoint model
estimated with the DCO used in TA477, the median predicted survival at 60 months was
22.3% compared with 16.3% from the exponential model.
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Table 4.1: Technology Appraisals assuming a Kaplan-Meier + constant hazard extrapolation.

OS PFS
Timepoint (months) after which constant hazard was assumed*

Appraisal Year of Assessment Outcomes Approach used in TA Treatment Intervention/ Comparator TA PEM TA PEM

TA268 (2012) 2012 PFS and OS both arms

Visual Inspection

Ipilimumab Intervention 25.3 25.4 [24.6-25.6] 12 14.6 [10.3-18.7]
Glycoprotein 100 Comparator 11.2 13.8 [9.1-25.1] 6.2 7 [6-12.4]

TA269 (2012) 2012 PFS both arms
Vemurafenib Intervention N/Aa N/Aa 4 4.6 [3.9-6.8]
Dacarbazine Comparator N/Aa N/Aa 4 1.6 [1.4-3.0]

TA347 (2015) 2015 PFS and OS both arms
Nintedanib + Docetaxel Intervention 5.7 N/Ab 12.3 6.6 [4.3-11.6]
Docetaxel Comparator 9.9 2.5 [2.4-3.5] 12.3 4.6 [3.9-9.8]

TA396 (2016) 2016 PFS and OS both armsc R package SiZer used
Dabrafenib + trametinib Intervention 18.6 18.3 [10.7-23.7] 11.8 16.8 [11.5-24.1]
Dabrafenib or Vemurafenib Comparator 3.2 N/Ac 12.5 13.6 [12.9-16.1]

TA428 (2017) 2017 OS both armsc Visual inspection Pembrolizumab Intervention 12 12.2 [10.7-12.7] N/Aa N/Aa

TA447 (2017) 2017 OS both armsc Visual inspection Pembrolizumab Intervention 5.1 N/Ab N/Aa N/Aa

TA - Technology Appraisal; PEM - Piecewise Exponential model; OS - Overall Survival; PFS - Progression Free Survival; N/A - Not applicable.
* Mean final change-point and 95% credible interval

N/A indicates that there was no result presented because:
a Outcome not analysed by the B&B approach
b No change-point was detected for survival outcome
c Treatment switching occurred for comparator arm, therefore not possible to accurately reconstruct OS data.
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4.3.2 Prediction accuracy of survival models

Subsequent DCOs became available after the original submission in four of the TAs using
the B&B approach: TA269, TA396, TA428, and TA447. For TA269, TA396 and TA428
the updated DCO was the BRIM-3 study (Chapman et al., 2011), a pooled analysis of
COMBI-v and COMBI-d trial data (Robert et al., 2019), and updated data for
KEYNOTE-10 clinical trial (Herbst et al., 2021) respectively. However, the BRIM-3 study
only presented an updated DCO for OS, and OS data with original cut off was not
modelled using the B&B approach in TA269. As mentioned previously, the updated DCO
relevant for TA447 was used in the subsequent technology appraisal TA531. Hence, we
have updated DCOs for the survival outcomes in TA396, TA428, and TA447. Table 4.2
presents the (average) difference in RMST between the maximum follow-up of the
updated DCO and predicted survival of the parametric models. In terms of accuracy to
the updated DCO (measured by lower absolute difference in RMST) the PEM performed
well relative to the other parametric models, however, for TA396 all parametric models
underestimated survival, while for TA447 the updated DCO was still quite immature.
Figures 4.1 and 4.2 present survival, cumulative hazard, and hazard functions for the
DCOs relevant for TA428. The PEM model produces an accurate extrapolation to the
updated data (Figure 4.1), and the PEM model had the lowest (best) WAIC (based on
original data). The Kaplan-Meier survival function before dashed vertical line indicates
earlier data-cut, while Kaplan-Meier survival function afterwards is the long-term follow
up. Green diamonds refer to change-points identified by PEM. For clarity only the top
three best fitting standard parametric models are presented in this figure. Because the
B&B approach uses the cumulative hazard function to estimate the timepoint after which
constant hazards are assumed, we present the cumulative hazard function of the earlier
KEYNOTE-10 data (used in TA428) and estimates of the hazard function in Figure 4.2.
Although the plot of the cumulative hazard function (Figure 4.2) is suggestive of a change
in the hazards, the timepoint at which this occurs is unclear. There is a plateau in the
function from ≈ 17 months, however, this was an artifact of a small sample size and not a
true indication of a change in hazards, as confirmed by the later DCO. This was correctly
identified by the PEM, with the final change-point identified before this timepoint at 12
months. The hazard function was estimated using two approaches for comparison in
Figure 4.2B. The first approach uses B-splines from a generalized linear model perspective
to estimate a smoothed hazard function along with 95% confidence regions (see R
package bshazard by Rebora et al. (2018)), coloured in blue (longdash line) with
confidence regions in blue. The second approach plots the posterior expectation of the
hazard function from the PEM along with the 95% credible regions (in purple). Additional
figures for the other TAs are provided in Appendix B.3.
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Table 4.2: Goodness of fit for parametric survival models to original data and difference
between predicted survival from parametric survival models to the long-term follow up data.

Original TA Updated Data Cut-Off Outcome Parametric Model WAIC RMST E [|RMSTKM

−RMSTModel |]

TA396 COMBI Pooled

OS

Piecewise Exponential 2279.54 35.07 3.73
Royston-Parmar 1 knot 2274.56 34.68 4.12
Exponential 2343.35 33.83 4.97
Log-Normal 2283.64 33.11 5.69
Log-Logistic 2293.7 32.19 6.61
Generalized Gamma 2292.67 31.23 7.57
Gamma 2301.99 29.71 9.09
Weibull 2310.25 29.27 9.53
Gompertz 2335.74 28.69 10.11
Follow-up Kaplan-Meier N/A 38.85 N/A

PFS

Royston-Parmar 1 knot 2658.45 22.96 1.67
Piecewise Exponential 2539.88 21.97 2.6
Gompertz 2735.91 21.32 3.25
Log-Normal 2676.1 20.76 3.8
Log-Logistic 2689.92 20.42 4.14
Exponential 2736.44 19.73 4.83
Generalized Gamma 2698.07 19.72 4.84
Weibull 2731.17 18.82 5.73
Gamma 2724.33 18.63 5.92
Follow-up Kaplan-Meier N/A 24.65 N/A

TA428 KEYNOTE-10 OS

Piecewise Exponential 1314.66 21.65 1.25
Log-Normal 1316.25 20.47 2.36
Log-Logistic 1317.73 19.66 3.17
Generalized Gamma 1318.17 17.47 5.36
Exponential 1324.93 17.29 5.54
Royston-Parmar 1 knot 1320.92 17.26 5.57
Gompertz 1326.44 16.83 6
Gamma 1321.28 16.06 6.76
Weibull 1322.71 15.78 7.05
Follow-up Kaplan-Meier N/A 22.99 N/A

TA447 TA531 OS

Log-Normal 387.31 21.47 0.79
Gompertz 390.15 21.49 0.79
Royston-Parmar 1 knot 388.78 21.51 0.79
Log-Logistic 389.4 20.95 0.84
Generalized Gamma 389.48 20.78 0.9
Exponential 389.1 20.5 1.03
Weibull 390.79 20.49 1.04
Piecewise Exponential 389.01 20.44 1.07
Gamma 390.68 20.4 1.09
Follow-up Kaplan-Meier N/A 21.32 N/A
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Figure 4.1: Long-term survival probabilities for various models compared to long-term data
from KEYNOTE-10
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Figure 4.2: Cumulative hazard & hazard functions for original KEYNOTE-10 data

4.4 Discussion

In this chapter we reviewed the B&B approach to extrapolating survival outcomes and
highlighted some of its limitations. We address each of the four identified limitations of
the B&B approach with a Bayesian approach to determine the number and location of
change-points in a hazard function. We also identify when there is limited evidence of a
change-point in the data. The primary advantage of our method is that the specification
of the change-point is data driven rather than by subjective visual inspection, a criticism
raised by the ERG in TA428 (2017). By employing a Bayesian approach, uncertainty
around the number of change-points is automatically computed and is described within a
probabilistic framework, allowing us to assess the relative evidence of alternative
change-point models. This fully parametric approach has the advantage of allowing the
data to be accurately modelled while also allowing for comparison in terms of goodness of
fit with other survival models described in NICE TSD 14 and 21. There are several studies
which assess the performance of parametric survival models in predicting long-term
survival by comparing predictions estimated from earlier DCOs (sometimes generated
artificially) with later DCOs (Cooper et al., 2022; Roze et al., 2023; Bullement et al.,
2019; Klijn et al., 2021; Kearns et al., 2019). Some studies have suggested that both
standard and spline parametric models underestimate survival in trials of oncology
immunotherapies (Cooper et al., 2022; Bullement et al., 2019). In contrast, Kearns et al.
(2019) found only four of the eleven flexible parametric models considered gave an
estimate of lifetime survival which was clinically plausible with the rest overestimating
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survival. In two of the three TAs for which later DCOs became available, we found that
extrapolated survival estimated from PEMs was closest to the longer-term follow-up,
relative to the other parametric models. There are, however, counter-examples in which
PEMs would not be appropriate. Klijn et al. (2021) reported that the survival estimated
by the B&B approach underestimated survival because the hazards continued to decrease
beyond follow-up. The accuracy of survival predicted by the PEM depends on the validity
of the long-term constant hazards assumption for the disease process. With some
diseases/therapies, this constant hazard assumption will not be valid, however, in others it
may be plausible. The PEM is a parsimonious modelling choice, assuming hazards
observed in the trial are our best estimate for hazards beyond the trial. In contrast, other
parametric models will typically assume that the trend (increasing/decreasing hazards)
observed in the trial will continue beyond the trial, potentially leading to scenarios
whereby the extrapolated hazard is markedly different to the observed one. Estimated
survival from PEM (or any parametric) model should be adjusted for GPM so that the
increasing hazard associated with ageing is modelled. It should be noted that this analysis
has several limitations. Firstly, we identified usage of the B&B approach based on a
previous review which had a timeframe from 2011-2017 and whose scope was restricted to
NICE TAs. Additionally, we reconstructed patient level data from KM plots which
inevitably is less accurate than analysing the original data. Both NICE TSD 14 and 21
briefly discuss piecewise models, highlighting limitations around the arbitrary number and
location of change-points. In the context of survival extrapolation, this work is the first
consider to robust estimation of change-points in a piecewise exponential model,
additionally allowing comparison with other parametric survival models. The framework
presented in this chapter could be extended to estimate other parametric (e.g., Weibull)
change-point models in Chapter 5 along with the inclusion of covariates to jointly model
the intervention and comparable.

4.5 Conclusions

In this chapter we applied the change-point model developed in Chapter 3 to a number of
previously conducted Technology Appraisals which used the B&B approach. If disease
specific hazards can be assumed to be relatively constant, or if there is no prior
understanding of the trend of these hazards then the PEM may be considered for survival
extrapolation. Although unlikely that the disease specific hazards will remain strictly
constant over the course of the extrapolated horizon, it is often not known whether these
hazards will increase or decrease as is assumed by other parametric models. While the
hazard from the disease process is assumed to be constant in the PEM, survival
extrapolations generated from PEM should include GPM so that the marginal/total hazard
is increasing over time. We encourage practitioners who are using the B&B approach to
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model survival for HTA to instead employ the approach presented in this study.

While constant hazard extrapolations may be suitable in certain scenarios, there exist
numerous situations where they are not considered plausible. The inability of the
collapsing sampler to jointly model the treatment and comparator is a clear limitation of
the approach developed in Chapter 3 and applied to real world situations in this chapter.
In Chapter 5 we estimate more complex change-point models (i.e. Weibull survival models
which can accommodate covariates) and show how these models can consider a variety of
scenarios relating to changes in relative treatment effects.
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5 More Complex Change-point
Survival Models

5.1 Introduction

In Chapter 3 we have seen the application of a specific class of change-point models
which assume a constant hazard within each segment. In Chapter 4 we described
applications of this change-point model to a variety of technology appraisals and how the
piecewise exponential change-point model is a more appropriate extrapolation strategy
than manually selecting a point after which constant hazards are extrapolated (i.e. the
Bagust & Beale approach).

Estimating the piecewise exponential model using a collapsed RJMCMC scheme is
computationally efficient and because the marginal likelihood of the exponential model
has an analytical form there is good mixing between models of differing dimensions (i.e.
models with different change-point locations). However, the relative probabilities of the
change-point models estimated by RJMCMC are proportional to the marginal likelihood of
the data, a quantity which is sensitive to the priors placed on the parameters. The
piecewise exponential model described in Chapter 3 mitigated this sensitivity by allowing
the β hyperparameter to be informed by data and allows for a more robust estimation of
the change-point model probabilities with respect to differences in the prior.

There are however, a number of limitations of the collapsed PEM model. Firstly, the
constant hazard assumption can be considered restrictive, and we may want to consider
models which allow for decreasing/increasing hazards within each segment. Secondly the
collapsed RJMCMC scheme requires the evaluation of the marginal likelihood which is
only available in an analytical form for an exponential likelihood with no covariates. The
absence of covariates does not allow us to jointly model the intervention and the
comparator, an important consideration in HTA. Relatedly the lack of covariates means
general population mortality cannot be modelled using the internally additive hazards
approach, an approach which is recommended by Rutherford et al. (2020). Another
limitation for the collapsed change-point models is that the change-points are restricted
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to a finite number of times (in our implementation event times). Although the likelihood
of the change-points are maximized at event times, there is no clinical reason why
change-points are constrained to be at event times.

One approach to estimating models with covariates would be to design a bijective
function to allow movement between the models of different dimensions (Chapple et al.,
2020). In practice it can be difficult to design such a function which will allow for
reasonable mixing between the models of differing dimensions. Because the survival data
available at HTA assessment are typically immature it is unlikely that a large number of
change-points should be required, particularly as the final interval would then contain
fewer events to estimate the model which will be used for extrapolation purposes. In
situations where the number of candidate models is small (i.e. with respect to the number
of change-points) it is more efficient to estimate each of the models and make a selection
based on goodness of fit. To obtain a result close to that which would be obtained by
RJMCMC, one could evaluate the marginal likelihood, however, goodness of fit statistics
(which are typically more easily evaluated) could also allow for model averaging across the
candidate models (Jackson et al., 2010).

It’s worth motivating the rationale for estimating change-point models for decision
modelling in HTA. For the scenarios described in the previous chapter the purpose was to
identify a time-point (statistically) after which a constant hazard can be assumed
appropriate. While the constant hazard assumption will typically not hold over the course
of the extrapolated time horizon, it can be an appropriate assumption if we believe the
hazards during the trial are a reasonable estimate of the long-term hazards and lack
information on the potential trend of the long-term hazard function over time.
Considering a Weibull change-point model rather than a piecewise exponential model
could allow us to model the data with fewer change-points and we could still constrain the
final interval to contain a constant hazard (as the exponential is a Weibull model with the
shape parameter set to 1).

Previous authors have described highly flexible parametric models which allow for the
modelling of complex hazard functions, however even these models typically do not
accommodate specific scenarios which health economic modellers might wish to consider.
Some such examples are detailed below and relate to the joint modelling of the treatment
and intervention:

• Treatment Delay (TD) - Hazard function for both treatment and comparator is the
same until a certain timepoint

• Loss of Treatment Effect (LTE) - Hazard function for treatment and comparator is
the same after a certain timepoint
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• Converging Treatment Effect (CTE) - Hazard ratio converges over time to one (i.e.
equal hazards)

For certain treatments, it has been hypothesized that a delay may be observed after the
initiation of treatment before differences in the survival times of the groups become
apparent. In the opposite scenario, after a period of initial benefit, the treatment effect
may no longer be observed and the hazard function for both treatment and comparator
are equal. A related scenario is the potential for a measure of treatment effect such as the
hazard ratio (HR) to change after a timepoint and converge to 1 in a smooth fashion.
Various applications of CTE and LTE in NICE Technology Appraisals are documented by
Kamgar et al. (2022), however, the timepoint after which the change in treatment effect
occurs is uncertain often arbitrary chosen.

As we demonstrate in this chapter, each of these scenarios relating to changes in
treatment effects can be modelled with change-point models. As in the Chapters 3 and 4
we will estimate these models assuming that the change-point locations are unknown. In
Section 5.2 we will describe the notation of the generic change-point survival model and
the three use cases we have highlighted above. In Section 5.5 we describe three datasets
to which we apply specific change-point models whose results are presented in Section
5.6.

5.2 General Specification of a Parametric Change-

point Survival Model

5.2.1 Likelihood of Parametric Change-point Survival Models

Distinct from the change-point model introduced in Chapter 3 which assumed
change-points at event times (i.e. discrete timepoints), in this section we consider
continuous change-point models. As in Chapter 3 we define t1:n as a vector of n time
ordered survival times. Multiple change-points can be denoted as a vector τ 1:k (and
individual change-points denoted with a single subscript e.g. τj), with these k

change-points partitioning time into k + 1 segments. In order partition time into the
k + 1 segments we also require boundary change-points τ0 and τk+1. We define τ0 = 0

and τk+1 ≥ tn, however, as these quantities are not parameters to be estimated by the
model we will not include them in the model notation.

Owing to the potential for covariates, we require that each individual and interval has a
specific hazard function h(ti ,θij). For each individual we require the cumulative hazard
function up until time ti . This includes the cumulative hazard for the interval between ti
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(assuming it occurs in the jth interval) to the previous change-point τj−1 denoted as
H((ti − τj−1), θij). The cumulative hazard function for any previous intervals is also
required and is denoted as H(τg − τg−1,θig ). The likelihood of the change-point model
can be formulated as follows

L(τ 1:k ,θ|t1:n) =
n∏

i=1

{
k+1∏
j=1

h(ti ,θij)
δijvi exp

{
−δij

[
H((ti−τj−1),θij)+

j−1∑
g=1

H(τg−τg−1,θig )

]}}
.

(5.1)

with vi = 1 if the ith subject was observed to have an event and 0 otherwise (censored).
If the ith subject’s time (either censored or an event) is within the jth interval
(mathematically ti ∈ (τj−1, τj ]), then δij = 1 and 0 otherwise.

Furthermore θij is a vector of parameters for each individual which in the case of the
Weibull model are the shape and scale parameters which can have covariates placed upon
them. For example, let θij = {mij , aij} with m, a scale and shape parameters respectively.
To model covariates, we introduce matrices βm = [βm1

...βmk+1
] and βa = [βa1 ...βak+1

]

whose columns are a p × 1 vector each representing the coefficients of one of the k + 1

intervals. For the jth interval mij = exp(Zijβmj
) in which the scale (location) parameter

depends on a vector of covariate values Zij of size 1× p and and the coefficients of βmj
.

The individual shape parameter is calculated as aij = exp(Zijβaj
).

If we do not specify a treatment effect for the shape parameter we obtain a proportional
hazards model, and for each of the p covariates (naturally excluding the intercept) the
interval specific hazard ratio for the qth covariate is HRjq = exp(βjq).

5.2.2 Data format for Parametric Change-point Survival

Models

To help clarify the notation in Section 5.2.1 we will provide illustrative examples of various
change-point scenarios with one change-point i.e. k = 1, which is typically sufficient to fit
the observed data. For the purposes of illustration we will provide a dataset with 5
observations, three assigned to treatment and two assigned to a comparator (or baseline)
along with ages of each patient (see Code Chunk 1). As per the notation from the
previous section, the individual survival time is ti and censoring indicator is vi . In this
dataset we have two covariates which we will include in the model, treatment status and
age. The age variable is transformed (or scaled) to have a mean of zero and a standard
deviation of one. Scaling variables can improve MCMC sampling efficiency, and it also
simplifies prediction for the population at the mean age, as the coefficient for age can be
omitted. Furthermore, it can be more straightforward to define priors for the coefficients,
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as they represent the change in the log hazard ratio for a change of one standard deviation
from the mean. While redundant for this dataset, we include an integer variable indicating
the patient’s ID which is necessary for the modified dataset introduced later.

The ID variable is defined in the dataset (Code Chunk 1) as id. Individual survival time is
defined as time while the censoring indicator is defined as status. Treatment status is
defined by the trt variable with trt = 1 indicating treatment and trt = 0 the
comparator. The age variable is defined as age and the corresponding scaled variable is
age_scale.

id time status trt age age_scale
1 0.08 1 1 77.64 1.14
2 0.14 0 0 67.75 -0.10
3 1.44 0 1 73.45 0.61
4 2.11 1 1 56.36 -1.52
5 3.32 0 0 67.52 -0.13

Listing 1: Example Simulated Dataset

For the dataset given in Code Chunk 1 we assume a single change-point at timepoint
equal to 1 (i.e. τ1 = 1). We require a dataset that provides information about the time an
individual spends in each interval. This includes information on the complete intervals
(τg−1, τg ] and the final interval (τj−1, ti ] which is required for the likelihood in Equation
5.1. Furthermore, we require the values of the covariates for each individual for a specific
interval, i.e. the covariate vector Zij . It should be noted that in this example these
covariate values will not change for an individual across different intervals, however, their
associated coefficients βmj

,βaj
can potentially change.

In order to include this information we use a data format known as the “counting process”
format in which each row refers to a specific interval for an individual. The individual will
have a number of intervals equal to the number of change-points for which the
individual’s observed time is greater than the change-point, i.e.

∑k+1
j=0 s(ti − τj − c) where

s(x) is the unit step function which returns a value of 1 if x ≥ 0 and 0 otherwise. The
unit step function requires −c , where c is a very small number as the individual’s survival
time should be strictly greater than the change-point τj in order to include the jth + 1

interval.

For each complete interval, i.e. ti > τj where j > 0, the dataset will contain the start time
and end time for the interval which is τj−1 and τj respectively. For the final interval the
end time is simply the individual’s survival time ti . This final interval has δij = 1 with all
previous intervals equal to zero. The covariate vector Zij is also included for each
interval.
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The advantage of this dataset format is that the calculation of the likelihood for the
change-point is more straightforward. Given the values of the coefficients βmj

,βaj
and

covariate vector Zij we can calculate the individual interval specific values of the shape
and scale parameters (i.e. aij ,mij). We can then calculate the cumulative hazard for each
interval, while for the individual’s final interval, we additionally calculate the hazard
function. With these quantities we can then calculate the likelihood contribution for each
individual based on their censoring status.

The survival data presented in the “counting process” format are presented in Code Chunk
2.The column that indicates which subrecords belong to which specific patient is defined
as id in the dataset, while the interval to which the record is associated is denoted as
Interval. The start and end times of the interval are denoted as tstart and tstop

respectively. The column indicating the event/censoring status is the product of the
censoring indicator from the original dataset and the indicator for an individual’s final
interval i.e. vi × δij . By definition this will be zero for all intervals before an individual’s
final interval, as clearly an individual must have survived at least until their final interval.
This variable is denoted as status in the dataset. In order to define the covariate vector
Zij we require an intercept which in the dataset is defined as Intercept and is simply a
column of ones. The other two components of Zij are the treatment status and age
scaled which are defined as trt and age_scale (as in Code Chunk 1).

For example, the first individual (denoted with id = 1) has ti < 1, therefore, only has one
record with tstart and tstop as 0 and ti respectively. The third individual has ti > 1

and has two subrecords. The first subrecord corresponding to the first (complete) interval
has tstart = 0 and tstop = 1, while the second and final interval has tstart = 1 and
tstop = ti .

id Interval tstart tstop status Intercept trt age_scale
1 1 0 0.08 1 1 1 1.14
2 1 0 0.14 0 1 0 -0.10
3 1 0 1.00 0 1 1 0.61
3 2 1 1.44 0 1 1 0.61
4 1 0 1.00 0 1 1 -1.52
4 2 1 2.11 1 1 1 -1.52
5 1 0 1.00 0 1 0 -0.13
5 2 1 3.32 0 1 0 -0.13

Listing 2: Example Dataset in a counting process format
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beta_scale
Interval-1 Interval-2

Intercept -0.5 -0.5
trt -0.2 0.0
age_scale 0.1 0.1

beta_shape
Interval-1 Interval-2

Intercept -0.4 -0.4
trt 0.0 0.0
age_scale 0.0 0.0

tstart tstop status id Interval Intercept trt age_scale scale shape
0 0.08 1 1 1 1 1 1.14 0.56 0.67
0 0.14 0 2 1 1 0 -0.10 0.60 0.67
0 1.00 0 3 1 1 1 0.61 0.53 0.67
1 1.44 0 3 2 1 1 0.61 0.64 0.67
0 1.00 0 4 1 1 1 -1.52 0.43 0.67
1 2.11 1 4 2 1 1 -1.52 0.52 0.67
0 1.00 0 5 1 1 0 -0.13 0.60 0.67
1 3.32 0 5 2 1 0 -0.13 0.60 0.67

Listing 3: β covariate matrices for shape and scale parameters and updated dataset

5.2.3 Change-point scenarios based on covariate values

By restricting various covariates (i.e. elements of βmj
,βaj

) to be equal to 0 or equal
across the intervals we can specify many different change-point models.

In Code Chunk 3 we have specified covariates for the scale parameter based on treatment
status and age. The effect of age is constant across the intervals while the treatment
effect varies across intervals, in fact because it is zero in the second interval the hazards
are equal to the comparator i.e. LTE model. The opposite scenario is where we constrain
the treatment coefficient to be zero in the first interval yielding a TD model.

The shape parameter is constant across the intervals (and more generally not subject to a
treatment effect) resulting in a proportional hazards change-point model. Because the
intercept for the scale parameter is constant across intervals, the baseline hazard is
continuous at the change-point, however, if the intercept is allowed to vary across
intervals, it is non-continuous but still a proportional hazard model.

In Figure 5.1 we present four possible scenarios to jointly model the hazard function for a
change-point model in which the HR for the treatment was < 1 up until (and including)
the change-point and greater than 1 after the change-point. Figure 5.1-A illustrates the
scenario previously described in which only the HR of the treatment changes after the
change-point and so the baseline (comparator) hazard function is continuous. In Figure
5.1-B the intercept also changes across intervals so that there is a different baseline
hazard function for each interval. Figure 5.1-C extends 5.1-B so that the shape parameter
also changes across intervals. It is worth highlighting that scenarios A-C still assume
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proportional hazards while the final scenario in Figure 5.1-D assumes different shapes for
both treatment arms after the change-point and therefore is no longer a PH model for the
interval after the change-point.

Figure 5.1: Various scenarios for modelling the hazard function with a change-point

5.2.4 Change-point scenarios with Convergence of the Hazard

Ratio

In the previous scenario we have considered a step change in the HR, however, we may
also allow the HR of the treatment arm to converge in a continuous manner to the
comparator or baseline hazard i.e. CTE models. For a converging hazards model we
consider a change-point τwane after which the hazard ratio for the treatment from the
previous interval (HRinitial) begins to wane (i.e. converge to 1 over time). The HR for any
time after τwane is

HR(t) = 1− (1− HRinitial) exp(−ω(t − τwane)), (5.2)

were ω is a constant rate at which the HR converges to 1. Figure 5.2 shows various HRs
with different values of ω.
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Figure 5.2: Hazard Ratios for different rates of convergence ω; τwane = 1,HRinitial = 0.75

In order to estimate the cumulative hazard function for the treatment arm, we need to
evaluate

∫ t

τwane
HR(t)hbaseline(t)dt with hbaseline(t) being the baseline hazard. For the

Weibull model the indefinite integral is
ambaseline(t

a)
(
1/a − (Γ(a,ωt)(HRinitial − 1) exp(ωτwane))/(ωt)

a
)
+ C for the interval

beyond τwane. mbaseline refers to the baseline scale parameter with the shape a common for
both intervention and comparator arm and Γ(a,ωt) is a the upper incomplete gamma
function. For the exponential likelihood the integral simplifies considerably with
a = 1.

We define the βm matrix as before see Code Chunk 4, however, the HR for the treatment
effect beyond the change-point is a function of time since the change-point, the HR for the
treatment before the change-point and ω, the rate of convergence (Equation 5.2).

93



beta_scale
Interval-1 Interval-2

Intercept -0.5 -0.5
trt -0.2 log(HR(t))
age_scale 0.1 0.1

Listing 4: βm covariate matrix for CTE model

Each of the scenarios presented in Figure 5.3 correspond to those (proportional hazard
models) presented in Figure 5.1.

Figure 5.3: Various scenarios for converging hazard with a change-point

5.2.5 Summary

In subsequent examples we will consider the Weibull and exponential (setting the shape
parameter to 1) change-point models although for the treatment delay and loss of
treatment effect we could consider accelerated time factor models such as log-normal and
gamma models. For the converging hazards approach it is appropriate to restrict our
attention to proportional hazards models as time acceleration factors are not typically
considered in applications of treatment waning. The framework we present could easily be
extended to include the Gompertz model (which is also a proportional hazards
model).
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5.3 Estimation of Parametric Change-point Survival

models

All of the models described in the subsequent sections are estimated using the JAGS
statistical software program Plummer (2003). The model code to define the change-point
model likelihood makes extensive use of the unit step function s(x) defined in Section
5.2.2. This function is defined as the step function in JAGS. Using the notation defined
previously we can use two unit step functions to calculate the interval which ti is in. To
test if ti is within the jth interval we can use s(ti − τj−1 − c)× s(τj − ti) which will return
1 if and only if ti is in the jth interval. As in Section 5.2.2, the first unit step function
requires the small constant c as the individual’s survival time should be strictly greater
than the lower change-point value (τj−1) to be in the jth interval. In practical terms this
variable can be excluded when dealing with continuous change-points as the probability
τ = ti is 0.

Unlike custom-written MCMC samplers, JAGS has a limited number of probability
distributions that can be used when defining a generative model (although sufficient for a
wide range of statistical models). Additional distributions can be included, but they
require knowledge of C++ to implement these extensions (Wabersich and
Vandekerckhove, 2014). Because JAGS does not include distributions corresponding to
change-point survival models, we need an approach to include the likelihood contribution
of the data without resorting to additional programming. One approach is to use a
distribution that is already available in JAGS to include the contribution of the likelihood
for the change-point model, i.e., L(τ 1:k ,θ|t1:n). Known as the “zeros trick”, we create an
observation z = 0, which is assumed to be drawn from a Poisson(ξ) distribution. Because
the observation z = 0, the likelihood contribution is exp(−ξ). Therefore, setting
ξ = − log(L(τ 1:k ,θ|t1:n)) produces the correct likelihood contribution for the change-point
model. Note that ξ needs to be positive as it is a Poisson mean, therefore, we add a
suitably large (but otherwise arbitrary) constant to ensure that it is positive.

The choice between alternative change-point (and standard parametric) models can be
guided by a goodness of fit measure such as WAIC, however, consideration must also be
given to the plausibility of the hypothesis underlying the statistical models.

Markov chain sampling of the parameters is achieved using slice sampling (Neal, 2003).
We expect Hamiltonian MCMC (as used in Stan) would fail as the likelihood is not a
smooth function of τ 1:k and evaluation of the gradient required for the exploration of the
posterior would not be possible. We place a vague prior for the β covariates for the shape
and scale parameters i.e. N (µ = 0,σ = 5).

For the change-point we assume that τ1:k are even ordered statistics of 2k split points
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drawn from a Uniform distribution on (0, τmax) and we assume that τmax is the maximum
observed time. Furthermore, we define τ0 = 0 and τmax = τk+1. Formally this prior
distribution is p(τ 1:k |k) =

(2k+1)!
∏k+1

k=1(τk−τk−1)

τ2k+1
max

and has been used extensively in the
estimation of continuous change-point models (such as Chapple et al. (2020)) and is the
continuous analogue of the discrete change-point prior presented in Chapter 3.

Because the discrete change-point prior calculates the prior probability in terms of events
while the continuous prior is with respect to time there are differences in the priors.
Assuming a single change-point, the density is maximized for the continuous prior at the
mid-point between (0, τmax), while for the discrete prior the probability is maximized at
the median event time. The discrete prior is dependent on the number of events and the
distribution of these events. For the purposes of illustration we compare the discrete
change-point prior for 100 observations simulated from an exponential distribution with
λ = 0.4 and all observations > 5 censored with a continuous prior from (0, τmax = 5). In
contrast to the continuous prior, the discrete prior provides an asymmetrical prior with
respect to time with less probability towards the maximum observable time (Figure 5.4).
Because the discrete prior is based on the number and distribution of event times, this
prior will be different for each dataset and dependent on the underlying distribution of
event times. This could be considered a disadvantage, however, the discrete prior does
have the advantage assuming a lower probability of a change-point in intervals which have
few event times. For example, the continuous prior in Figure 5.4 assumes that a
change-point is equally likely in the region (0, 1] as [4, 5) even though the later interval
has much fewer event times. If a particular prior is considered more appropriate, such as a
truncated normal distribution it is straightforward to amend the JAGS code to do
this.
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Figure 5.4: Comparison of discrete and continuous change-point priors

For each of the models whose results are presented in Section 5.6 we ran 2 chains for
55,000 iterations with an initial burnin of 5,000 and a thinning factor of 5 (thus giving us
a total sample of 20,000 iterations). Convergence diagnostics were assessed using the
ggmcmc package by Fernández-i-Marín (2016).

Codes to reproduce the analysis presented in this chapter are available on Github with
skeleton pseudo-code described in the Appendix (Code Chunk 8) for the special case of a
one change-point Weibull model with no covariates, showing both the application of the
unit step function and the “zeros trick”.

5.4 Simulation Study

We consider two models for generating data arising for change-point models under a
variety of different parameters and sample sizes. In all scenarios we assume that the
baseline scale parameter for the Weibull model before the change-point is 0.3. The model
assumes common shape parameter for both timepoints being either 0.7 or 1.2 (assuming
monotonically increasing or decreasing hazards). We assume the HR between the
treatment and baseline is 0.25, 0.5 or 0.75. The sample size considered for each arm was
assumed to be 200, 500 or 1000 (nsamp) and the data-cut off was 4 years after which all
observations were assumed censored, with no censoring before the data-cut off.

In the first set of scenarios we assume a treatment delay. Before a change-point which is
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assumed to occur at 1 year, the hazards for both treatment and baseline are equal. After
the change-point we assume a PH model with various HRs and baseline hazard functions
investigated. The scenarios in which a monotonically decreasing and increasing baseline
hazard are assumed are considered in Figures 5.5.

In the second set of scenarios we assume a loss of treatment effect after the change-point
which occurs at 2 years, while before the change-point the data arise from a PH model.
The scenarios in which a monotonically decreasing and increasing baseline hazard are
assumed are considered in Figures 5.6.

For each combination of parameters from each scenario we simulate 100 datasets and fit
the associated Weibull change-point model along with a range of standard parametric
models (i.e. exponential, Weibull, gamma, Gompertz, log-logistic, log-normal, generalized
gamma and Royston-Parmar model).

In Tables 5.1 we present the difference in restricted mean survival time (RMST) up to 15
years between the treatment and baseline arms divided by the difference in RMST for the
true survival functions (RMSTdiff), averaged over the 100 simulations. Values closer to
zero indicate closer fit to the true generating process. For clarity we present results for the
change-point and other parametric models with the three lowest average values of
RMSTdiff across the set of scenarios.

Table 5.1: Simulation Study results - Values of RMSTdiff for Treatment Effect Delay
scenarios

nsamp shape Initial HR Change-point Gamma Royston-Parmar
200 1.2 0.25 0.05 0.16 0.12
500 1.2 0.25 0.05 0.15 0.11
1000 1.2 0.25 0.06 0.16 0.12
200 0.7 0.25 0.05 0.20 0.30
500 0.7 0.25 0.06 0.21 0.30
1000 0.7 0.25 0.06 0.20 0.30
200 1.2 0.5 0.06 0.10 0.07
500 1.2 0.5 0.08 0.10 0.08
1000 1.2 0.5 0.07 0.10 0.08
200 0.7 0.5 0.09 0.18 0.26
500 0.7 0.5 0.09 0.19 0.26
1000 0.7 0.5 0.08 0.19 0.27
200 1.2 0.75 0.12 0.09 0.09
500 1.2 0.75 0.12 0.09 0.08
1000 1.2 0.75 0.12 0.09 0.08
200 0.7 0.75 0.17 0.18 0.24
500 0.7 0.75 0.17 0.19 0.25
1000 0.7 0.75 0.17 0.20 0.25

A number of points are worth noting. For each of the treatment delay scenarios we
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Figure 5.5: Hazard and Survival functions for Treatment Delay Scenarios
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Figure 5.6: Hazard and Survival functions for Loss of Treatment Effect Scenarios
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Table 5.2: Simulation Study results - Values of RMSTdiff for Loss of Treatment Effect
scenarios

nsamp shape Initial HR Change-point Generalized Gamma Weibull
200 1.2 0.25 0.08 0.13 0.14
500 1.2 0.25 0.05 0.08 0.14
1000 1.2 0.25 0.04 0.06 0.13
200 0.7 0.25 0.19 0.61 0.58
500 0.7 0.25 0.13 0.57 0.56
1000 0.7 0.25 0.09 0.56 0.58
200 1.2 0.5 0.1 0.16 0.15
500 1.2 0.5 0.06 0.11 0.17
1000 1.2 0.5 0.05 0.08 0.17
200 0.7 0.5 0.31 0.59 0.56
500 0.7 0.5 0.17 0.51 0.53
1000 0.7 0.5 0.14 0.49 0.52
200 1.2 0.75 0.26 0.18 0.18
500 1.2 0.75 0.23 0.14 0.16
1000 1.2 0.75 0.13 0.12 0.17
200 0.7 0.75 0.61 0.5 0.48
500 0.7 0.75 0.44 0.46 0.47
1000 0.7 0.75 0.36 0.46 0.47

observe that the RMSTdiff is lowest for the change-point models with lowest values for
scenarios with large sample sizes and smaller values of the HR. A HR of 0.75 produced
lower RMSTdiff compared to the next best models for only some of the scenarios,
suggesting a relatively large HR is required to adequately estimate the model. For the
treatment delay scenarios, the sample size does not impact the RMSTdiff (rounded to two
digits). This is possibly because the parameters are more readily identifiable for these
scenarios due to the theoretical survival being equal up until the change-point (see Figure
5.5). The theoretical survival function for scenarios assuming equality in hazards after
change-points is not equal at any stage and the parameters are possibly more difficult
identify.

The results are also sensitive to the baseline hazard. This is because for the scenarios
which have a monotonically decreasing hazards result in a higher proportion of the sample
being censored at the end of follow up. As a greater proportion of the sample needs to be
extrapolated the error in RMSTdiff is also greater. It should be noted that we have not
considered the simulation studies for the converging hazards model. This model
particularly computationally intensive due to the more complex cumulative function
relative to the other change-point models.

For reasons of clarity we did not include all results for the standard parametric models,
however, the log-logistic and log-normal models had the worst overall performance across
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both sets of scenarios. The other parametric models tended to have comparable RMSTdiff

and perhaps surprisingly included the simple exponential model. This results from a
limitation of evaluating model performance by AUC as an under-estimation of the survival
difference before extrapolation could be balanced by an overestimation of survival
difference for the extrapolated region. Further analysis could assess RMSTdiff for a
restricted set of models which fit reasonably well to the observed data (e.g. including the
best four models by certain goodness of fit criteria).

5.5 Examples Datasets

In this section we provide some background on the datasets used and the hypotheses to
be tested.

5.5.1 E1690 & E1684 - Multiple Change-point Scenarios

An immunotherapy known as interferon α-2b was evaluated in two observation-controlled
Eastern Cooperative Oncology Group (ECOG) phase III clinical trials, E1684 and E1690.
The first trial, E1684, was a clinical trial comparing high-dose interferon (IFN) to
Observation (OBS). A further confirmatory study, E1690 was initiated in 1991 to attempt
to confirm the results of E1684. Various analyses of these trials are presented in Ibrahim
et al. (2001).

By combining the E1684 and E1690 (as was also considered in an analysis by Ibrahim
et al. (2001)), we obtain a dataset with long-term survival data of a group of patients
treated with immunotherapy for multiple myeloma (up to 10 years). This long-term
dataset allows us to consider various scenarios, including that the relative treatment effect
dissipates, possibly because patients are no-longer receiving treatment. Although not
considered in a technology appraisal, this dataset has the previously stated advantage of
having a very long-term follow up along with information on potential other covariates of
interest which are not available when we digitize published Kaplan-Meier from technology
appraisals.

Of interest in a change-point analysis, there is evidence of violation of the proportional
hazard assumption for the treatment, but not for other covariates such as age as assessed
by Schonefeld residuals. As noted previously, change-point models can investigate a
variety of scenarios with respect to the hazard ratio for the treatment effect while also
including covariates which do satisfy the proportional hazard assumption.

In the first scenario we consider a Weibull model with a change-point in the hazard ratio
for treatment (INF) vs control (OBS). A second scenario considers LTE Weibull
change-point model, noting that this differs from the first scenario in that the HR for the
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second interval is constrained to be equal to 1. We then consider CTE model. The
relative goodness of fit of each of these survival models will be presented.

5.5.2 LUME-LUNG 1 - Potential Treatment Delay

In TA347 (2015) the technology of interest was nintedanib + docetaxel vs docetaxel
monotherapy in the adenocarcinoma population. Within this population the KM survival
functions do not appear diverge until ≈ 5 months. If we fit a standard parametric Weibull
(PH) model to the data, the estimated survival assuming proportional hazards may not
accurately model the initial section of the data in which the survival functions are very
similar. However, a change-point model in which a common Weibull model followed by a
Weibull model allowing for a different HR with respect to treatment could allow for a
better fit to the data and potentially a more plausible extrapolation.

Figure 5.7: LUME Lung 1 trial: Overall survival of adenocarincoma population.

5.5.3 BRIM-3 Study - Loss of Treatment effect

Bagust and Beale (2014) suggest that in the BRIM-3 trial (Chapman et al. (2011)) the
effect of vermurafenib is restricted to the first three months of the clinical trial after which
a constant common hazard is apparent. They conclude this by inspecting the cumulative
hazard plot shown in Figure 5.8 in which they shift the cumulative hazard of the
dacarbazine arm by 3 months and note that it approximately lines up with the cumulative
hazard of vermurafenib.
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hbt!
beta_scale

Interval-1 Interval-2
Intercept x x
trt y 0.0

beta_shape
Interval-1 Interval-2

Intercept z z
trt w 0.0

Listing 5: β covariate matrices for shape and scale parameters in loss of Treatment Effect

It may be of interest to consider whether a constant hazard model or Weibull model fits
the data best. We could assess this by fitting two change-point models to the data, one
with a constant hazard and another using a Weibull model. In these models, the
change-point will apply only to the vemurafenib arm, with the hazard after the
change-point estimated from the data beyond the change-point for the vemurafenib arm
and the entire data for the dacarbazine arm.

Figure 5.8: BRIM-3 trial: Empirical cumulative hazard plot of overall survival. Reproduced
from Bagust and Beale (2014)

.

In terms of the parameters of a change-point model this model can be estimated by
allowing a common intercept across intervals for both the shape and scale (See
parameters x , z in Code Chunk 5. For interval 1 both the shape and scale are subject to a
treatment effect (denoted by parameters y ,w), while for interval 2 there is none, denoted
by 0. This extends the previous LTE models in that we have a non-proportional hazard
model for the first interval then equal hazards after the change-point along with a
continuous function for the baseline hazard.
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5.6 Model Results

For each of the models estimated below we assume that there is a different baseline
hazard function for each interval (i.e. scenario presented in Figure 5.1-B or C) rather than
a common baseline hazard function (i.e. scenario presented in Figure 5.1-A). This was
because these scenarios provided improved goodness of fit measured by WAIC. In each of
the survival functions for the change-point models the posterior density of the
change-point was presented (green density with red outline). For each of datasets
considered we also fit standard parametric models, calculating the statistical goodness of
fit and the RMSTdiff for all models. We also include a Royston-Parmar model which
places a treatment effect on the γ1 parameter allowing for non proportional hazards.

5.6.1 E1690 & E1684 - Various Change-point Hypotheses

For all analysis detailed in this subsection, a covariate for age is included whose HR is
fixed with respect to time. In order to plot the survival function stratified by treatment we
require the age variable to be set at a particular value (as the survival functions vary with
respect to age). In all results presented, hereafter, the survival stratified by treatment is
predicted at the mean value of age from the combined trials.

Scenario 1 - Weibull Model step change in HR

In the first scenario we consider a step change in the HR, with the baseline shape and
scale parameters also changing before and after the change-point.

Figure 5.9: E1690 & E1684 trial: Predicted survival function for change-point model for
HR with Weibull hazards.
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The median change-point is 1.19 years (with a 95% credible interval 0.73-1.90) after
which the median HR is 1.07 (with a 95% credible interval 0.8-1.44), suggesting that the
treatment effect dissipates (median HR before the change-point was 0.63 with 95%
credible interval 0.33-0.93).

Scenario 2 - Common hazards after change-point

In the second scenario we assume that before the change-point there we have a
proportional hazards Weibull model and after the change-point the hazards are generated
from a common Weibull model with a different baseline shape and scale (Figure 5.10). In
this scenario the mean change-point was 1.2 years.

Figure 5.10: E1690 & E1684 trial: Predicted survival function for change-point model with
independent then common Weibull hazards.

Scenario 3 - Converging hazards after change-point

A third scenario was the assumption of a converging hazard in which the hazard ratio
between the treatment and the intervention converges to a value of 1. The average time
of the change-point after which the hazard begins to converge is 1.1 years and the HR
before the change-point of had a median value of 0.55 (with 95% credible interval
0.25-0.90).
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Figure 5.11: E1690 & E1684 trial: Predicted survival function for change-point model with
converging hazard ratio over time.

Figure 5.12 shows the posterior distribution of the HR over time and highlights that the
HR converges quite rapidly with the median value of the HR converging to 1 before year
2.

Figure 5.12: E1690 & E1684 trial: Hazard Ratio for change-point model with converging
hazards.

Interpretation of results Scenarios 1-3

It is worth noting that each of the methods considered here provide quite similar
extrapolated survival estimates, however, the WAIC values are different for the scenario
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with a change-point for the hazard ratio. The model with the lowest WAIC is the scenario
with the converging hazards (Scenario 3 WAIC 2009.18), however, this is effectively equal
to the common hazard (Scenario 2; WAIC 2009.35), and then the scenario with a
change-point for the hazard ratio (Scenario 1; WAIC 2011.09). The RMSTdiff for
Scenarios 2 and 3 are very similar. This is because both models constrain the HR for the
extrapolated region to be 1 or very close to 1. It is interesting to note that the model
which allowed the HR to be unconstrained for the second interval produced a median
posterior HR > 1. This results in the RMSTdiff being lower for this scenario, however, the
WAIC indicates that this additional parameter does not produce an improved goodness of
fit relative to Scenario 2 (HR constrained to be = 1).

It is worth comparing the change-point survival models with flexible models which allow
for non-proportional hazards. One such flexible parametric model is the Royston-Parmar
cubic spline model which has the option to include “knots” to allow for flexible modelling
of the baseline hazard function and which can estimate time-varying hazard ratios by
allowing covariates (i.e. treatment status) on the higher-order terms (see
flexsurvspline from the flexsurv package by Jackson (2016) for details). Although
the flexible spline model (accommodating non-proportional hazards) visually fits the
observed data quite well and has the lowest WAIC at 2003, the survival for the
extrapolated region is unlikely to be plausible as there is crossing of the comparator arm
(which was observation) with the actively treated arm (at 30 years the survival of the
control arm vs the treatment arm is 27% vs 19%). It is worth noting that the standard
Royston-Parmar PH model has a WAIC lower than the change-point models and has a
similar RMSTdiff (See Table 5.3).

Figure 5.13: E1690 & E1684 trial: Predicted Survival function using Royston-Parmar spline
models.
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Table 5.3: RMSTdiff for parametric survival models (including all 3 change-point scenarios)
and E1690 and E1684 datasets along with WAIC for all parametric models.

Model RMSTdiff WAIC
Royston Parmar (non-PH) 0.23 2003.03
Royston Parmar (PH) 0.78 2006.70
Change-point: Converging Hazards 0.75 2009.18
Change-point: Equal Final Hazards 0.67 2009.35
Change-point: HR (step) 0.46 2011.09
Generalized-Gamma 1.08 2012.50
Log-Normal 0.93 2036.70
Log-Logistic 0.79 2059.52
Gompertz 0.75 2061.88
Weibull 0.74 2098.73
Exponential 0.74 2100.23
Gamma 0.74 2101.65

5.6.2 LUME-LUNG 1 - Delay of treatment effect

A Weibull model with a change-point assuming a common hazard before the change-point
and a separate Weibull model with assuming a proportional hazard model is presented in
Figure 5.14.

Figure 5.14: LUME Lung 1 trial: Predicted survival from (no change-point) Weibull model

The standard Weibull model appears not to fit the data very well, particularly for the
earlier part of the data. Allowing for the a change-point before which the hazards are
equal and after which we assume proportional hazards appears to be a better fit to the
data (Figure 5.15). In both the standard and change-point model the HR is ≈ 0.8

between the treatment and comparator. The WAIC for the standard parametric model was
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3970 while the WAIC for the change-point model was lower at 3933 (Table 5.4).

Figure 5.15: LUME Lung 1 trial: Predicted survival from one change-point Weibull model

Table 5.4: RMSTdiff between the parametric survival models and LUME-LUNG-1 along
with WAIC for all parametric models - Treatment Delay Scenario.

Model RMSTdiff WAIC
Change-point 2.72 3933.05
Log-Normal 1.83 3935.17
Generalized-Gamma 1.95 3936.63
Royston Parmar (PH) 2.63 3937.92
Royston Parmar (non-PH) 2.69 3939.61
Log-Logistic 2.09 3945.81
Gamma 2.56 3958.73
Weibull 2.60 3969.97
Gompertz 2.53 3995.38
Exponential 2.51 4001.31

5.6.3 BRIM-3 Study - Loss of Treatment effect

As per Bagust and Beale (2014) we assume a change-point model in which a
change-point is considered for the vermurafenib arm and after the change-point the
hazard function is equal between vermurafenib and dacarbazine. We consider two
change-point models, one assuming constant hazards for each segment compared with a
model assuming a Weibull model for each segment.
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Figure 5.16: BRIM-3 trial: Predicted survival for one change-point model with constant
hazards.

Figure 5.17: BRIM-3 trial: Predicted survival for one change-point model with Weibull
hazards.

Comparing this model to the model assuming a hazards generated from a Weibull
distribution we see that the survival is very similar between this model and the exponential
survival model for the observed portion of the data, however, the extrapolated survival is
different (Figures 5.16, 5.17). Because the Weibull model assumes a common
monotonically increasing hazard, its survival functions converge more rapidly1.

1In theory the survival functions will only be equal in the limit as t → ∞ so that S(∞) = 0, however,
they are practically indistinguishable at 50 months.
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Although the models do not exactly match the Kaplan-Meier estimator for the later
timepoints it should be noted that the expected survival function remains within the 95%
confidence intervals for the Kaplan-Meier trial and have a much lower WAIC than the
other parametric models. The WAIC value for both models are very similar and slightly
lower for the exponential change-point model, supporting the assertion of constant
common hazards as posited by Bagust and Beale (2014). It is worth noting that the
posterior distribution for the change-point in the exponential model is very concentrated
around 4 months, while for the more flexible Weibull model is much more diffuse. The
best fitting model to the data is the Royston Parmar model with non-proportional hazards
which fits the observed data well, however, the survival functions quickly cross and the
negative RMSTdiff indicates that the over the time horizon (50 months) the expected
survival is larger for the dacarbazine arm which is clearly implausible.

Table 5.5: RMSTdiff between the parametric survival models for BRIM-3 along with WAIC
for all parametric models - Loss of Treatment effect Scenario.

Model RMSTdiff WAIC

Royston Parmar (non-PH) -0.51 2300.18
Change-point Exponential 2.56 2306.92
Change-point Weibull 1.94 2308.60
Log-Normal 6.73 2312.84
Generalized-Gamma 6.84 2314.77
Log-Logistic 5.58 2317.90
Gamma 5.10 2323.74
Royston Parmar (PH) 5.04 2328.00
Weibull 4.54 2330.37
Gompertz 3.38 2351.04
Exponential 5.23 2379.60

5.7 Discussion

In this chapter we have described a general class of survival change-point models and
their estimation using modern Bayesian statistical software. Change-point models are
particularly useful when modelling data with complex survival functions and when jointly
modelling the intervention and comparator in instances when proportional hazards
assumption fails. Through simulation studies we have seen that the change-point models
produce most accurate extrapolations when the HR between treatment and comparator is
substantial along with a large sample size. This is unsurprising as more complex data
generating processes require a large number of samples to accurately estimate their
underlying parameters. Because change-point models have comparatively more
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parameters, the associated likelihood surface estimated by these models can be relatively
flat, particularly for datasets with high degree of censoring.

Considering real examples, we analysed a large clinical trial dataset with a long follow-up
we covariates we considered a variety of scenarios to jointly the model the treatment
arms, finding that the relative treatment effect decreased over time. The various
approaches to modelling survival produced similar and plausible extrapolated survival, in
contrast to the non-proportional hazard flexible spline models which optimized the fit to
the observed data but failed to produce sensible extrapolations. We note that the
change-point models did not dominate the proportional hazard Royston-Parmar model in
terms of goodness of fit, highlighting that the additional complexity in terms of
parameters may not provide a true improvement in the fit to the data.

In the LUME-LUNG 1 dataset it appeared from the plot of the empirical survival that the
survival did not diverge for a period of time after baseline, however, it is important to
assess if the change-point model improved model fit to justify the inclusion of the four
additional parameters (baseline shape and scale, change-point and HR for second
interval). The final example models the hypothesis that a change-point model is present
in one arm followed by common hazard applied to both arms. Previously when Bagust
and Beale (2014) suggested a common hazard model, they justified it by visual
investigation of the cumulative hazard plots. By considering a change-point model we
fully propagate statistical uncertainty while also testing an alternative hypothesis that a
Weibull change-point model could have generate the data. We see that assuming Weibull
model does have an impact on the extrapolated survival, however, based on goodness of
fit it appears the exponential change-point model is most appropriate for the data.

Change-point models developed in this chapter provide a consistent approach to the
application of treatment effect waning assumptions which are often a source of
disagreement between the company, ERG in technology appraisals (Kamgar et al., 2022).
Furthermore uncertainty in the change-point is fully propagated which was a key concern
raised by the ERG in TA589 (2019).

The key advantage of change-point models is the flexibility to model a wide variety of
scenarios, however, this flexibility does increase the number of potential models . Owing
to the presence of potentially many competing scenarios, the modelled hypothesis selected
as the basecase should undergo some clinical validation to assess the plausibility of the
hypothesis. For example if a common hazard is to be assumed, an expert’s opinion may
be consulted to assess the timeframe within which this is most probable, and their beliefs
formally integrated with the analysis. As mentioned previously change-point models are
parameter rich and may be weakly identified from the data. Because of this it is useful to
check the posterior distribution of the change-point to see if it has been reasonably
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informed by the inclusion of data. In contrast a relatively flat posterior distribution for the
change-points is suggestive of a weakly informed model.

Rutherford et al. (2020) criticises piecewise models by stating that only the final interval
informs the extrapolation. In the case of change-point models while this is also generally
true, it does not have to be the case. For example with the converging hazard model the
extrapolation is clearly informed by the hazard ratio from the first interval. Additionally
we can specify the baseline hazard to be estimated from the entire time interval and only
require the hazard ratios for the treatment arm to be interval specific. Even in this
situation we could assume a hierarchical model whereby the prior for the hazard ratio for
the current interval could be centered on the current value of the hazard ratio for the
previous interval (as was considered in a piecewise exponential model with covariates
estimated by Ibrahim et al. (2001)).

Additionally Rutherford et al. (2020) consider step changes in the hazard function to be
an implausible representation of the disease process. As was demonstrated in this chapter,
change-point models need not introduce discontinuities in the hazard function, however,
in many situations such models produce a better model fit. As the hazard function is not
an observable quantity such as a survival function we don’t believe there is a strict
requirement for continuity with the function. From our experience with real world survival
data, there are many situations in which we observed the empirical survival function
dropping precipitously and to attempt to model this with a continuous function may be
unrealistic.

5.8 Conclusion

Change-point models could be a useful approach to modelling a variety of hypothesis
regarding relative treatment effectiveness. They enable the survival function to be
accurately modelled while still allowing enforcing plausible extrapolations for the
treatment arms. Although computationally more burdensome than standard parametric
models we have shown how these models can be estimated using standard Bayesian
software and provide fully worked examples for practitioners to apply to their own
datasets. Further research will focus on estimation strategies which improve
computational efficiency of these methods and developing a fully functioning R package
similar to the mcp package by Lindeløv (2020).

As emphasized in this chapter, change-point models allow a high degree of flexibility for
modelling both the observed data and the data generating process. As with any
parametric model the accuracy of the extrapolation is highly uncertain. If beliefs about
the long-term survival of the population are available it is important that these can be
integrated into the analysis so that both adequate fit to the observed data and clinically
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plausible extrapolations are achieved. Integrating these beliefs in a manner which
accounts for the uncertainty in the expert opinion relative to information provided by the
data is essential. In Part III we develop a methodology to achieve these goals. In Chapter
6 we first consider including expert opinions in general statistical models along with
considerations on how to quantify the strength of these opinions. Chapter 7 applies the
methodology to parametric survival models including the change-point models described
in this chapter.
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Part III

Expert Opinion on Observable
Outcomes
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6 Expert Opinion on Observable
Outcomes - A General
Framework

6.1 Introduction

In Bayesian analysis there is an explicit allowance for quantitative subjective judgement.
However, in a majority of analyses such information is not incorporated (Mikkola et al.,
2023). While there are many situations in which expert opinion can be included in a
statistical analysis, it is particularly important when data are absent or scarce, and can be
used to inform probability distributions or for informing inputs for mechanistic models
(Garthwaite et al., 2005). For example, an expert might be asked to specify the expected
survival probability of a patient population at a certain time-point, which is unobserved
due to censoring, or for their opinion regarding the probability of health care utilization in
the future (O’Hagan, 2019). Other applications from fields such as meteorology,
agriculture, economics and finance are detailed by O’Hagan et al. (2006).

Given the frequency of situations in which data are unavailable but sensible assumptions
are needed, it is reasonable to suppose that expert opinion should be formally included in
decision problems utilizing statistical models. However, as noted by Kadane and Wolfson
(1998), expertise in a subject-matter is not the same as expertise in statistics and
probability, meaning that elicitation of the required inputs often involves training of the
experts in statistical concepts and necessitates multiple workshops to gain agreement
between experts on a particular input. Consequently, the consensus from the literature is
that it is more beneficial to query experts about model observables than model
parameters (Kadane and Wolfson, 1998; Garthwaite et al., 2005; Mikkola et al., 2023). In
such cases, the underlying elicitation space is the observable space and the form of
elicitation can be referred to as “indirect” elicitation. The model observables are variables
(e.g. model outcomes) that can be observed and directly measured, in contrast to latent
variables (e.g. model parameters) that only exist within the context of the model and are
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not directly observed (Mikkola et al., 2023).

While considering elicitation on the observable space reduces much of the cognitive
burden on the expert, this information must then be encoded on to the parameter space,
which is itself a non-trivial task. Among the issues identified by Mikkola et al. (2023) that
prevent more widespread incorporation of expert opinion are a) the advancement of a
general technical framework applicable to many problems, rather than custom built
solutions to specific problems; and b) the lack of good tools for elicitation that integrate
seamlessly with existing modelling workflows.

This chapter seeks to address both of these issues within the context of expert opinion on
the observable space. We describe a technical framework which can be applied to a broad
class of problems. The method can be integrated with commonly used statistical software
used for Bayesian analysis or within bespoke code for a particular analysis. We also pay
particular attention to quantifying the strength of an expert’s opinion, which is an
important consideration during elicitation exercises.

The remainder of the chapter is organised as follows. In Section 6.2 we describe existing
approaches to incorporating expert opinion on observable quantities. In Section 6.3 we
describe the proposed method along with considerations when including expert opinion
using the proposed method. Section 6.3.2 highlights approaches to assessing the
information contained within expert opinion, measured in terms of an equivalent sample
size of data. In Section 6.4 we consider incorporating expert opinion into an exponential
model, a relatively straightforward task, which allows us to describe in detail the
application of our method and compare it to some of the approaches described in Section
6.2. In Section 6.5 we describe the elicitation of a multivariate normal distribution by
using a prior predictive approach in combination with the loss-based framework. The
strategy we employ has much fewer and less complex elicitation questions than previous
approaches. In Section 6.6 we describe the inclusion of an expert’s opinion on mean
change from baseline of a treatment in a longitudinal study. To our knowledge inclusion
of expert opinion within models analysing repeated measurements has not been
considered previously, and we note that our approach is also applicable to generalized
linear models.

6.2 Overview of approaches for incorporating Expert

Opinion on Observable Quantities

In this section we describe the literature detailing methods for including opinion on
observable quantities. This literature falls broadly into four categories, which we briefly
describe. While not exhaustive, this categorization covers much of the previous
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literature.

6.2.1 Prior Predictive Approach

The prior predictive distribution for an unobserved data point x with model parameter θ is
defined as

π(x) =

∫
f (x |θ)p(θ)dθ,

where p(θ) denotes the prior and f (θ|x) the sampling distribution for the random variable
X . The experts are asked questions about aspects of the data, such as percentiles.
Hyperparameters are then estimated so that the prior predictive distribution matches
these opinions. The estimation procedure differs between approaches; Percy (2004) finds
these parameters through solving systems of non-linear equations, while Wesner and
Pomeranz (2021) consider an iterative approach whereby the parameters are manually
varied until the prior predictive distribution (evaluated by simulation) appears close to the
expert’s belief.

Hartmann et al. (2020) ask the expert to provide (prior predictive) probabilities of
observables falling in certain regions of the observable space. They then optimize the
model hyperparameters, as well as an additional concentration parameter which takes into
account that the expert information is itself of a probabilistic nature and hence inherently
uncertain.

Prior predictive approaches have been considered when eliciting opinions on observables
for linear regression and multivariate normal models (Kadane et al., 1980; Al-Awadhi and
Garthwaite, 1998). In these situations some of the hyperparameters were estimated
through intermediary calculations by assessing how an expert’s belief would change based
upon hypothetical data which is different than their current beliefs.

6.2.2 Opinions on value of Response or Percentiles and

associated uncertainty

This approach focuses on eliciting opinion on the value of a model response or percentile,
and the expert’s uncertainty about their estimate, akin to how the uncertainty about a
parameter estimate is related through the standard error.

Within this framework, Bedrick et al. (1996) discuss using a class of priors termed data
augmentation priors (DAP) to include expert opinion on observable outcomes. DAP have
the same form as the likelihood, with the idea that the prior for the parameters is based on
“prior observations” that give rise to a likelihood that has the same form as the likelihood
for the data. This results in a posterior that has the same form as the likelihood. Bedrick
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et al. (1996) and Johnson (1996) detail how to define such priors for generalized linear
models (GLMs) and survival data modelled by a log-normal distribution respectively.

Hosack et al. (2017) provide a method for including expert opinion on the expected
response of a GLM by assuming that the β regression coefficients from the linear
component are multivariate normal (MVN ). They then minimize the Kullback-Leibler
divergence between the percentiles of the expected response from the MVN (β),
transformed using the appropriate link function, and the expert’s percentiles.

6.2.3 Parameter Reparameterization

If a model can be reparameterized so that the observable quantity in question becomes a
parameter in the model itself, then the expert’s opinion can be included directly on this
parameter. Singpurewalla and Song (1988) consider expert opinion about median survival
modelled by a Weibull distribution, which was reparameterized to include a parameter for
median survival and (the standard) shape parameter. The expert is asked to provide a
mean and variance for median survival and then an informative prior for the shape
parameter. Assuming independence of these parameters, a joint prior is defined which can
then be updated with data in the standard fashion. Although allowing the expert to define
the first and second moments of the median survival, the distribution of median survival is
constrained to be a function of a chi-squared distribution and the specification of a prior
for the shape requires elicitation on the parameter space.

Wongnak et al. (2022) consider a Weibull distribution with expert opinion on mean
survival. In this hierarchical approach, mean survival was treated as a model parameter,
with the scale parameter a deterministic function of mean survival and the shape
parameter. The mean survival is assumed to have a log-normal distribution whose
parameters were elicited from the experts, while the shape parameter is assigned a vague
uniform prior.

6.2.4 Eliciting Opinion based on imagined data

observations

Another methodology which has received consideration from both Bayesian and
frequentist perspectives is to augment knowledge about the process under study by the
use of data elicited from experts. For statistical models with fixed dimension sufficient
statistics, it can be possible to elicit opinions in terms of data. For example, in the case of
a binomial likelihood, a Bayesian who asserts that their opinion is equivalent to observing
seven out of ten successes has provided a B(7, 3) beta distribution, while in the
frequentist analysis the “data” enters the likelihood as if they were real observations.
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See Coolen (1996) for some examples on setting hyperparameters based on imagined data
in survival models. Low Choy et al. (2013) discuss incorporating expert opinion on
observables for a logistic regression model using a DAP but also note that the opinions
could be included through the addition of pseudo-observations.

Lele and Das (2000) use hierarchical models in a frequentist framework to formulate the
problem of combining observed data and guess values obtained from experts using a
credibility parameter (a form of calibration), which assesses the correlation between the
expert’s guesses and known values.

6.2.5 Summary

While there are a number of strategies to including expert opinion on observables, it is
clear that none of the approaches are truly model agnostic. That is, they do not have the
ability to incorporate any and all types of expert opinion on observable outcomes with all
possible forms of likelihood. While the reality is that it is unlikely that such an approach
exists, it is clear that some methods are easier to generalize than others.

Prior predictive approaches are specific to the prior and likelihood combination, and for
likelihoods with multiple parameters, numerical techniques may be required to obtain
hyperparameters (Percy, 2004; Hartmann et al., 2020). Although prior predicitive
approaches for obtaining expert opinion on multivariate normal models and linear
regressions are mathematically elegant, they are quite cognitively burdensome on the
expert. This is discussed further in Section 6.5.

The approaches of Bedrick et al. (1996) and Hosack et al. (2017) offer solutions for an
important class of statistical models, GLMs. An advantage of the approach of Hosack
et al. (2017) is that the computational approach used to induce priors for different types
of GLM is the same, and is implemented as an R package. This is in contrast to Bedrick
et al. (1996), who require model specific calculations to derive the induced priors.

The parameter reparameterization used by Wongnak et al. (2022) is generalizable to other
statistical models. However, there are many examples where an observable outcome
cannot be expressed analytically in terms of the other parameters. For example, the mean
survival of a Gompertz distribution involves an intractable integral.

Including expert opinion by imagining data allows for the straightforward incorporation
into the statistical analysis. However, it can also require restrictive assumptions. For
example, in Coolen (1996), all of the parametric models with more than one parameter
were assumed to have the second parameter fixed.
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6.3 Loss based approaches to incorporating expert

opinion

An alternative approach to those described in Section 6.2 is to adapt the framework of
Bissiri et al. (2016), in which expert belief can be incorporated through the use of a loss
function. In this section we introduce the required notation, highlight the types of expert
opinion which can be included using this framework and discuss practical considerations
when eliciting opinions and implementing an analysis.

6.3.1 Loss Adjusted Posterior approach

A valid and coherent update of a prior p(θ) to a posterior π(θ|x) through a (negative)
exponentiated loss function (Bissiri et al., 2016) is

π(θ|x) ∝ exp{−l(θ, x)}p(θ). (6.1)

Importantly this is the standard Bayesian update if the loss function is the negative
log-likelihood l(θ, x) = − log{L(x |θ)}. We propose to incorporate expert opinion into a
model by specifying a loss function that includes the parameters of a probability
distribution ϕ that describe the expert’s opinion about the observable quantity. This
distribution is itself a function of the model parameters, g(θ). This idea extends the
framework established by Bissiri et al. (2016), who considered opinion on the parameter
space rather than the observable space. Within this proposed framework, we replace x

with ϕ and θ with g(θ) so that the loss function becomes

π(θ|ϕ) ∝ exp{−l(g(θ),ϕ)}p(θ). (6.2)

A key point to highlight is that the focus of this approach is to construct a posterior
distribution which directly encodes the expert’s beliefs about the observable space. This is
distinct to the methods described in Section 6.2, where the emphasis is on the model prior
and the identification of suitable hyperparameters that indirectly describe the expert’s
opinion on the observable space. This loss-adjusted posterior can be naturally updated
when data are available using the model likelihood, resulting in a posterior including both
expert opinion and data:

π(θ|x ,ϕ) ∝ exp{−(l(θ, x) + l(g(θ),ϕ))}p(θ). (6.3)

The posterior distribution for the model parameters is hence a function of both the fit to
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the observed data and to the observable quantity defined by the expert. We abbreviate
the approach described above as LAP (Loss Adjusted Posteriors) which highlights that a
particular prior is updated with a loss function to give a posterior which includes the
expert opinion.

As we will show through examples in the subsequent sections, this approach allows us to
be very flexible with respect to the types of information we wish to include in the
statistical analysis. Importantly, it is straightforward to include the loss function within
existing Bayesian software such as Stan (Stan Development Team, 2020) or
JAGS (Plummer, 2003). In Stan, it is possible to increase the log density of the posterior
by employing a specific statement in the Stan syntax denoted as target +=. This
statement allows for the target value to be incremented by a specified amount. For
instance, in Code Chunk 6 of Section 6.4.3, we utilize the target += statement, where
the right-hand side of the operation corresponds to the negative of the loss function
−l(g(θ),ϕ).

The outlined LAP approach can only incorporate opinions about observable quantities
which can be expressed as deterministic functions of the model parameters, such as the
mean, variance or percentiles, and so on. We cannot specify a loss function which
encodes a belief on the percentiles of a prior predictive density, which integrates out the
parameter(s) of interest.

Two important points are worth emphasising regarding this approach. Firstly, the choice
of prior p(θ) will impact the posterior π(θ|ϕ), which potentially could result in the
posterior density for the observable quantity being different to that imagined by the
expert. Typically a vague prior will have a minimal impact on the resulting LAP, however,
as described in Section 6.4 it is possible to remove this impact entirely by defining the
observable quantity as a parameter (typically with a uniform prior) so that the LAP
produces a density of the model observable which exactly matches the expert’s opinion.
Although this is operationally similar to the hierarchical approach described in Section
6.2.3, the LAP approach is more general and can include expert opinion when parameter
reparameterizations are not feasible.

Secondly, we must ensure that the resulting LAP is a proper distribution, meaning that
the integral over the parameter space is finite. Fitzpatrick (2009, Chapter 6)
demonstrates that a continuous function over a finite interval [a, b] is integrable, meaning
that it evaluates to a finite number. Since we require a finite interval, we specify proper
priors in our applied examples.

For the exponential likelihood in Section 6.4, we establish the propriety of the posterior
distribution when incorporating a loss function that models an expert’s belief on median
survival as a log-normal distribution. Because the exponential model is univariate, it
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enables us to explore different combinations of loss functions and priors, determining
whether they yield proper or improper posteriors. These illustrative examples offer valuable
insights into the conditions necessary for a proper posterior, emphasizing the importance
of having a proper prior. For examples in Sections 6.5 and 6.6 we define proper priors and
assume that inclusion of the loss functions do not introduce discontinuities in the posterior
distributions of the parameters, therefore, that the posterior distributions are proper.

As discussed by Bissiri et al. (2016), when using a loss based framework we are free to
multiply either loss by an arbitrary factor which we denote by weights w1,w2 for the losses
for the data and expert opinion respectively (Equation 6.4).

π(θ|x ,ϕ) ∝ exp{−(w1l(θ, x) + w2l(g(θ),ϕ))}p(θ). (6.4)

For the examples considered in this chapter, the loss with respect to the data is the
special case of the negative log-likelihood function so it is reasonable to set w1 = 1 (as in
the standard Bayesian update). Our opinion is that the weight on the loss for the expert
opinion should typically be set to 1. This is because the strength of the expert’s belief is
already governed by the parameters for the distribution representing their belief. If the
expert has a stronger belief they (or the elicitation process) will naturally calibrate the
parameters of the distribution representing their belief to have a higher precision, which
can be quantified by the Effective Sample Size (ESS) in Section 6.3.2 rather than
adjusting w2. If however, the analyst believes that the expert’s opinion is still
overconfident it may be useful to calibrate w2 < 1 which essentially increases the variance
of the distribution associated with the belief. In all subsequent examples in the chapter we
assume w1 = w2 = 1. The consideration of weights w1,w2 has a relation to power
priors/posteriors discussed by Ibrahim et al. (2015), where the likelihood is raised the the
power of a value a0 which can be between [0, 1]. They state that a power prior will be
proper if the initial prior is proper. We make the assumption that if the posterior
distribution associated with the loss function l(g(θ),ϕ) is continuous, then the posterior
associated with the power of the same loss function is also continuous, and consequently,
integrable.

One other consideration relates to conjugate posteriors. Considering the update implied
by Equation 6.1, including expert opinion implies that except in very special
circumstances1 the model will not be conjugate. This is more of a historical concern as
software such as Stan does not rely on conjugacy and while JAGS can use conjugacy for
computational efficiency it can alternatively use slice sampling when this option is not
available (Bølstad, 2019).

1One trivial example would be to include expert opinion on the expected probability of success as a
Beta distribution with a Beta prior and a binomial likelihood.
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6.3.2 Quantifying the strength of expert opinion

In any analysis which includes subjective beliefs or external information, it is important to
quantify the strength of the supplied evidence. This is particularly true when eliciting
expert opinion on quantities in either the parameter or observable space, as apparently
modest changes in opinion can be associated with a large change in the estimated
precision of the model parameters.

One active area of research for quantifying the strength of an opinion is the definition of
the effective sample size (ESS), denoted as ne . Conventionally, this quantity defines the
amount of information (in terms of n observations) contained in the prior (Morita et al.,
2008). Alternatively, the term can define the difference between a posterior incorporating
an informative prior and a posterior using a reference/vague prior (Reimherr et al., 2021).
One important distinction between these methods is that posterior-based approaches can
potentially account for prior-data conflict, which can in theory produce negative ESS
values.

The ESS of π(θ|ϕ), the expert-informed loss function component of the LAP, can be
quantified in the same manner as the prior π(θ) in the framework of Morita et al. (2008),
if we can similarly assume that this density is approximately normal. Alternatively, the
LAP component containing expert opinion and data, π(θ|x ,ϕ), can be compared to a
standard posterior with a vague prior π(θ|x), similar to the method of Reimherr et al.
(2021). In the examples that follow we consider different approaches to approximate the
ESS, with the pragmatic aim of gaining a reasonably quantified feeling of the impact of
the external information, e.g. whether it is 5% or over 30% of the data we have collected,
and not attempting to pinpoint the exact contribution (Reimherr et al., 2021).

6.4 Exponential Likelihood

In the following sections we incorporate hypothetical expert opinion on percentiles using
the prior predictive approach, and also by eliciting an expert’s belief about a percentile
and their associated uncertainty using DAP and LAP approaches. This section highlights
the different information that is required for these approaches using an exponential model
for which inference is relatively simple.

The exponential model is presented in two separate parameterizations; y ∼ Exp(λ) or
y ∼ Exp(1/ψ) with y the survival time of an observation. The hazard is denoted by λ
and ψ = 1/λ, with ψ also the mean survival time of the observations. For the prior
predictive approach we have a gamma distribution as the prior for λ ∼ G(α, β), while we
have an inverse-gamma distribution for ψ ∼ IG(α,αỹ) or alternatively β = αỹ . For the
LAP method we consider both parameterizations, with their respective priors and loss
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functions discussed in detail.

6.4.1 Prior Predictive Approach

Percy (2004) considers asking experts to specify quantiles by stating two times, Q1/3 and
Q2/3, such that the lifetime of an object was equally likely to be in each of these three
intervals: [0,Q1/3); [Q1/3,Q2/3);[Q2/3,∞). Of course we are not restricted to specifying
quantiles and could elicit any two percentiles, e.g. Q1/2 and Q3/4 representing the 50th
and 75th percentiles. Assuming a gamma prior and an exponential sampling distribution,
the prior predictive distribution is know as the Lomax distribution, with cumulative
distribution function F (x) = 1− ( β

x+β
)α. It is then straightforward to find the parameters

which satisfy the values of Q1/3 and Q2/3.

While analytically tractable, in practice it can be challenging to encode an expert’s
uncertainty into the analysis using this approach. Figure 6.1 shows the Q1/3 and Q2/3

tertiles of four different gamma distributions which have the same median survival but
different levels of ESS, ne = 1, 10, 25 and 100. Also shown is the prior density for the
median for each of these samples sizes. In this case ESS is simply ne = α, owing to the
properties of conjugacy. It may not be clear to the expert why their opinion becomes
more or less informative by changing the values of Q1/3 and Q2/3, especially as small
changes in the percentiles can result in large changes in the informativeness of the prior.
One potential solution could be to elicit only one percentile (e.g. the median) and also
elicit an effective sample size.

It is also challenging to extend this approach to alternative sampling distributions other
than the exponential. Percy (2004) discusses but does not implement an approach for the
Weibull distribution, for which there is no available analytic expression for the prior
predictive distribution. This approach then requires numerical methods for both the
evaluation of the prior predictive distribution and identification of the hyperparameters, of
which four are required.
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(a) Quantiles of Lomax distributions representing
different levels of ESS.

(b) Median Survival representing different levels of
ESS.

Figure 6.1: Expert Opinion for exponential likelihood using Prior Predictive Approach

6.4.2 Data Augmentation Prior Approach

Bedrick et al. (1996) discuss DAP for an exponential likelihood including expert beliefs at
different values of a covariate, however, for the purpose of comparison we will specify data
augmentation priors for the intercept only model. For this model the DAP is constructed
as ψ ∼ IG(α,αỹ), where α is the sample size and ỹ is a parameter representing the mean
survival time and ψ represents a random draw of mean survival.

We can specify percentile(s) for the median survival tmed = ψ log(2) and, after the
appropriate calculations for the change of variables, relate opinion about median survival
to the inverse gamma distribution. Equation 6.5 provides the density on the median
survival, where for clarity β = αỹ :

f (tmed|α, β) =
βα

Γ(α)

(
tmed

log(2)

)−α−1

exp

(
−β log(2)

tmed

)
1

log(2)
. (6.5)

Similar to the example in Section 6.4.1 we could ask experts to specify quantiles Q1/3 and
Q2/3 and find parameters α, β through optimization. Importantly, these quantiles
represent the quantiles of median survival and not the data distribution. In this case, the
quantiles represent the expert’s uncertainty around the value that median survival takes
and narrower intervals naturally represent more informative priors.

In Figure 6.2 we see the resulting expert belief on median survival after they have
specified the 50th percentile for the median as 10 and 75th percentile as 13.85. This
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produces the same parameters for α and β as assuming lower and upper quantiles of 3.98
and 21.49 for the Lomax distribution (i.e. n = 5 in Figure 6.1 (a)).

Figure 6.2: Prior on Median Survival based on IG(5, 67.25) prior

6.4.3 Loss Adjusted Posteriors

In Section 6.4.2 we have applied the DAP approach to incorporate expert opinion on
median survival. However, we note two primary limitations. Firstly, these priors are limited
to a number of special cases, as described by Bedrick et al. (1996) and Johnson (1996),
however, even in these cases deriving the model hyperparameters typically involves
non-trivial calculations. Secondly, in some situations, the expert may wish to not only
provide the percentiles but may also wish to specify a lepokurtic distribution to provide a
degree of robustness to their opinion or possibly specify a non-parametric histogram prior
(O’Hagan et al., 2006).
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One approach which avoids these disadvantages is to incorporate information on the
model observables through a loss function. One clear advantage is that the expert is not
restricted in the distributions that they can use to describe their belief about the
observable quantities. For illustration we suppose that the expert would like to represent
their belief about median survival using a log-normal distribution. This is straightforward
to encode when using a loss function. For the purpose of illustration we consider a
log-normal distribution with the same mean and variance as that presented in Figure 6.2,
which through method of moments has the parameters µexpert = 2.31 and σexpert = 0.53.
We will incorporate this opinion under both parameterizations of the exponential model
i.e. ψ and λ.

Expert Opinion under ψ parameterization

To compute the loss function we express the model parameter ψ in terms of the
observable quantity which for the median survival and exponential likelihood is
g(ψ) = tmed = ψ log(2). According to the expert’s belief this opinion is log-normally
distributed LN (µexpert,σexpert) and the loss function comprises of the deviation of tmed

generated by ψ to the expert’s belief. Therefore the loss function l(g(ψ)|µexpert,σexpert)

encodes this contribution as − logLN (ψ log(2)|µexpert,σexpert), amounting to a loss
function

l(g(ψ)|µexpert,σexpert) = log(ψ) +
1

2

(
logψ − µexpert

σexpert

)2

.

If we define the loss contribution as above and specify a uniform prior for ψ, then we can
generate samples from π(ψ|ϕ) using e.g., Markov chain Monte Carlo (MCMC), then in
the limit the posterior distribution for ψ produces a median survival which will exactly
match the expert’s opinion encoded as an LN distribution for tmed.

Expert Opinion under λ parameterization

Similar to the previous section we express λ in terms of the median survival for the
exponential model which is g(λ) = tmed = log(2)/λ. The expert’s contribution to the loss
function is − logLN (log(2)/λ|µexpert,σexpert). However, if we place a uniform prior on λ,
the posterior distribution for tmed will not be exactly LN . This is because setting a
uniform U(a, b) prior on λ results in a non-uniform prior on the median survival,
p(tmed) =

1
b−a

log(2)

t2med
= 1

b−a
λ2

log(2)
, and therefore contributes information to tmed in addition

to the expert’s opinion.

Because we have a closed form expression for the density of median survival implied by a
uniform prior on λ we can include (a function of) this density explicitly in the loss
function. This essentially cancels out the prior contribution of the uniform prior for λ on
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the median survival. The final expression for the loss function in terms of λ is then:

l(g(λ),ϕ) = − log(LN (log(2)/λ|µexpert,σexpert)) + log

(
1

b − a

λ2

log(2)

)
. (6.6)

Using this loss function to update a uniform prior on λ will give a posterior distribution for
λ which which has a log-normal median survival, i.e., the LAP. In most multivariate
examples it will not be possible to derive a closed form expression of the density of the
observable outcome implied by the prior for the parameters. In order to deal with such
situations we can typically reparameterize the model so that the observable quantity is a
parameter with a prior distribution (typically uniform) and one of the model parameters is
a function of the observable quantity (and the other model parameters). In this
hierarchical model specification, the model parameter is a logical or deterministic function
observable quantity (and the other model parameters).

Once the technical conditions ensuring the propriety of the update are met, a key strength
of this approach lies in its straightforward implementation. This simplicity is exemplified
by the pseudocode for the Stan model, as presented in Code Chunk 6, which incorporates
expert opinion on median survival (Figure 6.3). In this example the upper and lower
bound of the uniform prior for λ (i.e. a, b is 0.001 and 10 respectively).

transformed parameters{

//lambda is a deterministic function of median St

median_St = log(2)/lambda;

}

model{

lambda ~ uniform(0.001, 10);

target += lognormal_lpdf(median_St|mean_expert, sd_expert) - log(lambda^2)

}

Listing 6: Pseudo Stan code implementing expert opinion. The final line in this example
uses the target += statement to increment the typical model posterior to include the
additional loss function,omitting constants which do not involve model parameters.

We could even implement the expert’s belief non-parametrically using the histogram
method or parameterize the expert opinion as a (truncated) Student’s t distribution with
a low number of degrees of freedom.
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Figure 6.3: Posterior of Median Survival induced by loss function

Examples of proper and improper posteriors when including expert opinion

In this subsection we discuss a number of combinations of the prior and loss function
which result in proper and improper posteriors. The loss functions all relate to expert
beliefs about median survival for an exponential survival model with the λ or ψ
parameterizations.

We first prove the propriety of the posterior distribution arising from the loss function in
Equation 6.6 with a uniform prior on λ. The posterior density of λ in Equation 6.6 is
π(λ|ϕ) ∝ LN (g(λ)|µexpert,σexpert) log(2)/λ

2 across the interval [a, b] with a > 0, b <∞.
In order to ensure this posterior is proper we need to prove the continuity of this
function/density at each value of λ.
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There are a number of properties relating to the continuity of functions and are detailed
in (Fitzpatrick, 2009, Chapter 3). One of these is the product property, whereby if two
functions f and g have a common domain D and both functions are continuous at x0
then the product f (x0)g(x0) is continuous at x0. Additionally we are interested in
composite functions, where function f has a domain D and g has a domain U such that
g(U) is contained within D. The composite function is denoted by f (g(x)) for all x in U .
If g(x) is continuous at x0 and the function f is continuous at the point g(x0) the
composite function is continuous at x0.

Beginning with the part of the equation referring to the log-normal LN distribution, we
see that it is a composite function. The domain of g(λ) is the interval [a, b] and it’s
image is the interval [g(b), g(a)]. The domain (or support) of the log-normal distribution
is (0,∞), so the image of g(λ) is contained within the domain of the log-normal
distribution. The function g(λ) is continuous within its domain and the log-normal
distribution is continuous everywhere within its domain. Therefore, the composite
function is continuous at every value of λ within [a, b]. The function log(2)/λ2 is also
continuous for every value of λ within [a, b] and, therefore, the product of these two
functions is continuous.

Although we could have visualized this univariate function to verify its continuity at
particular values of µexpert,σexpert, the rationale provided above can be generalized to
models with more than one parameter.

After establishing the propriety of the posterior including the expert opinion as a
log-normal distribution we next consider the implications of updating improper priors with
other loss functions. We begin by examining a situation where incorporating the loss
function results in an improper posterior.

Assume an expert believes that median survival follows an exponential distribution with
hazard parameter λ∗, distinct from λ which is the parameter for the survival model rather
than the expert’s belief. The mode of the exponential distribution is at 0, therefore, it
results in non-zero density for λ as it approaches infinity. Assuming an improper uniform
prior for λ (i.e. upper bound undefined), the posterior distribution is
π(λ|ϕ) ∝ λ∗ exp{−λ∗ log(2)

λ
} with lim

λ→∞
π(λ|ϕ) = λ∗. We can further extend this by stating

that for the exponential model with the λ parameterization, any belief which puts a
non-zero density on median survival equal to 0 (with an improper prior) will result in an
improper posterior. It should be emphasized that while such beliefs are highly implausible,
even opinions parameterized as valid probability distributions can under certain limited
circumstances lead to improper posteriors.

While an improper prior combined with an exponential belief for median survival resulted
in an improper posterior in the previous example, the use of an improper prior with other
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beliefs does not guarantee an improper posterior. For example, if the expert has a belief
that median survival has a Cauchy distribution (truncated to be positive), the posterior is
still proper even with an improper uniform prior. In this example we assume the
exponential model has the ψ parameterization rather than the λ parameterization, as it
allows us to evaluate the integral of the posterior density analytically. The posterior
distribution of ψ is

π(ψ|ϕ) ∝ 1

πγ
[(ψ log(2)−µ

γ

)2
+ 1
] ,

where µ, γ are location and scale parameters describing the density of the expert’s belief.
To evaluate the integral of this (unnormalized) posterior density with respect to ψ we first
make the substitution u = ψ log(2)−µ

γ
for which du = log(2)

γ
dψ. Expressed in terms of u and

pulling constants outside the integral, the expression is now 1
π log(2)

∫
1

u2+1
du. This integral

has an analytical expression and the indefinite integral in terms of u is arctan(u)
π log(2)

+ C where
C is the constant of integration. Undoing the substitution provides the final result which
is

arctan
(ψ log(2)−µ

γ

)
π log(2)

+ C .

The limit of the arctangent of x when x is approaching infinity is equal to π/2, i.e.
lim
x→∞

arctan(x) = π/2. Therefore, the integral evaluates to a finite value even when the
upper limit of integration not finite. The above integral was evaluated numerically for a
number of values of µ, γ using the integrate function from the stats package (R Core
Team, 2021) and gave identical results to the analytical expression of the integral.

A final example is how an improper prior for a parameter and an improper density
describing an expert’s belief can result in a proper posterior. We specify an improper
uniform prior for λ over the interval [a,∞), where a = 0.001, and we also assume that
the expert wishes to express complete ignorance regarding median survival times. This
implies a uniform density on median survival over the interval [0,∞) which is improper. It
should be noted that although the density on the expert’s belief is improper, the prior on
λ has restricted the possible values of the posterior median survival to be between
(0, log(2)/a].

Although the expert has a belief corresponding to a uniform density for median survival, it
implies a very non-uniform belief on λ. Because large values of median survival are
plausible under this belief, the density of λ increases as it approaches zero (and is
undefined at zero). By change of variable technique it is straightforward to show that the
density for λ implied by a uniform belief on median survival is f (λ) ∝ log(2)/λ2. As we
have a uniform prior for λ, the posterior for λ is π(λ|ϕ) ∝ log(2)/λ2 which is proper over
the interval [a,∞).
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ESS with an Exponential Likelihood

As with any elicitation exercise (either on the observable or parameter space) it is worth
quantifying the ESS of the information. The ESS for an exponential likelihood under a
gamma or inverse-gamma prior for λ or ψ parameters respectively is known through the
conjugacy of the one-parameter exponential families (although the ESS will differ by 1
depending on the parameterization). Therefore it is most convenient to fit a gamma
distribution to the percentiles of a posterior distribution for λ, using for example the
SHELF package (Oakley, 2020), with the ESS informing the shape parameter.

6.5 Elicitation of parameters for a Multivariate

Normal distribution

In this section we describe the incorporation of expert opinion for a complex statistical
model to highlight the flexibility of the approach. We provide an approach which improves
upon existing methods in that it requires fewer and less complex queries during the
elicitation exercise.

6.5.1 Overview of previous approaches

The problem of including expert opinion within the multivariate normal sampling model
has been explored using a natural conjugate prior (normal inverse-Wishart) and a
non-conjugate prior (normal generalized inverse-Wishart) (Al-Awadhi and Garthwaite,
1998; Garthwaite and Al-Awadhi, 2001). The natural conjugate prior forces a dependence
between the mean and the covariance, so Garthwaite and Al-Awadhi (2001) proposed
assessment tasks that allow the expert to quantify separately assessments about each of
these parameters.

In both approaches, assessment tasks include specifying conditional and unconditional
percentiles and some assessments using based hypothetical observations. For example, the
degrees of freedom parameters for a multivariate-t distribution, the prior predictive
distribution for the multivariate normal, are assessed by considering the magnitude of
difference between two random samples and assessing the median of this absolute
deviation for each component Zi . Then, experts are asked to suppose that two more
observations are sampled from the population for which the magnitude of difference is
calculated to be Z ∗

i . These hypothetical values must not be what the expert was
“expecting” (i.e., Zi) and the expert must then assesses their conditional median of Z ∗

i ,
with the ratio of these quantities used to calculate the degrees of freedom. The idea is
that if the expert’s conditional distribution Z ∗

i changes by only a small amount relative to
Zi , then they have a strong belief about the spread of the multivariate distribution. As
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noted by Daneshkhah and Oakley (2010) “these are difficult assessments for the expert to
make, as it is hard to judge how to change one’s beliefs in light of hypothetical data,
particularly as this necessarily has to be done without writing down a prior distribution
and applying Bayes’ theorem”. Furthermore, the method requires a substantial number of
quantities to be elicited: for four-dimensional multivariate data, Daneshkhah and Oakley
(2010) asked the expert to specify fifty quantities, a cognitively burdensome task.

6.5.2 Overview of proposed approach

Let X denote a k-dimensional random variable that has a MVN distribution,
X ∼ N (µ, Φ ). The vector µ is a k-dimensional parameter representing the mean of the
distribution, while Φ is the k × k variance-covariance matrix. The covariance matrix is
constructed from the correlation matrix Σ, which is pre- and post-multiplied by a diagonal
matrix of the standard deviations D = diag(σ1 ...σk) so that Φ = DΣD.

The model priors are as follows:

Σ ∼ LKJ(η)

(µi , τi) ∼ NG(µ0, γ,α, β) for i = 1, ... , k ,

where the correlation matrix Σ is sampled from a Lewandowski-Kurowicka-Joe (LKJ)
distribution (Lewandowski et al., 2009). This prior does not influence the variance
components, unlike the Wishart distribution or its inverse parameterization. The mean µi

and precision τi for each component Xi are modeled by a Normal-Gamma (NG)
distribution, with σi =

√
1/τi for i = 1, ... , k .

We describe how to elicit the parameters of a multivariate normal distribution based on
k(k − 1)/2 + 2k + 1 elicitation steps. We first elicit the expert’s strength of belief, which
we denote as ne , by asking them to imagine the number of observations that their opinion
represents, clarifying to them that each observation is a random sample of dimension
k .

The subsequent steps of the approach can then be organised into three distinct sections:
firstly, defining the hyperparameters for each of the k marginal normal distributions that
make up the multivariate normal distribution; secondly, defining the loss function that
encodes the expert’s belief about the pairwise correlation of the k elements; finally, adding
a component to the loss function so that the prior on the correlation matrix does not
attenuate the expert’s belief about the partial correlations.
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Defining the hyperparameters for the marginal distributions

For each component i = 1, ... , k , we model its mean µi and precision τi using an NG
distribution. We can then write the conditional distribution as µi | τi ∼ N (µ0, γτ), with
the marginal distribution of the precision τi ∼ G(α, β). The hyperparameter µ0 represents
the mean prior belief value of µi ,2 while γ denotes a scale factor which can be interpreted
as the number of pseudo-observations or ESS (ne) for each µi . Similarly the precision τi
is estimated from 2α pseudo observations so that α = ne/2. The prior predictive
distribution for an NG distribution is a non-standard, or scaled and shifted, Student’s t
distribution St

(
µ0,

β(γ+1)
αγ

, 2α
)
, where 2α denotes the degrees of freedom of the

distribution (Bernardo and Smith, 2000). Because we have independence between the
correlation matrix and other parameters, each component within the k-dimensional vector
has the Student’s-t distribution specified as above.

We proceed to identify the hyperparameters of the NG distribution as follows: for each
component i in 1, ... , k , we elicit two percentiles of the prior predictive distribution, e.g.
the median and upper quartile. With these parameters, along with ne , we can find the
parameters of the Student’s t-distribution that optimally reflect these beliefs by
minimizing the squared error.

Defining loss functions encoding beliefs about partial correlations

We now turn our attention towards the elicitation of the partial correlations
ρij , for i , j = 1, ... , k . Fackler (1991) considers asking the experts for a concordance
probability: pij = P(θi > µi , θj > µj) or P(θi < µi , θj < µj), i.e. the probability that both
θi and θj are either above their expected values or below their expected values. For the
bivariate case this probability is pij = 0.5 + sin−1(ρij), with ρij being the product moment
correlation we require for the correlation matrix. Owing to the properties of the
multivariate normal distribution, we can simply drop the elements not relating to i or j to
obtain the bivariate distribution so that the formula holds for k > 2. See Kepner et al.
(1989) for a simple derivation of the bivariate concordance formula which holds for the
general multivariate normal distribution. While the prior probability of data arising from
an NG distribution follows an St distribution rather than a normal distribution, and no
closed formulae exist for the concordance probability in this case, we have verified by
simulation that their behaviour in this case is the same as that for the normal
distribution.

We elicit the median concordance probability p̃ij for each combination (i , j) of the k

variables, which is invariant to transformation. Assuming that the expert is as confident in

2Note that for α ≤ 0.5, the mean does not exist. In such cases, it is more accurate to refer to µ0 as
the median prior belief.
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their beliefs about the concordance values as they are about the percentiles elicited above
(though this is not a requirement), we use ne to derive the uncertainty in the estimate of
pij . We do this by first transforming p̃ij to ρ̃ij , and then using Fisher’s transformation
F (ρ) = artanh(ρ), the inverse hyperbolic tangent function, noting that this has a normal
distribution with mean artanh(ρ̃ij) and standard error ψ = 1√

ne−3
(Fisher, 1915). Therefore

the loss function includes terms l(g(ρij) | ϕ) = − log(N (artanh(ρij)|artanh(ρ̃ij),ψ))
summed across all possible partial correlations.

Removing impact of prior for LKJ distribution

The marginal distribution of the partial correlation ρij , modelled with an LKJ(η) prior is
proportional to a B(η − 1 + k/2, η − 1 + k/2) beta distribution. This means that as k
increases, the marginal prior probability for the partial correlations become non-uniform
and more concentrated around 0. We can remove the impact of the prior on the
correlation matrix by including the log density of the LKJ prior in the specification of the
loss function, making it uniform over its support [−1, 1]. It is possible to obtain a uniform
marginal by setting η = (4− k)/2 so that we obtain a B(1, 1) distribution, however,
clearly this is not possible for k ≥ 4 as then η ≤ 0. Figure 6.4 presents the marginal
distribution for the LKJ prior with η = 1, k = 4 compared to the density of LKJ
distribution included in the loss function.
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Figure 6.4: Comparison of densities when including of loss function vs. the standard
specification of LKJ distribution

Summary

For the marginal distributions of each of the k elements we have defined hyperparameters
based on elicited percentiles to match the expert’s opinion. We include expert opinion on
the correlation parameters through a loss function. Also included in the loss function is a
term to negate the impact of the LKJ prior on the partial correlations.

Marginal Components of MVN distribution:

For each of the individual components i = 1, ... , k of the MVN , find the
hyperparameters of the associated NG distribution:

1. Elicit two candidate percentiles of the data distribution from the expert, e.g.,
median and upper quartile;

2. Ask the expert to describe their “confidence” in their belief in terms of an ESS,
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noting that it can be different for each component i ;

3. As the prior predictive distribution for a NG is a non-standard Student’s-t, it is
straightforward to find the hyperparameters of the NG distribution by numerical
optimization using the information elicited above.

Correlation Parameters of MVN distribution:

1. For each pairwise combination (i , j) of the k elements, elicit the median
concordance probability p̃ij , the probability that both i and j will be above or below
their respective medians;

2. Ask the expert to describe their “confidence” of their belief in terms of an ESS,
noting that it can be different for each pairwise combination;

3. The median concordance probability p̃ij is transformed to the median partial
correlation ρ̃ij . Take the Fisher transformation, artanh(ρ̃ij), of ρ̃ij . This
transformation of the partial correlation produces a variable whose distribution is
approximately normally distributed, with mean artanh(ρ̃ij) and a standard error
(ψ = 1√

ne−3
), that is stable over different values of the partial correlation.

4. The loss function for each partial correlation is then

l(g(ρij) | ϕ) = − log(N (artanh(ρij)|artanh(ρ̃ij),ψ)),

and the total loss function is then

l(g(ρ) | ϕ) =
k∑
i<j

l(g(ρij) | ϕ) + log(LKJ(Σ|η))

where the inclusion of log(LKJ(Σ|η)) ensures that p(ρij) is uniform over the support
[−1, 1].

6.5.3 Expert Opinion applied to Multivariate Normal

Model

We consider an example of the outlined method applied to an imagined elicitation
exercise. We assume that the dimension of the multivariate normal data is k = 4, which
necessitates 15 quantities to be elicited, in contrast to Garthwaite and Al-Awadhi (2001),
who required > 50. The (hypothetical) expert has been asked to assess their effective
sample size, which they believe to be ne = 10. For each of the four marginal distributions,
they specify the 0.5 and 0.75 percentiles as in Table 6.1.
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Table 6.1: Percentiles supplied by the expert and associated hyperparameters.

Percentile Hyperparameters

k 0.5 0.75 µ0 β

1 5.00 6.35 5 16.89
2 2.00 2.67 2 4.22
3 1.00 1.34 1 1.06
4 3.00 5.02 3 38

By definition γ = ne and α = ne/2.

For each of the six partial correlations, the expert provides their median concordance
probabilities, as shown in Table 6.2. Also shown is the median posterior correlations
estimated using the loss function. It is worth noting that the median concordance
probability for p̃13 from the model is higher than that specified by the expert. The reason
for this is that for any one partial correlation, conditional on the other partial correlations,
the remaining partial correlation is restricted to be within a certain interval so that the
correlation matrix is semi-positive definite. We suggest that once the median concordance
probabilities are elicited, that the intervals for each concordance probability which produce
a positive definite correlation matrix, conditional on the other concordance probabilities,
are presented to the expert. In situations where there is substantial density outside the
originally specified interval, the expert should asked to reassess this particular value to
ensure coherency. Furthermore, the expert can be shown the distributions of the
concordance probabilities and the correlation parameters induced by incorporating the loss
function and confirm that it is a reasonable representation of their beliefs. These plots are
shown in Figure 6.5.

Table 6.2: Median concordance probabilities supplied by the expert and those generated
by the model.

Expert’s concordance probability concordance probability induced from model

p̃12 0.60 0.58
p̃13 0.25 0.30
p̃23 0.40 0.44
p̃14 0.50 0.49
p̃24 0.50 0.49
p̃34 0.50 0.51
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(a) Concordance Probability (b) Partial Correlation

Figure 6.5: Concordance and Correlation induced by loss function

6.6 Repeated measurements regression model

In our final example we consider a repeated measures regression problem. To our
knowledge, this class of problem has yet to be analysed using expert opinion on the
observable space, but the outlined approach can be accomplished by adding a few lines of
code to popular existing software.

To motivate our approach, we consider data presented by Littell (1990), in which the
effect of three different exercise programs, denoted as CONT, RI and WI, on participant’s
strength is assessed over seven different timepoints. In the original analysis the population
effects (often called fixed-effects) were modelled with time as a quadratic function, with
various covariance structures under consideration. We consider a situation in which the
expert was asked for their belief about the expected change from baseline for the WI
programme.

We let yij denote the measurement of the ith person at the jth timepoint. To account for
the repeated measures we define individual effects (also known as random effects) for the
intercept, slope, and quadratic effect of time, along with population level effects for the
programme term and an interaction term between linear and quadratic time and the
programme. The full model has the essential form:

yij |bi = (B0 + b0i) + (B1 + b1i)tj + (B2 + b2i)t
2
j

+ B3PWI + B4PWI tj + B5PWI t
2
j + · · ·+ ϵij .
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The population level intercept is denoted by B0, while B1 and B2 denote the population
level coefficients for linear and quadratic time. The other population level terms refer to
programme related time effects:

PWI =

{
1 treatment group is WI
0 otherwise

and for space we have suppressed the population effects for the PRI relative to baseline
group (CONT).

The individual level effects bi for the intercept and slope of linear and quadratic time are
modelled as a multivariate normal distribution with zero mean and covariance matrix

bi = (b0i , b1i , b2i)
⊺ ∼ MVN (0, Φ).

6.6.1 Expert Opinion

We suppose that expert opinion for the WI group is available whereby the expert believes
that the mean change in strength from baseline to the final timepoint for this group can
be represented as a normal distribution, with mean µexpert = 2.5 and standard deviation
σexpert = 1.5. We also consider a scenario analysis where the expert opinion is much
stronger, with µexpert = 0.5 and σexpert = 0.5 . Because of the quadratic term, it is not
possible to place a prior on the population level coefficients to induce these opinions.
However, it is straightforward to do so using a loss function.

The difference in expected strength between final and first timepoints for the WI group is
ζ = B4PWI tj + B5PWI t

2
j . Our loss function then amounts to

l(ξ,µexpert,σexpert) =
1

2

(
ζ − µexpert

σexpert

)2

.

We specify time (linear and quadratic components) as orthogonal polynomial contrasts to
aid estimation. Stan code for this model was generated using the brms package (Bürkner,
2017) which was then modified to include the loss function. Vague (but proper) priors
were chosen for all model parameters and a LKJ prior with η = 1 was chosen for the
correlation matrix. The impact of the expert’s opinions are illustrated in Figures 6.6 &
6.7. In the first scenario, the expert’s opinion has very marginally changed the fixed
effects regression line while for the scenario with µexpert = 0.5 and σexpert = 0.5 the
impact is substantial. The changes in the 95% credible intervals are also apparent in the
posterior distributions for the expected change from baseline.

We can get a heuristic for the ESS of the expert’s opinion by comparing the standard
deviation of the posterior distribution for the change from baseline without expert opinion

144



(a) Expert Opinion:µexpert = 2.5,σexpert = 1.5 (b) Expert Opinion:µexpert = 0.5,σexpert = 0.5

Figure 6.6: Comparison fixed effect model estimates with and without expert opinion
(dashed and full line respectively).

(0.67) to that of the standard deviation obtained using the expert opinion (1.5).
Considering that the value of 0.67 was generated from 13 participants in the WI group,
we get the relation σ = 0.67

√
ndata ≈ 1.5

√
nexpert so that nexpert ≈ 2.5. This value seems

plausible considering the modest impact of including the data. In the scenario in which the
expert opinion has standard deviation of 0.5, a similar calculation produces nexpert ≈ 23.
We note that, similar to Morita et al. (2008) and Neuenschwander et al. (2020), this
calculation ignores the potential for the expert opinion to be in conflict with the observed
data as is potentially the case in the second scenario. However, it is still useful as a way
to highlight the large change in the strength of the respective expert opinions.

6.7 Discussion

In this chapter we describe a general approach to including expert opinions on observable
quantities within statistical models. The theoretical justification for the approach is based
on Bissiri et al. (2016), and expands upon this framework in a theoretical sense and by
providing several practical examples. Bissiri et al. (2016) briefly describe an example in
which an expert declares that a parameter θ is close to 0 with a quadratic loss function.
The core idea is that the expert declares that a function of a parameter (which relates to
the observable quantity) can be described in some manner such as a probability
distribution. Additionally, this chapter describes the potential for the prior on the
parameters to attenuate the information provided by the expert and how to eliminate its
impact. As shown in Section 6.5.3 the specification of a loss function may be of interest
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(a) Expert Opinion:µexpert = 2.5,σexpert = 1.5 (b) Expert Opinion:µexpert = 0.5,σexpert = 0.5

Figure 6.7: Comparison of mean change from baseline estimates with and without expert
opinion (dashed lines refer to the 95% credible intervals).

in standard data analysis exercises, such as when attempting to model multivariate data in
which the correlations are close to ±1, as with higher dimension of the data, the LKJ
distribution will place more prior probability on partial correlations close to zero.

In Section 6.4.3, we outline general assumptions for ensuring the propriety of the Loss
Adjusted Posterior. Specifically, assuming a proper prior for the model parameters and
that the expert’s opinion results in a continuous density across the parameter space, we
expect the Loss Adjusted Posteriors to be proper. Similar to the standard application of
Bayes’ theorem, where a proper prior multiplied by a likelihood yields a proper posterior,
we posit that combining a proper prior with expert opinion (expressed through a loss
function) will similarly lead to a proper posterior. However, we acknowledge that this
assumption remains unproven. When updating improper priors with data, it is important
to verify the propriety of the resulting posterior. The same caution applies when
incorporating expert opinions. As in the exponential example in Section 6.4.3, care must
be taken to ensure that non-zero density is not placed at infinite values of the parameter
space. To mitigate this risk, we recommend avoiding improper priors altogether.
Fortunately, opinions related to observable outcomes naturally constrain the parameter
space, allowing us to include vague yet proper priors. For instance, our uniform parameter
specification for λ from 0.001 to 10 accommodates median survival values between 0.069
and 693, which should encompass all plausible values.

The approach considered in this chapter requires experts to assign subjective probability
to deterministic functions of the parameters such as expected values or percentiles and
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therefore, is in the same category as work by Bedrick et al. (1996) and Hosack et al.
(2017), albeit acknowledging that the focus is not on the prior but a loss function. Within
the LAP framework it is not possible to specify beliefs about the prior predictive density as
by definition the parameter of interest has been integrated out of the expression (and we
cannot specify a deterministic relationship between the data x and the parameter(s) which
generated that data). This however does not prevent using the prior predictive approach
to define priors which encode expert opinion for some of the parameters with information
on other parameters included through the loss function (as in Section 6.5.3).

The approach described in this chapter addresses many of the key difficulties with respect
to expert knowledge elicitation described by Mikkola et al. (2023). They cite practical
reasons, such as many of the approaches still being too difficult for non-statistical experts
to use, and the lack of good open source software that integrates well with the current
probabilistic programming tools used for other parts of the modelling workflow. It is
natural to assume that eliciting expert’s opinions on observable quantities is easier than
elicitation on the parameter space, however, it can still be cognitively burdensome. As
described in Section 6.5, our approach to elicitation of the multivariate normal
distribution requires many fewer questions and avoids elicitation about conditional
distributions and hypothetical data which are cognitively more challenging. Another key
issue that we believe this method addresses is that it integrates well with the current
probabilistic programming tools used for other parts of the modelling workflow. Stan and
other Bayesian programs are the default tools for many statisticians and the ease which
this approach can be integrated with these tools is highlighted by the pseudo-code in
Section 6.4.3. Only a few lines of code were required to update the existing code
generated by the brms package for the example in Section 6.6.

Using this approach, it is typically straightforward to include expert opinion on observable
quantities, however, it always worth checking how well the posterior distribution for the
expert’s opinion (just with the loss function and without data) approximates the opinion
elicited from the expert. As noted earlier, a uniform prior on the parameters does not
necessitate a uniform density on a function of those parameters such as the observable
quantity. In many practical situations the choice of vague priors will have a relatively
modest impact on the density implied by the expert, which will diminish the more
informative the expert’s opinion is. Furthermore, in the context of survival analysis,
Cooney and White (2023a) found that posterior distributions estimated using data and
loss functions tended to be very similar even with different types of relatively
non-informative priors3. In the situation that the impact is non-trivial, it is often possible
to express the observable quantity upon which expert opinion was sought as a parameter,

3They also found very good agreement between the Bayesian method and a frequentist approach
motivated as a penalized likelihood.
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assign a uniform prior to it and express one of the model parameters as a deterministic
function of the observable quantity (and the other parameters as required) as described in
Section 6.4.3. Even if it is not possible to express this relationship analytically, it is usually
possible to solve this numerically, albeit with a large increase in computational
burden.

Finally, although the incorporation of expert opinion with statistical models using this
approach is more straightforward, the robustness of the inferences generated from them
will rely upon the quality of the information elicited from the experts. O’Hagan et al.
(2006) provides an in-depth treatment of expert elicitation and it is evident that
considerable effort, sometimes taking the form of a workshop, is required to obtain
methodologically appropriate opinions. Although important to quantify (at least
approximately), the informativeness of any type of elicited information included in a
statistical model, it is especially important in situations where the expert is providing
opinion on the expected value of the response and their uncertainty around that estimate
(e.g. Section 6.6) or elicitations based on prior predictive quantiles. Experts may not
understand that uncertainty does not scale linearly with the sample size, as illustrated in
the extreme case in Figure 6.1. Therefore in each of our examples we try to produce an
approximate estimate of ESS (or as in the case of Section 6.5.3 specify it explicitly) so
that the expert can be given the opportunity to revise their estimates at the elicitation
stage rather than requiring post-hoc adjustments or reassessments.

Chapter 7 will apply the framework we have developed here to the full range of parametric
survival models, exploring approaches to pooling multiple experts’ opinions and
quantifying their relative strength in terms of data observations.
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7 Utilizing Expert Opinion to
inform Extrapolation of Survival
Models

As noted Chapter 2 parametric survival models extrapolate the observed survival data to
make long-term survival projections that are crucial to cost-effectiveness decision making.
Differences in long-term predictions can be particularly pronounced when a high
proportion of the survival times are censored and may produce clinically implausible
survival estimates (Davies et al., 2013). When expert clinical opinion is available, it is
important to use this information in the modelling process. Often these opinions are not
integrated in a formal way, with survival models typically estimated using maximum
likelihood, i.e., based on the data alone, before choosing the parametric model for which
expected survival appears to be compatible with the expert opinion. This approach has a
number of weaknesses. Primarily, it is difficult to identify the most appropriate model if
several models appear consistent with the expert opinion. In the opposite scenario, when
none of the models meet the expert’s criteria, the best choice of model is again unclear. It
would be preferable to have a measure of statistical fit which takes account of the degree
of agreement with the expert opinion as well as the observed data, rather than making a
decision based solely on whether the predicted quantity from the model is within the
expert’s plausible range. In this chapter we consider how long-term survival estimates
provided by clinical expert opinion can be directly incorporated into the model estimation
procedure. We do so by adopting a framework in which the expert opinion that has been
elicited on the observable data space is used to modify the density of the parameter
space. Our approach is compatible with the SHELF elicitation framework (Oakley, 2020),
including when multiple expert opinions are available, and can be applied to many
parametric models, from the exponential distribution, which assumes a constant hazard,
to spline models that can accommodate bathtub type hazards. This approach generalises
previous work by Cope et al. (2019), in that we consider the parametric survival models
commonly used in decision making, evaluate model fit based on goodness of fit to both
data and expert opinion and do not restrict expert opinion to be represented by a single
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normal distribution. The rest of the chapter is organized as follows. We provide a review
of some methods which incorporate expert opinion into parametric survival models.
Subsequently, we introduce the proposed statistical method, and discuss considerations
when aggregating the opinions of multiple experts. We then present an application of the
method whereby the survival times of pediatric acute lymphoblastic leukaemia (pALL)
patients treated with tisagenlecleucel are integrated with expert opinions about survival at
various timepoints (Grupp et al., 2016, 2018). We conclude the chapter with a discussion
of its key ideas along with a summary of the challenges involved in eliciting expert
opinion. In Appendix D.1 we validate our approach with a previously published example
whereby expert opinion on median life was incorporated into the survival function. In
Appendix D.2 we describe some technical details regarding the estimation of certain
parametric models. In Appendix D.4 we perform a simulation study to assess the effect of
priors on posterior survival extrapolations when including expert opinion and in Appendix
D.5 we perform a simulation study to assess the impact of bias in expert opinion on
extrapolated survival. All methods outlined in this chapter are available for use as an R
package called expertsurv (Cooney and White, 2023b) with further details presented in
Chapter 8.

7.1 Previous Literature

Much of the initial work on this topic is from reliability analysis, incorporating expert
opinion about the median survival into Weibull models, with the median survival
distributed as a function of chi-squared distribution or a normal distribution (Campodonico
and Singpurwalla, 1993; Singpurewalla and Song, 1988). One disadvantage of both
approaches is that the experts are also required to think about the mean and variance of
the shape parameter of the Weibull distribution (i.e. parameter space), which is much
more difficult than eliciting information in the observable data space. Other work
estimated the Weibull model based on expert opinion from either the mean, mode and
quantiles of survival time and a hyperparameter representing the effective sample size of
the opinion, avoiding the need to elicit expert opinion on the parameter space (Bousquet,
2006). Another approach uses hyperparameters to incorporate expert opinion for survival
models for which conjugate priors or priors with the same form as the likelihood exist
(exponential, gamma, and Weibull). For two-parameter models, however, this approach
requires the assumption that one of the parameters is already known (Coolen, 1996). The
approach generates informative priors by calculating their hyperparameters using sufficient
statistics such as (but not limited to) the number of events, censored observations and the
sum of event times. Survival models with covariates can also incorporate expert opinion,
whereby the expert contributes a distribution conditional on the values of the covariates
at a design point. As described in Chapter 6 for a class of priors referred to as data
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augmentation priors (DAP) in which the prior has the same form as the likelihood, expert
opinion was incorporated at different levels of a covariate for exponential and log-normal
examples, again through deriving hyperparameters (Bedrick et al., 1996; Johnson, 1996).
In the context of health technology assessment, Ouwens (2018) incorporated expert
opinion about survival probabilities at a particular timepoint for one and two parameter
models by re-expressing one of the parameters as a function of the survival probability at
the chosen timepoint and the other parameter (if applicable). This approach considers a
broader family of parametric models than those previously described. The approach
samples both a survival probability from the expert’s prior distribution and the second
parameter from its (non-informative) prior and uses these to calculate the first parameter.
A similar hierarchical Bayesian approach (although from the field of ecology) considered
the Weibull model with expert opinion elicited on mean survival at different covariate
levels for multiple experts (Wongnak et al., 2022). Willigers, Bart and Ouwens, Mario
and Briggs, Andrew and Heerspink, Hiddo and Pollock, Carol and Pecoits-Filho, Roberto
and Tangri, Navdeep and Kovesdy, Csaba and Wheeler, David and Garcia-Sanchez, Juan
Jose (2023) extend the approach of Ouwens (2018) allowing for two timepoints and in
situations when model parameters which cannot be analytically expressed in terms survival
probabilities optimizer is used to obtain the parameters. Cope et al. (2019) introduced a
method to incorporate expert information regarding survival probabilities when it has been
provided at multiple timepoints. In the approach of Cope et al. (2019) a Bayesian
approach is used to fit a hazard function to the observed data and the hazards implied by
the long-term survival beliefs of the expert. Weibull, Gompertz, 1st and 2nd order
fractional polynomials can be fit with this approach using the JAGS statistical
program(Plummer, 2003), however, it is not clear if the expert opinion modifies the model
parameters or if it is solely the hazards implied by the expert’s survival beliefs which are
used to extrapolate the survival beyond the observed data. Ayers et al. (2022) implement
expert opinion assuming that the expert’s belief about survival at a particular timepoint is
normally distributed (truncated at zero). This approach treats the elicited mean value of
the expert’s belief for survival as a datapoint. This datapoint is assumed to be generated
from a truncated normal distribution with mean equal to the predicted survival based on
the model parameters and standard deviation based on the normal distribution elicited
from the expert. It can be shown that this statement will correctly incorporate the
expert’s belief only for symmetrical non-truncated distributions.

Che et al. (2023) provide a method to incorporate an opinion by simulating a dataset of
survival times with the expected survival as per the expert’s belief with the sample size
providing the strength of expert opinion. If the expert believes 20% will survive beyond 10
years and their opinion is equivalent to 100 observations, then 80 observations from a
U(0, 10) (uniform distribution) can be simulated and remaining 20 observations censored.
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This approach, however, implies a functional form for the survival times (i.e. uniform)
which may not be consistent with the observed survival data. Recently, Jackson (2023)
estimated spline models in which expert opinion on conditional survival parameterized as a
B (beta distribution) can be incorporated at multiple timepoints.

7.2 Survival Analysis with Expert Information

Using the notation from Section 2.3, consider an exponential distribution, with associated
hazard h(t) = θ and survival function S(t) = exp{−θt}. The likelihood of an exponential
model is then L(θ|D) = θ

∑n
i=1 νi exp {−θ

∑
ti} . If the prior distribution for θ has been

specified as G(α, β), i.e., a Gamma density with parameters α and β, then the posterior
distribution is available in closed form as Gamma distribution
G(α +

∑n
i=1 νi , β +

∑n
i=1 ti). While in this case the posterior distribution is tractable,

Bayesian inference for other distributions is more challenging and relies on modern
computational methods for inference. Even in this case, tractable inference requires
specification of the prior in a specific framework that will not be intuitive to a
non-specialist. See Table D.6 in Appendix D.6 for a full list of the survival models under
consideration in our analysis.

7.2.1 Integrating Expert Opinion with Trial Data

Consider the situation where an expert has an opinion about the survival probability at
potentially multiple times t* = t*

1 , . . . , t
*
k . As in the Chapter 6 we propose to incorporate

this information into the analysis by expressing the elicited quantity in terms of the
parameters ϕ which will contribute a “loss” or penalization based on the discrepancy with
the elicited opinion. The parameters ϕ will typically be parameters of a specific
probability distribution describing the expert’s opinion about the survival at each of the
times t*. The parameters will be estimated based on their fidelity to the data and expert
opinion, with the relative strength determined by the number of observations and
precision of the elicited belief.

In the most general situation in which we have k timepoints at which we wish to include
expert opinion, we let ϕi represent parameters associated with the timepoint i and
l(g(θ), t*

i ,ϕi) a loss function encoding expert opinion at timepoint i . The posterior
distribution of the model parameters including expert opinion is:
π(θ|ϕ) ∝ exp{−

∑k
i=1 l(g(θ), t

*
i ,ϕi)}p(θ).

As in Chapter 6, g(θ) is a function of the model parameters θ and the parameters
governing the experts’ opinion ϕi at a particular timepoint t∗i . To fix this idea, consider
an exponential model being fit to data, with a normal distribution with mean µi and
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standard deviation σi (ϕi) describing the expert’s belief about survival at a particular
timepoint t∗i , so that S(t∗i ) ∼ N (µi ,σi) and g(θ) = S(t∗i ). The posterior density is then
proportional to:

π(θ,µ1...k ,σ1...k) ∝ exp
{
−

k∑
i=1

l(g(θ), t∗i ,µi ,σi)
}
p(θ),

and the loss function for the expert opinion at the particular timepoint is

l(θ, t∗i ,µi ,σi) ∝
1

2

(
exp(−θt∗)− µi

σi

)2

.

The posterior of the expert opinion with data is denoted by

π(θ|D,µ1,...,k ,σ1,...,k) ∝ exp
{
− (

k∑
i=1

l(g(θ), t∗i ,µi ,σi) + l(θ|D))
}
p(θ),

with the posterior includes the loss function from the (negative) data log-likelihood and
the (negative) log-density. Considering the survival at one timepoint (suppressing the
subscript i) with t∗ based on the µ and σ parameters representing the expert opinion for
that timepoint. Finally p(θ) denotes a weakly informative prior for θ. For an exponential
model the survival at the elicited timepoint is S(t∗) = exp{−θt∗} so that

l(θ,µexpert,σexpert,D) ∝ −
{
− 1

2

(
exp(−θt∗)− µexpert

σexpert

)2

+
n∑

i=1

νi log θ +−θ
∑

ti
}
.

While the resultant posterior does not have a closed form, this is not of practical
importance when using modern computational Bayesian methods. More generally, the
advantage of this approach is that it can be applied to a wide family of survival models,
including those with 3 or more parameters. It is also straightforward to represent the
elicited opinion as other probability distributions e.g. beta distribution, as well as
incorporate additional timepoints. As detailed extensively in Chapter 6, theoretical
justification for this approach is provided by Bissiri et al. (2016) who show that a valid
and coherent update of a prior belief distribution to a posterior can be made for
parameters which are connected to observations through a loss function rather than the
traditional likelihood function, which is recovered as a special case. Although we have
presented this method in a Bayesian framework, it can also be motivated from a
frequentist perspective as an example of a penalized likelihood method (Cole et al., 2013).
In this framework, we impose additional constraints on the parameter space by modifying
the likelihood so that it is a function of the observed data and a further penalty term that
will pull or shrink the final estimates away from the maximum likelihood estimates
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(MLEs), towards values of the parameters which are more compatible with the elicited
predicted survival at the timepoint(s) t∗. Model estimation with this approach can be
achieved using standard optimisation techniques (Nocedal and Wright, 2006).

When considering the analysis in a Bayesian framework it is worth discussing the potential
effect of the prior on the parameters p(θ) and the loss function which encodes the
expert’s opinion l(θ, t∗,ϕ). As described in Chapter 6 the information encoded in the loss
function is distinct from the prior, however, it is possible that a particularly informative
prior on the model parameters could also imply a density for survival at the designated
timepoints which conflicts with the expert’s opinion. We conducted an extensive
simulation study, with various sample sizes and expert opinions (in terms of location and
spread of the beliefs) for the parametric models we have implemented. We compared
results of the models fit using uniform priors for all parameters to relatively vague normal
and gamma priors which were more informative than those typically used in Bayesian
analysis. Across the scenarios specified in the simulation study, the posterior distribution
of the survival functions were effectively identical. Additionally, we compared the results
versus those obtained through penalized maximum likelihood estimation so that we could
compare with a method which does not include a prior. We again obtained very similar
results. From this we can conclude that reasonably non-informative priors for the
parameters should not conflict with information provided by an expert. Further details
regarding the simulation studies are presented in Appendix D.4.

7.2.2 Incorporating Multiple Expert Opinions

In some situations the opinions of multiple experts are available and in general groups
tend to perform better than the average individual in elicitation exercises (Clemen and
Winkler, 1999). Although it is sometimes reasonable to provide a decision maker with the
elicited expert probability distributions separately, the range of which can be studied using
sensitivity analysis, it is often necessary to combine the distributions together into a single
analysis. In many cases, for example, a single distribution is needed for input into a larger
model; and that model has other inputs with structural uncertainties, so that a full
sensitivity analysis may not be feasible. This is particularly true when a specific survival
model is used as an input for a cost-effectiveness model, in which case decision makers are
typically making choices with respect to the parametric model in question, in addition to
other structural assumptions. Considering this model choice appropriately for each expert
can be burdensome and inflate the number of scenarios presented to the decision
maker.

Combination, or aggregation, procedures are often dichotomized into mathematical and
behavioural approaches, although in practice aggregation might involve some aspects of
each (O’Hagan et al., 2006). One such technique is opinion pooling, where a
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consensus distribution for p(θ) is obtained as some function of the distributions
p1(θ), ... , pm(θ) elicited from each of the m individual experts. Behavioural aggregation
approaches attempt to generate agreement among the experts by having them interact in
some way. This interaction may be face-to-face or may involve exchanges of information
without direct contact or have an impartial observer to facilitate discussion (e.g. SHELF
protocol). In either case the consensus distribution is then used as the prior for the
analysis. For the purpose of this chapter we will focus on opinion pooling (as to conduct
behavioural aggregation would require us to conduct an elicitation exercise with experts)
noting that these methods are simpler to implement than behavioural approaches,
although the distributions that result need not represent the opinions of any one person,
let alone a consensus opinion from the group of experts. Additionally, these methods have
“coherency” issues, as highlighted below.

We first consider the logarithmic opinion pool, which is obtained by taking a weighted
geometric mean of the distributions,

p(θ) ∝
m∏
j=1

pj(θ)
wj ,

with weights specified such that
∑m

j=1 wj = 1. When the decision maker is equally
confident in the abilities of all experts, it is common to choose wj = 1/m for all j . The
advantage of this approach is that it is externally Bayesian. When new data are obtained,
one could either update each expert’s distribution individually and then combine the
resulting posterior distributions using logarithmic pooling, or first combine the expert’s
distributions and then update the consensus distribution. These will result in the same
posterior distributions.

Continuing our example and assuming an exponential distribution with constant hazard, if
m experts have expressed their prior beliefs about θ as Gamma priors G(αj , βj),
j = 1, ... ,m the pooled prior is also a Gamma distribution, G(

∑k
j=1 wjαj ,

∑m
j=1 wjβj), and

the resulting posterior distribution is then G(
∑m

j=1 wjαj +
∑n

i=1 νi ,
∑m

j=1 wjβj +
∑n

i=1 ti).
If we were to compute the posterior distribution using each expert prior separately, and
then compute the logarithmic opinion pool post-hoc, it is evident that the same posterior
distribution would be obtained.

Logarithmic pooling, however, does not satisfy the marginalisation property. Suppose each
expert is asked about mutually exclusive events, A and B . If C is the event A or B , then
coherency demands that Pr(C ) = Pr(A) + Pr(B). There are two ways to obtain a pooled
probability for C . We can compute the probability by adding Pr(A) and Pr(B) from each
expert and pool the resulting sums, or we can pool the elicited probabilities for A and B

first and then add the pooled results. With a logarithmic opinion pool, these approaches
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will not yield the same probability, however, it should be noted that this issue does not
affect the pooling of survival probabilities.

Another form of expert pooling is the linear opinion pool

p(θ) =
m∑
j=1

wjpj(θ),

which is the weighted arithmetic mean of the distributions. This approach is not
externally Bayesian. Continuing our example, a weighted sum of Gamma distributions is
not a Gamma distribution and is not available in an analytic form unless the rate
parameters are equal (Salvo, 2008). Linear pooling does satisfy this marginalisation
requirement, however, no aggregation function can simultaneously satisfy the
marginalization and externally Bayesian properties.

O’Hagan et al. (2006) notes that when using logarithmic pooling, the decision maker
regards as implausible any values of θ that are considered implausible by any single expert.
The linear opinion pool, on the other hand, concentrates more in the area where the
experts opinions overlap, but it does not rule out values of θ that are supported by only
one expert, which may be the reason linear pooling is more commonly used (O’Hagan
et al., 2006).

We illustrate these properties in Figure 7.1, in which we consider a hypothetical example
where two experts have provided their opinions on θ for an exponential model, with the
experts holding somewhat conflicting opinions. We suppose Expert 1 has a prior of
G(8, 10) and Expert 2 has a prior of G(20, 10). Figure 7.1a presents both pooling
approaches for the prior expert opinions, with the purple line representing the density of
the opinion obtained by logarithmic pooling while the green refers to the density using
linear pooling. As mentioned previously, the logarithmic pooling produces a pooled density
that gives most weight to areas of overlap between the expert’s opinions, which peaks at
the point where the density lines intersect. The linear pool is bimodal and retains the
characteristics of the constituent prior distributions, with the 95% credible interval
[0.40-2.79] being wider than that of the logarithmic pool (0.77-2.22). Figure 7.1b shows
the posterior distributions obtained when the individual expert’s priors and the logarithmic
and linear pooled distributions are used as a prior for an exponential likelihood with the
kernel of a G(10, 7) distribution. For the logarithmic pooling, when we update each
expert’s prior with data separately, and then compute the logarithmic opinion pool of
these posteriors, or pool both experts’ prior opinions and then update with data, we
obtain the same posterior distribution (shown by the black line density). In contrast,
linear pooling results in two separate posterior distributions depending on whether pooling
was conducted on the individual priors (brown/maroon line) or individual posteriors (pink
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line). It is worth noting that the example presented here relates to the parameter space
(i.e. experts gave opinion about the parameter), however, the results also hold when
pooling on the opinions in the observable space.

Although expert pooling typically refers to model parameters (i.e. θ) we can also pool
expert beliefs about the observable quantity in the same manner. When using our
approach as described in Section 7.2.1, when multiple expert opinions are available which
we wish to combine with linear pooling, the posterior has the form

π(θ|D,ϕ) ∝ exp
{
− l
(
g(θ),

m∏
j=1

pj(S(t
∗)|ϕj)

wj ,D
)
p(θ)

}
,

where
∏m

j=1 pj(S(t
∗)|ϕj)

wj denotes the pooled distribution for the multiple expert
opinions for survival at time point(s) t∗ (although for notation ease we have only
considered one timepoint). The quantity pj refers to the (potentially different) probability
distributions and associated parameters describing expert j ′s belief about S(t∗), while for
notational ease ϕj denotes all the information provided by the expert’s opinion (i.e. both
in terms of parametric models and associated parameters). If we use a linear method to
pool our prior information, then the resultant posterior will be different then if we ran
separate analyses using each expert opinion and pooled the results a posteriori.

Figure 7.1: Aggregation of expert opinions (with and without data)

7.2.3 Effective Sample Size for Survival Models

One potential approach to determining the ESS of a sample is based on comparing
uncertainty in the survival function (elicited from an expert) possibly measured in terms of
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interval width and match it to a sample size which would produce a similar level of
uncertainty. The uncertainty of the Kaplan-Meier survival function is based on a normal
approximation to the a binomial distribution.

The standard error of the empirical survival function (assuming no censored observations)

is SESurv =
√

Ŝ(t∗)(1−Ŝ(t∗))
ne

and given the probability α and the zα/2, the confidence
interval Ŝα/2(t∗), Ŝ1−α/2(t

∗) is Ŝ(t∗)± SESurv ∗ zα/2. Full details on the derivation of the
standard error of the survival function are detailed in Collett (2015). If we plug in the
median survival probability elicited from the expert as Ŝ(t∗) and Ŝα/2(t

∗), Ŝ1−α/2(t
∗)

being the lower and upper expert beliefs for a particular probability α we can find an
estimate of SESurv which can in turn be used to find ne . It should be noted that the
estimates of SESurv and Ŝ(t∗) could also be the obtained from the standard deviation and
median of a parametric distribution fitted to the expert’s quantiles. It should be noted
that the normal approximation for the above confidence interval can be inappropriate
when the interval is close to 0 or 1 and transformations can be considered to produce
more accurate intervals (see Collett (2015) for details). Another approach is to recognise
that the survival probability can be represented by a B(α, β) distribution. Using the
quantiles that were elicited from the expert, a B distribution can be fit to the expert’s
opinion and the effective sample size calculated as α + β .

It is also possible to consider the exponential survival model with a prior on the parameter
for which the ESS is directly known. An obvious example is λ ∼ G(α, β) where α is ne.
Using the change of variable technique it is straightforward derive an analytic expression
for S(t∗), we can then find the α, β parameters which minimize the difference between
the probability distribution assigned to the expert’s belief and the distribution implied by
α, β through least squares.

Extending this to two parameter survival models, we note that there is no analytical
expression for the density of survival at a particular timepoint (as multiple parameters
mean that there is no one-to-one transformation). Using a particular prior for the
parameters of the Weibull (accelerated time factor) we can introduce a parameter which
relates to the effective sample size using the following relations (further details in
Bousquet (2006)).
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a ∼ U(0, 10)

f (a) = t∗a
( ˆS(t∗)

(−1/ne) − 1
)−1

µ|β ∼ G(ne, f (a))

b = (1/µ)(1/a)

T ∼ W (b, a)

We now have parameters which have an expected survival ˆS(t∗) and parameter
uncertainty based on ne. We can simulate a large number of parameters b, a and produce
a distribution of S(t∗) from a Weibull W distribution for a range of ne and find the ne

which is most similar to the expert’s distribution (again through least-squares). We also
have derived the ne for the Pareto distribution (see Appendix D.3) and have found that
across each of exponential, Weibull and Pareto models that the effective sample size for a
given uncertainty level are almost identical.

7.3 Case Study: Inclusion of Elicited Expert Opinion

with ELIANA trial

Cope et al. (2019) elicited expert opinion on the expected survival probabilities at 2, 3, 4
and 5 years of pALL patients treated with tisagenlecleucel, based on the available 1.5 year
results from the ELIANA trial along with other available tisagenlecleucel data for
paediatric acute lymphoma/leukaemia (Grupp et al., 2018, 2015; Maude et al., 2016).
Elicitation was conducted in line with the SHELF methodology, in which for each
timepoint, experts were asked to first estimate the upper plausible limit (UPL), followed
by the lower plausible limit (LPL) so that they are 99% sure that the true survival
probability is contained within that interval. Experts were also asked to estimate the most
likely values (MLV). A web-based application was developed that would facilitate the
elicitation and ensure experts were provided with immediate visual feedback regarding
their elicitations, given that information at each timepoint was dependent on that in the
previous time point. Before confirming each value, experts were challenged to consider
whether they were certain about their estimates, in line with SHELF methodology.
Following the individual expert elicitations, consensus about the appropriate long-term
survival model from the perspective of a rational impartial observer was achieved in a
follow-up meeting (which was the Gompertz model), which allowed experts to interact. A
normal distribution was specified using each expert’s opinion about expected survival
probabilities at each timepoint. The variance of this distribution was determined using the
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width of the interval provided by the expert. The survival beliefs of the experts implied
interval-specific hazards which were incorporated with the ELIANA trial data. Posterior
samples for the predicted survival from each expert were pooled to obtain the final
survival distribution. In our reanalysis we consider the longer term ELIANA data based on
a median duration of follow-up of 24.2 months with range of 4.5-35.1 months Grupp et al.
(2018), and combined this with the expert opinions for expected survival for years 4 and 5
(as we have an estimate of the survival function for times < 2.8 years). We considered
the expert beliefs at these timepoints and identified which distribution most accurately
describes their beliefs, rather than assuming that they were normally distributed. We used
the SHELF package to identify the best fitting distribution to these timepoints by
minimizing the least square error (Oakley, 2020). Because we wished to include the
expert’s MLVs, we modified these functions so that the MLV represented the mode of the
distribution and included this quantity in the least squares optimization. The best fitting
distribution was the one which minimized the sum of squares from either the normal, t,
lognormal, gamma or beta distributions. Because we have updated data for survival at
years 2 and 2.8 (which we assume is representative of year 3), it is important to confirm
that the elicited survival at years 2 and 3 are broadly consistent with the survival at the
same timepoints from the updated trial data. For consistency we assumed the same
distribution type for each expert across both years, so that the chosen distribution was the
one which minimized the total sum of squares across years 2 and 3. The individual
distributions for years 2 and 3 are presented in Figure 7.2. Additionally, the logarithm and
linear pooling, and a purple interval representing the 95% Kaplan-Meier survival
confidence intervals from updated ELIANA data at the same timepoints are plotted.

Figure 7.2: Best fitting distributions representing experts’ opinion at years 2 and 3 including
95% Kaplan-Meier survival confidence intervals from updated ELIANA data at the same
timepoints (purple interval).
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Figure 7.2 shows that the pooled distributions have more overlap with the 95%
Kaplan-Meier survival confidence interval than the individual expert’s distributions and
supports the finding that, in general, groups of experts tend to perform better than
individuals (Clemen and Winkler, 1999). Although it is probable that experts would
re-calibrate their opinions on survival conditional on the longer-term follow-up, based on
the observation that the pooled distributions for elicited survival at years 2 and 3 were
similar to the follow-up data, it is reasonable to assume that these opinions remain valid,
and we incorporate the year 4 and 5 opinions with the updated data.

We repeated the approach described above for the expert opinions at years 4 and 5 with
the individual and pooled distributions presented in Figure 7.3. Most of the expert beliefs
were described by t distributions with 3 degrees of freedom. Expert 3’s opinion is best
described using a beta distribution.

Figure 7.3: Best fitting distributions representing experts’ opinion about survival at years 4
and 5.

We see a variety of expert opinions, with Experts 1, 6 and 7 broadly similar, while Expert
4 and 5 are also similar. Across both timepoints Expert 2 has a very strong opinion, while
Expert 3 has a diffuse opinion. Although Expert 3 has the widest interval (UPL minus
LPL), their MLV is also closer to the LPL, which results in the best fitting distribution
having a high standard deviation. Overall this collection of opinions results in a tri-modal
distribution for the linear pool. The logarithm pool is smoother and assigns lower
probability at the more extreme ends of the parameter space. Because linear pooling is
the more common pooling method, we use the linear pooled distributions as
representative of the expert opinions which were then incorporated with the updated
ELIANA trial data.

161



7.3.1 Extrapolated Survival

Figure 7.4 shows the predicted survival for the parametric models, including models using
the data only (left) and the data together with expert opinion at years 4 and 5 (right). In
addition to the posterior median survival for each model, the 2.5% and 97.5% quantiles
are presented for the 3 models which have the largest change in 95% interval width at 60
months (Gompertz, Royston-Parmar and generalized gamma). For the models fit with
Stan (Stan Development Team, 2020), inference was based on 3 chains each containing
10,000 iterations with the first 5,000 as burn-in, while for models fit with JAGS each
chain contained 50,000 iterations and the first 10,000 discarded as burn-in. As shown in
Table 7.1 the log-logistic and log-normal models have the best statistical fit with respect
to the Deviance information criterion (DIC) (Spiegelhalter et al., 2002)1. Models which
allowed for rapidly decreasing hazards (Gompertz) or non-monotonic hazards (e.g.
log-logistic or log-normal) seem to provide the best fit to the experts opinions and the
data, a property which all of the three best fitting models have. However, across all the
models considered, the differences in DIC are < 3, suggesting that they are broadly similar
in model fit. This is not surprising as the pooled prior is quite diffuse, with a 95% credible
interval of [0.28-0.70] for the Year 4 opinion and consequently predicted survival for all
parametric models are plausible. If we estimate the models without the expert opinion,
the exponential model, which assumes a constant hazard, was the best fit according to
DIC. Including expert opinion assigns substantial probability to high long-term survival
and the parametric models which accommodate lower long-term hazards fit the data and
expert opinion better.

1Although our preference is to use WAIC and PML (as in Section 3.7.3), these approaches require us to
define the likelihood for each observation, including the contribution for the expert opinion. One approach
could be to multiply each observation by πt∗(θ)

1
n , however, we will use DIC as it does not require us to

consider this issue.
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Figure 7.4: Left: Predicted survival functions fit using the updated ELIANA trial without
expert opinion. Right: Predicted survival functions using the updated ELIANA trial with
expert opinion at 48 and 60 months using linear pooling.

Table 7.1: Survival models ordered by DIC for expert opinion survival models (lower is
better)

Models DIC (expert opinion) DIC (vague priors)
log-Normal 273.54 277.86
log-Logistic 273.56 277.34
Gompertz 274.05 278.47
Gen. Gamma 274.45 278.55
Exponential 274.63 276.95
Royston-Parmar 275.64 280.64
Weibull (AFT) 275.79 279.19
Gamma 275.83 279.06

7.3.2 Effective Sample Size

We estimated the effective sample size of each of the experts at Year 4 using the four
methods described in Section 7.2.3 in Table 7.2. Year 5 results are broadly similar and
therefore not presented. We also present the standard deviation of the parametric
distribution assigned to the expert’s opinion. Because the mode elicited from Expert 2
was not likely to be an accurate representation of the median of the survival, the
calculation of the normal approximation to the binomial uses a plug in estimate of SESurv

and ˆS(t∗) from the best fitting parametric distribution.
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Table 7.2: Effective Sample Size of expert opinions including information on most likely
value - Year 4 Timepoint

ESS

Expert 0.5% Mode 99.5% SD Expo Wei Norm Beta

1 0.43 0.59 0.78 0.05 21 22 57 66
2 0.48 0.66 0.72 0.02 119 120 363 344
3 0.11 0.46 0.86 0.16 5 5 12 9
4 0.19 0.49 0.72 0.07 11 11 27 27
5 0.18 0.45 0.8 0.09 9 9 19 16
6 0.18 0.55 0.87 0.1 5 5 14 11
7 0.28 0.58 0.78 0.06 14 13 37 33

99.5% - Expert upper belief; 0.5% - Expert upper belief; Mode -
Mode of expert’s belief;
SD - Standard deviation of parametric distribution fit to the expert’s
belief
ESS - Effective Sample Size under various assumptions;
Expo - Exponential; Weib - Weibull; Norm - Normal approximation;

For Expert 2 the 0.5% quantile is 0.48 and the 99.5% quantile is 0.72, while their MLV is
0.65. This implies quite a heavily skewed distribution which is not well accommodated by
any of the distributions we have considered. For the distributions we considered,
minimizing the least-squared error of these 3 quantiles only optimized the 99.5% and MLV
values with the 0.5% from the fitted distribution being higher than the expert’s belief.
This resulted in the estimated distributions having too low uncertainty as no distribution
can adequately model both the 0.5%, 99.5% with the asymmetric MLV. Because of this
we have also presented the results without including the MLV (Table 7.3).
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Table 7.3: Effective Sample Size of expert opinions excluding information on most likely
value - Year 4 Timepoint

ESS

Expert 0.5% Mode 99.5% SD Expo Wei Norm Beta

1 0.43 0.59 0.78 0.07 19 20 53 49
2 0.48 0.66 0.72 0.05 42 42 110 107
3 0.11 0.46 0.86 0.14 4 4 12 9
4 0.19 0.49 0.72 0.1 10 10 23 20
5 0.18 0.45 0.8 0.12 7 7 17 14
6 0.18 0.55 0.87 0.13 5 5 14 11
7 0.28 0.58 0.78 0.1 10 10 26 23

Column Names as per preceding Table.

Overall the ESS based on the parametric models are very similar to each other (i.e.
exponential compared to Weibull) and considerably lower than the normal and beta
approximations which are also very close in value to each other.

7.4 Including Expert Opinion with Change-point

Survival Models

In this section we provide a concise overview on how expert opinion can be incorporated
into one of the change-point models presented in Chapter 5. Incorporating expert opinion
into these models poses no additional challenges compared to standard parametric models.
We examine the combined E1690 & E1684 datasets as outlined in Section 5.5.1.

We include an expert belief that the expected probability of survival of the observation
group (OBS) at 15 years is 0.2 with a standard deviation of 0.03 and can be adequately
described by a normal distribution. The loss function is the negative log density of the
predicted survival of the OBS group at 15 years based on a normal distribution with mean
0.2 and standard deviation 0.03. Fitting a one change-point model (referred to in Chapter
5 as Scenario 1) we obtain the survival function described below in Figure 7.5. Comparing
the survival function to the analysis without expert opinion (Figure 5.9), as expected the
survival of the OBS arm has fallen. The 95% credible interval for the expected survival
probability at 15 years is [0.206 - 0.293], while the survival of the interferon arm (INF) has
remained unchanged.
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Figure 7.5: Predicted survival function of a one change-point model with expert opinion on
survival of the observation arm

7.5 Discussion

The primary contribution of this chapter is that it extends previous work on incorporating
expert opinion to a wide range of parametric models (Cope et al., 2019; Ouwens, 2018).
In contrast to many previous works, the introduced approach makes it straightforward to
incorporate information about other quantities of interest (e.g. median, mean survival, or
mean survival difference) into an analysis. The inclusion of expert opinion with a
change-point model also links the contributions of Part II of the thesis with Part III,
highlighting how it is possible to calibrate the long-term extrapolations of flexible models
with expert beliefs.

Additionally, this chapter highlights important considerations with respect to pooling
information from multiple experts. Specifically, we describe the estimation of the best
fitting probability distributions to each individual opinions, the differences in two pooling
approaches and how multi-modal aggregated distributions can be incorporated into the
analysis. Our approach permits the use of model selection criteria such as the Deviance
Information Criterion (DIC) so that models which have incorporated expert opinion can be
objectively compared. Our analysis of the ELIANA trial data results in similar conclusions
as the analysis performed by Cope et al. (2019). In their analysis the preferred model was
the Gompertz, while in ours the log-logistic ranked highest with both models implying
decreasing hazards. In the approach presented by Cope et al. (2019) estimates from each
expert were modelled separately, and the overall estimate reflected a combined overall
distribution. This necessitated fitting models for each of the individual experts before
combining the results. The authors noted that this approach avoids pooling or model
averaging, which would provide narrower intervals around the mean. We argue that such
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an approach does not avoid pooling and is actually a linear pool of the posterior
distributions. As our illustrative example in the section on incorporating multiple expert
opinions shows, this does not automatically lead to narrower intervals. Decision makers
may value an aggregated prior, as it aids understanding about how the prior changes the
analysis, compared to an analysis using the data alone. We generally prefer the outcome
that we are eliciting to be a single probability distribution representing the combined
knowledge of experts in the field (O’Hagan, 2019). Resolving the experts’ judgments into
a single distribution is known as the problem of aggregation. In this chapter we use
mathematical aggregation (as we do not have access to the experts), however, we note
that the SHELF framework permits behavioural aggregation in which the group of experts
discuss their knowledge and opinions to form “consensus” judgments, to which an
aggregate distribution is agreed. Even in situations where behavioural aggregation is the
objective, using a mathematical aggregation of the experts’ opinions may be a useful
visual tool in agreeing the consensus distribution. Although expert opinion can be of value
in reducing the differences in extrapolated survival probabilities for different parametric
models, the appropriate elicitation of these quantities is challenging. One important point
is how the questions are framed, with Bousquet (2006) providing examples of some open
questions which are relevant when eliciting beliefs about survival. Clearly defined
elicitation questions are particularly relevant as the experts may not be familiar with
statistical terms and can misinterpret averages as medians (Bousquet, 2006). It has also
been frequently discussed that experts can be overconfident (O’Hagan et al., 2006;
O’Hagan, 2019; Lin and Bier, 2008) and that calibration and differential weighting of
experts may reduce this overconfidence (Lin and Bier, 2008). Within this analysis it is
possible that Expert 2 provided survival estimates that were overconfident, and exclusion
of this expert’s opinion slightly lowers the expected survival estimates, although the
ordering of DIC for the parametric models remains broadly the same, with the Gompertz,
log-normal and log-logistic remaining the top three models. When considering the pooled
distributions, the 95% intervals of the expert opinions at years 2 and 3 were similar to the
95% intervals from the Kaplan-Meier survival functions at years 2 and 3 for the updated
ELIANA data, suggesting that it is appropriate to incorporate the pooled information at
years 4 and 5 into our analysis. Because all of the experts had extensive experience in
using tisagenlecleucel (or related treatments) in the target population, their pooled
opinions can be considered more robust than relying exclusively on the short-term trial
data. When the pooled expert opinion was incorporated into the survival analysis, this led
to reduced uncertainty in the resultant survival projections. As shown in Figure 7.4, the
95% survival credible intervals for each of the survival models lie within the 95% credible
intervals of the expert linear pooled distribution at years 4 and 5. Using model fit
statistics will only provide an assessment of fit to the observed data, and a final decision
on the choice of model should also be based on clinical plausibility. Incorporating expert
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opinion in methodologically appropriate ways is therefore a robust way to ensure that
decision makers have plausible evidence available to them. Often the plausibility of a
parametric model is assessed on the basis that the predicted survival is within an
appropriate survival probability interval at a number of landmark timepoints (i.e. between
20-40% at year 5 and 10-20% at year 10). In our opinion, it is best practice to
incorporate this information explicitly, and our approach allows for the direct synthesis of
these beliefs with the observed data. This approach would be particularly useful in
situations where none of the available model projections are considered plausible by
decision makers when using data alone, due to e.g., data immaturity, or differences in
standards of clinical practice in different countries. If reliable expert opinion is available
and can be elicited, our approach permits re-calibration of these models to more
accurately reflect the survival projection of the population of interest. Because the
opinions elicited from the expert (and parameterized as probability distributions) will
almost surely not be centred on the true parameter value (i.e. true survival at a
timepoint), it is worth considering for which situations will including expert opinion lead
to better estimates of extrapolated survival than using data alone. We explore this in
Appendix D.4 through a simulation study and find that in general, if the expert under or
overestimates the true survival by ≤ 25% (in relative terms), including expert opinion
provides better estimates than using data alone, assuming both the parametric model and
data generating process are the same (both Weibull). In the situation where the
parametric model chosen was a log-normal and the data generating process was a Weibull
distribution, the inclusion of expert opinion produced better extrapolations even when the
expert underestimated survival by 40%. We believe that the inclusion of expert opinion
can make extrapolation of survival outcomes more reliable, and robust to misspecification
of the parametric model. Owing to the number of factors which affect extrapolated
survival, further research in this topic is needed.

A number of important points relate to the effective sample size of the expert opinion.
We note that the effective sample size from the normal approximation of binomial
distribution in estimating uncertainty the survival function and the beta distribution
approximation are very similar. This is unsurprising as the beta distribution is related to
the binomial distribution. The second key point is that the effective sample size implied
by parametric survival models are considerably lower than the normal and beta
approximation. This is because parametric survival models, by assuming a functional form
to the hazard and survival functions are more “efficient” than the non-parametric
estimators. Importantly the different parametric models do not appear to result in
different ne values. It is important to clarify what the value of ne means in the context of
survival models. Given the uncertainty associated with the expert’s belief, the ne suggests
that the expert’s opinion is equivalent to an equal number of fully observed survival times

168



(i.e. no-censoring before) up until t∗. Additionally as the expert will almost certainly
make their assessment with reference to the existing Kaplan-Meier survival function, the
ne implicitly takes account of the data and the expert’s opinion. The Kaplan-Meier data
contains a number of event times nevents and it is possible that nevents > ne. In this case
the certainty of their opinion about S(t∗) is likely less than the parametric model’s
uncertainty around S(t∗) using only the data. Even when nevents > ne, the addition of
expert opinion to the analysis will almost certainly reduce the uncertainty around S(t∗) as
it is effectively further concentrating the S(t∗) estimated by the data only.2 Given that
there are a number of caveats with the interpretation of nESS it should be interpreted with
as a relative rather than absolute measure of informativeness. Estimating ne including or
excluding the MLV illustrates that Expert 2 has a very strong belief relative to the other
experts (ne ≈ 42 assuming a parametric estimator and ne ≈ 107 for the non-parametric
approach), especially as even in the updated data ne = 25 (with number of events at
original data-cut off not available). It is possible that experts are not familiar with 99%

belief intervals as 95% intervals are much more common in statistical literature.
Therefore, this expert could have underestimated that the 99% intervals should be ≈ 1.31

times wider than their 95% interval.

Although it is not apparent which estimate of ne should be presented to the expert, both
illustrate evidence of overconfidence in this expert’s survival estimates. We believe that
because informing the extrapolation of the survival is the objective of the elicitation, we
should present ne from the parametric results. It is important to highlight that the ne at
multiple timepoints are not additive. Survival probabilities at the multiple timepoints are
not independent and it may be most appropriate to present the ne for only one timepoint.
More generally, including expert opinion at multiple timepoints by way of the loss function
assumes that each of these pieces of information is independent. This assumption is not
appropriate especially if there are multiple timepoints very close together and will result in
underestimation of uncertainty. One potential solution might be to elicit an opinion on
the survival at a particular timepoint and then for all future timepoints the probability of
surviving to that timepoint conditional upon surviving to the previous timepoint.

Although not discussed in this chapter, there are situations where the expert may have
considerable experience with the comparator arm and may be more comfortable providing
an opinion on the plausible survival probabilities for the comparator at particular
timepoint(s). If a relationship such as proportional hazards (PH) or accelerated time
factor (ATF) can be considered tenable (i.e. evaluated based on trial data and assumed to
hold in the long-term), a survival model with the PH or ATF parameterization with
treatment status as a covariate could be estimated. Alternatively, experts may be willing

2There are some trivial potential situations which expert opinion might increase uncertainty in the
posterior survival.
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to provide an estimate of the expected survival difference between two treatments. Both
of these approaches have been implemented and we provide simulated examples of each
situation described in Part IV. As noted, similar results can be obtained using frequentist
methods (although this would not be the case for the multi-modal expert opinions) and
expertsurv provides code based on the flexsurv package (Jackson, 2016) to
accommodate this. Although the incorporation of expert opinion is relatively
straightforward with the approach described in this chapter, further research on elicitation
of long-term survival probabilities and best practices are important if expert opinions are
to become more widely used in health technology assessments using time-to-event
outcomes.
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Part IV

Software Applications
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8 Contributions for R in HTA

8.1 Overview of PiecewiseChangepoint package

The goal of the PiecewiseChangepoint package is to provide a suite of R functions to
estimate the number and locations of change-points in piecewise exponential models
described in Chapter 3. In order to efficiently estimate these models we enhanced the
computational performance by rewriting key functions in C++ using the Rcpp
package (Eddelbuettel and François, 2011). During the model estimation we do a Gibbs
step for each change-point location which requires us to evaluate the marginal likelihood
at each event time in a given interval and which is computationally intensive. Using C++
allows us to reduce the following computational bottlenecks:

• Loops that can’t be easily vectorised because subsequent iterations depend on
previous ones.

• Problems which involve calling functions many times as the overhead of calling a
function in C++ is much lower than that in R.

Both of the above points are by default present within the implementation of our code
i.e., due to the recursive evaluation of the marginal likelihood and for the number of
simulations required to ensure the sampler has fully explored the posterior distribution. As
a result re-writing key sections of the code in C++ resulted in a 10 times optimization of
the model running time.

A full overview of Rcpp is provided by Eddelbuettel (2013) with details on how to
implement Rcpp code with a R package is provided in Chapter 25 of Advanced
R (Wickham, 2019).
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8.1.1 Installation

You can install the binary version of the package by downloading the
PiecewiseChangepoint_1.0.zip file within the main Github folder
(https://github.com/Anon19820/PiecewiseChangepoint). This file and any other which
are hosted on Github can be individually downloaded, however, it may be more convenient
to download all files by accessing the main Github folder, select “Code” and then
“Download Zip” (Figure 8.1). Once this folder is unzipped all files from the repository are
available.

Figure 8.1: Downloading all package files from Github

Within R open the Packages window, select the “Install” button within the “Install from:”
drop-down and select “Package Archive File (.zip; .tar.gz)” and find the
PiecewiseChangepoint.zip file with “Browse” button (Figure 8.2).

Figure 8.2: Installation of binary package from Github

Alternatively if you have the remotes package by Csárdi et al. (2023) installed you can
install the package directly from Github with:

remotes::install_github("Anon19820/PiecewiseChangepoint")
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After the successful installation, running library(“PiecewiseChangepoint”) will
provide access to the functions described in the subsequent sections. In order to run the
function compare.surv.mods, we require JAGS and Stan software programs (Plummer,
2003; Stan Development Team, 2020). Additionally we require the R packages rjags,
and R2jags (Plummer, 2022; Yu-Sung and Masanao, 2015) to help with the processing
of the MCMC samples.
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8.1.2 Simulated Example

First we load the package and simulate some piecewise exponential data.

## simulated example

set.seed(123)

n_obs =300

n_events_req=300

max_time = 24 #months

rate = c(0.75,0.25)/12 #we want to report on months

t_change =12 #change-point at 12 months

df <- gen_piece_df(n_obs = n_obs,n_events_req = n_events_req,

num.breaks = length(t_change),rate = rate ,

t_change = t_change, max_time = max_time)

We see the output of this dataframe below:

head(df)

time_event status time

0.09194727 1 0.09194727

0.23141129 1 0.23141129

0.24251702 1 0.24251702

0.25450622 1 0.25450622

0.28833655 1 0.28833655

0.32615105 1 0.32615105

For this simulated dataset; time_event represents the time the event would occur at in
the absence of censoring, while time is the minimum of the censoring time and the event
time. The column named status is an indicator variable if the event occurred at the
corresponding time or if it was censored. Plotting the survival function (Figure 8.3) we
see a potential change in the hazard at around Year 1.

# Fitting survival models - requires survival package

require("survival")

# Drawing survival functions - requires survminer package

require("survminer")

ggsurvplot(fit, palette = "#2E9FDF")
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Figure 8.3: Empirical survival function for simulated data

As noted by Bagust and Beale (2014), constant hazards are linear with respect to the
cumulative hazard function, therefore, the change in hazards at approximately 12 months
can be seen more clearly in Figure 8.4.

ggsurvplot(fit, palette = "#2E9FDF", fun = "cumhaz")

Figure 8.4: Empirical cumulative hazard function for simulated data
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Next, we fit the piecewise exponential model noting that only the time and status
columns are required. The timescale argument changes the prior for the hazards λ so that
it is appropriate for the timescale. For example, if the timescale is years then the a vague
prior centered around 1 is appropriate (i.e. 36% of population having the event each
year), while if the timescale is in months the equivalent prior should have an expected
value of 1/12 (and days 1/365).

#timescale can be also equal to "years" or "days"

Collapsing_Model <- collapsing.model(df,

n.iter = 20750,

burn_in = 750,

n.chains = 2,

timescale = "months")

As we would expect the one change-point model has the highest posterior
probability.

Posterior Change-point Probabilities:

0 1 2 3 4 5

0.000375 0.808075 0.166975 0.021900 0.002250 0.000425

Summary of 1 change-point model:

changepoint_1 lambda_1 lambda_2

Min. : 0.8179 Min. :0.04148 Min. :0.01301

1st Qu.:11.7006 1st Qu.:0.05620 1st Qu.:0.02356

Median :11.9004 Median :0.05941 Median :0.02652

Mean :11.8586 Mean :0.05954 Mean :0.02682

3rd Qu.:12.6027 3rd Qu.:0.06271 3rd Qu.:0.02978

Max. :15.9675 Max. :0.09392 Max. :0.05050

Simulations from the posterior distribution for the change-point locations and associated
hazards can be extracted from the returned object using the “$” (highlighted in the code
below).

Collapsing_Model$changepoint

Collapsing_Model$lambda

Once we run the model long enough (20,000 simulations over 2 chains should be more
than enough), we may want to look at a plot of the survivor function. In health
economics we are typically interested in long-term survival of parametric models. In this
situation we want a plot of the first 60 months which we can do using the max_predict

argument (in this case 60 months). The red lines show the individual posterior simulations
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and are a natural representation of the parameter uncertainty. The grey lines show the
95% credible interval for the survival function (Figure 8.5).

plot(Collapsing_Model, max_predict = 60)+xlab("Time (Months)")

Figure 8.5: Predicted survival function from Piecewise Exponential Model

Similarly, we may also want to look at the hazard function. In this situation we only
present the hazard up to the maximum time observed in the data. This is because by
definition, the hazard from the final interval will be the one which is extrapolated
throughout the time horizon (in a later section we will adjust this hazard for general
population mortality).

plot(Collapsing_Model, type = "hazard")+xlab("Time

(Months)")+ylab("Hazards")+ylim(c(0,.1))↪→
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Figure 8.6: Predicted hazard function from Piecewise Exponential Model

By default, the plot methods described above use all the posterior simulations. If for
example, we were only interested only in the 1 change-point model, we can specify this
using the chng.num argument. The green diamonds indicate the mean location of the
change-points. When plotting chng.num = “all” (default) of the simulations there is no
sensible mean location of the change-points as there are different numbers of
change-points and they are therefore not plotted.

plot(Collapsing_Model, max_predict = 60, chng.num = 1)+xlab("Time (Months)")

Figure 8.7: Predicted survival function from one change-point piecewise exponential model
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In practical health economic modelling, we require evaluation of the survival function.
Using the notation from Chapter 3 and assuming time t (at which we calculate the
survival probability) is within the j th interval, we calculate the cumulative hazard for this
interval as λj(t − τj−1) with τj−1 being the j − 1th change-point and λj the j th hazard.
We also require the cumulative hazard for all the previous intervals which is∑j−1

g=1 λg (τg − τg−1). As can be seen from Equations 2.6 and 2.7 the survival probability is
the exponential of the negative of the total cumulative hazard and is written fully as:

S(t) = exp

{
−
[
λj(t − τj−1) +

j−1∑
g=1

λg (τg − τg−1)

]}
.

Within the R package the function get_Surv evaluates the survival at a vector of user
specified times. The user can specific an additional argument chng.num if they require
survival probabilities from a particular change-point number.

St_all <- get_Surv(Collapsing_Model, time = c(0:60))

St_all <- get_Surv(Collapsing_Model, time = c(0:60), chng.num = 1)

Because economic models are primarily developed in Microsoft Excel, we have written a
Visual Basic Application (VBA) function to calculate the survival probability for the PEM
(Code Chunk 7). This function is implemented with an example in an excel file called
VBA PEM.xlsm.
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Function Survival_PEM(time, params, changepoints, n_interval As Integer) As

Double↪→

Application.Volatile

Cum_Haz = 0

Dim changepoints2() As Double

ReDim changepoints2(1 To n_interval + 1) As Double

changepoints2(1) = 0

For i = 2 To n_interval

changepoints2(i) = changepoints(i - 1)

Next i

changepoints2(n_interval + 1) = 99999

For i = 2 To (n_interval + 1)

If time > changepoints2(i - 1) And time <= changepoints2(i) Then

Cum_Haz = Cum_Haz + (time - changepoints2(i - 1)) * params(i - 1)

ElseIf time > changepoints2(i) Then

Cum_Haz = Cum_Haz + (changepoints2(i) - changepoints2(i - 1)) *

params(i - 1)↪→

Else

Cum_Haz = Cum_Haz

End If

Next i

Survival_PEM = Exp(-Cum_Haz)

End Function

Listing 7: PEM Visual Basic Application Code

8.1.3 Including General Population Mortality

Including General Population Mortality (GPM) is required to ensure that the extrapolated
hazards are consistent with the increasing hazards associated with advanced ageing.
Adjustments for GPM are typically done within the cost-effectiveness model; however, we
can include them directly at the analysis stage so that we see their impact on the
extrapolated survival. In this section we consider different approaches to including general
population mortality with the piecewise exponential change-point model estimated using
the simulated
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Data Sources and approaches to including GPM

We consider GPM from a UK data source which provides mortality rates, defined as “the
probability of that a person aged exactly x will die before reaching x + 1” (Office for
National Statistics , ONS). Therefore, this data source provides the conditional probability
of death within a year at each age.

Assuming our population is 50% male and female and the age at baseline is 55 years we
have the following conditional probabilities of death at each age:

age_baseline_example <- 55

prop_male <- 0.5

time_horizon <- 100

Conditional_Death_df <- read.xlsx("Conditional_Death_UK.xlsx", 1) %>%

filter(age >=age_baseline_example)↪→

colnames(Conditional_Death_df) <- c("age", "Male_cond_death",

"Female_cond_death")↪→

head(Conditional_Death_df)

There are a number of approaches which can be used to incorporate these gender specific
mortality probabilities with the hazards generated from the parametric model and is
discussed in detail elsewhere (van Oostrum et al., 2021). Typically a cohort approach is
considered, whereby for each timepoint after baseline the age of the cohort is simply the
average age at baseline plus the time since the baseline. Furthermore, the proportion of
males vs females is assumed to remain constant. This constant proportion assumption is
not technically correct as males and females are subjected to different general population
mortality so that at older ages we expect a greater proportion of females. To calculate
this dynamic proportion, for each age after the average age at baseline we calculate the
probability of survival to that age for both male and female (conditional on survival at the
baseline age). These probabilities are used to calculate the proportion of males/females
surviving at each timepoint. We refer to these approaches as “cohort static/dynamic
gender proportion approach".

Both the cohort approaches described above assume that the general population survival
estimated at the population averages of age and gender are similar to the average of the
general population survival estimated across the trial population, something which is not
guaranteed to be the case (Briggs et al., 2006). In this situation, we might consider
incorporating each individuals’ specific age/gender general population mortality with the
posterior distribution for survival predicted from the parametric model to obtain predicted
survival which is then averaged, which we term “simulation approach”.

One other approach we shall discuss is the incorporation of the general population
mortality using the “internal additive approach”. Rather than including general population
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mortality in a post-hoc manner it is possible to include it directly into the likelihood of the
model. The hazard function now decomposes all-cause mortality (ACM) into
disease-specific/excess mortality (DSM) and GPM by adding GPM hazards in the
log-likelihood function of a parametric distribution.

Modelling the hazard function using the internal additive approach may yield different
results to other approaches if there is an appreciable level of general population mortality
within the trial period. This is because the other approaches to incorporating GPM
assume that the parametric model fit to the data only estimates the disease-specific
mortality (with the implicit assumption that GPM is minimal within the trial period).
Secondly, the elevated within trial GPM implies that the age distribution in the risk set at
later timepoints in the trial would be different than that which is implied by the cohort
assumption (i.e., average age at baseline plus time since baseline) used in the other
methods. It is unclear how frequently these factors will result in an appreciable difference
in predicted survival and this approach does not appear to be commonly employed (van
Oostrum et al., 2021). In the examples where we extrapolated survival (and therefore
required to include general population mortality) the average ages at baseline were
between 55-65, therefore, the general population mortality during the follow-up period in
our trials would be low, suggesting the internally additive hazard approach is unlikely to
produce results which are different to the other approaches for incorporating general
population mortality. Furthermore, because we do not have patient level data for the
examples presented in the manuscript, we cannot directly test this assumption.

Derivation of general population hazards

Irrespective of the approach taken we are required to convert the conditional death
probabilities to rates. In our example the timescale is months and we need to convert this
annual probability to a monthly rate which is done using the following formula (Fleurence
and Hollenbeak, 2007) (assuming a constant rate of mortality):

r = −1

t
ln(1− p).

Because there are 12 months in a year, t = 12 and p is the specific (in our case annual)
probability of death.

With the below R code we now have the monthly rate of death for ages 55 (our assumed
starting age of the cohort) up to 100 years of age, adjusted for distribution of males and
females (which is can either be static or dynamic).
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time_factor <- 12

df_temp <- Conditional_Death_df

#Code to get the get convert probability to hazards

df_temp$Male_cond_haz <- -log(1-df_temp$Male_cond_death)/time_factor

df_temp$Female_cond_haz <- -log(1-df_temp$Female_cond_death)/time_factor

df_temp <- df_temp %>% filter(age >= age_baseline_example & age <=

time_horizon)↪→

n_row_df_temp <- nrow(df_temp)

time_partial_vec <- rep((0:(time_factor-1))/time_factor)

df_temp <- do.call("rbind", replicate(time_factor, df_temp, simplify =

FALSE)) %>%↪→

arrange(age)

df_temp$age <- df_temp$age+ rep(time_partial_vec,times = n_row_df_temp)

#Cohort - Static Gender proportion

df_temp[, "mix_haz_static"] <- df_temp[,"Male_cond_haz"]*prop_male +

df_temp[,"Female_cond_haz"]*(1-prop_male)↪→

#Cohort - Dynamic Gender proportion

df_temp$male_St <- exp(-cumsum(df_temp$Male_cond_haz))

df_temp$female_St <- exp(-cumsum(df_temp$Female_cond_haz))

df_temp$prop_male <- df_temp$male_St/(df_temp$male_St +df_temp$female_St)

df_temp[, "mix_haz_dynamic"] <- df_temp[,"Male_cond_haz"]*df_temp$prop_male

+ df_temp[,"Female_cond_haz"]*(1-df_temp$prop_male)↪→

#Assume the time at baseline is time zero and subject to no hazard

gmp_haz_vec_example = df_temp[-1, "mix_haz_static"]

#Creates a data.frame of GPM hazards which is used in compare.surv.mods

function↪→

gmp_haz_df_example <- data.frame(time = 1:length(gmp_haz_vec_example),

hazard = gmp_haz_vec_example)

Within the compare.surv.mods function (described in more detail in Section 8.1.4) the
cumulative hazard of death (associated with GPM) and cumulative hazard of an event
(from the parametric model) is added to obtain the overall cumulative hazard H(t). The
cumulative hazard is the sum (in the case of discrete hazards as above) of the individual
hazards and the integral of the parametric hazards. The dataset called
gmp_haz_df_example containing the GPM hazards generated in the above code is
supplied to the gmp_haz_df argument in the compare.surv.mods. By default the
compare.surv.mods function only implements GPM hazards after the extrapolated
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portion of the data (as we observe survival from all causes up until then), although GPM
hazards can be added from start of follow-up by using the gpm_post_data = FALSE. It
should be noted that only cohort static or dynamic gender proportion approaches can be
used with the compare.surv.mods function.

We see in Figure 8.8 that including the GPM hazard ensures that the extrapolated hazard
exhibits the characteristic increasing hazards associated with ageing.

Figure 8.8: Predicted hazard function by age including a constant disease specific hazard

Implementation of the other two approaches (simulation and internal additive approach)
are considered in a separate R script titled GPM_examples_final.R within the
Files_Replicate_Analysis folder. For the “internal additive approach” we estimate
the piecewise exponential model using a custom written JAGS script rather than the
model described in Chapter 3 as the model likelihood now includes the non-standard
contribution of the GPM. The model written in JAGS is substantially more
computationally intensive and requires the number of change-points (but not their
locations) to be fixed. This is a minor limitation as we can use the approach described in
Chapter 5 to find the most probable change-point model and then fit that change-point
model with the custom JAGS script (or alternatively fit several change-point models and
consider the one with the lowest WAIC or other goodness of fit statistic).

The key difference in this model is that both the log hazard function and cumulative
hazard function which enter the log-likelihood of the model require the addition of a term
for the the general population hazard hGPM(ti) and the general population cumulative
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hazard ΛGPM(ti) at each individual’s event or censoring time. Equation 3.2 is adjusted so
that the individual contribution of the log hazard function is

∑k+1
j=1 δijvi(log(λj + hGPM(ti))

and the cumulative hazard function is∑k+1
j=1 δij

[
λj(ti − τj−1) +

∑j−1
g=1 λg (τg − τg−1) + ΛGPM(ti)

]
. The general population hazard

and cumulative hazard values are fixed and not model parameters, determined by the
GPM data source, gender and age and the time of event/censor.

We implemented four approaches (cohort static and dynamic gender proportion,
simulation and internal additive approaches) to including general population mortality
with the same parameters as used in the simulated dataset from Section 8.1.2. The
proportion of males was 50% and the mean age at baseline was 55 with a standard
deviation of 10 and a maximum age of 90. Survival times were adjusted to account for
the impact of increased age on survival time. As shown in Figure 8.9 all the approaches
produced very similar extrapolations. Increasing the average age at baseline to 75 still
resulted in very similar extrapolations across the approaches (not shown).

Figure 8.9: Extrapolated survival using different methods to incorporate general population
mortality

8.1.4 Fitting of Standard Parametric models and Plot of

Extrapolated Survival

In health economics we are typically interested in picking between one of a number of
alternative parametric survival models, although it is also possible to combine survival
functions from all models using model averaging (Jackson et al., 2010). We can compare
the piecewise exponential model with seve commonly used parametric models along with
Royston-Parmar spline models. We fit the models using JAGS and Stan (Plummer, 2003;
Stan Development Team, 2020) and compare the model fit using Widely Applicable
Information Criterion (WAIC) (Watanabe, 2010).
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The fitting of other parametric models is accomplished by the compare.surv.mods and
general population mortality is adjusted for by including a gmp_haz_df_example as
described above. Fitted models include exponential, Weibull, gamma, Gompertz,
log-normal, log-logistic, generalized gamma and Royston-Parmar cubic splines (choice
between one and two knot models based on lower WAIC). Model fit to the observed data
and a plot of the extrapolated survival are available from within the mod_comp object
along with the posterior samples from all the fitted models.

#Below function can take a number of minutes to evaluate

set.seed(123)

mod_comp <- compare.surv.mods(Collapsing_Model,

max_predict = 100, #100 months

n.iter.jags = 5000, #Run JAGS/Stan for 5000

samples↪→

n.thin.jags = 1,

n.burnin.jags = 500,

chng.num = 1, #Using results from 1

change-point PEM↪→

gmp_haz_df =gmp_haz_df_example) #GPM dataset

#Returns a dataframe with the model fit results

mod_comp$mod.comp[,c(1,3)] %>% arrange(WAIC)

Model WAIC

1 Piecewise Exponential 1547.59

2 Log-Normal 1552.32

3 Log-Logistic 1553.21

4 Gompertz 1553.25

5 Royston-Parmar 2 knot 1553.76

6 Generalized Gamma 1556.38

7 Weibull 1561.83

8 Gamma 1564.01

9 Exponential 1568.01

#Returns a Survival plot with PEM and 3 best fitting models

mod_comp$plot_Surv_all
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Figure 8.10: Predicted survival for piecewise exponential model and three best fitting other
parametric models
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8.2 expertsurv R-package

The goal of the R package expertsurv is to incorporate expert opinion into an analysis
of time-to-event data. The package uses many of the core functions of the survHE

package (Baio, 2020).

The key function is fit.models.expert and operates almost identically to the
fit.models function of survHE.

8.2.1 Installation

You can install the latest version of expertsurv from GitHub with:

devtools::install_github("Anon19820/expertsurv")

or from CRAN directly:

install.packages("expertsurv")
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8.2.2 Expert Opinion on Survival at timepoints

If we have elicited expert opinion of the survival probability at certain timepoint(s) and
assigned distributions to these beliefs, we encode that information as follows:

#A param_expert object; which is a list of

#length equal to the number of timepoints

param_expert_example1 <- list()

#If we have 1 timepoint and 2 experts

#dist is the names of the distributions

#wi is the weight assigned to each expert (usually 1)

#param1, param2, param3 are the parameters of the distribution

#e.g. for norm, param1 = mean, param2 = sd

#param3 is only used for the t-distribution and is the degress of freedom.

#We allow the following distributions:

#c("normal","t","gamma","lognormal","beta")

param_expert_example1[[1]] <- data.frame(dist = c("norm","t"),

wi = c(0.5,0.5), # Ensure Weights

sum to 1↪→

param1 = c(0.1,0.12),

param2 = c(0.005,0.005),

param3 = c(NA,3))

param_expert_example1

#> [[1]]

#> dist wi param1 param2 param3

#> 1 norm 0.5 0.10 0.005 NA

#> 2 t 0.5 0.12 0.005 3

#Naturally we will specify the timepoint for which these probabilities where

elicited↪→

timepoint_expert <- 14

#In case we wanted a second timepoint -- Just for illustration

# param_expert_example1[[2]] <- data.frame(dist = c("norm","norm"),

# wi = c(0.5,0.5),

# param1 = c(0.05,0.045),

# param2 = c(0.005,0.005),

# param3 = c(NA,NA))

#

# timepoint_expert <- c(timepoint_expert,18)
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If we wanted opinions at multiple timepoints we just include append another list (i.e.
param_expert_example1[[2]] with the relevant parameters) and specify
timepoint_expert as a vector of length 2 with the second element being the second
timepoint.

For details on assigning distributions to elicited probabilities and quantiles see the SHELF

package (Oakley, 2020), and for an overview on methodological approaches to eliciting
expert opinion see O’Hagan (2019). We can see both the individual and pooled
distributions using the following code (note that we could have used the output of the
fitdist function from the SHELF package if we actually elicited quantiles from an
expert). Figure 8.11 illustrates the pooled plot of survival probabilities.

plot_opinion1<- plot_expert_opinion(param_expert_example1[[1]],

weights = param_expert_example1[[1]]$wi)

ggsave("Vignette_Example 1 - Expert Opinion.png")

Figure 8.11: Density of pooled and individual expert opinions for survival probabilities

For the log pool we have a uni-modal distribution (in contrast to the bi-modal linear pool)
which has a 95% credible interval between 9.0− 11.9% calculated with the function
below:
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cred_int_val <- cred_int(plot_opinion1,

val = "log pool", interval = c(0.025, 0.975))

We load and fit the data as follows (in this example considering just the Weibull and
Gompertz models), with pool_type = “log pool” specifying that we want to use the
logarithmic pooling (rather than default “linear pool”). We do this as we wish to compare
the results to the penalized maximum likelihood estimates in the next section.

data2 <- data %>% rename(status = censored) %>%

mutate(time2 = ifelse(time > 10, 10, time),

status2 = ifelse(time> 10, 0, status))

#Set the opinion type to "survival"

example1 <- fit.models.expert(formula=Surv(time2,status2)~1,data=data2,

distr=c("wph", "gomp"),

method="hmc",

iter = 5000,

pool_type = "log pool",

opinion_type = "survival",

times_expert = timepoint_expert,

param_expert = param_expert_example1)

Both visual fit and model fit statistics highlight that the Weibull model is a poor fit to
both the expert opinion and data (black line referring to the 95% confidence region for
the experts prior belief).

model.fit.plot(example1, type = "dic")

#N.B. plot.expertsurv (ported directly from survHE) plots the survival

function at the posterior mean parameter values↪→

#while it is more robust to use the entire posterior sample (make.surv),

however, in this case both results are similar.↪→

plot(example1, add.km = T, t = 0:30)+

theme_light()+

scale_x_continuous(expand = c(0, 0), limits = c(0,NA), breaks=seq(0, 30,

2)) +↪→

scale_y_continuous(expand = c(0, 0), limits = c(0, NA), breaks=seq(0, 1,

0.05))+↪→

geom_segment(aes(x = 14, y = cred_int_val[1], xend = 14, yend =

cred_int_val[2]))↪→

Survival functions including expert opinion are presented in Figure 8.12.
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Figure 8.12: Predicted survival functions for each of the parametric models including expert
opinion

The goodness of fit for each of the parameteric models including expert opinion are
presented in Figure 8.13.

Figure 8.13: DIC values for each of the parametric survival models

8.2.3 Expert Opinion using Penalized Maximum Likelihood

We can also fit the model by Penalized Maximum Likelihood approaches through the
flexsurv package (Jackson 2016). All that is required that the method="hmc" is
changed to method="mle" with the iter argument now redundant. One argument that
maybe of interest is the method_mle which is the optimization procedure that flexsurv
uses. In case the optimization fails, we can sometimes obtain convergence with the
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Nelder-Mead algorithm. If the procedure is still failing, it may relate to the expert
opinion being too informative or in conflict with the observed data.

It should be noted that the results will be similar to the Bayesian approach when the
expert opinion is unimodal (as maximum likelihood produces a point estimate) and
relatively more informative, therefore we use the logarithmic pool which is unimodal.

We find that the AIC values also favour the Gompertz model by a large factor (not
shown) and are very similar to the DIC presented for the Bayesian model.

Figure 8.14: Predicted survival functions with expert opinion using penalized maximum
likelihood

expertsurv modifies some of the flexsurv functions, so if you wish to use revert to the
original flexsurv functions within the same session you should run the following
commands:

unloadNamespace("flexsurv") #Unload flexsurv and associated name

spaces↪→

require("flexsurv") #reload flexsurv
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8.2.4 Expert Opinion on Survival of a comparator arm

In this situation we place an opinion on the comparator arm.

param_expert_example2[[1]] <- data.frame(dist = c("norm"),

wi = c(1),

param1 = c(0.1),

param2 = c(0.005),

param3 = c(NA))

#Check the coding of the arm variable

#Comparator is 0, which is our id_St

unique(data$arm)

#> [1] 0 1

survHE.data.model <- fit.models.expert(formula=Surv(time2,status2)~

as.factor(arm),data=data2,

distr=c("wei"),

method="hmc",

iter = 5000,

opinion_type = "survival",

id_St = 0,

times_expert = timepoint_expert,

param_expert = param_expert_example2)

We can remove the impact of expert opinion by running the same model in the survHE

package. Alternatively we note that a B(1, 1) distribution is uniform on the survival
probability and does not change the likelihood.

param_expert_vague <- list()

param_expert_vague[[1]] <- data.frame(dist = "beta", wi = 1, param1 = 1,

param2 = 1, param2 = NA)↪→
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Figure 8.15: Predicted survival functions with expert information (left) and without expert
information (right)

The survival function for “arm 1” has been shifted downwards slightly, however the
covariate for the accelerated time factor has markedly increased to counteract the lower
survival probability for the reference (arm 0).
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8.2.5 Expert Opinion on Survival Difference

This example illustrates an opinion on the survival difference. For illustration we select the
Gompertz distribution, noting that a negative shape parameter will lead to a proportion of
subjects living forever. Clearly the mean is not defined in these cases so the code
automatically constrains the shape to be positive.

param_expert3 <- list()

#Prior belief of 5 "months" difference in expected survival

param_expert3[[1]] <- data.frame(dist = "norm", wi = 1, param1 = 5, param2 =

0.2, param3 = NA)↪→

# Survival difference is Mean_surv[id_trt]- Mean_surv[id_comp]

survHE.data.model <- fit.models.expert(formula=Surv(time2,status2)~

as.factor(arm),data=data2,

distr=c("gom"),

method="hmc",

iter = 5000,

opinion_type = "mean",

id_trt = 1,

param_expert = param_expert3)

Figure 8.16: Predicted survival functions with expert information on expected differences
in survival.
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8.2.6 Compatibility with underlying packages survHE and

flexsurv

As stated in the introduction this package relies on many of the core functions of the
survHE package (Baio, 2020). Because we do not not implement expert opinion with
INLA and because future versions of survHE may introduce conflicts with the current
implementation, we have directly ported the key functions from survHE into the package
so that expertsurv no longer imports survHE (all credit for those functions goes to Baio
(2020) and co-contributors).

In theory the same concern could apply to the flexsurv package, however, this package
has been released for some years and it is unlikely that the code architecture would
change sufficiently to cause issues (however, for reference expertsurv was built with
flexsurv = v2.0).

As mentioned, there are several modifications to flexsurv functions in order to
accommodate expert opinion (by changing the functions within the namespace of the
flexsurv environment). These should have no impact on the operation of flexsurv and
these changes are only invoked when flexsurv is loaded. However, in the situation where
you would like to revert to original flexsurv functions during the session, simply run the
following:

unloadNamespace("flexsurv") #Unload flexsurv and associated name spaces

require("flexsurv") #reload flexsurv

#If this doesn't work you can use the pacman package

pacman::p_loaded("flexsurv")

Care should be taken, however to ensure the packages were successfully unloaded as other
packages which require flexsurv can block the unloading to that package (which will
cause an error).

8.2.7 Model Diagnostics

As this is a Bayesian analysis convergence diagnostics should be performed. Poor
convergence can be observed for many reasons, however, because of our use of expert
opinion it may be a symptom of conflict between the observed data and the expert’s
opinion.

Default priors should work in most situations, but still need to be considered. At a
minimum the Bayesian results without expert opinion should be compared against the
maximum likelihood estimates. If considerable differences are present the prior
distributions should be investigated.
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Because the analysis is done in JAGS and Stan we can leverage the “ggmcmc” package
Fernández-i-Marín (2016):

#For Stan Models # Log-Normal, RP, Exponential, Weibull

ggmcmc(ggs(example1$models$`Exponential`), file = "Exponential.pdf")

#For JAGS Models # Gamma, Gompertz, Generalized Gamma

ggmcmc(ggs(as.mcmc(example1$models$`Gamma`)), file = "Gamma.pdf")

8.2.8 Shiny Application for expertsurv

R packages have many advantages, primarily allowing for easy sharing and documentation
of code and ensuring code follows standardised conventions. Although R packages are
more user friendly than a collection of functions, they still require the user to have a
working knowledge of R something which most experts will not have.

As noted by Mikkola et al. (2023), there is a need for tools which can embed the
elicitation of expert opinion within the statistical workflow. One such tool is Shiny, an
open-source R package that provides an elegant and powerful web framework for building
web applications using R. Shiny can turn analyses conducted by R into interactive web
applications without requiring HTML, CSS, or JavaScript knowledge (Chang et al.,
2023).

Learning how to interact with a webpage should be a much simpler task for experts and
health economists not familiar with R. Furthermore, we can leverage R Markdown to
create reproducible reports of the relevant outputs of the expertsurv package in formats
such as PDF, HTML and Word.

The tutorial below provides an overview of the steps required to elicit expert opinion on
the survival at a timepoint of 20 months and incorporate these beliefs with survival data.
To begin we simply run the following function elicit_surv() which will open up a
webpage.

In Figure 8.17 we have the following steps to upload the data:

1. Upload an excel file containing the survival data

2. Select the columns referring to the time, status and arm (if jointly modelling
treatment and comparator)

3. Set the limit of the for the survival plot (ensuring that Choose opinion type as
“Survival at timepoint(s)”

4. We assume that there are two experts who we will provide expert opinion
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5. Once the above parameters are defined select the “Plot/Update Survival Curves and
Expert Opinions”

Figure 8.17: expertsurv Shiny application: Upload data and generate Kaplan-Meier plot
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In Figure 8.18 we have the following steps to elicit the expert’s opinions:

1. We set the timepoint at which we elicit expert opinion to 20 months.

2. Experts will be asked for their beliefs on the median survival at 20 months, the
lower 2.5% and upper 97.5% probabilities of the population survival.

Once these steps are complete, we click the “Plot/Update Survival Curves and Expert
Opinions” button.

Figure 8.18: expertsurv Shiny application: Include expert beliefs about survival at 20
months
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In Figure 8.18 we have the following steps to run the analysis:

1. Several other advanced options relating to the expert opinion are available in the
checkbox; these include specifying the most likely value (MLV), the choice of
pooling expert opinion (linear or logarithmic pooling - default linear pooling) and
the parametric distribution to fit to each individual opinion (default is best fitting).

2. We can select which treatment arm relates to the expert’s belief (i.e. treatment or
comparator).

3. Selecting Run Analysis will conduct the analysis; and it should be noted that the
Bayesian analysis can take a considerable amount of time.

4. Once the analysis is complete we can download the expertsurv object which can
be loaded an R session later.

5. We can also download the results as a report in one of three formats (HTML, PDF
or Word) as shown in Figure 8.20.

Figure 8.19: expertsurv Shiny application: Running statistical analysis
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Figure 8.20: expertsurv Shiny application: Results generated from the Markdown file
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Part V

Conclusion
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9 Conclusion

Over the course of this thesis we have investigated novel statistical methods for the
purpose of extrapolating survival outcomes. The thesis contributions are organised into
three parts: change-point modelling; incorporating expert opinion; and software
modelling. The methods provide significant contributions in both theory and practice of
decision modelling with time-to-event outcomes along with broader contributions relating
to the inclusion of expert opinion with statistical models.

9.1 Change-point Survival Models

In the first part of the thesis we developed a novel and computationally efficient algorithm
to estimate the number and location of change-points for survival models. The Bayesian
approach allowed us to propagate the uncertainty in both the change-point locations and
numbers, something which is not readily apparent when considering a frequentist
approach.

The piecewise exponential survival models improves upon the standard practice of visually
assessing timepoints at which a constant hazard is plausible and considered a fully
parametric approach which accounts for the uncertainty in the location of these
timepoints. The fully parametric nature of the model is important as it allows for
statistical comparison with other survival models considered in decision modelling.
Another contribution is the estimation of more complex parametric change-point models
which include various scenarios of interest to economic modellers, such as non-constant
hazards, converging hazards, and change-points in the hazard ratio between a treatment
and comparator.

In summary, the change-point models replace the subjective strategy of identifying
change-point locations by visual assessment with an objective and statistically coherent
strategy which fully propagates uncertainty in the survival function; a key requirement in
decision making.
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9.2 Including Expert Opinion with Statistical

Models

The second major contribution relates to the incorporation of expert opinion on observable
outcomes into a broad range of statistical models and in particular survival models. The
method is more flexible than existing approaches, allowing for the inclusion of a wide range
of beliefs for the expert opinion (including pooled distributions) into statistical models.
The range of statistical models that can be estimated with this framework is diverse, from
repeated measures regression models to multivariate normal distributions. Strategies to
include expert opinion on observable outcomes are important as these types of opinions
are much more straightforward to elicit than opinions on model parameters.

This contribution has implication for the wider statistical community and is under review
in a general Bayesian statistical journal; in contrast to the other work which has been
published in journals with a HTA focus Cooney and White (2023a,c). Specifically it fulfills
many of the methodological requirements specified by Mikkola et al. (2023) to enable
more widespread use of expert opinion.

Complementing this research, we have also investigated the relative strength of belief of
expert opinions through an intuitive measure known as effective sample size for a variety
of statistical models with which we incorporate expert opinion. This is an important
consideration as even when expert opinion on observable quantities can be integrated with
the statistical model, it is important that these opinions are elicited in a robust manner.
Effective sample size could be a useful calibration tool to ensure the final elicited belief,
typically represented as a probability distribution, represents the true certainty of the
expert’s opinion.

9.3 Software Applications

For each of the contributions listed above we recognized that the widespread utilization of
the approaches depends on the level of effort required to implement methods in applied
examples. Therefore, the methods presented in this thesis are also implemented as freely
available open-source R software packages (PiecewiseChangepoint and expertsurv).
This allows health economists and other practitioners to quickly implement these
approaches and provides the users with outputs typically required for decision analysis
with time-to-event outcomes.

For users who are not familiar with the R programming language we developed a Shiny
user interface which allows users to elicit expert opinion, incorporate with a survival
dataset and record the relevant outputs.
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9.4 Summary

A recurring theme in the contributions of this thesis i.e. estimation of change-point
survival models and incorporation of expert opinion into statistical models is that we
replace some of the arbitrary decisions and assumptions with objective analysis. Certain
assumptions are required, for example in decision analysis and in particular Health
Technology Assessments due to lack of data or because the economic models that
typically inform these assessments can only be a simplified representation of the true
decision process.

For example, when modelling survival data, an analyst may believe that the hazard of an
event becomes approximately constant after a certain timepoint. This subjective belief
may be informed by many factors, such as visualising the hazard function, clinical
knowledge of the disease process or even a desire for a parsimonious modelling choice.
Within this assumption there is the previously arbitrary decision of where to place this
timepoint or whether it’s addition improved the fit of the model. The change-point
models described in this thesis allow the analyst to avoid making arbitrary decisions with
respect to the location of this change-point. It also allows them to justify that the
improvement in fit to the data is worth (in a statistical sense) the complexity of
introducing a change-point.

With respect to the research on expert opinion, a decision maker faced with censored
survival data may have subjective beliefs about the survival probabilities at landmark
timepoints. Rather than try to select an arbitrary parametric model which supports that
belief (in which the predicted survival is similar to the expert’s at the landmark timepoint),
their belief is directly integrated with the observed data allowing for the selection of the
model which provides the best fit to both the observed data and expert’s belief.

To summarize, the key contribution throughout this thesis is that decision modellers can
specify hypotheses which can be potentially evaluated by the data rather than requiring
additional choices from the analyst. For the change-point models the change-points
themselves are estimated by the data and not the analyst, while in the situation where
expert opinions are incorporated, the relative strengths of both the data and the opinion
are coherently synthesized.

9.5 Future Research

Despite the numerous contributions there are several avenues for further research which
could further improve the extrapolation of survival data. For change-point problems,
although the code for estimating the piecewise exponential model has been implemented
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as a R-package, this could be extended to include the other change-point survival models
considered in Chapter 5, similar to the mcp R package by Lindeløv (2020) which estimates
general change-point models.

In terms of incorporation of expert opinion with survival models there are a number of
potential additional research topics. Of particular importance is incorporating opinion at
multiple timepoints, which currently treats each timepoint as an independent piece of
information. Eliciting opinion for multiple timepoints as conditional survival or by using
copulas could offer potential solutions. Quantifying the strength of expert opinion is an
important and active area of research, with the research on effective sample size described
in this thesis providing insight on the expert’s opinion relative to number of observations
in a dataset. Further work implementing some of the approaches to quantifying effective
sample size such as Reimherr et al. (2021) or Hobbs et al. (2013) should be considered for
parametric survival models as these could separate the contribution of expert’s opinion
from the existing data. Additionally, investigating the effective samples sizes for the range
of other inputs which may be elicited as inputs in a HTA such as Hazard Ratios and
Relative Risks would be a useful activity.

Research on the optimal methods and guidance for eliciting expert opinion in survival
analysis (extending the general guidance provided by Bojke et al. (2021)) would be
important, for example, how best to elicit survival probabilities at a timepoint. Using the
method described in this thesis we are free to specify almost any functional form for the
expert’s belief and we have noted that for individual experts, standard distributions will
not adequately represent skewness in the distribution, for example where the mode (or
most likely value) is different from the median. Further research using more complex
probability density functions e.g. generalized gamma or even splines to model the elicited
quantiles which can modified in an interactive manner by the expert i.e. chips and pins
method (Gore, 1987) would prove an valuable extension to the expertsurv package and
associated Shiny application.
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A Piecewise Exponential Models

A.1 Marginal Likelihood for exponential survival

times

The marginal likelihood is sometimes known as the probability of the data π(y) associated
with a statistical model and appears as the denominator in Bayes Formula

π(y) =

∫
θ

π(y|θ)π(θ)dθ,

where θ is the general notation for the model parameter(s). For the exponential
distribution, the model parameter θ = λ and the probability of the data are conditional on
the hyperparameters α and β for the λ parameter which we denote together as γ.
Therefore the expression becomes

π(y|γ) =
∫
θ

π(y|θ)π(θ|γ)dθ.

The easiest way to evaluate this integral is indirectly through Bayes formula. Bayes
formula is as follows:

π(θ|y,γ) = π(y|θ)π(θ)π(γ)∫
θ
π(y|θ)π(θ|γ)dθ

.

The conjugate prior for an exponential likelihood is the gamma distribution. Therefore
given hyperparameters α and β, the posterior is a G(α + D, β + T ) where D is the
number of events and T is the exposure time within that interval. Letting α∗ = α + D

and β∗ = β + T and rearranging Bayes formula, it immediately follows that the marginal
likelihood is the ratio of the prior normalizing factor divided by the posterior normalizing
factor;

∫
θ

π(y|θ)π(θ|γ)dθ = π(y|θ)π(θ)π(γ)
π(θ|y)

=
βα/Γ(α)

(β∗α∗
)/Γ(α∗)

.

Given k change-points, we have k + 1 segments of data and the joint marginal likelihood
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is the product of these k + 1 segments.

A.1.1 Incorporating uncertainty in hyperparameters

The marginal likelihood can be sensitive to the hyperparameters α and β and therefore
can influence the posterior distribution of the change-points. To account for this
uncertainty and improve the robustness of the results we can introduce a hyperprior on β.
In an extra sampling step, the hazards λ1:k+1 can be “uncollapsed” and sampled at each
iteration. We place a hyperprior on β : β ∼ G(ξ, δ), with

π(β|ξ, δ) = δξ

Γ(ξ)
βξ−1 exp (−δβ) .

Simplifying Equation 3.4 we note that the posterior density of the change-point number
and locations is proportional to the likelihood, the prior on the hazards and the hyperprior
on β.

π(k , s1, ... , sk , β|y1:d ,λ1:k+1,α, ξ, δ) ∝ π (y1:d |s1, ... , sk ,λ1:k+1)
k+1∏
j=1

π(λj |α, β)× π(β|ξ, δ)

=
k+1∏
j=1

[
λ
(sj−sj−1)
j − exp

λj
∑sj

i=s(j−1)+1
yi

]

×
k+1∏
j=1

βα

Γ(α)
λα−1
j exp (βλj)×

δξ

Γ(ξ)
βξ−1 exp (δβ) .

The marginal distribution of π(β|k , s1, ... , sk , y1:d ,λ1:k+1,α, ξ, δ) is

π(β|k , s1, ... , sk , y1:d ,λ1:k+1,α, ξ, δ) ∝
k+1∏
j=1

[
λ
(sj−sj−1)
j − exp

λj
∑sj

i=s(j−1)+1 yi

]

×
k+1∏
j=1

βα

Γ(α)
λα−1
j exp (βλj)×

δξ

Γ(ξ)
βξ−1 exp (−δβ)

∝
k+1∏
j=1

βα exp (βλj)× βξ−1 exp (−δβ)

= β(k+1)α+ξ−1 exp

(
−β

[
k+1∑
j=1

λj + δ

])
.
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This is the kernel of a gamma distribution with shape (k + 1)α + ξ and rate
∑k+1

j=1 λj + δ

and is updated once each iteration. The hazards are sampled from a gamma distribution
λj |α, β, k ∼ G(α + sj − sj−1, β

∗ +
∑sj

i=s(j−1)+1
yi) with β∗ the current value of β before

the sampling of a new β.

One important practical point relates to the choice of ξ, δ when the data has a particular
timescale. If the data is in years we should set β to have an expected value of 1
(assuming that in all cases α is set to 1) with variance 1 which is achieved by setting
ξ = 1, δ = 1 and follows immediately from the properties of the Gamma distribution. If
the data is in days and we wish to retain the same prior we require β to have an expected
value and variance of 365 which is achieved ξ = 1, δ = 1/365.
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B Piecewise Exponential Models
Applied to HTA

B.1 Overview of Bagust and Beale Approach to

Survival Extrapolation

The manuscript by Bagust and Beale (2014) primarily focuses on assessing cumulative
hazard plots in order to identify a timepoint at which there is evidence of a long-term
linear trend in the hazard (as previously described in our study). Related to this, they
describe a situation where long-term trends in each arm of a clinical trial appear to exhibit
very similar hazard rates. They suggest that, after the intervention treatment is
completed, withdrawn, or ceases to deliver additional benefit, an identical long-term risk
trajectory applies regardless of treatment, again assessed by cumulative hazard and
post-progression survival plots for each arm.

Bagust and Beale also suggest that the hazard function can be conceptualized as arising
from a mixture of populations each represented as having a different underlying hazard
function. They reference previous work, which showed that a Weibull distribution with
shape parameter less than 1 can be mathematically formulated as a mixture of
exponential distributions (Jewell, 1982). Additionally, the exponential distribution itself
arises as a mixture of Weibull distributions with fixed shape parameter less than 1
(implying a monotonically decreasing hazard). They suggest that identifying such
subgroups may be useful “in lending credibility to some projective models, as well as in
furnishing new hypotheses for targeting research to identify patients most likely to benefit
from treatment”.

The manuscript also criticizes National Institute for Health and Care Excellence (NICE)
Technical Support Document (TSD) 14 on a number of points (Latimer, 2013). In
particular the authors suggest that the focus should be on identifying hypotheses which
might lend credible extrapolations rather than assuming one of the “standard” parametric
models will adequately predict the long-term survival. They also criticise the use of log
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cumulative hazard plots (rather than cumulative hazard plots), suggesting that the visual
assessment of long-term constant hazards is confounded by the fact that both an
exponential and Weibull survival model will produce straight lines when using log
cumulative hazard plots. It should be noted that the author of NICE TSD 14 contested
many of these criticisms in a response (Latimer, 2014).
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B.2 Replication of Results Presented in Chapter

3

B.2.1 Details of Data Extraction from Technology

Appraisals

Information used for the identification of the relevant Technology Appraisals (TAs) from
the review by Gorrod et al. along with the relevant information extracted from them can
be found in the excel file called Summary of Piecewise TAs.xlsx located within the
Files_Replicate_Analysis folder Gorrod et al. (2019).

The first worksheet of Summary of Piecewise TAs.xlsx lists the TAs investigated
(Figure B.1).

Figure B.1: Excel worksheet with Overview of all Technologies Appraisals considered

For each of the TAs listed in the first worksheet, a separate worksheet provides further
information relating to whether or not the Bagust and Beale (B&B) approach was used
along with the relevant location in the TA and an associated screengrab of the relevant
information. In situations where the B&B approach was used, further information
including the Kaplan-Meier survival functions (for generation of the pseudo-data) and
location of the assumed change-point are highlighted. The locations (such as page
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numbers or section numbers) of all the extracted information within the TA are also
recorded. Kaplan-Meier survival functions for any survival data made available after the
original TA is presented along with a link to the relevant data-source. For an example of
some of the data extracted from TA268 see Figure B.2.

Figure B.2: Excel worksheet with details extracted from TA268
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B.2.2 Analysis of Extracted data and Simulation Studies using

PiecewiseChangepoint package

All results from the manuscript can be replicated by locating the R script titled
Digitizing_R_code_Final_Share.R within the Files_Replicate_Analysis folder.
This script will produce relevant plots and tables in the folder named pub-plots-tabs,
using the PiecewiseChangepoint package and associated R functions described in Section
8.1. A number of sub-folders are also contained within the Files_Replicate_Analysis

folder and provide pseudo-patient data created from the Kaplan-Meier survival functions
presented in the TAs (and publications providing later data cuts). These are named using
the following structure: TA_Treatment_Outcome_Datacut and use a R function called
digitize in addition to survival.txt and nrisk.txt files in these folders to create
the associated dataset. Survival models are fit to these datasets to generate the results in
the main manuscript and figures in Section B.3.

Figure B.3: Overview of File Structure

Separately, a file called Simulation Study.R provides the code required to produce the
results presented in Section 3.6.
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B.3 Supplementary analysis of updated data for

TA396, TA428 and TA447

In Figures B.4 and B.5 we compare the original data from TA396 to an updated pooled
analysis of the COMBI-v and COMBI-d data for both OS and PFS outcomes respectively.
In all figures in this section the Kaplan-Meier survival function before dashed vertical line
indicates earlier data-cut, while Kaplan-Meier survival function afterwards is the long-term
follow up. For Figure B.5 due to the large number of change-points only the final
change-point is presented.

Figure B.4: Long-term survival probabilities (OS) for various models compared to long-term
data from the COMBI-v and COMBI-d trials.
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Figure B.5: Long-term survival probabilities (PFS) for various models compared to long-
term data from the COMBI-v and COMBI-d trials.

In Figure B.6 we compare the original data from TA447 to that in TA531, which
superseded it. It should be noted that most probable change-point model was the
no-change-point i.e. exponential model.

Figure B.6: Long-term survival probabilities (OS) for various models compared to long-term
data from TA531 (Update to TA447 data). Kaplan-Meier survival function before dashed
vertical line indicates earlier data-cut, while Kaplan-Meier survival function afterwards is
the long-term follow up.
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C Psuedo Code for Weibull
Change-point Model

The pseudo-code presented below shows how a Weibull change-point model could be
implemented in the JAGS statistical software. Modifications to include covariates are
relatively straightfoward.
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model {

# Assuming a one change-point Weibull model with no covariates

# Uniform prior for shape and scale.

# Constant for zerors trick

C <- 10000

N_CP <- 1

cp[1] = 0 # Should be zero

cp[2] ~ dunif(0, max(time)) # Alternatives possible

cp[3] = 100 # mcp helper value. very large number

#Prior for the model parameters

for(k in 1:(N_CP+1)){

shape[k] ~ dunif(0,10)

scale[k] ~ dunif(0,10)

}

# Model and likelihood

for (i in 1:N) {

for(k in 1:(N_CP+1)){

#variable which gives the difference between the two intervals if

time[i]>cp[k+1]↪→

#(i.e. cp[k+1] -cp[k]) or time between time[i] and cp[k]

X[i,k] = max(min(time[i], cp[k+1]) - cp[k],0)

#Indicator variable which highlights which interval time is in

X_ind[i,k] = step(time[i]-cp[k])*step(cp[k+1]-time[i])

log_haz_seg[i,k] <-

log(shape[k]*scale[k]*pow(time[i],shape[i,k]-1))*X_ind[i,k]↪→

cum_haz_seg[i,k] <- scale[i,k]*pow(X[i,k]+cp[k],shape[i,k]) -

scale[i,k]*pow(cp[k],shape[i,k])

}

log_haz[i] <- sum(log_haz_seg[i,])

cum_haz[i] <- sum(cum_haz_seg[i,])

loglik[i] = status[i]*log_haz[i] - cum_haz[i]

#Zero Trick

zero[i] ~ dpois(C - loglik[i])

}

}

Listing 8: Pseudo-Code for JAGS Change-point Model
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D Expert Opinion in Survival
analysis

D.1 Validation of approach

We compare the results of Singpurewalla and Song (1988) to our proposed method.
Singpurewalla and Song (1988) consider a Weibull distribution with a proportional hazards

(PH) parameterization. The median survival time is t0.5 =
log(2)
m

1
a = κ. Re-expressing the

distribution in terms of κ, we obtain survival function S(t) = exp
{
− log(2)

(
t
κ

a)} and
hazard function h(t) = log(2)ata−1

κa
. From this we can obtain the likelihood of this data

using the expressions in Section 7.2.1.

The expert belief about κ is characterized by the location or mean l and standard
deviation s. Singpurewalla and Song (1988) also consider additional parameters c and v

which can be used to calibrate the expert’s opinion about l and s, however, in the case
the analyst does not wish to modulate the expert’s opinion then c = 1 and v = 1

2
. By

invoking some mild assumptions Singpurewalla and Song (1988) state that

[c2v/(sl2)]κ2 ≈ χ2((v/s) + 1).

Using the change of variables technique the density for the median survival is

p(κ|l , s, c , v) = χ2(κ2(c2v)/(sl2)|(v/s) + 1)× 2κ(c2v)/(sl2).

The scale parameter is assumed to have a gamma prior a ∼ G(α, β), with the parameters
of this distribution specified by the expert. Singpurewalla and Song (1988) describe a
Bayes estimator for the parameters using some approximations, however, it is
straightforward to use JAGS or Stan to obtain the complete posterior distribution. Using
simulated data they provide in their paper, they set l = 500, s = 200, α = 6.25 and
β = 12.5 and did not assume any modulation of the expert’s opinion. This gives a prior
for the median survival (termed Original Prior) in Figure D.1 and posterior survival
functions in Figure D.2a. The fact that the posterior distributions are very similar to the
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analysis without any expert opinion is unsurprising as the original prior had a significant
probability within the 95% confidence interval implied by the data alone [8909 - 22188].
In a second example we adjust the prior belief of the expert to yield a much lower median
value (termed adjusted prior in Figure D.1) and see that the mean survival posterior for
both approaches incorporating expert opinion are very similar and as expected, outside the
confidence interval for the median (Figure D.2b). This highlights that our proposed
approach is consistent with previous methods.

Figure D.1: Original prior used by Singpurewalla and Song (1988) and adjusted prior

As can be seen from this example, specifying expert opinion in which the elicited belief is
a function of a chi-squared distribution is not particularly intuitive, however, it highlights
that the proposed approach is consistent with previous methods and can be easily
adjusted to include prior beliefs (using any distribution) on any quantity of interest.

D.2 Technical Details for models fit in JAGS

We could not fit the Gamma, Gompertz and generalized Gamma models in Stan and we
instead fit these models in JAGS. We describe how we analytically evaluate the expected
survival for the Gompertz and generalized Gamma distributions.

The expectation of Gompertz distributed random variable with shape parameter a∗ = 1/b

and rate parameter b∗ = a/b is E [T ] = b exp aEa(−1) where Ea(t) =
∫∞
1

ut exp(−au)du
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(a) Survival functions under the original prior (b) Survival functions under the adjusted prior

Figure D.2: Comparison of Approaching incorporating expert opinion

(Siegrist, 2023). We note that Ea(t) = Γ(0, a), the upper incomplete gamma
function (Weisstein, 2021). We need to approximate this function, and note that by
definition the gamma function (Γ(x)) is the sum of the upper (Γ(x , a)) and lower
(γ(x , a)) incomplete gamma functions Γ(x) = Γ(x , a) + γ(x , a). Hence,
Γ(0, a) = limx→0(Γ(x)− γ(x , a)) where for practical purposes we set x = 0.0001. By
definition we can compute the lower incomplete gamma function as a product of the
gamma function and the cumulative distribution function of the gamma distribution with
the following parameters: Γ(x)F (x = a;α = s, β = 1). We finally have the expected
survival as (1/a∗) exp{b∗/a∗}Γ(0, b∗/a∗).

For Generalized Gamma the parameterization in JAGS is slightly different to Stacy
(1962), with b × r = d , b = p and λ = 1/a, which gives the the mean as Γ((b×r+1)/b)

λγ(r)
.

For consistency of results with the flexsurv package we have µ = − log(λ) + log(r)/b,
σ = 1/(b ∗

√
r) and Q =

√
1/r .

D.3 Effective sample size for Pareto distribution

Another survival model for which we can use the prior distribution to encode information
about the effective sample size. Suppose we have a Pareto distribution with a fixed scale
θ (θ < t) but shape λ is Gamma distributed. Using the substitution y = ln(t/θ), it can
be shown that y , unconditional on λ, is Lomax distributed with parameters α, β
(McNulty, 2021), with α being the effective sample size ne. Letting t∗ be the timepoint
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at which the expert’s opinion is elicited.

θ ∼ U(0, t∗)

β =
log(t∗/θ)

( ˆS(t∗)
−1/ne − 1)

λ ∼ G(ne, β)

T ∼ P(λ, β)

D.4 Simulation study - Effect of priors on posterior

survival when including expert opinion

As noted in the main text we wished to assess if the weakly informative priors typically
used in Bayesian analysis could conflict with the information provided by the expert. To
investigate this, we conducted a simulation study comparing the posterior survival of the
models with expert opinion under two specifications of weakly informative priors; one in
which the priors for all parameters were uniform and alternatively where the priors for
parameters had normal or gamma distributions (the latter for parameters which are
constrained to be positive). In addition to the priors having a different parametric form, a
further difference was that the standard deviations for normal and gamma distributions
were relatively low for weakly informative priors. For example, the log of the scale
parameter for the Weibull model was a normal distribution with mean 0 and standard
deviation 1 and the shape parameter was a gamma distribution with both parameters
equal to 1. This is in contrast to the standard deviations of the uniform priors, which were
typically >28. In the simulation study we generated data from a Weibull (proportional
hazards) model for a variety of parameters and sample sizes (nsamp = 30,50,100) with a
maximum follow-up of 2 years. We incorporated different values of expert opinion in
terms of mean and standard deviation at multiple timepoints, assuming that the expert’s
opinion was a normal distribution. Taking all combinations of the parameters described in
Table D.1 produced 324 simulations across each of the parametric models.

To assess the similarity of the survival functions under each prior specification we
evaluated the posterior median restricted mean survival time (RMST) until a timepoint of
15 years for each model. To provide a measure of similarity on a comparable scale, we
estimated the ratio min(RMSTuniform,RMSTnon-uniform)

max(RMSTuniform,RMSTnon-uniform)
, with RMSTuniform and RMSTnon-uniform

denoting the RMST under each prior specification. Overall, all models had very high
RMST ratio values with median values of 0.99 even at a sample size of 30 as shown in
Table 3. Results for larger sample sizes were even larger.

A simulation study using the same specifications as described in Table D.2 compared the
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Table D.1: Parameters used in simulation study to investigate the effect on model priors
when including expert opinion

Parameter Values
Shape 0.75, 1, 1.25
Scale 0.25,0.5,0.75, 1
Sample Size 30,50,100
Mean value of S(t∗1 ) 0.1, 0.3
Mean value of S(t∗2 ) 0.05, 0.1
SD of expert’s opinion 0.025, 0.05, 0.1

SD of expert’s opinion† 0.025, 0.05, 0.1;
S(t∗1 )S(t

∗
2 ) denotes the survival at 4 and 10 years – only

evaluated scenarios in which S(t∗1 ) > S(t∗2 )
† Standard deviation (SD) of the expert opinion was equal
across both timepoints

Table D.2: RSMT ratios for each parametric model with dataset of 30 observations in both
simulation studies

Model Median RMST
Ratio – Uniform vs
Normal/Gamma Priors

Median RMST Ratio –
Uniform vs Penalized
Maximum Likelihood
Estimates

Exponential 0.99 0.99
Weibull 0.99 0.97
log-Logistic 0.99 1
log-Normal 0.99 0.99
Royston-Parmar 1 0.98
Gompertz 0.99 0.97
Gamma 0.99 0.97
Gen. Gamma 0.99 0.98

Bayesian approach (with uniform priors) to the estimates derived from the penalized
maximum likelihood approach (which does not require the specification of a prior). If the
distribution representing the expert opinion was not multi-modal, the ratios of RMST
were very close to 1 even at sample sizes of 30. Based on these results it can be
concluded that weakly informative prior distributions do not conflict with the information
provided by the expert.

For illustration, Figure D.3 below shows examples of the posterior survival functions
(along with 95% intervals as dashed lines) for the Gompertz, Weibull, Royston-Parmar
spline model and generalized gamma for scenarios in which the sample size was 30
observations. The RMST ratio is provided in the title of each plot. Expert opinion is
indicated by the dashed vertical lines at times 4 and 10 and includes situations where the
mean values of S(t∗) are both high and low and also informative and vague (small and
large standard deviations).

247



Figure D.3: Survival functions when under different specifications of minimally informative
priors. Shown clockwise are Gompertz, Log-Normal, Royston Parmar Spline and Weibull
models fit to different simulated datasets.

Similar illustrations are provided for the comparison between the Bayesian models with
expert opinion and the penalized maximum likelihood approach for gamma, log-normal,
Royston-Parmar and Weibull models (Figure D.4). Also included for reference are the
Bayesian and maximum likelihood models without any expert opinion.
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Figure D.4: Survival functions comparing Bayesian and Penalized likelihood approaches
(scenarios with and without opinions). Shown clockwise are Gompertz, Log-Normal,
Royston Parmar Spline and Weibull models fit to different simulated datasets.

D.5 Simulation study – Impact of Bias in Expert

Opinion on Extrapolated Survival

As noted in main text, it is almost certain that the opinions elicited from the expert (and
parameterized as probability distributions) will not be centred on the true value.
Considering beliefs elicited about survival probabilities at timepoints, if the expected value
of an expert’s opinion is different from the true survival at a particular timepoint, then the
expert’s opinion is biased relative to the true survival. However, in many situations it can
still be closer (on average) to the true survival function than using the data alone. To
make this statement more concrete, consider an example in which 30 observations are
generated by a Weibull probability distribution with shape equals 1, scale equals 0.1
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(proportional hazards parameterization) and a maximum follow up time of 2 years. If the
expert assumes that their belief about survival at 10 years is characterized by a normal
distribution with a mean of 0.46 and standard deviation of 0.05, the expected value of
their opinion is 25% above the true value of 0.367, i.e. biased by a factor of 1.25. If we fit
a Weibull model to the data, the maximum likelihood estimate will (on average) provide
an approximately unbiased survival function, however, because we have a limited sample
size and do not observe data after 2 years the estimate is associated with a significant
degree of uncertainty. In contrast, the survival function (at the restricted maximum
likelihood estimate ) obtained from including the expert’s opinion will be biased but have
a considerable reduction in uncertainty and will be on average closer to the true survival
function. To produce stable results, 500 datasets are simulated under the conditions
described above and models fit by (restricted) maximum likelihood including and
excluding the expert’s opinion. Figure D.5 presents the median (solid line) and 95%
quantiles (dashed lines) of the survival estimated with (purple) and without (red) expert
opinion. To be clear, these are the quantiles of the survival over the 500 datasets at the
restricted and regular maximum likelihood estimates and do not refer to the confidence
intervals from a given model.

Figure D.5: Estimation of expected survival functions with and without expert opinion

From Figure D.5 we get a sense of the bias-variance trade off. Although the survival at 10
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years estimated by the penalized maximum likelihood estimators are always above the true
survival for each of the 500 datasets (ranging from 0.42-0.50), they are less than 0.13
from the true value in 97.5% of the datasets. In contrast when using the data alone the
95% interval for the survival is 0.08-0.78 meaning that in 5% of the datasets either
underestimated the survival by ≥ 0.286 or overestimated it by ≥ 0.40. In order to get a
numerical estimate of the bias-variance trade off, we estimated the mean squared error
(MSE) for the restricted mean survival time (RMST), up to 15 years:
MSE = (RMST − R̂MST )

2
with RMST referring to the true value and R̂MST the

estimate based on the models, for both the model with and without expert opinion (i.e.
data alone) in each of the 500 simulations. To get a single number to compare the results
between both models, we evaluated the mean of the difference (across the 500
simulations) between the MSE from the model without expert opinion and MSE with
expert opinion. Values >0 mean that on average the MSE for the model with expert
opinion was lower than that without expert opinion. In our example the median MSE was
5 without using expert opinion, and 0.94 using expert opinion. Across the 500 simulations
the average difference of MSE without expert opinion against MSE with expert opinion
was 5.55. We also evaluated the absolute difference of the RMST, |RMST − R̂MST | for
both the models with and without expert opinion and evaluated the mean difference.
Using this measure (the absolute deviation rather than squared deviation) places a lower
penalty than MSE on having values further away from the true value. In this situation the
expected difference in absolute difference of RMST was 1.22, considerably lower than the
equivalent value based on the squared deviation but nevertheless substantial, as the true
RMST was 7.77. We expect a variety of parameters to influence the MSE with and
without expert opinion, in particular degree of bias, strength of belief (as indicated by the
standard deviation) and the sample size. These factors and others relating to the
follow-up time, parameters for the Weibull distribution and timepoints of expert’s opinion
(parameterized as a normal distribution) are presented in Table D.3. We considered
specifications based on each of the combinations of parameters, to yield 576
specifications.
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Table D.3: Parameters for simulation study comparing predictive accuracy of survival models
including expert opinion with models estimated based solely on the observed data.

Parameter Values

Shape 0.75, 1, 1.25

Scale 0.25,0.5,0.75, 1

Sample Size 30,50,100

Standard Deviation of
expert’s opinion*

0.1,0.05,0.025

Timepoints for expert opinion 4 only, 10 only, 4 and 10

Longest follow up time
(i.e. observations after this
assumed censored)*

2, 4

Bias factor of expert –
factor by which the expert
under/overestimates true
survival

0.6,.75, 1.25

* If follow up time was 4 years, then expert opinion was only
incorporated at 10 years

Overall, only 70 of the 576 (12%) simulations had an expected difference in MSE < 0,
denoting that on average the MSE with expert opinion was worse than without expert
opinion. In the case of absolute deviation this number increased to 118 simulations (20%).
Considering the results summarized by bias factor of expert and standard deviation of
expert opinion (Table D.4), the percentage of scenarios in which (expected) absolute
deviation from RMST was lower with expert opinion was above 70% for all scenarios in
which the bias factor of the expert was between 0.75-1.25 and suggests that expert
opinions within this range improve the prediction of long-term survival outcomes.

Perhaps unsurprisingly the situations where the expert opinion had a higher (worse) MSE
included when the expert was biased and the true survival was quite high i.e. above 40%
for years 4 or 10. This is because we included a relative bias, assuming the survival is 1.25
times the true survival at 50% results in a greater absolute error than when it is only 25%.
From the perspective of including expert opinion, the worst results were obtained for bias
factors farther away from 1, large sample sizes, and in which the confidence of the expert
was high e.g. standard deviation equal to 0.025. Lower MSE was achieved in situations
where expert opinion was incorporated at the 10 year timepoint rather than the 4 year
timepoint.
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Table D.4: Percentage of scenarios in which model with expert opinion performed better
than model based on data alone (Models and data assumed to be from a Weibull
distribution)

Bias
factor of
expert

SD of
expert’s
opinion

% Scenarios in
which (average)
squared deviation
from RMST was
lower with expert
opinion

% Scenarios in
which (average)
absolute
deviation from
RMST was lower
with expert
opinion

Number of
Scenarios

0.6 0.025 60% 40% 48

0.6 0.05 67% 50% 48

0.6 0.1 85% 65% 48

0.75 0.025 85% 75% 48

0.75 0.05 90% 81% 48

0.75 0.1 96% 94% 48

0.9 0.025 100% 100% 48

0.9 0.05 100% 100% 48

0.9 0.1 100% 100% 48

1.25 0.025 83% 73% 48

1.25 0.05 88% 77% 48

1.25 0.1 100% 100% 48

SD - Standard Deviation

It is also worth highlighting that results of the simulation study presented in Table D.4
was based on the assumption that the true model, a Weibull distribution, was selected.
We repeated the simulation study assuming that the data were still generated by a
Weibull distribution but that a log-normal distribution, i.e., an incorrect parametric model
was fit to the data instead. Table D.5 shows that for all combinations of bias and
standard deviation of expert’s opinion, the (expected) absolute deviation from RMST was
lower with expert opinion in more than 70% of scenarios, highlighting that the inclusion of
expert opinion can make extrapolation of survival outcomes more robust to
misspecification of the parametric model.
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Table D.5: Percentage of scenarios in which log-normal model with expert opinion
performed better than log-normal model based on data alone assuming data was generated
by a Weibull distribution

Bias
factor of
expert

SD of
expert’s
opinion

% Scenarios in
which (average)
squared deviation
from RMST was
lower with expert
opinion

% Scenarios in
which (average)
absolute
deviation from
RMST was lower
with expert
opinion

Number of
Scenarios

0.6 0.025 81% 77% 48

0.6 0.05 94% 83% 48

0.6 0.1 100% 100% 48

0.75 0.025 100% 100% 48

0.75 0.05 100% 100% 48

0.75 0.1 100% 100% 48

0.9 0.025 100% 100% 48

0.9 0.05 100% 100% 48

0.9 0.1 100% 100% 48

1.25 0.025 81% 81% 48

1.25 0.05 81% 81% 48

1.25 0.1 83% 81% 48

SD - Standard Deviation
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D.6 Frequently used Parametric Survival Models in

HTA

Table D.6 presents the parameterizations of commonly used survival models. The
parameter of primary interest (as per the flexsurv package) is colored in red, known as
the location parameter and typically governs the mean or location for each distribution.
The other parameters are ancillary parameters that determine the shape, variance, or
higher moments of the distribution. These parameters impact the hazard function, which
can take a variety of shapes depending on the distribution.

In many situations covariates (i.e. treatment indicator) are included on the location
parameters and result in proportional hazard (PH) or accelerated time factor (ATF)
models. Less frequently covariates can be included on the ancillary parameters which
allow for more flexible modelling of the data, however, the models will no longer have the
PH/ATF interpretations.
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Table D.6: Standard Parameterization of Parametric Survival Models

PDF CDF Hazard Parameters

Exponential λe−λt 1− e−λt λ rate = λ > 0

Weibull (AFT) a
b

(
t
b

)a−1
e−(t/b)a 1− e−(t/b)a 1 a

b

(
t
b

)a−1 shape = a > 0

scale = b > 0

Weibull (PH)2 amta−1e−mta 1− e−mta amta−1
shape = a > 0

scale = m > 0

Gompertz beat exp
[
−b

a
(eat − 1)

]
1− exp

[
−b

a
(eat − 1)

]
beat

shape = a ∈ (−∞,∞)

rate = b > 0

Gamma3 ba

Γ(a)
ta−1e−bt γ(a,bt)

Γ(a)
f(t)/S(t)

shape = a > 0

rate = b > 0

Lognormal 1
tσ

√
2π
e−

(ln t−µ)2

2σ2 Φ
(
ln t−µ
σ

)
f(t)/S(t)

meanlog = µ ∈ (−∞,∞)

sdlog = σ > 0

LogLogistic (a/b)(t/b)a−1

(1+(t/b)a)2
1

(1+(t/b)a)
1− (a/b)(t/b)a−1

(1+(t/b)a)

shape = a > 0

scale = b > 0

Generalized Gamma3,4 |Q|(Q−2)Q
−2

σtΓ(Q−2)
exp
[
Q−2

(
Qw − eQw

)] γ(Q−2,u)
Γ(Q−2)

if Q ̸= 0

Φ(w) if Q = 0
f(t)/S(t)

mu = µ ∈ (−∞,∞)

sigma = σ > 0

Q = Q ∈ (−∞,∞)

Royston-Parmar Splines See Royston and Parmar (2002)

1 Red colour refers to location parameter.
2 The proportional hazard (PH) model is a reparameterization of the accelerated failure time (AFT) model with m = b−a.
3 Γ(z) =

∫∞
0

xz−1e−xdx is the gamma function, γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function.

4 w = (log(t)− µ)/σ, u = Q−2eQw and Φ is the cumulative normal distribution function.
5 w = (log(t)− µ)/σ, δ = (q2 + 2p)1/2,m1 = 2(q2 + 2p + qδ)−1,m2 = 2(q2 + 2p − qδ)−1 and B() is the beta function.
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