Show simple item record

dc.contributor.advisorMurray, James
dc.contributor.authorFLIS, EWELINA WERONIKA
dc.date.accessioned2020-12-15T15:54:49Z
dc.date.available2020-12-15T15:54:49Z
dc.date.issued2020en
dc.date.submitted2021
dc.identifier.citationFLIS, EWELINA WERONIKA, Identification of novel innate immune mechanisms regulating oesophageal adenocarcinoma (OAC) progression and bacterial infection, Trinity College Dublin.School of Biochemistry & Immunology, 2021en
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/94410
dc.descriptionAPPROVEDen
dc.description.abstractInflammation is an essential immune system response to pathogens, damaged cells and stress stimuli and has an essential role in tissue repair and regeneration. The inflammatory response is the coordinated activation of signalling pathway leading to immune cell recruitment into the site of infection and production of inflammatory mediators. In response to the recognition of microorganisms and sterile stressors, a multiprotein complex, called the inflammasome is formed. The inflammasome activates the highly pro-inflammatory cytokines IL-1β and IL-18 and induced programmed cell death-pyroptosis thus inducing inflammation. Despite the undeniable protective role of inflammation, increasing evidence shows that that deregulation in immune response or prolonged inflammation causes and advances many common diseases. Chronic inflammation plays a very important role in oesophageal adenocarcinoma (OAC) and its only known precursor, Barrett’s oesophagus (BO). Recent studies suggest that microbial dysbiosis in oesophagus could contribute to BO and increase the risk of OAC development. TLR2 is involved in the innate immune response to microbial pathogens and host-derived molecules.We assume that TLR2 upregulation will increase the sensitivity of oesophageal cells to bacteria thus leading to chronic inflammation. We show that BO and early-stage OAC cells were responsive to TLR2 stimulation and TLR2 neutralising antibody successfully inhibits TLR2-mediated chemokine production. Factors secreted from TLR2-activated oesophageal cells induce TLR2-mediated differentiation of murine macrophages into M2-like/TAM phenotype. We identify High Mobility Group Box 1 protein (HMGB1) as one of the factors secreted from TLR2-stimulated oesophageal adenocarcinoma cells. We show that extracellular HMGB1 can efficiently prime macrophages for inflammasome activation, upregulating caspase-11 and IL-1B. Findings suggest that HMGB1 is a potential target for early-stage OAC, and that blocking TLR2 signalling may limit HMGB1 release, inflammatory cell infiltration and inflammation during OAC progression. Inflammation is critical for tuberculosis (TB) pathogenesis. Numerous host innate immune responses are induced upon M.tuberculosis (Mtb), although their mechanisms and impact on mycobacterium are not well understood. It is estimated that about one-third of the global population is infected with Mtb. When the infection is not cleared it remains in a latent form for a long time and only 5-10% of infected individuals will develop active disease at some stage of their life. The inhibition of inflammation is the main survival strategy of Mtb. Nitric oxide and IL-1β play an important role in the host resistance to Mtb. Here we investigated the role of caspase-11 in Mtb infection. We first show that STAT1 activation, nitric oxide production and IL-1β expression in macrophages is mediated by caspase-11. The iNOS-induced nitric oxide production is regulated through IFNAR/JAK/STAT1 pathway. We also determined that Caspase-11 is required for restriction of Mtb proliferation in murine macrophages. As nitric oxide is well known to confine the growth of Mtb we hypothesise that Mtb-induced caspase-11 increases iNOS expression and nitric oxide production and is a crucial protein in the innate immune response to TB-induced pathogen. Inhibition of caspase-11 by mycobacteria could be a potential mechanism allowing Mtb proliferation in the host. Peptic ulcers are another example of the inflammation-related condition, caused by the interaction between bacterial and host factors and are often influenced by the presence of Helicobacter pylori infection or use of NSAIDs. This study demonstrates enhanced expression of caspase-4 in peptic ulcer patient biopsies, indicating that pyroptosis and non-canonical inflammasome activity may be processes involved in peptic ulcer disease. We show that primary murine macrophages infected with H. pylori upregulate caspase-11 (the orthologue of human caspase-4), activate caspase-1 and secrete IL-1β. Prostaglandin E2 inhibits caspase-4 mediated and indirectly caspase-1 driven pyroptosis probably through the limitation of DAMPs production. Overall, evidence is provided for a pathological role of caspase-4/11 in peptic ulcer disease and proposes that targeting caspase-4 or inhibiting pyroptosis may have therapeutic potential in the management of peptic ulcers.en
dc.language.isoenen
dc.publisherTrinity College Dublin. School of Biochemistry & Immunology. Discipline of Biochemistryen
dc.rightsYen
dc.subjectTLR2en
dc.subjectBarrett's oesophagusen
dc.subjectcaspase-11en
dc.subjectinflammationen
dc.subjectpeptic ulceren
dc.subjectHelicobacter pylori infectionen
dc.subjectMycobaterium tuberculosisen
dc.subjectoesophageal adenocarcinomaen
dc.titleIdentification of novel innate immune mechanisms regulating oesophageal adenocarcinoma (OAC) progression and bacterial infectionen
dc.typeThesisen
dc.contributor.sponsorMarie Curieen
dc.type.supercollectionthesis_dissertationsen
dc.type.supercollectionrefereed_publicationsen
dc.type.qualificationlevelDoctoralen
dc.identifier.peoplefinderurlhttps://tcdlocalportal.tcd.ie/pls/EnterApex/f?p=800:71:0::::P71_USERNAME:FLISEen
dc.identifier.rssinternalid222287en
dc.rights.ecaccessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record