The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

School of Physics >
Physics >
Physics (Scholarly Publications) >

Please use this identifier to cite or link to this item:

Title: Growth Models of Pure Supercooled Materials
Author: CHAN, HO-KEI
Author's Homepage:
Keywords: Physics
Issue Date: 2008
Citation: Ho-Kei Chan & Ingo Dierking, Growth Models of Pure Supercooled Materials, Physical Review E, 77, 3, 2008, 031610-1 - 031610-6
Series/Report no.: Physical Review E
Abstract: For a pure material, the dynamics of the growth of one phase in a supercooled other phase for the case of a shallow temperature quench is traditionally understood via a kinetic thermal diffusion equation model or a quasistatic Laplace equation model, if order-parameter details can be neglected. In the quasistatic model, the interfacial boundary temperature TR is equal to the phase transition temperature Tm. In the kinetic model, however, growth is driven by a nonzero interfacial undercooling Tm−TR. By assuming that the growth process occurs at small but finite, identical spatial steps, the growth laws for the cases of shallow and deep temperature quenches were derived analytically from the kinetic model in the limit of zero thermal diffusivity. For the case of a shallow temperature quench, it is shown that the apparent difference between the assumed interfacial boundary conditions of the quasistatic and the kinetic model does not exist.
Description: PUBLISHED
This paper presents an analytic derivation of two droplet growth laws which have been observed experimentally for a variety of condensed matter systems. The introduction of an additional length scale in the theoretical derivation solves the apparent contradiction between two conventional models for crystal growth.
Related links:
Appears in Collections:Physics (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Growth models.pdfPublished (publisher's copy) - Peer Reviewed109.85 kBAdobe PDFView/Open

This item is protected by original copyright

Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback