The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

School of Physics >
Physics >
Physics (Scholarly Publications) >

Please use this identifier to cite or link to this item:

Title: First principles studies of multiferroic materials
Name Grant Number

Author's Homepage:
Keywords: Physics
Issue Date: 2009
Citation: S. Picozzi and C. Ederer, 'First principles studies of multiferroic materials' in Psi-K Newsletter, 92, (8), 2009, pp 35 - 71
Series/Report no.: Psi-K Newsletter
Abstract: Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab-initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: a) proper multiferroics (where ferroelectricity is driven by hybridization or purely structural effects), with BiFeO3 as prototype material, and b) improper multiferroics (where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin, charge, or orbital ordering), with rare-earth manganites as prototypes. As for proper multiferroics, first-principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the class of improper multiferroics, ab-initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (i.e. in antiferromagnetic E-type HoMnO3), the magnetically-induced ferroelectric polarization can be as large as a few _C/cm2. The presented examples point the way to several possible avenues for future research: On the technological side, first-principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room-temperature. On the fundamental side, ab-initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.
Description: PUBLISHED
Access: OpenAccess
Appears in Collections:Physics (Scholarly Publications)

Files in This Item:

File Description SizeFormat
First Principles Studies of Multiferroic Materials.pdfpublished (author copy) peer-reviewed754.18 kBAdobe PDFView/Open

This item is protected by original copyright

Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback