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ABSTRACT: Post-disaster recovery modelling of engineering systems has become an important facet 

of disaster risk management. The post-disaster recovery trajectory of a civil infrastructure system can be 

quantified using (a) the initial post-disaster functionality level, Qo (i.e., the ratio of the number of serviced 

customers/end users post-disaster to that pre-disaster); (b) rapidity h (i.e., the rate of functionality 

restoration); and (c) recovery time (Rt) (i.e., the total time to restore full functionality to the entire 

community). This study uses a Bayesian estimation approach to develop probabilistic models for 

characterising the relationships between seismic intensity, exposed population (PEX), Qo, h, and Rt of 

electric power networks (EPNs) using post-earthquake recovery data of large earthquakes occurring in 

Japan. Firstly, a data collection exercise was carried out to aggregate publicly available data on the 

aforementioned parameters for different seismic events in Japan. Based on the quality of available 

information, 16 earthquake events between 2003 and 2022 were selected. Next, a set of probabilistic 

models to estimate Qo, Rt, and h were developed using Bayesian parameter estimation to capture 

uncertainties. The data analysis suggests that the initial post-disaster functionality level depends on the 

seismic intensity and exposed population. The post-disaster recovery time depends on the initial post-

disaster functionality level, event magnitude, and year of occurrence. The rapidity of recovery depends 

on the initial post-disaster functionality level. Apart from being an efficient stand-alone tool, the 

proposed data-driven models can be a useful benchmarking tool for simulation-based models.

1. INTRODUCTION 

Field-based evidence has shown that disaster-

induced damages to critical infrastructure systems 

can cause significant direct and indirect 

socioeconomic losses, including casualties. One 

of the most affected critical infrastructure systems 

is electric power networks (EPN). Apart from 

economic losses associated with business 

disruptions, power outages can result in human 

losses, increased waste from perishable food 

items, failure of security systems, increased 

disease spread, significant direct repair and 

restoration costs, and several other forms of a 

nuisance to the general public (e.g., Chang et al. 

2007; Dugan et al. 2023). 

Accurately estimating power outages and 

recovery can help EPN management authorities 

and other private/public organisations reliant on 

electric power define effective short-term and 

long-term recovery strategies to improve 

community-level resilience. For example, 

business owners and homeowners can set up 

appropriate measures (e.g., backup power sources 

and power disruption insurance) if potential post-
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disaster recovery trajectories of EPNs at different 

hazard intensities are known. 

Figure 1 presents a typical post-disaster 

recovery trajectory for a component/system (or 

even a community) with a pre-disaster 

functionality level Qpre, reduced to Qo (referred to 

as the initial post-disaster functionality level) after 

an event at a time to. Repairing or replacing 

damaged system components will result in the 

gradual restoration of functionality. The time 

required to restore the system’s functionality to a 

desired level QR (which can be similar, close to, 

or better than the pre-disaster functionality level) 

is referred to as the recovery time (Rt). The 

recovery path of the damaged system (i.e., from 

{to,Qo} to {tR, QR}) can be quantified by a 

recovery function Q(t). The recovery rapidity h 

quantifies the recovery rate. An ideal recovery 

modelling approach should be able to estimate Qo, 

Rt, h, and Q(t). Furthermore, any sources of 

uncertainties in these metrics need to be 

accounted for.  

 

 
Figure 1: Post-disaster recovery trajectory of an 

engineering system or community 

 

Currently, two main approaches for 

infrastructure recovery modelling are widely 

adopted – empirical and simulation-based. 

Empirical models for EPN assessments (e.g., 

Guikema and Quiring 2012; Liu et al. 2005; 

Nojima and Sugito 2003) are based on 

correlations from data analysis of historical 

spatial outages and recovery times. Given the data 

resolution used in developing these models, most 

empirical models do not explicitly account for the 

network topology and fragility of individual 

components and subcomponents in the EPNs. 

However, empirical models are considered 

helpful in forecasting region-level disaster-

induced outages. It is noted that the majority of 

existing empirical models were developed for 

hurricane and storm hazards. Furthermore, 

available empirical models on post-earthquake 

recovery of EPNs do not adequately link 

earthquake features (e.g., magnitude, intensity, 

etc.), exposed population, post-earthquake 

functionality level, and recovery time. Hence, it is 

important to develop more efficient empirical 

models for post-earthquake recovery of EPNs. 

Simulation-based methods (Çağnan et al. 

2006; Guidotti et al. 2016; Ouyang and Dueñas-

Osorio 2014) use network analysis to simulate the 

post-disaster functionality level and recovery 

trajectory of EPNs, while explicitly accounting 

for component and system fragilities. One of the 

fundamental challenges of simulation-based 

models is that, due to security reasons, EPN 

topologies are not publicly available data. Also, 

reliable information on component and system 

fragilities and repair/replacement times and 

sequences are needed to develop reliable 

estimates of post-disaster recovery trajectories. 

The adequacy of simulation-based methods can 

be improved through appropriate validation 

exercises using real-life events. Empirical models 

may be helpful benchmarking tools whenever 

such validation exercises are not feasible. 

This study’s main objective is to enhance 

disaster risk management of EPNs by developing 

empirical models that adequately link earthquake 

intensity, exposed population, post-earthquake 

functionality level, rapidity, and recovery time. 

To this end, this study (a) collects and aggregates 

data on the performance and restoration of EPNs 

from past earthquake events in Japan; and (b) 

develops simple probabilistic models for post-

disaster recovery trajectory estimation using 

relatively easy-to-obtain information such as 

seismic intensity, exposure data (in terms of 

number of households exposed to each local 

seismic intensity level), number of serviced 

households, and EPN restoration trajectory data.  
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2. DATA COLLECTION AND 

AGGREGATION 

The first step is establishing a database of EPN 

performances/damages and restorations from past 

earthquakes in Japan. The data collection exercise 

for this study focused on major earthquakes that 

caused significant damage to EPNs. Another 

criterion was the need to have sufficient 

information on the initial post-disaster 

functionality level, recovery trajectory and 

recovery time. Based on these criteria, 16 events 

between 2003 and 2022 were considered. 

Information collected includes the earthquake 

magnitude, time of occurrence, exposed 

population data, number of serviced households, 

and recovery time for the EPNs. The collated 

database is available in Handa (2022). The 

subsequent subsections provide details on the data 

collection process. 

2.1. Earthquake magnitude 

This study adopts the Japan Meteorological 

Agency (JMA) magnitude (MJMA) to quantify the 

magnitude of each event. More details on the JMA 

magnitude scale can be found in  JMA (2014). The 

MJMA for each event was extracted from Japan 

Real-time Information for earthQuake (J-RISQ) 

reports (J-RISQ 2015). 

2.2. Population data 

The number of households and population in 

the affected regions are taken from publicly 

available census data (SBJ 2020). For the number 

of households for the entire region, if the 

municipality where the affected households are 

located is known, the total number of households 

within that area is used; if not, the total number of 

households within the jurisdiction of the 

electricity company’s sales office or prefecture is 

used. In some instances, information on the total 

number of households was unavailable. However, 

it was inferred from events with information on 

both the number of households and the 

population, that the average ratio of population to 

the number of households equals 2.8 (i.e., 2.8 

persons per household). Hence, if the number of 

households was unavailable, it was inferred by 

dividing the reported population by 2.8. 

2.3. Number of serviced customers (households) 

This is the number of households with 

continued access to power immediately after the 

event. The number of serviced customers and total 

customers were extracted from published 

literature. Priority was given to data published by 

municipal electricity companies. In cases where 

incomplete information is available from 

electricity companies, data from newspapers and 

journal articles were used. Qo is defined as the 

ratio of the number of households with continued 

access to power immediately after the disaster to 

the total number of households in the affected 

region. 

2.4. PEX (population exposed to the earthquake) 

data 

Data on the exposed population at each JMA 

(local) seismic intensity scale level were extracted 

from J-RISQ reports (J-RISQ 2015). JMA 

intensity scale intensities range from 0 to 7. More 

information on the JMA intensity scales can be 

found in JMA (2015). 

JMA (2015) identifies seismic intensities of 

‘5 Lower’ or more to influence electric power 

disruptions. Hence PEX data collection focused 

on the population exposed to seismic intensities ‘5 

Lower’ (P5L), ‘5 Upper’ (P5U), ‘6 Lower’ (P6L), ‘6 

Upper’ (P6U), and 7 (P7). The PEX data for each 

event was normalised by the total population in 

the high-intensity zones (as defined in section 2.2) 

(i.e., p5u = P5U/(P5L+P5U+ P6L + P6U + P7)). 

2.5. Recovery time 

The recovery time is defined as the time taken 

to restore power to all affected households in the 

affected region. The recovery time was extracted 

from publicly available information. Priority was 

given to information published by electricity 

companies, local authorities and relevant 

ministries and agencies. In certain cases, 

newspaper data (typically in the form of 

government announcements) were used.  
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Figure 2: Post-recovery trajectory following the 2016 

Kumamoto earthquake showing calibrated rapidity 

coefficient h (Data from METI (2016)) 

2.6. Rapidity 

As mentioned earlier, rapidity characterises 

the recovery rate of the EPN. Opabola and 

Galasso (2023) proposed a recovery trajectory 

function Q(t) that is dependent on Qo, 

mobilisation time t1 (i.e., the time after which 

restoration work starts), Rt, and rapidity 

coefficients g and h (See Equation (1)).   
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The values of g and h express the level of 

preparedness, resource availability, technical 

know-how and societal conditions of a 

community. For known values of h and Q(Rt), g 

can be computed from Equation (1) as: 
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A concave recovery curve corresponds to h 

<< 0 and represents the recovery trajectory of a 

community with a poor level of preparedness, a 

high level of resource unavailability, and 

unfavourable societal conditions. In contrast, h >> 

0 represents a community with good preparedness 

and resource availability and favourable societal 

conditions. 

The rapidity coefficient h from each event 

was estimated by fitting Equation (1) to the field 

data (see Figure 2 for an example) so that the Sum 

of Squares Error (SSE) between the observed and 

predicted functionality trajectory during the 

recovery phase is minimised. 

3. DATA ANALYSIS AND PROPOSED 

MODELS 

3.1. Correlation analysis 

A correlation analysis for the aggregated 

database was first conducted. The correlation 

matrix is presented in Figure 3. As shown in the 

figure, Q0 is negatively correlated with the PEX 

(more significant correlation with p7 and p6u). 

This trend captures that the higher the proportion 

of a population exposed to a more significant 

seismic intensity, the lower the initial post-

disaster functionality level.  

Rt is shown to be highly correlated with Qo (r 

= -0.84), year of occurrence and earthquake 

magnitude. Low Qo corresponds to increased 

damage to EPN components, resulting in a longer 

time to recover. The significant correlation of 

PEX with Rt may be attributed to the fact that PEX 

and Qo are also highly correlated. 

Furthermore, the rapidity coefficient h is 

shown to be correlated with Qo and Rt with r 

equals 0.49 and -0.42, respectively. As earlier 

described, a higher level of h depicts a system 

with good preparedness, good resource 

availability, and favourable societal conditions. 

Hence, the positive correlation between h and Qo 

can be attributed to the fact that a higher Qo is also 

associated with good preparedness and favourable 

societal conditions. 

3.2. Bayesian linear regression approach 

Unlike frequentist approaches, a Bayesian 

parameter estimation yields a probability 

distribution of model parameters instead of a 

single value. Various literature (e.g., Gelman et al. 

1995; Reich and Ghosh 2019) provides a detailed 

introduction to Bayesian methods. This paper 

provides a brief summary of Bayesian parameter 

estimation. 

Consider a standard linear regression model 

given as: 

𝑦𝑛 =  𝜷T𝒙𝒏 + 𝜀𝑛 (3) 
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where yn is a scalar response,  is a vector of 

model parameters (or coefficients) for the vector 

of regressor xn, and error 𝜀𝑛 is a zero mean 

Gaussian noise term with a non-zero variance 2.  

The probabilistic interpretation of Equation 

(3) can be written as: 

𝑦𝑛|𝜷, 𝜎2~ 𝒩(𝑦𝑛|𝜷T𝒙𝒏, 𝜎2)  (4) 

In Equation (4), yn is a random variable with 

mean of 𝜷T𝒙𝒏 and a corresponding non-zero 

variance of 2. 

The Bayesian treatment of a linear regression 

model introduces a prior probability distribution 

over the model parameters  and . In this study, 

we consider the semiconjugate prior for which the 

prior and posterior share the same parametric 

family. The natural semiconjugate prior of 

parameters  and 2 is  a normal-inverse-gamma 

distribution, with the form: 

𝑝(𝜷, 𝜎2) = 𝑝(𝛽|𝜎2)𝑝(𝜎2)  (5) 

where  (𝜷|𝜎2)~𝒩(𝝁, 𝑉) and 𝜎2~𝐼𝐺(𝐴, 𝐵) . 

𝒩  is the normal distribution, and IG is the 

inverse-gamma distribution. V is the conditional 

covariance matrix of Gaussian prior of  ; and 𝝁 

is the mean hyperparameter of Gaussian prior on 

β. A and B are the shape and scale 

hyperparameters of the inverse-gamma prior on 

2, respectively.   

The prior probability distribution of a 

parameter can then be combined with the 

likelihood of the observed data to obtain the 

posterior distribution of the parameter (see 

Equation (6)). 

𝑝(𝜷, 𝜎2|𝑦) ∝ 𝑝(𝑦|𝑋, 𝜷, 𝜎2)𝑝(𝜷, 𝜎2)  (6) 

This study adopts the Markov Chain Monte 

Carlo (MCMC) algorithm (precisely, Gibbs 

Sampling) (e.g., Gelfand 2000) for the posterior 

estimation. The Bayesian regression analyses 

presented in this study drew 10,000 samples from 

the posterior distribution generated using a 

burning period of 10,000 and a thinning level of 

10. It is also noted that a stepwise removal process 

was carried out via a Bayesian estimation method 

to identify the governing predictors for Qo, Rt, and 

h.  

 
Figure 3: Correlation matrix for extracted data 
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3.3. Initial post-disaster functionality level Qo 

The Bayesian approach outlined in section 

3.2 was adopted in defining the probabilistic 

formulation for Qo. Two data points were 

removed from the analysis. The 2011 Tohoku 

event was excluded because the functionality loss 

and recovery trajectory data are assumed to be 

significantly influenced by the earthquake and 

tsunami sequence (rather than earthquake only, as 

for the other considered events). The 2018 

Hokkaido event was excluded because the total 

blackout was a precautionary measure due to a fire 

event at one power plant.  

The stepwise removal process showed that 

the main predictors for Qo are the normalised PEX 

data. Of the PEX data, p5l was determined to be 

the least significant in predicting Qo; hence it was 

not considered in the Bayesian analysis.  

Table 1 presents the posterior summary 

statistics for the proposed model. The model 

assumes that the higher the proportion of a 

population exposed to a more significant seismic 

intensity, the lower the initial post-disaster 

functionality level, which is intuitive.  

It is noted that the lower- and upper-bound 

values of Qo are zero and unity, respectively. 

Also,  it is worthwhile to constrain the model 

parameters to negative values (i.e., to capture 

reduction in  Qo). In line with the mean values, 

another constraint may be to ensure |(p7)| > 

|(p6u)| > |(p6l)|> |(p5u)|. 

 
Table 1: Posterior summary statistics for Qo model 

Parameter Mean Standard 

deviation 

95% credible 

region 

Intercept 1.0 0.13 [0.79, 1.3] 

p7 -24.7 6.6 [-37.7, -11.5] 

p6u -0.4 0.6 [-1.79, 0.6] 

p6l -0.22 0.29 [-0.84, 0.3] 

p5u -0.1 0.29 [-0.78, 0.4] 

2 0.02 0.01 [0.006, 0.05] 

 

Figure 4 shows the relationship between the 

estimated mean and measured Qo. As shown in the 

figure, the model provides adequate estimates of 

Qo with an R2 of 0.81 and normalised root mean 

squared error (NRMSE) of 0.1. 

 

 
Figure 4: Relationship between measured and 

estimated mean Qo 

3.4. Recovery time Rt 

The stepwise removal process showed that 

three main predictors for Rt are MJMA, Qo, and the 

occurrence year (Y). As discussed earlier, Qo 

accounts for PEX. It is presumed that the 

sensitivity of recovery time to event magnitude is 

because the earthquake severity on other 

infrastructure systems and the entire community 

determines the resources dedicated to repairing 

damaged EPNs. For example, larger events could 

have severe impacts on other lifelines which are 

interdependent with EPNs.  

Based on the estimated NRMSE, the 

predictors relate better with Rt in the natural log 

space. Hence, the Bayesian analysis was carried 

out in natural log space (Equation (7)).  

ln(𝑦𝑛) =  𝜷T ∙ ln(𝒙𝒏) + 𝜀𝑛 (7) 

Table 2 presents the posterior summary 

statistics for the proposed model. The model 

captures the increase in recovery time with an 

increase in magnitude and proportion of 

customers without service (i.e., 1 – Qo). Similarly, 

the sensitivity of recovery time to occurrence year 

can be attributed to disaster management agencies 

learning from past events to reduce the post-

earthquake recovery time. 

Figure 5 shows the relationship between the 

estimated mean and measured Rt. As shown in the 

figure, the model provides adequate estimates of 

Rt with an R2 of 0.75 and NRMSE of 0.16. 
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Table 2: Posterior summary statistics for Rt model 
Parameter Mean Standard 

deviation 

95% credible 

region 

ln(Intercept) -7.5 7.4 [-22.2, 7.2] 

ln(MJMA) 7.2 3.77 [-0.35, 14.7] 

ln(1-Qo) 0.34 0.17 [0.00, 0.69] 

ln(Y-2000) -1.0 0.42 [-1.9, -0.22] 

2 0.56 0.35 [0.21, 1.45] 

 

 
Figure 5: Relationship between the measured and 

estimated recovery time 

3.5. Rapidity coefficient h 

As shown in Figure 3, h is positively 

correlated with the initial post-earthquake 

functionality level and negatively correlated with 

Rt. There are also significant correlations between 

spatial seismic intensities and h. The stepwise 

removal process suggests that h = f(1- Qo). Rt was 

excluded during the removal process due to a high 

correlation with Qo (r = -0.84). Furthermore, as 

shown in Figure 6, there is a nonlinear 

relationship between shape constant h and 1- Qo. 

Hence, the Bayesian analysis was carried out in 

natural log space also in this case (see Equation 

(7)). 

Table 3 presents the posterior summary 

statistics for the proposed model. The adequacy of 

the mean estimate is represented in Figure 6. As 

shown in the figure, the proposed h model 

provides a good estimate of h with an R2 of 0.84 

and NRMSE of 0.17. 

4. DISCUSSIONS AND CONCLUSIONS 

As a result of the unavailability of EPN 

topology for several earthquake-prone countries, 

simulation-based recovery modelling studies 

often adopt synthetic test-beds. The adequacy of 

simulation-based methods can be improved 

through appropriate validation exercises using 

realistic data. Empirical models may also be 

helpful benchmarking tools whenever such 

validation exercises are not feasible. Furthermore, 

such empirical models can serve as simple stand-

alone tools for integrating community-level and 

building-level recovery modeling frameworks. 

 

 
Figure 6: Relationship between proportion of 

unserved households (1-Qo) and rapidity coefficient h 

 
Table 3: Posterior summary statistics for h model 

Parameter Mean Standard 

deviation 

95% credible 

region 

ln(Intercept) 0.14 0.28 [-0.41, 0.7] 

ln(1-Qo) -0.8 0.11 [-1.0, -0.59] 

2 0.26 0.13 [0.1, 0.6] 

 

This study has developed a set of probabilistic 

models to predict Qo, Rt, and h. using Bayesian 

parameter estimation to capture uncertainties. The 

order of applying the proposed formulations for 

predicting the recovery trajectory of EPNs, using 

posterior summary statistics presented in Tables 

1, 2, and 3, is presented in Figure 7. 

The proposed probabilistic tool can capture 

aleatory and epistemic uncertainties in the model. 

However, additional data collection exercises are 

needed to update the probability distribution 

functions of the parameters with new 

observations. Future studies will also look at 

collecting data from other countries to improve 

the applicability range of the proposed 

formulations.  
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Figure 7: Order of analysis using the proposed 

models 
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