The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Pharmacy and Pharmaceutical Sciences >
Pharmacy and Pharmaceutical Sciences >
Pharmacy and Pharmaceutical Sciences (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/57428

Title: Polystyrene nanoparticles activate ion transport in human airway epithelial cells
Author: RADOMSKI, MAREK
MCCARTHY, JOSEPH
Sponsor: Science Foundation Ireland
Author's Homepage: http://people.tcd.ie/radomskm
http://people.tcd.ie/mccartj5
Keywords: Nanotechnology
Pulmonary disorders
Issue Date: 2011
Publisher: Dove
Citation: McCarthy J, Gong X, Nahirney D, Duszyk M, Radomski MW, Polystyrene nanoparticles activate ion transport in human airway epithelial cells, International Journal of Nanomedicine, 2011, 6, 2011, 1343 - 1356
Series/Report no.: International Journal of Nanomedicine;
2011;
6;
Abstract: Background: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function. Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR) and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Clchannels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches. Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3 - secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles. Conclusion: This is the first study to identify the activation of ion channels in airway cells after exposure to polystyrene-based nanomaterials. Thus, polystyrene nanoparticles cannot be considered as a simple neutral vehicle for drug delivery for the treatment of lung diseases, due to the fact that they may have the ability to affect epithelial cell function and physiological processes on their own.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/57428
Related links: http://dx.doi.org/10.2147/IJN.S21145
Appears in Collections:Pharmacy and Pharmaceutical Sciences (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Polystyrene nanoparticles activate ion transport in human airway epithelial cells.pdfPublished (publisher's copy) - Peer Reviewed846.28 kBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback