The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Engineering >
Electronic & Electrical Eng >
Electronic & Electrical Eng (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/54521

Title: Inertial and bias effects in the rotational brownian motion of rodlike molecules in a uniaxial potential.
Author: COFFEY, WILLIAM THOMAS
Author's Homepage: http://people.tcd.ie/wcoffey
Keywords: Physical Chemistry
Brownian motion
rodlike molecules
Issue Date: 2011
Publisher: American Institute of Physics
Citation: Kalmykov YP, Titov SV, Coffey WT, Inertial and bias effects in the rotational brownian motion of rodlike molecules in a uniaxial potential., The Journal of chemical physics, 134, 4, 2011, 044530
Series/Report no.: The Journal of chemical physics;
134;
4;
Abstract: Inertial effects in the rotational Brownian motion in space of a rigid dipolar rotator (needle) in a uniaxial potential biased by an external field giving rise to asymmetry are treated via the infinite hierarchy of differential-recurrence relations for the statistical moments (orientational correlation functions) obtained by averaging the Euler–Langevin equation over its realizations in phase space. The solutions of this infinite hierarchy for the dipole correlation function and its characteristic times are obtained using matrix continued fractions showing that the model simultaneously predicts both slow overbarrier (or interwell) relaxation at low frequencies accompanied by intermediate frequency Debye relaxation due to fast near-degenerate motion in the wells of the potential (intrawell relaxation) as well as the high frequency resonance (Poley) absorption due to librations of the dipole moments. It is further shown that the escape rate of a Brownian particle from a potential well as extended to the Kramers turnover problem via the depopulation factor yields a close approximation to the longest (overbarrier) relaxation time of the system. For zero and small values of the bias field parameter h, both the dipole moment correlation time and the longest relaxation time have Arrhenius behavior (exponential increase with increasing barrier height). While at values of h in excess of a critical value however far less than that required to achieve nucleation, the Arrhenius behavior of the correlation time disappears.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/54521
Related links: http://dx.doi.org/10.1063/1.3524534
Appears in Collections:Electronic & Electrical Eng (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Inertial and bias effects in the rotational Brownian motion of rodlike molecules in a uniaxial potential.pdfPublished (publisher's copy) - Peer Reviewed483.98 kBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback