Sort by: Order: Results:

Now showing items 189-208 of 373

  • Matrix models, quantum gravity and the spectral dimension 

    PEARDON, MICHAEL JAMES; RYAN, SINEAD MARIE (Proceedings of Science, 2005)
    Monte Carlo studies on non-perturbative 2D Euclidean Quantum Gravity can be done with the use of the Dynamical Triangulations method. The Monte Carlo moves defined within the dynamical triangulation method can be encompassed ...
  • Measuring the aspect ratio renormalization of anisotropic-lattice gluons 

    PEARDON, MICHAEL JAMES (American Physical Society, 2001)
    Using tadpole-improved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios x054,6,10 and inverse lattice spacing ...
  • Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD 

    RYAN, SINEAD (2013)
    We study the fate of P wave bottomonium states in the quark-gluon plasma, using a spectral function analysis of euclidean lattice cor relators. The correlators are obtained from lattice QCD simulations with two ...
  • Mesons at high temperature in Nf=2 QCD 

    PEARDON, MICHAEL JAMES; SKULLERUD, JONIVAR (American Physical Society, 2006)
    We report first results for spectral functions of charmonium in 2-flavour QCD. The spectral functions are determined from vector and pseudoscalar correlators on a dynamical, anisotropic lattice. J/ and c are found ...
  • Methods for calculating option prices with early-exercise features 

    Cooney, Michael (Trinity College (Dublin, Ireland). School of Mathematics, 2006)
    In this dissertation we deal with two distinct methods for pricing financial options with early-exercise features. First we use finite difference methods to calculate the prices, examining in particular two new schemes ...
  • Methods of ascent and descent in multivariable spectral theory 

    Kitson, Derek (Trinity College (Dublin, Ireland). School of Mathematics, 2009)
    In this dissertation the theory of ascent and descent for a linear operator acting on a vector space is extended to arbitrary sets of operators and applied to the study of joint spectra for finite commuting systems of bounded ...
  • A metric space approach to the information capacity of spike trains 

    HOUGHTON, CONOR JAMES; GILLESPIE, JAMES (2010)
    Classical information theory can be either discrete or continuous, corresponding to discrete or continuous random variables. However, although spike times in a spike train are described by continuous variables, the ...
  • Modern aspects of topological gauge theories - Polynomial invariants and mock modular forms 

    KORPAS, GEORGIOS (Trinity College Dublin. School of Mathematics. Discipline of Pure & Applied Mathematics, 2019)
    In this dissertation we present new results in the field of topologically twisted gauge theories evaluated on compact four-manifolds without boundary. We focus on the Donaldson-Witten theory, that is the N = 2 topologically ...
  • Multi-hadron operators with all-to-all quark propagators 

    PEARDON, MICHAEL JAMES (2008)
    Hadron spectroscopy on dynamical configurations are faced with the difficulties of dealing with the mixing of single particle states and multi-hadron states (for large spatial volumes and light dynamical quarksmasses). ...
  • Multi-spin string solutions in AdS(5) x S**5 

    FROLOV, SERGEY (Elsevier, 2003)
    Motivated by attempts to extend AdS/CFT duality to non-BPS states we consider classical closed string solutions with several angular momenta in different directions of AdS5 and S5. We find a novel solution describing a ...
  • Multicloud solutions with massless and massive monopoles. 

    HOUGHTON, CONOR JAMES (American Physical Society, 2002)
    Certain spontaneously broken gauge theories contain massless magnetic monopoles. These are realized classically as clouds of non-Abelian fields surrounding one or more massive monopoles. In order to gain a better understanding ...
  • Multidimensional second order generalised stochastic processes on locally compact Abelian groups 

    Keville, Bernard (Trinity College (Dublin, Ireland). School of Mathematics, 2004)
    This thesis is concerned with the harmonic analysis of multidimensional generalised stochastic processes on locally compact Abelian groups. A multidimensional generalised stochastic process is a continuous linear operator ...
  • Multiple D3-instantons and mock modular forms II 

    Manschot, Jan (2017)
    We analyze the modular properties of D3-brane instanton correct ions to the hy- permultiplet moduli space in type IIB string theory compactified on a Calabi-Yau threefold. In Part I, we found a necessary condition for ...
  • Multiple molecular dynamics time-scales in Hybrid Monte Carlo fermion simulations 

    PEARDON, MICHAEL JAMES; SEXTON, JAMES CHRISTOPHER (Elsevier, 2003)
    A scheme for separating the high- and low-frequency molecular dynamics modes in Hybrid Monte Carlo (HMC) simulations of gauge theories with dynamical fermions is presented. The algorithm is tested in the Schwinger model ...
  • Nahm data and the mass of 1/4-BPS states 

    HOUGHTON, CONOR JAMES (American Physical Society, 2000)
    The mass of 1 / 4-BPS dyonic configurations in N=4 D=4 supersymmetric Yang-Mills theories is calculated within the Nahm formulation. The SU(3) example, with two massive monopoles and one massless monopole, is considered ...
  • New hyper-Kaehler manifolds by fixing monopoles 

    HOUGHTON, CONOR JAMES (American Physical Society, 1997)
    The construction of new hyper-Ka?hler manifolds by taking the infinite monopole mass limit of certain Bogomol?nyi-Prasad-Sommerfield monopole moduli spaces is considered. The one-parameter family of hyper- Ka?hler manifolds ...
  • New integrable system of 2dim fermions from strings on AdS(5) x S**5. 

    FROLOV, SERGEY (Institute of Physics, 2006)
    We consider classical superstrings propagating on AdS5 ? S5 space-time. We consistently truncate the superstring equations of motion to the so-called fraktur sfraktur u(1|1) sector. By fixing the uniform gauge we show that ...
  • A new multi-neuron spike-train metric 

    HOUGHTON, CONOR JAMES (MIT Press, 2008)
    The Victor-Purpura spike-train metric has recently been extended to a family of multi-neuron metrics and used to analyze spike trains recorded simultaneously from pairs of proximate neurons. The Victor- Purpura metric ...