Show simple item record

dc.contributor.authorLacey, Gerard
dc.date.accessioned2020-07-13T10:03:54Z
dc.date.available2020-07-13T10:03:54Z
dc.date.created25-27 Feb 2019en
dc.date.issued2019
dc.date.submitted2019en
dc.identifier.citationBruton, S., Lacey, G., Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation., 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 25-27 Feb 2019, Prague, Czech Republicen
dc.identifier.otherY
dc.identifier.urihttp://hdl.handle.net/2262/92985
dc.description.abstractHumans perform many complex tasks involving the manipulation of multiple objects. Recognition of the constituent actions of these tasks can be used to drive instructional training systems. The identities and poses of the objects used during such tasks are salient for the purposes of recognition. In this work, 3D object detection and registration techniques are used to identify and track objects involved in an everyday task of preparing a cup of tea. The pose information serves as input to an action classification system that uses Long-Short Term Memory (LSTM) recurrent neural networks as part of a deep architecture. An advantage of this approach is that it can represent the complex dynamics of object and human poses at hierarchical levels without the need for design of specific spatio-temporal features. By using such compact features, we demonstrate the feasibility of using the hyperparameter optimisation technique of Tree-Parzen Estimators to identify optimal hyperparameters as well as network architectures. The results of 83% recognition show that this approach is viable for similar scenarios of pervasive computing applications where prior scene knowledge exists.en
dc.language.isoenen
dc.rightsYen
dc.subjectAction Recognitionen
dc.subjectDeep Learningen
dc.subjectPose Estimationen
dc.titleRecognising Actions for Instructional Training using Pose Information: A Comparative Evaluation.en
dc.title.alternative14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.en
dc.typeConference Paperen
dc.contributor.sponsorIRCSET (OK)en
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/gjlacey
dc.identifier.rssinternalid218613
dc.rights.ecaccessrightsopenAccess
dc.subject.TCDThemeCreative Technologiesen
dc.subject.TCDTagComputer Vision and Image Processingen
dc.subject.TCDTagInformation technology in educationen
dc.subject.TCDTagPervasive Computingen
dc.identifier.orcid_id0000-0002-1923-6852
dc.status.accessibleNen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record