The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Dental Sciences >
Dental Science >
Dental Science (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/49880

Title: DIFFERENTIAL FILAMENTATION OF CANDIDA ALBICANS AND C. DUBLINIENSIS IS GOVERNED BY NUTRIENT REGULATION OF UME6 EXPRESSION
Author: COLEMAN, DAVID
MORAN, GARY
Sponsor: Health Research Board
Author's Homepage: http://people.tcd.ie/dcoleman
http://people.tcd.ie/gmoran
Keywords: Dentistry
Virology
Candida dubliniensis
Candida albicans
Issue Date: 2010
Citation: O'CONNOR L, CAPLICE N, COLEMAN DC, SULLIVAN DJ, MORAN GP, DIFFERENTIAL FILAMENTATION OF CANDIDA ALBICANS AND C. DUBLINIENSIS IS GOVERNED BY NUTRIENT REGULATION OF UME6 EXPRESSION, EUKARYOTIC CELL, 9, 2010, 1383 - 1397
Series/Report no.: EUKARYOTIC CELL
9
Abstract: Candida dubliniensis is closely related to Candida albicans; however, it is responsible for fewer infections in humans and is less virulent in animal models of infection. C. dubliniensis forms fewer hyphae in vivo, and this may contribute to its reduced virulence. In this study we show that, unlike C. albicans, C. dubliniensis fails to form hyphae in yeast extract-peptone-dextrose (YPD) medium supplemented with 10% (vol/vol) fetal calf serum (YPDS medium). However, C. dubliniensis filaments in water plus 10% (vol/vol) fetal calf serum (WS), and this filamentation is inhibited by the addition of peptone and glucose. Repression of filamentation in YPDS medium could be partly overcome by preculture in synthetic Lee's medium. Unlike C. albicans, inoculation of C. dubliniensis in YPDS medium did not result in increased UME6 transcription. However, >100-fold induction of UME6 was observed when C. dubliniensis was inoculated in nutrient-poor WS medium. The addition of increasing concentrations of peptone to WS medium had a dose-dependent effect on reducing UME6 expression. Transcript profiling of C. dubliniensis hyphae in WS medium identified a starvation response involving expression of genes in the glyoxylate cycle and fatty acid oxidation. In addition, a core, shared transcriptional response with C. albicans could be identified, including expression of virulence-associated genes including SAP456, SAP7, HWP1, and SOD5. Preculture in nutrient-limiting medium enhanced adherence of C. dubliniensis, epithelial invasion, and survival following coculture with murine macrophages. In conclusion, C. albicans, unlike C. dubliniensis, appears to form hyphae in liquid medium regardless of nutrient availability, which may account for its increased capacity to cause disease in humans.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/49880
Related links: http://dx.doi.org/10.1128/EC.00042-10
Appears in Collections:Dental Science (Scholarly Publications)

Files in This Item:

File Description SizeFormat
O'Connor 2010.pdfPublished (author's copy) - Peer Reviewed4.53 MBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback