The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

School of Computer Science and Statistics >
Computer Science >
Computer Science Technical Reports >

Please use this identifier to cite or link to this item:

Title: Search Strategies for Ensemble Feature Selection in Medical Diagnostics
Author: Tsymbal, Alexey
Cunningham, Pádraig
Sponsor: Science Foundation Ireland
Keywords: Computer Science
Issue Date: 2003
Publisher: Trinity College Dublin, Department of Computer Science
Citation: Tsymbal, Alexey; Cunningham, Pádraig. 'Search Strategies for Ensemble Feature Selection in Medical Diagnostics'. - Dublin, Trinity College Dublin, Department of Computer Science, TCD-CS-2003-22, 2003, pp6
Series/Report no.: Computer Science Technical Report
Abstract: The goal of this paper is to propose, evaluate, and compare four search strategies for ensemble feature selection, and to consider their application to medical diagnostics, with a focus on the problem of the classification of acute abdominal pain. Ensembles of learnt models constitute one of the main current directions in machine learning and data mining. Ensembles allow us to get higher accuracy, sensitivity, and specificity, which are often not achievable with single models. One technique, which proved to be effective for ensemble construction, is feature selection. Lately, several strategies for ensemble feature selection were proposed, including random subspacing, hill-climbing-based search, and genetic search. In this paper, we propose two new sequential-search-based strategies for ensemble feature selection, and evaluate them, constructing ensembles of simple Bayesian classifiers for the problem of acute abdominal pain classification. We compare the search strategies with regard to achieved accuracy, sensitivity, specificity, and the average number of features they select.
Appears in Collections:Computer Science Technical Reports

Files in This Item:

File Description SizeFormat
TCD-CS-2003-22.pdf51.63 kBAdobe PDFView/Open

This item is protected by original copyright

Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback