The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Engineering >
Electronic & Electrical Eng >
Electronic & Electrical Eng (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/60699

Title: Speech Intelligibility prediction using a Neurogram Similarity Index Measure
Author: HINES, ANDREW
HARTE, NAOMI
Author's Homepage: http://people.tcd.ie/nharte
Keywords: Medical engineering
Speech Intelligibility
Auditory periphery model
Issue Date: 2012
Publisher: Elsevier
Citation: Andrew Hines, Naomi Harte, Speech Intelligibility prediction using a Neurogram Similarity Index Measure, Speech Communication, 54, 2, 2012, 306-320
Series/Report no.: Speech Communication;
54;
2;
Abstract: Discharge patterns produced by fibres from normal and impaired auditory nerves in response to speech and other complex sounds can be discriminated subjectively through visual inspection. Similarly, responses from auditory nerves where speech is presented at diminishing sound levels progressively deteriorate from those at normal listening levels. This paper presents a Neurogram Similarity Index Measure (NSIM) that automates this inspection process, and translates the response pattern differences into a bounded discrimination metric. Performance Intensity functions can be used to provide additional information over measurement of speech reception threshold and maximum phoneme recognition by plotting a test subject’s recognition probability over a range of sound intensities. A computational model of the auditory periphery was used to replace the human subject and develop a methodology that simulates a real listener test. The newly developed NSIM is used to evaluate the model outputs in response to Consonant-Vowel-Consonant (CVC) word lists and produce phoneme discrimination scores. The simulated results are rigorously compared to those from normal hearing subjects in both quiet and noise conditions. The accuracy of the tests and the minimum number of word lists necessary for repeatable results is established and the results are compared to predictions using the speech intelligibility index (SII). The experiments demonstrate that the proposed Simulated Performance Intensity Function (SPIF) produces results with confidence intervals within the human error bounds expected with real listener tests. This work represents an important step in validating the use of auditory nerve models to predict speech intelligibility.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/60699
Related links: http://dx.doi.org/10.1016/j.specom.2011.09.004
Appears in Collections:Electronic & Electrical Eng (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Speech Intelligibility prediction using a Neurogram Similarity Index Measure.pdfPublished (publisher's copy) - Peer Reviewed2.19 MBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback