Show simple item record

dc.contributor.advisorBoland, Johnen
dc.contributor.authorMANNING, HUGHen
dc.date.accessioned2018-04-06T10:06:39Z
dc.date.available2018-04-06T10:06:39Z
dc.date.issued2018en
dc.date.submitted2018en
dc.identifier.citationMANNING, HUGH, An investigation of the electrical behaviours of metallic, semiconducting and core-shell nanowires, Trinity College Dublin.School of Chemistry.CHEMISTRY, 2018en
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/82740
dc.descriptionAPPROVEDen
dc.description.abstractFrom a device point of view, metallic nanowire networks provide a route to highly transparent, highly conductive, flexible, easy-to-fabricate and low-cost materials. The large-scale integration of these materials in commercial devices could revolutionise display, touch screen, as well as numerous emerging applications. To assess the true potential of metallic nanowire network systems, it is crucial to establish a complete understanding of their individual physical properties and how these properties affect performance of the network. This requires a part-to-whole consideration of the network, evaluating and characterising each aspect of the system, such as the ability of the nanowire to conduct electrical charge and the amount of electrical resistance at each of the nanowire junctions. Characterising these elements is a central goal of this thesis and critical to the development of high-performance transparent conductors based on metallic nanowire networks. In this work, experimentally reported literature data was matched with the optoelectronic performance described using an ab initio model derived from fundamental material properties, electrical equations and optical performance based on Mie scattering of light by small particles. The predictive power this model enables a material-by-design approach, whereby suitable systems can be prescribed for targeted technology applications. A further goal of this research is to engineer the coating of Ag nanowires to add new and novel functionality. One highly desirable response is the memristive behaviour demonstrated by the semiconducting TiO2 material. We show that 1 ?m long individual TiO2 nanowire devices display a continuum of resistance levels when electrically stressed; rather than a singular high- or low-resistance state most commonly found in resistive switching materials. This dynamic generation of charge carriers causes a memristive behaviour and allows an arbitrary number of conductance states to be defined in the device. Through a combination of optical and voltage pulses is also shown that single nanowire devices can demonstrate an associative memory effect whereby a significant enhancement of the current response is observed when both stimuli are applied simultaneously. The TiO2 element was incorporated into core-shell nanowires which combined a highly conductive Ag core with a TiO2 shell, shortening the active switching region to the nm scale. Ag nanowires are coated in sheaths of TiO2 of various crystalline qualities and contacted with both passive (Au) and active (Ag) electrodes to identify the ingredients necessary for engineering controllable resistive switching. It was found that a polycrystalline TiO2 shell and Ag electrodes allowed for controllable operation of bipolar and unipolar resistive switching regimes. The presence of both switching regimes is termed nonpolar resistive switching; this work demonstrates controllable nonpolar operation for the first time in a single nanowire system. The memory retention time could be selected by the magnitude of the current used to activate the device. This allowed for a short-term retention (up to 103 s) to be established in the bipolar state with long-term memory (> 106 s) demonstrated in the unipolar regime. ON/OFF ratios of 105 and 107 are demonstrated for bipolar and unipolar modes respectively. These results provide a foundation for engineering resistive switching behaviours for memory storage and hardware-based neuromorphic applications in core-shell nanowires.en
dc.publisherTrinity College Dublin. School of Chemistry. Discipline of Chemistryen
dc.rightsYen
dc.subjectsilveren
dc.subjecttitanium dioxideen
dc.subjectcore-shellen
dc.subjectnanowireen
dc.subjectresistive switchingen
dc.subjectmemristiveen
dc.subjectjunctionen
dc.subjectresistanceen
dc.subjecttransparenten
dc.subjectconductoren
dc.subjectMie theoryen
dc.titleAn investigation of the electrical behaviours of metallic, semiconducting and core-shell nanowiresen
dc.typeThesisen
dc.contributor.sponsorEuropean Research Council (ERC)en
dc.relation.referencesCatenacci, M. J.; Flowers, P. F.; Cao, C. Y.; Andrews, J. B.; Franklin, A. D.; Wiley, B. J. Journal of Electronic Materials 2017, 46, (7), 4596-4603.en
dc.relation.referencesFeynman, R. P. Engineering and science 1960, 23, (5), 22-36.en
dc.relation.referencesDu, H.; Wan, T.; Qu, B.; Cao, F.; Lin, Q.; Chen, N.; Lin, X.; Chu, D. ACS Applied Materials & Interfaces 2017, 9, (24), 20762-20770.en
dc.relation.referencesCelle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J.-P. Nano Research 2012, 5, (6), 427-433.en
dc.relation.referencesFievet, F.; Lagier, J.; Figlarz, M. Mrs Bulletin 1989, 14, (12), 29-34.en
dc.relation.referencesBi, G.-q.; Poo, M.-m. Journal of neuroscience 1998, 18, (24), 10464-10472.en
dc.relation.referencesBid, A.; Bora, A.; Raychaudhuri, A. Physical Review B 2006, 74, (3), 035426.en
dc.relation.referencesBOHREN, C. F.; HUFFMAN, D. R., ABSORPTION AND SCATTERING OF LIGHT BY SMALL PARTICLES. JOHN WILEY & SONS: 2008.en
dc.relation.referencesBellew, A. T.; Manning, H. G.; Gomes da Rocha, C.; Ferreira, M. S.; Boland, J. J. ACS nano 2015, 9, (11), 11422-9.en
dc.relation.referencesBerdan, R.; Vasilaki, E.; Khiat, A.; Indiveri, G.; Serb, A.; Prodromakis, T. Scientific reports 2016, 6, 18639.en
dc.relation.referencesChen, Z.; Cotterell, B.; Wang, W.; Guenther, E.; Chua, S.-J. Thin Solid Films 2001, 394, (1), 201-205.en
dc.relation.referencesChang, Y.; Lye, M. L.; Zeng, H. C. Langmuir 2005, 21, (9), 3746-3748.en
dc.relation.referencesCagli, C.; Nardi, F.; Harteneck, B.; Tan, Z.; Zhang, Y.; Ielmini, D. Small 2011, 7, (20), 2899-2905.en
dc.relation.referencesFinn, D. J.; Lotya, M.; Coleman, J. N. ACS applied materials & interfaces 2015, 7, (17), 9254-9261.en
dc.relation.referencesBerger, T.; Sterrer, M.; Diwald, O.; Kn?zinger, E.; Panayotov, D.; Thompson, T. L.; Yates, J. T. The Journal of Physical Chemistry B 2005, 109, (13), 6061-6068.en
dc.relation.referencesChua, L. O. Circuit Theory, IEEE Transactions on 1971, 18, (5), 507-519.en
dc.relation.referencesChen, J.; Herricks, T.; Geissler, M.; Xia, Y. Journal of the American Chemical Society 2004, 126, (35), 10854-10855.en
dc.relation.referencesDe, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. ACS nano 2009, 3, (7), 1767-1774.en
dc.relation.referencesBroers, A.; Molzen, W.; Cuomo, J.; Wittels, N. Applied Physics Letters 1976, 29, (9), 596-598.en
dc.relation.referencesDu, J.; Zhang, J.; Liu, Z.; Han, B.; Jiang, T.; Huang, Y. Langmuir 2006, 22, (3), 1307-1312.en
dc.relation.referencesEverhart, T. E.; Thornley, R. Journal of scientific instruments 1960, 37, (7), 246.en
dc.relation.referencesAckermann, T.; Neuhaus, R.; Roth, S. Scientific Reports 2016, 6, 34289.en
dc.relation.referencesDe Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, (6119), 535-539.en
dc.relation.referencesConstancias, C.; Landis, S.; Manakli, S.; Martin, L.; Pain, L.; Rio, D. Lithography 2013, 101-182.en
dc.relation.referencesFan, Z.; Fan, X.; Li, A.; Dong, L. In Resistive switching in copper oxide nanowire-based memristor, Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on, 2012; IEEE: pp 1-4.en
dc.relation.referencesCann, M.; Large, M. J.; Henley, S. J.; Milne, D.; Sato, T.; Chan, H.; Jurewicz, I.; Dalton, A. B. Materials Today Communications 2016, 7, 42-50.en
dc.relation.referencesDiebold, U. Surface science reports 2003, 48, (5), 53-229.en
dc.relation.referencesAbunahla, H.; Jaoude, M. A.; O'Kelly, C. J.; Mohammad, B. Materials Chemistry and Physics 2016, 30, 1e10.en
dc.relation.referencesAdelung, R.; Kipp, L.; Brandt, J.; Tarcak, L.; Traving, M.; Kreis, C.; Skibowski, M. Applied physics letters 1999, 74, (20), 3053-3055.en
dc.relation.referencesAkinaga, H.; Shima, H.; Takano, F.; Inoue, I.; Takagi, H. IEEJ Transactions on Electrical and Electronic Engineering 2007, 2, (4), 453-457.en
dc.relation.referencesAraki, T.; Jiu, J.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Nano Research 2014, 7, (2), 236-245.en
dc.relation.referencesAzadi, M.; Lopez, G. G. 2016.en
dc.relation.referencesBae, S.; Kim, S. J.; Shin, D.; Ahn, J.-H.; Hong, B. H. Physica Scripta 2012, 2012, (T146), 014024.en
dc.relation.referencesBashkatova, T. A.; Bashkatov, A. N.; Kochubey, V. I.; Tuchin, V. V. In Light scattering properties for spherical and cylindrical particles: a simple approximation derived from Mie calculations, Proc. SPIE, 2001; pp 247-259.en
dc.relation.referencesBell, A. P. An Investigation of the Resistance Switching in Networks of Nickel Nanowires. PhD Thesis, Trinity College Dublin, 2012.en
dc.relation.referencesChua, L. Applied Physics A 2011, 102, (4), 765-783.en
dc.relation.referencesChua, L. O.; Kang, S. M. Proceedings of the IEEE 1976, 64, (2), 209-223.en
dc.relation.referencesFaraday, M. Philosophical Transactions of the Royal Society of London 1833, 123, 507-522.en
dc.relation.referencesBellew, A. T. A Study of Nanowire Junctions and Their Impact on the Properties of Nanowire Networks. PhD Thesis, Trinity College Dublin, 2014.en
dc.relation.referencesCheng, B.; Le, Y.; Yu, J. Journal of Hazardous materials 2010, 177, (1), 971-977.en
dc.relation.referencesDe, S.; King, P. J.; Lyons, P. E.; Khan, U.; Coleman, J. N. Acs Nano 2010, 4, (12), 7064-7072.en
dc.relation.referencesBandaru, P. R. Journal of nanoscience and nanotechnology 2007, 7, (4-1), 1239-1267.en
dc.relation.referencesBellet, D.; Lagrange, M.; Sannicolo, T.; Aghazadehchors, S.; Nguyen, V. H.; Langley, D. P.; Mu?oz-Rojas, D.; Jim?nez, C.; Br?chet, Y.; Nguyen, N. D. Materials 2017, 10, (6), 570.en
dc.relation.referencesBergin, S. M.; Chen, Y.-H.; Rathmell, A. R.; Charbonneau, P.; Li, Z.-Y.; Wiley, B. J. Nanoscale 2012, 4, (6), 1996-2004.en
dc.relation.referencesDe Broglie, L. Recherches sur la th?orie des quanta. Migration-universit? en cours d'affectation, 1924.en
dc.relation.referencesBellew, A. T.; Bell, A. P.; McCarthy, E. K.; Fairfield, J. A.; Boland, J. J. Nanoscale 2014, 6, (16), 9632-9.en
dc.relation.referencesDong, Y.; Yu, G.; McAlpine, M. C.; Lu, W.; Lieber, C. M. Nano Letters 2008, 8, (2), 386-391.en
dc.relation.referencesDe, S.; Coleman, J. N. Mrs Bulletin 2011, 36, (10), 774-781.en
dc.relation.referencesFeng, P.; Chao, C.; Wang, Z.-s.; Yang, Y.-c.; Jing, Y.; Fei, Z. Progress in Natural Science: Materials International 2010, 20, 1-15.en
dc.relation.referencesCelano, U.; Giammaria, G.; Goux, L.; Belmonte, A.; Jurczak, M.; Vandervorst, W. Nanoscale 2016, 8, (29), 13915-13923.en
dc.type.supercollectionthesis_dissertationsen
dc.type.supercollectionrefereed_publicationsen
dc.type.qualificationlevelPostgraduate Doctoren
dc.identifier.peoplefinderurlhttp://people.tcd.ie/manninhen
dc.identifier.rssinternalid186644en
dc.rights.ecaccessrightsopenAccess


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record