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Abstract: Coronaviruses are a large family of zoonotic RNA viruses, whose infection can lead to mild
or lethal respiratory tract disease. Severe Acute Respiratory Syndrome-Coronavirus-1 (SARS-CoV-1)
first emerged in Guangdong, China in 2002 and spread to 29 countries, infecting 8089 individuals and
causing 774 deaths. In 2012, Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) emerged
in Saudi Arabia and has spread to 27 countries, with a mortality rate of ~34%. In 2019, SARS-CoV-2
emerged and has spread to 220 countries, infecting over 100,000,000 people and causing more than
2,000,000 deaths to date. These three human coronaviruses cause diseases of varying severity. Most
people develop mild, common cold-like symptoms, while some develop acute respiratory distress
syndrome (ARDS). The success of all viruses, including coronaviruses, relies on their evolved abilities
to evade and modulate the host anti-viral and pro-inflammatory immune responses. However, we
still do not fully understand the transmission, phylogeny, epidemiology, and pathogenesis of MERS-
CoV and SARS-CoV-1 and -2. Despite the rapid application of a range of therapies for SARS-CoV-2,
such as convalescent plasma, remdesivir, hydroxychloroquine and type I interferon, no fully effective
treatment has been determined. Remarkably, COVID-19 vaccine research and development have
produced several offerings that are now been administered worldwide. Here, we summarise an
up-to-date understanding of epidemiology, immunomodulation and ongoing anti-viral and immuno-
suppressive treatment strategies. Indeed, understanding the interplay between coronaviruses and
the anti-viral immune response is crucial to identifying novel targets for therapeutic intervention,
which may even prove invaluable for the control of future emerging coronavirus.
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1. Human CoVs

Coronaviruses (CoVs) are positive-sense, enveloped RNA viruses. They are in the or-
der Nidovirale, which contains four genera—alpha, beta, gamma and delta (α, β, γ and δ) [1].
So far, seven human coronaviruses (HCoV) have been identified and are known to cause
human respiratory tract illness. Of note, most HCoVs originate from bat CoVs [2]. There
are four HCoVs which primarily affect children, the elderly, and immunocompromised
patients, of which HCoV-NL63 and HCoV-229E are alphacoronaviruses, and HCoV-HKU1
and HCoV-OC43 are betacoronaviruses [1,3–5]. These four HCoVs infections cause less
severe “common cold” symptoms, including fever, sore throat, cough and bronchitis;
while the remaining three HCoVs, Severe Acute Respiratory Syndrome (SARS)-CoV-1,
Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-2, are more
pathogenic and cause pneumonia and acute respiratory distress syndrome (ARDS) and are
associated with a considerably high mortality rate. The recently emerged SARS-CoV-2 is
more contagious, but less deadly than SARS-CoV-1 and MERS-CoV [6].
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2. SARS-CoV-1

In November 2002 a patient presented with atypical pneumonia in Guangdong China.
The causative agent was later identified as SARS-CoV-1. The virus is thought to have
been transmitted from palm civets to humans at a food market in China [7]. The virus
eventually infected 8,089 people, across 29 countries and caused 774 deaths (a mortality rate
of 9.6% [8]) (Table 1). The clinical symptoms of SARS-CoV-1 infection include fever, cough,
dyspnoea and respiratory failure [9]. Several therapies were used to treat patients infected
with SARS-CoV-1, including ribavirin, corticosteroids and type I Interferon, however, there
was no convincing evidence that they helped recovery [10]. The measures put in place
to curtail the spread of the virus, such as travel restrictions and patient isolation, were
successful and the virus was declared to be “contained” by the World Health Organization
(WHO) in July 2003 [11].

Table 1. Biological and Epidemiological Characteristics of CoVs (10 Mar 2021).

SARS-CoV-1 MERS-CoV SARS-CoV-2

Genome type ssRNA(+) ssRNA(+) ssRNA(+)

Genome size 29.7 kb 30.1 kb 29.9 kb

Genus Beta-CoV,
linage B [12]

Beta-CoV,
linage C [13]

Beta-CoV,
linage B [12]

Origin Guangdong, China Saudi Arabia Wuhan, China

Possible natural reservoir Horseshoe bats [14] Tylonycteris and
Pipistrellus bats [15]

Horseshoe bats or
Pangolin [16,17]

Possible intermediate host Civet cat [18] Dromedary camel [19] Pangolin [17]

Epidemiological
Characteristics

Total laboratory-
confirmed cases 8089 2566 117,764,619

Infected countries 29 27 215

Gender (% of male) 47% [20] 78% [21] 53% [22]

Median age of patients 43 [20] 55 [21] 61 [22]

Reported death number 774 881 2,613,747

Mortality 9.6% 34.4% 0.8–10.8%

Latency period 2–10 5–14 12–20

Clinical Symptoms Acute respiratory distress
syndrome (ARDS)

Acute respiratory distress
syndrome (ARDS)

Fever, cough, loss of taste,
shortness of breath, sore

throat and dyspnoea

Functional receptor
Human angiotensin-
converting enzyme 2

(ACE2), CD209 L

Human dipeptidyl
peptidase 4 (DPP4 or

CD26)

Human angiotensin-
converting enzyme 2

(ACE2), CD209 L, NRP1,
PIKfyve, BSG

Receptor localised organ
Lungs, intestines, kidneys,

heart, brain liver and
testicles [23]

Brain, heart, lung, kidney,
spleen, intestine, and

liver [24]

Lungs, intestines, kidneys,
heart, brain liver and

testicles [23]

Receptor distributed cell lines

Lung alveolar epithelial
cells, enterocytes of the
small intestine, arterial
and venous endothelial
cells and arterial smooth

muscle cells [25]

Bronchiolar epithelium
cells, alveolar interstitium

cells, kidney vascular
smooth muscle cells and

immune cells [26,27]

Lung alveolar epithelial
cells, enterocytes of the
small intestine, arterial
and venous endothelial
cells and arterial smooth

muscle cells [25]

3. MERS-CoV

MERS-CoV emerged in 2012. Similar to SARS-CoV-1, it spread from animals to
humans. MERS-CoV is also highly infectious, with individuals being infected after short
exposure times [28]. The virus was first identified in the Kingdom of Saudi Arabia (KSA),
in a patient who died of progressive respiratory and renal failure. Laboratory analysis
revealed it was caused by a pathogenic CoV that had not previously been reported in
humans [29]. This novel virus initially caused an outbreak in the Middle East region,
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with a second major focus point emerging in 2015, in the Republic of Korea, which was
thought to be spread by individuals travelling from Qatar, KSA and the United Arab
Emirates (UAE) [30]. By the end of January 2021, there have been 2566 reported cases of
MERS-CoV across 27 countries, and 881 have resulted in death (34.4% mortality). Even
though MERS-CoV appears to have been curtailed, there were still 47 new cases reported
by the WHO during last 12 months, highlighting the need for continued awareness and
research to develop an understanding of this virus, with a view to developing curative
medicines and a vaccine [21] (Table 1).

4. SARS-CoV-2

In December 2019, an outbreak of pneumonia-like disease occurred in Wuhan, China.
The causative agent of this outbreak was later found to be a novel CoV, subsequently
named SARS-CoV-2. The number of cases increased exponentially before March 2020,
with over 80,000 cases and over 3000 deaths reported in China [31]. Although SARS-CoV-
2 shares high sequence similarity with SARS-CoV-1, the basic reproductive number of
SARS-CoV-2 has been estimated to be 2.68, this is higher than that of SARS-CoV-1, which
was lower than 2 [32]. The virus spread rapidly across the globe and was declared a
pandemic by the WHO on 11 March 2020. By the 10 March 2021, a staggering 117,764,619
confirmed cases and 2,613,747 deaths, in 215 areas worldwide, had been reported. The
early SARS-CoV-2 cases were all thought to be linked to a seafood market in China, which
also sold wild animals, again suggesting a zoonotic transmission of the virus [33] (Figure 1).
SARS-CoV-2 causes COronaVIrus Disease (COVID-19), with symptoms including fever,
sore throat, muscle aches, fatigue, dyspnoea and loss of taste [34]. While figures continue
to change, COVID-19 is thought to have a mortality rate of 0.8–10.8% [35], but individuals
with co-morbidities [36] and the elderly are at higher risk [37]. SARS-CoV-2 continues to
circulate in our global population with vigour, causing unprecedented global lockdown of
societies worldwide.
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The seriousness of CoV infection has propelled the need for therapeutic cures and
vaccines to the forefront of clinical research. Indeed, the zoonotic route of infection reveals
the ease at which CoVs can “jump” between species and highlights the likelihood of
future zoonotic transmission. The presence of animal CoV reservoirs increases the risk of
novel strains emerging. Upon infection, the innate immune system detects the presence of
CoVs and initiates signalling cascades, resulting in the downstream activation of anti-viral
and pro-inflammatory responses. However, CoVs have evolved to attenuate anti-viral
responses while also triggering a pro-inflammatory, immunopathogenic response. This
review discusses the CoV life cycle, their interplay with immune signalling pathways and
the current research and development of anti-viral drugs.

5. Name, Classification and Viral Structure

Until the 2002 SARS-CoV-1 outbreak, CoVs were historically thought to only cause
mild infections in humans [38]. Before the 2019 SARS-CoV-2 outbreak, SARS-CoV-1 was
simply called SARS-CoV. Since the identification of MERS-CoV, the name has been modi-
fied several times. In the beginning, MERS-CoV was coined ‘Human Coronavirus Erasmus
Medical Center/2012′ (HCoV-EMC/2012) and Novel Coronavirus (nCoV) [39] and because
of its similarity with SARS-CoV-1, it was named SARS-like Coronavirus [40]. In order to
facilitate the sharing of scientific material, the International Virus Classification Commit-
tee’s Coronavirus Research Group named the new coronavirus “Middle East Respiratory
Syndrome-Coronavirus” (MERS-CoV) in May of 2013 [41]. SARS-CoV-2 had previously
been named 2019-nCoV, while the disease it caused was classified as COVID-19 [42].
Morphologically speaking, CoVs are oval and the capsid of the virus contains Spike (S)
glycoproteins, which forms a visual crown effect, hence their “corona” name. The viral
particles are between 60 to 140 nm in length and they are single strand, positive sense,
RNA viruses (+ssRNA) (Figure 2A).
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SARS-CoV-2 has recently become the seventh discovered human CoV [43]. Beta-
coronaviruses are divided into four lineages including A, B, C and D. SARS-CoV-1 and
SARS-CoV-2 are members of the B lineage [12], while MERS-CoV is classified as a member
of the C lineage of betacoronaviruses [13] (Figure 2B). The typical CoV genome is 26–32 kb
in length and contains at least 9 open reading frames (ORFs) [44]. These ORFs encode a
large replicase polyprotein (ORF1a/ORF1b), the surface S glycoprotein, a small envelope
protein (E), an outer membrane protein (M), a nucleocapsid protein (N) and several non-
structural proteins (nsp). SARS-CoV-1 encodes ORF3a, 3b, 6, 7a, 7b, 8a, 8b and 9b [44].
MERS-CoV expresses ORF3, 4a, 4b, 5 and 8b and SARS-CoV-2 contains ORF3a, 3b, 6, 7a,
7b, 8, 9b and 10 [45,46]. The replicase polyproteins encoded by ORF1a/ORF1b contain
two polyproteins PP1a and PP1ab, which are cleaved by a protease called papain-like
protease (PLpro), which is encoded within nsp3 [47] and 3C-like protease (3CLpro), which
is encoded within nsp5, into 16 nsps, of which the majority have been demonstrated to have
specific biological functions. nsp1 of SARS-CoV-1, SARS-CoV-2 and MERS-CoV promotes
host mRNA degradation and thus blocks translation [48,49], while the co-expression of
nsp3 and nsp4 is required for the formation of double-membrane vesicles (DMVs), the
induction of which is essential for viral RNA synthesis [50]. SARS-CoV-1 nsp6 limits au-
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tophagosome expansion, which likely promotes viral replication through compromising the
ability of autophagosomes to deliver viral components to lysosomes for degradation [51].
Moreover, the SARS-CoV-1 hexadecameric nsp(7 + 8) complex possesses RNA polymerase
activity [52]. nsp12 has been identified as another important RNA-dependent RNA poly-
merase [53]. Similarly, nsp9 of SARS-CoV-1 is an essential protein with RNA/DNA-binding
activity and its dimerization is necessary for viral replication [54]. SARS-CoV-1 nsp10 is
known to interact with both nsp14 and nsp16, inducing their respective 3′-5′ exoribonu-
clease and 2′-O-methyltransferase activities [55]. CoV helicase nsp13, together with RNA
polymerase nsp12 are involved in directing the synthesis of new viral RNA and packaging
of new virions consisting of other structural proteins N, S, M and E [56]. Of note, nsp13
possesses extra NTPase activity, which hydrolyzes NTPs and unwinds RNA helices in an
NTP-dependent manner [57]. Additionally, SARS-CoV-1 nsp15 is an endoribonuclease
with specificity for cleavage at uridylate residues [58]. (Figure 2C).

6. Epidemiology and Transmission
6.1. SARS-CoV-1

The first cluster of SARS-CoV-1 cases in 2002 were all linked to a food market in
Guangdong, China. Following an investigation of animals at the food market, four of six
Himalayan palm civets tested positive for SARS-CoV-1 and antibodies for SARS-CoV-1
were also found in sera of Himalayan palm civets, a raccoon dog and a Chinese ferret
badger [59]. Further sequencing of the virus isolated from these animals shared 99.8%
similarity to SARS-CoV-1 in humans [59], suggesting zoonotic transmission of the virus at
the live animal market. The virus was also thought to have been transmitted from palm
civets to humans in a Guangzhou restaurant in late 2003. The restaurant housed palm
civets, which all tested positive for the virus. The sequence of the virus isolated from
the infected patients was more closely related to that of SARS-CoV-1 in palm civets, than
circulating human strains at the time, providing strong evidence for zoonotic transfer of
the virus [18]. However, even though SARS-CoV-1 was prevalent among palm civets at
animal trading markets, it was not detected in 1107 palm civets subsequently analysed from
additional Chinese farms and 21 palm civets captured in the wild [60]. Surprisingly, a CoV
similar to SARS-CoV-1 was detected in wild bats in Hong Kong [61]. Further identification
of genetically diverse strains of SARS-related CoVs (SARSr-CoVs), isolated from horseshoe
bats in different regions of China, provided extra evidence that these mammals are the
natural reservoir for SARS-CoV-1 [14]. The current consensus is that palm civets and
other animals likely served as intermediate hosts, leading to SARS-CoV-1 infection in
humans [62].

After this zoonotic jump, SARS-CoV-1 spread rapidly via human-human transmission.
In several outbreaks, “super spreaders” were identified, such as a 26-year-old index patient,
who infected 138 others at the Prince of Wales Hospital, Hong Kong [63]. Another outbreak
occurred when virus-contaminated faeces, in an apartment-block sewage system, became
aerosolised in resident’s bathrooms, infecting 341 people [64]. One hypothesis for this high
infectivity of these “super spreaders” is co-infection with other respiratory viruses [65].
Although SARS-CoV-1 was spread mainly via air droplets and physical contact, airborne
and fomite transmission also aided its dispersion. SARS-CoV-1 was detected in the air
and on surfaces in a patient-occupied room [66]. Similarly, virus-containing aerosols
were detected in a ward at the site of a nosocomial outbreak of the virus [67]. The mean
incubation period for SARS-CoV-1 was estimated to be 4 days, with most people becoming
symptomatic 2–10 days after infection [68]. Asymptomatic SARS-CoV-1 positive cases were
also reported [69], with the disease being very mild in teenagers [70]; but increased age
and comorbidities, such as diabetes, were associated with more severe illness and a higher
risk of mortality [71].
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6.2. MERS-CoV

MERS-CoV is believed to have also originated in bats [72] and is most phylogenetically
related to the Tylonycteris bat CoV HKU4 (Ty-BatCoV HKU4) and Pipistrellus bat CoV
HKU5 (Pi-BatCoV HKU5) [15]. Indeed, a 190 nucleotide segment of the MERS-CoV
RNARdRp gene, detected in bat faeces in the KSA, was identical to the MERS-CoV sequence
isolated from patients in the region [72]. Genetic sequences examined in 2012 and 2013,
showed that multiple variants circulated among people and camels. These results indicated
that the virus may have spread from multiple animal sources to humans, followed by
human to human transmission [19,73]. Several animal sources that live in close proximity
to humans were analysed, including camels and goats [74]. Specific anti-MERS-CoV-S
protein antibodies were detected in serum samples from camels in Oman and the Canary
Islands [75]. Similarly, in the KSA, most serum isolated from camels were positive for S
antibodies, but sheep, goats, cattle and chickens were negative [74]. However, pre-existing
antibodies did not protect camels from infection [76]. MERS-CoV was mainly found in the
respiratory tract and partly in the lower digestive tract of camels. MERS-CoV detected in
camel nasal swabs and faeces shares 99.9% sequence similarity to MERS-CoV from humans,
with only six nucleotide mutations found in the receptor binding domain (RBD) of the S
gene, which did not affect viral binding to cell surface receptors [77]. An analysis of camel
blood samples, collected between 1992 and 2010, revealed the existence of MERS-CoV in
camels dated back to 1992, despite no reported signs of infection [78]. Since MERS-CoV
was found in milk from camels and 9% of camel farm labourers expressed anti-MERS-CoV
antibodies, it was hypothesised that the virus was transmitted to humans working in
close proximity to camels or regularly consuming camel milk or meat [79]. It was also
demonstrated that MERS-CoV can survive in non-sterilised camel milk for 72 h at 4 ◦C
and 48 h at 22 ◦C; but after heating for 30 min at 63 ◦C, no active virus was detected [80].
Indeed, a study in 2013 reported a 44-year-old Saudi camel farmer fell ill shortly after
treating one of his camels, which had presented with chronic nosebleeds. Genetic analysis
of samples taken from the patient and camel in question revealed that their genomes were
identical [19]. The latency period of MERS-CoV is usually approximately 5 days. However,
it can extend for up to 14 days [81]. Patients with immune dysfunction or other underlying
conditions such as diabetes, chronic pneumonia or kidney disease, are more susceptible to
MERS-CoV infection and develop critical illness [82]. Healthy individuals only show mild
respiratory disease or remain asymptomatic after infection [83].

6.3. SARS-CoV-2

Many of the early cases of SARS-CoV-2 in Wuhan suggested that animals sold at the
market were intermediate hosts for this novel CoV [84]. However, phylogenetic studies
later suggested that SARS-CoV-2 emerged before this time [85,86]. As with other CoVs,
bats are thought to be the natural reservoir from which SARS-CoV-2 emerged. Indeed,
the bat CoV, BatCoV RaTG13, which shares 96.2% similarity to human SARS-CoV-2, was
isolated from horseshoe bats (Rhinolophus affinis), as far back as 2013 [16]. Subsequently,
two sublineages, related to SARS-CoV-2, were isolated from the Malayan pangolin [87].
The pangolin CoV shares 85.5% to 92.4% sequence similarity with SARS-CoV-2, which
is less homology than BatCoV RaTG13. However, the RBD of the pangolin CoV shares
97.4% sequence homology with SARS-CoV-2 and identical amino acids at five critical
residues, compared with 89.2% similarity with RaTG13 and only one conserved amino
acid, suggesting that pangolins were the source of SARS-CoV-2 zoonotic transmission [87].
Other studies have suggested that even though the pangolin CoV is genetically related
to SARS-CoV-2, the pangolin was not the intermediate host responsible for the current
pandemic [88,89]; that said, the presence of different strains of CoV in pangolins suggest
that they, like bats, could certainly be a natural reservoir for SARS-CoV-2 [17].

The first case of COVID-19 outside of China was recorded in Thailand on 13 Jan-
uary 2020 [90]. However, there was evidence that SARS-CoV-2 emerged and spread from
September 2019 in Italy, several months before the first patient was identified in China [91].
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Other studies also report that SARS-CoV-2 was detected in human sewage on 27th Novem-
ber 2019 in Brazil, which is earlier than the first reported case in China and there is evidence
from serologic testing of blood that SARS-CoV-2 may have been introduced into the United
States prior to 19 January 2020 [92,93]. Nevertheless, the virus has spread rapidly across
the globe, causing over 100 million cases to date. High viral loads have been detected in the
nasal cavity and throat of SARS-CoV-2-infected patients and a viral RNA shedding pattern
similar to influenza [94]. Furthermore, the viral loads detected in the upper respiratory tract
of asymptomatic patients were comparable to symptomatic patients [94]. Subsequently, a
study revealed that infectivity rates were similar between asymptomatic and symptomatic
index cases and middle-aged males are more likely to become the ‘silent spreaders’ to
transmit the virus [95]. Similarly to SARS-CoV-1, SARS-CoV-2 can remain viable in the air
for 1.1 to 1.2 h and on stainless steel and plastic surfaces for 5.6 h and 6.8 h, respectively [96].
This study also showed that SARS-CoV-2 may be viable for a longer period of time on
cardboard, compared with SARS-CoV-1 [96]. Characterization of cases from the initial
outbreak in Wuhan reported a mean incubation period of 5.2 days [97], which is longer than
that of SARS-CoV-1 or MERS-CoV. According to the Chinese Centre for Disease control
(CDC), SARS-CoV-2 caused mild to moderate disease in 80.9% of confirmed cases [98];
but risk factors (including comorbidities, such as hypertension, diabetes [36] and age [37]),
affected the severity of COVID-19 and increased the risk of mortality.

7. Viral Cell Entry and Life Cycle

CoVs can infect a variety of cell types. The heavily glycosylated S protein facilitates
cell entry and is the main target for neutralising antibodies. The S protein has a single
trans-membrane domain and forms homo-trimeric structures protruding from the virion
surface. It contains two functional subunits, including an N-terminal outward-facing S1
subunit, which is responsible for receptor binding and the membrane anchored C-terminal
S2 subunit, which mediates membrane fusion. The RBD within the S1 subunit displays
high genetic diversity among CoVs, while the S2 subunit is highly conserved [99]. Re-
combinant S protein can induce neutralising antibodies and systemic humoral immune
responses in vaccinated mice [100]. Both SARS-CoV-1 and SARS-CoV-2 bind directly
to angiotensin converting enzyme 2 (ACE2), enabling cell entry and recruitment of the
cellular serine protease, TMPRSS2, for S protein priming [101]. SARS-CoV-2 S protein
has an additional furin cleavage site (PRRAR) between the S1 and S2 subunits, which
is not present in SARS-CoV-1. The furin-cleaved substrates were also found binding to
neuropilin-1 (NRP1), which significantly facilitate SARS-CoV-2 entry and infectivity [102].
SARS-CoV-1 and SARS-CoV-2 S proteins bind with similarly high affinity to ACE2 [101].
During the COVID-19 pandemic, the SARS-CoV-2 S protein has mutated frequently. There
are distinct mutation positions, of which D614G is the most prevalent; this single amino
acid change lead to higher viral load in the upper respiratory tract of patients but did not
affect disease severity [103]. Others mutations include N439K, Y453F, S477N and N501Y
in RBD, which increased binding specificity to ACE2, and E484K which facilitated viral
“escape” from neutralising antibodies [104–106]. Indeed, these mutations have highlighted
the importance of the S protein in both viral pathogenesis and vaccine effectivity. ACE2
localises extensively in epithelial cells of alveoli, trachea, bronchi and bronchial serous
glands [107]. However, the lack of or lower ACE2 expression in immune cells, colonic ep-
ithelial cells and neuronal cells of the brain, contrasts with the confirmed SARS-CoV-1 and
-2 infection of these cells. These contradictions suggest that other receptors may be required
for infection [108]. SARS-CoV-1 and -2 S protein was reported to bind to the C-type Lectin
CD209L, which is expressed on type II alveolar cells and lung endothelial cells, to mediate
cell entry [57,109]. Human recombinant soluble ACE2 has been suggested as a potential
therapeutic to combat COVID-19, which has already undergone early phase clinical trials
for the treatment of ARDS [110]. Remarkably, a main endosomal phosphatidylinositol-3-
phosphate/phosphatidylinositol 5-kinase, PIKfyve, which belongs to class III lipid kinase
and is involved in endolysosomal system, was reported to participate in virus entry and
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inhibition of it prevented infection [111]. Furthermore, the basigin (BSG) receptor (also
known as CD147), has been identified as an entry receptor for SARS-CoV-2 [112]. Vascu-
lar/cardiovascular inflammation and thrombosis occur in severe COVID-19, which may
be linked to abundant BSG expression in cardiovascular and renal tissues. Endothelial
cell expression of BSG increases with age, which may partially explain the heightened
risk of severe disease with age [113]. Notably, BSG is upregulated in a range of diseases
that are considered risk factors of severe COVID-19, such as diabetes, obesity, pulmonary
hypertension and thrombosis. Gender is also another factor, as males generally has higher
BSG expression [114]. More recently, a genome-wide CRISPR screen identified a series of
novel host factors involved in phosphatidylinositol phosphate biosynthesis and cholesterol
homeostasis, which are crucially required for SARS-CoV-2 infection, including Cathepsin
L, transmembrane protein 41B (TMEM41B), transmembrane protein 106B (TMEM106B),
cholesterol regulators, ATPases, Retromer, Commander, and Arp2/3 complex [115–119].
These discoveries reveal a complex network associated with viral entry and infection, but
highlight several new targets for therapeutic intervention.

Due to the clinical disease similarities during MERS-CoV and SARS-CoV-1 infection, it
was thought that MERS-CoV may also utilise ACE2 for cell entry. However, further studies
revealed that dipeptidyl peptidase-4 (DPP4, also known as CD26), is bound by MERS-CoV
S protein [120,121]. Most respiratory virus infections show a significant ciliated cell tropism.
Ciliated cells are widely distributed in the upper and lower respiratory tract, while DPP4
is highly conserved and mainly expressed in the kidney, small intestine, liver, prostate
epithelial cells and immune cells (including T cells, activated B, activated natural killer (NK)
and myeloid cells) [27]. By comparing the S structures of MERS-CoV and SARS-CoV-(1/2),
it was found that both viral core subdomains have high structural similarities, yet still
differ in the RBD [122].

As for the viral life cycle, following receptor binding, the virus is endocytosed. The
S protein is cleaved to separate the RBD and fusion domains, facilitating viral envelope
fusion with the endosomal membrane and allowing for the RNA genome to be released
into the cytoplasm. Some CoVs, such as MERS-CoV, can also enter the cell by plasma
membrane fusion [15]. Firstly, viral replicase polyproteins, pp1a and pp1ab, are translated
from ORF1a and ORF1b and the synthesis of pp1ab involves programmed ribosomal
frame shifting during translation of ORF1a [123]. Papain-like protease (PLpro) and 3C-like
protease (3CLpro) cleave pp1a and pp1ab into 16 nsps, that form the viral replicase-
transcriptase complex (RTC), which facilitates replication and transcription [123]. The
synthesis of full-length negative-strand RNA is initiated by the RTC. During replication,
the full-length negative-strand RNA is used as a template to generate the full-length
positive-strand genomic RNA. While in transcription, a series of subgenomic mRNAs,
which are translated into viral structural proteins, are produced. Once replication and
translation are accomplished, the N proteins encapsidate the RNA genome in the cytoplasm,
forming the viral nucleocapsids. Meanwhile, the M, S and E proteins are translated in the
Endoplasmic Reticulum (ER) and are transported via the Golgi, where budding and particle
formation occurs via the ER-Golgi intermediate compartment (ERGIC) [124]. The M protein
allows for binding to the nucleocapsids. Ultimately, the particles are transported to the cell
membrane and released from the cell by exocytosis in secretory vesicles (Figure 3).
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8. Innate Immune Response to Coronaviruses

The innate immune system encodes unique pattern recognition receptors (PRRs) for
the early detection of viruses and other pathogens. PRRs are expressed mainly by innate
immune cells on the cell and endosomal membranes or in the cytoplasm, and recognise
pathogen-associated molecular patterns (PAMPs) [125]. Cell surface Toll-like receptors
(TLRs) recognise extracellular pathogens, while endosomal TLRs detect pathogens follow-
ing endocytosis. Intracellular PRRs, including nucleotide oligomerisation domain-like
receptors (NLRs), retinoic acid-inducible gene (RIG)-1-like receptors (RLRs) (including
RIG-1, melanoma differentiation-associated 5 [MDA5] and laboratory of genetics and phys-
iology 2 [LGP2]) and AIM2-like receptors (ALRs), all detect the presence of intracellular
pathogens [126,127]. These PRRs act as early detectors of invading pathogens and their
activation initiates intracellular signal transduction pathways, which culminate in the
upregulation of pro-inflammatory and anti-viral genes. Anti-viral type I Interferons (IFNs),
along with pro-inflammatory cytokines and chemokines are then secreted from the infected
cell and mediate the immune response against the invading pathogen.

9. TLR and RLR Signalling

Viral nucleic acids are detected by endosomal TLRs, including TLR3, which detects
viral double-stranded (ds) RNA, while TLR7 and TLR8 recognise single-stranded (ss) RNA.
Following PAMP recognition, TLRs dimerise and recruit adapter proteins, such as myeloid
differentiation primary response 88 (MyD88), which leads to downstream activation of
TNF Receptor Associated Factor 6 (TRAF6) and subsequent activation of the Inhibitor-κB
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Kinase (IKK) complex. The IKK complex is made up of IKKα, IKKβ and the regulatory
subunit, IKKγ. The IKK complex phosphorylates IκB proteins, marking them a target
for ubiquitination and degradation, allowing for the release of the transcription factor,
NF-κB. NF-κB translocates to the nucleus and upregulates a plethora of genes, including
proinflammatory cytokines and chemokines. TLR7 and TLR8 both signal via the ‘MyD88-
dependent pathway’. However, TLR3 utilises another adaptor protein called TIR-domain-
containing adapter-inducing interferon-β (TRIF), leading to the recruitment of TRAF3
and subsequent activation of TANK-binding protein (TBK1) and IKK-ε, which leads to
subsequent phosphorylation and activation of the interferon regulatory factor (IRF) family
of transcription factors, IRF3 and IRF7, thereby upregulating the expression of anti-viral
Type I IFNs and interferon-stimulated genes (ISGs) [128,129]. TLR3, which also activates
NF-κB via the MyD88-independent pathway, is mainly expressed in hematopoietic cells,
particularly in subsets of dendritic cells (DCs), but also in some stromal cells, including
airway epithelial cells, and it specifically recognises dsRNA [130].

Studies suggested that TLR3 provides some protection against MERS-CoV, as mice
stimulated with Poly(I:C), a synthetic viral dsRNA, displayed reduced susceptibility to
subsequent infection with MERS-CoV, via the upregulation of Type I IFNs [131,132]. Mice
lacking the TLR3/TLR4 adaptor protein TRIF, are highly susceptible to SARS-CoV-1 infec-
tion and mortality. These mice display dysregulated inflammatory and anti-viral responses
to the virus, highlighting the importance of TLR3 in mounting an immune response to
SARS-CoV-1 [133]. TLR4 is expressed on the cell surface and recruits MyD88, leading to
activation of NF-κB, while following internalization, it initiates TRIF-dependent signalling
and downstream IRF activation. TRIF-related adaptor molecule (TRAM), acts as a bridging
adaptor for TLR4 and TRIF. As with TLR3, mice lacking TLR4 or TRAM, are also more
susceptible to SARS-CoV-1 infection [133]. MyD88 is also required to protect mice against
lethality when infected with a murine-adapted SARS-CoV-1 [134]. Additionally, the S gly-
coprotein of MERS-CoV altered macrophage responses, rendering them hypo-responsive
to TLR4 stimulation [135]. Together these findings reveal TLR4 to have an important
immune role during CoV infection. TLR7 of plasmacytoid DCs (pDCs), detects the pres-
ence of SARS-CoV-1 and MERS-CoV in mice, triggering the induction of Type I IFNs,
highlighting an important role for pDCs in the immune response to CoVs [136,137]. RLRs,
including RIG-1, MDA5 and LGP2, play a role in the recognition of RNA viruses in the
cytoplasm [138,139]. RLRs signal via mitochondrial anti-viral signalling protein (MAVS),
which can promote both NF-κB and IRF transcription factor activation (Figure 4). MDA5
has been shown to detect the presence of non-self mRNA during Mouse Hepatitis Virus
(MHV), a betacoronavirus which can infect mice, leading to Type I IFN production [140,141].
Recent studies have revealed that MDA5 and LGP2 are the predominant receptors involved
in innate immune sensing of SARS-CoV-2 infection in lung epithelial cells [142]; but the
produced IFNs were unable to control viral replication in lung cells, which could indicate
that other pathways are blocked by the virus [143]. So far, several CoVs proteins have been
demonstrated to subvert RLRs signalling through various mechanisms, which are detailed
later in this review.
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10. Anti-Viral IFNs and the JAK-STAT Pathway

Detection of viruses by PRRs triggers the release of IFNs, which promotes viral
clearance by inducing apoptosis and inhibiting viral replication [144]. There are three types
of IFNs. Type I IFNs are a large subgroup consisting of 13 IFN-α subtypes, IFN-β, ε, κ, τ, δ,
ζ, ω, and v [145,146]. The Type II IFN family comprises of IFN-γ [147], while Type III IFNs
are comprised of four members, IFN-λ1, IFN-λ2, IFN-λ3 and IFN-λ4 [148]. IFNs signal via
binding to specific receptors. Type I IFNs bind IFN-α receptors (IFNARs) [149], Type II IFN
binds to the IFN-γ receptors (IFNGRs) [147], and Type III IFN signals by a heterodimeric
receptor complex containing IFNLR1 and IL10RB [150]. TLR and RLR signalling leads to
the activation of the transcription factors, IRF3, NF-κB and AP1, which cooperatively bind
to the promoter region of IFN-β and upregulate its gene expression [151]. IFN-β is released
by cells and binds to IFNARs on target cells, inducing the expression of IFN-α, in a positive
feedback loop. Following receptor recognition, IFN-α/β signal via the Janus kinase/signal
transducers and activators of transcription (JAK/STAT) pathway (Figure 4). Ligand binding
induces receptor autophosphorylation followed by phosphorylation and activation of
receptor bound JAK1 and tyrosine kinase 2 (Tyk2). STAT proteins are then recruited to the
receptor, leading to their phosphorylation on specific tyrosine residues. Phosphorylated
STAT proteins form homo- or heterodimers which translocate to the nucleus and upregulate
the expression of target ISGs. STAT1 and STAT2 form a complex with IRF9, called the
IFN stimulated gene factor 3 (ISGF3), which binds to the IFN stimulated response element
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(ISRE) of target genes. STAT3 is also required for the upregulation of a subset of ISGs [152].
Type I IFNs induce the expression of over 300 ISGs, with anti-viral properties that limit
viral replication [153]. One such ISG is ISG15, which catalyses the conjugation of ISG
onto target proteins and inhibits viral replication [154]. Inducible Nitric Oxide Synthase
(iNOS), stimulates the production of NO, which has been shown to inhibit SARS-CoV-1
replication [155]. Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2,
and 3), have been shown to restrict SARS-CoV-1 replication and cell entry in vitro [156]
and Lymphocyte Antigen 6 Family Member E (LY6E), has recently been shown to inhibit
SARS-CoV-1&2 and MERS-CoV cell entry [157]. Intriguingly, ACE2 is also an ISG, that
is significantly upregulated by Type I IFN. However, IFN-induced ACE2 is not thought
to enhance SARS-CoV-2 replication in the presence of IFN-induced anti-viral activity, in
primary human bronchial epithelial cells [158]. JAK/STAT signalling is also employed
by other cytokines such as IL-6; indeed IL-6 is commonly elevated in COVID-19 patients
and tightly correlated with disease severity [34]. Of additional importance, a SARS-CoV-2
hamster model presented STAT2-drived exuberant immune responses and progressed to
severe lung injury during infection [159]. In summary, despite its remarkable anti-viral
effects, in certain circumstances, the JAK/STAT pathway can be detrimental, and its dual
roles should be considered during clinical management.

Negative feedback of the JAK/STAT pathway appropriately tunes its responses. In
recent years, several groups have explored negative regulators induced by type 1 IFN
signalling, including suppressor of cytokine signalling (SOCS), protein inhibitors of acti-
vated STAT (PIAS), protein tyrosine phosphatase (PTP) and ubiquitin-specific peptidase 18
(USP18). SOCS1 has been revealed as a potent inhibitory modulator, whose expression
results in decreased phosphorylation of Tyk2, JAK1, STAT1 [160]. In fact, a broad range of
viruses utilise both SOCS1 and SOCS3 to block JAK/STAT signalling; for example, coron-
avirus transmissible gastroenteritis virus (TGEV) dampened the IFN-I anti-viral response
and facilitated TGEV replication through increased SOCS1 and SOCS3 expression [161].
Intriguingly, SARS-CoV-1 S protein has been demonstrated to induce SOCS3 [162]; and,
although there is no direct evidence that SARS-CoV-2 induces SOCS1/3, it has been sug-
gested that their expression might be used as an effective prophylactic and/or therapeutic
against COVID-19 [163].

11. SARS-CoV-1 Immune Modulatory Mechanisms

CoVs have evolved strategies to evade host immune responses and promote viral
replication. SARS-CoV-1 induces the formation of complex DMVs of modified ER in which
RNA replication takes place, which may prevent nucleic acid sensors from detecting the
presence of viral RNA [164]. SARS-CoV-1 avoids MDA5 detection through mediating
self-viral mRNA cap methylation under the collaboration of nsp14, nsp16 and nsp10 [165],
preventing MDA5 from recognising viral mRNA as foreign [141]. SARS-CoV-1 has also
been reported to inhibit the activation of IRF3, thus attenuating IFN-β production [166].
Indeed, SARS-CoV-1 N protein, ORF3b and ORF6 all inhibited the induction of IFN-β [167].
N protein competes with RIG-I for binding to tripartite motif protein 25 (TRIM25), thereby
preventing the ubiquitination and activation of RIG-I [168]. SARS-CoV-1 nsp1 attenuates
type I IFN production by targeting type I IFN mRNA for degradation [169,170]. The
SARS-1-CoV PLpro is a domain within nsp3, which functions as a deubiquitinase and can
remove ISGylation from target proteins [171,172]. Protein conjugation by the ubiquitin-like
ISG15 is termed ISGylation. The RIG-I adaptor protein, MAVS, signals via a stimulator of
interferon genes (STING)—TRAF3—TBK1:IRF3 complex to induce IFN-β [173–176]. The
immune-suppressive nature of PLpro can be seen in its broad reduction in RIG-I, STING,
TRAF3, TBK1 and IRF3 ubiquitination, through its deubiquitination activity [177]. SARS-
CoV-1 PLpro can subvert IRF3-mediated IFN induction, after IRF3 phosphorylation and
nuclear translocation, by a mechanism that requires its deubiquitinating properties [178].
Indeed, SARS-CoV-1 PLpro also interacts with this complex, in which the association of
PLpro with STING reduces the formation of STING dimers, preventing its ubiquitination
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and interaction with MAVS and TBK1 and subsequent induction of IFN-β [179]. A study
also revealed that the catalytic ability of PLpro is indispensable for inhibiting IFN-β
production [47]. Indeed, the various functions of PLpro indicate that it is a prominent
IFN antagonistic.

SARS-CoV-1 is capable of inhibiting type I IFN signal transduction. ORF3 was found
to induce serine phosphorylation of IFNAR1 and promote ubiquitination and degrada-
tion [180]. ORF3b and ORF6 have been shown to inhibit ISRE promoter expression in
response to IFN stimulation, revealing that they inhibit type I IFN signalling. Furthermore,
ORF6 has been shown to inhibit the nuclear translocation of STAT1 in response to IFN-
β [167]. Indeed, ORF6 binds and sequesters the nuclear import protein karyopherin-α2
(KPNA), thus preventing its availability to shuttle STAT1 to the nucleus [181]. SARS-CoV-1
nsp1 interferes specifically with STAT1 phosphorylation, thus attenuating the anti-viral IFN
immune response [182]. SARS-CoV-1 infection also leads to tyrosine dephosphorylation of
STAT3 in Vero cells [183]. Intriguingly, a recent study demonstrated that STAT3 plays an
anti-viral role in type 1 IFN signalling [152], which suggests a specific mechanism used by
SARS-CoV-1 to block anti-viral activity.

pDCs are known as type 1 IFN-producing cells and have the ability to secrete massive
amounts of type 1 IFN following viral stimulation [184]. However, DCs from patients with
SARS-CoV-1 produced low levels of IFN-β, but high levels of the chemokine CXCL10 [185].
Similarly, SARS-CoV-1 has been shown to inhibit the induction of IFNs, RANTES, IL-6 and
ISGs, but upregulate CXCL10 and CXCL8 chemokines in intestinal epithelial cells [186,187].
However, it is thought that the upregulation was caused by increased DNA-binding activity
of AP-1 and NF-κB [188], which is in contradiction with the downregulated IL-6 and
Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES, also known
as CCL5). Conversely, SARS-CoV-1 N protein has been reported to activate AP-1, but not
NF-κB in hepatocytes and Vero cells [189]. Similarly, SARS-CoV-1 S protein can activate
MAPK signalling, leading to AP-1-mediated CXCL8 induction in lung epithelial cells [190].
Indeed, CXCL8 and CXCL10 are markers of SARS-CoV-1 infection and may contribute
to disease pathogenesis through recruitment of immune cells to the lungs. In patients
with SARS-CoV-1, high levels of CXCL10, CXCL8, IL-6 and monocyte chemoattractant
protein-1 (MCP-1) were observed in the blood and lung tissue, along with macrophage and
monocyte infiltration and lymphocyte depletion [191]. Elevated levels of CXCL10, CXCL8
and monokine induced by IFN-γ (MIG-γ) were associated with poor clinical outcomes
in SARS-CoV-1 patients [192] and were higher in patients where the disease was fatal,
compared with those who recovered [193]. Immune cell infiltration, caused by chemokines,
may contribute to the disease pathology observed in severe SARS-CoV-1 patients. Indeed,
patients with severe COVID-19 were found to have higher levels of chemokines, such as
CXCL10 and MCP-1 [34].

12. MERS-CoV Immune Evasion

MERS-CoV has the highest associated mortality rate, possibly due to the significant
dysregulation of the host transcriptome that it causes, which is much greater than SARS-
CoV-1 [194]. An in vitro study also identified that, compared with SARS-CoV-1 and
SARS-CoV-2, MERS-CoV led to higher viral replication in the lungs and subsequently
increased production of proinflammatory cytokines [195]. This higher level of replication
was possibly due to enhanced viral protein virulence. MERS-CoV ORF5, ORF4a, ORF4b
and the M proteins are thought to play pivotal roles in IFN suppression, with ORF4a being
the most effective. ORF4a inhibits both IFN production (measured via IFN-β promoter
activity, IRF-3 function and NF-κB activation), and STAT activation of the ISRE [196]. ORF4
also binds and antagonises the dsRNA-binding protein, PRKRA (interferon-inducible
double-stranded RNA-dependent protein kinase activator A, also known as PACT), which
acts as a cellular activator of RIG-I and MDA5 to facilitate an innate anti-viral response
in the cytosol [197]. Indeed, MERS-CoV without ORF3, 4a, 4b and 5 (dORF3–5) had a
diminished replication capacity and robust IFN responses, when compared to the wild-
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type virus, in human epithelial cells. The dORF3–5 infection also caused higher levels of
pro-inflammatory cytokines secretion, than that wild-type virus, revealing the role of these
proteins in suppressing the inflammatory response [198]. Additionally, MERS-CoV ORF4b
was found to localise in the nucleus and robustly inhibit RIG-I-mediated induction of the
IFN-β promoter via IRF3 [199]. ORF4b specifically binds to TBK1 and IKKε, resulting in the
inhibition of IRF3 phosphorylation [200]. ORF4b-encoded protein was also found to inhibit
the nuclear translocation of p65 through association with KPNA4, which is known to assist
in the translocation of the NF-κB complex into the nucleus [201]. ORF4b also contributes to
viral replication. Viruses isolated from camels with deletions in ORF4b showed impaired
replication and higher type I and III IFN responses in human cells [202], suggesting that
ORF4b has a role in antagonising the anti-viral response, thus enabling viral pathogenesis.
ORF8b suppresses type I IFN expression, by competing with IKKε for HSP70 interaction,
which is required for the activation of IKKε and IRF3 [203]. ORF8b was also found to
sequester MDA5-mediated NF-κB activation, RLR-activated IRF3 phosphorylation and
CARD-CARD interactions between RIG-I and MAVS [204,205]. MERS-CoV-nsp1 inhibits
host gene expression by selectively targeting mRNAs to the nucleus and promoting their
degradation [48], while the nsp3–4 polyprotein induces the formation of DMVs, which
are associated with viral RNA replication [50]. MERS-CoV PLpro, which is encoded
within nsp3, is a multifunctional enzyme with protease, deubiquitinating and deISGylating
activities [47]. A mutant of MERS-CoV lacking PLpro was more sensitive to type I IFN in an
IFN-induced proteins with tetratricopeptide repeats (IFIT)-dependent manner, providing
an attenuation mechanism [206].

During infection, MERS-CoV was found to specifically downregulate the expression of
several genes within the antigen presentation pathway, including both type I and II major
histocompatibility complex (MHC) genes, revealing its ability to suppress engagement of
the adaptive immune response [194]. Subsequent depletion of both CD4+ and CD8+ T cells
resulted in suboptimal MERS-CoV clearance, highlighting the importance of these adaptive
immune cells in combating this virus [137]. MERS-CoV also downregulates Th1 and Th2
cytokines and chemokines, leading to severe infection, again revealing how MERS-CoV
suppresses the essential adaptive immune response [207]. While research has discovered
several MERS-CoV protein functions, the complexity of MERS-CoV infection and its
interaction with both the innate and adaptive immune systems remains largely unknown.

13. SARS-CoV-2 Antagonism of IFN

Type I IFN deficiency in the blood has become a hallmark of severe COVID-19 [208]
and SARS-CoV-2-infected primary human bronchial epithelial cells displayed a limited
IFN-I and IFN-III response, with only a small subset of ISGs induced [209]. Although
SARS-CoV-2 has been reported to be more sensitive than SARS-CoV-1 to type I IFN [210],
SARS-CoV-2 infection still triggers delayed immune responses [180]. Several key viral
proteins which act as IFN antagonists of SARS-CoV-2 might be an explanation for impaired
IFN responses. Notably, SARS-CoV-2 PLpro, has been shown to cleave ISG15 from IRF3, of
which the ISGylation is essential to maintain IRF3 activation [211], thus attenuating type I
IFN responses [212]. SARS-CoV-2 ORF6 is a more potent IFN antagonist; its C-terminus
interacts with KPNA2, which regulates nuclear import, thus blocking nuclear translocation
of specific transcription factors, indeed, it inhibited both IRF3-mediated IFN induction and
STAT1-mediated signal transduction [213]. An interactome study identified ORF6 interac-
tion with a peripheral nucleoporin, Nup98 [214]; ORF6 localises at the nuclear pore complex
(NPC) and directly interacts with Nup98 via its C-terminal domain, which disrupts STAT1
nuclear import, thus blocking IFN signalling [215]. ORF8 and N proteins also inhibit type I
IFN induction, while ORF8 can additionally inhibit IFN-β-mediated ISRE activation [216].
ORF8 also down regulates MHC-I molecules, suggesting a potential role in regulating
adaptive immunity [217]. Consistent with the in vitro studies, SARS-CoV-2 variants that
lack ORF8 expression are associated with milder symptoms [218]. Furthermore, nsp13,
nsp14 and nsp15 proteins of SARS-CoV-2 potently suppress IFN production by inhibiting
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IFR3 nuclear localisation [219]. Other studies revealed that TBK1 and IRF3 phosphoryla-
tion were suppressed upon nsp6 and nsp13 expression [220]. Furthermore, the tyrosine
phosphorylation of STAT1 and STAT2 was reduced by nsp1, nsp6, nsp13, ORF3a, ORF7a
and ORF7b. Surprisingly, SARS-CoV-2 nsp1 is more efficient than those of SARS-CoV-1
and MERS-CoV at suppressing type I IFN signalling, via its blockade of STAT phosphory-
lation [220]. ORF3 a can induce apoptosis [221], while a mutation in ORF3a is associated
with higher infection and mortality rate [222]. Interestingly, viral and host protein–protein
network analysis predicts that the functions of ORF3 associate with JAK/STAT pathway
components, including JAK1, JAK3 and STAT3 [222]. Indeed, SARS-CoV-2 ORF3b was
demonstrated to have a more potent antagonism of type I IFN activation than SARS-CoV-1
ORF3b, which is likely due to C-terminal truncation of the SARS-CoV-2 ORF3b [223]. A
recent study also reported that SARS-CoV-2 membrane (M) protein interacted with RIG-I,
MAVS, and TBK1, preventing the formation of the multiprotein complex containing RIG-I,
MAVS, TRAF3, and TBK1, thus inhibiting the production of type I and III IFNs [224]. Of ad-
ditional importance, ORF10 is involved in the ubiquitination proteasome pathway, due to
its interaction with the Cullin-2 protein; and nsp8 is suggested to hijack the Sec61-mediated
protein translocation pathway for entry into the ER [214]. In addition, clinical studies have
identified neutralising autoantibodies against IFN-α2 and/or IFN-ω in severe COVID-19
patients, which were not detected in asymptomatic nor healthy individuals, nor in patients
with mild infection, possibly revealing an additional immune evasion mechanism that the
virus uses to avoid elimination [225]. Another clinical study reported that mild COVID-19
patients display elevated ISG expression across every blood cell population and these cells
are absent in patients with severe disease, which maybe due to specific antibodies against
ISG-expressing cells [225]. Importantly, SARS-CoV-2 has a lower mortality rate, but is more
transmissible and therefore has caused a greater number of fatalities worldwide. Indeed,
the robust replication competence of SARS-CoV-2 in human upper respiratory bronchus
might explain its efficient transmission among humans [195].

14. Treatment
14.1. SARS-CoV-1

During the SARS-CoV-1 epidemic, the main cause of death was ARDS, which arose in
16% of patients; patients whose disease progressed to ARDS had a 50% chance of mortal-
ity [10]. During the SARS-CoV-1 outbreak, several therapies were used, including ribavirin,
corticosteroids, anti-retroviral protease inhibitors and IFN-α. It is notable that the efficacy
of these treatment strategies was difficult to determine due to the lack of controlled param-
eters. The guanosine analogue, ribavirin, was used due to its effectiveness against many
RNA and DNA viruses. Clinical evidence to support the use of ribavirin was not found and
in some cases led to side effects, such as haemolytic anaemia [226], resulting in its use not
being advised [227]. Immunosuppressive corticosteroids were also used, which in some
cases led to complications, such as aspergillosis [228,229]. Furthermore, early corticosteroid
treatment resulted in enhanced SARS-CoV-1 viral load [230], although in other cases it was
seen as beneficial in combination with mechanical ventilation [231]. One study showed a
positive response of patients to co-treatment with IFN-α and corticosteroids, compared
with corticosteroids alone, including quicker resolution of lung pathology [232]. However,
IFN-α treatment was shown to have no effect in another study [231]. Methylprednisolone
treatment had favourable clinical outcomes, although the study lacked a comparative
control [233]. Treatment with lopinavir/ritonavir anti-retroviral protease inhibitors and
ribavirin had good outcomes, with a reduced SARS-CoV-1 viral load and alleviated symp-
toms [234,235]. Furthermore, the use of convalescent plasma, serum or hyperimmune
immunoglobulin appeared to reduce mortality and was deemed safe to use [236].

Vaccines against SARS-CoV-1 infection have been developed by various groups using
different techniques, such as whole-virus inactivation, virus-like particles, recombinant
viral vectors expressing SARS S protein and DNA-based vaccines [237–243]. One inacti-
vated virus vaccine and a DNA-based vaccine have been evaluated in phase I clinical trials
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and were shown to elicit T cell responses and antibody responses against SARS-CoV-1
antigens [244,245].

14.2. MERS-CoV

Due to the similarity with SARS-CoV-1, similar anti-viral treatments were imple-
mented on patients with MERS-CoV. There are several therapeutic strategies in develop-
ment, including virus replication inhibitors, DPP4 inhibitors and immune modulators. To
date, patients were often given a combination of treatments, including respiratory therapy
and anti-viral drug therapy. To ensure effective treatment, it is recommended that patients
should receive treatment immediately after the diagnosis. IFN-α2a, IFN-α2b and IFN-β1a,
are considered as effective anti-viral treatments. In one study of MERS-CoV-infected rhesus
macaques, the combination of IFN-α2b and ribavirin reduced virus replication, moderated
the host response and improved clinical outcomes [246]. Moreover, monotreatment with
lopinavir/ritonavir or IFN-β1b, or in combination, improved outcomes of MERS-CoV
infection in a non-human primate model of common marmosets [247]. MERS-CoV was
found to be 50–100 times more sensitive to IFN-α treatment than SARS-CoV-1 in vitro, an
observation that may have important implications for the treatment of patients with MERS-
CoV [248]. Another study found that IFN treatment could be protective or pathogenic
depending on the time at which the treatment was given, which highlights the importance
of timely IFN treatment during infection [137]. Other research has pointed to the potential
use of a DPP4 inhibitor to modulate the pathogenesis of MERS-CoV infection [249].

Neutralising antibodies (nAbs) were detected in sera from MERS survivors; these
antibodies that was able to affect virus clearance in a murine model; interestingly the sera
showed low antibody titres in patients with less severe disease [250]. It is noteworthy that
several human nAbs were identified with binding domains in the viral S protein–receptor
interface, that block virus attachment [251]. Unfortunately, there remains no licensed
vaccine for MERS-CoV infection. Since camels are naturally reinfectable with MERS-CoV,
their vaccination has been investigated [252]. A phase I clinical trial of a modified vaccinia
ankara (MVA)-based MERS vaccine has shown safety in adults, along with antibody and T
cell responses against MERS S in most participants [253].

14.3. SARS-CoV-2

Ongoing investigations are identifying treatment strategies for SARS-CoV-2. In vitro
investigations indicate that SARS-CoV-2 is more sensitive to treatment with type I IFN [254,255],
highlighting its therapeutic potential; trials using type I IFNs are ongoing. Meanwhile,
clinical improvement was seen in 68% of a cohort of severe COVID-19 patients treated with
compassionate use remdesivir [256]. Remdesivir has been demonstrated to significantly
improve time to recovery and reduce disease progression in patients needing oxygen,
compared to placedo and was approved by FDA [257]. Chloroquine, a widely used anti-
malaria drug with proven anti-viral effects for HIV and SARS-CoV-1, has been shown
to inhibit SARS-CoV-2 infection in vitro [258]. Initially, hydroxychloroquine, a less toxic
derivative of chloroquine, was thought to have potential as a treatment as it seemed to
attenuate SARS-CoV-2 infection, while suppressing harmful inflammatory responses [259].
However, hydroxychloroquine had no beneficial effects during subsequent clinical trials; it
has not been approved for treatment [259,260]. Due to the immunopathology of COVID-19,
with evidence of a cytokine storm in patients with severe disease, timely treatment with
anti-inflammatories has been recommended [261]. Treatment with convalescent plasma has
also shown promise in patients with severe COVID-19, which improves clinical symptoms
within 3 days [262]. Regeneron’s monoclonal antibodies, casirivimab and imdevimab,
have been granted FDA approval for the treatment of patients with mild to moderate
COVID-19 [263]. Other potential treatments include soluble ACE2, which has previously
shown promise for the treatment of ARDS [110], or the serine protease, Camostat, to inhibit
SARS-CoV-2 S protein priming by TMPRSS2 [101,264]. Surprisingly, the anti-parasitic drug,
ivermectin, also shows some anti-SARS-CoV-2 effects in vitro [265]. There is also some
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evidence that the tuberculosis vaccine Bacillus Calmette–Guerin (BCG), an attenuated
strain of Mycobacterium bovis, provides some protection against COVID-19 [266]. There
are several vaccines available for SARS-CoV-2 and efforts continue to develop additional
candidates, with several focused on providing protection against new mutant strains.
One particular importance is the use of novel mRNA vaccine technology. Pfizer and
Moderna have both developed new mRNA vaccines that report to provide unprecedented
protection [267]. We have included a summary of promising treatment strategies for
therapeutic and prophylactic interventions against SARS-CoV-1, MERS-CoV and SARS-
CoV-2 infection in Table 2.

Table 2. A summary of coronavirus therapeutic research.

Strategy Treatment Mechanism
Efficacy

Side Effect/Disadvantage
SARS-CoV-1 MERS-CoV SARS-CoV-2

Serine protease
inhibitor

Camostat
mesylate

Block the entry of virus into
TMPRSS2-expressing cells

Significantly reduced the
entry of pseudotyped

SARS-1-S (1–5 µM) [101]

Significantly reduced the
entry of pseudotyped

MERS-S (1–5 µM) [101]

Significantly reduced the entry of
pseudotyped SARS-2-S and authentic

infection (1–5 µM) [101]

The drug has few and mild side
effects even at high dosages for other

diseases [268]. Currently in many
phase I and phase 2 clinical trials

Nucleoside
inhibitor Ribavirin

Stops viral RNA synthesis
and viral mRNA

capping [269]

No demonstrable
anti-viral activity

Reduced virus replication in
susceptible Vero cell

lines [270]

Ribavirin was recommended by
Chinese National Health Commission
because of its in vitro effect [271], but
no significant benefit was observed

with ribavirin treatment for
COVID-19 patients later [272]

Haemolytic anaemia, hypocalcemia
and hypomagnesmia in SARS-CoV-1

infection [226]
MERS-CoV infected Vero cells

displayed a high level of resistance to
the activity of ribavirin [270]

RNA polymerase
inhibitor

Remdesivir
Inserts into viral RNA
chains, causing their

premature termination

Highly inhibited viral
titres [273]

Highly inhibited viral
titres [273]

Significantly improved time to
recovery and reduced disease

progression in patients needing
oxygen, compared to placebo, and

was approved by FDA [257] for
emergency use

Approximately 10% healthy
volunteers had raised blood levels of

liver enzymes. Another common
effect is nausea [274]

Favipiravir
Inhibits the RNA-dependent
RNA polymerase (RdRp) of

RNA viruses

Weak inhibitory effects on
MERS-CoV RdRp

activity [275]
No reports

Significantly improved the latency to
cough relief and decreased the

duration of pyrexia in moderate
COVID-19 patients [276]

Increased serum uric acid and
Psychiatric symptom reactions in

COVID-19 patients [276] and clinical
trials are ongoing

HIV Protease
inhibitors

Lopinavir/
ritonavir Inhibits viral replication

Reduced use of pulse
methylprednisolone, milder
disease course and reduced

viral load [234]

Improved clinical,
radiological, and

pathological outcomes and
lower mean viral loads in

lung tissues [247]

No benefit was observed with
lopinavir–ritonavir treatment [277]

Gastrointestinal adverse events
including nausea, vomiting, and
diarrhoea were more common in
lopinavir–ritonavir group [277]

Nelfinavir Inhibits viral replication
Strongly inhibited viral
replication in Vero E6

cells [278]

No activity found
in vitro [279]

Potential inhibitor against main
protease (Mpro) [280]

Did not reduce viral load in the lungs
of SARS-CoV-2-infected hamsters, but
markedly improved lung pathology

despite a massive infiltration of
neutrophils [281]

Limited clinical data

3 CLpro inhibiotr α-ketoamide
inhibitors Inhibit viral replication

Exhibited excellent
anti-MERS-CoV activity in

virus-infected Vero E6
cells [282]

Exhibited excellent
anti-MERS-CoV activity in

virus-infected Huh7
cells [282]

Inhibited SARS-CoV-2 replication in
human Calu-3 lung cells [283]

No human proteases with a similar
cleavage specificity are known; such

inhibitors are unlikely to be toxic [283]

PIKfyve kinase
inhibitor Apilimod Inhibit viral replication

during entry

Inhibited MERS
pseudotyped particles entry
and replication in Vero E6

cell [284]

No reports Strongly blocked SARS-CoV-2
infection in Vero E6 cells [111]

Phase I and phase II clinical trials of
other diseases

have shown that apilimod is safe and
well tolerated [111]

Anti-viral
compound Arbidol Prevents viral entry into the

target cells
Reduced virus reproduction

in vitro [285] No reports

Patients had a shorter duration of
infection (positive RNA test results),

compared to those in the
lopinavir/ritonavir group [286]

A clinical trial in patients with
COVID-19 has been initiated in

China [287]

Anti-parasitic
agent Ivermectin Inhibits viral replication No reports No reports

5000-fold reduction in SARS-CoV-2
RNA levels in vitro [265]

Patients treated with ivermectin
recovered earlier from

hyposmia/anosmia [288]

No noticeable side effects [289] and
larger clinical trials are needed

Anti-
inflammatory

agents

Corticosteroids

Blocks the action of
inflammatory mediators

and induce
anti-inflammatory

mediators [290]

Delayed viral clearance in
blood [230]

Delayed viral clearance in
respiratory tract [291]

Routine corticosteroids should be
avoided unless they are being used to

treat another condition (WHO
guideline) [292]

Secondary bacterial/fungal infections,
hyperglycemia, electrolyte imbalance

and psychosis in SARS-CoV-1
infection treatment [230]

Chloroquine/
hydroxychloroquine

Inhibits the production of
inflammatory

cytokines [293]
and interferes with terminal
glycosylation of the cellular

receptor [294]

Ameliorated the
hyperinflammatory

response induced by viral
infection [293]

Prevented the spread of
SARS-CoV-1 in cell

culture [294]

Effectively blocked viral
infection in vitro [295]

Several randomised controlled trials
showed potential effects in reducing

respiratory symptoms and pulmonary
inflammation in COVID-19

patients [296]

High doses of CQ/HCQ in COVID-19
patients can be associated with

increased cardiac adverse events [297]

Tocilizumab IL-6 receptor antagonist No reports No reports Decreased the mortality rate in severe
COVID-19 patients [298]

Some reports showed an increase in
hepatic enzymes (29%),

thrombocytopenia (14%), and serious
bacterial and fungal infections

(27%) [299]

Anakinra IL-1 receptor antagonist No reports No reports

Averted the need for mechanical
ventilation in patients with severe

COVID-19 pneumonia. Significantly
reduced biomarkers of

inflammation [300]

A three times increased level of
aminotransferase in liver in 13%

patients [301]

Statins
Decreases inflammation and
proinflammatory cytokines

production
No reports No reports

Statins can reduce inflammation and
the progression of lung injury in

experimental models. Statin use was
associated with improved

survival l [302]

Statins are first-line lipid-lowering
therapies, with well-tolerated side
effects. Limited clinical data [302]
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Table 2. Cont.

Strategy Treatment Mechanism
Efficacy

Side Effect/Disadvantage
SARS-CoV-1 MERS-CoV SARS-CoV-2

Anti-viral
cytokine

(type I interferon)

Interferon-α
Anti-viral ISGs induction

inhibits viral replication and
production

IFN alfacon-1 (recombinant
synthetic type I IFN) was

well tolerated by
patients [232]

PEG-IFN-α-2 b inhibited
symptoms in

macaques [303]

Inhibited viral induced
cytopathic effect and RNA

levels in vitro [248]

Early usage of IFN-α2 b decreased
in-hospital death, but late usage

raised mortality [304]

Mild neutropenia and some elevation
of serum transaminase levels in

SARS-CoV-1 infection [232]

Interferon-β
Anti-viral ISG induction

inhibits viral replication and
production

IFN-β-1 b inhibited viral
replication more effectively
than IFN-α-2 b in vitro and

showed prophylactic
protection and anti-viral

ability [305]

Improved clinical,
radiological, and

pathological outcomes and
lower mean viral loads in

lung tissues [247]

Early administration significantly
reduced mortality in severe

COVID-19 patients [306]

Injection-related side effects (fever,
chills, myalgia, and headache) a few

hours after injection of IFN, happened
in 19% of COVID-19 patients [306]

Broad-spectrum
anti-viral drug Nitazoxanide

Broadly amplifying
cytoplasmic RNA sensing
and type I IFN pathways

Inhibited MERS-CoV
infection in LLC-MK2 cells
and reduced production of

pro-inflammatory
cytokines [307]

No reports Inhibited the viral infection at a low
micromolar concentration [258]

Clinical trials are ongoing with
limited data

Combination
treatment

Interferon-α and
corticosteroids

Combined anti-viral and
anti-inflammatory effects

More rapid resolution of
radiographic lung

abnormalities and better
oxygen saturation

levels [232]

No reports No reports Lack of randomisation and limited
sample size [232]

Interferon-α and
ribavirin

Anti-viral effects and
inhibition of viral RNA

replication

Highly synergistic effect
and more effective than

either single treatment [308]

Reduced viral replication
and levels of

proinflammatory cytokines
in infected rhesus
macaques [246]

The survival rate of patients
was improved significantly

at 14 days [309]

RBV/IFN-α therapy was not
observed to improve clinical
outcomes in COVID-19 [310]

Not beneficial for severe and late
MERS-CoV infection patients [309].

RBV/IFN-α therapy was associated
with a higher probability of hospital

stay [310]

Interferon-β and
ribavirin

Anti-viral effects and
inhibition of RNA

replication

Inhibited viral replication
drastically compared to
either single treatment

in vitro [311]

No mortality reduction and
fast viral RNA clearance in

patients [312]

Clinical trial combined with
lopinavir/ritonavir is ongoing [313] Clinical data are limited

Corticosteroids
and ribavirin

Combined
anti-inflammatory effects

and inhibition of viral
replication

Evaluated clinical outcomes,
including recovered normal
production of cytokines for

establishing both
cell-mediated and humoral
immunity in patients [314]

No reports No reports Clinical data are limited

Lopinavir/ritonavir
and ribavirin

Combined inhibition of
viral replication

Showed stronger
suppression on viral load
and the adverse clinical

outcomes (ARDS or
mortality) was significantly

lower [234]

Showed rapid viral RNA
clearance and patient

recovery when combined
with IFN-α [315]

Lopinavir/ritonavir in combination
with ribavirin and IFNβ-1 b was safe

and superior to lopinavir–ritonavir
alone in alleviating symptoms and

shortening the duration of viral
shedding and hospital stay in patients

with mild to moderate
COVID-19 [316]

Anaemia and fall of haemoglobin in
SARS-CoV-1 infection [234]

Self-limited nausea and
diarrhoea [316]

15. Conclusions and Future Considerations

The current rapidly evolving pandemic situation represents a huge challenge to
scientists and medical professionals. There are still many aspects of CoVs that remain
unclear, including zoonotic origins, genetic evolution, interaction between the virus and
host and effective treatment strategies. Indeed, SARS-CoV-2 continues to infect globally,
with increasing numbers each day, and MERS-CoV remains a threat. With the ever-evolving
reservoir of CoVs in bats, future zoonotic events are likely and could result in a novel
epidemic or pandemic in the years to come. Indeed, the likelihood of a fourth deadly CoV
emerging in our future remains high, highlighting the need for renewed efforts in solving
outstanding questions. The continued threat from intermediate animals and changes in
climate may both affect the distribution of disease vectors. Understanding how these
CoVs transmitted from animals to humans is essential. Similarly, both the SARS-CoV-1
epidemic and SARS-CoV-2 pandemic highlight the danger of trading animals which could
harbour infectious diseases. Finally, the currently known mechanisms of immune evasion
utilised by CoVs and the complex anti-viral immunity network reviewed in this paper,
highlight the continued need to understand the interplay between CoVs and the immune
response. In fact, a comprehensive understanding of these viruses and their interplay with
the immune response will be a powerful weapon to fight existing and future deadly CoVs.
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