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Abstract

Ignorance within non-cooperative games, reflected as a player’s uncertain prefer-
ences towards a game’s outcome, is examined from a Bayesian point of view. This topic
has had scarce treatment in the literature, which emphasises exogenous uncertainties
caused by other players or nature and not by players themselves. That is primarily
because a player’s endogenous uncertainty over an outcome poses significant challenges
and complex sequences of reciprocal expectations. Therefore, it is often ignored, and
preferences are either assumed from a continuous domain or set using introspection,
resulting in non-optimal models. We here explore a solution concept based on recent
research in imprecise probabilities and de Finetti’s approach to defining subjective
probabilities, which utilises bets to assess beliefs. The resulting model allows players
to be ignorant about their initial preferences and learn about them in repeated games.
Furthermore, it permits improving the value of information in these situations. This
model is proposed as a possible solution to the problem of utility inference in game-
theoretic settings that include uncertainty over outcomes. We demonstrate it through
motivating repeated-game problems modified to have uncertainty and through a sim-
ulation over a case of extreme ignorance.

Keywords: Game theory; Imprecise probability; Uncertain utility; Nonparametrics

1 Introduction

One of the central and main requirements of decision theories is knowing a decision-maker’s
preferences. Those preferences are reflected and quantified as utilities. As Von Neumann and
Morgenstern (1944) outlined, utilities are numerical measurable quantities that are expected
to be complete. Furthermore, based on economics by Pareto and Bonnet (1963), these
utilities must be comparable. The decision-maker is expected to have a clear intuition of
preference between two objects, events, or even a combination of events.
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Game theory studies the decision-making process in a strategic setting, a situation where
two or more decision-makers, known as players, compete or collaborate to maximise their
utilities. Game theory relies on pre-determined utilities to decide a player’s optimal move.
As stated by Luce and Räıffa (1957), a player is required to know their utility towards each
possible outcome in the game and the utilities of all other players. Therefore, a player is
expected to have explicit knowledge about each outcome, including outcomes that have never
been previously experienced. This knowledge is reflected by having a utility function with
the game’s complete set of outcomes as a domain.

Usually, the utility function is considered to have a fixed form throughout the entire
gameplay. Furthermore, it can be either a defined function, e.g. an exponential utility,
or utility values attributed to each possible outcome. Whichever way, the possibility that
a player may not know an outcome’s payoff in advance is ignored and either an assumed
utility model from a continuous domain is used or utility values are set using introspection.
In many cases, these models are not optimal. For instance, in the temporal sure preference
principle, Chiara et al. (2013) show that prior preferences represent a minimum coherence
requirement to link beliefs at different time points. It suggests that if ‘you have a sure
preference for A over B at (future) time t. Then you should not have a strict preference for
B over A now’ ; that is, prior belief should be coherent with posterior preferences. Therefore,
an assumed utility makes assessing conditional belief towards future preferences very limited,
which implies that classical game-theoretic approaches fail to handle situations of ignorance.
Moreover, since an assumed utility value remains fixed throughout the entire gameplay, these
approaches don’t allow the player to be surprised or learn about their preferences once the
outcome is experienced.

Given game theory’s many applications in economy, finance, biology etc., a state of
endogenous uncertainty over outcomes could arise in many cases, e.g. when two companies
invest in a new market. It is common for different parties to freely enter a game without
having experienced its outcomes before, sometimes as a trial attempt to learn about their
preferences towards these outcomes. Therefore, stretching the classical game theory to allow
for cases of ignorance over an outcome will expand its application. Instead of assuming
a known utility, the uncertain outcome should be assessed and a player’s prior unknown
preferences estimated. Afterwards, these estimates should be dynamically updated when
the outcome is experienced.

Models, such as multiple prior (Gilboa and Schmeidler, 1989) or Choquet expected utility
(Schmeidler, 1989), were developed to solve the problem of uncertainty within non-strategic
settings. However, as per Gajdos et al. (2004), these models have certain limitations. For
instance, they assume extreme pessimism, e.g. applying the maximin criterion to the ini-
tial set of information (Gilboa and Schmeidler, 1989). Furthermore, they don’t allow the
decision-maker to incorporate available information before making a decision. In practice,
representing decision-maker beliefs is essential, especially since Ellsberg (1961) proved that
decision-makers prefer better information settings. Flexible approaches have been developed
to overcome these limitations, e.g. Gajdos et al. (2004) or Troffaes (2007). Nevertheless,
these approaches were never formally extended to cover game theory.
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Bayesian theories have emerged to account for cases where a player is in a state of incom-
plete information about other players’ utilities in the game. Nevertheless, these theories don’t
consider a player’s incomplete information about their own utilities. This case raises different
challenges and complex sequences of reciprocal expectations (Harsanyi, 1967). For instance,
in Nau’s (1992) operational method to achieve joint coherence and common knowledge of
subjective parameters in non-cooperative games that include incomplete and observable in-
formation, a dual characterisation of joint rationality is introduced by generalising Harsanyi’s
(1967) Bayesian equilibrium concept. However, in a Bayesian equilibrium, each player is
assumed to know their actual type, considered a summary of their actions and payoffs, and
only uncertain about other players’ types (Harsanyi, 1967, p.1811). This uncertainty towards
the game’s structure is modelled through a common prior distribution over these players’
types. Nau (1992) stretches this assumption further by defining belief-revealing monetary
payoff functions, i.e. gambles, over a set of outcomes composed of players’ joint strategies
and the states that represent exogenous uncertainties caused by other players or nature and
not by players themselves.

Although Nau’s operational method is limited to exogenous uncertainties, it includes
some limitations that should be considered when modelling any type of uncertainty. First,
it shows that an increased number of uncertain states results in a complex model. That
is primarily because a game with incomplete information is converted into several, each
representing a possible state whose lower probability is set through a belief gamble. The
complexity could increase further if these states require updating due to acquired informa-
tion, e.g. in repeated games. Second, it doesn’t allow simultaneously including lower
and upper bounds of a possible state and computing a solution set given this range; only a
scalar value within these bounds is permitted. Finally, it doesn’t incorporate a mechanism
for players to update or learn about an uncertain domain through experience or acquired
information.

Computational models have been developed to treat the problem of players’ endogenous
uncertainty over outcomes. For example, Astanin and Zhukovskaja (2015) and Chakeri et al.
(2008) apply fuzzy logic to game theory and deal with ignorance using the notion of fuzzy
games. Although these models prove to be successful in certain situations, there is still no
actual Bayesian model that could help with statistical inference and the quantification of
endogenous uncertainty under strategic settings. For example, how confident can a player be
that an outcome will generate a particular payoff? The interest here is using Bayesianism to
construct a scalable model that allows computing a game’s rational solutions based on prior
lower and upper previsions of uncertain domains and updating them through experience to
posterior previsions. This model would enable meaningful approximations if computation
is not feasible and permit the dynamic incorporation of acquired information. Further-
more, it would provide a way to express expert knowledge, which is challenging to reflect
in computational models (Chiandotto, 2014). Moreover, interest also lies in examining the
consistency of game theory’s axiomatic rules under endogenous uncertainty. Von Neumann
and Morgenstern’s (1944) normative foundations of this theory are not extended to handle
this situation. The proposed axioms of behaviour were always studied with the assumption
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that players know the payoff of each outcome in the game.

2 Preliminaries

2.1 Imprecise Probabilities

Imprecise probabilities is a well-established framework aimed toward quantification and in-
ference under uncertainty; a state of incomplete or imprecise information. Influenced by de
Finetti’s (1974, 1937) work on subjective probability, Williams (1974, 1975) worked on an
early detailed study of the theory. Walley (1991) then developed it into a more mature one.

An attractive theory under imprecise probabilities is that of lower and upper previsions,
represented by P (·) and P (·). They are, respectively, the supremum acceptable buying
price and the infimum acceptable selling price of a gamble. Let X denote a finite set of
an experiment’s exhaustive and mutually exclusive outcomes. Let f(·) denote an arbitrary
reward function defined on X : if x is the outcome of the experiment, then the reward
is f(x), denominated in units of a linear utility scale. As the experiment’s outcome is
random, the reward of the experiment is random. Hence, the reward of the experiment can
be interpreted as a gamble. The lower and upper previsions of f are, respectively, P (f)
and P (f). Furthermore, they are considered a subject’s lower and upper expectations of f .
Whenever they coincide, such that P (f) := P (f) = P (f), the resulting P (f) is called a linear
prevision. It is seen by de Finetti (1975) as the fair price of f . A special case of upper and
lower previsions is when the reward function f takes the form of an indicator function, i.e.
a 0-1 binary vector. Consequently, these previsions become upper and lower probabilities of

the event that the outcome of the experiment belongs to X . As P k(f) = −P k
(−f) (Walley,

1991), we are going to limit our discussion to lower previsions and use upper previsions
whenever deemed necessary.

Let A denote a subset of X . A conditional lower prevision P (f |A) is the supremum
buying price of gamble f given A. This conditional lower prevision has two different in-
terpretations. P (f |A) could be considered as the supremum buying price of a gamble f
whose value is zero outside A. Or, as Walley’s (1991) updating principle suggests, it could
be considered as the updated supremum buying price of f after receiving information that
the outcome belonged to A.

A gamble is said to be desirable when a subject is willing to accept it whenever offered.
This doesn’t necessarily suggest that a non-desirable gamble is rejected. The latter only
means that the subject is undecided about whether to accept it. Formally, Walley (1991)
considers a gamble f to be desirable if infx∈X f(x) > 0, i.e. when it increases the subject’s
utility no matter what the outcome is. A gamble f is said to be almost desirable if ∀ ε >
0, f + ε is desirable. The set of almost-desirable gambles includes all desirable gambles.
Furthermore, as per Walley (1991, Theorem 3.8.4, p. 158), these almost-desirable gambles
correspond to some linear previsions that are greater than or equal to zero: if f is almost
desirable, then P (f) ≥ 0.

A lower prevision should not allow any opportunities for riskless profits through smart
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combinations. It is a rationality requirement known as coherence. On a linear space, Walley
(1991) characterises it using the following axioms:

– P (f) ≥ infx∈X f(x);

– P (λf) = λP (f);

– P (f + g) ≥ P (f) + P (g).

Coherent lower previsions are challenging to achieve, especially in a non-linear space.
Therefore, the lower and upper previsions theory allows constructing coherent models from
assessments that only avoid sure loss. Avoiding sure loss is a weaker rationality condition
that is easier to satisfy. It can be ascertained using Equation (1), which guarantees at least
one outcome to generate a payoff that is greater or equal to zero.

sup
x∈X

∑
fi∈F

[fi(x)− P (fi)] ≥ 0, (1)

where F is a set of gambles.
Lower previsions that avoid a sure loss can be assessed for coherence using Equation (2),

which is the general definition of coherence suggested by Walley (1991).

sup
x∈X

{∑
fi∈F

[fi(x)− P (fi)]− l0[f0(x)− P (f0)]

}
≥ 0, (2)

where l0 is any positive integer and f0 is a gamble assessed for coherence.
To imply a new gamble’s coherent lower prevision from existing assessments, natural ex-

tension is used. Let E denote the natural extension of P on F such that for any gamble
f , E(f) is its supremum buying price implied from P (fi) through linear operations. Fur-
thermore, E dominates P on F , which allows correcting any incoherent assessment. For
instance, any previously assessed P (f) that is strictly lower than the implied lower prevision
E(f) is deemed incoherent. Formally, natural extension is defined as follows:

E(f) = sup

{
ω : f(x)− ω ≥

∑
fi∈F

λi[fi(x)− P (fi)] for some ω ∈ R, and λi ≥ 0

}
. (3)

2.2 Revealed-Rules Matrix

Nau (2011) used imprecise probabilities to create a unified theory between subjective proba-
bility, game theory, and other equilibrium models used for games and markets. His approach
allows converting a non-cooperative game into a matrix that contains the revealed rules of
the game. These rules allow generating a convex set of probability distributions that repre-
sents the game’s equilibria. This section discusses Nau (2011)’s theory and how to generate
this matrix, which later on is considered a key element in the suggested model.
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Consider a non-cooperative game with K risk-neutral players. Let Λk denote a finite set
of alternatives available to player k, and Φ = Λ1 × ... × ΛK denote the set of all possible
outcomes in the game. Let rk denote a |Φ|-dimensional vector that represents the payoff of
player k as a function of these outcomes. Therefore, for outcome φφφ ∈ Φ, player k’s payoff is
rk(φφφ).

Consider eki to be the event in which player k chooses the alternative aki ∈ Λk over
any other alternatives. Let rki denote the payoff vector available to player k after making
this choice, i.e. rki = (rk|eki ). For example, in the game paper-rock-scissors, if player one
chooses to play ‘rock’, this results in a payoff vector rki that has only the payout of outcomes
rock − rock, rock − scissors, rock − paper.

The occurrence of event eki means that player k would trade any payoff vector rkj (j 6= i)
for rki , conditional on eki . This trade-off can be translated into an unconditional bet that
has a true payoff vector of (rki − rkj )e

k
i . Conversely, suppose a player chooses to publicly

accept any small bet whose payoff vector is proportional to (rki − rkj )eki . In that case, they
are making their true payoff function common knowledge (Aumann, 1976) at the discretion
of any observer. Following the same logic, if all players in the game are willing to accept
small conditional bets, they make their true payoff function public knowledge. As a result,
a matrix that exhaustively lists each player’s possible true payoff functions is built. This
matrix is defined as follows:

Definition. A game’s revealed-rules(GRR) matrix, denoted byMMM , represents the true payoff
function of each player, for each possible bet they could accept. Matrix MMM ’s columns are
indexed by outcomes in Φ and its rows are indexed by rki − rkj . A GRR matrix contains
all ‘commonly-knowable information about the rules that is actually used in determining the
equilibria of non-cooperative games.’

Example 1. Consider the classic game ‘battle of the sexes’, introduced by Luce and Räıffa
(1957), in which a couple disagrees about where to go for entertainment. Going together
would yield a better utility than going alone. Furthermore, the one going to their preferred
place would have a better utility than the other. Table 1 represents the payoff matrix

Table 1: ‘Battle of the sexes’ - payoff matrix.

Left Right
Top 2,1 0,0

Bottom 0,0 1,2

of this game, where z = 2, Λ1={Top(T), Bottom(B)}, Λ2={Left(L), Right(R)} and Φ =
Λ1 × Λ2={TL, TR, BL, BR}. For example, the payoffs of outcome TL are: r1(TL) = 2 for
player one, and r2(TL) = 1 for player two. Table 2 shows the resulting GRR matrix. For
instance, the first row represents the case where player one chooses alternative T over B.
If player one makes this choice, they are exposed to the bet r1T − r1B whose payoff vector is
(2,−1, 0, 0).
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Table 2: ‘Battle of the sexes’ - GRR matrix MMM .

