Show simple item record

dc.contributor.authorKELLY, DANIEL
dc.contributor.authorPrendergast, Patrick John
dc.date.accessioned2009-04-14T17:15:45Z
dc.date.available2009-04-14T17:15:45Z
dc.date.issued2008
dc.date.submitted2008en
dc.identifier.citationBoccaccio A., Prendergast P.J., Pappalettere C. and Kelly D.J. `Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period? in Medical and Biological Engineering and Computing, 46, (3), 2008, pp 283 - 298en
dc.identifier.issn49633
dc.identifier.otherY
dc.identifier.otherYen
dc.identifier.urihttp://hdl.handle.net/2262/29147
dc.descriptionPUBLISHEDen
dc.description.abstractMandibular symphyseal distraction osteogenesis is a common clinical procedure to modify the geometrical shape of the mandible for correcting problems of dental overcrowding and arch shrinkage. In spite of consolidated clinical use, questions remain concerning the optimal latency period and the influence of mastication loading on osteogenesis within the callus prior to the first distraction of the mandible. This work utilized a mechano-regulation model to assess bone regeneration within the callus of an osteotomized mandible. A 3D model of the mandible was reconstructed from CT scan data and meshed using poroelastic finite elements. The stimulus regulating tissue differentiation within the callus was hypothesized to be a function of the strain and fluid flow computed by the finite element model. This model was then used to analyse tissue differentiation during a fifteen day latency period, defined as the time between the day of the osteotomy and the day when the first distraction is given to the device. The following predictions are made: (i) the mastication forces generated during the latency period support osteogenesis in certain regions of the callus, and that during the latency period the percentage of progenitor cells differentiating into osteoblasts increases; (ii) reducing the mastication load by 70% during the latency period increases the number of progenitor cells differentiating into osteoblasts; (iii) the stiffness of new tissue increases at a slower rate on the side of bone callus next to the occlusion of the mandibular ramus which could cause asymmetries in the bone tissue formation with respect to the middle sagittal plane. Although the model predicts that the mastication loading generates such asymmetries, their effects on the spatial distribution of callus mechanical properties are insignificant for typical latency periods used clinically. It is also predicted that a latency period of longer than a week will increase the risk of premature bone union across the callus.en
dc.format.extent283en
dc.format.extent298en
dc.format.extent2645456 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherSpringeren
dc.relation.ispartofseriesMedical and Biological Engineering and Computingen
dc.relation.ispartofseries46en
dc.relation.ispartofseries3en
dc.rightsYen
dc.subjectMechanobiologyen
dc.subjectMandibular distraction osteogenesisen
dc.subjectOrthodontic devicesen
dc.subjectTissue differentiationen
dc.subjectFinite element modellingen
dc.titleTissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency perioden
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/pprender
dc.identifier.rssinternalid49633
dc.identifier.rssurihttp://dx.doi.org/10.1007/s11517-007-0247-1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record