The University of Dublin | Trinity College -- Ollscoil Átha Cliath | Coláiste na Tríonóide
Trinity's Access to Research Archive
Home :: Log In :: Submit :: Alerts ::

TARA >
School of Engineering >
Mechanical & Manufacturing Eng >
Mechanical & Manufacturing Eng (Scholarly Publications) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2262/64519

Title: Fast numerical simulation of vortex shedding in tube arrays using a discrete vortex method
Author: MESKELL, CRAIG
Sweeney, Conor
Author's Homepage: http://people.tcd.ie/cmeskell
Keywords: Vortex shedding
tube array
Cloud-in-element
Issue Date: 2003
Citation: Sweeney C, Meskell C, Fast numerical simulation of vortex shedding in tube arrays using a discrete vortex method, Journal of Fluids and Structures, 18, 5, 2003, 501 - 512
Series/Report no.: Journal of Fluids and Structures;18, 5
Abstract: Vortex shedding may occur in tube arrays, resulting in strong excitation forces at discrete frequencies. In the past the Strouhal numbers governing vortex shedding in these systems were determined primarily by experiment. This paper presents a computationally inexpensive method of numerical simulation for the unsteady flow through a rigid normal triangular tube array which determines both the frequency of vortex shedding and the instantaneous flow structure. The technique used is based on a discrete vortex method similar to the cloud-in-cell approach which has been applied to flow problems for small numbers of cylinders. However, in the current implementation the flow velocity calculation is carried out on an unstructured grid using a finite element discretization. Thus, the complex geometry associated with a tube array can be easily accommodated. The method, referred to as the “Cloud-in-element” method, is validated for the standard case of flow over a single cylinder and then applied to flow through a normal triangular array with a pitch-to-diameter of 1.6. The Reynolds number is 2200. The Stouhal number obtained from the numerical simulation is 1.27, which is within 6% of the value available in the literature. Qualitatively, the vortex shedding pattern obtained is in agreement with published flow visualization.
Description: PUBLISHED
URI: http://hdl.handle.net/2262/64519
Appears in Collections:Mechanical & Manufacturing Eng (Scholarly Publications)

Files in This Item:

File Description SizeFormat
sweeney_meskell_jfs2003_preprint.pdfPublished (author's copy) - Peer Reviewed265.29 kBAdobe PDFView/Open
sweeney_meskell_jfs2003_preprint.pdf265.29 kBAdobe PDFView/Open


This item is protected by original copyright


Please note: There is a known bug in some browsers that causes an error when a user tries to view large pdf file within the browser window. If you receive the message "The file is damaged and could not be repaired", please try one of the solutions linked below based on the browser you are using.

Items in TARA are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback