Show simple item record

dc.contributor.authorKennedy, John
dc.contributor.authorRice, Henry
dc.contributor.authorTrimble, Daniel
dc.contributor.authorGöransson, Peter
dc.contributor.authorDowling, Luke
dc.date.accessioned2020-06-12T11:33:11Z
dc.date.available2020-06-12T11:33:11Z
dc.date.issued2020
dc.date.submitted2020en
dc.identifier.citationRice, H.J., Kennedt, J., Göransson, P., Dowling, L. & Trimble, D. Design of a Kelvin cell acoustic metamaterial, Journal of Sound and Vibration, 472, 115167, 2020en
dc.identifier.otherY
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022460X19307308?via%3Dihub#!
dc.identifier.urihttp://hdl.handle.net/2262/92757
dc.descriptionPUBLISHEDen
dc.description.abstractAdvancements in 3D print technology now allow the printing of structured acoustic absorptive materials at appropriate microscopic scales and sample sizes. Optimisation of parameter sets associated with a Kelvin Cell structure have the potential to develop various metabehaviours in the associated acoustic responses. The repeatability of the fundamental cell unit also provide a route for the development of viable macro models to simulate built up structures based on detailed models of the individual cell units. This paper describes a process to model, print and test such a sample. Manufacturing restraints will initially guide the optimised design and introduce response uncertainties associated with surface finishes and critical geometric dimensions. A “micro to macro” model is developed using a full visco thermal acoustic model of a single cell to develop a frequency dependent cell transfer matrix. The transfer matrices for the repeated cells may then be combined until sufficient material depth is achieved and efficiently generate an absorptivity for the material layer. Two prints using different processes (digital light processing (DLP) and selective laser melting (SLM)) of nominally the same kelvin cell structure. For the metal print the model predicts the absorptivity well once an allowance is made for the surface roughness. The DLP has a smoother finish with a lower geometric fidelity; however the DLP sample is still well modelled by the process.en
dc.language.isoenen
dc.relation.ispartofseriesJournal of Sound and Vibration;
dc.relation.ispartofseries472;
dc.relation.ispartofseries115167;
dc.rightsYen
dc.subjectAcoustic metamaterialen
dc.subjectNoise controlen
dc.subjectAdditive manufactureen
dc.subject3D printingen
dc.titleDesign of a Kelvin cell acoustic metamaterialen
dc.typeJournal Articleen
dc.contributor.sponsorEuropean Union (EU)en
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/jkenned5
dc.identifier.peoplefinderurlhttp://people.tcd.ie/dtrimble
dc.identifier.peoplefinderurlhttp://people.tcd.ie/hrice
dc.identifier.rssinternalid217065
dc.identifier.doihttps://doi.org/10.1016/j.jsv.2019.115167
dc.relation.ecprojectidinfo:eu-repo/grantAgreement/EC/FP7/723367
dc.rights.ecaccessrightsopenAccess
dc.contributor.sponsorGrantNumber723367en
dc.subject.TCDThemeSmart & Sustainable Planeten
dc.subject.TCDTagAdditive Manufacturingen
dc.subject.TCDTagMathematical modellingen
dc.subject.TCDTagNOISE REDUCTIONen
dc.subject.TCDTagnoise modellingen
dc.identifier.orcid_id0000-0002-8639-9504
dc.status.accessibleNen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record