The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Engineering >
Electronic & Electrical Eng >
Electronic & Electrical Eng (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/30567

Title: Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential
Author: COFFEY, WILLIAM THOMAS
KALYMYKOV, YURI PETROVICH
VIJ, JAGDISH KUMAR
Author's Homepage: http://people.tcd.ie/wcoffey
Keywords: Electronic & Electrical Engineering
Issue Date: 2005
Publisher: American Physical Society
Citation: Coffey, W.T., Kalmykov, Y.P., Titov, S.V., Vij, J.K., 'Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential' in Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72, 1, (2005), art. no. 011103
Series/Report no.: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
72
1
Abstract: The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of dipolar molecules rotating in an asymmetric double-well potential are evaluated using a fractional rotational diffusion equation (based on the diffusion limit of a fractal time random walk) for the distribution function of orientations of the molecules on the surface of the unit sphere. The calculation is the fractional analog of the Debye theory of orientational relaxation in the presence of external and mean field potentials (excluding inertial effects). Exact and approximate (based on the exponential separation for normal diffusion of the time scales of the intrawell and overbarrier relaxation processes associated with the bistable potential) solutions for the dielectric dispersion and absorption spectra are obtained. It is shown that a knowledge of the characteristic relaxation times for normal rotational diffusion is sufficient to predict accurately the anomalous dielectric relaxation behavior of the system for all time scales of interest. The model explains the anomalous (Cole-Cole-like) relaxation of complex dipolar systems, where the anomalous exponent differs from unity (corresponding to the normal dielectric relaxation), i.e., the relaxation process is characterized by a broad distribution of relaxation times (e.g., in glass-forming liquids).
Description: PUBLISHED
URI: http://hdl.handle.net/2262/30567
Appears in Collections:Electronic & Electrical Eng (Scholarly Publications)

Files in This Item:

File Description SizeFormat
Fractional rotational.pdfpublished (publisher copy) peer-reviewed489.5 kBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback