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Abstract
Travel time prediction is vital to the development and maintainence of advanced intelligent transportation system technolo-
gies. The travel time on a road segment is dependent on various factors like dynamic traffic demands, incidents, weather con-
ditions, and geometric factors. However, uncertainties associated with prediction performance consistency may reduce the
effectiveness of such systems. To tackle these challenges, this paper proposes a hybrid deep learning algorithm-based metho-
dology by integrating variational mode decomposition, multivariate long short-term memory, and quantile regression to pre-
dict estimates of travel time ranges instead of single-point predictions. Travel time data collected from loop detectors on
motorways near the city of Dublin, Republic of Ireland were modeled. The proposed method was evaluated using various
design scenarios and was found to perform efficiently in comparison with conventional deep learning algorithms.
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Travel time information in real time is the most sought-
after data among travelers as it is very useful for making
trip-related decisions such as route choice and departure
time. It is also useful for practitioners wanting to inter-
pret the efficiency of road segments and in managing
traffic using intelligent transportation system (ITS)
applications. However, travel time may vary significantly
over space and time as a consequence of variations in
traffic demand, capacity, incidents, roadwork, adverse
weather, driving behavior, and congestion. As a result,
being able to depend on extensive traffic data and recent
technologies to precisely predict travel times is essential.
There is plenty of literature in the domain of travel time
prediction, which can be broadly classified as inductive
approaches (i.e., data-driven methods) and deductive
approaches (i.e., traffic flow theory-based methods). As
the present study has proposed data-based modeling and
prediction, the following paragraphs brief the reported
studies based on inductive approaches.

Numerous studies have reported predicting travel
times based on naı̈ve methods, statistical methods, and
artificial intelligence (AI)-based methods. Naı̈ve methods
(1) predict travel time by averaging over time and space

selectively. Statistical approaches like time series (2, 3)
and regression methods (4, 5) predict travel time based
on correspondences among the identified limited inde-
pendent variables. However, these methods are largely
dependent on the correspondence between a limited
amount of training and testing data. AI-based techniques
such as artificial neural networks (6, 7), support vector
machines (SVMs) (8, 9), recurrent neural networks
(RNNs) (10, 11), and convolutional neural networks
(CNNs) (12, 13) are widely used prediction techniques
when there is a large amount of data available for vari-
ous applications in traffic. In light of this, RNNs and
CNNs have gained greater research attention in recent
times, owing to their ability to model complex temporal
dependencies in data. Therefore, we adopted a multivari-
ate long short-term memory (LSTM) neural network to
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develop a travel time prediction method in this study.
Hybrid methodologies generally delve into mode decom-
position algorithms to disintegrate the original traffic
data sequence into multiple subsignals. Further, hybrid
models integrate one or more AI-based methods in pre-
diction methodology to tackle the nonlinearity and non-
stationarity of the traffic system. Popular mode
decomposition algorithms include empirical mode
decomposition (EMD) (14), empirical ensemble mode
decomposition (EEMD) (15), and wavelet transform.

A few recent studies have explored hybrid models for
prediction in the domain of traffic engineering. Zheng
et al. proposed an EMD-based hybrid modeling frame-
work by integrating SVM and LSTM for traffic flow pre-
diction (16). Tian explored hybrid models by integrating
EEMD with SARIMA models to perform traffic flow pre-
diction (17). Xiu et al. developed a hybrid methodology by
combining EEMD bidirectional gated recursive units
(GRUs) to predict the passenger flow in the metro system,
and reported a superior performance when compared with
a single GRU model (18). Although most of the research
on hybrid models has been based on EMD and EEMD,
Sopeña et al. developed a hybrid modeling framework
using variational mode decomposition (VMD) with a feed-
forward neural network (FFNN) for the purpose of traffic
flow prediction (19). This study reported the superior per-
formance of VMD when compared with other mode
decomposition techniques using FFNN. However, the use
of hybrid models like VMD has not been investigated in
relation to travel time prediction. As travel time can render
higher variations owing to its dynamic behavior and can
be affected by various factors, adopting a hybrid model
like VMD might be expected to better capture variations
at different scales. Thus, the present study proposed a
VMD-based hybrid modeling methodology for travel time
prediction. In this study, we integrated the multivariate
LSTM technique, a special type of RNN with a VMD
algorithm, because LSTM has proven to be an excellent
tool in time series prediction. Furthermore, to date, the
combination of VMD and LSTM has not been explored.
Therefore, the current methodology comprising a VMD
integrated multivariate LSTM technique, was expected to
improve the accuracy of the forecast while reducing the
computational complexity of the prediction algorithm.

Point forecasts (i.e., a singular number that represents
an estimate of an unknown variable value at a future
date) cannot provide any information with respect to the
uncertainty associated with the forecasts themselves, thus
affecting the reliability of the prediction system. To over-
come this issue, the present study utilized quantile regres-
sion (QR), a nonparametric method to identify the
probabilistic estimates of prediction, known as predic-
tion intervals (PIs). Overall, the study contributions
include

1. Adopting a novel methodology consisting of a
mode decomposition algorithm to decompose the
time series data to capture the speed dynamics at
different frequencies;

2. Formulating a hybrid prediction methodology
with multiple deep learning models to predict the
decomposed speed time series data to improve
prediction accuracy when compared with tradi-
tional deep learning models; and

3. Providing an interval estimate unlike traditional
models that fuses a QR-based loss function with
an LSTM technique, which essentially equips the
methodology by yielding reliability bounds.

To summarize, the present study proposed a travel time
prediction methodology based on LSTM, a special type of
RNN integrated with a mode decomposition algorithm,
VMD and QR, a nonparametric approach to estimate PIs.

The remainder of this paper is organized as follows:
the following section details the methodology; data col-
lection and processing are then described, followed by
presentation of the results. The final section presents our
conclusions from this work.

Methodology

The present study focused on developing a hybrid deep
learning model-based prediction framework to forecast
the probability estimates of predicted travel time. This
methodology integrated three different techniques—
VMD, LSTM, and QR—to build a multi-input, single-
output model while considering traffic flow and speed as
inputs to predict travel time. Let f (t)= y1, y2, y3 . . . yn be
the observations of the speed time series, and
g(t)= x1, x2, x3 . . . xn the observations of the traffic flow
time series. The speed time series was decomposed into
multiple band-limited intrinsic mode functions (IMFs),
as shown in Figure 1, using VMD, and dedicated LSTM
models integrated with QR loss function were built for
each of these modes to predict the upper and lower
bounds of the predicted travel time. In addition, the
decomposed signals were reconstructed to provide pre-
dicted travel time outputs. The following section briefs
the background details of VMD, LSTM, and QR.

Variational Mode Decomposition

VMD is a nonrecursive signal processing method
designed for decomposing complex nonstationary signals
(20). The decomposition process is performed by a con-
strained variational problem to determine the bandwidth
of each mode. This process involves three steps: 1) the
Hilbert transform is used to obtain the unilateral fre-
quency spectrum for each mode, 2) an exponential tuned
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to the estimated center frequencies is used to shift every
mode’s frequency spectrum to baseband, and 3) the
bandwidth of each mode is identified using the H1

Gaussian smoothness of the demodulated signal. Thus,
the constrained variational problem is defined as

min
fukg, fvkg
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where
fukg is set of all modes,
fvkg is set of respective center frequencies,
k is number of predefined modes,
d(t) is Dirac function,
j is an imaginary number. This is a complex valued analytic
signal,
� denotes a convolution, and

kk2
2 denotes a squared L2 -norm.

The present study adopted the number of predefined
modes (k) as 3, based on mode decomposition analysis.
As suggested by Dragomiretskiy and Zosso, this con-
strained variational problem can be transformed into an
unconstrained problem introducing a quadratic penalty
term and Lagrangian multipliers, l, as follows (21):

L(fukg, fvkg, l)=
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This equation can be solved using a sequence of iterative
suboptimizations known as the alternate direction
method of multipliers (22, 23). By doing so, the modes,
uk , and their respective center frequencies, vk , are then
updated simultaneously using the following expressions:
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The modes are solved in the spectral domain and can
be transformed back into the time domain by taking the
real part of the inverse Fourier transform of the signal.
In Equation 4, value a

0
represents a penalty term, defined

by the user, which will define the shape of the modes.

Long Short-Term Memory

LSTM networks (24) regulate the flow of information
using three gates (i.e., forget gate, ft; input gate, it; and
output gate, ot), and a reservoir of long-term memory
known as cell state, ct, to determine the hidden state, ht,
of the network, which corresponds to the output deter-
mined at every time step (Figure 2). The following equa-
tions indicate how the information is transmitted
through the network:

ft =s(Wf yt +Uf ht�1 + bf ) ð6Þ

it =s(Wiyt +Uiht�1 + bi) ð7Þ

~ct = tanh (Wcyt +Ucht�1 + bc) ð8Þ

ot =s(Woyt +Uoht�1 + bo) ð9Þ

Figure 1. Research schema.
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ct = ft � ct�1 + it � ~ct ð10Þ

ht = ot � tanh (ct) ð11Þ

Firstly, the LSTM network decides whether the informa-
tion from the previous time step is discarded or main-
tained by means of the forget gate, ft (Equation 6), where
xt is the input; ht�1 the previous hidden state; Wf and Uf

are the weights for the input and previous hidden state,
respectively; bf the bias; and s represents a sigmoid acti-
vation function. The next step is to renew the informa-
tion contained in the cell state, ct, based on the input and
the previous hidden state, ht�1. The new memory net-
work is determined by the candidate cell state, ~ct

(Equation 8), whereas the input gate, it (Equation 7),
acts as a filter to decide whether this new information is
worth adding to the cell state, ct, or should otherwise be
filtered. In these equations, Wc and Uc are the weights
for the input and previous hidden state for the candidate
cell state, ~ct; bc the bias of the same candidate cell state,
~ct; Wi and Ui the weights for the input gate; and bi the
bias of the input gate. In this case, the candidate cell
state uses a hyperbolic tangent as the activation function,
whereas the input gate is activated with a sigmoid activa-
tion function.

The cell state of the LSTM network is updated as
shown in Equation 10, combining the elementwise prod-
uct, �, of the forget gate and the previous cell state with
the elementwise product of the input gate and the candi-
date cell state ~ct. At this stage, the new hidden state ht can
be computed using the output gate (Equation 9) and the
updated cell state of the network, as shown in Equation
11. The present study experimented with LSTM models
under univariate and multivariate conditions.

Quantile Regression

In this study, we implemented a QR loss function—a
nonparametric approach—to estimate the PI correspond-
ing to the lower and upper boundaries of the estimate. PI
is a measure illustrating the robustness of the algorithm
in relation to its ability to quote the variation within an
observed dataset. The loss function is equal to

rt(E)=
tE, if E$ 0

(t� 1)E, otherwise

�
ð12Þ

Then, the error function that must be minimized is

Et =
1

N

XN

i= 1

rt(y(i)� ŷt(i)) ð13Þ

where y(i) is the target value, and ŷt(i) is the forecast
t -quantile.

Prediction and Performance Evaluation

In this study, the accuracy of point forecasts was quanti-
fied using the mean absolute percentage error (MAPE),

MAPE =
1

N

XN

i= 1

yi � ŷi

yi

����
���� � 100% ð14Þ

where
N = number of samples,
yi = observations, and
ŷi = point forecasts.

However, the coverage and width of the PI must also
be assessed for its evaluation. For that purpose,
Prediction Interval Coverage Probability (PICP) metric
was considered to measure the coverage of the PI and is
defined as follows:

PICP=
1

N

XN

i= 1

ci ð15Þ

where N accounts for the number of observations, and ci

is equal to 1 if the observations fall within the PI, and 0 if
not. A robust prediction algorithm would be expected to
have a very high probability coverage.

The present study experimented with the aforemen-
tioned methodology in four ways (as shown in Table 1)
to explore the best-performing combinations. Table 1
details the model combinations and their input variables
adopted for prediction. Univariate models take past
observations of speed time series as input to predict
future values; multivariate models take past observations
of both speed and flow time series as inputs to predict
future speed values. Furthermore, VMD integrated mod-
els train dedicated LSTM models to predict values for

Figure 2. Structure of an LSTM network.
Note: LSTM = long short-term memory; ct = cell state; ht = hidden state.
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each IMF, which are combined to obtain the final pre-
dicted speed signal.

Data Description

The data for this study were sourced from Traffic
Infrastructure Ireland traffic counters (25) installed on the
Irish road network. Vehicles are detected by passing over
loops embedded beneath the road surface. Traffic counters
provide information on the volume of traffic by time of
day and by vehicle class (e.g., motorcycle, car, goods vehi-
cles distinguished by the number of axles, etc.) with up to
12 classes being identified. In this study, we focused on six
consecutive vehicle detectors located on the M50, the most
prominent and busiest Irish motorway situated around the
capital city, Dublin (see Figure 3). The M50 is a C-shaped,
orbital, six-lane expressway corridor, with three lanes in
each direction, that connects Dublin port with the M11 at
Shankill, Ireland. All the other national routes radiate

outwards from Dublin, their junctions beginning at the
M50. The speed limit is 120km/h and the traffic composi-
tion consists of 79.31% passenger cars, 0.2% motorbikes,
11.74% light goods vehicles, 7.89% heavy motor vehicles,
0.34% buses, and 0.525% caravans.

