The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Engineering >
Electronic & Electrical Eng >
Electronic & Electrical Eng (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/30627

Title: Effect of an oblique magnetic field on the superparamagnetic relaxation time
Author: COFFEY, WILLIAM THOMAS
KALYMYKOV, YURI PETROVICH
Author's Homepage: http://people.tcd.ie/wcoffey
Keywords: Condensed matter physics
Issue Date: 1995
Publisher: American Physical Society
Citation: Coffey, W.T., Crothers, D.S.F., Dormann, J.L., Geoghegan, L.J., Kalmykov, Yu.P., Waldron, J.T., Wickstead, A.W., 'Effect of an oblique magnetic field on the superparamagnetic relaxation time' in Physical Review B - Condensed Matter and Materials Physics, 52, 22, (1995), pp 15951-15965
Series/Report no.: Physical Review B - Condensed Matter and Materials Physics
52
22
Abstract: The effect of a constant magnetic field, applied at an angle to the easy axis of magnetization, on the Néel relaxation time of a single domain ferromagnetic particle (with uniaxial anisotropy) is studied by calculating the lowest nonvanishing eigenvalue 1 (the escape rate) of the appropriate Fokker-Planck equation using matrix methods. The effect is investigated by plotting 1 versus the anisotropy parameter for various values of and the ratio h=2, where is the external field parameter and 1 versus for various h values (for rotation of the magnetization vector M both in a plane and in three dimensions). If M rotates in a plane the curve of 1 versus is symmetric about =4 in the range 0<<2 and significant decrease in with increasing is predicted for large and. The maximum decrease in occurs at =4 whereupon increases again to the =0 value at =2. For rotation of M in three dimensions, the curve of 1 versus (0<<) is symmetric about =2. Thus the maximum decrease in again occurs at =4 with maximum increase to a value exceeding that at =0 (i.e., with the field applied along the polar axis with that axis taken as the easy axis), at =2 (field applied along the equator), the =0 value being again attained at =. The results are shown to be consistent with the behavior predicted by the Kramers theory of the rate of escape of particles over potential barriers. This theory when applied to the potential barriers for the equatorial orientation of the field for rotation in three dimensions yields a simple approximate formula for the escape rate which is in reasonable agreement with the exact 1 calculated from the Fokker-Planck equation. Pfeiffer's approximate formula for the barrier height as a function of [H. Pfeiffer, Phys. Status Solidi 122, 377 (1990)] is shown to be in reasonable agreement with our results. © 1995 The American Physical Society.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/30627
Appears in Collections:Electronic & Electrical Eng (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Effect of an.pdfpublished (publisher copy) peer-reviewed1.96 MBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback