Title

Low-volume HIIT and MICT speed $\dot{\mathrm{V}}_{2}$ kinetics during high-intensity "work-to-work" cycling with a similar time-course in type 2 diabetes.

Authors

Norita Gildea ${ }^{1}$, Adam McDermott ${ }^{1}$, Joel Rocha ${ }^{2}$, Domenico Crognale ${ }^{3}$, Aaron Nevin ${ }^{1}$, Donal O’Shea ${ }^{4,5}$, Simon Green ${ }^{6}$, Mikel Egaña ${ }^{1}$

Affiliation

${ }^{1}$ Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
${ }^{2}$ Division of Sport and Exercise Sciences, School of Applied Sciences, Abertay University, Dundee, UK.
${ }^{3}$ Institute for Sport \& Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland.
${ }^{4}$ Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.
${ }^{5}$ Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland. ${ }^{6}$ Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia.

Running head:

HIIT vs MICT on $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics during w-to-w exercise in T2D

Address for correspondence

Mikel Egaña, PhD. Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland. E-mail: megana@tcd.ie; Tel: +353 1896 1770; Fax: +353 16793545

Abstract

We assessed the rates of adjustment in oxygen uptake $\left(\dot{\mathrm{VO}}_{2}\right)$ and muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, $[\mathrm{HHb}+\mathrm{Mb}])$ during the on-transition to high-intensity cycling initiated from an elevated baseline (work-to-work) before training and at weeks $3,6,9$ and 12 of lowvolume high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) in type 2 diabetes (T2D). Participants were randomly assigned to MICT ($n=11,50 \mathrm{~min}$ of moderate-intensity cycling), HIIT ($n=8,10 \times 1 \mathrm{~min}$ of high-intensity cycling separated by 1-min of light cycling) or nonexercising control ($n=9$) groups. Exercising groups trained 3 times per week. Participants completed two work-to-work transitions at each time point consisting of sequential step increments to moderate- and high-intensity work-rates. $[\mathrm{HHb}+\mathrm{Mb}]$ kinetics were measured by near-infrared spectroscopy at the vastus lateralis muscle. The pretraining time constant of the primary phase of $\dot{\mathrm{V}} \mathrm{O}_{2}\left(\dot{\mathrm{~V}}_{2} \tau_{\mathrm{p}}\right)$ and the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component $\left(\mathrm{V}_{2} \mathrm{~A}_{\mathrm{s}}\right)$ of the high-intensity w-to-w bout decreased $(P<0.05)$ by a similar magnitude at wk 3 of training in both MICT (from, 56 ± 9 to $43 \pm 6 \mathrm{~s}$, and from 0.17 ± 0.07 to 0.09 ± 0.05 L. min^{-1}, respectively) and HIIT (from, 56 ± 8 to $42 \pm 6 \mathrm{~s}$, and from 0.18 ± 0.05 to $0.09 \pm 0.08 \mathrm{~L} . \mathrm{min}^{-1}$, respectively) with no further changes thereafter. No changes were reported in controls. The parameter estimates of $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ remained unchanged in all groups. MICT and HIIT elicited comparable improvements in $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics without changes in muscle deoxygenation kinetics during high-intensity exercise initiated from an elevated baseline in T2D despite training volume and time commitment being $\sim 50 \%$ lower in the HIIT group.

New \& Noteworthy

Three weeks of high-intensity interval training and moderate-intensity continuous training decreased the time constant of the primary phase of oxygen uptake $\left(\dot{\mathrm{V}}_{2}\right)$ and amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component during a high-intensity exercise initiated from an elevated baseline, a protocol that mimics the abrupt metabolic transitions akin to those in daily life, in type 2 diabetes. These $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics improvements
were maintained until the end of the 12 -week intervention without changes in muscle deoxygenation kinetics.

Keywords: exercise transitions, near-infrared spectroscopy, oxygen extraction, exercise tolerance, oxygen uptake slow component

Introduction

In healthy people, the initiation of a transition to high-intensity, constant work-rate upright cycling from moderate-intensity baseline cycling, referred to as work-to-work (w-to-w), elicits a significantly longer time constant of the primary phase of the oxygen uptake $\left(\mathrm{VO}_{2}\right)$ kinetics response $\left(\mathrm{V}_{\mathrm{O}}^{2} 2 \tau_{\mathrm{p}}\right)$ than initiating the same transition from rest or 'unloaded' cycling (1-4). This prolonged $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ translates to a compromised rate of oxidative energy transfer upon transition to the higher-intensity step of this protocol and has been attributed to constrained cellular respiration in the already active muscle fibers (5) and/or a larger recruitment of fast twitch (type II) muscle fibers to meet the augmented metabolic demand (6).

Recently, Gildea et al. (7) observed that this slowing of $\mathrm{V}_{2} \tau_{\mathrm{p}}$ during high-intensity w-to-w transitions is significantly greater in middle-aged individuals with type 2 diabetes (T2D) compared with their healthy counterparts, and that this effect is, at least in part, due to diabetes-induced limitations in peripheral oxygen $\left(\mathrm{O}_{2}\right)$ delivery to the working muscle. This is in agreement with consistent observations of blunted or slowed $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ responses during on-transitions to moderate-intensity exercise from an unloaded baseline in young and middle-aged individuals with T2D (8-12), that also appear to be influenced by impairments in O_{2} delivery to active muscles (7, 12-16). W-to-w transitions replicate metabolic transitions from moderate to higher metabolic rates akin to those in daily life (such as abrupt velocity changes in walking/running/stair climbing, or changes in speed and/or gradient during cycling), and thus, interventions that may enhance $\dot{\mathrm{VO}}_{2}$ kinetics during w-to-w transitions in T2D are of great relevance and warrant investigation. In this regard, short-term (~ 12-weeks), traditional endurance training interventions, involving $\sim 150 \mathrm{~min}$ of continuous exercise per week [intensities ranging from ~ 60 to 80% maximum heart rate $\left(\mathrm{HR}_{\max }\right)$], have been shown to be effective at improving $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ during moderate-intensity transitions initiated from an unloaded baseline in T2D (17-19). However, to our knowledge the effect of exercise training on $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ during high-intensity w-to-w transitions in T2D has not been explored.

Accordingly, the purpose of the current study was to investigate the effects of 12 weeks of two commonly employed exercise training interventions, on $\dot{\mathrm{V}}_{2}$ kinetics during high-intensity w-to-w cycling transitions in individuals with uncomplicated T2D. Specifically, we compared the effects of moderateintensity (< ventilatory threshold, VT) continuous training (MICT) with low-volume, high-intensity interval training (HIIT), which typically involves $\sim 75 \mathrm{~min}$ per week of intermittent vigorous exercise, including less than 15 min of high-intensity efforts per session (20). Low volume HIIT was chosen for its time efficient nature $(\sim 50 \%$ lower time commitment) given "lack of time" is frequently cited as a key barrier for the well reported poor exercise adherence to current time-oriented physical activity guidelines in T2D (21). While we have recently reported that low-volume HIIT and MICT elicit similar benefits in $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ during moderate-intensity exercise transitions (22), interval training promotes greater oxidative enzyme adaptations in type II fibers (23), which are predominantly recruited during high-intensity efforts and might be expected to result in faster $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ responses during high-intensity exercise transitions. Thus, we hypothesized that HIIT would be more effective at speeding VO_{2} kinetics during the highintensity bouts of the w-to-w transitions. In an attempt to explore the mechanistic basis of any exerciseinduced effect on $\dot{\mathrm{V}}_{2}$ kinetics in T 2 D , the rate of muscle deoxygenation (i.e., deoxygenated haemoglobin and myoglobin, $\mathrm{HHb}+\mathrm{Mb}$) was measured to assess the alterations on muscle fractional O_{2} extraction. In addition, to assess the time course effects of these adaptations, physiological measurements were taken every 3 weeks throughout the intervention (i.e., before training and at weeks 3, 6, 9 and 12).

Methods

Participants

Participants were recruited from the Diabetes Outpatient Clinics of St. Columcille's and St. Vincent's University Hospitals (Dublin). Participant's eligibility was initially checked following chart review. Specifically, participants were included if they had a clinical history of diabetes $<11 \mathrm{yr}$, were sedentary $[\leq 1.5 \mathrm{~h} /$ week of moderate-intensity exercise $(<\mathrm{VT})$ and ≤ 1 structured exercise/week in the preceding 6 months, see testing] (24) and had $\mathrm{HbA}_{\mathrm{lc}}$ levels of $<10 \%$. Participants were excluded if they were treated
by exogenous insulin, were smokers, had a disease contraindicating physical training, or demonstrated evidence of renal, liver or cardiovascular disease. All individuals completed a 12-lead electrocardiogram treadmill stress test (Bruce protocol) at St. Columcille's Hospital prior to attending the laboratory tests.

Thirty-four participants completed the baseline laboratory assessments (see testing) and were given opaque sealed envelopes randomly allocating them to one of the 3 intervention groups (MICT, initially n $=13$; HIIT, initially $n=9$; or Control, initially $n=12$). Eight participants dropped out of the study for personal reasons unrelated to the experiment (MICT, $n=2$; HIIT, $n=3$; Control, $n=3$). Participants in the Control group were offered re-randomization to one of the exercise training groups after the intervention period, of which 2 accepted (HIIT, $n=2$) and subsequently completed the training intervention. The final study population consisted of 26 participants undergoing the intervention, of whom 2 underwent both Control and HIIT. Thus, 28 completed responses from the study intervention were included for statistical analysis (MICT, $n=11$; HIIT, $n=8$; Control, $n=9$). All participants provided written informed consent prior to participation. The study was approved by the Faculty of Health Sciences' Research Ethics Committee, Trinity College Dublin, and St Vincent's Healthcare Ethics and Medical Research Committee, and conducted in accordance with the principles outlined by the Declaration of Helsinki.

Supervised exercise interventions

Overview. Participants in the HIIT and MICT groups carried out a 12-week supervised intervention, training 3 times per week on non-consecutive days at a local health and fitness center in Co. Dublin. Participants in the Control group received no intervention and continued with their normal daily routine. All exercise training sessions were supervised by a study investigator. Training intensity was adjusted at 3-week intervals (i.e., every 9 sessions) to reflect changes in fitness levels. Both exercise groups completed a 5 min warm up and 5 min cool down before and after each session on an aerobic machine of
their choice (elliptical, treadmill, rower or cycle ergometer). The main component of each training session was completed on a cycle ergometer as follows:

Low-volume high-intensity interval training: The HIIT group completed 10×1-min bouts of highintensity cycling interspersed with 1 -min of light cycling. The high-intensity bout was completed at a power output equivalent to 70% of the difference between participant's peak power output $\left(\mathrm{PO}_{\text {peak }}\right)$ and the power output at ventilatory threshold (VT) $(70 \% \Delta)$ achieved during the ramp exercise test (see testing), whereby participants were expected to exercise in the severe-intensity domain.

Moderate-intensity continuous training: Each MICT session comprised of 50 minutes of cycling at a power output equivalent to $\sim 80 \%$ VT as calculated from the ramp test (see testing). The energy expenditure from the supervised exercise sessions was estimated based on the American College of Sports Medicine's equation (25).

Testing

Prior to the commencement of, and every 3 weeks throughout the intervention, participants were required to attend the exercise testing laboratory on two separate occasions to complete a ramp incremental cycling test to exhaustion, 3 high-intensity calf plantar-flexion transitions, 2-4 moderate- and highintensity cycling exercise transitions, and 2 w-to-w step transitions to high-intensity cycling exercise commencing from a baseline of moderate-intensity exercise. Data presented in the current manuscript are based on the cycling high-intensity w-to-w step transitions. Data on peak exercise responses obtained from the cycling ramp test (26) and moderate-intensity transitions (22) have been reported previously, while data on calf plantar-flexion transitions are not presented herein. For each participant, all tests were performed at the same time of day. All exercise tests were carried out in an upright position on an electrically braked cycle ergometer (Excalibur Sport; Lode B.V., Groningen, Netherlands). Participants were asked to refrain from consuming alcohol, caffeine and non-prescribed nutritional supplements as well as avoiding any strenuous exercise in the 24 hours prior to testing. Prior to the intervention activity levels were assessed by the use of 5-day RT3 triaxial accelerometry (Stayhealthy Inc, CA) (Table 1). The
threshold for sedentary or inactive behavior (<1.5 metabolic equivalents or METs) was set as <100 counts/min, counts/min between 101 and 1317 were considered light activity (1.5-3 METs); and counts/min >1317 corresponded to moderate-to-vigorous physical activity (>3 MET) (27). At baseline (pretraining) and at the end of the intervention period (posttraining) fasting venous blood samples were collected to assess glycosylated haemoglobin ($\mathrm{HbA}_{1 \mathrm{c}}$). Participants were familiarized with the ramp incremental test and constant work-rate tests prior to commencing the intervention.

Ramp incremental cycling tests: The test started with an initial work-rate of 10 W for 2 min (i.e., 'unloaded' cycling). This was followed by a progressive increase in power output at $10-25 \mathrm{~W} / \mathrm{min}$ based on participants' activity levels. Pedalling rate was held constant at an individually selected cadence between $60-75$ revolutions per minute (rpm) and was maintained throughout all further testing. Failure/exhaustion in a test was determined as a drop in cadence exceeding 10 rpm for $>5 \mathrm{~s}$. Peak workrate was the power output achieved at the point of failure. $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ was the highest $\dot{\mathrm{V}} \mathrm{O}_{2}$ value (15 -s average) attained during the test. The first ventilatory threshold (VT) was determined using the V-slope method (28); whereas the respiratory compensation point (RCP) was determined by identifying the second non-linear increase of $\dot{\mathrm{V}}_{\mathrm{E}}$ and $\dot{\mathrm{V} C O} \mathrm{C}_{2}$, whereby an increase in $\dot{\mathrm{V}}_{\mathrm{E}} / \dot{\mathrm{V}} \mathrm{O}_{2}$ is accompanied by an increase of $\dot{\mathrm{V}}_{\mathrm{E}} / \mathrm{V}_{\mathrm{CO}}^{2} 2(29)$.

High-intensity work-to-work cycling exercise transitions. All participants performed two separate w-to-w transitions to constant work-rate high-intensity cycling at 50% delta ($\Delta 50 \%$; the sum of the power output at VT and 50% of the difference between the power output at VT and $\mathrm{V}_{\mathrm{O}_{2 \text { peak }}}$ obtained during the ramp incremental test at the pretraining time point) each commencing from an elevated baseline of $80 \% \mathrm{VT}$ (80% of each participant's VT). Therefore, for each participant the same absolute power output was used at all 5 time points during the intervention. The order of these bouts was fixed for all participants. Each transition consisted of 3 min of "unloaded" cycling at 10 W , immediately followed by 6 min of moderateintensity (80% VT) cycling which in turn was immediately followed by 6 min of high-intensity ($\Delta 50 \%$)
cycling. Exercise was performed continuously with changes in power output initiated as a step function without giving prior warning to the individual. There was a 45-60 min rest period between each of the cycling bouts. This resting period was sufficient for physiological parameters to return to baseline levels and subsequently not to influence $\dot{\mathrm{VO}}_{2}$ kinetics parameters (measured in a subgroup of 12 participants with T2D, albeit employing a single high-intensity w-to-w transition), and this is consistent with previous reports in healthy active individuals (30). Given that in the present study the mean response times of $\dot{\mathrm{V}} \mathrm{O}_{2}$ during the ramp cycle exercise (31) were not accounted for when calculating these target power outputs, power outputs at VT were overestimated. Five participants (MICT, $n=1$; HIIT, $n=2$; Control, $n=2$) failed to complete 6 min of exercise at $\Delta 50 \%$ during the w-to-w bouts at baseline, so only physiological responses collected over the same period (i.e., $<6 \mathrm{~min}$, range $3-5 \mathrm{~min}$) during the subsequent time points were analyzed. Heart rate (HR), gas exchange/ventilatory variables and muscle oxygenation \& deoxygenation were continuously measured during each cycling bout.

Measurements

During exercise, participants wore a facemask to continuously collect expired air using an online metabolic system (Innocor, Innovision A/S, Odense, Denmark) that measured airflow using a pneumotachometer. Carbon dioxide analysis was performed by using a photoacoustic gas analyzer and oxygen was analyzed using an oxygen sensor (Oxigraf Inc., USA) based on the principle of laser diode absorption spectroscopy. The system was calibrated prior to each test as per manufacturer's recommendations. Both the oxygen sensor and photoacoustic gas analyzer require multi-point calibration that is routinely performed by the manufacturer every 6-12 months. Analysis of expired air allowed determination of the rate of pulmonary O_{2} uptake $\left(\dot{\mathrm{V}}_{2}\right), \mathrm{CO}_{2}$ output $\left(\mathrm{V}_{\mathrm{V}} \mathrm{CO}_{2}\right)$, minute ventilation $\left(\dot{\mathrm{V}}_{\mathrm{E}}\right)$ and the respiratory exchange ratio (RER) breath-by-breath. Heart rate (HR) was recorded every 5 s (Polar S610i, Polar Ltd, Finland), with peak HR defined as the highest HR attained within the last 15 s of termination of the test.

A continuous wave NIRS system (Hamamatsu Niro 200Nx; Hamamatsu Photonics, Hamamatsu, Japan), was used to determine muscle oxygenation status non-invasively through the spatially resolved spectroscopy technique and modified Beer-Lambert principle with three wavelengths of emitting light (λ $=735,810$, and 850 nm). The theoretical basis of NIRS and its use in exercise measurements have been described in detail elsewhere (32) but briefly, this technique estimates the optical density changes of oxygenated $\left(\mathrm{O}_{2} \mathrm{Hb}+\mathrm{Mb}\right)$ and deoxygenated haemoglobin and myoglobin $(\mathrm{HHb}+\mathrm{Mb})$ based on the oxygen dependency of absorption changes for near-infrared light in these proteins. As the vastus lateralis (VL) muscle is a dominant locomotor muscle during cycling, the present study examined the concentration of $\mathrm{HHb}+\mathrm{Mb}(\Delta[\mathrm{HHb}+\mathrm{Mb}])$, and tissue oxygenation index (TOI) of the right vastus lateralis (VL) muscle. After shaving, cleaning and drying the skin, the probes were placed on the belly of the muscle, $10-16 \mathrm{~cm}$ above the lateral femoral condyle, parallel to the major axis of the thigh with a 3 cm spacing between the emitter and receiver. The probes were housed in a black rubber holder and secured on the skin surface with bi-adhesive tape and then covered with a dark elastic bandage, which minimized extraneous movement and the intrusion of stray light throughout the exercise protocol. Since the depth of the measured area was estimated to be approximately one-half the distance between the emitter and the receiver $(\sim 1.5 \mathrm{~cm})$, the present study determined the thickness of the skin and adipose tissue at the site of the probe placement via 2D ultrasound operating in B-mode (Zonare Ultra Smart Cart, Software version 4.7, USA), to ensure that data largely represented absorption of near-infrared light in muscle tissue and not in subcutaneous fat. All individuals presented with adiposity $<1.5 \mathrm{~cm}$ over the site of interrogation on the vastus lateralis.

Data Analysis

$\dot{\mathrm{V}} \mathrm{O}_{2}$ Kinetics: The breath-by-breath $\dot{\mathrm{V}} \mathrm{O}_{2}$ data for each transition were linearly interpolated to provide second-by-second values and time aligned such that time 0 represented the onset of exercise. Data from each transition were ensemble-averaged to yield a single, average response for each individual and further
time-averaged into 5 s bins (33). Data were then fitted to a monoexponential function (Eq. 1) or biexponential function (Eq. 2). During the high-intensity exercise bouts responses were fitted to Eq. 2 . During the moderate-intensity bouts, the majority of the 140 responses (90%) consisted of a single (primary) phase (visual inspection) and were fitted to Eq. 1. The remaining responses (10\%) displayed a second phase ("slow component") and were fitted to $E q$. 2. This second phase was observed in 14 responses (from 9 participants, Control, $n=3$; HIIT, $n=3$; MICT, $n=3$), had a mean amplitude of 76 $\mathrm{mL} / \mathrm{min}(\mathrm{SD}=21 \mathrm{~mL} / \mathrm{min})$, was only observed among control participants beyond week 3 of the intervention, and was likely due to the fact that in the present study the mean response times of $\dot{\mathrm{VO}}_{2}$ during the ramp cycle exercise were not accounted for when calculating the target power outputs (31). The equations are as follows:

Equation 1

$$
\dot{\mathrm{V}} \mathrm{O}_{2}(t)=\dot{\mathrm{V}} \mathrm{O}_{2} \text { baseline }+\mathrm{A}_{\mathrm{p}}\left[1-\mathrm{e}^{(t-\mathrm{TDp}) / \tau \mathrm{p}}\right] \cdot \mathrm{F} 1
$$

Equation 2

$$
\dot{\mathrm{V}} \mathrm{O}_{2}(t)=\dot{\mathrm{V}} \mathrm{O}_{2} \text { baseline }+\mathrm{A}_{\mathrm{p}}\left[1-\mathrm{e}^{(t-\mathrm{TDp}) / \mathrm{p} \mathrm{p}}\right] \mathrm{F} 1+\mathrm{A}_{\mathrm{s}}\left[1-e^{(\mathrm{t}-\mathrm{TDs}) / \mathrm{s} \mathrm{~s}}\right] \cdot \mathrm{F} 2
$$

where $\dot{\mathrm{V}} \mathrm{O}_{2}(t)$ represents the absolute $\dot{\mathrm{V}} \mathrm{O}_{2}$ at a given time $t ; \dot{\mathrm{V}} \mathrm{O}_{2}$ baseline (for moderate-intensity, in $E q$ ' s $l \& 2$) is the mean $\dot{\mathrm{VO}}{ }_{2}$ in the final 30 s of unloaded cycling, whereas $\dot{\mathrm{VO}}_{2}$ baseline (for high-intensity, in Eq. 2) is the mean $\dot{\mathrm{VO}_{2}}$ in the final 60 s of the moderate-intensity cycling exercise preceding the step transition to high-intensity cycling exercise. A_{p} and A_{s}, are the amplitudes of the increase in $\dot{\mathrm{VO}}{ }_{2}$ for the primary and slow component phases; TD_{p} and TD_{s} are the time delays of these phases, and τ_{p} and τ_{s} are the time constants of the phases, defined as the duration of time for which $\dot{\mathrm{VO}}{ }_{2}$ increases to a value equivalent to 63% of the amplitude. The conditional expressions F1 and F2 limit the fitting of the phase to the period at and beyond the time delay associated with that phase. The first 20 s of data after the onset of exercise (i.e., the phase $\mathrm{I} \dot{\mathrm{VO}}_{2}$ response) were deleted, while still allowing TD_{p} to vary freely (to optimize accuracy of parameter estimates (34)). However, TD_{s} was constrained to avoid the possibility of including the slow component in the modelled fit for the fundamental phase of $\dot{\mathrm{V}} \mathrm{O}_{2} . \dot{\mathrm{V}}_{2}$ data were modelled from 20 s to 360 s of each step transition. The MRT was calculated through the fitting of a
monoexponential curve from exercise onset to provide information on the "overall" $\mathrm{V}_{\mathrm{O}}^{2}$ kinetics during the high-intensity exercise bout, with no distinction made for the various phases of the response. The $\dot{\mathrm{V}} \mathrm{O}_{2}$ data were fit using a weighted least-squares non-linear regression procedure (TableCurve 2D, Systat, USA). Data points lying outside the 95% prediction interval during the initial fit of a model were excluded. For moderate-intensity exercise, only estimates representing the primary phase are presented. Whilst the presence of a slow component was detected in 14 responses during moderate-intensity exercise transitions, the presence of this phase does not appear to significantly affect the parameter estimates of the earlier phases (35). The end-exercise $\dot{\mathrm{V}}_{2}$ response, referred to as End A, was calculated as the averaged $\dot{\mathrm{V}}_{2}$ over the last 30 s. Because the asymptomatic value $\left(\mathrm{A}_{\mathrm{s}}\right)$ of the exponential term describing the V_{2} slow component may represent a higher value than is actually reached at the end of the exercise, the actual amplitude of the slow component was calculated as the absolute difference between the End A and $\dot{\mathrm{V}}_{2}$ baseline $+\mathrm{A}_{\mathrm{p}}$. The amplitude of the slow component was also described relative to the entire $\dot{\mathrm{V}} \mathrm{O}_{2}$ response [i.e., $\mathrm{A}_{\mathrm{s}} /\left(\mathrm{A}_{\mathrm{p}}+\mathrm{A}_{\mathrm{s}}\right)$]. The functional "gain" of the primary $\dot{\mathrm{V}} \mathrm{O}_{2}$ response $\left(\mathrm{G}_{\mathrm{p}}\right)$ was calculated as the difference between $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{p}}$ and $\dot{\mathrm{V}} \mathrm{O}_{2}$ baseline normalized to the difference in power outputs between the moderate-intensity exercise and unloaded cycling; and the functional gain of the entire response at the end of the high-intensity exercise bout (i.e., end-exercise gain) was calculated in a similar manner.
$[H H b+M b]$ kinetics and TOI. To provide information on muscle deoxygenation throughout the protocol, we modelled the $[\mathrm{HHb}+\mathrm{Mb}]$ response for moderate- and high-intensity exercise.-As per the $\dot{\mathrm{V}}_{2}$ data, the NIRS-derived $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ data for each transition were linearly interpolated to provide second-bysecond values and time aligned. Data from each transition were ensemble-averaged to yield a single average response for each individual, and further time-averaged into 5 s bins. A time delay (TD) at the onset of exercise occurs in the $[\mathrm{HHb}+\mathrm{Mb}]$ profile before it increases with an exponential like time course (36). This was determined in the present study via visual inspection as a systematic increase above the pre-transition level. For the moderate-intensity transitions, $[\mathrm{HHb}+\mathrm{Mb}]$ data were fitted from the end of
this TD to 180 s using a monoexponential (Eq. I) function as per $\dot{\mathrm{V}} \mathrm{O}_{2}$. The shorter fitting window of 180 s was selected to counteract the previously reported variations in the NIRS signal between 180-360 s from exercise onset (also observed herein), from impacting the fitting of the on-transient response whilst permitting the reaching of a steady-state $(37,38)$. For the high-intensity transitions, $[\mathrm{HHb}+\mathrm{Mb}]$ data were fitted from the end of the TD to the end of the exercise bout using a biexponential (Eq. 2) function as per $\dot{\mathrm{V}} \mathrm{O}_{2}$. For the moderate- and high-intensity exercise, the time course for the primary phase of the $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ response, referred to as the effective response time $\left(\tau^{\prime} \Delta[\mathrm{HHb}+\mathrm{Mb}]\right)$, was determined from the sum of the TD and τ from the onset of exercise. The amplitude change in TOI (TOI A) was calculated as the difference between baseline (30 s prior to each transition) and end-exercise (final 30 s) values.

Statistical Analysis

Physical characteristics and activity levels at baseline among groups were compared using a one-way ANOVA. Peak physiological responses, training intensity, TOI values and kinetics parameter estimates for V_{2} and $[\mathrm{HHb}+\mathrm{Mb}]$ throughout the intervention were compared using a two-factor [time (pretraining, week 3, week 6, week 9, posttraining) vs. group (HIIT, MICT, CON)] mixed ANOVA. Body mass and $\mathrm{HbA}_{1 \mathrm{c}}$ results were also compared using a two-factor [time (pretraining, posttraining) vs. group (HIIT, MICT, CON)] mixed ANOVA. Differences were detected using a Student-Newman-Keuls post hoc test. Significance was set at $P<0.05$. All values are expressed as mean \pm standard deviation (SD).

Results

Physical characteristics, pretraining peak exercise values and activity levels.
Participants' physical characteristics, peak exercise values and activity levels at baseline are presented in Table 1. $\mathrm{HbA}_{1 \mathrm{c}}$ (\%) (time x group interaction, $P<0.012$) was reduced in the MICT (pre $=6.9 \pm 0.5 \%$, post $=6.6 \pm 0.5 \%$) and HIIT groups (pre $=7.3 \pm 0.5 \%$, post $=7.0 \pm 0.6 \%$) but not in the control (pre $=6.8$ $\pm 1.0 \%$, post $=7.0 \pm 1.0 \%)$ group.

Exercise adherence and caloric expenditure

The mean exercise adherence was $94 \pm 6 \%$ (range 31-36 sessions) and $97 \pm 4 \%$ (range 32-36 sessions) in the HIIT and MICT groups respectively. The average training intensity (power output) increased significantly $(P<0.05)$ every 3 weeks (i.e. after each laboratory testing session) in the MICT group (weeks $1-3,84 \pm 33 \mathrm{~W}$; weeks $4-6,102 \pm 39 \mathrm{~W}$; weeks $7-9,113 \pm 43 \mathrm{~W}$; weeks $10-12,122 \pm 44 \mathrm{~W}$) while it also significantly increased every 3 weeks until week 9 , but not between week 9 and 12 in the HIIT group (weeks 1-3, 176 $\pm 35 \mathrm{~W}$; weeks 4-6, $192 \pm 37 \mathrm{~W}$; weeks 7-9, $203 \pm 38 \mathrm{~W}$; weeks 10-12, 206 $\pm 40 \mathrm{~W}$). The average energy expenditure and total work done per training session (including the warm up) was $\sim 228 \mathrm{kcal}$ and $\sim 165 \mathrm{~kJ}$ for the HIIT group, and $\sim 478 \mathrm{kcal}$ and $\sim 326 \mathrm{~kJ}$ for the MICT group. No adverse training effects to training were observed throughout the intervention period in either exercising group.

$\dot{V} O_{2 \text { peak }}$ from ramp incremental cycling

There was a significant time x group interaction $(P<0.001)$ for absolute $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak, }}$, so that $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}$ did not increase in the control group ($\dot{\mathrm{V}}_{\text {2peak }}$ at pretraining $=1.86 \pm 0.52 \mathrm{~L} / \mathrm{min}$), but it significantly increased after 3 weeks of MICT (from 2.08 ± 0.68 to $2.39 \pm 0.68 \mathrm{~L} / \mathrm{min}$) and HIIT (from 2.42 ± 0.44 to 2.61 ± 0.47 $\mathrm{L} / \mathrm{min}$), with no further significant changes thereafter $\left(\mathrm{V}_{\text {2peak }}\right.$ at posttraining $=2.55 \pm 0.73 \mathrm{~L} / \mathrm{min}$ and $2.71 \pm 0.54 \mathrm{~L} / \mathrm{min}$, respectively). Additional peak physiological responses have been reported in a companion paper (26).

$\dot{V} \mathrm{O}_{2}$ kinetics and NIRS-derived responses during high-intensity exercise of the w-to-w transition

The parameter estimates of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics response for the high-intensity exercise bouts throughout the intervention period are shown in Table 2, and responses for representative individuals are shown in Fig 1. Individual $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ and $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ responses throughout the intervention period are shown in Fig 2. Pretraining $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ and MRT values were similar among the 3 groups. After 3 weeks of training, $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ and MRT were significantly reduced in both the HIIT and MICT groups with no further significant
changes thereafter. In contrast, $\mathrm{V}_{2} \tau_{\mathrm{p}}$ and MRT were not changed throughout the 12 -week period in the control group (time x group interaction, $P<0.01$). Similarly, $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ was significantly reduced after 3 weeks of MICT and HIIT with no further changes thereafter, but it did not change (time x group interaction, $P<0.01$) in the control group. The $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{p}}$ or the functional $\dot{\mathrm{V}} \mathrm{O}_{2}$ gain were not different among groups and did not change throughout the intervention.

The kinetics parameters for $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ as well as TOI values are displayed in Table 3 and $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ responses for representative individuals are shown in Fig 3. The effective response times of muscle deoxygenation $\left(\Delta[\mathrm{HHb}+\mathrm{Mb}] \tau_{\mathrm{p}}{ }^{`}\right), \Delta[\mathrm{HHb}+\mathrm{Mb}] \mathrm{A}_{\mathrm{p}}, \Delta[\mathrm{HHb}+\mathrm{Mb}] \mathrm{A}_{\mathrm{s}}$ and the ratio of the modelled amplitudes of the primary phase $\Delta[\mathrm{HHb}+\mathrm{Mb}] / \Delta \dot{\mathrm{V}} \mathrm{O}_{2}$ were not different among groups and did not change throughout the intervention (Table 3). The magnitude of the change in TOI during the highintensity exercise transitions was not affected by the intervention in either group.

$\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics and NIRS-derived responses during moderate-intensity exercise of the w-to-w transition

 The parameter estimates of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics response for the moderate-intensity exercise bouts throughout the intervention period are shown in Table 2. For $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$, there was a significant time x group interaction $(P<0.001)$, so that $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ did not change in the control group, but it was reduced after 3 weeks of MICT and HIIT with no further changes thereafter. There was a main effect of group ($P<0.05$) for $\mathrm{V}_{2} \mathrm{~A}_{\mathrm{p}}$ so that it was larger in the HIIT group compared with the other 2 groups. Kinetics parameters for $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ as well as TOI values are displayed in Table 3. Exercise training did not affect the effective response time of the $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ response or the ratio of the modelled amplitudes of the $\Delta[\mathrm{HHb}+\mathrm{Mb}] / \Delta \dot{\mathrm{V}} \mathrm{O}_{2}$ in either group. There was a main effect of group ($P<0.05$) for $\Delta[\mathrm{HHb}+\mathrm{Mb}] \mathrm{A}_{\mathrm{p}}$ so that it was larger in the HIIT compared with the control groups. The magnitude of the change in TOI during the moderate-intensity exercise transitions were not affected by the intervention in either group, and they were larger in the HIIT compared with the other 2 groups (main effect, group, $P=0.025$).
Discussion

To our knowledge this is the first study to investigate the time-course effects of low-volume HIIT and MICT on $\dot{\mathrm{V}}_{2}$ kinetics during high-intensity exercise initiated from an elevated baseline in individuals with uncomplicated T2D. The principal findings were that both HIIT and MICT significantly reduced $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ as well as the amplitude of $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ during the transition to high-intensity cycling by week 3 of training and that these effects occurred in the absence of changes in the dynamic response of $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ suggesting an improved microvascular blood flow delivery. In contrast with our hypothesis, these adaptations were of a magnitude that was not different between exercising groups and were maintained without further improvements until the end of the 12-week intervention period.

Time-course effects of exercise training on $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ during high-intensity exercise of the w-to-w transition In the present study, despite training volume and time commitment being $\sim 50 \%$ lower in the HIIT compared with the MICT group, both interventions significantly reduced $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ after the 12 -week intervention period (31% MICT; 35% HIIT), with the reductions already apparent at the 3-week time point (24% MICT; 26% HIIT). While in a companion paper of the current investigation we have recently shown that the performance of both HIIT and MICT interventions elicit rapid (i.e., within 3 weeks) adaptations in $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ during transitions to moderate-intensity efforts from an unloaded/resting baseline in T2D (22), herein we report for the first time the effects of these interventions on $\dot{\mathrm{V}}_{2}$ kinetics upon step transitions to high-intensity exercise initiated from elevated metabolic rates in T2D. Among healthy participants, a number of studies have shown that HIIT and MICT interventions speed $\dot{V}^{2} \tau_{2}$ during transitions to moderate- and high-intensity efforts from an unloaded baseline (39-43); but to our knowledge, only one previous study has assessed $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics responses during severe-intensity transitions initiated from a moderate-intensity baseline following HIIT and/or MICT. Specifically, consistent with our findings, Da Boit et al. (44) reported significant reductions in $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ (26% and 22%) subsequent to 2 weeks of either repeated sprint training (RST) (4-7, 30 s 'all-out' sprints interspersed by 4 mins of recovery) or MICT (60-110 mins cycling at 90% VT). Additionally, in agreement with Da Boit
et al. (44) albeit during w-to-w exercise in the moderate-intensity domain (i.e. transitions from $45 \% \mathrm{VT}$ to $90 \% \mathrm{VT}$), Williams et al. (45) reported a 40% reduction in $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}(45 \mathrm{~s}$ to 25 s) in healthy untrained young males subsequent to 4 weeks of HIIT ($8-121 \mathrm{~min}$ cycling intervals at $110 \% \mathrm{WR}_{\text {max }}$ interspersed by 1 min of unloaded cycling) .

In the present study the observed speeding of V_{2} kinetics occurred without changes in the adjustment of muscle deoxygenation suggesting that these training-induced reductions in $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ could partly be due to an improvement in microvascular O_{2} delivery and/or enhanced intracellular O_{2} utilization. Similarly, we have recently reported that the accelerated $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ responses during transitions to moderate-intensity exercise following both HIIT and MICT in T2D were accompanied by no changes in [$\mathrm{HHb}+\mathrm{Mb}$] kinetics and with a simultaneous reduction in the normalized $\Delta[\mathrm{HHb}+\mathrm{Mb}] / \Delta \dot{\mathrm{V}} \mathrm{O}_{2}$ ratio, indicative of an increase in O_{2} delivery relative to utilization within the microvasculature (22). These findings are also in agreement with Williams et al. (45) who showed in healthy individuals that the enhanced $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ upon transition to w-to-w exercise in the moderate-intensity domain following HIIT was induced without changes in the adjustment of local muscle deoxygenation. It is possible that training enhanced blood flow kinetics and local blood flow distribution contributed to the faster $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics. In this regard, substantial evidence exists to suggest that T 2 D is associated with impairments in the dynamic response of vasodilation $(13,16)$ and matching of capillary blood flow to metabolism (46) in contracting myocytes, while a short term continuous endurance training intervention enhances leg vascular conductance kinetics at low contractile intensities, at least in females with T2D (47). This is consistent with previous reports of healthy populations showing faster conduit artery blood flow kinetics subsequent to a continuous aerobic training intervention (48).

Effect of exercise training on $\dot{V} O_{2} A_{s}$ during high-intensity exercise of the w-to-w transition
Alongside reductions in $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$, both training interventions also significantly reduced the amplitude of the $\dot{\mathrm{V}}{ }_{2}$ slow component $\left(\dot{\mathrm{VO}}_{2} \mathrm{~A}_{\mathrm{s}}\right)$ during the high-intensity bout of the w-to-w transition at the same 3-week
time point and remained that way until the end of the interventions. This is in contrast to findings in healthy individuals, whereby 2 weeks (i.e. 6 exercise sessions) of either RST or MICT did not elicit any changes in the $\dot{\mathrm{V}}_{2} \mathrm{~A}_{\mathrm{s}}$ during severe-intensity work-to-work transitions despite eliciting significant reductions in $\dot{\mathrm{VO}}_{2} \tau_{\mathrm{p}}$ (44). However, during transitions from unloaded to severe-intensity exercise, Bailey et al. (40) reported that only 2 weeks of RST (4-7, 30 s 'all-out' sprints interspersed by 4 min rest), but not MICT (cycling at 90% VT for a duration that resulted in an equal work volume to RST), were sufficient to reduce $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ in healthy individuals. The fact that $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ is larger in severe-intensity transitions initiated from a resting baseline compared with a moderate-intensity baseline might suggest the potential to reduce $\mathrm{V}_{2} \mathrm{~A}_{\mathrm{s}}$ in the former, is likely larger. Therefore, authors suggested that a longer duration training programme may be needed to allow for training induced adaptations in the $\dot{\mathrm{VO}}_{2} \mathrm{~A}_{\mathrm{s}}$ during the moderate to severe-intensity w-to-w transitions (44). On the other hand, in agreement with our findings, 6 weeks of both HIIT ($20 \times 1-\mathrm{min}$ at $90 \% \dot{\mathrm{~V}}_{2 \text { peak }}$ interspersed by 60 s rest) or continuous aerobic training (30 mins at $60 \% \dot{\mathrm{~V}}_{2 \text { peak }}$) significantly decreased the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ (from 0.41 to $0.30 \mathrm{~L} . \mathrm{min}^{-1}$; and from 0.38 to $0.29 \mathrm{~L} . \mathrm{min}^{-1}$, respectively) during severe-intensity exercise initiated from an unloaded cycling baseline in healthy populations (43).

The exercise-induced changes in the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ herein can be, at least partially, attributable to adaptations in the skeletal muscle properties given the working skeletal muscle accounts for $\sim 80 \%$ of the $\dot{\mathrm{V}}_{2} \mathrm{~A}_{\mathrm{s}}$ (49). In this regard, in individuals with T2D, short-term continuous aerobic training has been shown to significantly increase oxidative enzyme activity and mitochondrial size and protein content (50). On the other hand, 2 weeks of low-volume HIIT also increased mitochondrial oxidative activity (51) and, stimulated activity of peroxisome-proliferator activated Υ coactivator (PGC-1 α), shown to regulate mitochondrial content and respiration in diabetic skeletal muscle.

We had hypothesized that HIIT would speed $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ to a greater extent than MICT given that during HIIT a greater proportion of type II muscle fibers are recruited during the repeated intervals above the VT. This
would induce greater oxidative enzyme adaptations (23) compared with MICT, that predominantly involves the recruitment of Type I oxidative muscle fibers. However, this was not the case herein, as both interventions speeded $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$, (as well as reduced the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$) by a magnitude not different among them. Importantly, participants herein were exercising at a lower relative exercise intensity at each testing timepoint throughout the interventions compared with pretraining, which likely reduced the proportion of type II fibers recruited. Similarly, in healthy populations, both continuous endurance training and HIIT interventions that provide sufficient stimulus for adaptation have also been shown to be equally effective at speeding $\dot{\mathrm{V}}_{2}$ kinetics during high-intensity transitions initiated from a moderate- intensity (44) or resting (43) baseline, as well as during moderate-intensity transitions initiated from a resting baseline (41). As herein, in these studies participants used the same absolute power output during exercise transitions at all testing time points. Thus, it is plausible that in the present study both training interventions provoked rapid increases in the oxidative capacity of Type I and II fibers and/or stimulated phenotypical shifts in type II muscle fibers, or indeed mechanism intrinsic to individual muscle fibers, and as such improved mitochondrial function or respiratory capacity. Such improvements would plausibly serve to improve metabolic stability, and subsequently negate the need to recruit higher level glycolytic fibers and thus, reducing the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$.

Effect of exercise training on $\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}$ during moderate-intensity exercise of the w-to-w transition

Consistent with findings from our recent companion paper (22), HIIT and MICT accelerated the $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics during the moderate-intensity exercise transition after 3 weeks of training with no additional changes thereafter, while there were no changes in any $\dot{\mathrm{V}} \mathrm{O}_{2}$ parameters in the control group. In addition, muscle deoxygenation kinetics responses were not altered throughout the intervention, suggestive of an improvement in the balance of O_{2} delivery and utilization being a likely underlying mechanism of the accelerated $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics. Indeed, it is likely that the training-enhanced $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics and possibly the metabolic/fatiguability of muscle during the moderate-intensity baseline, contributed to speeding the $\dot{\mathrm{V}} \mathrm{O}_{2}$
kinetics of the high-intensity transition and reducing the fatigue-related and time-dependent increase in motor unit recruitment which underpins the slow component of $\dot{\mathrm{V}} \mathrm{O}_{2}$ during high-intensity exercise.

Limitations

A number of limitations of the present study must be acknowledged. First, the NIRS-derived findings herein relate to a single muscle, the VL, and therefore, interpretation of these data is limited to the site of interrogation (i.e. superficial sample of the VL). The established heterogeneity extant within a single muscle in terms of vascularity and fiber type, fiber recruitment, vascular control, and blood flow (52), likely extends to the VL, as well as the temporal and spatial heterogeneity in NIRS-derived responses extant both among and within muscles (53). Second, five participants did not complete the required 6 min of high-intensity cycling exercise during the w-to-w transitions at the pre-training time point. However, we believe this had little influence on the interpretation of our findings given that all participants showed a clear $\dot{\mathrm{V}}_{2}$ slow component phase, they were similarly distributed among groups (2-3 in each group) and only physiological responses collected over the same period during the subsequent time points were analyzed. In this regard, future studies should attempt to identify each individual's critical power to confirm that high-intensity exercise transitions were carried out within the same intensity domain for all participants (i.e. heavy or severe domain). Third, while in 14 responses (from 9 participants) a small $\dot{\mathrm{V}}_{2}$. slow component phase was observed during the moderate-intensity transitions, these participants were also similarly distributed among groups (3 in each group), thus, the influence on the interpretation of the current findings is likely minor. Fourth, herein the $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component was estimated using a second exponential response (Eq 2), but it is also a common practice to identify the onset of the slow component by fitting a monoexponential equation (Eq1) up to the point where residuals deviate from Gaussian distribution. We therefore carried out additional analyses to identify the onset of the slow component in line with the latter method, and these estimates coincided very closely (not shown) with subsequent statistical outcomes unaffected. Finally, given that the current study is the first to report training-induced changes in $\dot{\mathrm{V}}_{2}$ kinetics during high-intensity w-to-w transitions in T2D, the overall trial was powered to
detect changes in $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}$ (26), so, we cannot exclude the possibility that the limited number of participants that completed the study precluded the observation of additional benefits in $\dot{\mathrm{V}}_{2}$ kinetics beyond the $3^{\text {rd }}$ week of training.

Conclusions

The present study primarily demonstrated that both HIIT and MICT are safe and effective interventions that accelerate the $\dot{\mathrm{V}} \mathrm{O}_{2}$ kinetics response during high-intensity exercise initiated from an elevated baseline in individuals with uncomplicated T2D. Both forms of training induced a reduction in the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ and an acceleration of $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ without changes in $[\mathrm{HHb}+\mathrm{Mb}]$ kinetics responses. Improvements in O_{2} delivery during exercise are likely to have contributed to the observed reduction in $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ with training, while the reduction in the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$ may have been caused by exercise-induced changes in skeletal muscle properties and motor unit recruitment patterns. From a practical perspective, investigating the training effects on the w-to-w protocol is of great relevance as it mimics the abrupt metabolic transitions akin to those in daily life such as abrupt walking/running/stair climbing velocity changes when for instance, people need to arrive on time to a place or an appointment. Moreover, individuals with T2D are being encouraged to actively commute to work by healthcare practitioners given the effectiveness of active commuting to improve body composition and cardiovascular health. In this regard, when people cycle to work, sudden changes in gradient and/or speed also mimic the w-to-w protocol investigated in the present study. Furthermore, given individuals with T2D perceive even light to moderate exercise as being more difficult than healthy counterparts (42), the perception of these w-to-w transitions is also likely harder which can ultimately result in a more sedentary lifestyle. Therefore, the present study yields promising results supporting the efficacy of time-saving lowvolume HIIT in eliciting increases in exercise tolerance given a faster provision of aerobic metabolism will serve to reduce muscle fatigue during abrupt w-to-w transitions.

Grants

This publication has emanated from research conducted with the financial support of the Health Research Board (Grant No HRA_POR/2073/274).

Disclosures

No conflicts of interest, financial or otherwise, are declared by the authors.

Author Contributions

N.G., J.R., D.O., S.G., and M.E. conceived and designed research; N.G., A.M., D.C., A.N., and J.R. performed experiments; N.G., A.M., and M.E. analyzed data; N.G., A.M., S.G., and M.E. interpreted results of experiments; N.G. and M.E. prepared figures; N.G. and M.E. drafted manuscript; N.G., A.M., D.C., A.N., J.R., D.O., S.G., and M.E. edited and revised manuscript; N.G., A.M., D.C., A.N., J.R., D.O., S.G., and M.E. approved final version of manuscript.

REFERENCES

1. Hughson RL, and Morrissey M. Delayed kinetics of respiratory gas exchange in the transition from prior exercise. J Appl Physiol Respir Environ Exerc Physiol 52: 921-929, 1982.
2. Goulding RP, Roche DM, and Marwood S. Elevated baseline work rate slows pulmonary oxygen uptake kinetics and decreases critical power during upright cycle exercise. Physiol Rep 6: e13802, 2018.
3. Wilkerson DP, and Jones AM. Effects of baseline metabolic rate on pulmonary O2 uptake on-kinetics during heavy-intensity exercise in humans. Respir Physiol Neurobiol 156: 203-211, 2007.
4. DiMenna FJ, Wilkerson DP, Burnley M, and Jones AM. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline. J Appl Physiol (1985) 105: 538-546, 2008.
5. Nederveen JP, Keir DA, Love LK, Rossiter HB, and Kowalchuk JM. Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate. Respir Physiol Neurobiol 235: 62-70, 2017.
6. Barstow TJ, Jones AM, Nguyen PH, and Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol (1985) 81: 1642-1650, 1996.
7. Gildea N, Rocha J, O'Shea D, Green S, and Egaña M. Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes. Eur J Appl Physiol 121: 409-423, 2021.
8. Mac Ananey O, Malone J, Warmington S, O'Shea D, Green S, and Egaña M. Cardiac output is not related to the slowed o2 uptake kinetics in type 2 diabetes. Med Sci Sports Exerc 43: 935-942, 2011.
9. O'Connor E, Green S, Kiely C, O'Shea D, and Egana M. Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise. J Appl Physiol (1985) 118: 1031-1039, 2015.
10. O'Connor E, Kiely C, O'Shea D, Green S, and Egaña M. Similar level of impairment in exercise performance and oxygen uptake kinetics in middle-aged men and women with type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 303: R70-76, 2012.
11. Kiely C, Rocha J, O'Connor E, O'Shea D, Green S, and Egana M. Influence of menopause and Type 2 diabetes on pulmonary oxygen uptake kinetics and peak exercise performance during cycling. Am J Physiol Regul Integr Comp Physiol 309: R875-883, 2015.
12. Bauer TA, Reusch JE, Levi M, and Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care 30: 2880-2885, 2007.
13. Kiely C, O'Connor E, O'Shea D, Green S, and Egaña M. Hemodynamic responses during graded and constant-load plantar flexion exercise in middle-aged men and women with type 2 diabetes. J Appl Physiol (1985) 117: 755-764, 2014.
14. Gildea N, Rocha J, McDermott A, O'Shea D, Green S, and Egaña M. Influence of type 2 diabetes on muscle deoxygenation during ramp incremental cycle exercise. Respir Physiol Neurobiol 269: 103258, 2019.
15. Rocha J, Gildea N, O'Shea D, Green S, and Egaña M. Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes. J Appl Physiol (1985) 127: 1140-1149, 2019.
16. MacAnaney O, Reilly H, O'Shea D, Egaña M, and Green S. Effect of type 2 diabetes on the dynamic response characteristics of leg vascular conductance during exercise. Diab Vasc Dis Res 8: 12-21, 2011.
17. Brandenburg SL, Reusch JE, Bauer TA, Jeffers BW, Hiatt WR, and Regensteiner JG. Effects of exercise training on oxygen uptake kinetic responses in women with type 2 diabetes. Diabetes Care 22: 1640-1646, 1999.
18. Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, and Egaña M. Effects of exercise training and sex on dynamic responses of O2 uptake in type 2 diabetes. Appl Physiol Nutr Metab 2020.
19. Macananey O, O'Shea D, Warmington SA, Green S, and Egaña M. Gymnasiumbased unsupervised exercise maintains benefits in oxygen uptake kinetics obtained following supervised training in type 2 diabetes. Appl Physiol Nutr Metab 37: 599-609, 2012.
20. Williams CJ, Gurd BJ, Bonafiglia JT, Voisin S, Li Z, Harvey N, Croci I, Taylor JL, Gajanand T, Ramos JS, Fassett RG, Little JP, Francois ME, Hearon CM, Jr., Sarma S, Janssen S, Van Craenenbroeck EM, Beckers P, Cornelissen VA, Pattyn N, Howden EJ, Keating SE, Bye A, Stensvold D, Wisloff U, Papadimitriou I, Yan X, Bishop DJ, Eynon N, and Coombes JS. A Multi-Center Comparison of $\mathrm{O}(2$ peak) Trainability Between Interval Training and Moderate Intensity Continuous Training. Front Physiol 10: 19, 2019.
21. Thomas N, Alder E, and Leese GP. Barriers to physical activity in patients with diabetes. Postgrad Med J 80: 287-291, 2004.
22. Gildea N, McDermott A, Rocha J, O'Shea D, Green S, and Egaña M. Time-course of $\dot{V o}(2)$ kinetics responses during moderate-intensity exercise subsequent to HIIT versus moderate-intensity continuous training in type 2 diabetes. J Appl Physiol (1985) 130: 1646-1659, 2021.
23. Gjøvaag TF, and Dahl HA. Effect of training with different intensities and volumes on muscle fibre enzyme activity and cross sectional area in the m. triceps brachii. Eur J Appl Physiol 103: 399-409, 2008.
24. McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, Sheppard J, and Burke LM. Defining Training and Performance Caliber: A Participant Classification Framework. Int J Sports Physiol Perform 1-15, 2022.
25. Glass S, and Dwyer GB. American College of Sports Medicine. ACSM'S Metabolic

Calculations Handbook. Philadelphia, PA: Lippincott Williams \&
Wilkins, 2007.
26. Gildea N, McDermott A, Rocha J, O'Shea D, Green S, and Egaña M. Time course of changes in Vo(2peak) and $\mathrm{O}(2)$ extraction during ramp cycle exercise following HIIT versus moderate-intensity continuous training in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 320: R683-r696, 2021.
27. Rowlands AV, Thomas PW, Eston RG, and Topping R. Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Med Sci Sports Exerc 36: 518-524, 2004.
28. Beaver WL, Wasserman K, and Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2020-2027, 1986.
29. Wasserman K, and McIlroy MB. DETECTING THE THRESHOLD OF ANAEROBIC METABOLISM IN CARDIAC PATIENTS DURING EXERCISE. Am J Cardiol 14: 844-852, 1964.
30. Burnley M, Doust JH, and Jones AM. Time required for the restoration of normal heavy exercise VO2 kinetics following prior heavy exercise. J Appl Physiol 101: 1320-1327, 2006.
31. Keir DA, Pogliaghi S, and Murias JM. The Respiratory Compensation Point and the Deoxygenation Break Point Are Valid Surrogates for Critical Power and Maximum Lactate Steady State. Med Sci Sports Exerc 50: 2375-2378, 2018.
32. Ferrari M, Muthalib M, and Quaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci 369: 4577-4590, 2011.
33. Keir DA, Murias JM, Paterson DH, and Kowalchuk JM. Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters. Exp Physiol 99: 1511-1522, 2014.
34. Murias JM, Spencer MD, Kowalchuk JM, and Paterson DH. Influence of phase I duration on phase II VO2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol 301: R218-224, 2011.
35. Wilkerson DP, Koppo K, Barstow TJ, and Jones AM. Effect of work rate on the functional 'gain' of Phase II pulmonary O2 uptake response to exercise. Respir Physiol Neurobiol 142: 211-223, 2004.
36. DeLorey DS, Kowalchuk JM, and Paterson DH. Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise. J Appl Physiol (1985) 95: 113-120, 2003.
37. Ferreira LF, Lutjemeier BJ, Townsend DK, and Barstow TJ. Dynamics of skeletal muscle oxygenation during sequential bouts of moderate exercise. Exp Physiol 90: 393-401, 2005.
38. Murias JM, Spencer MD, Delorey DS, Gurd BJ, Kowalchuk JM, and Paterson DH. Speeding of VO2 kinetics during moderate-intensity exercise subsequent to heavy-intensity exercise is associated with improved local O2 distribution. J Appl Physiol 111: 1410-1415, 2011. 39. Demarle AP, Slawinski JJ, Laffite LP, Bocquet VG, Koralsztein JP, and Billat VL. Decrease of $\mathrm{O}(2)$ deficit is a potential factor in increased time to exhaustion after specific endurance training. J Appl Physiol (1985) 90: 947-953, 2001.
40. Bailey SJ, Wilkerson DP, Dimenna FJ, and Jones AM. Influence of repeated sprint training on pulmonary O 2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol (1985) 106: 1875-1887, 2009.
41. McKay BR, Paterson DH, and Kowalchuk JM. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol (1985) 107: 128-138, 2009.
42. Billat VL, Mille-Hamard L, Demarle A, and Koralsztein JP. Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol 87: 496-505, 2002.
43. Berger NJ, Tolfrey K, Williams AG, and Jones AM. Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38: 504-512, 2006.
44. Da Boit M, Bailey SJ, Callow S, Dimenna FJ, and Jones AM. Effects of interval and continuous training on O2 uptake kinetics during severe-intensity exercise initiated from an elevated metabolic baseline. J Appl Physiol (1985) 116: 1068-1077, 2014.
45. Williams AM, Paterson DH, and Kowalchuk JM. High-intensity interval training speeds the adjustment of pulmonary O 2 uptake, but not muscle deoxygenation, during moderate-
intensity exercise transitions initiated from low and elevated baseline metabolic rates. J Appl Physiol (1985) 114: 1550-1562, 2013.
46. Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, and Poole DC. Effects of Type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol Heart Circ Physiol 291: H2439-2444, 2006.
47. Green S, Kiely C, O'Connor E, Gildea N, O'Shea D, and Egaña M. Differential effects of sex on adaptive responses of skeletal muscle vasodilation to exercise training in type 2 diabetes. J Diabetes Complications 36: 108098, 2022.
48. Shoemaker JK, Phillips SM, Green HJ, and Hughson RL. Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res 31: 278286, 1996.
49. Poole DC, Barstow TJ, McDonough P, and Jones AM. Control of oxygen uptake during exercise. Med Sci Sports Exerc 40: 462-474, 2008.
50. Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, van de Weijer T, Sels JP, Schrauwen P, and Hesselink MK. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59: 572-579, 2010.
51. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, and Gibala MJ. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol (1985) 111: 1554-1560, 2011.
52. Koga S, Poole DC, Fukuoka Y, Ferreira LF, Kondo N, Ohmae E, and Barstow TJ. Methodological validation of the dynamic heterogeneity of muscle deoxygenation within the quadriceps during cycle exercise. Am J Physiol Regul Integr Comp Physiol 301: R534-541, 2011.
53. Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, and Koga S. Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity. J Appl Physiol (1985) 119: 1313-1319, 2015.

Figure captions

Figure 1. Representative time course of changes for the adjustment in normalized oxygen uptake ($\mathrm{V}_{2} ;$ open circles) during the work-to-work cycling transitions for individuals in the moderate-intensity continuous training (MICT), high-intensity interval training (HIIT) and non-exercising control groups. The vertical line illustrates the abrupt transition to the higher work-rate. The continuous black lines of best fit illustrate the primary phase of the $\dot{\mathrm{V}}{ }_{2}$ response. Note the relatively faster time constant of the primary phase of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ response $\left(\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}\right)$ and a reduced $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component beyond week 3 of training in the participants from the HIIT and MICT groups, while $\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}$ and $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component are not affected by training in the participant from the control group.

Figure 2. Individual time course of changes in the time constant of the primary phase of the oxygen uptake $\left(\dot{\mathrm{V}}_{2} \tau_{\mathrm{p}}\right)$ and amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component $\left(\dot{\mathrm{VO}}_{2} \mathrm{~A}_{\mathrm{s}}\right)$ in the moderate-intensity continuous training (MICT, panels A and D; $n=11$), high-intensity interval training (HIIT, panels B and E; $n=8$) and non-exercising control groups (panels C and $\mathrm{F} ; n=9$). Thin lines represent individual participants and thick lines, the mean change in each group. A two-factor (time vs group) mixed ANOVA was used for the analysis.

* Significantly different from pretraining $(P<0.05)$.

Figure 3. Representative time course of changes for the adjustment in normalized deoxygenated hemoglobin and myoglobin concentration $(\Delta[\mathrm{HHb}+\mathrm{Mb}]$; open circles) during the work-to-work cycling transitions for representative individuals in the moderate-intensity continuous training (MICT), highintensity interval training (HIIT) and non-exercising control groups. The vertical line illustrates the abrupt transition to the higher work-rate. The continuous grey lines of best fit illustrate the primary phase of the $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ response. Note the time constant of the primary phase of the $\Delta[\mathrm{HHb}+\mathrm{Mb}]$ response $\left(\Delta[\mathrm{HHb}+\mathrm{Mb}] \tau_{\mathrm{p}}\right)$ is not affected by training in any of the three group.

Fig 1

MICT (wk 6)

Time (s)

HIIT (wk 3)

HIIT (wk 6)

HIIT (Post)

Control (Pre)

Control (wk 6)

Control (wk 9)

Fig 2

HIIT

D
MICT

Table 1. Physical characteristics, pretraining peak exercise values, and activity levels.

	MICT	HIIT	Control
n	11	8	9
Sex (male, female), n	7, 4	6,2	4, 5
Age, yr	54 ± 10	51 ± 10	54 ± 9
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	31.0 ± 5.7	28.8 ± 3.2	30.5 ± 3.6
Time since diabetes diagnosis, yr	6.6 ± 3.7	6.8 ± 3.7	6.6 ± 3.3
$\mathrm{HbA}_{1 \mathrm{c}}$, \%	6.9 ± 0.5	7.3 ± 0.5	6.8 ± 1.0
Fat layer of VL, mm	7.9 ± 4.2	6.5 ± 2.7	8.6 ± 3.2
Diabetes medication			
Diet only, n		1	1
Metformin, n	9	7	6
Sulfonylurea, n	2	3	2
DPP-4 inhibitor, n			2
GLP-1 analogues, n	1		1
Anti-hypertensive medication			
Angiotensin converting enzyme inhibitor, n		1	
Angiotensin II receptor blocker, n	1		1
Statins, n	5	3	3
Aspirin, n	3	1	2
$\mathrm{PO}_{\text {peak, }}$, W	160 ± 54	198 ± 41	148 ± 49
PO@ 050%, W	126 ± 43	161 ± 31	115 ± 36
PO@ 80\% VT, W	74 ± 27	$99 \pm 17^{* \dagger}$	66 ± 20
Habitual physical activity			
Inactive, h /day	17.4 ± 2.0	17.4 ± 2.9	17.9 ± 1.9
Light, $\mathrm{h} /$ day	5.8 ± 1.7	5.8 ± 2.6	5.4 ± 1.2
MVPA, h/day	0.8 ± 0.7	0.8 ± 0.3	0.7 ± 0.9

Data are mean \pm SD. $n=$ no. of participants; MICT, moderate-intensity continuous training; HIIT, high-intensity interval training; BMI, body mass index; HbAlc, glycosylated haemoglobin; VL, vastus lateralis; DPP-4, Dipeptidyl-peptidase 4; GLP-1, Glucagon-like peptide 1. PO, power output; VT, ventilatory threshold; MVPA, moderate-to-vigorous physical activity. A one-way ANOVA was used for the analysis.

* Significantly different than Control $(P<0.05)$.
\dagger Significantly different than MICT $(P<0.05)$.

Table 2. Dynamic response characteristics of $\dot{\mathrm{V}} \mathrm{O}_{2}$ during moderate-intensity and highintensity cycling exercise of the work-to-work transitions for the MICT, HIIT and Control groups.

	Pretraining	Week 3	Week 6	Week 9	Posttraining
Moderate intensity					
Baseline $\dot{\mathrm{V}}_{\mathrm{O}}^{2}, \mathrm{~L} / \mathrm{min}$					
MICT ${ }^{\text {a }}$	0.94 ± 0.21	0.94 ± 0.17	0.94 ± 0.24	0.96 ± 0.21	0.92 ± 0.17
HIIT	0.80 ± 0.23	0.84 ± 0.16	0.83 ± 0.09	0.84 ± 0.14	0.83 ± 0.12
Control	0.77 ± 0.18	0.73 ± 0.10	0.77 ± 0.15	0.76 ± 0.15	0.74 ± 0.13
$\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{p}}, \mathrm{L} / \mathrm{min}$					
MICT	0.64 ± 0.32	0.60 ± 0.30	0.61 ± 0.24	0.61 ± 0.27	0.62 ± 0.29
HIIT ${ }^{\text {ab }}$	0.92 ± 0.29	0.88 ± 0.27	0.90 ± 0.18	0.87 ± 0.24	0.89 ± 0.18
Control	0.52 ± 0.22	0.55 ± 0.24	0.52 ± 0.25	0.51 ± 0.24	0.53 ± 0.22
$\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{G}_{\mathrm{p}}$ gain, mL. $\mathrm{min}^{-1} . \mathrm{W}^{-1}$					
MICT	9.8 ± 1.9	9.3 ± 1.7	9.8 ± 1.7	9.4 ± 1.1	9.6 ± 1.1
HIIT	10.2 ± 2.2	9.7 ± 1.8	10.1 ± 1.0	9.7 ± 1.5	10.0 ± 0.8
Control	9.3 ± 1.6	9.7 ± 1.2	9.2 ± 1.3	9.0 ± 0.9	9.5 ± 0.8
$\dot{\mathrm{V}} \mathrm{O}_{2} \tau_{\mathrm{p}}, \mathrm{s}$					
MICT	46 ± 12	$33 \pm 5^{*+}$	$29 \pm 11^{*+}$	$27 \pm 6^{*+}$	$28 \pm 6^{*+}$
HIIT	41 ± 7	$32 \pm 4^{*+}$	$27 \pm 4^{* *}$	$26 \pm 4^{*+7}$	$27 \pm 4^{*+1}$
Control	43 ± 7	41 ± 6	40 ± 7	41 ± 8	46 ± 7
$\mathrm{Cl}_{95} \dot{\mathrm{~V}}_{2} \tau_{\mathrm{p}}$, s					
MICT	4.4 ± 1.2	4.0 ± 1.5	4.1 ± 1.0	3.4 ± 1.1	3.3 ± 1.0
HIIT	4.4 ± 0.4	4.2 ± 1.1	4.0 ± 0.9	3.3 ± 0.9	3.8 ± 0.7
Control	4.0 ± 1.1	3.7 ± 0.5	3.8 ± 0.7	4.0 ± 1.2	4.8 ± 1.4
$\dot{\mathrm{V}}^{2} \tau_{\mathrm{p}}$, s					
MICT	46 ± 12	$33 \pm 5^{*+}$	$29 \pm 11^{*+}$	$27 \pm 6^{*+7}$	$28 \pm 6^{*+}$
HIIT	41 ± 7	$32 \pm 4^{* \dagger}$	$27 \pm 4^{* \dagger}$	$26 \pm 4^{* \top}$	$27 \pm 4^{* \dagger}$
Control	43 ± 7	41 ± 6	40 ± 7	41 ± 8	46 ± 7
High Intensity					
Baseline $\dot{\mathrm{V}}_{2}, \mathrm{~L} / \mathrm{min}$					
MICT	1.58 ± 0.39	1.55 ± 0.35	1.54 ± 0.38	1.57 ± 0.38	1.54 ± 0.36
HIIT $^{\text {a }}$	1.75 ± 0.31	1.73 ± 0.22	1.74 ± 0.19	1.71 ± 0.21	1.72 ± 0.20
Control	1.31 ± 0.32	1.30 ± 0.28	1.30 ± 0.31	1.31 ± 0.32	1.30 ± 0.30
$\dot{\mathrm{V}}^{2} \mathrm{~A}_{\mathrm{p}}, \mathrm{L} / \mathrm{min}$					
MICT	0.38 ± 0.15	0.44 ± 0.14	0.48 ± 0.16	0.47 ± 0.13	0.49 ± 0.16
HIIT	0.51 ± 0.17	0.54 ± 0.18	0.55 ± 0.16	0.56 ± 0.15	0.57 ± 0.13
Control	0.42 ± 0.15	0.41 ± 0.18	0.42 ± 0.15	0.40 ± 0.18	0.41 ± 0.21
$\dot{\mathrm{V}}^{2} \tau_{\mathrm{p}}$, s					
MICT	56 ± 9	$43 \pm 6^{* \top}$	$41 \pm 5^{*+}$	$41 \pm 7^{* \dagger}$	$39 \pm 7^{*+}$
HIIT	56 ± 8	$42 \pm 6^{*+}$	$40 \pm 5^{* *}$	$38 \pm 4^{* *}$	$37 \pm 4^{*+}$
Control	54 ± 6	53 ± 4	52 ± 6	52 ± 7	52 ± 6
$\mathrm{Cl}_{95} \dot{\mathrm{~V}}_{2} \tau_{\mathrm{p}}$, s					
MICT	8.6 ± 2.5	8.9 ± 2.4	9.0 ± 2.5	8.3 ± 2.4	8.8 ± 1.7
HIIT	8.8 ± 2.8	9.0 ± 2.7	8.8 ± 2.2	8.8 ± 2.6	8.3 ± 2.6

Control	8.8 ± 2.3	8.8 ± 2.3	9.0 ± 2.8	9.0 ± 2.5	8.8 ± 2.2
$\dot{\mathrm{V}}_{2} \mathrm{~A}_{\mathrm{s}}$, $\mathrm{L} / \mathrm{min}$					
MICT	0.17 ± 0.07	$0.09 \pm 0.05^{*+}$	$0.08 \pm 0.06^{*+}$	$0.08 \pm 0.06^{*+}$	$0.07 \pm 0.05^{* *}$
HIIT	0.18 ± 0.05	$0.09 \pm 0.08^{*+}$	$0.11 \pm 0.06^{* \dagger}$	$0.10 \pm 0.07^{* \dagger}$	$0.10 \pm 0.08^{* \dagger}$
Control	0.17 ± 0.05	0.17 ± 0.04	0.17 ± 0.06	0.17 ± 0.08	0.17 ± 0.05
$\dot{\mathrm{V}} \mathrm{O}_{2} \mathrm{~A}_{\mathrm{s}}$, \%					
MICT	32 ± 11	$16 \pm 5^{* \dagger}$	$16 \pm 9^{*+}$	$14 \pm 9^{*+}$	$14 \pm 9^{*+}$
HIIT	26 ± 5	$14 \pm 9^{*+}$	$16 \pm 7^{* \dagger}$	$15 \pm 8^{* i}$	$14 \pm 9^{*+}$
Control	29 ± 7	30 ± 8	29 ± 9	31 ± 9	32 ± 10
$\dot{\mathrm{V}}_{2} \mathrm{MRT}^{\text {M }}$ s					
MICT	115 ± 8	$73 \pm 10^{* *}$	$73 \pm 11^{*+}$	$70 \pm 14^{*+}$	$73 \pm 15^{* *}$
HIIT	112 ± 8	$76 \pm 10^{*+}$	$78 \pm 13^{* *}$	$80 \pm 14^{*+}$	$78 \pm 12^{*+}$
Control	114 ± 13	118 ± 12	120 ± 11	119 ± 9	121 ± 11
End-exercise $\dot{\mathrm{V}} \mathrm{O}_{2}$ gain, mL. $\mathrm{min}^{-1} . \mathrm{W}^{-1}$					
MICT	10.2 ± 0.9	9.6 ± 1.2	10.1 ± 1.7	9.9 ± 0.8	10.1 ± 1.0
HIIT	10.8 ± 2.1	10.0 ± 1.6	10.4 ± 0.9	10.1 ± 1.1	10.3 ± 0.7
Control	10.7 ± 1.4	10.8 ± 1.3	10.6 ± 1.3	10.4 ± 0.6	10.8 ± 1.5

Data are mean (SD). $\dot{\mathrm{V}}_{2}$, oxygen consumption; MICT, moderate-intensity continuous training ($n=11$ participants); HIIT, high-intensity interval training ($n=8$ participants); Control ($n=9$ participants); A, amplitude; τ, time constant , $\dot{\mathrm{V}} \mathrm{O}_{2}$, oxygen consumption; p, primary response; $\mathrm{CI}_{95}, 95 \%$ confidence interval; s, slow component phase; MRT, mean response time. A two-factor (time vs group) mixed ANOVA was used for the analysis.

* Significantly different from pretraining $(P<0.05)$; \dagger significantly different from Control (P $<0.05) ;{ }^{\text {a }}$ significantly different than Control $(P<0.05) ;{ }^{\text {b }}$ significantly different than MICT ($P<0.05$).

Table 3. Dynamic response characteristics of $[\mathrm{HHb}+\mathrm{Mb}]$ and TOI during moderateintensity and high-intensity cycling exercise of the work-to-work transitions for the MICT, HIIT and Control groups.

	Pretraining	Week 3	Week 6	Week 9	Posttraining
Moderate intensity					
Baseline $\Delta[\mathrm{HHb}+\mathrm{Mb}] \mu \mathrm{Mol.cm}$					
MICT	-67 ± 42	-72 ± 68	-84 ± 60	-60 ± 54	-62 ± 32
HIIT	-59 ± 44	-69 ± 35	-66 ± 41	-66 ± 38	-59 ± 35
Control	-55 ± 37	-52 ± 30	-53 ± 30	-60 ± 29	-54 ± 31
$\Delta[\mathrm{HHb}+\mathrm{Mb}] \mathrm{A}_{\mathrm{p}}, \mu$ Mol.cm					
MICT	93 ± 36	104 ± 57	95 ± 40	91 ± 54	89 ± 32
HIIT ${ }^{\text {a }}$	183 ± 109	170 ± 105	169 ± 108	181 ± 108	179 ± 111
Control	73 ± 59	71 ± 52	66 ± 54	68 ± 55	68 ± 44
$\Delta[\mathrm{HHb}+\mathrm{Mb}] \tau^{\text {c }}$, s					
MICT	29 ± 7	28 ± 5	27 ± 10	27 ± 12	27 ± 4
HIIT	23 ± 3	27 ± 5	23 ± 2	24 ± 9	23 ± 3
Control	26 ± 4	24 ± 6	26 ± 7	27 ± 5	26 ± 7
Primary phase $\Delta[\mathrm{HHb}+\mathrm{Mb}] / \Delta \dot{\mathrm{V}} \mathrm{O}_{2} \mu \mathrm{Mol.cm}.(\mathrm{~L} / \mathrm{min})$					
MICT	149 ± 84	158 ± 76	153 ± 71	141 ± 72	140 ± 66
HIIT	174 ± 129	193 ± 110	170 ± 119	186 ± 133	186 ± 141
Control	122 ± 86	110 ± 67	113 ± 85	114 ± 77	120 ± 74
Baseline TOI, \%					
MICT	71 ± 3	72 ± 5	72 ± 7	70 ± 5	73 ± 6
HIIT	71 ± 7	71 ± 8	71 ± 6	71 ± 9	72 ± 6
Control	71 ± 6	72 ± 7	71 ± 6	71 ± 7	74 ± 7
TOI A, \%					
MICT	4.1 ± 3.5	4.9 ± 3.9	3.2 ± 2.3	2.8 ± 3.8	3.2 ± 3.8
HIIT ${ }^{\text {ab }}$	7.1 ± 6.5	9.1 ± 5.9	7.1 ± 5.2	7.4 ± 6.0	8.6 ± 6.0
Control	2.9 ± 3.6	3.4 ± 3.4	2.9 ± 3.3	2.7 ± 2.4	3.2 ± 4.8
High Intensity					
Baseline $\Delta[\mathrm{HHb}+\mathrm{Mb}] \mu \mathrm{Mol.cm}$					
MICT	32 ± 42	31 ± 60	12 ± 47	36 ± 60	31 ± 46
HIIT ${ }^{\text {ab }}$	122 ± 130	123 ± 100	115 ± 130	125 ± 129	122 ± 137
Control	9 ± 68	23 ± 67	12 ± 84	7 ± 71	15 ± 50
$\Delta[\mathrm{HHb}+\mathrm{Mb}] \mathrm{A}_{\mathrm{p}}, \mu$ Mol.cm					
MICT	60 ± 38	68 ± 31	69 ± 32	75 ± 48	65 ± 26
HIIT	78 ± 42	77 ± 51	86 ± 44	91 ± 97	80 ± 32
Control	42 ± 49	33 ± 36	39 ± 51	39 ± 48	35 ± 42
$\Delta[\mathrm{HHb}+\mathrm{Mb}] \tau^{6}, \mathrm{~s}$					
MICT	30 ± 10	32 ± 5	33 ± 6	34 ± 7	33 ± 7
HIIT	32 ± 11	32 ± 11	32 ± 11	32 ± 9	32 ± 9
Control	28 ± 6	26 ± 11	29 ± 9	29 ± 13	28 ± 13
Primary phase $\Delta[\mathrm{HHb}+\mathrm{Mb}] / \Delta \dot{\mathrm{V}} \mathrm{O}_{2} \mu \mathrm{Mol.cm}$. (L/min)					
MICT	163 ± 111	148 ± 58	141 ± 66	149 ± 84	132 ± 67
HIIT	135 ± 93	110 ± 68	134 ± 100	136 ± 97	122 ± 64

Data are mean (SD). MICT, moderate-intensity continuous training ($n=11$ participants); HIIT, high-intensity interval training ($n=8$ participants); Control ($n=9$ participants); A, amplitude; τ, time constant, $\dot{\mathrm{VO}}_{2}$, oxygen consumption; p , primary response; s , slow component phase. $[\mathrm{HHb}+\mathrm{Mb}]$, deoxygenated haemoglobin and myoglobin concentration; τ, $[\mathrm{HHb}+\mathrm{Mb}]$, effective time constant $(\tau+\mathrm{TD})$; TOI, tissue oxygenation index. A two-factor (time vs group) mixed ANOVA was used for the analysis.
${ }^{a}$ significantly different than Control $(P<0.05)$; ${ }^{b}$ significantly different than MICT $(P<$ $0.05)$.

Low-volume HIIT and MICT speed VO﹎ $_{2}$ kinetics during high-intensity "work-to-work" cycling with a similar time-course in type 2 diabetes

METHODS

Adults with T2D randomized to 12-week supervised intervention (3 sessions/wk) of:

High-intensity "work to work" cycling (x2)
Typical V̇O $_{2}$ response \& key parameters

CONCLUSION

OUTCOME

High-intensity ($\mathbf{\Delta 5 0 \%}$) w-to-w transitions:

Both forms of training induced a rapid (by wk 3) acceleration of primary $\dot{\mathrm{V}} \mathrm{O}_{2}$ time constant and a reduction in the amplitude of the $\dot{\mathrm{V}} \mathrm{O}_{2}$ slow component despite training volume and time commitment being 50% lower in the HIIT group.