The raw data obtained were vehicle transactions consist-
ing of time of passage, speed, vehicle type, and lane identi-
fiers. For this study, the flow and speed values from the
vehicle class ‘‘passenger cars’’ were considered for a period
of 5 months (January to May 2019). Reserving the last
month for testing (80:20 ratio), the remaining data were uti-
lized for training and validation. The sourced data were
processed in four stages: data cleaning, outlier removal, time
series formation, and data imputation. Data cleaning
involves extraction of the necessary information from the
raw data, which consists of location-related details, lane
identifiers, and vehicle identities such as tag-IDs and length,
which were removed from the database to prepare the nec-
essary inputs for the developed methodology. In the outlier
removal stage, unreasonable data points that did not reflect
the characteristics of the study sites were removed. Vehicle
transactions with zero speed values, extremely high speed
values of more than 200km/h, and negative speed values
were identified as outliers and removed from the database.
Such values may have been incorrectly reported owing to
sensor or communication errors.

In the next stage, the cleaned flow and speed values
were processed to set up the time series. In the present
study, the traffic flow and speed values observed at dif-
ferent times of the day were viewed as sequential data or
a time series. The entire 24-h time window was divided
into 5-min slots, such that we had twelve 5-min slots in
an hour totaling 288 slots in a 24-h window. Further, the
data were preprocessed such that at each time slot there
was only one observation. In this regard, the traffic flow
observation for any slot was the cumulative number of
vehicles passing over the counter during a particular 5-
min interval. The speed values were obtained by aver-
aging the speeds of all the vehicles that passed over the
counter during the 5-min period. Missing speed values
resulting from there being no vehicles during a 5-min
period were imputed by temporal substitution, in which
temporally lagged observations were used for data impu-
tation. Substitutions were designed based on the

Table 1. Variations of Prediction Algorithms used for Travel Time Modeling

Serial no. Models Name Inputs No. of modes Output

1 LSTM univariate Uni-LSTM Speed NA Travel time
2 LSTM multivariate Multi-LSTM Speed, Flow NA Travel time
3 VMD LSTM univariate Uni-VMD-LSTM Speed 3 Travel time
4 VMD LSTM multivariate Multi-VMD-LSTM Speed, Flow 3 Travel time

Note: LSTM = long short-term memory; VMD = variational mode decomposition.

Figure 3. Map of test bed with the chosen detectors.
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availability of data checked at different levels, such as an
immediate past observation in time, and a week past
observation, by taking advantage of the daily and weekly
seasonality in the traffic data. This process of handling
missing values is generally termed data imputation. The
percentage of missing values was found to be less than
0.2% for the chosen dataset. The processed database
comprised 43,488 observations in the continuous time
series format with a 5-min resolution (frequency). A sam-
ple plot of processed speed and flow time series is shown
in Figure 4. The descriptive statistics of the speed time
series are clearly illustrated by boxplots presented in
Figure 5.

From Figures 4 and 5 it can be observed that the sta-
tistical characteristics of the speeds identified by each of
the detectors were significantly different, despite being
situated consecutively on the same motorway. On that
note, Figures 4 and 5 collectively reflect the spatiotem-
poral variation in speed values observed on the M50.
The processed speed time series was given as input to the
developed variable mode decomposition algorithm, and
three different band-limited IMFs (modes) were gener-
ated. A sample plot of the original speed signal and
decomposed modes is shown in Figure 6.

Further, each IMF was trained using dedicated LSTM
models along with flow time series, and speed values were
predicted. The present study considered 24 time-lagged
observations to predict future travel time values with a 5-
min horizon. In the subsequent stage, the travel time val-
ues were estimated from the predicted speed values.

Results

To explore the efficiency and performance of the devel-
oped model, the results were evaluated and compared

against the benchmark models. To check the importance
of the mode decomposition step during prediction, the
performance of the VMD LSTM model was compared
with a simple LSTM model, which takes the input with-
out any preprocessing. To identify the advantages of con-
sidering traffic flow in travel time prediction,
performances were compared between multivariate and
univariate versions of the deep learning models. Overall,
the four test cases (shown in Table 1) Multi-VMD-
LSTM, Uni-VMD-LSTM, Multi-LSTM, and Uni-
LSTM were considered and the prediction performances
of all models compared.

Figure 7 shows the predicted travel time intervals of
all the explored model combinations and measured travel

Figure 4. Sample plot of speed and flow time series. Figure 5. Box plot of speed sample across the considered
detectors.

Figure 6. Mode decomposition of speed signal using VMD.
Note: VMD = variational mode decomposition.

6 Transportation Research Record 00(0)



times. It can be seen that intervals predicted by the multi-
variate models included all or most of the observed data
points within the PIs, unlike the univariate models. It
was also observed that the performance of the Multi-
VMD-LSTM model was better than the other design
variations, illustrating the advantage of adopting a signal
processing tool like VMD when considering multiple
variables. The VMD LSTM model presented a good
adaptation to the data, even if some of the observations
fall outside the interval.

Figure 8 shows a comparison of PICP values across
all the detectors among the four model variants. It was
observed that the VMD LSTM model provided better
coverage probability when compared with the LSTM
models.

Further, the performance of all the modeled datasets
considered in this study was compared to illustrate the
consistency and effectiveness of the proposed methodol-
ogy (Table 2). From the data presented in the table, it
can be observed that the MAPE values of all the tested
cases were between 3% and 6%. In the case of the six
studied loop detectors, the VMD LSTM multivariate

version of the proposed model outperformed the other
models tested in this study. Preprocessing using the
VMD proved to be the most useful addition to a conven-
tional deep learning model such as LSTM. The use of
both speed and flow in traffic prediction proved effective
in the case of four detectors, whereas the other two did
not show any effective improvement. This outcome was
similar to model performance without the preprocessing
step. Furthermore, preprocessing seemed to improve the
impact of multivariate inputs.

Conclusion

Travel time prediction is essential to the developing and
implementation of the majority of ITS applications in
real time. The present study formulated a travel time pre-
diction methodology by decomposing the input time
series into multiple modes (IMFs) using VMD, and
exclusive multivariate LSTM models were built for each
of the IMFs, integrating QR to obtain the probabilistic
intervals for the predicted travel time.

Figure 7. Prediction intervals across developed methods.
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The probabilistic intervals produced the upper and
lower bounds of the predicted travel time, providing a
measure of uncertainty. Performance of the developed
methodology was found to be efficient for both point
forecasts, in which MAPE scores varied between 3% and
5%, and prediction intervals with PICP values varying
between 97% and 99%. This performance was compared
with simple LSTM models under univariate and multi-
variate cases to explore the advantages of a VMD–
LSTM model combination. The results showed that the
proposed method outperformed the benchmark methods
in all cases, consistently showing the superiority of the
developed methodology. Overall, the results showed that
the VMD–LSTM–QR-based method was efficient and
reliable for the purpose of travel time prediction.

Furthermore, the probabilistic estimates around the point
predictions (i.e., probabilistic prediction interval) acted as
a measure of the robustness of the prediction algorithms
and are essential for real-time implementations. Under
unexpected traffic conditions during incidents, pan-
demics, and extreme weather events, PIs would be
expected to provide meaningful bounds with which to
understand the expected variations of travel time in the
near future. The developed methodology would be com-
pletely transferable to any location with the availability
of the aforementioned data source and initial training to
learn about the model parameters. Further, the multivari-
ate LSTM could be extended by adding suitable weather
factors to develop a weather-adaptive travel time predic-
tion system—a possible future extension to this study.

Figure 8. Comparison of PICP values across test detectors.
Note: PICP = prediction interval coverage probability.

Table 2. Table of MAPE Values for all Test Cases

Detector ID

MAPE (%)

VMD LSTM multi-var VMD LSTM uni-var LSTM multi-var LSTM uni-var

D1503 3.41 3.31 4.35 5.10
D1508 4.52 5.13 6.1 5.98
D1509 5.21 5.25 6.4 6.72
D1504 2.41 4.41 4.95 5.60
D1505 3.82 5.78 6.1 6.98
D1506 4.72 5.62 5.9 6.32

Note: MAPE = mean absolute percentage error; VMD = variational mode decomposition; LSTM = long short-term memory; multi-var = multivariate;

uni-var = univariate.
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