TL TR BL BR
r1T − r1B 2 -1 0 0
r1B − r1T 0 0 -2 1
r2L − r2R 1 0 -2 0
r2R − r2L 0 -1 0 2

When playing a game, each player k will adopt a strategy. As defined by Von Neumann
and Morgenstern (1944), a pure strategy is a complete plan that helps a player determine the
optimal choice from a set of alternatives, under every possible scenario. A mixed strategy
is a probability distribution over pure strategies; it allows randomising the choice of pure
strategies. A Nash (1950) equilibrium is a state where no player can gain a higher payoff by
unilaterally deviating from their strategy. If no Nash equilibria exist in pure strategies, then
at least one must exist in mixed strategies. In a mixed Nash equilibrium, each player makes
choices based on an independent vector of probabilities. Aumann (1974) studied the impact
of players correlating their choices instead. He used a randomisation device on outcomes
where they may disagree. A correlated mixed strategy showed that it could lead to strictly
higher expected payoffs than Nash equilibria. Furthermore, it removes the competitive aspect
from non-cooperative games and pushes players to cooperate. Aumann (1987) expanded the
theory and defined correlated equilibrium as a function that maps a finite probability space
to the set of all possible outcomes Φ. He considers a Nash equilibrium to be a particular
case of it. Unlike Nash equilibria, one of the interesting aspects of correlated equilibria is
the ease of computing them by simply solving a system of linear inequalities.

Nau and McCardle (1990) show that risk-neutral players should have jointly coherent
strategies to play the game rationally. This condition is fulfilled if and only if a correlated
equilibrium exists. Whereas for risk-averse players, Nau (2011) shows that this rationality
condition is fulfilled if and only if a risk-neutral equilibrium exists. Let ρρρ denote a probability
vector in which an element ρφφφ is the probability of the outcome φφφ ∈ Φ. Using the GRR matrix
MMM , players are rational if and only if 

MMMρρρ ≥ 0,

ρρρ ≥ 0,

ρρρ′1 = 1.

(4)

The system of linear inequalities (4) defines a convex polytope of correlated equilibria. It is
the bounded intersection of a finite set of closed half-spaces and is considered to contain the
rational solutions of the game.

Example 2. Continuing the ‘battle of the sexes’ example, the system of linear inequalities

7



(4) results in the following polytope C.

C =



2ρTL − ρTR ≥ 0,

−2ρBL + ρBR ≥ 0,

ρTL − 2ρBL ≥ 0,

−ρTR + 2ρBR ≥ 0,

ρφφφ ≥ 0,∀ φφφ ∈ {TL, TR, BL, BR},
ρTL + ρTR + ρBL + ρBR = 1.

As seen in Figure 1, C is a hexahedron with five vertices listed in Table 3.

Figure 1: ‘Battle of the sexes’ - correlated equilibria polytope and the set of all joint proba-
bility distributions that are independent between players. Intersections TL and BR are pure
Nash equilibria, and intersection (2/3 T, 1/3 B)×(1/3 L, 2/3 R) is a mixed Nash equilibrium.

Table 3: ‘Battle of the sexes’ - polytope vertices.

TL TR BL BR
Vertex 1 1 0 0 0
Vertex 2 0 0 0 1
Vertex 3 2/9 4/9 1/9 2/9
Vertex 4 2/5 0 1/5 2/5
Vertex 5 1/4 1/2 0 1/4

Let N denote the number of possible outcomes in Φ. In the system of linear inequalities
(4), the last two constraints, ρρρ ≥ 0 and ρρρ′1 = 1, define a N−1 dimensional simplex, contain-
ing all probability distributions on outcomes. The polytope defined by all constraints is a
subset of the simplex and contains all correlated equilibria. If the polytope has a dimension
smaller than N − 1, the distribution of correlated equilibria will lie on its boundary. Let
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I denote the set of all joint probability distributions of independent variables (here, play-
ers). It is the system of nonlinear constraints, I = {ρρρ : ρφφφ = ρ1(a

1)× ...× ρz(az),∀φφφ ∈ Φ},
where ak ∈ Λk, and ρk denotes the marginal probability distribution on Λk. As described
by Nau et al. (2004), in a 2× 2 game, the simplex is a 3-dimensional tetrahedron and I is a
2-dimensional saddle. The set of Nash equilibria is the intersection of I and the correlated
equilibria polytope. Nash equilibria only rest on the surface of this polytope. In Example 2,
Figure 1 shows three intersections. Intersections TL and BR are pure Nash equilibria, and
the intersection (2/3 T, 1/3 B)×(1/3 L, 2/3 R) on the inefficient frontier is a mixed Nash
equilibrium.

2.3 Non-parametric Utility Updating

Based on Augustin and Coolen’s (2004) work, Houlding and Coolen (2012) introduced a
non-parametric predictive utility inference (NPUI) framework for utility induction under
extreme ignorance. Their work considers decision-making within non-strategic settings. For
sequential decision problems, NPUI features an interesting updating mechanism that assesses
the impact of additional observations on utility previsions. This updating mechanism allows
the creation of a learning model that helps a decision-maker adjust their utility towards a
novel outcome once it is experienced.

The updating mechanism is based on assumption A(n) proposed by Hill (1968, 1988,
1993). A(n) is particularly useful for predictions with extremely vague prior knowledge of
the underlying distribution. It assumes that pre-observations are exchangeable (de Finetti,
1974). For instance, for two random variables Y1 and Y2, P (Y1 = y1, Y2 = y2) = P (Y1 =
y2, Y2 = y1) holds for all values y1 and y2. Furthermore, one of its main pillars is assigning
equal mass to the probability that a post-observation falls in n+ 1 distinct intervals created
by n observations on a domain R.

In NPUI, observations are restricted to utility values and are bound to the interval [0, 1].
This is to avoid having an outcome infinitely better or worse than other alternatives. The
values 0 and 1 are, respectively, the worst and best utilities of two actual or ‘hypotheti-
cal’ outcomes. Furthermore, the mechanism assumes that pre-observed utility values are
exchangeable under a collection of outcomes. Those outcomes are considered to be sensibly
grouped under a particular taxonomic category, e.g. sports, computer brands, etc.

Consider a set of ordered known utilities u(1), u(2)...u(n), such that 0 < u(i) < u(i+1) < 1.
This splits [0, 1] into n + 1 intervals. Based on assumption A(n), a novel outcome whose
utility is exchangeable with the existing known utilities has a probability 1

n+1
of falling in

one of these intervals. This is then extended by NPUI to lower and upper utility previsions.
Let Unew denote a pre-observed utility value. Its lower and upper previsions are defined as
follows:

P (Unew) =
1

n+ 1

n∑
i=1

ui, (5)

P (Unew) =
1

n+ 1

(
1 +

n∑
i=1

ui

)
=

1

n+ 1
+ P (Unew). (6)

9



Equations (5) and (6) show that the difference between the lower and upper previsions of
Unew is 1

n+1
. This indicates that when the number of experienced outcomes increases, NPUI

reduces the range of possible values that the expected utility of a novel outcome can take.
Furthermore, Equations (5) and (6) suggest that in the extreme case where there are no
previously experienced outcomes with known and exchangeable utilities, the expected utility
can take any value in the range (0, 1). In the opposite case, where the number of experienced
outcomes is infinite, lower and upper previsions coincide, which indicates that the expected
utility is identified.

If the observed utility of Unew is unew, adding it to the set of known utilities will make it
fall in one of the existing intervals. Then, the probability of another novel outcome having
its pre-observed utility, U∗new, falling in one of the updated intervals is 1

n+2
. Formally, this

leads to the following equations.

P (U∗new|unew) =
1

n+ 2

(
n∑
i=1

ui + unew

)
=
n+ 1

n+ 2
P (Unew) +

unew
n+ 2

, (7)

P (U∗new|unew) =
1

n+ 2

(
1 +

n∑
i=1

ui + unew

)
=
n+ 1

n+ 2
P (Unew) +

unew
n+ 2

. (8)

Equations (7) and (8) highlight how a novel outcome’s lower and upper utility previsions
update when this outcome is experienced. This updating proves to be useful in a repeated
decision-making situation. It allows the decision-maker to improve their utility’s lower and
upper previsions towards exchangeable outcomes.

3 Suggested Model Under Uncertainty

Work done by Nau (2011) on extending de Finetti’s (1974, 1937) subjective probability ap-
proach to non-cooperative games, coupled with the imprecise probabilities toolkit, provides
a compelling framework that could serve the problem of ignorance within games. It allows
us to convert a game to a matrix that shows the commonly-knowable information required
to determine equilibria and subsequently include a player’s lower and upper expectations
regarding the source of uncertainty, i.e. the unknown outcome’s payoff. However, this would
require an approach to represent the source of uncertainty. Walley (1991) provides a com-
pelling and straightforward methodology to do that. He models uncertainty as a gamble
bound to the possibility space of an experiment. The true state of this experiment deter-
mines the gamble’s uncertain reward. The possibility space should have mutually exclusive
states that are detailed enough to describe the subject’s beliefs towards the domain of in-
terest. Therefore, a pragmatic possibility space can be used to include theoretical as well
as observable states. It is not required to be exhaustive and should include sufficiently im-
portant and practically possible states, i.e. states with a non-zero probability of happening.
Since beliefs are often incomplete under uncertainty, this possibility space can evolve and
get reformulated to include new pragmatic possibilities. Inspired by Walley (1991), an elici-
tation model that uses a player’s pre-existing beliefs towards the gamble’s possible outcomes
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allows determining its supremum buying and infimum selling prices. Furthermore, Hould-
ing and Coolen’s (2012) non-parametric predictive utility inference framework can be used
as a dynamic updating mechanism for repeated games. It allows a player to change their
preferences towards an unknown outcome based on new observations and hence make more
desirable moves.

3.1 Enhanced Revealed-Rules Matrix

Consider a game where players are risk neutral. In practice, the payoff vectors rk (k =
1, . . . , z) are not always fully known. We here develop a method for constructing a state of
common knowledge of the key parameters of the payoff functions. In particular, whenever
the payoff rk(·) for an outcome φφφ ∈ Φ is unknown, we introduce an experiment with the
outcome set X . Let f(·) denote an arbitrary reward function defined on X . Whenever a
payoff rk(φφφ) is uncertain, it will be replaced by a gamble: rk(φφφ) = f(x), where x ∈ X is
random and the probability distribution over x is unknown. This allows modelling ignorance
using a source of uncertainty that represents the pragmatic possibility space a player can
face when landing an outcome with an unknown payoff. If the strategic setting involves more
than one source of uncertainty, an experiment is required for each.

It is essential to note that X is assumed free from any uncertainty. Each state x ∈ X
becomes a potential consequence if the game results in an uncertain outcome, i.e. a gamble.
Furthermore, a player must have complete and consistent individual preferences across the
domains of available gambles and known outcomes in the game. For example, if a state
can arise through gamble f , gamble g or a known outcome, its payoff is expected to be the
same in all cases. Although beyond the scope of this paper, Jansen et al. (2022) suggest two
user-friendly and robust preference systems that could assist a player with assessing their
preferences over possible states and outcomes in the game, especially when indecisive. Their
method relies on a few ranking questions that allow setting ordinal preferences. Then two
different approaches can be used to determine the cardinality of these preferences. The first
is a time elicitation approach based on the player’s consideration time for ranking two states.
The second is a label elicitation approach that relies on the player to assign pre-defined labels
of preference strength.

Example 3. Continuing the ‘battle of the sexes’ example, assume that the payoff of the
outcome TL is unknown to player one; that is, r1(TL) is unknown. We hence utilize a
gamble f to determine r1(TL): if the outcome of the experiment is x, then r1(TL) = f(x).
Table 4 represents the resulting payoff matrix of this modified version of ‘battle of the sexes’.

Table 4: The modified version of ‘battle of the sexes’ - payoff matrix.

L R
T f, 1 0, 0
B 0, 0 1, 2

11



By leveraging on the work done by Nau (2011), the game can be transformed into a GRR
matrix. However, the existing theory doesn’t support cases of uncertainty. Therefore, the
model should be extended. Recall, in the event where player k chooses the alternative aki
over any other alternative akj , they are practically making a bet that is equivalent to buying
the payoff vector rki and selling rkj . However, with the presence of ignorance, if the payoff
rki (φφφ) ∈ rki or rkj (φφφ) ∈ rkj is unknown, it is replaced with a gamble. Continuing Example 3,
this replacement results in Table 5.

Table 5: The modified version of ‘battle of the sexes’ - GRR matrix with an uncertain payoff
modelled as gamble f .

TL TR BL BR
r1T − r1B f -1 0 0
r1B − r1T 0 0 −f 1
r2L − r2R 1 0 -2 0
r2R − r2L 0 -1 0 2

At this stage, the GRR matrix is incomplete. It requires assessing and valuing the
underlying gambles. The value of a gamble is considered to be the supremum or infimum

price it is bought or sold for. Let P k(f) and P
k
(f) be respectively the lower and upper

previsions chosen by player k for gamble f . This means a player would be willing to pay

α(P k(f)− ε) or get paid α(P
k
(f) + ε), in exchange for an uncertain reward αf , where ε ≥ 0

and α is a small positive number. That said, the GRR matrix can be enhanced as follows:

LEMMA 1. In a non-cooperative game where endogenous uncertainty over one or several
outcomes exists, an enhanced, more generic form of the revealed-rules matrix is achieved
when the payoff rki (φφφ) of each outcome φ in the bought vector rki is replaced with its lower
prevision P k(rki (φφφ)), and the payoff rkj (φφφ) of each outcome φ in the sold vector rkj is replaced

with its upper prevision P
k
(rkj (φφφ)). Furthermore, the following properties apply:

– ∀φφφ ∈ Φ, if rki (φφφ) does not represent a gamble, P k(rki (φφφ)) = P
k
(rki (φφφ)) = rki (φφφ);

– ∀φφφ ∈ Φ, if rkj (φφφ) does not represent a gamble, P k(rkj (φφφ)) = P
k
(rkj (φφφ)) = rkj (φφφ);

– if rki (φφφ) is a sold gamble, i.e. rki (φφφ) = −f , then P k(rki (φφφ)) is equal to −P k
(−rki (φφφ));

– if rkj (φφφ) is a sold gamble, i.e. rkj (φφφ) = −f , then P
k
(rkj (φφφ)) is equal to −P k(−rkj (φφφ));

, where f denotes an arbitrary payoff function defined on outcome φ’s possibility space.

Now, the resulting model permits cases of ignorance. Applying it to the modified version
of ‘battle of the sexes’ returns the GRR matrix in Table 6. The enhanced GRR matrix
is interpreted as a system of inequalities that returns all correlated equilibria of a game
given the specified lower and upper previsions of the underlying payoffs. This essentially
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Table 6: The modified version of ‘battle of the sexes’ - enhanced GRR matrix, where gamble
f is replaced by its lower and upper previsions.

TL TR BL BR
r1T − r1B P 1(f) -1 0 0

r1B − r1T 0 0 -P
1
(f) 1

r2L − r2R 1 0 -2 0
r2R − r2L 0 -1 0 2

means that adopting a correlated strategy depends on the player’s choice of value amongst
the range of possible valuations an uncertain outcome can have. Therefore, a choice rule
is required. For instance, Houlding and Coolen (2012) propose two decision-making rules
that rely on the decision-maker’s level of pessimism. The first is based on the attitude of
Extreme Pessimism and requires choosing the outcome or sequential decision path whose
lower prevision is greatest. The second is based on the attitude of Extreme Optimism and
requires choosing the outcome or sequential decision path whose upper prevision is greatest.

3.2 First Assessment and Refinement

Under extreme ignorance, when imprecision is at its maximum, vacuous previsions can be

used to value gambles. They are defined as P k(f) = infx∈X f(x) and P
k
(f) = supx∈X f(x)

and proven by Walley (1991) to be coherent, as they respect the coherence requirements listed
in Section 2.1. However, using them to model prior beliefs will lead to vacuous posterior
previsions. Usually, a player would have some prior information about a gamble, which can
be used to increase the accuracy of their previsions. Therefore, amongst several methods
provided by the imprecise probabilities toolbox, general elicitation (Walley, 1991, p.168)
can be used to improve a vacuous assessment. It allows modelling pre-existing beliefs by
translating them into explicit judgements. It is by no means a complete method that could
cover all practical examples. Nevertheless, it is sufficient enough to build our model.

First, a player starts by making qualitative judgements on elementary events in X . These
judgements can be comparative, e.g. an event is more probable than the other, or classifi-
catory, e.g. an event is probable. Afterwards, judgements are modelled as almost-desirable
gambles. For instance, stating that outcome x1 is probable, means that a player is willing
to accept x1 with odds better than even money. This is equivalent to accepting an almost-
desirable gamble (δδδx1 − µ) with a price µ ≤ 1

2
. Let Dk denote the set of almost-desirable

gambles resulting from judgements made by player k. The following is a list of judgement
examples and their relevant almost-desirable gambles:

– If outcome x1 is probable, then gamble δδδx1 − 1
2
∈ Dk;

– If outcome x1 is λ times as probable as outcome x2, then gamble δδδx1 − λδδδx2 ∈ Dk,
where λ ∈ R;

– If outcomes x1 and x2 are equally likely, then gamble δδδx1−δδδx2 ∈ Dk and δδδx2−δδδx1 ∈ Dk.
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Using this elicitation process, the player should be able to construct any judgement that
represents genuine belief and model it as an almost-desirable gamble, denominated in units
of probability currency. Once the set of almost-desirable gambles Dk is established, the
second stage is to use Equation (9) to check that it avoids a sure loss. This equation takes
a more straightforward form than Equation (1).

sup
x∈X

∑
dq∈Dk

dq(x) ≥ 0, (9)

where dq ∈ Dk is an almost-desirable gamble. If Dk is proven to avoid sure loss, the final
stage is to compute the relevant lower prevision of each gamble f ∈ F .

Let K(Dk) denote a closed convex set of linear previsions of all gambles dq ∈ Dk.
It is the intersection of all closed convex half spaces determined by the mass function
(P k(x1), P

k(x2), ..., P
k(x|X |)) of each P k(dq). Since gambles in Dk are almost-desirable,

P k(dq) ≥ 0, ∀dq ∈ Dk. The geometry of K(Dk) is a polytope on the probability sim-
plex, satisfying the set of linear constraints applied to the possibility space X . It is a credal
set characterised by having a finite number of extreme points. Using the lower envelope
theorem, a relationship between linear previsions and coherent lower previsions can be estab-
lished. The theorem suggests that coherent lower previsions P k of gambles in Dk are none
other than the lower envelope of P k ∈ K(Dk). This is formally reflected in the following
equation:

P k(dq) = min{P k(dq) : P k ∈ K(Dk)}. (10)

Let Ek denote the natural extension of Dk. It is defined as Ek =
∑

dq∈Dk λqdq, where

λq ≥ 0. Ek will contain all gambles f whose P k(f) ≥ 0. Based on an elementary property
of polyhedral cones (Gale, 1960, Theorem 2.13), K = K(Dk) = K(Ek) is the convex hull
of a finite set of linear previsions, and Ek contains all gambles f whose P k belongs to this
set. Furthermore, the elements of the latter can be considered the extreme points of K.
Therefore, it is denoted by ext(K). Now, lower previsions of gambles in F can be computed
by simply taking the lower envelope of ext(K). This results in Equation (11).

P k(f) = min{P k(f) : ∀P k ∈ ext(K)}. (11)

3.3 Dynamic Updating

In a repeated game, whenever a player reaches an outcome that has an uncertain payoff, they
get to experience it. In the suggested model, this is reflected by receiving the reward of a
gamble. Each time that outcome is experienced, the player develops a preference for it. This
preference evolution should be reflected through an update to the lower and upper previsions
of the outcome’s payoff. Therefore, the lower and upper previsions of the underlying gamble
should be updated. Eventually, these previsions will coincide and converge to the fair value
of the gamble.

Let n be the total number of observed values of a gamble f , where f represents the
uncertain payoff of an outcome φφφ; that is, rk(φφφ) = f(x) where x ∈ X is random and the
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probability distribution over x is unknown. The lower and upper previsions of rk(φφφ) are

P k(f) and P
k
(f). When n = 0, these previsions are elicited. However, during each game-

play, whenever φφφ is experienced, a new payoff rk(φφφ) is observed. This payoff is an arbitrary
utility value un = f(x)(x ∈ X is random). Hence, the player learns more about the outcome’s
expected payoff. Given such information, the NPUI updating mechanism offers a simple yet
robust way to improve the lower and upper previsions of rk(φφφ). Nonetheless, applying it in
a strategic setting requires some modifications.

First, the NPUI model is initially developed on a unit interval [0, 1], where 0 and 1 are,
respectively, a decision-maker’s utilities for hypothetical worst and best outcomes. Since a
utility function is unique up to a positive linear transformation, the model is applied to the
finite interval [a, b], where a and b are respectively the worst and best payoffs of gamble f .

Second, in a strategic setting, the game’s outcomes do not necessarily belong to the
same collection or can be grouped under the same taxonomic category, e.g. sports games.
Therefore, we won’t adopt an exchangeability assumption across their utility values. It can
be argued that observed outcomes whose utility values are exchangeable with that of gamble
f might exist outside the game. In this case, we believe such information should be reflected
in the gamble’s possibility space or the elicitation model discussed in Section 3.2. This allows
estimating utility values based on past experiences and permits integrating other pre-existing
beliefs towards the novel outcome. Therefore, Equations (5) and (6) are enhanced to include
an elicited component, in this case, the one devised in Equation (11). Equations (12) and
(13) are the result of this enhancement, which is particularly useful when no observations
related to gamble f are available.

LEMMA 2. Let {u1, ..., ui, ..., un} denote a set of known utilities, where n is the total
number of observations. In a non-cooperative game, let f denote an arbitrary utility function
defined on the possibility space of an uncertain outcome Φ whose utility is exchangeable with

the existing known utilities. Let P k(f |u0) and P
k
(f |u0) denote, respectively, player k’s initial

lower and upper previsions of f when no observations exist, i.e. n = 0. Based on assumption
A(n), the lower and upper previsions of the pre-observed value of f are as follows:

P k(f) =
1

n+ 1

(
P k(f |u0) +

n∑
i=1

ui

)
, (12)

P
k
(f) =

1

n+ 1

(
P
k
(f |u0) +

n∑
i=1

ui

)
. (13)

The elicited components in Lemma 2 are a positive linear transformation of the unit
interval [0, 1] of Equations (5) and (6), where 0 and 1 are, respectively, the worst and best
utilities available. Therefore, the proof provided by Houlding and Coolen (2012) is still
applicable. Equations (12) and (13) show that when n = 0, the elicited previsions P k(f |u0)
and P

k
(f |u0) are the respective lower and upper previsions. However, once φφφ is experienced

and an actual payoff is observed, uncertainty regarding its underlying gamble is partially
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eliminated. In this case, the lower and upper previsions of the subsequent plays are governed
by the NPUI framework.

Third, the NPUI model assumes no future outcome is better (worse) or equal to the
hypothetical best (worst) outcome. In our approach, a weaker assumption is used. A future
outcome can have the same utility as this best (worst) outcome, i.e. a ≤ ui ≤ b.

Finally, we consider that an uncertain outcome in the game should be experienced several
times before formulating a proper preference towards it. Hence, the outcome φφφ might not
necessarily have the same payoff every time it is observed. In practice, such flexibility is re-
quired in a strategic setting, especially towards unknown outcomes. In many circumstances,
a sole experience does not reflect actual preference. The player should be allowed to try an
unfamiliar outcome several times and be surprised about its payoff. This can be achieved as
follows:

LEMMA 3. Let {u1, ..., ui, ..., un} denote a set of known utilities, where n is the total
number of observations. In a non-cooperative game, let f denote an arbitrary utility function
defined on the possibility space of an uncertain outcome Φ whose utility is exchangeable with
the existing known utilities. Based on assumption A(n), when a new exchangeable utility un+1

is observed, player k’s lower and upper previsions of the pre-observed value of f , respectively,

P k(f |un) and P
k
(f |un) are updated as follows:

P k(f |un+1) =
1

n+ 2

(
P k(f |u0) +

n∑
i=1

ui + un+1

)
=
n+ 1

n+ 2
P k(f |un) +

un+1

n+ 2
,

(14)

P
k
(f |un+1) =

1

n+ 2

(
P
k
(f |u0) +

n∑
i=1

ui + un+1

)
=
n+ 1

n+ 2
P
k
(f |un) +

un+1

n+ 2
.

(15)

Lemma 3 leverages Equations (7) and (8) by replacing NPUI’s lower and upper previsions
with the previsions provided by Lemma 2, which include an elicited component. Therefore,
the proof provided by Houlding and Coolen (2012) is still applicable. Equations (14) and
(15) show that the updated lower and upper previsions are a weighted sum of their respective
values before and after observing the payoff un+1. Such updating seems intuitive. If un+1

falls below the assessed lower prevision, it decreases both lower and upper previsions. If it
falls above the upper prevision, it increases both lower and upper previsions. However, if it
falls in between, it leads to an increase in the lower prevision and a decrease in the upper
prevision. It should be noted that the weights used in Equations (14) and (15) significantly
impact how new observations are handled. The increase of existing observations will have a
diminishing effect on new ones, which is sensible in a repeated game context. In practice,
the early experience of an uncertain outcome greatly influences future game plays.
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Updated previsions should comply with the rationality requirements discussed in Section
2.1. According to Augustin and Coolen (2004, Theorem 1), lower and upper previsions
based on applying assumption A(n) to observed data are totally monotone, and this total-
monotonicity leads to coherence. Hence, Equations (12) and (13) result in coherent lower
and upper previsions, assuming that the elicited previsions are also coherent. Furthermore,
Augustin and Coolen (2004, Theorem 7) show a strong internal consistency property in
the non-parametric updating mechanism, therefore, allowing the coherence argument to be
extended to cover Equations (14) and (15).

4 Examples

4.1 First Assessment and Refinement

In the modified version of the game ‘battle of the sexes’ discussed in Section 3.1, consider
that alternatives T and L stand for going to a hockey game, whereas B and R stand for
going to the cinema. Furthermore, assume that player one is not familiar with hockey.
Hence, their preference towards it is uncertain and replaced by gamble f . The pragmatic
possibility space X can be defined as X={Good(G), Neutral(N), Bad(B)}. X represents any
practically possible state a player could experience by going to the hockey game. The gamble
f is assigned the following payoffs f={G:2, N:1, B:0}, where each payoff represents player
one’s utility over the relevant state. Now, the payoff matrix in Table 4 can be transformed

into an enhanced GRR matrix. The latter is reflected in Table 6, where P 1(f) and P
1
(f)

are respectively player one’s lower and upper previsions of f .
To assess gamble f ’s lower and upper previsions, player one can rely on previous experi-

ences, which might not be related to hockey, to make qualitative judgements on elementary
events in X . Afterwards, these judgements can be converted to almost-desirable gambles
under the set D1. For example:

– Since they generally like sports, having a good experience is probable. This corresponds
to a gamble d1 = δδδG − 1

2
∈ D1;

– Since they rarely had a bad experience at sports games in the past, having a bad
experience is improbable. This corresponds to a gamble d2 = 1

2
− δδδB ∈ D1;

– Since they usually like sports more than the cinema, a good experience is at least as
probable as a neutral one. This corresponds to a gamble d3 = δδδG − δδδN ∈ D1;

– The odds against a neutral experience are no more than 3 to 1. This corresponds to a
gamble d4 = δδδN − 1

3
∈ D1.

Applying Equation (9) to the set of gambles D1 = {d1, d2, d3, d4} shows that it avoids a sure
loss. Since the linear prevision of each almost-desirable gamble in D1 is greater or equal to
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zero and is determined by its mass function (P 1(G), P 1(B), P 1(N)), a credal set K(D1) can
be built. It is the intersection of the following half-spaces.

K(D1) =



P 1(d1) = P 1(G)− 1
2
≥ 0

P 1(d2) = 1
2
− P 1(B) ≥ 0

P 1(d3) = P 1(G)− P 1(N) ≥ 0

P 1(d4) = P 1(N)− 1
3
≥ 0

P 1(G), P 1(B), P 1(N) ≥ 0

P 1(G) + P 1(B) + P 1(N) = 1

The probability simplex in Figure 2 shows K(D1) and its corresponding linear previsions
on the possibility space X . The equilateral triangle has a height of one, and the prob-
ability of each state is identified with perpendicular distances from each side of it. The
hyperplane of each gamble in D1 cuts the simplex into a half-space. The resulting area,
coloured in red, is a polyhedron that represents K(D1). Its intersections are the extreme
points, ext(K(D1)) ={(2

3
, 0, 1

3
), (1

2
, 1
6
, 1
3
), (1

2
, 0, 1

2
)}. The coherent lower and upper probabil-

ities (P 1, P
1
) of each state in X are the lower and upper envelopes of ext(K(D1)). Hence,

(1
2
, 2
3
) for ‘good’, (0, 1

6
) for ‘bad’, and (1

3
, 1
2
) for ‘neutral’. The coherent lower prevision of

gamble f is computed using Equation (11) as follows:

P 1(f) = min{P 1(f) : ∀P 1 ∈ ext(K(D1))}

= min{
(

2

3
× f(G) + 0× f(B) +

1

3
× f(N)

)
,(

1

2
× f(G) +

1

6
× f(B) +

1

3
× f(N)

)
,(

1

2
× f(G) + 0× f(B) +

1

2
× f(N)

)
}

= min{1.66, 1.33, 1.5} = 1.33 .

Similarly, the coherent upper prevision of gamble f is computed as follows:

P
1
(f) = max{P 1(f) : ∀P 1 ∈ ext(K(D1))}

= max{1.66, 1.33, 1.5} = 1.66 .

Replacing lower and upper previsions in Table 6 with their relevant values returns the
enhanced GRR matrix in Table 7. As seen in Figure 3, the correlated equilibria polytope of
this matrix is a heptahedron with six vertices, listed in Table 8. Vertices two and six are pure
Nash equilibria that sit at the intersection between the polytope and the simplex representing
all probability distributions on outcomes, i.e. the tetrahedron. The remaining vertices are
correlated equilibria. It should be noted that the mixed Nash equilibrium of the original
version of the game does not satisfy the correlated equilibria constraints of the modified
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Figure 2: Example’s resulting credal set.

Table 7: Example’s resulting enhanced GRR matrix.

TL TR BL BR
r1T − r1B 1.33 -1 0 0
r1B − r1T 0 0 -1.66 1
r2L − r2R 1 0 -2 0
r2R − r2L 0 -1 0 2

one. Hence, on the inefficient frontier, the polytope does not intersect with the saddle that
represents all joint probability distributions that are independent between players. That’s
because the supremum buying price and infimum selling price of f are different. This price
mismatch shows that the GRR matrix reveals information that is not obvious by just looking
at the payoff matrix. Especially under ignorance, when players might have two different buy
and sell values for a specific payoff.

Optimal solutions for this game sit on the edge connecting TL and BR. Choosing one
of them depends on the player’s level of pessimism. For instance, an extremely pessimistic
player would consider TL’s payoff as the gamble’s lower prevision, i.e. r1(TL) = P 1(f) =
1.33. This results in an optimal equilibrium ρTL = 0.7518 and ρBR = 0.2482, with an
expected game payoff of 1.248 for both players. However, an extremely optimistic player

would consider r1(TL) = P
1
(f) = 1.66. This results in an optimal equilibrium ρTL = 0.601
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Figure 3: Example’s first assessment polytope.

and ρBR = 0.399, with an expected payoff of 1.39 for both players.

Table 8: Example’s first assessment vertices.

TL TR BL BR
Vertex 1 0.429 0 0.215 0.356
Vertex 2 1 0 0 0
Vertex 3 0.294 0.392 0.118 0.196
Vertex 4 0.334 0.444 0 0.222
Vertex 5 0.273 0.363 0.137 0.227
Vertex 6 0 0 0 1

4.2 Dynamic Updating

As discussed in Section 3.3, dynamic updating improves an uncertain outcome’s lower and
upper previsions in repeated games. Table 9 illustrates three different scenarios of applying
dynamic updating to a sequence of plays. It shows that whenever outcome TL has a new
payoff, the underlying gamble’s lower and upper previsions are updated. Consequently, this
triggers an update to the optimal correlated strategy.

Scenario one considers that the first time a play ends with an outcome TL, player one
enjoys it more than all other outcomes. Hence, the payoff of gamble f is 2. Since this

observation falls above the elicited P
1
(f), the updated lower and upper previsions increase

in value. Furthermore, P 1(f |u1) = 1.665 indicates that an extremely optimistic or pessimistic
player expects TL’s payoff to be the highest amongst all other payoffs still. If player one keeps
getting a payoff of 2 for TL, the lower and upper previsions will eventually converge towards 2.
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Table 9: Dynamic updating applied to three different scenarios.

n
Scenario 1 Scenario 2 Scenario 3

un = f(x) P 1(f) P
1
(f) un = f(x) P 1(f) P

1
(f) un = f(x) P 1(f) P

1
(f)

0 – 1.33 1.66 – 1.33 1.66 – 1.33 1.66
1 2 1.665 1.83 0 0.665 0.83 0 0.665 0.83
2 2 1.776 1.886 0 – – 2 1.11 1.22
3 2 1.832 1.915 0 – – 2 1.332 1.415

Scenario two shows the opposite case. After experiencing outcome TL, player one considers it
the worst outcome in the game. Hence, the payoff is 0. Since this observation falls below the

elicited P 1(f), both updated previsions decrease in value. An upper prevision P
1
(f |u1) =

0.83 is strictly smaller than the payoff player one gets from outcome BR. Therefore, an
extremely optimistic or pessimistic player would stop choosing the alternative T and settles
for a correlated strategy of ρTL = 0 and ρBR = 1, i.e. the pure Nash equilibrium. It should
be noted that an extremely optimistic player would still consider the alternative T if the
upper prevision is higher than BR’s payoff. Scenario three shows the case where player one
has different experiences related to outcome TL. The first time it is observed, its payoff is 0.

This payoff decreases the upper prevision to P
1
(f |u1) = 0.83, which is enough for a player

to discard the alternative T . However, in practice, a player can still explore the outcome TL
as a trial attempt. In that case, if the second observation has a payoff of 2, P 1(f |u1) and

P
1
(f |u2) increase in value and both become strictly higher than BR’s payoff.

4.3 Extreme Ignorance

To illustrate our model under a case of extreme ignorance, we consider a variant of the game
‘Matching Pennies’. The classic version is described by Von Neumann and Morgenstern
(1944) as a game where two players simultaneously and independently select ‘Heads’ or
‘Tails’ each and then uncover a penny. If their selections match, then player two must give
a penny to player one. Otherwise, player one gives a penny to player two. However, here,
we modify the game so that player two gives player one an arbitrary reward generated by a
gamble g. This gamble consists of drawing a ball from an urn. Depending on its colour, the
following rewards are generated: 0 for red, 1 for black, and 2 for green.

Table 10: The modified version of ‘matching pennies’ - payoff matrix.

T H
T g,−g −1, 1
H −1, 1 g,−g

We assume that information is symmetric across players throughout the gameplay and
that no information about the composition of the urn is available to them. Therefore,
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vacuous lower and upper previsions are used; P 1(g) = P 2(g) = 0 and P
1
(g) = P

2
(g) = 2.

Under these circumstances, whether the game is played or not depends on the adopted
choice rule. For instance, using the pessimist/optimist decision rules, if any of the players
is a pessimist, they will use the lower previsions of underlying gambles to assess expected
payoffs. For outcomes TT and HH, they would only expect to lose utility when playing this
game. Hence, they don’t have any incentive to play it. However, if players one and two are

optimists, they would expect, respectively, a payoff of P
1
(g) = 2 and P

2
(−g) = −P 2(g) = 0

for both of these outcomes. Therefore, when no reward is yet observed for gamble g, the
game’s expectation for both optimists players is 0.5 and its mixed Nash equilibrium is (1/2
H, 1/2 T)×(1/2 H, 1/2 T).

Consider that the urn contains one black, one green, and two red balls. Applying
the suggested dynamic updating algorithm to 1000 simulations of 200 plays each, returns
an average lower prevision of P 1(g|u200) = P 2(g|u200) = 0.74 and an upper prevision of

P
1
(g|u200) = P

2
(g|u200) = 0.76. Figure 4 shows how gamble g’s lower and upper previsions

Figure 4: The modified version of ‘matching pennies’ - average lower and upper previsions
generated using 1000 simulations of 200 plays each.

converge towards its linear prevision; that is, the actual expected payoff P (g) = 0.75, which
is unknown to the players. The dynamic updating will influence each player’s estimate of the
game’s expected payoff. As seen in Figure 5, on average, player one’s expectation becomes
negative after the ninth observation, giving them no incentive to keep playing the game. In
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contrast, player two’s expectation is always positive. This indicates that player two has an
advantage over player one, which is expected since the urn contains two red balls.

Figure 5: The modified version of ‘matching pennies’ - players’ average game expectations
generated using 1000 simulations of 200 plays each.

5 Discussion

The proposed solution could help expand the existing scope of application of game theory
and allow it to include cases of ignorance over outcomes. Furthermore, we believe this
solution could be extended to cooperative games. For instance, in oligopoly pricing (Athey
and Bagwell, 2001) or repeated partnerships (Radner et al., 1986), players are assumed to
know the utility of each outcome and the set of correlated distributions over these outcomes.
However, this strong assumption could be relaxed using an enhanced GRR matrix. To
illustrate, consider Radner’s (1986) work on improving the decentralised decision-making
process in an organisation. He studies repeated partnership games in which players cannot
observe each other’s strategies. In his example, two players contribute separate efforts to an
enterprise. The combined effort of all players leads the enterprise to succeed or fail. Hence,
X = {Success(S) = 1, Fail(F)=0 }. Players choose their effort simultaneously without being
able to monitor each other’s choices. The probability of success is considered P (x = 1) =
min(e1+e2, 1), where e1 and e2 are the individual efforts of players one and two. Furthermore,
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the utility payoff of a player k is fk(x, ek) = x − λ(ek)2, where λ > 0, and λak represents
the ‘disutility of effort’. In this game, when a player contributes high effort, they know it is
more likely to yield success. However, they don’t know the exact probability of failure when
all players choose to do the same. Therefore, players are uncertain about their expected
payoffs. An enhanced GRR matrix can help assess this uncertainty and compute the set of
correlated equilibria. Consider that a high effort(H) is when ek > 0.5 and a low effort(L)
is when ek ≤ 0.5. Let Λ1 = Λ2 = {H, L} denote the alternatives available to each player.
Hence, the set of possible outcomes is Φ = {HH,HL,LH,LL}. Outcomes HH and LL
represent respectively a sure success and a sure loss. However, both outcomes HL and LH,
represent either a success or a loss. Assuming λ = 1, the payoff functions of these outcomes
can be modelled as follows:

– rk(HH) = fk1 (ek) = 1 − (ek)2, this function represents the payoff each player k gets
when they and the other player choose to contribute high effort. Since for the outcome
HH each player has to provide a minimum effort of 0.5, the lower and upper previsions

of rk(HH) are P k(rk(HH)) = 0.75 and P
k
(rk(HH)) = 0 (assuming that the maximum

effort is 1);

– rk(HL) = fk2 (x, ek) = x − (ek)2 and rk(LH) = fk3 (x, ek) = x − (ek)2, these functions
represent the payoff each player k gets when they choose to contribute high effort while
the other player contributes low effort, and vice versa. The lower and upper previsions

of rk(HL) are P k(rk(HL)) = P k(x)− (P k(ek))2 and P
k
(rk(HL)) = P

k
(x)− (P

k
(ek))2.

The same logic applies to payoff rk(LH). Hence, P 1(r1(HL)) = P 2(r2(LH)) = 0.25,

P
1
(r1(HL)) = P

2
(r2(LH)) = 0, P 1(r1(LH)) = P 2(r2(HL)) = 0.5, and P

1
(r1(LH)) =

P
2
(r2(HL)) = 0.75;

– rk(LL) = fk4 (ek) = −(ek)2, this function represents the payoff each player k gets
when they and the other player choose to contribute low effort. The lower and upper

previsions of rk(LL) are P k(rk(LL)) = 0 and P
k
(rk(LL))= -0.25.

The resulting vacuous previsions should be refined using the provided elicitation model and
then used in the enhanced GRR matrix. Given the payoff uncertainties, this matrix will
return a convex set of correlated equilibria. Furthermore, in the repeated version of this
game, dynamic updating can be used to adjust payoff expectations to the behaviour of each
player. Dynamic updating will lead to an improved set of correlated equilibria by providing
a more accurate utility assessment for each outcome.

6 Conclusions

The treatment of uncertain preferences over a game’s outcome has had limited discussions in
the Bayesian literature, even though such cases are empirically evident. Here, we proposed
the enhanced GRR matrix complemented with an elicitation model and NPUI-based dynamic
updating as a normative solution to those situations.
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First, we developed an enhanced version of Nau’s revealed-rules matrix that allows cases
of uncertainty over a game’s outcomes. This enhanced GRR matrix revealed information
that is not observable within the game’s payoff matrix. In particular, it allowed a player to
disclose their beliefs about the lower and upper previsions of an uncertain outcome’s payoff.

Second, we introduced an elicitation model to allow a player to coherently assess the
lower and upper previsions of an uncertain outcome’s payoff. This elicitation model can
use pre-existing beliefs as a form of information. Hence, it can support cases of extreme
ignorance, i.e. when a player has no information regarding an outcome.

Third, we computed the game’s correlated equilibria using the enhanced GRR matrix
enriched with players’ relevant previsions.

Finally, we examined the case of repeated games and introduced a dynamic updating
model. This model allows a player to adjust their previsions based on new observations.
Specifically when experiencing uncertain outcomes.

In conclusion, we believe developing the proposed model further is possible. In particular,
enhance it to address the more general case of risk-averse players. For instance, under the
standard case, which doesn’t involve any uncertainty, Nau (2011) shows that the game’s
rational solution is a convex set of equilibria whose parameters are risk-neutral probabilities.
Therefore, under uncertainty, lower and upper previsions of each transaction, rki (φφφ)−rkj (φφφ), in
MMM should be assessed with respect to a convex set of risk-neutral probabilities. Furthermore,
it is possible to explore the application of the proposed model to different fields of study.
For example, within Artificial Intelligence, if a payoff matrix contains unobserved outcomes,
it could be replaced with an enhanced GRR matrix that includes players’ elicited lower
and upper previsions towards these outcomes. Or within Economics, in rivalry or alliance
situations where ignorance can prevail. For instance, when companies invest in a new market
and unforeseen events arise, this could cause a conflict of interest. In this case, stakeholders
could update their preferences using the dynamic updating mechanism.
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