The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

School of Computer Science and Statistics >
Computer Science >
Computer Science Technical Reports >

Please use this identifier to cite or link to this item:

Title: Sequential Genetic Search for Ensemble Feature Selection
Author: Tsymbal, Alexey
Cunningham, Pádraig
Sponsor: Science Foundation Ireland
Keywords: Computer Science
Issue Date: 2005
Publisher: Trinity College Dublin, Department of Computer Science
Citation: Tsymbal, Alexey; Cunningham, Pádraig. 'Sequential Genetic Search for Ensemble Feature Selection'. - Dublin, Trinity College Dublin, Department of Computer Science, TCD-CS-2005-40, 2005, pp6
Series/Report no.: Computer Science Technical Report
Abstract: Ensemble learning constitutes one of the main directions in machine learning and data mining. Ensembles allow us to achieve higher accuracy, which is often not achievable with single models. One technique, which proved to be effective for constructing an ensemble of diverse classifiers, is the use of feature subsets. Among different approaches to ensemble feature selection, genetic search was shown to perform best in many domains. In this paper, a new strategy GAS-SEFS, Genetic Algorithm-based Sequential Search for Ensemble Feature Selection, is introduced. Instead of one genetic process, it employs a series of processes, the goal of each of which is to build one base classifier. Experiments on 21 data sets are conducted, comparing the new strategy with a previously considered genetic strategy for different ensemble sizes and for five different ensemble integration methods. The experiments show that GAS-SEFS, although being more time-consuming, often builds better ensembles, especially on data sets with larger numbers of features.
Appears in Collections:Computer Science Technical Reports

Files in This Item:

File Description SizeFormat
TCD-CS-2005-40.pdf253.02 kBAdobe PDFView/Open

This item is protected by original copyright

Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback