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Abstract

This work describes the use of strings as models for the representation of

temporal data—that is, events and times, and their linear ordering and tem-

poral inter-relations—to form the basis of a framework for reasoning about

that data and using it to aid in the creation or validation of semantic tem-

poral annotation. Some of the relevant motivating literature is examined, in

particular Allen (1983)’s interval algebra and relation set and the TimeML

(TimeML Working Group, 2005) annotation schema. The finite-state tempo-

rality approach to semantics wherein the string framework originated is also

detailed, and a breakdown is given of the work done to develop and flesh

out the framework, including discussion on the various operations for ma-

nipulating and reasoning with the data. In particular, various flavours of a

superposition operation allow for collation of the temporal information into

compact, timeline or comic strip-like objects, which provide a useful visual

reference or signpost for a document’s temporal structure. A projection op-

eration allows for the identification of temporal relations between arbitrary

events and times which appear in the strings, and also for validating that

data is not lost or corrupted from the original sources. Possible treatments

of incomplete information are also described, leveraging the relation set as-

sociated with Freksa (1992)’s semi-intervals. Applications in annotation and

scheduling are discussed, and a proof-of-concept online tool is presented which

uses strings as a basis for creating, editing, and removing inconsistencies from

documents marked up with TimeML.
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1 Introduction

The ability to reason about time and events is considered an essential aspect in sev-

eral kinds of intelligent systems. For example, answering questions such as “Which

of our students were in receipt of a grant last year?” or “How many conference pa-

pers were accepted last semester?” requires the use and interpretation of temporal

information. Planning and scheduling systems rely on temporal reasoning in order

to organise the data they process. Additionally, as human discourse and narrative

often describes events out of chronological ordering, it’s critical for natural language

processing systems to be able to reason about sentences like “The stock market fell

this morning after the controversy last night,” so as to understand which event oc-

curred first (the stock market falling, or the controversy), in order for it to have an

accurate understanding of the scenario.

In order to perform reasoning about events and other time-related data in a useful

way, it is first necessary to create a comprehensive framework for representing that

temporal information in knowledge-based systems. Several approaches have been de-

signed over the years, based on a number of conventions and formalisms. The event

calculus (Kowalski and Sergot, 1986; Miller and Shanahan, 1999; Mueller, 2008), for

example, represents events and their effects through the use of the predicates of a

logical language. Allen (1983) used directed graphs to keep track of events and their

inter-relations. T-BOX (Verhagen, 2005a) draws semantically-placed boxes to simi-

larly display the relations between events and times, using as its basis the TLINKs

of TimeML (TimeML Working Group, 2005), a semantic annotation schema and

markup language which has become an international standard (ISO 24617-1:2012,

2012) for the annotation of text with explicit temporal data (Pustejovsky et al.,

1



2010).

However, these frameworks do not offer a straightforward way to adequately and

intuitively visualise a document’s temporal structure without sacrificing the ability

to perform efficient reasoning over that temporal information, and vice versa. For

example, the formality of the event calculus is arguably not intuitive to a layperson—

which may impact their ability to use it for the purposes of annotation, the directed

graph approach of Allen suffers from a non-semantic layout, TimeML has no native

graphical interface, and while T-BOX has an attractive design, it is not intended

for use beyond being a visualisation aid—see § 2.2 for more details on these. This

thesis will explore and describe the use of strings as models to represent temporal

information—data concerning times and events—for use in computational systems

which deal with knowledge-based reasoning in some way, while also maintaining

both a compact visual appeal that is reminiscent of strips of film or panels of a

comic.

Using strings—as finite sequences of information σ1 · · ·σn, n ∈ N, where each σi

is a symbol representing some data—is not uncommon for visualising the relations

between events, evoking notions of Gantt charts and timelines. For example, these

strings give a general picture of the relative order of two events X and Y:

XXX

YYY

“X occurs before Y occurs”

XXXXXXXXX

YYYYY

“Y occurs during X”

or see Allen (1983, p. 835, Figure 2), reproduced in Figure 1 in §2, p. 8.

The overarching question this work seeks to answer is How can strings be used to

2



capture and represent temporal information in a precise, compact, and semantically

meaningful way for reasoning and processing, whilst evoking the intuitive metaphor

of timelines? In order to tackle this, events and times must first be made repre-

sentable as symbols in a simple and logical manner, so that they may be used as

elements in a string. It is important that the strings may be used for semantic rea-

soning; that is, logical consequences may be inferred—for instance, whether one set

of temporal data entails another—allowing for useful deductions to be made. This

work is also interested in ensuring that the framework be computationally tractable,

so reducing algorithmic complexity and increasing data density are desirable. How-

ever, with this in mind, the intuitive presentational form of a timeline should be

preserved where possible. The framework should be able to handle the complexities

of real narratives and discourse to a satisfactory level, which may or may not contain

incomplete or vague data.

Strings offer an excellent basis for this system which is to be created, as they

are basic computational entities which are amenable to finite-state methods, such as

decidably determining entailment of one string by another—see §3.1.2—and reading

them is intuitively similar to reading a timeline. The framework may have a number

of applications in the field of intelligent systems, including among them annotation

tooling, for which a proof-of-concept application is presented in § 5. This tool,

named START (String Temporal Annotation and Relation Tool) is illustrative of

what the string framework can provide to semantic annotation, and it is intended

to be seen as a complementary tool for assisting with manual and semi-automatic

annotation of temporal data in texts, alongside existant tools like T-BOX, which

similarly strives for a semantic and intuitive presentation of temporal information.
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The text proceeds as follows: § 2 introduces some of the core material which

the current work uses as its foundation, including the interval-based framework for

representing events/times and their inter-relations put forward by Allen (1983), as

well as TimeML and the TimeBank corpus, and ISO-TimeML, which is TimeML’s

successor and an international standard for marking up texts with temporal annota-

tions. §3 goes into detail on the finite-state approach to temporal semantics which

licences the string framework, including how strings may be interpreted as finite

models of Monadic Second-Order Logic, which leads to an equivalence with regular

languages. The mechanics and operations for using strings as a representational

tool for temporality are described, as well as how multiple strings can be composed

together in order to increase data density and make explicit relations that were

previously only implied. Possible applications for the use of strings are discussed,

including in creating timeline structures from annotated texts and in scheduling

problems which involve temporal constraint satisfaction. § 4 discusses using the

string framework to enrich documents marked up with TimeML—such as those in

the TimeBank corpus—and subsequently some methods for handling the often in-

complete or vague information that is extracted from these narratives, as well as

how strings can be used as a tool for reasoning about times and events. Finally, §5

presents an online, web-based tool which can be used to demonstrate the utility of

strings in a temporal annotation context.
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2 Relevant Literature

In this chapter, the existing literature related to the major topics of the thesis

are reviewed and analysed. These works are discussed in detail and some gaps

are identified which may be filled through the use of a string-based representation

framework for temporal entities and the relations between them.

2.1 Times and Events

The concept of time has fascinated researchers for millenia, and as such, a great deal

of work exists on the topic. What follows focuses on the formal study of temporality

in logic and language. First is presented the interval-based algebra which pervades

throughout the rest of this work through TimeML’s use of the same relations, as

well as their appearance from superposition—see Table 7, p. 82.

2.1.1 Allen’s Interval Algebra

Much of the present work draws its roots in James F. Allen’s work Maintaining

Knowledge about Temporal Intervals (1983), both directly and indirectly via the

many systems which have built upon it in the years since it was first published. In

this seminal paper, Allen described a framework for the use of temporal intervals

as primitives to represent events and time periods, as opposed to points on the real

line. There are four key criteria given as being of primary importance in guiding

the design of this framework (1983, p. 833), all of which also feature in the system

of string-based event representation described in the present work (see §3.1):

1. The representation should allow for the fact that much temporal information

is relative rather than precise.
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2. Uncertainty of information should be allowed for, such as when the precise

relation between two times is unknown (though constraints on the relation

may exist).

3. The granularity of reasoning should be flexible—that is, capable of dealing

with years and seconds in the same manner.

4. Reasoning should assume that states will persist unless there is some evidence

to the contrary. In other words, change is the marker of progression of time.

Part of the motivation for using intervals rather than points is stated as follows:

“There seems to be a strong intuition that, given an event, we can always

‘turn up the magnification’ and look at its structure. ... Since the only

times we consider will be times of events, it appears that we can always

decompose times into subparts. Thus the formal notion of a time point,

which would not be decomposable, is not useful.” (Allen, 1983, p. 834)

For example, taking just the event Going-Home from the sentence “I went home

after work last night”, it could be conceptually broken down into sub-events that

make up parts of the whole: Leaving-Work, Commuting, and Arriving-Home. Each

of these could be again further subdivided, repeatedly, as desired. However, if an

event is given a specified time, such as “I went home at midnight”, this seems to

be a little trickier to deal with—‘last night’ is plainly referring to an interval of

time during which the Going-Home event occurs, while ‘midnight’ appears to be

an instantaneous moment of time. Nevertheless, the Going-Home event can still

be subdivided in the same manner, which shows that even times that appear to

intuitively points may be thought of as intervals as well.

Allen makes further argument for the use of intervals as primitive, disallowing

zero-width time points, with an illuminating example involving a lightbulb being

switched on: there must be an interval of time when the light was off, followed by

an interval when it was on, but whether these intervals are open or closed presents

6



another issue. If both intervals are open, then there is some point of time between

the two when the light is neither on nor off; however, if both are closed, then there

is some time point when the light is both on and off. This fault can be resolved by

having the intervals be open at one end and closed at the other, although Allen calls

this an artificial solution which “emphasizes that a model of time based on points

on the real line does not correspond to our intuitive notion of time” (1983, p. 834).

However, this argument that temporal intervals are counter-intuitive if they are

open on one end and closed at the other has not been universally accepted—for

example, the event calculus (Kowalski and Sergot, 1986; Miller and Shanahan, 1999;

Mueller, 2008) describes a predicate Initiates(e, f, t) which states that some event

e occurs at a timepoint t, and the temporal proposition f is true after t. In the

lightbulb example, this is equivalent to using intervals which are open on the lower

end and closed at the higher, which can be interpreted as meaning the light is not

on at the initial moment of switching it on, but is afterwards. Similarly, Fernando

(2018) describes using an open left border and closed right border as a means for

event representation.

Allen goes on to formally present and label the thirteen possible relations which

may exist between two temporal intervals, which can be thought of as six invert-

ible relations (before, meets, overlaps, during, starts, finishes) and one symmetric

(equals). Figure 1, reproduced from Allen (1983, p. 835, Figure 2) shows these

relations along with the symbols typically used to abbreviate them, and examples

of some events represented graphically as strings of ‘X’ and ‘Y’ demonstrating the

relations. These are often referred to as Allen’s interval relations, or simply the

Allen relations.
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Relation Symbol Symbol for Inverse Pictoral Example

X before Y < > XXX YYY

X equal Y = = XXX

YYY

X meets Y m mi XXXYYY

X overlaps Y o oi XXX

YYY

X during Y d di XXX

YYYYYY

X starts Y s si XXX

YYYYY

X finishes Y f fi XXX

YYYYY

Figure 1: Allen interval relations (Allen, 1983, p. 835, Figure 2).

These relations form a cornerstone both within this work (see, for instance, Table 7)

and elsewhere—they are a fundamental part of the specification of ISO-TimeML

(Pustejovsky et al., 2010) (see §2.2.1), the international standard markup language

for temporal annotation, where they are used, as one might expect1, as the possible

relation types between a pair of events tagged elsewhere in a document. Freksa

(1992) also describes a larger set of semi-interval relations in terms of disjunctions

of the Allen relations—see also §3.1.3 and §4.1.2.

The framework proposed by Allen uses a directed graph as its basis, in which the

nodes represent intervals, and the arcs are labelled according to the relation (or, in

the case of uncertainty, relations—see Table 1) between the intervals. It is assumed

that complete information about the relations in the network is maintained—that

is, there are no nodes without an edge between them, as the transitivities between

1Albeit with slightly different labels and omitting overlaps—see Figure 7, p. 24.
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the various relations are to be computed as necessary—for instance, on the addition

of a new interval into the network.

To illustrate, given a graph representing some pair of events X and Y such that

X is before Y (Figure 2 (a)), a third node representing the event Z is added, with

the additional information that Y occurs before Z (Figure 2 (b)). The relation

between X and Z can then be calculated due to the transitivity rules which apply

to the Allen relations—in this case, X < Y and Y < Z results in X < Z (Figure 2

(c))—see also Table 1.

Figure 2: Simple graph network showing the computation of a transitivity.

For N nodes (intervals) there are N2−N
2

edges if all new nodes are connected to all

existant nodes when they are created. While in Figure 2 there is one label per edge,

there may be as many as 13 · N2−N
2

labels per edge if there is no knowledge about

any relations. In Figure 3, it can be seen that a pair of single-label edges may result

in a multiple-label edge by transitivity: the relations X o Y and Y o Z results in

the disjunction of X <Z, X o Z, and X m Z. Without further data, there is no

way to definitively constrain this disjunction to a single relation. If there is a single

label for every edge in the graph, this is known as temporal closure—as discourse

often naturally features incomplete or vague temporal information, calculating the
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temporal closure is, in general, a difficult goal to achieve, though it is desirable in

order to create a representation that is both complete and consistent (Verhagen,

2005b).

Figure 3: Computation of a transitivity with a multiple-label result.

Allen (1983, p. 836) gives a 12× 122 transitivity table—a 6× 6 fragment of which

is reproduced below in Table 1—which provides the relation or relations which may

exist between two intervals A and C, given the relations • between A and B, and

•′ between B and C. Not shown in Table 1 are relation pairs such as A before B

and B after C—the disjunction of relations between A and C in this case contains

all 13 possibilities (in Allen’s table, labelled as ‘no info’), indicating that there

are no constraints on the relation between A and C. A smaller fragment of this

table which shows these transitivities interpreted as superpositions3 of strings which

represent the various Allen relations is given in Woods et al. (2017, p. 130). One

advantage of the string-based approach comes from the fact that a single string may

be used to represent an arbitrary (finite) number of events, and all of the relations

between them, at once—thus transitivities between, for example, four intervals can

2The equals relation is omitted, since it is reflexive, symmetric, and transitive, meaning for any
relation •, ((A = B ∧B • C) ∨ (A •B ∧B = C)) =⇒ A • C.

3See §3.1.4 for details of superposition.
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be represented as easily as three.

A •B

B • ′C
< d o m s f

before (<) < < o m d s < < < < o m d s

during (d) < d < o m d s < d d

overlaps (o) < o d s < o m < o o d s

meets (m) < o d s < < m o d s

starts (s) < d < o m < s d

finishes (f) < d o d s m d f

Table 1: Fragment of Allen’s transitivity table (1983, p. 836, Figure 4).

For the propagation of constraints upon the addition of new information to the

network, Allen (1983, p. 835) also details an algorithm using the transitivity table

to update all arcs in the network as necessary. While Allen does concede that there

are some issues with this algorithm—specifically mentioning the space requirement,

which is somewhat high at O(N2) space for N temporal intervals, and the fact that

the algorithm doesn’t guarantee consistency in larger than three-node networks4,

and Verhagen (2005b, p. 219) also notes an O(N3) time complexity—it does give

an upper bound of 13× (N−1)(N−2)
2

to the number of modifications that can be made

to the network, regardless of the number of constraints added. Additionally, “the

average amount of work for each addition is essentially linear (i.e., N additions take

O(N2) time; one addition on average takes O(N) time)” (Allen, 1983, p. 837). This

is still quite high, given that it is not unusual for a given text, annotated documents

of the TimeBank (Pustejovsky et al., 2003b, 2006) corpus for instance, to feature

fifty intervals or more, and some are in the hundreds (Verhagen, 2005b, p. 213).

To tackle the space requirements while maintaining as much inferential power

as possible, Allen (1983, p. 838) also describes a method for grouping clusters

4See § 3.2, p. 81 for how this limit may be improved upon by using strings and superposition to
automatically reject inconsistencies.

11



of intervals which—in regards to the relations between them—are fully computed,

termed “reference intervals”. This is due to the fact that each interval Ii in the

cluster {I1, I2, ..., In} will reference one or more new intervals Rm (where m is an

index on the number of reference intervals), and these reference intervals will be

connected in the graph, which can be used to find relations between nodes which

are not directly connected. Since these reference intervals may be treated as normal

intervals, they may themselves be grouped into a cluster, and thus hierarchies of

intervals may arise.

Allen’s work was and remains highly influential in the field of temporal reasoning

and annotation, thanks to an approach which is both intuitive and straight-forward,

as well as easy to implement in various applications. One such proponent of interval

relations has been TimeML, a markup language designed to “capture the richness

of temporal and event related information in language” (Pustejovsky et al., 2005, p.

123)—see §2.2.1.

2.1.2 Tense and Aspect

Reichenbach’s (1947) theory of verbal tense and aspect allows for the temporal

placement of an event time in relation to a speech time and a reference time. The

relative orderings of these three times gives rise to the categorisations of tense and

aspect in English and other languages. This framework has been widely accepted

and adopted, and has found empirical validation via TimeML (TimeML Working

Group, 2005) and the TimeBank corpus (Pustejovsky et al., 2003b) in Derczynski

and Gaizauskas (2013), which finds that using Freksa (1992)’s semi-interval relations

leads to “tense appropriately constrain[ing] the types of temporal relations that can

hold between pairs of events described by verbs”.
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Reichenbach (1947, p. 72) initially presents six tense/aspect combinations of En-

glish as arrangements of three temporal points, the ‘point of the event’, the ‘point of

reference’, and the ‘point of speech’, which may coincide. These six are: the Simple

Past, Past Perfect, Present, Present Perfect, Simple Future, and Future Perfect.

However, it is noted that the ‘Simple Future’ may have two possible interpretations

in English, and the arrangement originally presented under that name—where the

points of speech and reference are equal and precede the point of the event—is later

(p. 77) renamed as the ‘Posterior Present’, while the second interpretation becomes

the arrangement associated with the term ‘Simple Future’—see Figure 4.

Tense Example E, R, S

Simple Past “I bought the book” (E = R) < S

Past Perfect “I had bought the book” E < R < S

Simple Present “I buy the book” E = R = S

Present Perfect “I have bought the book” E < (R = S)

Simple Future “I will buy the book” S < (R = E)

Future Perfect “I will have bought the book” S < E < R

Figure 4: Arrangements of the points E, R, and S, from Reichenbach (1947).

As can be seen from these arrangements, the tense of a sentence being in the Past,

Present, or Future tense correlates to the ordering of the reference time R and

speech time S: whether the reference time R appears before, equal to, or after the

speech time S, respectively. The perfective aspect—called the ‘Anterior’ tenses in

Reichenbach (1947, p. 77)—is then created by placing the event time E before R,

where it is equal to R in the non-perfective aspect.

While Reichenbach (1947) (mostly) treats the time of event, speech and reference
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as temporal points, there is so far no issue with assuming that they may instead

be treated as temporal intervals, à la Allen (1983) and TimeML (TimeML Working

Group, 2005; Sauŕı et al., 2006). However, in order to treat the Progressive aspect

which English may use, the so-called ‘point of the event’ must in fact be taken as an

interval rather than an instantaneous point, indicating the durative nature of the

Progressive. If the event time was already considered to be an interval, then instead

the set of relations must change so as to include the ‘during’ relation from Allen’s

set—see Figure 1, p. 8. Thus the Progressive aspect can be conceptualised by the

reference time R occurring during the event time E, as in Figure 5.

Tense Example E, R, S

Past Progressive “I was buying the book” R d E, R < S

Present Progressive “I am buying the book” R d E, R = S

Future Progressive “I will be buying the book” R d E, S < R

Figure 5: Relations of E, R, and S for the Progressive aspect.

However, if all of E, R, and S are intervals, then Allen’s interval relations apply

to all pairings. Where before there was an equality relation between two of the

points, Allen’s equality will apply, but if one point preceded another, then in fact

either of the ‘before’ or ‘meets’ relations may hold. Additionally, taking the Past

Progressive as an example gives R d E and R < S—assuming for the moment that

R is before S rather than meeting it, then by the rules of transitivity for Allen

relations, the relation between E and S may be any of ‘before’, ‘meets’, ‘contains’,

‘finished by’, or ‘overlaps’. The fact that these disjunctions arise leads Derczynski

and Gaizauskas (2013) to use Freksa (1992)’s set of 31 semi-interval relations—a

superset of Allen’s interval relations—in validating the Reichenbachian framework
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within the TimeBank (Pustejovsky et al., 2006) corpus. Semi-intervals arise by

considering an interval in terms of its beginning and ending, but treating those as

intervals in and of themselves, and in this way a set of relations are defined between

the beginnings and endings of events. For instance, if the Freksa relation ‘older’

holds between some pair of events a and b, then the beginning of a, α(a), occurs

before the beginning of b, α(b), while the order in which the events end is left

unspecified. Each Freksa relation may also be described in terms of a disjunction

of Allen relations—in fact, the ‘older’ relation corresponds to the same disjunction

of ‘before’, ‘meets’, ‘contains’, ‘finished by’, or ‘overlaps’ which appear between a

verb’s event time E and its speech time S in the Past Progressive. The Freksa

relations are discussed in more detail in § 4.1.2, but they are relevant here due to

the disjunctions which come out of treating event, reference, and speech times as

events, and leveraging shared reference times may lead to more of these disjunctions

arriving when attempting to derive temporal relations between verbal events—see

Figure 6.

By using what Reichenbach (1947, p. 74) refers to as the “permanence of the

reference point”, events in an utterance may be temporally ordered relative to each

other. This states that, though events may be in different clauses, the fact that

a speaker adjusts the use of tense and aspect for the events relative to each other

shows that they must share a reference time. In the following example (1), the two

events are in boldface.

(1) “I had left her when I bought the book.”

Since the two events are in the same utterance, they have the same speech time,

and by permanence of reference point, their reference times are also identical. Now,
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given that ‘left’ is in the Past Perfect, while ‘bought’ is in the Simple Past, the

constraints from Figure 4 can be used to order the two events—using points rather

than intervals for the sake of keeping the example simple—as follows in (2):

Sleave = Sbuy, Rleave = Rbuy(2a)

Eleave < Rleave < Sleave(2b)

Ebuy = Rbuy < Sbuy(2c)

∴ Eleave < Ebuy(2d)

This gives that the event time of ‘left’ Eleave occurs before the event time of ‘bought’

Ebuy, and thus for any pair of verbal events a and b which share a speech and reference

time and the verb denoting a is in the Past Perfect while the verb denoting b is in

the Simple Past, we can deduce that a precedes b, as temporal points. While this

principle still holds when E, R, and S are treated as intervals instead of points, it

does become a little more complex as the size of the possible relation set between a

pair of intervals is over four times larger than the possible relation set for points, and

as mentioned above, it is possible for disjunctions of relations to arise. Derczynski

and Gaizauskas (2013) give a table with all of the combinations of tense {PAST,

PRESENT, FUTURE} and aspect5 {NONE, PROGRESSIVE, PERFECTIVE}—the aspect value

of NONE denotes the Simple form of that tense—where each disjunction has been

labelled with its associated Freksa relation, displayed in Figure 6.

Care must be given, though, to note that the rule of a permanent reference time

only applies to verbs within the same temporal context (Hornstein, 1990; Derczynski

5The PERFECTIVE PROGRESSIVE aspect is also possible—for example in “I had been walking”—
however, it is omitted for simplicity’s sake due to featuring in less than 1% of verb events in the
TimeBank corpus (Derczynski and Gaizauskas, 2013, p. 77).
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Figure 6: Tense-aspect pairs and the Freksa (1992) relations they may suggest
(taken from Derczynski and Gaizauskas, 2013, p. 80, Table 5).

and Gaizauskas, 2013)—verbs appearing in reported speech, for instance, are in a

separate context to the verbs which introduce it. For example, in (3), the events

pointed to by ‘put’ and ‘said’ share their speech and reference times, and thus their

temporal context is the same. However, ‘going’ is part of a separate statement,

enclosed by the quotation marks, and having a speech time that is equal to the

event time of ‘said’.

(3) He put his head in and said “I’m going to the shop”.

In general, if a pair of events that are to be temporally related are in separate

temporal contexts “Reichenbach’s framework may not directly apply, and the pair

should not be further analysed” (Derczynski and Gaizauskas, 2013, p. 75). However,

the temporal context can be difficult to determine automatically from a text, and

the TimeML schema doesn’t provide an explicit way to annotate it. One way to

model a shared context between some pair of events is to look at the proximity

of their appearance in the text, assuming events which are more textually distant
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than an adjacent sentence are unlikely to share the same context, and additionally

checking if the events share the same tense—that is, the same speech and reference

time. Using this model on the TimeBank 1.2 (Pustejovsky et al., 2006) corpus,

Derczynski and Gaizauskas (2013, p. 80) validated the Reichenbachian framework

of tense and aspect by extracting pairs of verbal events from the <TLINK> tags and

using the tense and aspect of the verb pairs to derive one of the disjunctions of

relations given in Figure 6. This derived disjunction contained as an element the

relation that was actually marked up in the <TLINK> tag in 67.8% of cases6. It is

noted that, taking into consideration that the temporal context model is somewhat

crude, the amount of inaccuracy using this model (32.2%) is comparable to the inter-

annotator disagreement for <TLINK> relation type labels (0.23) in the corpus: “The

fact that temporal context is derived from models and not explicit gold-standard

annotation is also likely a significant source of noise in agreement.” (Derczynski and

Gaizauskas, 2013, p. 80).

The next section takes a deeper look at the TimeBank corpus and the annotation

schema with which it is marked up, TimeML.

2.2 Temporal Annotation

Ideally, humans who use artificially intelligent systems for question-answering, schedul-

ing, or other applications which require some level of reasoning about temporal data

won’t ever have to consider the annotation which drives it—except, of course, in the

case when annotation is itself the goal of using the system. Computer systems have

no inherent understanding of natural language, and rely on the samples they have

6This excludes the prediction of the ‘all’ or ‘unknown’ relation, which is a disjunction of all possible
relations. Including this relation is not useful, but when doing so the accuracy was found to be
91.9%.
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been provided with in order to give a facsimile of the communication abilities that

humans have. The better the quality of those samples, and the more information

embedded within them, the better the system can interpret human language, and

in turn generate interpretable output.

The annotation of a document allows for information about the text to be ex-

pressed in such a way as to make the implicit explicit—revealing a layer of semantics

which a human may be able to infer, but an artificial agent would not. There are

many ways to mark up a text, and many concepts which may warrant marking up,

but in terms of temporal data, the most prudent schema to follow is that of TimeML

(TimeML Working Group, 2005) and its successor, which has become the ISO (In-

ternational Organization for Standardization) standard for temporal annotation:

ISO-TimeML (ISO 24617-1:2012, 2012), a part of the ISO Semantic Annotation

Framework—see Bunt (2020).

TimeML has found considerable success in terms of widespread adoption as a

means of marking up text with temporal information, at least in some part thanks to

the release of TimeBank (Pustejovsky et al., 2003b), a corpus of newswire articles7

which were manually annotated using the TimeML schema. TimeBank frequently

appears in discussion about TimeML since, in terms of quality, manual annotation is

still seen as the ‘gold standard’ and superior to automatically generated markup, al-

though machine-created annotation has seen much effort and improvement in recent

years (Mani et al., 2006; UzZaman et al., 2013; Reimers et al., 2016).

The availability of appropriate tooling for the creation of human-driven annota-

tion is crucial in ensuring that accurate and consistent results are produced. The

7The original version of TimeBank contained 300 articles, while the latest version, TimeBank 1.2,
contains 183.
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first edition of the TimeBank corpus was annotated using the Alembic Workbench

tool (Day et al., 1997), which was useful for the non-relational aspects, but im-

practical for the highly relational nature of the temporal data featured in TimeML

annotations (Verhagen, 2005a). A number of other tools have been developed since

then which aim to provide visual feedback and assistance to an annotator, including

using directed graphs—as in Allen (1983)—and timeline-like depictions, of which

the tooling described in §5 falls under the second category.

2.2.1 TimeML and TimeBank

The initial goal for creating the TimeML language came from a desire to improve

applications—such as question-answering systems—by means of event recognition,

and giving each recognised event an explicit temporal location. This latter point

is motivated due to the fact that a large proportion of temporal information in

discourse rely on implicit or vague temporal expressions. This relates back to the

first principle which Allen (1983) mentioned8 as influencing the design of the interval

algebra framework: that it is not generally intuitive to always think of or refer to

time in terms of explicit or precise time points. Instead we tend to use relative

expressions, such as the boldface text in the following utterances:

(4) “I didn’t go to work last Monday.”

(5) “I was sick the week before.”

Speakers will rely on their listeners being able to use context to interpret what these

temporal expressions refer to.

TimeML aimed, in part, to give implicit and relative temporal expressions an

8See p. 5.
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explicit anchoring, in order to assist with intelligent systems’ temporal awareness.

Pustejovsky et al. (2005, p. 125, (1a.)) wanted to enable question-answering systems

to be able to answer questions such as

(6) “Is Schröder currently German chancellor?”

as capably as a human could after reading an appropriately relevant news article.

A number of issues are raised that ought to be addressed within a system that

can understand and answer questions similar to this one. Potentially problematic

example queries can range from simple questions about the date of a specific event:

(7) “When did the USA first declare independence from the UK?”

to questions about non-unique events:

(8) “How long does it take to drive from Dublin to Cork?”

and questions where the system must perform some level of inference in order to

derive the answer, possibly returning information that is not temporal in and of

itself, but requires such data to find the correct solution:

(9) “Who was the last president of France?”

Pustejovsky et al. (2005, p. 132) further discusses the kinds of temporal information

that might be needed, and how to go about representing it in a useful way. Two

tasks are deemed essential: the ability to place events on some timeline, and the

ability to determine the relative order of any pair of events. These tasks are termed

event anchoring and ordering, respectively, and these also form a core motivation

for the framework described in § 3, which uses strings to simultaneously represent

the anchoring and ordering of events.
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Events in TimeML are “referred to by finite clauses, nonfinite clauses, nominal-

izations, event-referring nouns, adjectives, and even some kinds of adverbial clauses”

(Pustejovsky et al., 2005, p. 133). Systems must also be aware of the possibility of

negated and modal events, such as:

(10) “Ireland did not make it to the World Cup this year.”

(11) “The exhibition might create new opportunities for the museum.”

The events (italicised) in these sentences should not be treated as if they actually

occurred. Additionally, care should be taken to distinguish separate events in the

representation which are referred to together in the text (Pustejovsky et al., 2005,

p. 134, (32a.)):

(12) “James taught 3 times on Tuesday.”

This leads to a distinction between types of events and instances of events, where

an instance may appear in the representation in place of a type, cf. (35), p. 47.

Times, on the other hand, generally take the form of adverbial or preposi-

tional phrases in English, such as ‘next week’, ‘yesterday’, or ‘10th of August’.

For TimeML, these expressions must be normalised in order to anchor events to

times on a timeline—converted to some machine-readable form, possibly an integer

or real number, depending on the context. It is also important to know the time

of utterance (or document creation time, for a text) in order to correctly normalise

expressions such as ‘today’ or ‘last Monday’, as these terms refer to a time which

is relative to some other point, often the time of utterance or document creation

time. Some expressions, such as ‘recently’ cannot be determinately linked to the

timeline, due to their inherently vague nature, yet may still be ordered relative to
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other time points, and thus should still undergo normalisation. The last two kinds

of time expressions mentioned in Pustejovsky et al. (2005) are durations and sets

of times. Durations, such as ‘five hours’, may or may not be anchored to times or

events (boldface text):

(13) “You’ll have it for a month from Monday.”

(14) “She submitted two weeks before the deadline.”

Sets of times are generally used to place recurring events on the timeline:

(15) “He visited every week.”

(16) “They took the meds twice a day.”

In order for TimeML to represent the desired ordering and anchoring, a set of

relations for times and events is required, and Allen’s interval relations are selected

as a strong basis for these, as reasoning over them is “well-understood” (Pustejovsky

et al., 2005, p. 138). However, it is noted that not all of Allen’s relations are

equally well represented in texts of the English language. In particular, the overlaps

relation is “difficult to find instantiated in natural language text”, and thus may be

considered unnecessary. In fact, this relation and its inverse are omitted from the

final set of temporal relations used in TimeML—see Figure 7. Nevertheless, since

these relations may arise through transitivity and it is not immediately problematic

to do so, they are reincluded in §5.

The syntax of TimeML9 uses the following types of tags to capture the vari-

ous kinds of information: <TIMEX3> for marking up time expressions, <EVENT> for

events and <MAKEINSTANCE> for event instances, <SIGNAL> for functional words (such

9For the full specification of TimeML (version 1.2.1), see http://www.timeml.org (TimeML Work-
ing Group, 2005), and annotation guidelines in Sauŕı et al. (2006).
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as ‘at’, ‘from’, ‘when’, etc.), and three types of linking tags for relations between

the other tags: <SLINK> captures subordinating relations involving evidentiality,

modality, and factuality; <ALINK> captures aspectual links; and <TLINK> captures

temporal relationships between events and times.

§ 4.1.1 and 5 focus primarily on this last tag type, as it is here that Allen’s

interval relations are represented, albeit under slightly different nomenclature, with

some duplication, and omitting the overlapping relations as mentioned above—see

Figure 7. Each of TimeML’s tags take a number of attributes which help to flesh out

the representation of the information, and for a <TLINK> these are: either a timeID

or eventInstanceID, which refers to some temporal expression in the text; either a

relatedToTime or relatedToEventInstance, which will refer to another temporal

expression; and a relType, which will specify the relation from the first attribute

to the second.

TLINK Allen

SIMULTANEOUS equal (=)

IDENTITY equal (=)

BEFORE before (<)

AFTER after (>)

IBEFORE meets (m)

IAFTER met by (mi)

INCLUDES contains (di)

IS INCLUDED during (d)

DURING during (d)

DURING INV contains (di)

BEGINS starts (s)

BEGUN BY started by (si)

ENDS finshes (f)

ENDED BY finished by (fi)

Figure 7: Possible values of a TLINK’s relType attribute and their Allen relation
counterparts.

The rationale behind distinguishing INCLUDES/IS INCLUDED and DURING INV/DURING
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is that the former should be used for cases where an event or time is included in

another, like in:

(17) “He arrived there last week.”

while the latter should be used specifically for states or events that persist through-

out a duration (Pustejovsky et al., 2005, p. 158), such as in:

(18) “They were Captain for two seasons.”

Below in Figure 8 is a simple example of a completed annotation—derived from the

annotation guidelines (Sauŕı et al., 2006)—of the sentence:

(19) “He panicked on Wednesday.”

He

<EVENT eid="e1" class="OCCURRENCE">

panicked

</EVENT>

<SIGNAL sid="s1">

on

</SIGNAL>

<TIMEX3 tid="t1" type="DATE">

Wednesday

</TIMEX3>

<MAKEINSTANCE eiid="ei1" eventID="e1" pos="VERB"

tense="PAST" aspect="NONE" polarity="POS" />

<TLINK eventInstanceID="ei1" relatedToTime="t1"

signalID="s1" relType="IS_INCLUDED" />

Figure 8: Example TimeML annotation for “He panicked on Wednesday.”

Since the initial publication of Pustejovsky et al. (2003a)10, TimeML has received

10In this work, the authors do refer to the TimeML language as being “developed in the context
of a six-month workshop, TERQAS” during 2002. However, the URL link cited for Annotation
Guideline to TimeML 1.0 (http://time2002.org) no longer available points to an available
resource as of March 2021. The TERQAS (Time and Event Recognition for Question Answering
Systems) workshop was held at MITRE Bedford and Brandeis University (Pustejovsky et al.,
2003b, p. 647).
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numerous improvements, updates, and tweaks. Although a version of the language

has been adopted as an ISO standard (ISO 24617-1:2012) for temporal annota-

tion (Pustejovsky et al., 2010), the most recent publically available version—see

http://www.timeml.org—is TimeML 1.2.1 (TimeML Working Group, 2005; Sauŕı

et al., 2006), and this is the version which the present work will focus on. The

primary reason for this is due to the most recently available edition11 of the Time-

Bank corpus—one of the largest available corpora for documents annotated with

TimeML—being TimeBank 1.2 (Pustejovsky et al., 2006), wherein the annotation

was updated in order to bring the corpus in line with the updated specification,

which at the time was TimeML 1.2.1.

The TimeBank 1.2 corpus contains 183 texts, featuring news articles from a

variety of sources, including broadcast news from ABC, CNN, PRI, and VOA, as

well as articles from the Wall Street Journal. The counts for how frequently each

tag appears in the corpus are given below in Figure 9, reproduced from Pustejovsky

et al. (2006):

Tag Count

EVENT 7,935

MAKEINSTANCE 7,940

TIMEX3 1,414

SIGNAL 688

ALINK 265

SLINK 2,932

TLINK 6,418

Total 27,592

Figure 9: Tag counts for TimeBank 1.2.

The TempEval-3 (UzZaman et al., 2013) shared task, which aimed to “advance

11This refers to the English language corpus. There do exist versions of other TimeBank corpora
in languages such as French (Bittar et al., 2011) and Hindi (Goel et al., 2020) which use the
ISO-TimeML schema.
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research on temporal information processing”, also produced a slightly updated

version of the TimeBank 1.2 corpus, which is described as having been “cleaned”.

This included adjusting all of the files to have consistent formatting, to be XML

and TimeML schema compatible, as well as adding some missing events, times, and

relations (UzZaman et al., 2013, p. 2).

While this work will focus on TimeML 1.2.1, it is worth outlining some of the

most notable alterations which were introduced by ISO-TimeML. One of the largest

changes, from a structural point of view, is moving away from in-line annotation,

whereby the markup tags are inserted directly into the body of the text. Instead,

ISO-TimeML separates the annotation from the main text, using “stand-off” anno-

tation, which increases the interoperability of annotation languages by conforming

to the general practice of not modifying the text which is being annotated (Puste-

jovsky et al., 2010, p. 395). For example, a sentence like in (20) which features an

event that appears partway through will be marked up as something similar to (21)

(omitting some attributes) using the older versions of TimeML:

(20) “He walked to the shop.”

(21) He <EVENT eid="e1" ... >walked</EVENT> to the shop.

while ISO-TimeML would be something more like in (22) and (23), which are each

in separate files:

(22) <seg type="token" xml:id="token1">He</seg>

<seg type="token" xml:id="token2">walked</seg>

<seg type="token" xml:id="token3">to</seg>

<seg type="token" xml:id="token4">the</seg>

<seg type="token" xml:id="token5">shop</seg>
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(23) <EVENT xml:id="e1" target="#token2" ... />

Additionally, the <EVENT> tag is now explicitly used to denote an event instance,

and as a result, the <MAKEINSTANCE> tag no longer exists. Some of its attributes

are shifted to the <EVENT> tag, and <TLINK> tags in ISO-TimeML use eventID

and relatedToEvent instead of eventInstanceID and relatedToEventInstance,

respectively.

Finally, ISO-TimeML also takes a proposal from (Bunt and Pustejovsky, 2010)

and provides a new type of link tag, <MLINK>, which has an “inherent relation type

of MEASURE” (Pustejovsky et al., 2010, p. 396), and is used to better reflect the

relationships between durative events and stretches of time—for instance, where an

event may have been interrupted and resumed during some period, but is referred

to as having taken the entire span of time. The new tag uses a measuring function

(Bunt, 1985) to interpret the relation, so that period of time that is measured is

equal to the sum of all of the spans of time that make it up, whether contiguous or

not. For example, in the sentence:

(24) “It rained for an hour.”

it may not have been raining consistently for the full hour—there may have been a

period of, say, twenty minutes when it abated—but it is valid to interpret it either

as a full, non-stop hour of rain, or as a span of an hour during which it rained. This

is what the <MLINK> is designed to treat, as in the example (25) below (where P1H

refers to a period of 1 hour):

(25) <EVENT xml:id="e1" pred="RAIN" />

<TIMEX3 xml:id="t2" type="DURATION" value="P1H" />

<MLINK eventID="e1" relatedToTime="t2" />
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ISO-TimeML introduces a number of other changes over TimeML, such as the al-

teration and addition of several tag attributes, with the general aim of increasing

interoperability, making it easier for other systems or software that might make use

of the represented information. However, neither version of the language is intended

to stand truly alone, but rather annotations are created for use in other applica-

tions. As such, there is no built-in way to visualise the depicted timeline of times

and events, which is an intuitive way12 to assist in understanding the anchoring

and ordering of the temporal entities. As such—like the string-based framework de-

scribed in §3—other tools have been created which aim to aid in this arena, either

simply for visualising a completed annotation, or as means of assisting an annotator

in creating the markup.

2.2.2 Tango and T-BOX

Manual annotation of temporal data in text is not a simple task, requiring a solid

understanding of the annotation schema, a strong ability to identify and keep track

of multiple times and events, as well as being skilled in interpreting the often vague

temporal data that exists in language (Verhagen, 2005b, pp. 213–214). Accordingly,

a number of tools have been designed with the aim of assisting an annotator in mak-

ing more correct decisions, either by helping to visualise the temporal structure of

the document, or by automatically computing relations or marking inconsistencies as

the annotator works. For example, Tango (Pustejovsky et al., 2003c) was developed

with the aim of improving the annotation of documents with TimeML by allowing

users to—quite literally—draw connections between times and events which were

displayed graphically, as in Figure 10.

12See §3.2.1.
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Figure 10: Tango’s interface (taken from Verhagen, 2005a, p. 2, Figure 1).

The graph here works on the same principle as those described in §2.1.1, in that the

nodes represent the events and times which are marked up in the TimeML document,

while the arcs are labelled with the relation between the intervals. According to

Verhagen (2005a, p. 2), using Tango improved the quality and reliability of the

annotations being produced, with a higher number of links being found between

the nodes, though he also notes that Tango’s main flaw is that it does not allow a

user to “quickly capture the temporal structure of the document” (Verhagen, 2005a,

p. 2)—that is, interpreting the overall chronology of a text by means of a directed

graph is not straightforward for a human user of the technology. Part of the problem,

according to Verhagen (2005a), is that the graph labels—representing the <TLINK>

tags of TimeML—quickly become difficult to read, especially when the document

contains a large number of nodes. More troublesome, however, is the fact that

there is no inherent semantics to the placement of the nodes; there is no graphical
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depiction of the temporal ordering, left-to-right or otherwise, that is enforced by the

system in a meaningful way.

As a means of addressing some of these issues with the Tango tooling and its

predecessor, the Alembic Workbench (Day et al., 1997), Verhagen (2005a) presents

the T-BOX framework, intended to be used in a complementary fashion alongside

the table-based and graph-based depictions in the existant tools. T-BOX is based

around the core idea that “relative placement of two events or times is completely

determined by the temporal relations between them” (p. 2). The image shown

in Figure 11 represents the same data as in Figure 10, placing each event and

time into boxes (called T-BOXes), and using arrows, stacking, and box inclusion to

represent the various relations between the temporal expressions that may be derived

from <TLINK> tags, under the assumption that events and times are intervalic, as

described in §2.1.1.

The rules governing placement of boxes are (Verhagen, 2005a, pp. 3–5):

• An event which occurs before another is placed to the left of it, with an arrow

leading from the one to the other, or a line ending in a dot if the relation is

meets.

• Simultaneous events are stacked, one box atop the other. Identical events are

placed in the same box, rather than being treated the same as simultaneous

ones.

• An event which contains or includes another gains an extended box with

thinner walls, and the included event’s box is placed inside this box.

• If an event starts or finishes another, it is placed inside that event’s extended
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box, touching the left or right edge, respectively.

• Otherwise, none of these configurations may occur.

Figure 11: Figure 10’s data now drawn using T-BOX (taken from Verhagen, 2005a, p. 3,
Figure 2).

It is stressed that the vertical and horizontal positioning of boxes doesn’t mean

anything in and of itself, and thus despite a focus on semantically arranging and

depicting the temporal relations in a TimeML annotation, T-BOX abandons the

“timeline metaphor” (Verhagen, 2005a). However, using the string-based framework

described in § 3.1, many of the principles which guide the T-BOX architecture can

be maintained whilst also preserving the ideology of timelines, being an intuitive

way to conceptualise sequences of events and times—see §3.2.1.

Another point of interest with T-BOX is that it requires as input a TimeML

document which is ‘complete’, and has already had temporal closure constraints
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applied to its <TLINK> tags, providing all of the inferrable relations ahead of time.

It then reduces this to a minimal graph (Verhagen, 2005a, p. 6). This is as opposed

to the more typical scenario of trying to compute the temporal closure of a document

using a constraint propogation algorithm—such as Allen (1983)’s in §2.1.1, p. 11—

or, as in the present work, using the superposition of strings to calculate relations

at the same time as depicting them.

One further aspect of the T-BOX framework worth noting is that it can be

used to possibly detect some inconsistencies in input data if there is some part of

the data which cannot be drawn using the rules described above. For example, if

the <TLINK> tags give that some event X is before some other event Y, that Y is

before a third event Z, and also that Z is before X—an impossibility due to the

circular transitivity—the inconsistency should be discovered when attempting to

draw X to the left of Y, which is to the left of Z, which should then somehow be

drawn to the left of X. However, while ‘non-drawability’ implies an inconsistency,

drawability does not imply consistency (Verhagen, 2005a, p. 12), since similarly to

the constraint propogation algorithm in Allen (1983), inconsistencies may appear

in the graph which appear consistent when looking at three intervals, but become

problematic in a larger context. This issue can be circumvented using a string

which may represent far more than three intervals and their relations at once, and

strings which represent information inconsistent with the knowledge base are ejected

through superposition—see (95), p. 75—and thus, ‘non-superposability’ can be seen

as similar to the ‘non-drawability’ of T-BOX.

The next section discusses some of the existing approaches to semantic represen-

tation of times and events aside from the semantics associated with the annotation
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schemas of TimeML and ISO-TimeML, in particular the structures of Discourse

Representation Theory.

2.3 Temporal Semantics of DRT

In what have become robust and well-known works since their publication, Kamp

(1981, 1988); Kamp and Reyle (1993) presented Discourse Representation Theory

(DRT) as a formal framework for semantically representing information derived from

discourse—that is, coherent series of sentences or propositions, which may appear in

speech or text. The development of DRT aimed to allow model-theoretic semantic

representations that go beyond single sentences, which was the standard approach

in First-Order Logic (FOL), and to treat phenomena such as anaphora, where an

entity named earlier in a discourse may be referred to again later without naming it

again. The classic example sentences (Kamp, 1988) involve an indefinite, ‘a donkey’,

appearing as an antecedent, and acting as a quantifier which binds the pronoun ‘it’

in the second sentence, as in (26a).

“John owns a donkey. He feeds it.”(26a)

∃x (donkey(x) ∧ own(John, x) ∧ feed(John, x))(26b)

The sentence in (27a) is problematic in Montague-style approaches, which assume

that any indefinite in a sentence should introduce an existential quantifier, but this

comes into conflict with the scope of the universal quantifier introduced by ‘Every’

(Kamp, 1988, p, 91). In (27b), the expected existential has acquired a universal

force to capture the natural interpretation of (27a) as claiming that every farmer
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feeds every donkey they own.

“Every farmer who owns a donkey feeds it.”(27a)

∀x∀y ((farmer(x) ∧ donkey(y) ∧ own(x, y)) =⇒ feed(x, y))(27b)

DRT solves these issues with the notion of discourse referents, which are the set

of entities under discussion in a given discourse, corresponding to the individual

variables of FOL (Bird et al., 2009, p. 397). Under DRT, indefinites do not introduce

existential quantifiers, instead introducing new discourse referents, which are added

to a mental representation known as a Discourse Representation Structure (DRS)

(Geurts et al., 2020). DRSs contain separately both the discourse referents and the

DRS conditions, which describe what is known about the referents. Multiple DRSs

can be concatenated where it is appropriate to do so, with the result being a merged

DRS containing the union of the discourse referents and DRS conditions from each

of in the inputs to the concatenation (Bird et al., 2009, p. 399).

For the example in (26a), the first sentence is processed and the two entities

create two discourse referents, x and y, which appear at the top of the DRS in (28),

with the DRS conditions over these referents appearing in the lower box of the DRS.

x y

John(x)

donkey(y)

owns(x, y)

(28)

As the second sentence of (26a) is processed, the DRS is augmented with two further

discourse referents, u and v, corresponding with the two pronouns ‘He’ and ‘it’.
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Resolving the anaphora13 adds two new conditions, identifying the two pronoun

referents with the two existing noun referents in (28). Finally the condition that u

feeds v is added, giving (29).

x y u v

John(x)

donkey(y)

owns(x, y)

u = x

v = y

feeds(u, v)

(29)

There is a direct translation from a DRS to a formula of FOL, where the discourse

referents which appear at the outermost level are interpreted as existential quan-

tifiers, and the DRS conditions are interpreted as being conjoined. The translated

formula for (29) is in (30), which has the same interpretation as (26b) despite its

differences.

∃x∃y∃u∃v (john(x) ∧ donkey(y) ∧ owns(x, y) ∧ u = x ∧ v = y ∧ feeds(u, v))(30)

Universal quantification is usually handled by embedding two DRSs connected by an

implication within another DRS (Kamp, 1988, p. 98), or alternatively by embedding

a negated DRS within another embedded negated DRS14. Below, (31) represents

13The component which performs the anaphora resolution is assumed separate to DRT, which
merely sets constraints on which discourse referents are available as candidates for selection
(Bird et al., 2009, p. 399).

14Due to the equivalence ∀x (P (x)) ⇐⇒ ¬∃x (¬P (x)), stating that if some property P (x) holds
for all values of x, then there is no value for x where P (x) does not hold.
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(27a).

x

farmer(x)

y

donkey(y)

owns(x, y)

=⇒

u

u = y

feeds(x, y)

(31)

DRT is capable of representing events and times as temporal entities which introduce

discourse referents and may appear in DRS conditions. For example, including a

special ‘indexical’ discourse refererent now for the time of the utterance, as in Kamp

(1988, p. 104) and Abzianidze et al. (2017), (32b) represents the sentence in (32a).

“The doctor cured the patient.”(32a)

x y e now

doctor(x)

patient(y)

cure(e, x, y)

e ≺ now

(32b)

The condition e ≺ now denotes that the event e precedes the time of the utter-

ance, indicating the past tense of the verbal event ‘cure’. Other temporal relations

available in DRS conditions usually include = equality, ⊂ during, and © overlaps,

though other relations occasionally are used, and in principle any binary relation

could be used, including those in Allen (1983)’s set. It is possible in general to ex-

tract these relations and the events they refer to in order to build temporal-focused

representations, such as the strings described in §3.

The DRS in (32b) represents a Davidsonian approach to event semantics, where
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an event variable e was added as an argument to the predicate corresponding to

the verb (Davidson, 1967; Kamp and Reyle, 1993), and DRSs can also feature dis-

course referents representing statives as well as eventives (Kamp, 1988, p. 103).

However, by introducing an event’s semantic roles as conditions to the DRS, a neo-

Davidsonian style (Dowty, 1989) can be implemented instead, reducing the verbal

predicate’s arguments to just the event variable e. This is an approach which Bos

and Abzianidze (2019); Bunt (2020) point out is the de facto standard approach

taken by most (if not all) semantically annotated corpora. Indeed, the Parallel

Meaning Bank15 (PMB) corpus (Abzianidze et al., 2017)—which aims to “provide

fine-grained meaning representations for words, sentences and texts” and contains

over 8000 DRSs from English sentences—uses this approach in their DRS represen-

tations. The DRS in (33) below represents the sentence in (32a) again, this time

including such semantic roles as might appear in the PMB, which uses an inventory

of roles from the VerbNet resource (Schuler, 2005).

x y e now

doctor(x)

patient(y)

cure(e)

Agent(x)

Patient(y)

e ≺ now

(33)

Automatic parsing of discourse text to DRSs is a non-trivial, multi-faceted task, in-

volving tokenisation, part-of-speech recognition, and syntactic parsing before DRSs

can even be constructed. A wide-coverage parser called Boxer was released by

15Available at https://pmb.let.rug.nl/.
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Bos (2008), which claimed 95% converage for semantic analysis of newswire texts,

although significantly for the present work, it was noted in that release that per-

formance for temporal information was not as strong as its other areas (Bos, 2008,

pp. 283–285). Boxer takes as input a Combinatory Categorial Grammar (CCG)

(Steedman, 2000; Steedman and Baldridge, 2011) which has itself been parsed fol-

lowing named-entity recognition, and part-of-speech tagging prior to that, using the

C&C tools (Curran et al., 2007), and outputs one or more DRSs as formally in-

terpretable semantic representations (Bos, 2008, p. 285). An updated version of

Boxer (van Noord et al., 2018) is implemented as part of the Parallel Meaning Bank

toolchain (Abzianidze et al., 2017)—although, this version had unfortunately not

been made available for general use at the time of writing. However, the recent

shared task created by (Abzianidze et al., 2019) shows that there is an interest in

developing systems which can perform automatic DRS parsing. The state-of-the-art

was improved considerably in this task, with the winning system of Liu et al. (2019)

achieving an F1 score of 84.8%, an improvement from the baseline score of 54.3%.

This chapter has attempted to give a general overview of some of the literature

which informs the current work. In particular, the interval algebra put forward

in Allen (1983), which finds application in the temporal relations of the TimeML

(TimeML Working Group, 2005) and its successor ISO-TimeML (Pustejovsky et al.,

2010), which has become the international standard for semantic annotation of tem-

poral information, and also the empirical validation of Reichenbach (1947)’s frame-

work of tense and aspect in Derczynski and Gaizauskas (2013), which also brings

out Freksa (1992)’s semi-interval relations, and finally the semantic structures of

the formalism of Discourse Representation Theory (Kamp, 1981) which aims to re-
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flect the context of an utterance in its model-theoretic interpretation. The next

chapter goes into some depth for the approach to temporal semantics known as

finite-state temporality, and details the string-based framework it licences which

forms the backbone of the work.
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3 Finite-State Temporality

Following the intuition that sequences of (possibly overlapping) events and time

periods may be conceptualised in a manner akin to a strip of film, or a timeline,

finite-state techniques may be applied to temporal semantics in an approach known

as finite-state temporality (Fernando and Nairn, 2005). In this chapter, strings

are demonstrated as a tool of choice in modelling sequences of times and events

for use within this approach, justified by their interpretation as finite models of

Monadic Second-Order Logic, which leads to an equivalence with regular languages

(see § 3.1.2). The advantage of this is that strings can be accepted and parsed

by finite-state automata (FSA), which are a well-known formalism and have found

significant usage across many fields, including disciplines of Mathematics, Linguis-

tics, and Computer Science (see, for example, Buchner and Funke (1993); Veanes

et al. (2012)), as well as in modern software development (for instance, Khourshid

(2015) provides a tool for using FSA in the creation of online web applications).

Such widespread application of FSA is due to their flexibility and efficiency as a

technology, with benefits such as deterministic recognition being linear according to

the length of the input, the associated closure properties of regular languages16, and

the ability to compose several automata (Wintner, 2007).

The mechanics of these temporal strings are shown in detail, along with an

explanation on the methods of their creation, and a discussion on the granularity

of temporal information that should be included within a string—that is, what

level of detail should be considered when representing events in this manner. A

number of operations are subsequently described for working with these strings, in

16Seen in the superposition of languages on p. 62.
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particular superposition for the composition of multiple strings and combining the

data found within them. The availability of these manipulations will prove useful

when reasoning about event relations, and also in maximising data density, as will

be seen in §4.1 and §4.3.

A description follows of how strings may be applied in the creation of timelines,

representations which contain the temporal information—events, times, and the

relations between them—as extracted from an annotated piece of text, which has

uses in the areas of, for instance, automatic summary-generation, fact-checking,

and question-answering systems. Additionally, the techniques which are laid out

in § 3.1.4 may be augmented with additional constraints so that strings can be

used to model scheduling restrictions—for instance, that in a given system some

event a must occur before some other event b, but may not be occurring while c

is occurring—and the superposition of these amounts to constraint satisfaction. A

variation of the well-known Zebra Puzzle (also referred to as ‘Einstein’s Riddle’, as

it is occasionally attributed to Albert Einstein—see Stangroom (2009, p. 10)) which

uses temporal properties in place of spatial constraints is provided, exemplifying this

particular usage of strings, as well as a string-based treatment of the train scheduling

problem from Durand and Schwer (2008b).

3.1 Strings for Times and Events

A string is a basic computational entity, defined as a finite sequence of symbols

selected from some finite alphabet. They are amenable to manipulation using finite-

state methods, something lacking in the infinite models of predicate logic, thanks to

fixing finite sets of symbols to serve as the alphabets which make up the strings.
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Strings as described and used throughout this work are used to represent se-

quences of events and time periods such that the linear order and inter-relations of

these events and times are clearly apparent, while unnecessary repetition of infor-

mation is avoided. For example, where js = “John sleeps”, fa = “The fire alarm

sounds”, and lt = “Last Tuesday”, the sentence “John slept through the fire alarm

last Tuesday” might be represented by the string lt js, lt fa, js, lt js, lt lt 17

(a detailed explanation follows in §3.1.1).

These strings model the concept of inertial worlds, wherein a state will persist

unless and until it is altered. The intuition for viewing inertia as a default state

seems to go at least as far back as Aristotle (“But neither does time exist without

change” in Physics IV ), and is known by the term commonsense law of inertia

(Shanahan, 1997, p. 19). This notion is also present in the Event Calculus, which

represents the effects of actions on fluents in order to reason about change (Kowalski

and Sergot, 1986; Miller and Shanahan, 1999; Mueller, 2008), and in the Fluent

Calculus (Thielscher, 1999), which asserts that a state will be unaltered after an

event, except for just those conditions which the event changes. Building this inertial

world view into strings allows for certain flexibilities, as real duration does not need

to be accounted for18 when, for example, superposing strings in order to determine

the relations between the events they mention (see §3.1.4, p. 61; §4.3.1). Fernando

(2018, p. 44) also directly connects the notion of “No change unless forced” with

strings, using it to motivate the concept of actions creating change. Additionally,

the built-in inertiality—coupled with the fact that strings are explicit as to whether

17It is worth noting that, although tense and aspect are often abstracted away from the string
models, this is not a necessity, and speech and reference times may be represented in the same
way as event times (Fernando, 2016a; Derczynski and Gaizauskas, 2013; Reichenbach, 1947).

18Real-time durations may still be represented using strings, but the depiction will not (necessarily)
align with the assumption that one string should be longer than another if it features events that
have a longer duration.
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a particular fluent holds or does not hold at any particular moment in time—means

that, for string-based representations of events and times, the classic issue of the

frame problem19 is avoided (see McCarthy and Hayes (1969, pp. 30-31)).

A fluent is a condition which may change over time—thus a predicate such as

Sleeps(john) (“John sleeps”) becomes the fluent Sleeps(john, t), where t is the time

at which John is sleeping. Following the convention set out and used by McCarthy

and Hayes (1969), Van Lambalgen and Hamm (2008), Fernando (2016b) (among

others), a fluent may be understood here as naming a temporal proposition—some

event, time period, or state which may change (which hereafter will also be referred

to as an event, as in Pustejovsky et al. (2005)). Sets of fluents will be encoded as

symbols so that any number of them may hold at once, and these symbols will make

up the alphabet from which strings are created.

In most cases, simple identifiers suffice for the purposes of labelling fluents as

they appear in a string—so, for example, Sleeps(john, t) may be labelled as "js",

where the time t being represented by the fluent’s position in the string, explained in

depth in the following section. This follows TimeML’s standard (TimeML Working

Group, 2005; Pustejovsky et al., 2010) of using identification labels such as "e1" or

"t2" for events and times. However, in some instances, particularly when drawing

inferences (see § 4.3) using semantic roles or lexical semantics, it will be useful to

use a fuller labelling system, and so a string js would be rendered instead as

sleeps(john) .

19The frame problem is an issue that can arise in first-order logic representations of the world,
whereby specifying the conditions which change as the result of an action is not sufficient to
entail that no other conditions have changed.
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3.1.1 Creating Strings

In order to create a string, first it is necessary to fix a finite set V of symbols

which represent the times and events under discussion, such that each v ∈ V will

be understood as naming a fluent as a unary predicate which holds at a particular

time. A string s = σ1σ2 · · ·σn of subsets σi of V is interpreted as a finite model of

n discrete, contiguous moments of time, with i ∈ {1, 2, . . . , n}.

The set V will be known as a vocabulary , and the powerset of V will serve as a

finite alphabet Σ = 2V of a string s ∈ Σ∗. Accordingly, at each position i in the

string s, the component σi will be a (possibly empty) set of the fluents which hold

at that position.

The chronology of a string is read from left to right, and thus, each component

of the string depicts one of the n moments similar to a snapshot, or a frame of a

film reel, and specifies the set of exactly those fluents which hold simultaneously at

the ith moment20. A string does not (necessarily) give any indication of real-time

duration21, due to the fact that it models an inertial world, and thus if a symbol

occurs in several string components, this is not implicative of the fluent associated

with that symbol occurring multiple times, nor of the fluent’s real-time duration

being necessarily different to another fluent whose associated symbol only occurs in

a single string component (see also §3.1.4, p. 59). A fluent a ∈ σi is understood to

be occurring before another fluent b ∈ σj if i < j and b /∈ σi; if a ∈ σi and b ∈ σi,

then a and b are understood as occurring at the same time.

For convenience of notation, boxes · are used instead of curly braces {·} to

20Conversely, the set V − σi specifies exactly those fluents which do not hold at the ith moment.
This relates to the notion of logical circumscription (McCarthy, 1980), wherein if a formula is
not known to be true, then it must be false.

21Although the durations may still be used in certain applications—see §3.2.2, p. 93.
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denotate the sets which make up each component σi of a string s = σ1σ2 · · ·σn

(as in Fernando (2004, 2015, 2016b); Woods et al. (2017))—for example, the string

{}{a}{a, b}{b}{} is written as a a, b b . This lends to the intuition that the

strings may be read as strips of film, or as panels of a comic, with the same narrative-

style layout as a timeline22. An empty box is drawn for the empty set ∅: this is

a string of length 1, a moment of time during which no fluent v ∈ V holds. This

should not be confused with the empty string ε, which has length 0, and contains

no temporal information.

It will be said that for any event a occurring in a string s = σ1σ2 · · ·σn, a may not

judder—that is, if a appears in multiple positions of the string, then those positions

are contiguous; there are no gaps between appearances of a in s:

a ∈ σi ∧ a ∈ σj ∧ i < j =⇒ ∀k ∈ [i .. j] (a ∈ σk)(34)

If some string, such as in (35a), features judder in this way, it is said to be invalid,

similarly to Pustejovsky et al. (2005, p. 134) distinguishing separate instances of an

event which are referred to together—see (12), p. 22—and only allowing instances to

appear in a string. Judder can, if necessary, be treated by subindexing an event—

for example, a juddering event a becomes separate sub-events {a1, a2, a3}, as in

(35b). Alternatively, similarly to Bunt and Pustejovsky (2010) and ISO-TimeML’s

treatment of non-contiguous events over a duration23, it may be possible to interpret

judder as one whole event, which includes the pauses, as in (35c), which would then

22It is worth pointing out here that, as each box is a set, the order of fluents appearing in it

is immaterial—for instance, a, b is exactly equivalent to b, a , where in both cases, a is co-

occurring with b. This contrasts with a b vs b a , where in the first case a is occurring before

b, and in the second, the converse is true.
23See §2.2.1, p. 28.
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be block compressed—see (61), p. 60.

a a a − invalid(35a)

a1 a2 a3 − valid(35b)

a a a a a − valid(35c)

Sets of strings are languages , which allow for collections of strings to be grouped

together. In this work, typically, the shared property by which strings are grouped

is their vocabulary—that is, the strings in the language represent different sequences

of the same fluents—although, other properties may be used, such as strings which

have an identical first component, or strings extracted from the same source text

(see § 4.1). Using languages in this way allows for a method to be introduced for

handling such cases of ambiguity and non-determinism, as will be shown in more

detail in §4.3.1—see also (67), p. 62. For example,

L = { a b c , a c b }(36)

where the language L contains two strings which represent different—albeit related—

sequences of events.

Note that a language containing only a single string may be conflated with its

sole member, and vice versa. For instance:

a b c ≈ { a b c }(37)

This is a useful admittance, particularly in regards to superposition and other string
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operations (see §3.1.4), when it may be necessary to, for example, superpose a string

and a language, in which case the string is conflated with a language containing just

that string. This allows for superposition to be extended beyond just two strings to

any arbitrary number: s &vc s
′ &vc s

′′ &vc . . . (see p. 75).

The next section details how strings are expressions of finite models of Monadic

Second-Order Logic, and how they are thus manipulable by finite-state automata.

3.1.2 Strings as MSO Models

Strings of symbols representing events as described in § 3.1.1 may be interpreted

as finite models of Monadic Second-Order Logic (MSO)24. MSO is a fragment of

Second-Order Logic that restricts quantification so as to be permitted solely for

unary predicates, which is equivalent to quantification over sets—this is due to the

fact that a unary predicate may be effectively described by the set of terms for

which that predicate is true. That is, in a given model of MSO, if there exists some

property P , then JP K is the set of individuals for which P holds—known as the

interpretation of P relative to the given model—such that:

P (x)⇐⇒ x ∈ JP K(38)

This may be construed for temporal representation by considering each predicate of

a model as describing an event, and the terms which make that predicate true are

the moments (relative to the model) during which the associated event is occurring.

This is most clearly illustrated by means of an example. The string below in

(39) will serve for this purpose, with the positional indices shown underneath the

24See Libkin (2004, ch. 7) for an in-depth introduction to the facets of MSO.
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string position with which it corresponds:

a a, b a(39)

1 2 3 4 5

This is a string of length 5, which contains two events, a and b, where b occurs

during a (see table 7). The linear ordering of a and b can be identified by the string

positions in which each occurs (Fernando, 2016a, 2018):

JPaK = {2, 3, 4} and JPbK = {3}(40)

where Pa and Pb are unary predicates, and their interpretations are subsets of

{1, 2, 3, 4, 5}, which is the set of all string positions for the string in (39).

Generally, for any string s = σ1σ2 · · ·σn with length n ≥ 0 ∈ N, the set [n] of

string positions25 is defined as:

[n] := {1, 2, . . . , n}(41)

Since s is restricted to being a finitely bounded string, [n] is also finite, and thus

the MSO model described by s must also be finite.

The vocabulary V is the set of fluents which appear in s, and for each v ∈ V ,

the set of positions during which v (as a fluent) occurs JPvK is a subset of [n], and

25If n = 0, i.e. s = ε, the empty string, then [n] = ∅, allowing a model to have an empty domain,
as in Libkin (2004).
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if there exists some x ∈ [n] such that x ∈ JPvK, then Pv holds at x, as in (38):

JPvK ⊆ [n](42)

Pv(x)⇐⇒ x ∈ JPvK(43)

The successor relation which links each string position to the next is also defined:

Sn := {(i, i+ 1) | i ∈ [n− 1]}(44)

Now, for each v ∈ V , the predicate Pv specifies all the string positions in which v

occurs:

JPvK := {i ∈ [n] | v ∈ σi}(45)

If MSOV is the set of sentences (closed formulas, with no free variables) of MSO

whose vocabulary is limited to subsets of V , then an MSOV model mod(s)—which

is described by the string s—is defined by the tuple (Fernando, 2016a):

mod(s) := 〈[n], Sn, {JPvK | v ∈ V}〉(46)

Given an arbitrary MSOV model M , the string str(M) which describes it can be

obtained by inverting (45) to get each set σi ∈ str(M), for i ∈ [n], where JPvKM is
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the interpretation of the predicate Pv relative to the model M26:

σi := {v ∈ V | i ∈ JPvKM}(47)

There is a fundamental theorem which was independently put forward by Büchi,

Elgot, and Trakhtenbrot (Fernando, 2016a, p. 30)27 which states that sentences ϕ

of MSO capture regular languages—that is, the MSO-definability of a language is

equivalent to its regularity . This leads to the following definition in Fernando (2018,

p. 35) of the set of regular languages over the powerset 2V of the vocabulary V28,

given by the sentences ϕ of MSOV :

{s ∈ (2V)∗ | mod(s) |= ϕ}(48)

Thus, languages of temporal strings are regular, and as such are open to manipula-

tion and reasoning using finite-state techniques, due to the equivalence between reg-

ular languages and finite automata according to Kleene’s theorem (see, for example,

Yu (1997, p. 41)). For instance, the entailment—that is, set-theoretic inclusion—of

one regular language by another is decidable, which is not the case for First-Order

Logic (Trakhtenbrot, 1953; Elgot and Rabin, 1966). This translates to being able

to determine whether one string entails another, which is a powerful feature for as-

certaining the relations which appear in a particular string, and for reasoning with

them (see §3.1.4, p. 68; §4.3.1).

The fact that strings can be construed as models of MSO gives rise to a convenient

26In general, for a given string s, it will be convenient to write the interpretation of a property P
relative to the MSOV model described by s, JP Kmod(s), as simply JP Ks.

27A proof is given in Libkin (2004, p.124, Theorem 7.21).
28The powerset 2V is used here in place of the usual V, due to the fact that strings may allow any

number of fluents v ∈ V to hold at once.
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method of comparison between strings, whereby the set of temporal relations (see

Table 7, p. 82) found in one string s may be said to be equal to the set of relations

in another string s′ if s and s′ are analogous.

Analogous Strings A string s will be said to be analogous to some other string

s′ if the MSO models corresponding to each string can be said to be, in a sense,

isomorphic—that is, s and s′ are of equal length, there exists a bijective function f

mapping between the vocabulary of s and the vocabulary of s′, and for every fluent

v ∈ Vs, its image f(v) ∈ Vs′ appears in only those same string positions in s′ as v

appears in s:

mod(s) ∼= mod(s′)⇐⇒

(49)

length(s) = length(s′) ∧ ∃f (f : Vs ↔ Vs′ ∧ ∀v ∈ Vs (JPvK = JPf(v)K)

s ∼ s′ := mod(s) ∼= mod(s′)(50)

For example, in (51), a b is analogous to c d , while in (52) a b is

not analogous to c c, d d

a b ∼ c d(51)

a b � c c, d d(52)

This definition of analogy can be lifted to languages of equal size L and L′ by

testing if for every string s in L there is an analogous string s′ in L′, and vice versa.
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Essentially, if a a bijection exists which maps strings from L to L′ by analogy.

L ∼ L′ := #L = #L′ ∧(53)

∀(s ∈ L)∃(s′ ∈ L′) (s ∼ s′) ∧

∀(s′ ∈ L′)∃(s ∈ L) (s′ ∼ s)

Determining whether strings are analogous is useful when ascertaining the relations

between events appearing in a string. If the relations between events in a string s are

known, and another string s′ can be shown to be analogous to s, then the relations

between the events that appear in s′ are also known29. By employing this concept in

conjunction with that of projection (see p. 68) and a set of reference strings—such

as those modelling Allen’s relations (see table 7)—it becomes simple to determine

which relations appear in a string.

Further, if two strings are shown to be analogous, this can improve the efficiency

of any calculations or processing involving these strings: any set of operations applied

to one of the strings would produce the same result if applied to the other, so there

is no need to apply them to both. This is expanded upon further in § 3.2.1, see p.

83.

3.1.3 Granularity: Points and Intervals

The vocabulary from which a string’s alphabet is constructed is a set of fluents, or

temporal propositions—for example “John sleeps” Sleeps(john, t), where Sleeps is

a predicate and john is an individual for which Sleeps holds true for some time t.

However, it has not yet been made explicit whether t should be an instantaneous

29For example, the string on the left hand side of (51) says that event a is before event b, and since
the string on the right hand side is analogous, THEN event c must be before event d.
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point in time, or some temporal interval which has a non-zero duration. The need

for this distinction is presented below.

In order for a string such as in (54) to be valid, where some event a occurs in

multiple positions in the string, a must be an interval: a period of time with a

beginning and an ending, and a is occurring between these.

a a, b(54)

This allows for a to be represented via subdivisions30 across the components within

the string, such that the event a is understood as beginning at its first (leftmost) oc-

currence, and ending after its last (rightmost)—as long as it appears in a component,

the event is occurring at that moment. While a point is instantaneous and therefore

indivisible, an interval may be split into an arbitrary number of contiguous subin-

tervals in this way, which allows for the representation of other events co-occurring

with a specific subdivision of an interval, as in (54), where a is occurring during

two string positions JPaK = {2, 3}, while b is only occurring during a single string

position, JPbK = {3}. In this example, the real-time interval duration τ of position

3 is equal to that of the event b, which is also the span of time during which a and

b are co-occurring. The summed duration τ ′ of positions 2 and 3 is equal to that

of the event a, and so the duration of position 2 (the span of time in which a is

occurring, but b has not begun) is equal to τ ′ − τ .

If a and b represent points of time, then the string in (54) is invalid—since a

point is instantaneous, it may not occur at multiple string positions, which are

discrete moments of time. Additionally, it is not possible for one point to have a

30An interval may be subdivided theoretically ad infinitum, though the constraint of a finite vo-
cabulary prevents this from occurring within a string.
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shorter duration than another, and thus the fact that b occurs at the end of a is lost.

Allen (1983) also discusses the logical and physical issues with allowing events to be

representable as instantaneous points, but there is also a cognitive issue, discussed

in Freksa (1992), where events must have some non-zero duration in order to be

perceivable (Hamblin, 1972).

That is not to say that this information cannot be represented in a string using

points, but instead, a translation from events to event borders must occur, where

event borders are points representing the beginnings and endings of events. Fernando

(2018); Fernando and Vogel (2019) uses31 l(a) as the (open) left border and r(a) as

the (closed) right border of some event a—the granularity is altered to focus on the

event borders (as points) rather than on the events (as intervals). In keeping with

the analogy of strings being similar to strips of film, the change of granularity is

akin to altering the level of ‘camera zoom’ to focus on details which were previously

considered simply as parts of the whole.

This change does introduce additional complexity to the vocabulary, with the

new set V̆ constructed from the old V (Fernando, 2018, p. 37):

L = { l(v) | v ∈ V }

R = { r(v) | v ∈ V }

V̆ := L ∪R if L,R, and V are pairwise disjoint.(55)

The cardinality of V̆ is thus twice that of V , with two symbols required to rep-

resent the same information of a single interval. The translation from a string

31In a fashion similar to the S-words of Durand and Schwer (2008a,b), which also use the beginnings
and endings of events as basic.
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s = σ1σ2 · · ·σn whose symbols are events (intervals) to a string s̆ = σ̆1σ̆2 · · · σ̆n

whose symbols are event borders (points) is given as (Fernando, 2018, p. 38):

σ̆i :=


{r(a) | a ∈ σi} if i = n

{l(a) | a ∈ σi+1 − σi} ∪ {r(a) | a ∈ σi − σi+1} if i < n

(56)

The symbol l(a) appearing in σ̆i says that the event a is not occurring at position

i, but is occurring at position i+ 1. The symbol r(a) appearing in σ̆i says that a is

occurring at position i, but is not occurring at position i + 1. Using event borders

in this way, the string in (54) would be translated to be drawn as:

l(a) l(b) r(a), r(b)(57)

Points are, in some ways, simpler than intervals—for instance, two points may be

related in just three ways (<, =, and >), while a pair of intervals have thirteen pos-

sible relations between them (precisely, the set of relations given by Allen’s interval

algebra (Allen, 1983), see Table 7, p. 82). Additionally, focusing on the borders

of events opens up a pathway to representing incomplete information, by omitting

one of the beginning or ending of an event from the vocabulary of a string, it is left

unspecified, which is often the case in natural language. For example, in (58) below,

it is known that the events a and b begin simultaneously, but it is not known when

a ends:

l(a), l(b) r(b)(58)
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This situation cannot be simply represented using ordinary intervals, since for any

symbol in a string’s vocabulary, its appearance or non-appearance in a string com-

ponent indicates explicitly whether or not the event is occurring at that moment,

with no option for ‘possibly occurring’.

This work, however, will primarily consider intervals as the basic unit of rep-

resentation for fluents. When looking at a particular string component, it is more

straightforward to tell whether some event a is occurring at that moment if the sym-

bol a appears within that component, than to have to either check backwards and

forwards through the string to see if the event has begun (l(a) appears somewhere

to the left of the component of interest) and not yet ended (r(a) does not appear

to the left of the component of interest), or to have to perform a translation. This

also more closely mirrors the intuition of the analogy with panels of a comic strip

or frames of a reel of film, such that all events which are occurring at any particular

moment are ‘visible’ within that panel or frame (string component). There is further

a higher level of descriptiveness that can be achieved with thirteen relations between

a pair of intervals, as opposed to requiring a set of four points to achieve the same.

Chiefly, however, among reasons to generally consider intervals as primitive is the

fact that ISO-TimeML, the international standard for temporal annotation Puste-

jovsky et al. (2010), considers events and event-like entities to be intervals, and

uses relations which are based in Allen (1983)’s set of interval relations. Further,

Freksa (1992, p. 201) agrees with Allen from a cognitive perspective that events

should not be “represented by points on the real line”, and additionally describes

the concept of semi-intervals—using intervals to represent the beginnings and end-

ings of events—which allows for treating incomplete information similar to using
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points (as in (58) above), and expanding the number of possible relations to a set

of 31 options. Nonetheless, semi-intervals do, again, introduce an additional level of

complexity over plain intervals, and are discussed more completely in §4.1.2.

It is worth noting here that, in general, in this work it is also assumed that

any text which will be used as a source for the creation of strings will feature only

finite events. The fluents which represent these events will therefore hold for a finite

amount of time, and thus intervals appearing in strings will be bounded (Allen and

Ferguson, 1994). That is, for some event a, there is some time immediately before a

holds during which a does not hold, and similarly, there is some time immediately

after a holds during which a does not hold. This fact is represented through the use

of bounding empty sets, and so any given string will both begin and end with an

empty set, drawn as an empty box 32. The framework does not, in fact, require this

assumption to be true—compare the bounded (finite) interval a, drawn as a , and

the non-bounded (infinite) interval b, drawn as b —and indeed, it is convenient to

go beyond it when discussing the handling of incomplete data, although this moves

away from plain intervals to semi-intervals (see §4.1.2).

The following section describes a number of operations which may be used with

interval-based strings, though it should be pointed out that for each operation there

is an equivalent which may be used for a string which treats event borders as basic

instead of events.

3.1.4 String Operations

A number of operations are available for the manipulation and description of strings

which represent sequences of times and events, and these are detailed below. Key

32Equivalently, as a formula of MSO: ∀v ∈ V (¬Pv(1) ∧ ¬Pv(n)).
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among these is superposition (basic, asynchronous, and vocabulary-constrained),

which may be used to combine the information from multiple strings, but addi-

tionally defined are: an operation to find the vocabulary of arbitrary strings; block

compression, which removes duplicate string components; reduct, which filters a

string to only contain a specified set of events; and projection, whereby a string can

be said to contain the same temporal data as another. Many of these operations are

also available at the language level, in general by performing the particular desired

operation on each string within the language.

Vocabulary: The vocabulary V of a string or language is the set of fluents which

appear in it. For an arbitrary string s = σ1σ2 · · · σn, the vocabulary Vs of s may be

determined by taking the union of the string’s components:

Vs := σ1 ∪ σ2 ∪ · · · ∪ σn(59)

and the vocabulary of a language is just the union of the vocabularies of the strings

it contains:

VL :=
⋃
{Vs | s ∈ L}(60)

The vocabulary of a string is a key factor in the calculation of many other operations,

notably projection (p. 68) and vocabulary-constrained superposition (p. 73).

Block Compression: Since the length of a string s = σ1σ2 · · ·σn does not reflect

its real duration (due to the understanding that strings model intertial worlds—see

§ 3.1 p. 42), it is also not required that the length of time represented by any σi
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is equal to that represented by any σj, for i 6= j. Similarly, if a fluent symbol

v ∈ V from the vocabulary appears in both σi and σi+1, this does not imply that

the event represented by v has a duration twice as long as if it had only appeared

in σi. Indeed, the symbol v may appear in any number of consecutive positions

in s without affecting the interpretation of the real length of time of the event it

represents. Further, if the string features a repeating component, i.e. σi = σi+1 for

any 1 ≤ i < n, the interpretation of the string is not affected by the deletion of one

of either σi or σi+1. So for example, the interpretation of the string a a a, b b b is

equal to the interpretation of the string a a, b b . A string featuring such repetitions

is said to contain stutter .

As a result, the block compression bc(s) of a string s may be introduced, which

removes any stutter present in s. This is defined as (Fernando, 2015; Woods et al.,

2017):

bc(s) :=



s if length(s) ≤ 1

bc(σs′) if s = σσs′

σbc(σ′s′) if s = σσ′s′ with σ 6= σ′

(61)

Stutter may also be induced in a string which is stutterless (it does not contain

stutter) by using the inverse of block compression, which will generate infinitely

many strings33:

bc−1(bc(s)) := σ+
1 σ

+
2 · · ·σ+

n if bc(s) = σ1σ2 · · · σn(62)

33If the string s features stutter, then bc−1(s) will not contain any strings with a length shorter
than s, including bc(s). To capture all possible bc-equivalent strings, s is block compressed before
the inverse is applied.
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For example:

bc−1( a c ) = { a c , a a c , a c c , a a c c , . . .}(63)

Since these strings all block compress to the same string, they can be said to be

equivalent under block compression. Specifically, strings s and s′ are bc-equivalent

iff bc(s) = bc(s′). This ability to generate infinitely many strings which have an

equivalent interpretation allows for varying the length of a string as will be required

in order to form a useful notion of superposition (see p. 63).

Superposition: In its most basic form, the superposition s & s′ of two strings

s = σ1σ2 · · ·σn and s′ = σ′1σ
′
2 · · ·σ′n of equal length n is simply their component-wise

union34:

σ1σ2 · · ·σn & σ′1σ
′
2 · · ·σ′n := (σ1 ∪ σ′1)(σ2 ∪ σ′2) · · · (σn ∪ σ′n)(64)

For example:

a b c & a c d = a b, c c, d(65)

34The vocabulary of the resulting string is, as might be expected, the union of the vocabularies of
the original strings: Vs & s′ = Vs ∪ Vs′ .
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This is easily extended to pairs of languages L & L′ by collecting the superpositions

of strings of equal lengths in each language:

L & L′ :=
⋃
n≥0

{s & s′|s ∈ L ∩ Σn, s′ ∈ L′ ∩ Σn}(66)

The result L & L′ of superposing two languages L and L′ is also a language, and

if L and L′ are regular languages (due to strings being finite models of Monadic

Second-Order Logic and the theorem due to Büchi, Elgot, and Trakhtenbrot—see

§ 3.1.2, p. 51), then L & L′ is also regular (Fernando, 2004; Woods et al., 2017,

p. 126). If L is accepted by the finite automaton 〈Q, (2VL)∗, (q
σ→ r), q0, F 〉 and

L′ is accepted by the finite automaton 〈Q′, (2VL′ )∗, (q′ σ
′
→ r′), q′0, F

′〉 then L & L′ is

computed by a finite automaton composed of the automata accepting each L and

L′: 〈Q×Q′, (2VL∪VL′ )∗, ((q, q′) (σ∪σ′)→ (r, r′)), (q0, q
′
0), F × F ′〉.

Using languages provides more flexibility than strings alone, since non-determinism

can be accounted for through variations between strings within a language. For ex-

ample, in (67) below, the result of the superposition accounts for the alternate event

sequences in the strings of the first input language.

{ a b c , a c b } & { a c d } = { a b, c c, d , a c b, d }(67)

This may reflect a situation where there is uncertainty as to the correct order of

events—in this case a language is useful to collect all of the possible alternatives,

which can then be still be superposed with other languages.
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Asynchronous Superposition: In order to extend this operation further, it is

necessary to remove the restriction that only strings of equal length may be su-

perposed together. This is desirable so as to allow arbitrary numbers of events to

appear in strings, and to superpose strings which may be of unknown length. For

example, the operation in (68) below cannot be calculated, and even if the strings

were instead singleton members of languages and those languages were superposed,

the result would just be the empty set.

( a b & c d ) & ( a b c & a c d ) = a, c b, d & a b, c c, d = undefined

(68)

To achieve this, bc-equivalence is exploited and the inverse block compression oper-

ation (see (62), p. 60) is leveraged. Since, by inducing stutter in a string, infinitely

many new strings of greater or equal length can be generated which are bc-equivalent

to the starting string, it is effectively possible to force a pair of strings to be of equal

length.

So, the asynchronous superposition s &∗ s
′ of two strings s and s′ is initially

defined as the language obtained by applying block compression to the results of

superposition between the languages which are respectively bc-equivalent to each of

s and s′35:

s &∗ s
′ := {bc(s′′) | s′′ ∈ bc−1(bc(s)) & bc−1(bc(s′))}(69)

Now the strings in (68) can be superposed using asynchronous superposition, as in

35Note that bc(s) = bc(s′)⇐⇒ s ∈ bc−1(bc(s′))
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(70) below:

a, c b, d &∗ a b, c c, d = { a, c a, b, c b, c, d , a, c a, b, d b, c, d ,(70)

a, c a, b, c a, c, d b, c, d , a, c b, c, d }

However, one slightly problematic aspect of this definition is the fact that bc−1

maps from a string to an infinite language. While this is not an issue from a

theoretical standpoint, since &∗ collects the set of block compressed strings from

the superposition of these languages, from a practical and computational standpoint

anything infinite is inconvenient.

In order to tackle this back to something finite and to avoid generation of large

amounts of redundant information, in Woods et al. (2017, p. 127) an upper bound

of n + n′ − 1 is established for the maximum length of any string produced via

asynchronous superposition s &∗ s
′, where n and n′ are the (nonzero) lengths of the

strings s and s′, respectively. This work additionally introduces the operation padk,

which will perform inverse block compression on a string, but will only produce

strings of a given length k > 0:

padk(bc(s)) := σ+
1 σ

+
2 · · ·σ+

n ∩ Σk if bc(s) = σ1σ2 · · ·σn(71)

= {σk11 σ
k2
2 · · ·σknn | k1, . . . , kn ≥ 1,

n∑
i=1

ki = k}

The language produced by padding a string is a proper subset of the language

produced by performing inverse block compression on that same string. For example,
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using the same string as (63):

pad3( a c ) = { a a c , a c c }(72)

By using this padding operation in place of the inverse block compression in an

updated definition of asynchronous superposition, setting k to be the upper bound

derived from the lengths of the input strings, the issue of going beyond finite sets is

avoided without losing any of the power of using bc-equivalence:

s &∗ s
′ := {bc(s′′) | s′′ ∈ padn+n′−1(s) & padn+n′−1(s′)}(73)

It is important to remark here that neither basic superposition & nor asynchronous

superposition &∗ place any importance on the semantic content contained within

the strings over which they operate. That is to say, they are entirely syntactical

operations, and any meaningful information represented by a given string is liable

to be lost once it has been superposed with some other string.

For instance, in (65), the second of the operand strings has the event c appearing

in a box to the left of (before) the event d, whereas the result has c and d occurring in

the same box together, which states that they were occurring at the same moment.

Similarly, in (70), the first input string has events a and c appearing in the same

box, while the second input string has a appearing in a box before c. While this

should seem like a contradiction which should not have viable results, the operation

instead produces a set of four strings, the second and third of which are invalid

according to (34), which states that a given fluent may not appear in non-contiguous

string positions—in a, c a, b, d b, c, d the event c occurs in positions 1 and 3 but
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not position 2, and in a, c a, b, c a, c, d b, c, d the event b occurs in positions 2 and

4 but not in position 3.

This stands in contrast to the concept of bc-equivalence, where strings have an

equal interpretation regardless of how much or how little stutter is present. By

using superposition as it is currently presented, information is often, in fact, lost

rather than gained when strings are combined. The next two operations, reduct and

projection, aim to assist in the resolution of this issue.

Reduct: It will be useful to be able to alter the vocabulary of a string—in partic-

ular, to shrink it—so as to control which events are mentioned. If a string contains,

for instance, five events, but only two of these are relevant to the application, there

is sense in being able to focus on those two.

As such, for any set A of fluents, the A-reduct ρA of a string s = σ1σ2 · · ·σn is

defined as the componentwise intersection of s with A (Fernando, 2016a; Woods and

Fernando, 2018):

ρA(σ1σ2 · · ·σn) := (σ1 ∩ A)(σ2 ∩ A) · · · (σn ∩ A)(74)

The resulting new string has a vocabulary which is equal to or a subset of A, but

the remaining fluents are still in the same relative positions to each other as in the

original string s:

VρA(s) = Vs ∩ A(75)

∀a ∈ A (JPaKmod(s) = JPaKmod(ρA(s)))(76)
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For example, with the string s = a, b a, b, c a, c, d a, e e and A = {a, d}, the

A-reduct of s is:

ρ{a,d}( a, b a, b, c a, c, d a, e e ) = a a a, d a(77)

The resulting string in (77) contains only the events of interest (those mentioned

in A), without loss of information. That is, the relative ordering of the events in

the result string is the same as that in the input. The result string can additionally

be block compressed to derive the simplest representation of the information it

contains36:

bc( a a a, d a ) = a a, d a(78)

It’s worth noting that for any pair of strings s and s′ with equal length and disjoint

vocabularies, the reduct of the result of basic superposition s & s′ with respect to

each of the strings’ vocabularies is equal to the string itself:

Vs ∩ Vs′ = ∅ =⇒ ρVs(s & s′) = s and ρVs′ (s & s′) = s′(79)

For example, with s = a b and s′ = c d , Vs = {a, b} and Vs′ = {c, d}:

s & s′ = a, c b, d(80)

ρ{a,b}( a, c b, d ) = a b

ρ{c,d}( a, c b, d ) = c d

36In the case of (77) and (78), the event a contains the event d, according to Allen’s relations
(Allen, 1983)—see also Figure 1, p. 8.
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This shows how the information contained within s and s′ is not lost in the superposi-

tion s & s′. For asynchronous superposition—which is built on basic superposition—

this also holds true for each string37 in the result language.

Projection: This process is streamlined through the use of projection, where the

A-projection πA of a string s is simply the block compressed reduct of s relative to

A:

πA(s) := bc(ρA(s))(81)

It will be said that a string s projects to another string s′, s w s′, if the Vs′-projection

of s is equal to s′:

s w s′ ⇐⇒ πVs′ (s) = s′(82)

If s projects to s′, then all of the information represented within s′ is also represented

in s—s effectively ‘contains’ s′. Trivially, any block compressed string s = bc(s) will

project to itself, since the reduct of s with respect to its own vocabulary is s.

Borrowing from the examples in (77) and (78), the temporal data represented

by the string on the right hand side of (83) is also contained in the string on the

left hand side:

a, b a, b, c a, c, d a, e e w a a, d a(83)

It is worth noting that, if strings s and s′ share the same vocabulary, but are not

37True when the string s′′ ∈ s &∗ s
′ has been block compressed after the reduct. For example:

bc(ρVs(s′′)) = s.
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equal, then neither can s project to s′ nor s′ project to s—this scenario suggests

that s and s′ are incompatible, that they describe contradictory sequences of the

same events:

Vs = Vs′ ∧ s 6= s′ =⇒ ¬(s w s′ ∨ s′ w s)(84)

A language L can be said to project to another language L′ if every string s ∈ L

projects to every string s′ ∈ L′:

L w L′ ⇐⇒ ∀(s ∈ L)∀(s′ ∈ L′) (s w s′)(85)

This notion of projection is particularly useful, allowing for temporal reasoning

when used in conjunction with the concept of analogous strings (see §3.1.2, p. 52).

Particular events can be simply extracted from larger, more complex strings, and

compared against reference to determine the relations between and ordering of the

events of interest.

Importantly, projection will also be used to enrich the asynchronous superposi-

tion (see p. 65) operation, injecting the currently-lacking ‘semantic-ness’ by ensuring

that all results of superposing a pair of strings project to each of their input strings.

Generate and Test: The predominant issue with asynchronous superposition

&∗ as it stands is that it needs not preserve projections—that is, data can become

lost or ‘corrupted’ when combining strings. If a string generated by superposition

does not project back to both of the strings that were superposed to generate it,

then information has effectively been lost, as it has become impossible to return to
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the original event relation data. Only those result strings in s &∗ s
′ which do project

back can be said to be a valid result of the superposition, in terms of preserving the

temporal information.

For example, in (70) (p. 64), none of the result strings contain the information

that is represented in the input strings. This can be verified by testing whether any

string in the result set projects to either of the inputs, which they do not:

a, c a, b, c b, c, d 6w a, c b, d a, c a, b, c b, c, d 6w a b, c c, d

a, c a, b, d b, c, d 6w a, c b, d a, c a, b, d b, c, d 6w a b, c c, d

a, c a, b, c a, c, d b, c, d 6w a, c b, d a, c a, b, c a, c, d b, c, d 6w a b, c c, d

a, c b, c, d 6w a, c b, d a, c b, c, d 6w a b, c c, d

Table 2: Failed projections for (70).

In fact, every string in (70) shares the same vocabulary, so by (84), it is not possible

for any to project to any other.

In the case where the vocabularies of the two strings are identical, then none of

the results will project to the original strings38. This implication follows from (84),

since the vocabulary of every string s′′ ∈ s &∗ s
′ is Vs∪s′ = Vs = Vs′ :

Vs ∩ Vs′ = Vs = Vs′ =⇒ ∀(s′′ ∈ s &∗ s
′) ¬(s′′ w s ∨ s′′ w s′)(86)

The implication of (86) can be used to avoid unuseful superpositions: since the

operation &∗ has the potential to generate a large number of new strings, which

can become costly from a computational perspective, it is prudent to test ahead of

38This assumes that s 6= s′. In the case where s = s′, there is exactly one string s′′ ∈ s &∗ s
′ such

that s = s′ = s′′.
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time whether every generated string will be spurious and unable to project back—as

seen in Table 2.

Conversely, if the vocabularies of the input strings are disjoint, then every re-

sulting string will project back, due to (79):

Vs ∩ Vs′ = ∅ =⇒ ∀(s′′ ∈ s &∗ s
′) (s′′ w s ∧ s′′ w s′)(87)

This can be seen by returning to the example in (80):

a b &∗ c d = { a, c a, d b, d , a, c b, d , a, c b, c b, d }(88)

a, c a, d b, d w a b a, c a, d b, d w c d

a, c b, d w a b a, c b, d w c d

a, c b, c b, d w a b a, c b, c b, d w c d

Table 3: Preserved projections of (88).

However, in general, the vocabularies of the input strings to asynchronous super-

position may overlap without being equal. It might be assumed that, in this case,

some number greater than 0 but less than all of the resulting strings may project

back—however, this assumption does not hold in fact. A counter-example is readily

found:

a b &∗ b c = { a, b a, c b, c , a, b b, c , a, b b b, c }(89)
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a, b a, c b, c 6w a b a, b a, c b, c 6w b c

a, b b, c 6w a b a, b b, c 6w b c

a, b b b, c 6w a b a, b b b, c 6w b c

Table 4: Failed projections for (89).

Thus it is necessary to test whether each result of a superposition is valid when

neither (86) nor (87) are true. This approach of generating then testing was initially

taken in Woods et al. (2017)39 to ensure that only valid strings were finally produced.

Yet, this is not without issue either—consider the following examples:

a b &∗ b c = { a, b b, c , b a, b b, c , b a b, c ,

(90)

b a c b, c , b a c b , . . .}

a b c &∗ d c b = { a, d a, c b c , d a, d b, d b, c , d c b a, b b c ,

(91)

a b c d c b , a b c, d c b, c b , . . .}

The language result of (90) contains 270 strings, and in fact, only one of these

will project back to both of the input strings: namely, a b c . This makes

an intuitive sense, since the inputs are ‘a before b’ – a b and ‘b before c’ –

b c , and this result string is the only possibility where the linear ordering of

the events a, b, and c is retained.

Using projection to test each of the generated strings in (90) and rejecting those

which fail to project back to the inputs will produce the singular correct result,

39Albeit, the testing algorithm used there was based on matching string positions rather than
projections.
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though it is rather inefficient: 269 (over 99%) of the generated results must be

discarded in this example. The language result of (91) contains 257 strings, and

this time 100% of them must be discarded: not one of the results projects back to

both of the inputs. Clearly, the computational effort required to produce so many

non-viable strings is entirely wasted, and so a modified approach is required to avoid

this issue.

In Woods and Fernando (2018), a new version of superposition is defined which

integrates projection-based testing into the generation process. This prevents prob-

lematic strings from ever being produced, improving on the efficiency of asyn-

chronous superposition.

Vocabulary-Constrained Superposition: In order to define vocabulary-constrained

superposition &vc , begin by fixing an infinite set of fluents Θ as well as the set of

finite subsets of Θ, Fin(Θ), such that for any string s, Vs ∈ Fin(Θ) and thus

s ∈ Fin(Θ)∗. Given a pair of finite subsets of Θ, Σ ∈ Fin(Θ) and Σ′ ∈ Fin(Θ), an

operation &Σ,Σ′ : (Fin(Θ)∗ × Fin(Θ)∗) → 2Fin(Θ)∗ is defined, mapping a pair of

strings s and s′ to a language s &Σ,Σ′ s
′ as follows, where ε is the empty string (of

length 0)40:

ε &Σ,Σ′ ε := {ε}(92a)

ε &Σ,Σ′ s := ∅ if s 6= ε(92b)

s &Σ,Σ′ ε := ∅ if s 6= ε(92c)

40It follows from this definition that any string in s &Σ,Σ′ s′ will have a length less than n + n′

where n and n′ are the lengths of s and s′, respectively, which is the same upper bound found
in Woods et al. (2017) (see p. 64).
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and with σ ∈ Fin(Θ), σ′ ∈ Fin(Θ)

(92d)

σs&Σ,Σ′ σ
′s′ :=


{(σ ∪ σ′)s′′ | s′′ ∈ L(σ, s, σ′, s′,Σ,Σ′)} if Σ ∩ σ′ ⊆ σ and Σ′ ∩ σ ⊆ σ′

∅ otherwise

where

(92e) L(σ, s, σ′, s′,Σ,Σ′) := (σs &Σ,Σ′ s
′) ∪ (s &Σ,Σ′ σ

′s′) ∪ (s &Σ,Σ′ s
′)

If Σ = Σ′ = ∅, then the condition in the first case of (92d) (Σ ∩ σ′ ⊆ σ and Σ′ ∩

σ ⊆ σ′) holds vacuously, and &Σ,Σ′ becomes effectively identical to asynchronous

superposition &∗ . Otherwise, this condition can be used to eject those strings which

do not project back to both s and s′, according to Proposition 1 and Corollary 2 in

Woods and Fernando (2018, p. 81), reproduced below.

Proposition 1. For all Σ ∈ Fin(Θ),Σ′ ∈ Fin(Θ) and s ∈ Fin(Θ)∗, s′ ∈ Fin(Θ)∗,

s &Σ,Σ′ s
′ selects those strings from asynchronous superposition s &∅,∅ s′ which

project to both the Σ-projection of s and the Σ′-projection of s′:

s &Σ,Σ′ s
′ = {s′′ ∈ s &∅,∅ s

′ | s′′ w πΣ(s) ∧ s′′ w πΣ′(s
′)}(93)

Corollary 2. For all s ∈ Fin(Θ)∗, s′ ∈ Fin(Θ)∗ such that s and s′ are stutterless,

if Σ = Vs and Σ′ = Vs′ , then s &Σ,Σ′ s
′ selects those strings from asynchronous
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superposition s &∅,∅ s
′ which project to s and s′:

s &Σ,Σ′ s
′ = {s′′ ∈ s &∅,∅ s

′ | s′′ w s ∧ s′′ w s′}(94)

According to Corollary 2, vocabulary-constrained superposition &vc can be used to

preserve temporal information under projection during superposition:

s &vc s
′ := s &Vs,Vs′ s

′(95)

Now, this new form of superposition can be used for the same example as (90), and

only the one valid result will be produced:

a b &vc b c = { a b c }(96)

Note that this result is still a language (a set of strings), and that there may be

more than one string in this language, depending on the input strings. Where each

input’s vocabulary has a cardinality of 2, and the intersection of their vocabularies

has cardinality 1, then the number of result strings from the vocabulary-constrained

superposition of the inputs corresponds with the transitivity table in Allen (1983,

Fig. 4). For example, (97) shows the string ‘a overlaps b’ – a a, b b superposed

with ‘b during c’ – c b, c c , and according to Allen’s transitivity table there

should be three results, corresponding to ‘a during c’ – c a, c c , ‘a overlaps c’

– a a, c c , and ‘a starts c’ – a, c c , and in fact this is the result shown by

Table 541.

a a, b b &vc c b, c c = { c a, c a, b, c b, c c , a a, c a, b, c b, c c ,

(97)

a, c a, b, c b, c c }

41The set of Allen Relations can be seen represented as strings in Table 7, p. 82.
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c a, c a, b, c b, c c w c a, c c

a a, c a, b, c b, c c w a a, c c

a, c a, b, c b, c c w a, c c

Table 5: Projections of (97) matching Allen’s transitivities.

In Woods and Fernando (2018, p. 82) some simple benchmark tests were run,

comparing the time (in milliseconds42) taken to compute the superpositions of a

number of pairs of strings, using each of asynchronous superposition (generating

then testing) and vocabulary-constrained superposition (testing while generating).

These figures indicate a notable increase in the efficiency of time to calculate the

correct results in using vocabulary-constrained superposition. Each of the strings

in Table 7, p. 82 is superposed with itself and each of the others (e.g. before with

before, before with after, before with meets, ..., finished by with started by, finished

by with finished by), while varying the vocabularies of the operand strings as follows:

first, both strings had the same vocabulary {a, b}; second, the strings shared one

fluent in common, {a, b} and {b, c}; finally, the strings had disjoint vocabularies,

{a, b} and {c, d}. A fragment of these tests is shown in Table 6.

4 = ∗ 4 = vc Decrease in time

a b &4 b a 0.3207ms 0.0180ms 94.39%

...
...

...
...

a b &4 b c 0.3207ms 0.0659ms 79.45%

...
...

...
...

a b &4 c d 22.4016ms 5.3616ms 76.07%

...
...

...
...

Table 6: Fragment of speed comparison between &∗ and &vc .

The mean percentage decrease for all pairs with identical vocabularies using vocabulary-

constrained superposition was 74.28%. With one shared fluent, the mean decrease

was 34.11%, and with no fluents in common, it was 64.51%.

42The mean time of 1001 runs is given. The testing environment was Node.js v10.0.0 (64-bit) on
Ubuntu 16.04 using an Intel i7-6700 CPU with 16GB of memory.
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The main operations for string-based finite-state temporality have now been

defined: block compression, reduct, projection, and (vocabulary-constrained) su-

perposition. These operations may be leveraged in a number of ways in order to

create useful applications.

3.2 Applications

Having discussed how to create and manipulate strings which represent temporal

data—the linear order and inter-relations of a set of events—the following will ex-

plore some of the possible applications of this technology, including the ability to

create timelines from annotated texts, to verify that the narrative structure of an an-

notated text is internally consistent with regards to the relations it depicts between

its events, and to infer information not explicitly stated in an annotated text based

on the event relations that can be extracted. These abilities can be used as part of

tooling for the automatic aiding of creation of temporal annotation in new texts, for

automated generation of summaries of a text, or fact-checking via corroboration of

event sequences between sources.

Additionally, strings can be used as a tool for other, related applications which

deal with sequential data through the use of external constraints. An example of

such an application is given via a solution to a variant of the well-known Zebra

Puzzle which models temporal constraints (that is, scheduling constraints) rather

than spatial ones.

3.2.1 Timelines from Texts

Strings, as entities which are comprised of sequential components representing tem-

poral data, have an intuitive comparison to a traditionally linear view of time. That

is, that events which have not yet occurred are ahead of us, and events which oc-

curred in the past are behind us—although not all languages or cultures perceive

time in this way, it is common cross-linguistically to use some spatial reference points

when discussing temporality (even absent vision, see Bottini et al. (2015))—Lakoff
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and Johnson (2008, pp. 42–43), for example, discusses the metaphor of “Time is a

moving object”, where the future is perceived as moving towards us, and Mitchell

(1980, p. 542) argues that “we literally cannot ‘tell time’ without the mediation of

space”. Often, time is visualised as a line which travels along one of the axes in a

three-dimensional space—from left to right, bottom to top, backward to forward, or

the reverse of any of these—with events appearing as points or spans along the line,

although according to Rosenberg and Grafton (2013, p. 14), the particular modern

definition of a timeline as a “single axis and a regular, measured distribution of

dates ... is not even 250 years old”.

Regardless of the spatial orientation or directionality, this perception of time

as coming from somewhere and going to somewhere else maps well to a sequential

representation. The core concept being that, if two events exist at different moments

in time, then they can be put in some kind of spatial ordering corresponding to the

temporal ordering. The strings described in § 3.1 are used to model sequences of

events in such a way that they can be read in a manner similar to a series of snapshots

or film reel, or like the panels of a comic: each ‘image’ or moment of time features

all of the events which are occurring at that time (relative to some fixed vocabulary

of events).

An example of timelines in use is via Gantt charts, also known as harmonograms,

which are a kind of bar chart that—like strings—display events over time. They

are often used as a visual aid to show project schedules or similar temporal data

(Kumar, 2005). The vertical axis shows the events mentioned in the chart, and the

horizontal axis represents time intervals, with the width of the bars showing the

duration of each event, and the beginnings and endings also illustrated by the bars’

horizontal placement. See, for example, Figure 12 below.

A chart like this is a useful visual display tool, though it can become a little un-

wieldy with large numbers of events, and there have been claims that they should be

left behind in the field of project management (Maylor, 2001). Compare the same
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Figure 12: A Gantt chart featuring six events.

temporal data in Figure 12 shown in a single string in (98):

a a, b a, b, c b, c b b, d b, d, e e f(98)

No matter how many events may be of interest, if all beginnings, endings, and

durations are known—that is, the temporal closure has been calculated—such as

they could be displayed in a Gantt chart, then they can be represented in a single

string, with reducts and projections available in order to focus an analysis on a

subset of events if desired, demonstrating a compact method of representing the

timeline. However, in general, natural language texts do not provide enough precise

temporal detail to determine all of this data. Discourse is typically somewhat vague

and relies heavily upon the use of context to determine and precisely temporally

locate events. As a result, it’s often not possible to immediately derive the temporal

closure just from a text, even an annotated text such as one of the documents of the

TimeBank (Pustejovsky et al., 2006) corpus, which is marked up to show the events,

times, and temporal relations found within—see also § 2.2.1. With that said, even

if a single, unified timeline cannot be constructed due to ambiguity, the information

in one of these annotated texts may still be extracted and used to build strings,

which can provide a visual picture of the content of the document, which may reveal
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insights not obvious when looking at the text alone.

A string, like a timeline, can be thought of as a simplistic narrative, depicting

a world by the events which take place in it. A language of strings, then, is a

set of alternate timelines, of parallel worlds. Each string in a language represents

a different possible world, describing alternate sequences of the events which took

place, and each of which might be considered equally probably to be veridical—

the actually true world, the correct sequence of events which occurred in reality—

without further data and constraints. This allows strings as a framework to capture

the ambiguity that very often arises from interpreting the temporal information that

is derived from a natural language text. For example, given the information that

some event a meets some other event b, and b is during some third event c, Allen’s

transitivities—see Table 1, p. 11—dictate that the relation between a and c can

be one of overlaps, during, or starts. These first two relations a meets b and b

during c may be represented by the strings a b and c b, c c , respectively—

see Table 7, p. 82—and in fact, the three possible relations between a and c are

found by projection relative to {a, c} over the result found from superposing thsee

two strings, as in (99) below:

a b &vc c b, c c ={ c a, c b, c c , a a, c b, c c , a, c b, c c }

(99a)

Under projection to {a, c} ={ c a, c c , a a, c c , a, c c }

(99b)

In (99a), the language result of the superposition contains three strings, or three

parallel worlds depicting the relational and ordering information that is known about

the events a, b, and c, with (99b) showing the language under projection, which gives

three strings depicting the three possible relations between a and c—see Table 7.

Unless some further data becomes available constraining these possibilities, there

is no way to tell which of the three results of (99a) is the correct timeline, and so

the language as a whole is considered valid. It is important to be wary, though, as
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too many of these parallel worlds can become unwieldy, just as Gantt charts can

become difficult to keep track of if too large a number of events are depicted. One

way to avoid an explosion in the number of timelines to keep track of is to avoid

superpositions where the inputs do not share some vocabulary, or where the number

of strings in the result would exceed some predetermined limit. Another possibility

is to alter the granularity of the string, using semi-intervals (Freksa, 1992) rather

than plain intervals, although this does have its own tradeoffs—see §4.1.2.

Conversely to considering a whole language as valid, occasionally an annotated

text may feature inconsistencies, in that relations may be indicated which are im-

possible for one reason or another, whether that comes from human error on the

part of a manual annotator, a poor machine annotation, or simply a text whose

narrative is inconsistent. Whatever the source, it is important to be congnisant of

these potential issues, as they are likely to lead to at least partially incorrect conclu-

sions being drawn about the timeline of the narrative. Using vocabulary-constrained

superposition, these inconsistencies can be discovered as the result of superposing

a pair of strings which represent incompatible temporal data will be an empty set.

For example:

a b &vc b a, b b = ∅(100)

This will always be the case, no matter how many events may appear in either

string, and thus the relations between intervals appearing in a string effectively

become constraints, which the string models: each string in (100) represents a dif-

ferent constraint, which are incompatible with each other—see also § 3.2.2. When

doing superposition of languages, if all of the strings from the first language are in-

compatible with all of the strings from the second, the result will also be an empty

language—although, if some of the strings are compatible, then those superpositions

are returned, as in (101) below, where the only strings which are mutually consistent
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are the second string of the first language and the first string of the second:

{ a b c , a b c } &vc { d a b , b, d a } = { d a b c }(101)

A point of interest is that the thirteen interval relations given by the interval algebra

of Allen (1983) fall out of the vocabulary-constrained superposition of a pair of

strings which each feature a single and different finitely-bounded event43:

AR := {<,>,m,mi, o, oi, d, di, s, si, f, fi,=}(102)

v &vc v′ = {S•(v, v′) | • ∈ AR}(103)

Each string S•(v, v′) of the result set features one relation v •v′, as shown in Table 7,

reproduced from Woods and Fernando (2018, p. 79, Table 1).

• v • v′ S•(v, v′) •−1 v •−1 v′ S•−1(v, v′)

< v before v′ v v′ > v after v′ v′ v

m v meets v′ v v′ mi v met by v′ v′ v

o v overlaps v′ v v, v′ v′ oi v overlapped by v′ v′ v′, v v

d v during v′ v′ v, v′ v′ di v contains v′ v v′, v v

s v starts v′ v, v′ v′ si v started by v′ v′, v v

f v finishes v′ v′ v, v′ fi v finished by v′ v v′, v

= v equals v′ v, v′

Table 7: Allen interval relations in strings.

It can be said that for some string s, that s entails one of the Allen relations if and

43The superposition of more than two unconstrained intervals in this manner creates a rapidly
expanding number of strings. Three intervals gives 409 strings, and by six intervals it has
already exceeded three hundred million strings—see Woods et al. (2017, p. 129) and the full
sequence in https://oeis.org/A055203 (Schwer, 2000). This is obviously an excessive amount
of information to process, and so generally superposition is to be avoided where there are no
constraints between the intervals in one string and the other—that is, where there is no shared
vocabulary between the strings to be superposed.

82



only if s projects to the string in Table 7 corresponding to that relation:

s |= a • b⇐⇒ s w S•(a, b)(104)

Additionally, using the notion of analogous strings (see § 3.1.2, p. 52), any block

compressed string which has a vocabulary of cardinality 2 can be compared to the

strings in Table 7. If such a string s ∼ S•(v, v′) for some • ∈ AR, then the events

appearing in s can also be said to be related by •. For example, c d, c ∼ Sfi(v, v′),

and thus the relation between the events c and d is ‘c finished by d’.

This is easily extended beyond strings featuring just two fluents. The relations

between the events appearing in the string s = a b c can be determined by

taking its block compressed reduct relative to the subsets of the vocabulary which

have cardinality 2—in this case, a is before b, b is before c, and a is before c. Once

these relations have been calculated, the relations between the events in another

string s′ = d e f are immediately available on analogy s ∼ s′.

While this is a relatively simple example, it can be extended for strings featuring

any arbitrary number of events, and perhaps more usefully it can be used to shortcut

superpositions and other string operations. For instance, given the pair of strings

s = a a, b b and s′ = c b, c c , the vocabulary-constrained superposition is

calculated as in (97):

s &vc s
′ = { c a, c a, b, c b, c c , a a, c a, b, c b, c c ,(105)

a, c a, b, c b, c c }

Now, given two more strings t = x x, y y and t′ = z y, z z such that s ∼ t

and s′ ∼ t′, the generated results of superposing t and t′ will also be analogous to

the results in (105), and so there is no need to calculate t &vc t
′. Since the strings

are analogous, there is a bijective mapping between the vocabularies f : (Vs∪Vs′)↔

(Vt ∪ Vt′), and applying this function f to the results in (105) gives the same result
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as calculating the superposition t &vc t
′:

f(s &vc s
′) = { z x, z x, y, z y, z z , x x, z x, y, z y, z z ,(106)

x, z x, y, z y, z z }

= t &vc t
′(107)

Again, this is a small example, but with larger numbers of events and more complex

strings, leveraging the power of analogous strings has the potential to massively

reduce the computational cost to calculate superpositions.

By extracting the relations from annotated text as strings and combining them

using superposition, a timeline can be built up, which can assist an annotator or

other reader in visualising the overall temporal structure of the text. It allows them

to check for consistency and also provides a basis for interpreting the narrative in

terms of the events that it describes.

3.2.2 Constraints and Scheduling (Zebra Puzzle)

Scheduling as a general concept—whereby tasks or events are allocated an ordering

according to some set of rules or constraints—is a multi-faceted problem that has

been a subject of research for many years (Manne, 1960; Applegate and Cook, 1991;

Pinedo and Hadavi, 1992; Gong et al., 2018). Available resources must be taken into

account, and often it is desirable to find the most efficient way to order the events

which are to appear in the schedule so as to minimise the amount of time required

for all relevant events to finish. Here it will be shown how the strings described in

§3.1 can be applied to some scheduling and scheduling-like tasks.

The Zebra Puzzle, also sometimes known as Einstein’s Riddle is a logic problem,

involving solving a set of clues in order to assign a number of properties to a set

of individuals. In the original puzzle, there are five houses in a street, each of

a different colour, and in each lives a person of different nationality, who drinks

a different beverage, smokes a different brand of cigarettes, and owns a different
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pet. The puzzle provides clues as to which house contains which set of all of the

properties, except that the person who owns a zebra as a pet is not specified, and

must be deduced by arranging all of the other elements into their correct houses

so that the zebra’s home can be determined by process of elimination. This may

seem to be a very distinct problem from scheduling, but in fact, there are a number

of parallels. Both problems can be viewed as constraint satisfaction problems, and

although the Zebra Puzzle concerns spatial constraints, it is not a large stretch to

model the street as a sequence of houses, and thus be able to use strings to represent

the clues which can be superposed to solve the riddle. If a ‘house’ is conceptualised as

a set which contains as elements all of the properties associated with that house—for

example, {red, english, zebra, coffee, kools}—and the street is a sequence of these

sets, then the street can be depicted as a string. The left and right spatial relations

are thought of in the same way as the previous and subsequent boxes in a string.

To make this connection clearer, below is presented a variant of the puzzle using

clues pertaining to temporal relations instead of spatial ones. The clues to the puzzle

are as follows in Table 8:
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There are five weekdays.

The foggy day is mild.

I am tired on the warm day.

There is a traffic jam on the overcast day.

It is cold on the day with little traffic.

It is overcast the day after it snows.

I’m sad the day that I’m reading.

It rains the day I have printing to do.

The traffic is average in the middle of the week.

It’s freezing at the beginning of the week.

The stapling is done the day before or the day after I’m happy.

Printing happens the day before or the day after I’m angry.

There is a lot of traffic the day that filing happens.

Shredding happens the day it’s hot.

It’s freezing the day before or the day after the weather is clear.

Table 8: Temporal Zebra puzzle clues in English.

Using these clues, it should be possible to answer these questions:

• What day is there no traffic?

• What day am I curious?

The puzzle makes three assumptions: first, that the values as presented are discrete

rather than continuous—‘freezing’ and ‘cold’, for example, are similar concepts (in-

deed, if the weather is freezing, then it is also cold), but for the purposes of this

puzzle they are treated as being separate and unrelated; second, that each value

lasts for only one day—if it rains on one of the days, it will not rain on any other;

and third, each day only has one value per attribute—for example, only one task can

be performed on any given day. Effectively, recalling that since the strings model

inertial worlds, each day contains event-like statives which are treated as having a

duration of the entire day. The particular values that appear may make it seem
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a little absurd—it is rather unlikely that a person would be doing something like

printing for a full day, and then immediately begin stapling for another full day, and

so on—however, they should suffice for the sake of the example.

For each of the given clues, a constraint can be constructed from one or more

strings. Additional constraints can be formed to represent the external assumptions,

and by superposing these constraints together, a solution to the puzzle can be found.

The strings corresponding to each clue are given in Table 9.

For most of the clues, the constraint is formed as a set of a few strings: when

event a and b occur on the same day, they will appear in the same box, but it’s

unknown whether they occur at the beginning of the week ( a, b ), the end of the

week ( a, b ), or somewhere in the middle ( a, b ), and so all of the possibilities

appear together. It’s also worth noting that strings use the Allen relation ‘meets’

where the clue states “the day before”, rather than the ‘before’ relation. This is

due to the fact that one day meets the next, and there is no time between them.

The clues which give an event specific position might also have been equivalently

written by specifying that the particular value appeared in the same box as one of

the day names—for instance mon, freezing . However, the five day names which

appear in the first clue of Table 9 are not actually required for the puzzle: a string

of five empty boxes suffices. The names are included here purely for convenience of

reading.
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• { mon tue wed thu fri }

• { fog,mild , fog,mild , fog,mild }

• { tired, warm , tired, warm , tired, warm }

• { jammed, overcast , jammed, overcast , jammed, overcast }

• { cold, little , cold, little , cold, little }

• { snow overcast , snow overcast , snow overcast }

• { sad, reading , sad, reading , sad, reading }

• { rain, printing , rain, printing , rain, printing }

• { average }

• { freezing }

• { stapling happy , stapling happy , stapling happy ,

happy stapling , happy stapling , happy stapling }

• { printing angry , printing angry , printing angry ,

angry printing , angry printing , angry printing }

• { lots, filing , lots, filing , lots, filing }

• { shredding, hot , shredding, hot , shredding, hot }

• { freezing clear , freezing clear , freezing clear ,

clear freezing , clear freezing , clear freezing }

Table 9: Temporal Zebra puzzle clues as strings.

Formally, there are five Attributes (Weather, Temperature, Traffic, Tasks, Mood),

each of which is a set of Values. The vocabulary V of the puzzle is the union of the

Attributes:

• Weather = {rain, clear, fog, snow, overcast}
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• Temperature = {freezing, cold,mild, warm, hot}

• Traffic = {none, little, average, lots, jammed}

• Tasks = {printing, stapling, reading, filing, shredding}

• Mood = {happy, angry, sad, tired, curious}

The external constraints are formalised as follows:

“Each Value only lasts for one day.”

(108) ∀v ∈ V (x ∈ JPvK =⇒ ∀v′ ∈ V (v′ 6= v ⇒ x /∈ JPv′K))

“Each day only contains one Value for each Attribute.”

(109) ∀A ∈ Attributes (x ∈ JPvK ∧ v ∈ A =⇒ ∀v′ ∈ A (v′ 6= v ⇒ x /∈ JPv′K))

One further constraint is needed due to the nature of superposition allowing for the

result of superposing two strings to be longer than either of the input strings:

“There are only 5 days.”

(110) ∀v ∈ V (x ∈ JPvK =⇒ 1 ≤ x ≤ 5)

Although these constraints are not encoded as strings44, since they are modelled

using MSO formulas, they are easily implemented through hand-written filters which

apply the constraints to the results of any superposition.

Now, superposing all of the languages in Table 9 and taking into account the con-

straints in (108) to (110), a single result string is generated (each Value is displayed

here abbreviated to its first two letters):

ra, fr, pr, ha cl, co, li, st, an fo,mi, av, re, sa sn, wa, lo, fi, ti ov, ho, ja, sh

(111)

44In fact, they could be encoded as strings by allowing negated fluents to appear in the vocabulary:
normally a fluent v is implicitly understood to be not occurring by its non-appearance in a string
component, but an explicit ¬v fluent appearing would disallow v to occur in the same component.
These explicitly negated fluents are not currently part of the framework, but could be introduced
in the future—see also §4.2.1, p. 120.

89



Finally, superposing this string with languages representing the questions that were

asked, a string containing the full “week schedule” is obtained ((112a)), and by

taking the reduct of this string relative to {none, curious} the solution to the puzzle

can be found ((112b), and superposed with a string of weekday names for ease of

reading in (112c)):

• { none , none , none }

• { curious , curious , curious }

s = ra, fr, pr, ha, no cl, co, li, st, an fo,mi, av, re, sa sn,wa, lo, fi, ti ov, ho, ja, sh, cu

(112a)

ρ{none,curious}(s) = none curious(112b)

ρ{none,curious}(s) & mon tue wed thu fri = mon, none tue wed thu fri, curious

(112c)

Thus the answer is that “there is no traffic on the first day of the week”, and “I am

curious on the last day of the week”. This result is reproduced in Table 10 below

for the sake of completeness.

Mon Tue Wed Thu Fri

Weather rain clear fog snow overcast

Temperature freezing cold mild warm hot

Traffic none little average lots jammed

Task printing stapling reading filing shredding

Mood happy angry sad tired curious

Table 10: Solution to Temporal Zebra puzzle as in (112a).

While the Attributes and Values for this variation of the puzzle are relatively mean-

ingless, the use of strings to represent the constraints given in the clues maps well

to using strings to model constraints for scheduling problems such as the job-shop

problem (Manne, 1960; Applegate and Cook, 1991), wherein a finite number of re-

sources (agents) are available to complete a set of tasks, and an agent can only
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complete a single task at a time, and the goal is to create a schedule that minimises

the maximum of their completion times given that each task also has a specified

order that it must be completed in—for instance, task A may only begin after task

B is completed, and must be completed before task C. This is very similar to the

constraints described in the variant of the Zebra Puzzle above, with the additional

factor of seeking a string which encapsulates all of the constraints and also has the

shortest duration. Another similar problem is the trains example in Durand and

Schwer (2008b), reproduced below in Table 11, which features six trains arriving

and leaving a busy station. The task is to determine the minimum number of plat-

forms needed, given that a train is not allowed to arrive at the same platform while

another train is still there.

There are 6 trains: {A,B,C,D,E, F}.

A train may not arrive on a platform if another train has not left that platform.

• A, B, and E reach the station at the same time.

• A leaves before B.

• A leaves after or at the same time as C, but before the arrival of D.

• D and F arrive at the same time as B is leaving.

• E and D leave at the same time.

Table 11: Constraints of the Trains example from Durand and Schwer (2008b, p. 3283).

Durand and Schwer (2008b, p. 3298) use a formalism they call S-languages developed

based on the concept of S-arrangements (Schwer, 2002), which uses arrangements

of subsets of elements with repetitions in a manner which is similar in some ways

to the string framework described in §3.1, using sequences of elements to represent

event-like entities, generally described as either instantaneous points, or in terms of

their beginning and end points.

The constraints in Table 11 can be represented through the languages in Table 12

below, where each ‘fluent’ symbol appearing in a string component represents that

train being currently at the station. Therefore, if multiple symbols appear in a box,

then each of those trains requires a separate platform at the same time.

91



• { A,B,E A,B , A,B,E E , A,B,E A,B B ,

A,B,E A,E A , A,B,E A,E E , A,B,E A,B A ,

A,B,E B , A,B,E A,E , A,B,E A ,

A,B,E B,E B , A,B,E , A,B,E B,E , A,B,E B,E E }

• { A B , A B , A A,B B , A,B B , B A,B B }

• { A,C A D , C A D , C A D , C A,C D , C A D ,

C A,C A D , A,C D , A,C A D , A A,C A D ,

C A D , A A,C D , A,C D , A A,C A D ,

C A,C A D , A A,C D , C A,C D }

• { B B,D, F D, F D , B B,D, F D, F F , B B,D, F D, F }

• { E D,E , D E,D , D,E }

Table 12: Train scheduling problem constraints as languages of strings.

Superposing these constraints together produces a language of 48 strings, each of

which represents a different possible way of satisfying all the scheduling constraints

together. In order to determine the minimum number of resources required—in

this problem, the number of platforms in the train station—it is simply a matter

of finding the string(s) whose largest component is smaller than the largest compo-

nent of all other strings. In this case, since B and E arrive together, and D and

F arrive before either of them have finished leaving, all 48 strings feature a compo-

nent B,D,E, F —for instance, C A,B,E B,D,E, F D,E, F —and thus the

minimum number of platforms is the cardinality of that component: four.

Additionally, despite strings not explicitly denoting the durations of events, it

is possible to find the timeline which is the least durative by finding the shortest

string(s) which uses the maximum possible number of resources. In the case of the

trains example, this is A,B,C,E B,D,E, F D,E, F . To justify this, consider
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two events a and b which have durations τa and τb, respectively, such that the a

lasts longer than b, τa > τb. In this scenario, four relations are impossible, namely

a equals b, a during b, a starts b, and a finishes b—all of these imply that b has the

same or shorter duration than a. Of the remaining nine, the duration of the string

representing the relations are as follows in Table 1345:

• S• τS•

a before b a b τS• > τa + τb

a after b b a τS• > τa + τb

a meets b a b τS• = τa + τb

a met by b b a τS• = τa + τb

a overlaps b a a, b b τa + τb > τS• > τa

a overlapped by b b b, a a τa + τb > τS• > τa

a started by b b, a a τS• = τa

a finished by b a b, a τS• = τa

a contains b a b, a a τS• = τa

Table 13: Durations of relations between a and b.

As can be seen, a string cannot have a duration shorter than it’s longest lasting

event, but it may have a duration longer than the sum of all its events. The strings

which maximise for component size (overlaps, overlapped by, started by, finished

by, contains) all have a duration shorter than those which do not, of which the two

shorter strings (meets, met by) have durations shorter than the two longer (before,

after). The shortest strings of the maximising five (started by, finished by) have

durations equal to the duration of the longest event, a. The relations overlaps,

overlapped by, and contains all contain a component of the same maximum size,

and are the same length, so in the scenario where multiple strings are found to be

equally the shortest maximising for component size, a further step would be required

to determine the types of relations found in the string—a string with more contains

relations should be chosen as being less durative than one with more overlaps or

45Disregarding the durations of the empty bounding boxes, which have effectively infinite duration.
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overlapped by relations. Finally, if instead a and b have equal durations, then only

one relation is possible between them—a equals b, a, b —which also maximises

for component size, and has the shortest string length of all the Allen relations.

This chapter has described a framework which uses strings as sequences of sets of

temporal entities—times and events—as part of an approach to temporal semantics

known as finite-state temporality. Strings of this type are interpretable as finite

models of Monadic Second-Order logic, and so due to an equivalence with regular

languages, this allows for strings to be recognised by finite-state automata and

systems which use them. Several operations are described which can be used to put

these strings to work—in particular, the superposition operation allows for strings

and sets of strings to be combined, such that all of the temporal data contained

therein is incorporated into new strings, and the projection operation allows for

determining the linear ordering and relation between a specified subset of times and

events in a string.

Some applications of these operations were discussed, including the ability to de-

rive timelines from annotated narratives using Allen’s interval relations along with

superposition and projection between strings. These timelines can be used to pro-

vide insight into the overall temporal structure of the text, as well as check for

inconsistencies. Additionally, strings can be used as a tool for some kinds of tem-

poral constraint satisfaction, such as in scheduling problems, as the superposition

operation can be used to combine strings which model temporal constraints, pro-

ducing sets of one or more strings in which all the constraints hold successfully, or

an empty set if the constraints cannot hold simultaneously.

The next chapter will describe the procedures by which the use of these strings

can be integrated with systems which produce semantic annotation for temporal

data—primarily focusing on the documents of the TimeBank corpus, a dataset of

newswire texts marked up with TimeML—and additionally how other resources

can be used to augment the work that strings can do, such as being able to make

inferences about what relations must be added to a knowledge base in order to be
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able to draw new conclusions.
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4 Methods for Deriving and Using Strings

This chapter details the use of strings and various string operations, described in

§3, as tools which assist with tasks related to temporal annotation by representing

models of sequences of times and events. Using TimeML-annotated documents as a

source, strings can be derived from the temporal links, and used to bring out other,

implicit relations. However, due to the nature of discourse, the temporal data is

often vague or incomplete, so some methods are presented for dealing with this.

There is also some discussion on using sources other than TimeML for extracting

temporal information to create strings, which could potentially augment the data

found in a marked up file. Finally, the string framework is leveraged for use in some

kinds of reasoning problems, including making temporal relations explicit which were

originally only implicit, and also inferring what temporal information is needed in

order to bridge a gap between a set of premises and a conclusion.

4.1 Extracting Strings from Annotated Text

In order to extract temporal strings like those described in § 3.1 from a text, the

text must first be marked up using the TimeML (TimeML Working Group, 2005)

annotation schema, as this will provide the starting point which indicates which

temporal entities are relevant in the text46. These annotated times and events,

along with the given relations between them, will directly lead to the creation of

the initial set of strings, which will serve as a ‘seed’ for the generation of all other

possible strings.

Despite TimeML’s successor schema, ISO-TimeML (Pustejovsky et al., 2010),

being adopted by the International Organization for Standardization as the standard

(ISO 24617-1:2012, 2012) for semantically annotating temporal data in a text, this

work will only focus on the older TimeML version 1.2.1 schema (TimeML Working

Group, 2005; Sauŕı et al., 2006). The primary source of data is the TimeBank

46Although, if used in an interactive environment such as the tool presented in § 5, it is possible
to start instead from plain text.
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corpus (Pustejovsky et al., 2006) which is one of the largest available collections of

documents which are annotated with any version of TimeML. At the time of writing,

the latest release of the corpus is version 1.2, which uses the TimeML version 1.2.1

schema. This corpus is generally seen as a gold standard for any experiments relating

to TimeML due to both its size and quality, as it contains 183 documents which

were each manually annotated in multiple phases: initially, a pre-processing step

wherein five annotators worked on the corpus, regularly meeting to discuss their

decisions and improve inter-annotator agreement; the last phase described involved

four annotators who “intimately familiar with the latest specification” (TimeML

Working Group, 2005), which at the time was version 1.2.1, as already mentioned.

The documents are amalgamated from a variety of newswire sources, and contain

just over 61,000 non-punctuation tokens. The inter-annotator agreement scores

(as the average of precision and recall) for the various tag types are given—for a

subset of the corpus—below in Figure 13, reproduced from TimeML Working Group

(2005), and it is noted that the low score for the <TLINK> tag is due to the large

number of event and/or time pairs that may be related to each other, which averages

approximately (7940+1414)
183

2
≈ 2613 pairs per document.

Tag Exact agreement Partial agreement

TIMEX3 0.83 0.96

SIGNAL 0.77 0.77

EVENT 0.78 0.81

ALINK 0.81 -

SLINK 0.85 -

TLINK 0.55 -

Figure 13: Inter-annotator agreement for tags in TimeBank 1.2
(from TimeML Working Group, 2005).

The agreement scores are also given for some of the tag attributes, using again the

average of precision and recall, and also the kappa scores, reproduced in Figure 14.

TimeML Working Group (2005) does note, though, that due to the size of the subset
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of documents for which inter-annotator agreement was tested, some of these values

are not hugely significant, in particular “the inter-annotator agreement numbers for

ALINKs as well as the polarity feature for events are not reliable.”

Tag and attribute precision+recall
2

Kappa

TIMEX3.type 1.00 1.00

TIMEX3.value 0.90 0.89

TIMEX3.temporalFunction 0.95 0.87

TIMEX3.mod 0.95 0.73

EVENT.class 0.77 0.67

MAKEINSTANCE.pos 0.99 0.96

MAKEINSTANCE.tense 0.96 0.93

MAKEINSTANCE.aspect 1.00 1.00

MAKEINSTANCE.polarity 1.00 1.00

MAKEINSTANCE.modality 1.00 1.00

ALINK.relType 0.80 0.63

SLINK.relType 0.98 0.96

TLINK.relType 0.77 0.71

Figure 14: Inter-annotator agreement for attributes in TimeBank 1.2
(from TimeML Working Group, 2005).

Of most significance to the present work is the favourable score for the <TLINK>

tags, from which strings can be derived.

4.1.1 Linking the TLINKs

TimeML primarily uses <TLINK> tags to annotate relations between marked up

events and times. These serve as the basis for initial string creation, as they provide

information about not only the two intervals that are being related, but also the

relation between them. The set of available relations is specific to TimeML—given

along with each relation’s count and proportion of the TimeBank 1.2 corpus in

Table 14—but has its roots in the set of Allen Relations—see the translation between
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the sets in Figure 7, p. 24. Since Allen’s set of relations are what will be used to

create strings, the <ALINK> and <SLINK> tags are ignored for the time being, as are

the <SIGNAL> tags. The intervals which are being related will be some pairing of

event instance IDs and/or time IDs, which point to <MAKEINSTANCE> and <TIMEX3>

tags, respectively, found elsewhere in the document.

Relation Count Proportion

BEFORE 1408 21.94%

AFTER 897 13.98%

IBEFORE 34 0.53%

IAFTER 39 0.61%

DURING 302 4.71%

DURING INV 1 0.02%

IS INCLUDED 1357 21.14%

INCLUDES 582 9.07%

BEGINS 61 0.95%

BEGUN BY 70 1.09%

ENDS 76 1.18%

ENDED BY 177 2.76%

SIMULTANEOUS 671 10.45%

IDENTITY 743 11.58%

Total 6418 100%

Table 14: The counts and proportions of each TimeML relation in the TimeBank 1.2
corpus.

The decision is made to fold the <MAKEINSTANCE> tags into the <EVENT> tags which

they reference for three reasons: first, this is one of the changes made in ISO-

TimeML (Pustejovsky et al., 2010), which considers the <EVENT> tags as explicitly

event instances; second, there are 7,940 <MAKEINSTANCE> tags in the corpus, and

7,935 <EVENT> tags, meaning there are just 5 instances which point at an event al-

ready pointed at by another instance—this is just 0.06% of the instances, so merging
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them should not have a significant adverse impact; finally, for simplicity’s sake, as it

makes it easier to track the text in the <EVENT> tag along with all of the attributes

from the <MAKEINSTANCE> tag, like the part of speech, tense, and aspect. While

mapping the instances onto the events, it is also necessary to update the <TLINK>

tags, so that any eventInstanceID and relatedToEventInstance attributes are

converted to eventID and relatedToEvent attributes, and also updating their val-

ues as appropriate.

After folding the tags for events together, a translation is built, mapping from

a <TLINK> tag to string. The relType attribute is extracted from the tag, and

converted to an Allen relation by looking up its corresponding relation in Figure 7,

p. 24. Then, extracting the IDs for the pair of intervals to be related from the

<TLINK> tag’s eventID or timeID (as E1) and relatedToEvent or relatedToTime

(as E2) attributes, a string can be constructed using Table 7, p. 82, replacing a and

b in that table with E1 and E2.

For a minimal example, assume the sentence in (113a) is marked up as in (113b),

omitting any attributes not directly relevant to this example.

(113a) “John ate dinner, and then washed the dishes.”

(113b) John <EVENT eid="e1">ate</EVENT> dinner,

and then <EVENT eid="e2">washed</EVENT> the dishes.

<TLINK eventID="e1" relatedToEvent="e2" relType="BEFORE" />

(113c) BEFORE ≡ before ∈ AR, E1 = e1, E2 = e2

(113d) e1 e2

The relation and two event IDs are extracted from the <TLINK> tag in (113c) (where

AR is the set of Allen’s interval relations, as in (102), p. 82), which are then arranged

according to Table 7, p. 82 to produce the string in (113d).

After mapping from the <TLINK> tags to strings, the next step is to start building

towards a timeline for the document, by using the vocabulary-constrained superposi-
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tion technique described in §3.1.4, p. 75. This operation will combine the temporal

data in pairs of strings, producing a set of output strings which are constrained by

the inputs. If the result of a superposition is the empty set, then the input strings

were inconsistent with one another—that is, the relations between the fluents in one

of the input strings contradicted a relation between those same fluents in the other

input. For example, if through some oversight during the annotation process, three

events are related by <TLINK> tags as follows:

(114a) <TLINK eventID="e1" relatedToEvent="e2" relType="BEFORE" />

(114b) <TLINK eventID="e2" relatedToEvent="e3" relType="BEFORE" />

(114c) <TLINK eventID="e1" relatedToEvent="e3" relType="IBEFORE" />

which produces the following three strings, respectively:

e1 e2(115a)

e2 e3(115b)

e1 e3(115c)

Attempting to superpose (115a) and (115b) produces a language containing one

string— e1 e2 e3 —however, when adding the third input string (115c) to

the superposition will result in the empty set. The reason why should be clear from

the transitivities of Allen’s relations—see Table 1, p. 11—as e1 < e2 and e2 < e3

gives that e1 < e3 should be found, which is the result of superposing the first

two strings, but this is contradicted by the e1me3 relation in (115c). By ejecting

inconsistencies like this, it is ensured that whatever representation is portrayed to a

user is at the very least consistent.

In general, combining the <TLINK> tags by superposing their string-translations

allows for connections to be built between events and times that were not already

explicitly related by the annotation. If every time and event in the document is

or becomes related to every other time and event, then the temporal closure has
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been calculated for the document—see §2.1.1. For an annotator manually marking

up a text with the TimeML schema to give enough detail for the temporal closure

to be calculated unassisted would be incredibly difficult, as for N events and/or

times in a document there would need to be N2−N
2

unique <TLINK> tags in order

to label the relation between each pair, which increases rapidly: at N = 10 there

are 45 relations, at N = 50 there are 1225 relations—while some documents of the

TimeBank corpus have many less and several have more, the average document has

7940+1414
183

≈ 51 events and/or times. This quickly becomes unwieldy for a human to

annotate, especially given that discourse is often vague in the sense that there may

not be a clear or even possible way to determine some relations with any kind of

precision. For instance, given the following sentence (116), it is clear that both of

the leaving events occur after the crash event, but it is not obvious how to label the

relation between the two leaving events47.

(116) “After the crash, the police left and the paramedics left.”

As such, it should not generally be expected that the temporal closure will al-

ready have been computed for any given document—however, if it is computed or

is computable, then superposing the strings derived from the document’s <TLINK>

tags will ultimately produce a language containing a single string which models the

timeline or temporal structure of the document: its vocabulary will be the set of all

the events and times in the document48, and it will specify the linear ordering and

inter-relations of all of these times and events within the context of the document’s

narrative.

As exemplified in (116), it should be noted that even with the most diligent of

annotators, it is still possible that the temporal closure is not immediately com-

putable, as several combinations of the <TLINK> relations produce a disjunction of

47Although, there have been studies which link the order that events appear in the text of a
narrative with their temporal ordering, showing that in this example there would be a tendency
to assume the police left ahead of the paramedics since they were mentioned first (Ohtsuka and
Brewer, 1992).

48At least, all of those which were included in at least one TLINK relation. If a time or event was
tagged in the text but was not marked up as being related to any other time or event, then there
is no way to constrain its relation, and it is effectively an isolated temporal entity, disconnected
from the narrative.
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relations which are subsets of the set of Allen Relations according to the transi-

tivities in Table 1, p. 11. In these cases, the superposition of the strings derived

from the <TLINK> tags will produce a language with a number of strings, each rep-

resenting one possibility from the disjunction of relations. Recall that superposing

a pair of languages with each other produces a new language which contains the

results of superposing every string from the first language with every string in the

second language—this can quickly lead to an explosion in the number of strings

that are generated if the relations between the events do not tightly constrain the

disjunctions which arise. Take, for example, a document which has tagged within

it its document creation time t0 and three events e1, e2, e3, but the only relations

given by the <TLINK> tags is that all three of the events occur before the document

creation time, and there are no other constraints given on the relations between the

three. In this case, vocabulary-constrained superposition will produce a language

with 409 strings in it, and if there were four events instead of three, this would

already be producing 23,917 strings49, each of which is possibly the true interpreta-

tion of the sequence according to all that is known about the document. Obviously

this is unwieldy, and in fact for this example superposing the strings like this is no

better than guessing the correct linear ordering of the events at random, since su-

perposition is just giving every single possibility. Derczynski (2016) notes that there

needs to be a careful balance between being exact in terms of presenting possible

relations, and not letting this set of possible relations grow too large. Assuming

for the moment a non-interactive environment where there is no new information

forthcoming that can constrain the relations between the events further, there needs

to be a way to treat situations like this where the data that can be derived from an

annotated text contains some amount of incompleteness, and the temporal closure

cannot be computed from just the given knowledge.

49This number increases dramatically quickly with additional intervals, according to the sequence
in Schwer (2000).
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4.1.2 Handling Incomplete Data

When dealing with any temporal information, there is often a lack of specificity

that means the temporal closure—where all intervals in the knowledge base are

(consistently) related by exactly one of the set of Allen Relations—for the given

document’s set of intervals cannot be calculated. For example, take the sentences

in (117):

(117) “Aideen was singing until dinner was served. Brian called Aideen after she

had sung.”

Assume that for (117), we have an annotation available which provides two relations

between the three events50, with e1 = ‘singing’, e2 = ‘served’, and e3 = ‘called’.

The relations are that e1 meets e2, and e3 is after e1, which are translated to strings

as described in the previous section and superposed in (118), producing a language

with five strings in it:

e1 e2 &vc e1 e3 = { e1 e2 e2, e3 e2 , e1 e2 e2, e3 ,(118)

e1 e2 e3 , e1 e2 e2, e3 e3 , e1 e2 e3 }

The result of the superposition in (118) contains five strings which are each equally

valid interpretations of the sequence of the three events, assuming there is no further

data with which to constrain the disjunction of strings. While in all five, due to the

nature of vocabulary-constrained superposition preserving projections—see (95), p.

75—the relation between e1 and e2 is always ‘meets’, and the relation between e3

and e1 is always ‘after’, the relation between e2 and e3 is a disjunction of options.

This is seen more clearly by taking the block compressed reduct of each string s in

the result of (118) relative to the set {e2, e3}, as in Table 15 below:

50In fact, this would be annotated as having a fourth event, ‘sung’, which has the IDENTITY relation
with ‘singing’. The example has been simplified to omit this, but it does not ultimately impact
the superposition calculation given in (118).
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bc(ρ{e2,e3}(s)) Relation

e2 e3, e2 e2 finished by e3

e2 e3, e2 e2 e2 contains e3

e2 e3 e2 meets e3

e2 e3 e2 before e3

e2 e2, e3 e3 e2 overlaps e3

Table 15: Relations arising from the superposition in (118).

One thing that can be seen in Table 15 is that in each string, the leftmost non-

empty component always contains just e2, implying that e2 has begun before e3

has begun, although it is not clear which of the two events ends first. In fact,

this is exactly the case, and Freksa (1992) uses these kind of disjunctions that can

arise as partial justification for their set of 31 semi-interval relations, which are a

superset of the Allen Relations. To use semi-intervals, their must be a change in

granularity so as to consider the beginnings and endings of intervals as primitive,

rather than intervals themselves. In contrast to, for example, Durand and Schwer

(2008a) or Fernando (2018), the beginnings and endings of intervals are themselves

intervals, rather than instantaneous points. Since they are intervals, they can also be

decomposed into beginnings and endings, depending on how much ‘zoom’ is desired.

The major advantage of using beginnings and endings as primitive is that it allows

for underspecification of an interval, so that either the beginning or the ending may

be omitted from consideration if necessary. This perfectly captures the scenario in

Table 15, where the beginning of e2 precedes the beginning of e3, but the order of

their endings is unclear—this corresponds to the Freksa relation labelled ‘older’, and

thus e2 is older than e3.

According to Freksa (1992, p. 202) there is a “cognitive awkwardness” in that, in

the case of incomplete information with Allen intervals, the representation becomes

more complex the less one knows (as is the case with the example in Table 15), since

that knowledge is represented as a disjunction of what might be true. He states

that, from a cognitive standpoint, the knowledge would be preferably represented
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“more directly and in such a way that less knowledge corresponds to a simpler

representation than more knowledge does” (Freksa, 1992, p. 202). To address this,

Freksa describes the 13 Allen relations in terms of constraints between semi-intervals,

as well as 18 more semi-interval relations for situations when it is not (necessarily)

known how an event’s beginning and ending relate to those of another event (Freksa,

1992, p. 219).

The set of Freksa (1992)’s relations is given in Table 16, showing the constraints

which each is associated with, where l(a) and r(a) are the beginning and ending of

some interval a, and similarly l(b) and r(b) are the beginning and ending of some

interval b. Allen’s relations, which are a subset of Freksa’s are omitted from the

table, as is the ‘unknown’ relation, which does not impose any constraints on the

relation of the intervals nor their beginnings and endings.

The relations are given again in Table 17, this time in terms of disjunctions of

Allen (1983)’s relations, again excluding Allen’s relations and the ‘unknown’ relation,

which is a disjunction of all 13 Allen Relations.

It’s worth noting here that Freksa (1992)’s primary motivation in the deisgn

of these relations was to appeal to the concept of what they called “conceptual

neighbourhoods”, whereby a pair of interval relations are concpetual neighbours if

“they can be directly transformed into one another by continuously deforming (i.e.

shortening, lengthening, moving) the events (in a topological sense)” (Freksa, 1992,

p. 206). Thus all of the disjunctions of Allen’s relations contain only relations

which are conceptual neighbours in this way—for example, it’s a shorter cognitive

leap to adjust from one event being ‘before’ another to the events having the ‘meets’

relation, than it is to go from ‘before’ to ‘after’. A subset of these concpetual

neighbourhoods can be found as the disjunctions which appear in the transitivity

table of Allen (1983, p. 836)—see Table 1, p. 11.
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Freksa label Constraints

older l(a) < l(b)

younger l(a) > l(b)

head to head l(a) = l(b)

tail to tail r(a) = r(b)

survives r(a) > r(b)

survived by r(a) < r(b)

precedes r(a) ≤ l(b)

succeeds l(a) ≥ r(b)

born before death l(a) < r(b)

died after birth r(a) > l(b)

contemporary l(a) < r(b), r(a) > l(b)

older survived by l(a) < l(b), r(a) < r(b)

younger survives l(a) > l(b), r(a) > r(b)

older contemporary l(a) < l(b), r(a) > l(b)

younger contemporary l(a) > l(b), l(a) < r(b)

survived by contemporary r(a) > l(b), r(a) < r(b)

surviving contemporary l(a) < r(b), r(a) > r(b)

Table 16: Freksa (1992)’s relations described in terms of the constraints they impose on
the beginnings and endings of a pair of intervals.
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Freksa label Disjunction of Allen’s relations

older before, meets, finished by, contains, overlaps

younger after, met by, finishes, during, overlapped by

head to head starts, started by, equals

tail to tail finishes, finished by, equals

survives after, met by, started by, contains, overlapped by

survived by before, meets, starts, during, overlaps

precedes before, meets

succeeds after, met by

contemporary starts, started by, finishes, finished by, during,

contains, overlaps, overlapped by, equals

born before death before, meets, starts, started by, finishes, finished by,

during, contains, overlaps, overlapped by, equals

died after birth starts, started by, finishes, finished by, during,

contains, overlaps, overlapped by, equals, after, met by

older survived by before, meets, overlaps

younger survives after, met by, overlapped by

older contemporary finished by, contains, overlaps

younger contemporary finishes, during, overlapped by

survived by contemporary during, starts, overlaps

surviving contemporary contains, started by, overlapped by

Table 17: Freksa (1992)’s relations described in terms of disjunctions of Allen (1983)’s
relations.

In order to take advantage of these relations in strings, first there must be a transla-

tion from intervals to semi-intervals, which is described here. First, two predicates

are defined:

αv(x) := ∃y (x < y ∧ y ∈ JPvK ∧ ∀z (z < y =⇒ z /∈ JPvK))(119)

ωv(x) := ∃y (y < x ∧ y ∈ JPvK ∧ ∀z (y < z =⇒ z /∈ JPvK))(120)
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(119) and (120) define (for some fluent v ∈ V) the appearance of α(v) within a

box51 as representing a negation of the fluent v conjoined with a formula stating

that v will be true in some subsequent box; similarly, ω(v) represents a negation of

the fluent v conjoined with a formula stating that v was true in some previous box.

A string s may be translated to one using semi-intervals by placing α(v) in every

box preceding one in which a fluent v appears, and ω(v) in every box succeeding it,

for each v ∈ Vs (Woods and Fernando, 2018).

For example, a string s = a b becomes semi(s) in (121), in which each of

the fluents originally appearing in the string s have also been removed. It’s worth

highlighting that this representation is possible since, under the semi-interval inter-

pretation, beginnings and endings of intervals are themselves treated as intervals,

which is why α(b) and ω(a) are able to appear in multiple components of the string:

semi(s) = α(a), α(b) α(b) ω(a) ω(a), ω(b)(121)

Allowing non-atomic formulas such as these inside the string components does pose

a risk of trivialising the work done by superposition, so care must be taken here

(Woods and Fernando, 2018). It should be noticed that strings which use semi-

intervals do not (necessarily) feature empty boxes at each end. This is due to the

fact that a beginning or ending is only bounded on one side each—if α(a) is true at

some moment, stating that the interval a has not yet begun, then it must also be

true at every moment before that, since otherwise would imply a having occurred

already; similarly for ω(a) holding at some moment and every moment after it. α(a)

may be thought of as ‘pre-a’, and ω(a) as ‘post-a’ (Woods and Fernando, 2018).

This mechanism allows for partially known information to be represented using

strings. For example, the string α(a), α(b) represents the knowledge that the

events labelled a and b both begin at the same moment, without stating anything

about when they each finish—they may end simultaneously, a may finish before b,

or b may finish before a. Which of these states is true is unknown without further

51Note that it is convenient to write α(v) for αv when using the box-notation.
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data. Going back to the example in Table 15, translating these five strings to use

semi-intervals in Table 18 makes the relationship amongst them clearer.

String Relation

α(e2), α(e3) α(e3) ω(e2), ω(e3) e2 finished by e3

α(e2), α(e3) α(e3) ω(e3) ω(e2), ω(e3) e2 contains e3

α(e2), α(e3) α(e3) ω(e2) ω(e2), ω(e3) e2 meets e3

α(e2), α(e3) α(e3) α(e3), ω(e2) ω(e2) ω(e2), ω(e3) e2 before e3

α(e2), α(e3) α(e3) ω(e2) ω(e2), ω(e3) e2 overlaps e3

Table 18: Translating strings corresponding to the Freksa ‘older’ relation from Table 15
to use semi-intervals.

Leaning on this example a final time, the strings in Table 18 are subjected to block

compressed reduct relative to the set {α(e2), α(e3)} in Table 19.

bc(ρ{α(e2),α(e3)}(s)) Relation

α(e2), α(e3) α(e3) e2 finished by e3

α(e2), α(e3) α(e3) e2 contains e3

α(e2), α(e3) α(e3) e2 meets e3

α(e2), α(e3) α(e3) e2 before e3

α(e2), α(e3) α(e3) e2 overlaps e3

Table 19: Block compressed reduct on Table 18.

Each of the five strings in Table 18 projects (using a block compressed reduct) to

the string α(e2), α(e3) α(e3) , meaning the relation e2 is older than e3 can be

represented using just this one string, instead of a disjunction of five. This does

raise the question, however, of whether the tradeoffs are worth it: a great reduction

in the cardinality of the timeline set can be achieved, but at the cost of using a

more complex vocabulary and reducing the precision of the known information by

underspecification.

Out of the 18 non-Allen52 Freksa relations, only 11 can be described using a

single string without further complicating the vocabulary which may appear within

52The 13 Allen relations can be represented as single strings using beginnings and endings without
underspecification.
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a component (box) of a string. Since all of these new relations are equivalent to

disjunctions of Allen relations, it follows that it may be acceptable to include dis-

junctions of semi-intervals inside a string component, such as α(a) ∨ α(b) , which

is interpreted as one might expect: either α(a) appears in the component, or α(b)

does, or they both do. This allowance admits a further five Freksa relations to be

described as single strings. Some relations may be represented in several ways, in-

cluding the ‘unknown’ relation, which may trivially be described using a single string

since it encompasses a disjunction of all 13 Allen relations, and is formed by a simple

disjunction of all possible semi-inteval symbols: α(a) ∨ α(b) ∨ ω(a) ∨ ω(b) ∨ ε , or

even more simply, with a string consisting of just a single empty box: .

Table 20 below shows the 18 Freksa relations and the string which they will

project to for some interval events a and b. The disjunctions of Allen Relations each

Freksa relations corresponds to are given again for convenience, using mnemonic

labels53.

53Using b, bi, and e for <, >, and =, respectively.
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Freksa Allen string

unknown b, bi, m, mi, s, si, f, fi, d, di, o, oi, e

older b, m, o, di, fi α(a), α(b) α(b)

younger bi, mi, oi, d, f α(a), α(b) α(a)

head to head s, si, e α(a), α(b)

tail to tail f, fi, e ω(a), ω(b)

survived by b, m, s, d, o ω(a) ω(a), ω(b)

survives bi, mi, si, di, oi ω(b) ω(a), ω(b)

born before death b, m, s, si, f, fi, d, di, o, oi, e α(a) ω(b)

died after birth bi, mi, s, si, f, fi, d, di, o, oi, e α(b) ω(a)

precedes b, m α(b) ∨ ω(a)

succeeds bi, mi α(a) ∨ ω(b)

contemporary s, si, f, fi, d, di, o, oi, e α(a) ∨ α(b) ω(a) ∨ ω(b)

older contemporary o, fi, di α(a), α(b) α(b) ω(a) ∨ ω(b)

younger contemporary oi, f, d α(a), α(b) α(a) ω(a) ∨ ω(b)

surviving contemporary di, si, oi α(a) ω(b) ω(a), ω(b)

survived by contemporary d, s, o α(b) ω(a) ω(a), ω(b)

older and survived by b, m, o ...

younger and survives bi, mi, oi ...

Table 20: The Freksa relations and the strings they project to.

The last two relations in Table 20, shown again in Table 21, cannot be represented

using a single string, and instead must use conjunctions of pairs of strings. What

this means is that for the other relations, it can be determined whether some string

of semi-intervals s entails that relation if and only if s projects to the string given

in Table 20 for that relation—see also (104), p. 83—for these last two, s will only

entail these relations iff it projects to both of the strings given in the conjunction.

This may be a small complication, but it is important to address.

Freksa Allen strings

older and survived by b, m, o α(a), α(b) α(b) ∧ ω(a) ω(a), ω(b)

younger and survives bi, mi, oi α(a), α(b) α(a) ∧ ω(b) ω(a), ω(b)

Table 21: The remaining Freksa relations and the strings they project to.

Now there is a way of representing (almost) all of the disjunctions that may arise from
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superpositions of strings representing relations between times and events derived

from <TLINK> tags as single strings. This presents a useful way to tackle the often

large sizes of the languages produced when trying to string together the <TLINK>s

to form a picture of an annotated document’s temporal structure in a timeline-

like manner. However, there is a notable tradeoff for using semi-intervals instead

of intervals, which is that in the process of reducing the cardinality of the output

languages, the vocabulary for the strings have become much more complex, with

two symbols for every interval where there was only one previously, and including

non-atomic formulas such as the disjunctions within string components also adds

further complexity to superposition computation. Additionally, the strings which

represent some of the Freksa relations are not in all cases necessarily intuitive—

for instance, while α(a), α(b) shows neatly that both intervals a and b begin at

the same moment for the ‘head to head’ relation, it’s not immediately obvious why

α(b) ∨ ω(a) should correspond with ‘precedes’. The additional complexity that

arises for the benefit of reducing the amount of data to process threatens the tenet

of Freksa (1992, p. 202) that the representation should not become more complex

the less is known.

As such, it would be useful to consider an alternate approach to treating situa-

tions where extracting and combining strings from the <TLINK> tags of a TimeML

document leads to unwieldy numbers of generated strings due to loose constraints

from the relation types on the times and events in the narrative. This new approach

may be comortably used alongside the semi-interval way of handling if so desired,

as shall be shown.

In this treatment, rather than blindly performing vocabulary-constrained super-

position between all of the strings which are extracted from the <TLINK> tags, which

can lead to an explosion of generated strings due to a lack of constraints, only certain

pairs of strings will be superposed. Where vocabulary-constrained superposition will

produce a language that may contain vastly many strings, a new operation is defined

which may only produce at most some fixed number of strings as output. This new
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operation will avoid superposition if it doesn’t make sense to superpose the given

strings: when the input strings are the same, the result can only be the same string

again; if the strings are not the same, but they have an identical vocabulary, then the

strings must contradict each other in terms of the relations they specify among their

vocabulary; if the strings don’t share any vocabulary, then they cannot constrain

each other further through superposition, so no information would be gained; if the

size of the language produced by vocabulary-constrained superposition between the

languages would be larger than desired. In these last two cases, the input strings

are returned so that their data is not lost, and they can potentially be superposed

with other strings instead. If none of these situations holds, then the result is just

the vocabulary-constrained superposition of the two strings.

First, set some limit k ∈ N which will be the maximum size of the language

allowed to be produced. A good default choice for this limit is 12, on the basis that

in the case where two intervals are unconstrained relative to each other, they will

lead to at least 13 strings being produced by their superposition, which do not add

any useful information to the knowledge base. Then, for two strings s and s′ the

‘sensible’ superposition s &̂ s′ is defined as follows:

s &̂ s′ :=



{s} if s = s′

∅ if s 6= s′ ∧ Vs = Vs′

{s, s′} if Vs ∩ Vs′ = ∅ or #(s &vc s
′) > k

s &vc s
′ otherwise

(122)

The examples in (123) demonstrate each of the cases in (122), assuming the limit
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is set as 12.

a b &̂ a b = { a b }

(123a)

a b &̂ b a = ∅(123b)

a b &̂ d c, d d = { a b , d c, d d }

(123c)

a b &̂ a c = { a b , a c }

(123d)

a b &̂ c b, c c = { a, c b, c c , a a, c b, c c , c a, c b, c c }

(123e)

In order to utilise this choosier form of superposition, one alteration will be made to

the process of extracting strings from the <TLINK> tags of the TimeBank documents:

now, the result of extraction will be a singleton language containing the string,

rather than just the string itself. Since the result of superposition of either strings

or languages is a language, this change just makes the process a little smoother.

Next, attempt to superpose all of the languages together by iterating through the

list, and attempting to perform the sensible superposition for each pair of languages.

If the superposition was successful, remove that pair of languages from the list, and

add the result of the superposition and start attempting to superpose the languages

in the updated list. If there were no successful superpositions after iterating through

all the languages, then return the whole list. Since the operation is recursive, this

will result in all of the languages being superposed together correctly. The operation

is given in pseudo-code below.

Figure 15: Pseudo-code for superposing a list of languages of strings.

The result of this procedure will be a list of languages which were not superposed

together—or if all of the languages were superposed, then the list will contain just
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superpose_languages(A, B, limit):

return superpose_sensible(a, b, limit) for a in A, for b in B

superpose_all_languages(list, limit):

for i=0, i++, i < len(list):

for j=i+1, j++, j < len(list)

sp = superpose_languages(list[i], list[j], limit)

if sp = {}:

# inconsistent

elif sp = {list[i], list[j]}:

# superposition avoided

else:

# add the result of superposition and

# remove the languages that were used

newList = sp + (list - {list[i], list[j]})

return superposition_all_languages(newList)

return list

one language. Each language will contain at most k strings, where k was the pre-

determined limit in (122).

To demonstrate the utility of being choosy with when to combine temporal in-

formation, an example document is taken from the TimeBank corpus, with a doc

ID of wsj_1073. The <TLINK>s of this document are given below—noting that they

have been altered so that the <EVENT> and <MAKEINSTANCE> were merged.

<TLINK relType="SIMULTANEOUS" eventID="e9" relatedToEvent="e30" />

<TLINK relType="BEFORE" eventID="e4" relatedToTime="t0"/>

<TLINK relType="BEFORE" eventID="e2" relatedToTime="t0"/>

<TLINK relType="BEFORE" eventID="e9" relatedToTime="t0"/>

<TLINK relType="DURING" eventID="e30" relatedToTime="t31"/>

Figure 16: TLINKs from the wsj 1073 document of TimeBank 1.2.

The strings derived from these tags are in (124):

{ e9, e30 , e4 t0 , e2 t0 , e9 t0 , t31 e30, t31 t31 }(124)

Using the normal procedure, these strings are superposed together, and the re-

sult is a language containing 7,449 strings, each of which has a vocabulary of
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{e9, e30, e4, t0, e2, t31}. Using the sensible superposition along with the procedure

in Figure 15, the result is a list of three languages: two of which contain a single

string, and the third of which contains five strings:

{ t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t31 ,(125)

t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t0 ,

t31 e30, e9, t31 t31 t0, t31 }, { e4 t0 }, { e2 t0 }

These seven strings are a lot easier as a human to interpret than the over 7000 from

the normal procedure. When one of the languages contains more than one string, as

in this case, it is possible to translate these to use semi-intervals, and try to further

reduce the cardinality that way, although this may be a case of user preference. The

sensible superposition operation is the default option built into the tool presented

in §5, although it is possible to remove the limit if desired.

4.2 Strings From Other Sources

The automatic parsing of the Discourse Representation Structures (DRSs) of Dis-

course Representation Theory (DRT) (Kamp, 1981) from plain text is a field which

has recently seen some new approaches (Abzianidze et al., 2017; van Noord et al.,

2018), particularly during a recent shared task due to Abzianidze et al. (2019) which

aimed to take sentences of English as input and produce DRSs—in an evaluation-

friendly clausal form, rather than the typical human-friendly boxed format—as out-

put. The relative success of this task shows that there is an interest in developing

systems which can perform automatic DRS parsing. The state-of-the-art was im-

proved considerably, with the winning system of Liu et al. (2019) achieving an F1

score of 84.8%, an improvement from the baseline score of 54.3%. It is possible to

leverage the temporal information that features in a DRS to create strings of times

and events such as are described in § 3.1. While, in general, the temporal relations

found using this approach are less specific than those found in TimeML as most

117



parsing tools for DRSs do not appear to utilise Allen’s interval algebra, the advan-

tage of using DRSs is that elements such as event participants can be picked out

automatically.

Boxer (Bos, 2008) is one readily available piece of tooling which claims coverage

as wide as 95% for semantic analysis of newswire texts, the same domain as the

TimeBank corpus (Pustejovsky et al., 2006). The Boxer software is part of the C&C

toolchain (Curran et al., 2007) for parsing a text into one or more DRSs, using a

neo-Davidsonian representation for events and leveraging the set of thematic roles

provided in VerbNet (Schuler, 2005), though it is noted in Bos (2008, p. 277) that the

temporal aspects of the tool are not quite as strong as some of the others, and that

“some measure and time expressions are correctly analysed, others aren’t.” A newer

version of the tool is used as part of the Parallel Meaning Bank (Abzianidze et al.,

2017) toolchain, although it has not been made widely available for use in research at

the time of writing. Another widely available tool for automatic DRS parsing exists

as part of the popular Python-based natural language processing toolkit, NLTK

(Bird et al., 2009), although it is to be noted that the DRSs produced by this tool

do not give much focus to their treatment of events.

4.2.1 Parallel Meaning Bank

The Parallel Meaning Bank (PMB) is an online corpus (https://pmb.let.rug.nl)

with a total of over 12,000 DRSs for parallel structures in English, German, Dutch,

and Italian. The corpus comprises sentences along with clausal form DRSs for

providing fine-grained meaning representations for texts, as well as word senses

and thematic roles from WordNet (Fellbaum, 2010) and VerbNet (Schuler, 2005)

respectively.

Under the assumption that the version of Boxer that is used in the PMB would

become available at some point, here are some examples of extracting strings from

example entries from the corpus. The idea being that, using a high-quality DRS

parser to automatically determine semantic information from an unannotated text,
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then extracting the temporal information from these DRSs to derive strings from

could present an opportunity to create a gateway towards automatic temporal an-

notation: since it is already possible to translate from strings to the <TLINK> tags of

TimeML (TimeML Working Group, 2005)—utilised in the annotation tool described

in §5—generating strings from another source could at the very least allow for cre-

ating a basic level of semantically informed automatic annotation of a document’s

temporal relations.

The goal, therefore, is to create a mapping from a text T to some set of strings S

which will be used to represent the linear ordering and inter-relations of the temporal

entities in T . As intermediate steps, T is parsed for semantic information which is

represented as one or more DRSs. A projection from these DRSs is created, such

that the resultant, reduced DRSs only contain temporal information, and S is the

set of strings derived from these temporalised DRSs. The original DRSs are retained

in this process so that there is a link back from the representations which have lost

all non-temporal information.

Once a DRS representation is parsed from the text, the next step is to elimi-

nate any non-temporal information from the produced DRSs. It is assumed that

all temporal information is accurate. A basic approach for how to choose which

information to remove is to select all discourse referents which either do not appear

in a Time condition or related conditions, such as Duration, or are not explicit time

expressions such as now, or 09:00, and then to remove any conditions which fea-

tured a now-removed referent. Any now-empty DRSs are also removed. (126) below

takes an example from Abzianidze et al. (2019, p. 8) and shows the text and the

originally given DRS, though using the construction that is found in the Parallel

Meaning Bank (v2.2.0, ID 99/2308). The conditions in 126b which will be retained

after projection to (126c), the temporalised DRS, are shown in bold.

After removing all of the non-temporal information, a single DRS is left, which in

this example corresponds to an instance of not being afraid occurring in the present.

This DRS has no information about who isn’t afraid, or what they aren’t afraid of,
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it just represents the when.

Tom isn’t afraid of anything.(126a)

x1

male.n.02(x1)

Name(x1,tom)

¬

s1 x2 t1

time.n.08(t1)

t1 = now

afraid.a.01(s1)

Time(s1,t1)

Stimulus(s1,x2)

Experiencer(s1,x1)

entity.n.01(x2)

(126b)

¬

s1 t1

time.n.08(t1)

t1 = now

afraid.a.01(s1)

Time(s1, t1)

(126c)

¬s1, t1, now(126d)

From this reduced DRS in (126c), a string can be formed, as in (126d). Fluents

corresponding with the discourse referents are placed into string components (boxes)

in this string, and are ordered based on any temporal relations which are mentioned

in the DRS’s conditions, similar to ordering fluents in strings using Allen’s relations.

In this example, (126c) contains t1 = now, which indicates that any temporal entities

which occur at timepoint t1 are concurrent with the “current” moment54, and as a

result the symbols appear in a single component of the created string in (126d). This

is the time at which the utterance was created, or the time of speech in Reichenbach

(1947)’s framework—see §2.1.2. Other timepoints may be referenced, such as dates,

durations, relative times—for example yesterday—clock times, and so on, each of

which must be ordered correctly. In addition to the = equals relation, there might

appear a ≺ precedence, ⊂ during, or © overlaps relation, which would correspond

54Note that there are other uses of now, but the distinctions are dropped here for simplicity.

120



to different orderings of the discourse referents.

Other conditions, such as negation, are to an extent also accounted for—for

example, in (126d): since there is (currently) no mechanism for a negated string55,

the scope of the negation has to be narrowed to one of the fluents which appear

in the string. An assumption is made that an explicit time expression such as now

should not be negated to create a not-now fluent. Similarly, since there is a condition

marking the referent t1 as a time, it is also not selected to be negated. As a result,

the remaining referent s1, which is associated with the event expression, becomes a

negated fluent instead56. Typically, a fluent appearing in a string is negated by its

absence from a string component, that is, a fluent which appears in the vocabulary

of a string is not occurring unless it explicitly is occurring. However, event-like

statives are treated in TimeML, and may occur as fluents in a string, so it is not

too large a step to allow negated fluents into strings.

One further utility of using the DRSs of the Parallel Meaning Bank is the ability

to leverage the resources of VerbNet (Schuler, 2005), which supplies the semantic

roles that permit the neo-Davidsonian event semantics in a DRS, and WordNet

(Fellbaum, 2010), which is used to specify the particular sense of a verb or other

word. The version of Boxer used in the PMB includes this information in its output,

which may be utilised in linking events that are not given an explicit temporal

relation, as events which share semantic participants are likely to be linked in some

way.

4.3 Reasoning with Strings

Strings of events may be used to reason about the temporal information they contain:

to infer a linear ordering and new relations that were not explicitly stated in the

source as existing between the times and events modelled within the strings. There

55Although this could be explored in future work, and would potentially reduce the discomfort of
altering the scope of the negation in this manner.

56This has the implicit effect of shifting the sentence-level negation in “isn’t afraid” to something
more like “is not-afraid”—a subtle shift in this example, but nonetheless the necessity to make
any alteration to the original meaning is not ideal, and should be addressed in future development
of the DRS-string extraction.

121



are a number methods which can be employed depending on the specific results that

are desired.

Superposition of strings creates new strings which feature all of the constraints of

their ‘parent’ strings, and new relations can be derived by taking the projections of

these strings in relation to an intersection of the parent vocabularies. Additionally,

residuals are employed to determine what relations may need to hold in order for

other inferences to be made.

4.3.1 Superposition and Projection

Given some set of strings, whether extracted from an annotated document, such as

one of those in the TimeBank (Pustejovsky et al., 2006) corpus, or derived from some

other source like the temporal properties of DRSs, the most straightforward kind of

reasoning that can be done is to use superposition to determine the relations which

are not yet made explicit, moving towards the computation of the temporal closure

of a document if it is not already calculated. If a document’s times and events have

temporal closure, then each time and event has been related to each other time and

event with exactly one relational label. Once strings have been superposed together,

projection can be used to find the relation(s) that they specify between any pair of

times and/or events.

Strings model sets of constraints between the times and events that they men-

tion, and when two strings are superposed, all of these constraints also hold in the

resulting language’s strings. This can be shown through an example:

a b &vc b c = { a b c }(127)

The vocabulary-constrained superposition—see (95), p. 75—produces a language

of all of the strings which have a vocabulary equal to the union of the vocabularies

of its inputs and also contain the same constraints as its inputs. For instance, in

(127) the first input string a b entails the relation a occurs before b, which is

also entailed by the sole member of the result language a b c . This is due to
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the fact that vocabulary-constrained superposition preserves projections—see (82),

p. 68—which can be proven by taking the projection of a b c with respect

to the vocabulary of a b and seeing that it is equal to a b .

bc(ρ{a,b}( a b c ))(128)

bc( a b )

a b

The string a b c thus projects to the string a b , which says that all of

the temporal information represented in a b is also contained within a b c .

Similarly, the constraint that event b occurs before event c holds in both b c

and in a b c ; a b c projects to b c .

Since the resulting strings of a vocabulary-constrained superposition always57

project back to their ‘parent’ strings. they also model the constraints which are

represented by each of these parents, although using a single string rather than two

strings. However, a b c also projects to the string a c , which represents

the constraint that event a occurs before event c according to Table 7, p. 82. This

constraint was not represented in either of the parent strings that were superposed to

create a b c , but it is represented in this result string. Thus, a new relation

between events has been discovered and made explicit. While this example in (127)

is relatively simple and could be easily derived from simply using the transitivity

table for Allen relations—see Table 1, p. 11—this procedure works identically for

strings featuring an arbitrary number of events, without having to calculate long

chains of transitivities. For instance, taking another slightly trivial example for the

sake of illustrating the point, imagine a set of events labelled by a through z such

that, for each pair of events which are alphabetically adjacent, the ‘contains’ relation

holds, so a contains b, b contains c, ..., y contains z. Through superposition of the

57Except, of course, if the parent strings are contradictory and the result of superposition is an
empty language.
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strings which represent these relations a rather large string is obtained:

a a, b a, b, c · · · a, b, . . . , y a, b, . . . , y, z a, b, . . . , y · · · a, b, c a, b a(129)

While it is not hugely difficult to follow along the transitivity chain of this particular

set of 25 relations to determine that the relation between a and z is also ‘contains’,

it only takes one step to determine this relation while using strings: namely take the

projection of the string in (129) relative to the vocabulary of interest, which in this

case is {a, z}, which produces the string a a, z a which entails the ‘contains’

relation between a and z, by (104), p. 83. One could further imagine a scenario

with the same set of events where the relational transitivities are more difficult to

compute, where the relation is not the same for every single event-pair. In this case,

superposition will (possibly) produce more than one string as a result, but for every

string produced there is exactly one relation between every time or event which

appears in that string—effectively, taking each string into consideration in isolation

from all of the others, the temporal closure has been computed. In order to find

the relation or relations that hold—assuming it is still the relation between a and z

that is of interest in this scenario—the projection is taken of each string relative to

the set {a, z}, as before, and the union of all found relations is taken. This set will

either be the relation or disjunction of possible relations that may hold between a

and z.

For a more concrete example, using the sensible superposition operation on the

<TLINK> tags from a document—see Figure 16 and (124), p. 116—from the Time-

Bank corpus in § 4.1.2 produced the set of languages found in (125). To find, for

example, the relation in that document’s narrative between the two marked up

times, t0 and t31, the projection of every string across all of the languages is taken

relative to {t0, t31}, producing a set of five strings which correspond to the relations

‘during’, ‘after’, ‘met by’, ‘finishes’, and ‘overlapped by’. The disjunction of these

five are the possibilities for the relation between t0 and t31, corresponding to the

Freksa (1992) relation ‘younger’.
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4.3.2 Residuals and Gaps

Given some set of strings which represent times and events and their temporal

relations to serve as a knowledge base, an operation can be used to determine what

strings must be added to the knowledge base in order to make some other string

entailed. The operation is known as gap as it effectively finds the language that

would bridge the gap between the premises (the knowledge base of strings) and the

conclusion (the other string).

For example, with the language L = { a c } as the premises and L′ =

{ b c } as the conclusion, the language gap(L,L′) = { a, b , b c , b a, b , a a, b }.

Note that the conclusion itself appears in the result, since adding the conclusion to

the knowledge base would indeed make it entailed by the knowledge base. Super-

posing any string from this resulting language gap with the premises should lead to

the resulting updated knowledge base entailing the conclusion.

For some pair of arbitrary languages L,L′, the gap(L,L′) is formed as follows:

first, calculate the superposition between the premises and the conclusion.

L &vc L
′ := {s′′ | s ∈ L, s′ ∈ L′, s′′ ∈ s &vc s

′}(130)

Next, find the projections p(L,L′) in the superposition that, when superposed with

the premises, project to the conclusion.

p(L,L′) := {πV (s′′) | s′′ ∈ L &vc L
′, V ⊆ Vs′′ ,(131)

(∀s ∈ L, ∀s′ ∈ L′)(∀r ∈ (πV (s′′) &vc s) πVs′ (r) = s′)}

Define an operation min(L̂) that minimises a language L̂, such that for any string

in min(L̂), no other string in min(L̂) will project to it.

min(L̂) := {s | s ∈ L̂, V ⊂ Vr, πV (r) /∈ L̂}(132)
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Then, gap(L,L′) is defined as the minimised set p(L,L′)

gap(L,L′) := min(p(L,L′))(133)

To substantiate the claim that superposing any string from gap(L,L′) with the

premises produces the conclusion, and the further claim that any string in the su-

perposition of L with L′ projects to some string in gap(L,L′), gap(L,L′) will be

related to the residual L′/L of L′ by L, relative to superposition as a binary opera-

tion on languages of block compressed strings.

First fix some large set of symbols Θ, with Fin(Θ) as the set of finite set of

subsets of Θ. For any A ∈ Fin(Θ), define the set of all block compressed strings

whose vocabulary is in A

LA := {bc(s) | s ∈ (2A)∗}(134)

and for any s ∈ Fin(Θ)∗, let

JsKA := {s′ ∈ LA | s′ w s}(135)

which is lifted to languages disjunctively, with the implication that JsKA = J{s}KA

JLKA :=
⋃
{JsKA | s ∈ L}(136)

Note then that

L w L′ ⇐⇒ JLKA ⊆ JL′KA(137)

where L w L′ says that the language L projects to L′—see (85), p. 69—and also

JL &vc L
′KA = JLKA ∩ JL′KA(138)
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The first claim, that superposing any string from gap(L,L′) with the premises pro-

duces the conclusion, comes to

JLKA ∩ Jgap(L,L′)KA ⊆ JL′KA(139)

and the second claim, that any string in the superposition of L with L′ projects to

some string in gap(L,L′)

JLKA ∩ JL′KA ⊆ Jgap(L,L′)KA(140)

For residuals, let

resA(L,L′) := {s ∈ LA | JsKA ∩ JLKA ⊆ JL′KA}(141)

noting that, for all L,L′, L′′ ⊆ LA

JLKA ∩ JL′′KA ⊆ JL′KA ⇐⇒ JL′′KA ⊆ resA(L,L′)(142)

To find the connection between res and gap, first define the downset L↓ of L as the

set of all strings which the strings in L project to

L↓ := {πV (s) | s ∈ L, V ⊆ Vs}(143)

And so

p(L,L′) = {s ∈ (L &vc L
′)↓ | ({s} &vc L) w L′}(144)

Observe that, for any L̂

Jmin(L̂)KA = JL̂KA(145)
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and since gap(L,L′) is just equal to min(p(L,L′))

Jgap(L,L′)KA = JresA(L,L′) ∩ (L &vc L
′)↓KA(146)

The gap operation described above is particularly useful for using strings in the

context of question-answering systems, as it allows for inferences to be made about

whether certain relations could possibly exist, given some knowledge base of strings.

For example, the FRACAS semantic test suite (Cooper et al., 1996) contains many

examples of one or more premises matched with a conclusion, each of which is

accompanied with a remark on whether the conclusion should be inferred from the

premises. There is a section of the test suite (section 3.7) which is dedicated to

inferences pertaining to temporal reference, however, it is noted that such questions

are complex, as one cannot simply rely on temporal information like tense and

aspect alone. These are important, but other factors which come into effect include

“lexical semantics, defeasible interpretation principles such as narrative progression,

rhetorical relations, a theory of action and causation, world knowledge, interaction

between plurality, genericity [...]” (Cooper et al., 1996, p. 101). While a majority

of the cases require at least some extrinsic knowledge to deterministically infer the

conclusion from the premises, which cannot be determined from the times and events

alone, they serve as a useful example of what could potentially be achieved through

the creation of a knowledge base of strings which represented certain aspects of

world knowledge—for instance, the fact that years follow each other sequentially

could be represented as the string ... 1992 1993 ... , which would enable solving

questions like in example (Cooper et al., 1996, 3.252, p. 101) “Since 1992 ITEL has

been in Birmingham. It is now 1996. Was ITEL in Birmingham in 1993?”.

4.4 Timeline Validity

The string framework allows for compact temporal data representation with an intu-

itive link to timelines due to the sequential nature of the data, as explored in §3.2.1.
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However, it is crucial that these string representations do not mislead users by cre-

ating contradictory or otherwise problematic results, or if the information being

operated on becomes mutated in some way that would lead to incorrect inferences

being drawn that would not have been drawn before the data was manipulated. In

essence, it must be ensured that when strings containing data from a source such

as a document that is marked up with TimeML from the TimeBank corpus are

utilised in any way, but particular after superposition as the most heavily relied

upon operation in the framework, that no information becomes lost or falsified in

the process.

The notion of projection—see (82), p. 68—allows any given string to be tested

as to whether it contains the same temporal data as some other string, which gives

a way of verifying whether source material has been lost or corrupted in some way

during data manipulation. It was shown in Table 2 that the asynchronous super-

position operation, which allowed for data to be combined from pairs of strings

of varying lengths, did not necessarily preserve projections from its results to its

sources. As a consequence, the notion of projection was built into the definition of

the vocabulary-constrained superposition operation, and it was enshrined that the

only valid results of the operation would be those strings which could in fact project

back to the original sources.

To validate this using a concrete example, take the strings from the TimeBank

document wsj_1073 again (see also p. 116):

{ e9, e30 , e4 t0 , e2 t0 , e9 t0 , t31 e30, t31 t31 }(147)

Doing the vocabulary-constrained superposition on these strings produces a lan-
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guage which contains 7,449 strings.

e9, e30 &vc e4 t0 &vc e2 t0 &vc e9 t0 &vc t31 e30, t31 t31

(148)

= { t31 e2, t31 e2, e30, e9, t31 e2, e30, e4, e9, t31 e30, e9, t31 t31 t0 ,(149)

e2 e2, t31 e2, e30, e9, t31 e2, e30, e4, e9, t31 e30, e9, t31 t31 t0, t31 t31 ,

e2, t31 e2, e30, e9, t31 e2, e30, e4, e9, t31 e30, e9, t31 t31 t0 ,

t31 e2, t31 e2, e30, e9, t31 e2, e30, e4, e9, t31 e30, e9, t31 t31 t0, t31 t0 ,

. . .}

Checking each string individually, every single string in (149) projects to every

string in (147), thus verifying that all of the original information has been preserved

through the superposition to the resulting strings.

However, due to the unwieldy nature of vocabulary-constrained superposition

which always performs superposition even when it sometimes doesn’t make much

sense from a practical point of view, the annotation tool in §5 uses instead a ‘sensible’

superposition, which avoids computing the result of superposition between strings

if it is too costly to do so, based on the intersections of the inputs vocabularies and

a pre-determined limit. Using this kind of superposition on (147) does not in fact

produce a single language, but a set of three languages, as in (150)

{ t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t31 ,(150)

t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t0 ,

t31 e30, e9, t31 t31 t0, t31 }, { e4 t0 }, { e2 t0 }

It’s clearly not possible for every string in (150) to project to every string in (147):

for instance e2 t0 6w e9, e30 . However, sensible superposition only ever

produces either strings from the vocabulary-constrained superposition or the input

strings themselves, so it should be possible to find the projections, and indeed it
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is. The sensible superposition effectively forms a segmentation of the data, meaning

that rather than each string in (147) being projected to by every string in (150),

every string in (147) is projected to by every string in one of the languages of

(150). The second and third languages contain one string each, and each projects

to one string from (147). The remaining three strings e9, e30 , e9 t0 , and

t31 e30, t31 t31 are indeed all projected to by every string in the remaining

(first) language of (150), thus validating that none of the information has been lost

or corrupted during superpositions.

The next chapter describes the details of how the string framework which was

described in §3 and used throughout the current chapter is currently implemented.

In particular, an illustrative tool is discussed which may be used to annotate text

with a slightly modified subset of the TimeML 1.2 (TimeML Working Group, 2005)

schema, or to edit and examine a document that has already been marked up.
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5 String Temporal Annotation and Relation Tool

(START)

In order to implement the string framework for representing times and events as

described in § 3 and utilised in § 4, various approaches were trialled using different

programming languages, including Prolog, JavaScript (Node.js), and Python (see

Clocksin and Mellish, 2012; Tilkov and Vinoski, 2010; Kuhlman, 2009, respectively

for more on each). Ultimately, Python (version 3) was chosen for its speed, wide

cross-platform availability, and ease of use through familiarity.

Python is a high-level, dynamically-typed, interpreted programming language

implemented in C, with a large standard library that has found widespread use

among scientific communities, in part thanks to the availability of tooling such

as the Natural Language Toolkit (NLTK) (Bird et al., 2009) for natural language

processing and PyTorch (Ketkar, 2017) for machine learning, as well as many other

packages which are easily accessible through an official package installer.

Although Python has support for object-oriented programming styles, a func-

tional programming paradigm was used in the design of the framework, wherein the

use of mutable, global state is avoided. Functions are designed so as to take some

input and give some output, without causing side effects, so that running a function

with a particular input will always give the same result. This style of programming

was chosen so as to better reflect the logical forms of the string operations which

are described in §3.1.4—a mathematical function has no state, it simply takes some

input and transforms it into an output.

In order to illustrate what is enabled by the use of the string framework, a proof-

of-concept tool for annotation was built as a web-based application (though, with

a little effort, it may also be downloaded and set up to be used locally without an

internet connection), which is available at http://scss.tcd.ie/~dwoods/thesis/

code/start58, and all of the code is available to view at https://github.com/

58Also available at https://start-dwoodscs.vercel.app.
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dave-woods/thesis/tree/master/code/start. The main drive behind this tool

is on using strings for discovery and consistency-checking of relations between a doc-

ument’s times and events, while providing a useful visual aid for a human annotator

to verify that the timeline of the document, inasmuch as it can be determined, lines

up with their understanding of the narrative’s temporal structure.

The front-end of the application, known as START for String Temporal An-

notation and Relation Tool, was developed and built using the Next.js (https://

nextjs.org) framework upon top of the React (https://reactjs.org) JavaScript

library, both of which are open source software. React is designed for building fast

user interfaces through a component-based library that only updates the parts of

the web page’s document object model (DOM) which need to be updated, rather

than re-rendering the entire page on every request or interaction sent from the

page. Next.js enables web pages to be rendered on the server rather than on the

client’s machine, and provides some extra abstractions over common tasks in Re-

act. Next.js is also tightly integrated with the cloud-based hosting platform Vercel

(https://vercel.com/docs) which allows for Python code to be hosted as part of

the application in the form of so-called serverless functions (Anderson et al., 1995)

where “application logic is split into functions and executed in response to events”

(McGrath and Brenner, 2017, p. 405). The result of this is that for most operations

of the string framework made from the application, the client will send a request to

an API endpoint hosted by Vercel. On receiving the request, Vercel will trigger the

appropriate function from the string framework with any data passed along with

the API request, using JSON as a format for communication between the front-end

and back-end. Once the function has completed, it returns any data (or errors) to

the client to be used or displayed as appropriate.

For the reader’s convenience, two video files are available which demonstrate the

tool in use. The first is located at https://www.scss.tcd.ie/~dwoods/thesis/

code/assets/annotate-text.mp4 and shows the process of working with a pre-

annotated TimeML file. The second is located at https://www.scss.tcd.ie/
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~dwoods/thesis/code/assets/annotate-plain-text.mp4 and shows the process

of working with and adding annotation to plain text.

An important note for understanding the notation in the code and the tool is

that, since strings of times and events as used in the current work are sequences

of sets of symbols, the appropriate format to represent these in the code would be

lists of sets—and indeed, this is the underlying representation. However, since both

Python and JavaScript have strings as built-in types, an alternative but equivalent

representation is used to write the strings. This increases their portability, since list

in Python and arrays in JavaScript are heavier objects that use more memory than

the built-in strings. In this new notation, the pipe character ‘|’ is used to denotate

the boundary between two consecutive string components. For example, the string

a a, b b can be written as “|a|a,b|b|”. A simple function can translate from

a string of this kind to a list of components and back again.

5.1 Back-end API

The majority of the implementation of the framework is contained within a single

Python file, which is called strfns.py in the Appendices. Following the functional

programming style meant that any of the operations defined in § 3.1.4 would be

implemented by composing together several Python functions, each of which has a

single clear task. The functions need to be pure, meaning that they have no side

effects, and running a function any number of times on the same input will produce

the same output every time. As such, the strfns.py file contains only functions—

in order to use them, they must be imported into another file, which is exactly

what happens in the other Python files included in the Appendices. In fact, all of

the other Python files also only define functions—these are the serverless functions

which are hosted by Vercel. When the front-end sends a request to one of these

endpoints, the handler class in each of freksa.py, newTLINKs.py, superpose.py,

and test.py triggers the (sole) function it contains, do_POST, which performs the

requested data manipulations and sends the results back to the client.
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There is, however, one caveat to the purity of the strfns.py file, which is that

the superpose_sensible function uses a decorator which implements a LRU-style

cache from the standard functools library. The decorator wraps the function in

another function, encapsulating it and giving it access to a cache object which uses

the LRU stategy: that is, the ‘Least Recently Used’ items in the cache will be re-

moved to make room for new items—compare with a FIFO or ‘First In First Out’

strategy which says that newer entries are the most likely to be reused, where LRU

says that recently used entries are the most likely to be reused. So technically the

superpose_sensible function does have a side effect of potential cache mutation,

rather than being a completely pure function. However, for all intents and pur-

poses it is still essentially pure, in that passing the function the same inputs will

always produce the same outputs, it’ll just retrieve them from the cache rather than

computing them after the first time.

Since the algorithm for computing the sensible superposition of a list of languages—

see Figure 15, p. 115—involves a nested for-loop as well as recursion, the tradeoff for

sacrificing a little functional purity and some memory space is a dramatic increase

in efficiency. This can be seen best through example, so going back (see p. 116 and

p. 129) to the wsj_1073 file from the TimeBank corpus, the strings derived from

the <TLINK> tags and the result of sensibly superposing these are reproduced from

(124) and (125) below for convenience.

{ e9, e30 , e4 t0 , e2 t0 , e9 t0 , t31 e30, t31 t31 }(151)

{ t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t31 ,(152)

t31 e30, e9, t31 t31 t0 , t31 e30, e9, t31 t31 t0, t31 t0 ,

t31 e30, e9, t31 t31 t0, t31 }, { e4 t0 }, { e2 t0 }

The LRU cache implementation allows for a maxsize to be set, so the most recently

used 1000 (string) superpositions are kept in the cache, which can vastly improve
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the speed of the calculation. Using Python’s built-in timeit functionality to test

how much time repetitions of a function takes59, with the input from (151), we find

the following times while varying whether sensible superposition used the cache or

not:

Iterations No caching (s) Caching (s) caching
nocaching (%)

1 0.02069 0.00018 0.87%

100 1.61041 0.0063 0.39%

10000 163.17628 0.26268 0.16%

Table 22: Caching superpositions vastly improving efficiency.

On average, the version using caching took less than half of one percent of the time

that the non-caching version took. Since these functions are to be used as part of

an API which forms the back-end to a web-based application, long waiting times

are very undesirable. An annotator using a tool does not want to have to wait for

the tool to keep up with them—really, a tool that makes itself noticeable for any

reason rather than just facilitating the task at hand is problematic.

Other than the superposition algorithm, there are also a number of functions

defined for reasoning with strings. In particular, there are a set of projection func-

tions which use the definition of projection in (82), p. 68 and extend it so that

there are definitions of a language projecting to a string if all strings in the language

project to the string, a language projecting to a language if all strings in the first

language project to all strings in the second, a language containing a string if some

string in the language projects to it, and a language contradicting a string if the lan-

guage doesn’t contain it and there is some string in the language whose vocabulary

59Running with Python v3.7.3 (64-bit) on Ubuntu 16.04 using an Intel i7-6700 CPU with 16GB
memory.
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contains the vocabulary of the string.

L w s′ ⇐⇒ ∀s ∈ L (s w s′)(153)

L w L′ ⇐⇒ ∀(s ∈ L, s′ ∈ L′) (s w s′)(154)

contains(L, s′)⇐⇒ ∃s ∈ L (s w s′)(155)

contradicts(L, s′)⇐⇒ ¬contains(L, s′) ∧ ∃s ∈ L (Vs ⊇ Vs′)(156)

These functions are used as part of the relation testing procedure while annotating

a text with TimeML—when a user wants to add some relation between a pair of

events or times, which will be added in the form of a string, first it is reasonable to

test whether that string and relation are possible given the current knowledge base

of relations, or if it’s even contradicted by some other relation.

There’s also an implementation of the gap algorithm described in § 4.3.2 which

calculates the set of strings which would need to be superposed with some premises

in order to entail some conclusion, an algorithm to determine which string of some

list uses the least simultaneous resources, which helps to answer the trains problem

in Table 11, p. 91, and functions to translate to and from between a string using

intervals and a string using semi-intervals, as described in §4.1.2.

The file freksa.py is effectively a lookup table, providing the set of strings which

correspond with any given relation from either Allen’s set or the extended Freksa

set. newTLINKs.py uses the concept of analogous strings—see § 3.1.2, p. 52—to

determine the TimeML <TLINK> relation type to use when translating back from

strings during the export process of the START application.

5.2 Front-end Interface

A web-based application was chosen for the graphical user interface (GUI) as this

ensures the widest coverage in terms of accessibility, as the only requirement is a

modestly up-to-date web browser. It is possible to download the system and run it

locally, but it’s not envisioned that there would be much need unless planning to
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annotate without a web connection for an extended period of time. The key benefit

of running the application in a web browser is that there is no need to download or

install anything to get started, and additionally being able to design the GUI using

HTML and CSS is somewhat more straightforward than some of the existing GUI

toolkits for Python—again, there is no need to download or install anything new,

as everything operates within the same interface.

On visiting the web page at http://scss.tcd.ie/~dwoods/thesis/code/start,

the user is greeted with a blank textarea input. Most of the functionality is inactive

until some text has been entered into this input. There are two sample files from the

TimeBank corpus (Pustejovsky et al., 2006) linked on the lower left of the screen,

which the user can copy into the textarea to get a feel for how to use the tool. Once

the user clicks the ‘Annotate’ button, the system will try to parse the input as a

TimeML file, but if it fails to parse it, then it will be considered as plain text. If

this is the case, then all of the features described below will work just the same,

but the user will have to begin marking up from scratch, as there must be some

tagged events or times to begin with before they can be related and the relation

transformed into a string.

Assuming the user chose to input some TimeML60, the input area will change to

instead show the text content of the inputted document with the times and events

highlighted in pink and yellow, respectively. All of these times and events are

also added to a list on the right-hand side of the screen—noting that <EVENT>

and <MAKEINSTANCE> tags have been amalgamated as described in § 4.1.1. Finally,

the strings that are derived from the <TLINK> tags are added to the ‘String bank’

section in the lower left of the screen, and a new panel becomes available on the

lower right side.

60The file used in the below screenshots is the ‘Sample 1’ file available on the web page, which
is the same document of the TimeBank corpus used in the example in Figure 16, document ID
wsj 1073.
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Figure 17: START: Initial blank input.

At this point the user is in the main flow of the system. They are free to immediately

click the ‘Export’ button to export the data to a new TimeML file and leave the

program if they wish—noting that the export works from what the system knows of

the data, rather than basing it on the original input. Internally, since the relations

are stored as strings, which use Allen’s set rather than the TimeML set, and some

of the TimeML relations map to the same Allen relation—see Figure 7, p. 24—it is

possible that the relations specified in the original document will be different from

those in the exported one, though it is guaranteed that they will map to the same

Allen relation. Also, it is worth bearing in mind that the TimeML that is exported

is a subset of the full schema, so the <SIGNAL>, <SLINK>, and <ALINK> tags are

ignored, as they are not directly involved in the computations relating to temporal

ordering.

139



Figure 18: START: The screen after a TimeML file is imported.

If the user doesn’t in fact leave immediately, they may notice that the temporal

relations found in the document have been imported as languages of strings.

Figure 19: START: The String bank after importing TimeML.

Clicking on the ‘Superpose’ button or pressing the S key on the keyboard will send a

request to the back-end to compute the sensible superposition of all of the languages

in the String bank, which may result in a smaller number of languages, as it does
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in this case. The strings have been combined where it made sense to do so and the

result of superposition did not create a language with a cardinality greater than the

set limit—see (122), p. 114. The limit is initially set to a default value of 12, so that

strings which do not constrain each other tightly will not be superposed, though

this limit can be altered by clicking the ‘Help’ button. Setting the limit to a value

of 0 will perform the superposition without a limit at all, though this can produce

unwieldy results and may be slower in terms of performance, so is not recommended

if not necessary. If, during superposition, an empty set is ever returned from Python,

this implies that an inconsistency was present in some of the strings in the String

bank. The system will warn the user that a problem was found, and it will show

the languages that were being superposed when the error occurred.

Figure 20: START: The String bank after clicking ‘Superpose’.

If the user hovers their mouse over one of the strings in the String bank, all of the

highlights in the main text area will turn off except for any times and events that

are mentioned in that string. If the user clicks on a string, an overlay will appear

which shows the string in the conventional notation established in § 3.1, with the

event text appearing in place of the time or event IDs, so as to help the user decide

whether the string seems valid or not, for example in the case of trying to narrow

down a disjunction. A list of all the <TLINK> tags which can be derived from the

string is also displayed. If the user wishes to remove the string from the knowledge

base for whatever reason, the ‘Remove’ button at the top of the panel will do this.

The user can press the Escape key, or click outside the panel to return to the main

screen.
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Figure 21: START: Examine a particular string.

Moving over to the lower right panel, there are three drop-down menus and three

buttons that become available after importing at least one event or time. If the user

picks two different intervals from the drop-down menus, the ‘Try Find Relation’ will

become enabled. Clicking this will search the strings in the String bank and try

to find a relation or disjunction of relations that is entailed by one or more of the

strings.

Figure 22: START: The relation panel.

If the system finds any relations, these are reported to the user at the top of the

screen. However, if no relations can be found from superposition of the strings,

and both of the intervals are verbal events, then the system will attempt to make

a recommendation of the relation based on the tenses and aspects of the pair of
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verbs, as in Derczynski and Gaizauskas (2013)’s empirical validation of Reichenbach

(1947)’s framework of tense and aspect. The system follows the table in Figure 6,

p. 17, though the suggestion will be accompanied by a warning that it is merely

a suggestion, and if one of the verbs has the event class of ‘REPORTING’, this is

highlighted to the user, since it raises the likelihood that the events are in separate

temporal contexts. If no relations can be found for the selected pair of intervals via

either methodology, the user is informed of this instead.

Figure 23: START: Relations found for a pair of intervals.

If the user selects one of the relations from the drop-down list, and then clicks ‘Test

Relation’, the system will attempt to check the string(s)61 relating to that relation

against the String bank. It will then inform the user with one of three statuses:

• ‘Found’: that relation already exists in the knowledge base, though it may

appear in a disjunctive language, so it may be safely added to the String

bank.

• ‘Possible’: that relation was not found in the knowledge base, but neither was

it contradicted. It may be added to the String bank.

• ‘Contradicted’: A string was found that was inconsistent with that relation.

It should not be added to the String bank.

61The user can select an option in the ‘Help’ menu which will allow them to choose Freksa-labelled
relations in addition to the normal set as the input.
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Figure 24: START: The result of testing a particular relation for consistency within the
knowledge base.

Clicking the ‘Add New Relation’ button will, as might be expected, add a string

to the String bank representing the relation that is currently specified by the drop-

down menus. The full set of TimeML relations is available here, with the addition

of Allen’s ‘overlaps’ and its inverse as ‘OVERLAPS’ and ‘OVERLAPPED BY’. The

primary reasoning behind including these despite their scarcity in natural language

is because of the fact that they appear in a number of the disjunctions that can

occur from superposition of strings.

Moving up to the top left of the screen, where the main text is, if the user moves

their mouse over one of the highlighted terms, its eventID or timeID as appropriate

will be indicated to help the user distinguish in case there are several highlighted

elements with the same text content. The user can tag a new event by highlighting

the relevant text with the mouse, and either clicking on the ‘Tag Event’ button, or

pressing the E key on their keyboard. The new event will be added to the panel on

the right side of the screen, and will become available to be selected in the drop-

down menus in order to relate the event to another interval. The process is the same

for tagging a new time in the text, either clicking the ‘Tag Time’ button, or pressing

the T key on the keyboard after selecting some text.

Finally, moving to the panel on the right, which contains a list of all of the times

and events that have been tagged in the text, if the user moves their mouse over

one of the items in the list, then only the text marked up for that event or time

will be highlighted in the main text area, so as to ensure the user is aware exactly

which interval they are dealing with. The user can click on the ‘+’ button to the

right of the time or event to bring up another overlay containing that time or event’s

attributes. If the interval is not one that was imported, the attributes will be set to
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default values, which can be edited as needed, clicking the ‘Update’ button to save

the new values. The user can again press Escape or click outside of the panel to

return to the main view. If the user clicks on the ‘×’ button, that event or time will

be removed from the document, along with any strings which mention it. This is

a slightly heavy-handed approach, but it is preferable to the inconsistency of being

able to export a file which contains <TLINK> tags that point to a non-existant event

or time.

Figure 25: START: Editing some of an event’s attributes.

If at any point the user makes an error or wishes to go back to a previous state

for some other reason, they can click the Undo button or press the U key on their

keyboard to retrace their steps through their last 50 actions. This limit was chosen

somewhat arbitrarily as a means to keep a handle on the memory usage in the

application, though increasing the limit is unlikely to have a significant performance

impact. The use can also reset the application’s state at any point by clicking

the ‘Reset’ button, although this action cannot be undone, and this is effectively

equivalent to refreshing the browser page.

When the user is finished with a file, they can click the ‘Export’ button which, as

mentioned, will prompt the browser to download the TimeML file. One alteration to
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the format of the output not already mentioned is what happens when a disjunction

of relations exists in the knowledge base for some pair of intervals. Rather than

exporting multiple <TLINK> tags relating the same pair of intervals, which would

instead be interpreted as the exported file containing inconsistencies, the relType

attribute of the <TLINK> is interpreted as forming a disjunction of at least one

relations, separated by the pipe character ‘|’. For example:

(157) <TLINK eventID="e1" relatedToTime="t2" relType="BEFORE|IBEFORE" />

While this does not conform with the TimeML schema, exactly, it is interpreted

correctly if the exported file is re-imported back into START as a language of strings.

While this tool is not expected nor intended to compete with existing annotation

tools, it does serve as a proof-of-concept of what is enabled when using the string

framework to represent events and times. Superpositions can quickly find inconsis-

tencies in a document’s temporal relations, as well as generate new constraints and

relations that may not have been previously explicit, while also presenting a con-

venient visual guide for the overall temporal structure of the annotated document.

It is hoped that future work will have the opportunity to develop this tool further,

and perhaps integrate it with other tooling as an alternate view alongside graphical

and chart-based tools.

146



6 Conclusion

This thesis has described a framework for using strings as finite representations

of temporal entities—times and events, as well as the relations between them—in

order to capture and represent temporal information in a way that is both intuitively

understandable to a human user and practical for use in computational systems. The

aim was to evoke the metaphor of a timeline, a well-known method of conceptualising

temporal information, due to their nature as sequential models. Strings are already

basic computational entities which feature sequences of symbols, and these temporal

strings were designed to further be reminiscent of frames of a strip of film, or panels

of a comic, in that they portray all relevant data within a snapshot—a moment of

time, frozen and inertial—in a step-by-step manner, proceeding from the past to the

future. This was achieved by creating strings as sequences of sets which contain all

relevant times and events which—as intervals—hold at any one of these moments,

and the visual metaphor was made clearer by drawing sets as boxes · , rather than

the conventional curly braces {·}.

The precise and compact visual appeal that comes from these timeline-like strings

was seen as desirable due to the intended use of the string framework as a tool that

would form part of a system designed to assist annotators in marking up temporal

information in texts. By displaying a self-updating timeline to an annotator, they

are provided an additional way of keeping track of the linear order of the times and

events that appear in the text that they are working on, as well as the inter-relations

between them. Additionally, since every piece of temporal data and every relation

that an annotator marks up is added to the string-based timeline, some relations

can be determined automatically, reducing the workload for the annotator. Further,

while human error is always a risk with annotating any kind of document—either

due to poor judgement or simple mistake—using the string framework can help to

mitigate certain kinds of error, by immediately highlighting if, when a relation is

annotated, it is inconsistent with the rest of the knowledge base.

In practice, it was discovered that calculating a single string-based timeline for
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a text is a difficult task, due to the fact that it requires temporal closure over all

of the declared temporal entities—that all inter-relations are fully computed. In

fact, this is not always possible, since texts of human discourse are often inherently

vague, with much temporal information being omitted. In some cases, a reader is

expected to fill the temporal gaps in the text from context, or more generally via

world knowledge. In other cases, this incomplete data is simply that: incomplete. If

all that is stated in the text is that two events a and b occurred before a third event

c, there is just no way of knowing what the temporal relation is between a and b.

Not being able to determine this relation means that temporal closure is impossible

for this text, and thus a single timeline-like representation is also an impossibility.

A few different methods for tackling this issue of incompleteness were presented,

although no solution was found to be ideal. By altering the granularity, or “zoom”,

of a string and focusing on event borders—that is, beginnings and endings of events

and times—instead of the events themselves, it was found that a greater number of

event relations could be modelled using a single string. However, this moved away

from Allen’s interval relations to Freksa’s semi-interval relations—which correspond

to disjunctions of sets of interval relations—and while the cardinality of string sets

was reduced, the vocabularies of the strings were greatly complexified through the

admittance of various extra symbols within the string boxes, including α and ω,

as well as disjunctions of symbols. Each layer of additional complexity requires a

further step of explication to an annotator that may not be familiar with the formal

theory behind what they are annotating, and increases the chance of confusion

causing errors. However, although the implementation of the string framework—as

part of a proof-of-concept annotation tool—in this work chooses to use intervals as

basic and to not directly use these semi-intervals, the relations that are associated

with them were seen as a useful way to simplify disjunctions of interval relations

where vague or incomplete data is present in the text.

The main way chosen for representing non-deterministic data—that is, situa-

tions where it is not clear which relation holds between a particular pair of temporal
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entities—is to use sets of strings, called languages, which effectively represent “par-

allel worlds”. If each string in the language contains a sequence of times and events,

then it represents the world in which that sequence is veridical—the language as a

whole then represents the set of possible true worlds. For example, the language

{ a b , b a } shows two possibilities: either—as in the first string—the event

a occurred before the event b, or—in the second string—b occurred before a. Lack-

ing further information, it’s not possible to know which of these scenarios is correct,

so the current implementation chooses to display both options to the annotator.

However, limits are placed on how many strings a language may contain, as no

useful information is really being given if a language contains all thirteen possible

interval relations between a particular pair of events. As mentioned above, in the

current implementation of the string framework, semi-interval relations are used

when they correspond a to the combination of relations found in a language of

strings. For example, if the set of (interval) relations between events a and b in a

language is {‘before’, ‘meets’, ‘contains’, ‘finished by’, ‘overlaps’}, this corresponds

with the semi-interval relation ‘older’, and so this relation would be shown to a

user, although they would be allowed to narrow this relation down to one of the five

interval relations in that set.

A number of operations were described for working with the temporal strings:

chief among these were the various kinds superposition, which allows for combining

temporal information from different sources by unifying the data from separate

strings into one—for example, ‘a before b’ – a b superposed with ‘b before c’ –

b c becomes a b c which represents both of the original relations in a

single string. However, superposition often results in a language of possible strings,

and as mentioned above, this can lead to increased complexity for the annotator, so

it must be handled carefully, which is the purpose of the ‘sensible’ superposition—

the operation is only carried out if it would not produce a language exceeding some

size limit. This means that the superposition can be controlled so that it should only

be carried out if it would lead to an increase in knowledge for the annotator—that
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is, it reduces the possible relations between some events a and b from all thirteen

possibilities to some number less than that.

Another important string operation is that of projection, which relates to the

concept of set-theoretic inclusion in formal language theory. If a string s projects

to another s′, then s includes all of the temporal information that is present in

s′. This is an incredibly useful concept, as it allows for reasoning about whether

some premise string contains some conclusion—for example, the string a b c

projects to the string a c , so it can be said to contain the information that

the event a occurs before the event c, even if this relation was not stated anywhere

explicitly.

Relatedly, a gap operation was described which can find the string(s), and thus

the temporal information, that would need to be true in order to make some con-

clusion string hold, given some set of premise strings. Although this is a powerful

tool for question-answering systems, within the context of the semantic annotation

tool that this work focused on, it did not receive much focus. Future work could

possibly implement the gap operation within the string-based annotation tool so

that an annotator could suggest a relation, and the system would prompt them

with which other relations would need to hold (if any) in order for their suggestion

to be valid. However, it was found that making this kind of inference in general

often relies on knowledge that is not purely temporal, such as lexical semantics, or

world knowledge. It is suggested, therefore, that a large knowledge base of strings

could be created in a future work, which could be used to supplement an annotation

tool with background or contextual information to assist with temporal reasoning

tasks.

Straying away from annotation-specific tasks again, strings were also shown to

be useful in other tasks related to temporal reasoning: scheduling and satisfying

temporal constraints. This task focused less on temporal semantics, and more on

sequential data, but by superposing together various strings which modelled partic-

ular scenarios or scheduling constraints, a way of tackling the job shop scheduling
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problem—that is, management of a finite number of resources being used in a spec-

ified order—was shown to be possible within this framework. While future work

that focuses more closely on this topic should explore the efficiency of using strings

in this manner in comparison to state-of-the-art methods, it does demonstrate the

flexibility of the temporal string framework. A key point here is that temporal con-

straints can be represented as strings, which may be useful for specific reasoning

tasks—for instance, inferring relations from a text, but disallowing certain combina-

tions of events to overlap—and which, it could be imagined, may further augment

an annotator’s toolbox.

Returning to annotation, some discussion was given to deriving strings from

sources other than pre-annotated text. This focused primarily on manipulating the

structures of DRT in order to extract temporal information from them, so as to create

strings based at least partially on a Reichenbachian analysis of tense and aspect. The

intent here was to be able to use tools which automatically parse DRSs to provide the

semantic temporal data from plain text, rather than having to only use marked-up

documents. However, although solutions do exist for creating DRSs from text, their

focus does not tend to be on the temporal side of semantics, and additionally not all

of these solutions were available for use as part of the toolchain created for this work.

As a result, pre-parsed DRS data from the Parallel Meaning Bank was examined

as a demonstration of what could be achieved with access to an appropriate DRS

parser, although the results of converting a DRS to a string showed considerable

room for improvement. In particular, handling the concept of negation was shown

to be difficult, since a DRS might have wide-scope negation, which (currently) is not

possible in the string framework. Future work should explore this as a possibility,

as well as potentially working in closer collaboration with other parties in order to

further develop the temporal capabilities of automatic DRS parsers and enable the

sourcing of strings from plain text documents.

Finally, a proof-of-concept tool—known as the String Temporal Annotation and

Relation Tool (START)—was demonstrated which allows for utilising the string
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framework as part of an annotation workflow. This tool allows a user to use (a

slightly modified version of) TimeML to mark up events, times, and relations be-

tween them in either a plain text document or a document pre-annotated with

TimeML. The interface does not display TimeML directly, but rather shows the

annotator strings representing the temporal entities that are marked up and their

inter-relations. At any point, the user can choose to run a superposition operation

on these strings, which will attempt to reduce the number of strings shown to as

small a language as possible, displaying the possible timelines of times and events.

The user can also use the superposition and projection operations to eject relations

which contradict the established timeline, as well as to test whether new potential

relations are possible according to the already known data. As mentioned above,

this implementation also shows relation labels—which come from TimeML’s TLINK

tags relation type attribute—to the user where appropriate, and if a disjunction of

labels arises, it uses Freksa’s semi-interval relations as labels instead. In this case,

when the document is saved, the TLINK relation type can possibly be a disjunction

of labels instead of a single label. Of course, this is a deviation from the TimeML

and ISO-TimeML specification, and future work would seek to make this alteration

published in order to get further feedback on how using a wider range of labels could

augment the markup language.

Overall, the framework described in this thesis has shown how strings can be

used to represent times, events, and the relations between them. The temporal data

is modelled in a compact way which maintains a human-readable format, calling to

mind the intuition of a timeline, while remaining computationally powerful enough

to manipulate and reason over. Future work would seek to improve over this frame-

work’s shortcomings as discussed above, as well as engage with other parties in order

to implement the framework as a part of an assistive semantic annotation toolchain

for marking up temporal information in text.
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Strings, 52
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Box notation, 45
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Event Information in Natural Language Text. Language Resources and Evalua-

tion, 39(2):123–164.

Pustejovsky, J., Lee, K., Bunt, H., and Romary, L. (2010). ISO-TimeML: An In-

ternational Standard for Semantic Annotation. In Proceedings of the Seventh In-

ternational Conference on Language Resources and Evaluation (LREC’10), pages

394–397.

Pustejovsky, J., Mani, I., Belanger, L., van Guilder, L., Knippen, R., See, A.,

Schwarz, J., and Verhagen, M. (2003c). Tango Final Report. In ARDA Sum-

mer Workshop on Graphical Annotation Toolkit for TimeML, MITRE Bedford

and Brandeis University.
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Appendices

Python Code

"""strfns.py"""

from functools import reduce , lru_cache

from collections import Counter

import itertools

import re

def negate_component(component , as_string=False):

"""Take a component , and return it with all its

fluents negated"""

c = list(map(lambda f: f[1:] if f == ’’ or f.

startswith(’!’) else ’!’+f, component))

return c if not as_string else ’,’.join(c)

def negate_string(string):

"""Take a string , and return it with every component

negated"""

return ’|’.join([’,’.join(c) for c in map(

negate_component , get_components(string))])

def hide_negated(string):

"""Take a string and filter out any negated fluents

"""

newc = []

for c in get_components(string):

newc.append(list(filter(lambda f: not f.

startswith(’!’), c)))

return ’|’.join([’,’.join(c) for c in newc])

def subsets(s):

"""Take an iterable and return the set of its subsets

"""

return frozenset(frozenset(x) for x in itertools.

chain.from_iterable(itertools.combinations(s, r)

for r in range(len(s)+1)))



def proper_subsets(s):

"""Take an iterable and return the set of its proper

subsets"""

return frozenset(frozenset(x) for x in itertools.

chain.from_iterable(itertools.combinations(s, r)

for r in range(len(s))))

def nonempty_union(x, y):

"""Take two sets and return their union"""

try:

z = frozenset(x) | frozenset(y)

except:

z = x + y

return list(filter(None , z)) if len(z) > 1 else list(

z)

def get_components(string):

"""Take a string and return a list of components"""

try:

return [s.split(’,’) for s in string.replace(’ ’,

’’).split(’|’)]

except AttributeError:

return string

def string_from_components(components):

"""Take a list of components and return a string"""

return ’|’.join([’,’.join(c) for c in components ])

def vocabulary(string):

"""Take a string , return its vocabulary as a set"""

if string == ’’ or string == []:

return frozenset ()

try:

components = get_components(string)

return frozenset(filter(None , reduce(lambda x, y:

list(frozenset(x) | frozenset(y)), components

)))

except AttributeError:

return frozenset(filter(None , reduce(lambda x, y:



list(frozenset(x) | frozenset(y)), string)))

def vocabulary_lang(lang):

"""Take a language , return its vocabulary"""

return frozenset(reduce(lambda x, y: list(vocabulary(

x) | vocabulary(y)), lang , []))

def string_length(string):

"""Take a string , return the number of components it

has"""

return len(string.split(’|’))

def sort_fluents(string):

"""Take a string , return a string with all its

fluents alphabetised within their components"""

return ’|’.join([’,’.join(sorted(x.split(’,’))) for x

in string.split(’|’)])

def string_equals(a, b):

"""Take two strings , return whether they contain the

same data"""

return [sorted(x.split(’,’)) for x in a.split(’|’)]

== [sorted(x.split(’,’)) for x in b.split(’|’)]

def reduct(string , new_vocab):

"""Take a string and a set, return the string with

its vocab set to the set"""

components = get_components(string)

reducted = [[f for f in c if f in new_vocab] for c in

components]

return ’|’.join([’,’.join(c) for c in reducted ])

def block_compress(string):

"""Take a string , return the string without stutter

"""

components = get_components(string)

if len(components) < 2:

return ’|’.join([’,’.join(c) for c in components

])



elif Counter(components [0]) == Counter(components [1])

:

return block_compress(’|’.join([’,’.join(c) for c

in components [1:]]))

else:

return ’,’.join(components [0]) + ’|’ +

block_compress(’|’.join([’,’.join(c) for c in

components [1:]]))

def projection(string , proj_set):

"""Take a string and a set, return the block

compressed reduct"""

return block_compress(reduct(string , proj_set))

def projection_lang(lang , new_vocab):

"""Take a language and a set, return the block

compressed reduct of every string in the language

"""

return list(set(filter(lambda n: n != ’’, [projection

(s, new_vocab) for s in lang])))

def string_projects_to_string(a, b):

"""Take two strings , return whether the first

projects to the second"""

return string_equals(b, projection(a, vocabulary(b)))

def lang_projects_to_string(a, b):

"""Take a language and a string , return whether the

first projects to the second"""

return all([ string_projects_to_string(s, b) for s in

a])

def lang_projects_to_lang(a, b):

"""Take two languages , return whether the first

projects to the second"""

return all([ lang_projects_to_string(a, s) for s in b

])

def lang_contains_string(a, b):



"""Take a language and a string , return whether the

first contains the second"""

return any([ string_projects_to_string(s, b) for s in

a])

def lang_contradicts_string(a, b):

"""Take a language and a string , return whether the

first contradicts the second"""

return not lang_contains_string(a,b) and any([

vocabulary(s).issuperseteq(vocabulary(b)) for s in

a])

def projection_full_vocab(string , vocab):

"""Take a string and a set, return the block

compressed reduct or an empty string if the full

vocab isn’t used"""

p = projection(string , vocab)

return p if vocabulary(p) == frozenset(vocab) else ’’

def projection_lang_full_vocab(lang , new_vocab):

"""Take a language and a set, return the block

compressed reduct of every string in the language

or empty strings if the full vocab isn’t used"""

return list(set(filter(lambda n: n != ’’, [

projection_full_vocab(s, new_vocab) for s in lang

])))

def analogous_strings(a, b):

"""Take two strings and return whether they are

analogous"""

v_a = vocabulary(a)

v_b = vocabulary(b)

mapping = dict()

for v in v_a:

for w in v_b.difference(frozenset(mapping.values

())):

if reduct(a, [v]) == reduct(b, [w]).replace(w

, v):

mapping[v] = w



break

return frozenset(mapping.keys()) == v_a and frozenset

(mapping.values ()) == v_b , mapping

def basic_sp(string_a , string_b):

"""Take two strings , return their basic superposition

(a string)"""

components_a = get_components(string_a)

components_b = get_components(string_b)

return sort_fluents(string_from_components ([

nonempty_union(a, b) for (a, b) in zip(

components_a , components_b)]))

def basic_sp_lang(lang_a , lang_b):

"""Take two languages , return their basic

superposition (a language)"""

result = []

for a in lang_a:

for b in lang_b:

result.append(basic_sp(a, b))

return frozenset(result)

def pad(string , length):

"""Take a string and an int , and pad the string to

the length of the int"""

sl = string_length(string)

if length < sl:

return []

elif length == sl:

return [string]

else:

result = []

for s in pad(string , length -1):

c = get_components(s)

result = result + [string_from_components(c[:

i] + [c[i]] + c[i:]) for i in range(len(c)

)]

return frozenset(result)



def async_sp(string_a , string_b):

"""Take two strings and return their asynchronous

superposition (a language)"""

len_a = string_length(string_a)

len_b = string_length(string_b)

pad_len = len_a + len_b - 1

padded_a = pad(string_a , pad_len)

padded_b = pad(string_b , pad_len)

return frozenset(map(lambda s: block_compress(s),

basic_sp_lang(padded_a , padded_b)))

def superpose(string_a , string_b , vocab_a = None , vocab_b

= None , remove_negated_pairs = True):

"""Take two strings and return their vocabulary -

constrained superposition (a language)"""

components_a = get_components(string_a)

components_b = get_components(string_b)

if vocab_a is None and vocab_b is None:

vocab_a = vocabulary(string_a)

vocab_b = vocabulary(string_b)

return frozenset(map(lambda x: sort_fluents(

string_from_components(x)), superpose(string_a

, string_b , vocab_a , vocab_b)))

if not components_a and not components_b:

return [[]]

if not components_a or not components_b:

return []

if frozenset(vocab_a) & frozenset(components_b [0]) <=

frozenset(components_a [0]) and frozenset(vocab_b)

& frozenset(components_a [0]) <= frozenset(

components_b [0]):

head_union = nonempty_union(components_a [0],

components_b [0])

# removes ’|a|b| & |!a|b|’ cases

if remove_negated_pairs:

for zz in head_union:



if zz.startswith(’!’) and zz[1:] in

head_union:

return []

l = L(components_a [0], components_a [1:], vocab_a ,

components_b [0], components_b [1:], vocab_b)

return [[ head_union] + l_item for l_item in l]

return []

def L(head_a , tail_a , vocab_a , head_b , tail_b , vocab_b):

"""Part of vocabulary -constrained superposition"""

part_1 = superpose ([ head_a] + tail_a , tail_b , vocab_a

, vocab_b)

part_2 = superpose(tail_a , [head_b] + tail_b , vocab_a

, vocab_b)

part_3 = superpose(tail_a , tail_b , vocab_a , vocab_b)

return nonempty_union(nonempty_union(part_1 , part_2),

part_3)

def superpose_all(list_of_strings):

"""Take a list of strings , return the result of

superposing them all (a language)"""

if type(list_of_strings) != list:

raise TypeError

elif len(list_of_strings) == 0:

raise Exception(’Cannot use empty list’)

elif len(list_of_strings) == 1:

yield list_of_strings [0]

else:

for sp in superpose(list_of_strings [0],

list_of_strings [1]):

yield from superpose_all ([sp] +

list_of_strings [2:])

def superpose_langs(lang1 , lang2):

"""Take a pair of languages , return their

superposition (a language)"""

for s1 in lang1:



for s2 in lang2:

yield from superpose(s1 , s2)

def superpose_all_langs(list_of_langs , filt=None):

"""Take a list of languages with an optional filter

for external constraints , return the result of

superposing them all (a language)"""

running = list_of_langs [0]

for lang in list_of_langs [1:]:

yield running

running = [s for s in superpose_langs(running ,

lang) if filt is None or filt(s)]

yield running

@lru_cache(maxsize =1000)

def superpose_sensible(a, b, limit = 0):

"""Take two strings and a limit , return the

superposition of the strings (a language) where it

sensible to do so"""

if sort_fluents(a) == sort_fluents(b):

return [frozenset ([a])]

v_a = vocabulary(a)

v_b = vocabulary(b)

if v_a == v_b:

return []

elif len(v_a & v_b) == 0:

return [frozenset ([a]), frozenset ([b])]

else:

sp = superpose(a, b)

if limit > 0 and len(sp) > limit:

return [frozenset ([a]), frozenset ([b])]

else:

return [sp]

def superpose_langs_sensible(lang1 , lang2 , limit = 0):

"""Take two languages and a limit , return the

superposition of the languages (a language) where

it sensible to do so"""

yield from set([item for s1 in lang1 for s2 in lang2



for sublist in superpose_sensible(s1 , s2 , limit)

for item in sublist ])

def superpose_all_langs_sensible(list_of_langs , limit =

0):

"""Take a list of languages and a limit , return the

superposition of the languages (a list of

languages)"""

yielded = False

for i, l in enumerate(list_of_langs):

for j, ll in enumerate(list_of_langs[i+1:]):

if yielded:

break

sp = list(superpose_langs_sensible(l, ll ,

limit))

if sp == []:

raise Exception(’Contradiction: {} and {}

’.format(l, ll))

elif set(l + ll) == set(sp) or (limit > 0 and

len(sp) > limit):

pass # no sp

else:

yielded = True

yield from superpose_all_langs_sensible ([

sp]+ list_of_langs [:i]+ list_of_langs[i

+1:i+1+j]+ list_of_langs[i+1+j+1:],

limit)

if not yielded:

yield from list_of_langs

def flatten_list(deep_list):

"""Take a nested list and return it flattened"""

return [item for sublist in deep_list for item in

sublist]

def gap(premises , conclusion):

"""Take two languages and return the set of strings

which , when superposed with the premises , would

entail the conclusion"""



sl = superpose_langs(premises , conclusion)

presiduals = set()

for s in sl:

for proj in [projection(s, v) for v in subsets(

vocabulary(s))]:

prem_proj = flatten_list ([ superpose(proj ,

prem) for prem in premises ])

if all(string_equals(projection(pp,

vocabulary(c)), c) for c in conclusion for

pp in prem_proj):

presiduals.add(proj)

minimal = []

for r in presiduals:

if all(projection(r, v) not in presiduals for v

in proper_subsets(vocabulary(r))):

minimal.append(r)

return minimal

def most_simultaneous_events_occurring(string):

"""Take a string and return the size of the largest

component"""

return max(map(lambda c: len(c), get_components(

string)))

def least_simultaneous_resources(strings):

"""Take a list of strings and return the list sorted

by whish uses the least simultaneous resources"""

min_set = set([ strings [0]])

min_len = most_simultaneous_events_occurring(strings

[0])

for s in strings [1:]:

l = most_simultaneous_events_occurring(s)

if l < min_len:

min_len = l

min_set = set([s])

elif l == min_len:

min_set.add(s)

return sorted(min_set , key=lambda s: string_length(s)

)



def to_semiintervals(string , keep_fluents=False):

"""Take a string containing interval fluents , return

its translation to use semi -intervals"""

vocab = vocabulary(string)

pp = map(lambda v: (’α({})’.format(v),’ω({})’.format(

v)), vocab)

lookup = { v: p for v, p in zip(vocab , pp) }

used = []

result = []

for c in get_components(string):

used += [f for f in c if f != ’’]

# pre if fluent not occurred + post if occurred

new_c = [lookup[k][0] for k in lookup if k not in

used and k not in c] + [lookup[k][1] for k in

lookup if k in used and k not in c]

result.append(new_c if not keep_fluents else

new_c + [f for f in c if f != ’’])

return ’|’.join([’,’.join(c) for c in result ])

def from_semiintervals(string):

"""Take a string containing semi -interval fluents ,

return its translation to use intervals"""

vocab = set(re.findall(r’[αω]\((\w+)\)’, string))

pp = map(lambda v: (’α({})’.format(v),’ω({})’.format(

v)), vocab)

lookup = { v: p for v, p in zip(vocab , pp) }

used = []

result = []

for c in get_components(string):

used += [k for k in lookup if lookup[k][1] in c]

result.append ([k for k in lookup if k not in used

and lookup[k][0] not in c])

return ’|’.join([’,’.join(c) for c in result ])



"""freksa.py"""

from http.server import BaseHTTPRequestHandler

import json

# Allens

def equals(x, y):

return [’|’ + x + ’,’ + y + ’|’]

def before(x, y):

return [’|’ + x + ’||’ + y + ’|’]

def after(x, y):

return before(y, x)

def meets(x, y):

return [’|’ + x + ’|’ + y + ’|’]

def meets_inv(x, y):

return meets(y, x)

def starts(x, y):

return [’|’ + x + ’,’ + y + ’|’ + y + ’|’]

def starts_inv(x, y):

return starts(y, x)

def finishes(x, y):

return [’|’ + y + ’|’ + x + ’,’ + y + ’|’]

def finishes_inv(x, y):

return finishes(y, x)

def during(x, y):

return [’|’ + y + ’|’ + x + ’,’ + y + ’|’ + y + ’|’]

def during_inv(x, y):

return during(y, x)

def overlaps(x, y):

return [’|’ + x + ’|’ + x + ’,’ + y + ’|’ + y + ’|’]

def overlaps_inv(x, y):

return overlaps(y, x)

# Freksa

def older(x, y):

return fi(x,y) + di(x,y) + m(x,y) + b(x,y) + o(x,y)

def younger(x, y):

return older(y, x)

def head_to_head(x, y):

return s(x, y) + si(x, y) + e(x, y)



def tail_to_tail(x, y):

return f(x, y) + fi(x, y) + e(x, y)

def survived_by(x, y):

return b(x, y) + m(x, y) + o(x, y) + s(x, y) + d(x, y

)

def survives(x, y):

return survived_by(y, x)

def precedes(x, y):

return b(x, y) + m(x, y)

def succeeds(x, y):

return precedes(y, x)

def contemporary(x, y):

return o(x, y) + fi(x, y) + di(x, y) + si(x, y) + e(x

, y) + s(x, y) + d(x, y) + f(x, y) + oi(x, y)

def born_before_death(x, y):

return precedes(x, y) + contemporary(x, y)

def died_after_birth(x, y):

return born_before_death(y, x)

def older_survived_by(x, y):

return precedes(x, y) + o(x, y)

def younger_survives(x, y):

return older_survived_by(y, x)

def older_contemporary(x, y):

return o(x, y) + fi(x, y) + di(x, y)

def younger_contemporary(x, y):

return older_contemporary(y, x)

def surviving_contemporary(x, y):

return di(x, y) + si(x, y) + oi(x, y)

def survived_by_contemporary(x, y):

return surviving_contemporary(y, x)

def unknown(x, y):

return precedes(x, y) + contemporary(x, y) + succeeds

(x, y)

# Mnemonics

def e(x, y):

return equals(x, y)

def b(x, y):

return before(x, y)



def bi(x, y):

return after(x, y)

def m(x, y):

return meets(x, y)

def mi(x, y):

return meets_inv(x, y)

def s(x, y):

return starts(x, y)

def si(x, y):

return starts_inv(x, y)

def f(x, y):

return finishes(x, y)

def fi(x, y):

return finishes_inv(x, y)

def d(x, y):

return during(x, y)

def di(x, y):

return during_inv(x, y)

def o(x, y):

return overlaps(x, y)

def oi(x, y):

return overlaps_inv(x, y)

def un(x, y):

return unknown(x, y)

def ol(x, y):

return older(x, y)

def hh(x, y):

return head_to_head(x, y)

def yo(x, y):

return younger(x, y)

def sb(x, y):

return survived_by(x, y)

def tt(x, y):

return tail_to_tail(x, y)

def sv(x, y):

return survives(x, y)

def pr(x, y):

return precedes(x, y)



def bd(x, y):

return born_before_death(x, y)

def ct(x, y):

return contemporary(x, y)

def db(x, y):

return died_after_birth(x, y)

def sd(x, y):

return succeeds(x, y)

def ob(x, y):

return older_survived_by(x, y)

def oc(x, y):

return older_contemporary(x, y)

def sc(x, y):

return surviving_contemporary(x, y)

def bc(x, y):

return survived_by_contemporary(x, y)

def yc(x, y):

return younger_contemporary(x, y)

def ys(x, y):

return younger_survives(x, y)

class handler(BaseHTTPRequestHandler):

def do_POST(self):

content_length = int(self.headers[’Content -Length

’])

post_data = self.rfile.read(content_length).

decode(’utf -8’)

passed_data = json.loads(post_data)[’data’]

result = dict()

try:

result[’strings ’] = globals ()[passed_data[’

rel’]]( passed_data[’e1’], passed_data[’e2’

])

except Exception as e:

result[’error’] = str(e)

self.send_response (200)

self.send_header(’Content -type’, ’application/



json’)

self.end_headers ()

self.wfile.write(json.dumps(result).encode(’utf -8

’))

return



"""newTLINKs.py"""

from http.server import BaseHTTPRequestHandler

import apiscripts.strfns

import json

def string_to_rel(string , x):

t, m = apiscripts.strfns.analogous_strings(string , ’|

X||Y|’)

if t:

return ’BEFORE ’ if m[x] == ’X’ else ’AFTER ’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X|Y|’)

if t:

return ’IBEFORE ’ if m[x] == ’X’ else ’IAFTER ’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X,Y|’)

if t:

return ’SIMULTANEOUS ’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X|X,Y|X|’)

if t:

return ’INCLUDES ’ if m[x] == ’X’ else ’DURING ’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X|X,Y|’)

if t:

return ’ENDED_BY ’ if m[x] == ’X’ else ’ENDS’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X,Y|X|’)

if t:

return ’BEGUN_BY ’ if m[x] == ’X’ else ’BEGINS ’

t, m = apiscripts.strfns.analogous_strings(string , ’|

X|X,Y|Y|’)

if t:

return ’OVERLAPS ’ if m[x] == ’X’ else ’

OVERLAPPED_BY ’

return ’UNKNOWN ’

class handler(BaseHTTPRequestHandler):

def do_POST(self):



content_length = int(self.headers[’Content -Length

’])

post_data = self.rfile.read(content_length).

decode(’utf -8’)

passed_data = json.loads(post_data)[’data’]

result = dict()

try:

vocab = passed_data[’vocabulary ’]

strings = None

try:

strings = frozenset(apiscripts.strfns.

flatten_list(apiscripts.strfns.

superpose_all_langs_sensible(

passed_data[’strings ’], 12)))

except:

strings = frozenset(apiscripts.strfns.

flatten_list(passed_data[’strings ’]))

idx = 0

lid = 0

links = []

for v in vocab:

for w in vocab[idx +1:]:

p = apiscripts.strfns.

projection_lang_full_vocab(strings

, [v, w])

if len(p) > 0:

r = ’|’.join(map(lambda s:

string_to_rel(s, v), p))

links.append(’<TLINK lid ="{0}" 

{1}="{2}" {3}="{4}" relType

="{5}" />’.format(lid , ’

eventID ’ if v[0] == ’e’ else ’

timeID ’, v, ’relatedToEvent ’

if w[0] == ’e’ else ’

relatedToTime ’, w, r))

lid += 1

idx += 1

result[’tlinks ’] = links

except Exception as e:



result[’error’] = str(e)

self.send_response (200)

self.send_header(’Content -type’, ’application/

json’)

self.end_headers ()

self.wfile.write(json.dumps(result).encode(’utf -8

’))

return



"""superpose.py"""

from http.server import BaseHTTPRequestHandler

import apiscripts.strfns

import json

class handler(BaseHTTPRequestHandler):

def do_POST(self):

content_length = int(self.headers[’Content -Length

’])

post_data = self.rfile.read(content_length).

decode(’utf -8’)

passed_data = json.loads(post_data)[’data’]

result = dict()

try:

result[’strings ’] = list(apiscripts.strfns.

superpose_all_langs_sensible(passed_data[’

strings ’], passed_data[’limit’]))

except Exception as e:

result[’error’] = str(e)

self.send_response (200)

self.send_header(’Content -type’, ’application/

json’)

self.end_headers ()

self.wfile.write(json.dumps(result).encode(’utf -8

’))

return



"""test.py"""

from http.server import BaseHTTPRequestHandler

import apiscripts.freksa

import apiscripts.strfns

import json

class handler(BaseHTTPRequestHandler):

def do_POST(self):

content_length = int(self.headers[’Content -Length

’])

post_data = self.rfile.read(content_length).

decode(’utf -8’)

passed_data = json.loads(post_data)[’data’]

kb = passed_data[’strings ’]

result = dict()

try:

test_strings = getattr(apiscripts.freksa ,

passed_data[’rel’])(passed_data[’e1’],

passed_data[’e2’])

result[’strings ’] = test_strings

result[’status ’] = ’contradicted ’

if not any(any(apiscripts.strfns.

lang_contradicts_string(lang , ts) for lang

in kb) for ts in test_strings):

result[’status ’] = ’possible ’

if any(any(apiscripts.strfns.

lang_contains_string(lang , ts) for

lang in kb) for ts in test_strings):

result[’status ’] = ’found’

except Exception as e:

result[’error’] = str(e)

self.send_response (200)

self.send_header(’Content -type’, ’application/

json’)

self.end_headers ()

self.wfile.write(json.dumps(result).encode(’utf -8



’))

return



JavaScript Code

"""index.js"""

import { useState , useEffect , useCallback , useReducer }

from ’react ’

import Head from ’next/head’

import { parseTML } from ’../fns/parseTML ’

import * as freksa from ’../fns/freksa ’

import { suggestTenseAspectRelation } from ’../fns/

suggestTenseAspectRelation ’

import Details from ’../ components/Details ’

import Help from ’../ components/Help’

import ExamineString from ’../ components/ExamineString ’

import StringBank from ’../ components/StringBank ’

import CreateRelation from ’../ components/CreateRelation ’

import TextEntry from ’../ components/TextEntry ’

import TextDisplay from ’../ components/TextDisplay ’

import EventList from ’../ components/EventList ’

export default function Annotate () {

const [helpDisplayed , setHelpDisplayed] = useState(

false)

const [details , setDetails] = useState(null)

const [superposeLimit , setSuperposeLimit] = useState

(12)

const [extendedRels , setExtendedRels] = useState(false)

const [noHighlight , setNoHighlight] = useState(false)

const [examineStringDisplay , setExamineStringDisplay] =

useState(null)

const initialState = {

textHTML: ’’,

parsedEvents: [],

eventStrings: [],

nextId: 1,

prevStates: []

}



// helps to set the reducer’s initial state

const init = initialObj => ({

... initialObj

})

// current state + action => next state

const [state , dispatch] = useReducer ((curState , action)

=> {

// make sure nextId always gets a unique value

const getLastId = (evs , curId) => {

let sortedIds = evs.map(ev => parseInt(ev.id.

substring (1)))

sortedIds.sort((a, b) => a - b)

return (sortedIds[sortedIds.length - 1] || curId)

}

switch (action.type) {

case ’SET_TEXT ’:

return {

... curState ,

textHTML: action.payload ,

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’SET_EVENTS ’:

return {

... curState ,

parsedEvents: action.payload ,

nextId: getLastId(action.payload , curState.

nextId) + 1,

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’ADD_EVENT ’:

return {

... curState ,

parsedEvents: [... curState.parsedEvents , action

.payload.event],

textHTML: action.payload.newText ,



nextId: getLastId ([... curState.parsedEvents ,

action.payload.event], curState.nextId) + 1,

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’REMOVE_EVENT ’:

return {

... curState ,

parsedEvents: curState.parsedEvents.filter(e =>

e.id !== action.payload.id),

eventStrings: curState.eventStrings.map(lan =>

lan.filter(s => !s.split (/[ ,|]/).includes(

action.payload.id))).filter(lan => lan.

length > 0),

textHTML: action.payload.newText ,

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’UPDATE_EVENT ’:

return {

... curState ,

parsedEvents: curState.parsedEvents.map(e => e.

id === action.payload.id ? {...e, attr: {...

action.payload.newAttribs }} : e),

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’SET_STRINGS ’:

return {

... curState ,

eventStrings: action.payload ,

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’ADD_STRINGS ’:

return {

... curState ,

eventStrings: [action.payload , ... curState.

eventStrings],



prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’REMOVE_STRINGS ’:

return {

... curState ,

eventStrings: curState.eventStrings.map(lan =>

lan.filter(s => !action.payload.includes(s))

).filter(lan => lan.length > 0),

prevStates: [{... curState , prevStates: []}, ...

curState.prevStates.slice(0, 50)]

}

case ’DO_PARSE ’:

if (action.payload.trim() !== ’’) {

const parseResult = parseTML(action.payload)

// try to parse the input as TimeML , else

assume plaintext

if (parseResult.transformed) {

return {

... curState ,

textHTML: parseResult.transformed ,

parsedEvents: [... parseResult.events],

eventStrings: parseResult.tlinks.map(tlink

=> {

return tlink.map(t => {

// usually means e1 === e2

if (t.warning) {

window.alert(‘Bad TLINK: ${t.e1} ${t.

rel} ${t.e2}‘)

return []

}

return freksa[t.rel](t.e1, t.e2)

}).flat()

}).filter(l => l.length > 0),

nextId: getLastId ([... parseResult.events],

curState.nextId) + 1,

prevStates: [{... curState , prevStates: []},

... curState.prevStates.slice(0, 50)]

}



} else {

return {

... curState ,

textHTML: parseResult.imported ,

prevStates: [{... curState , prevStates: []},

... curState.prevStates.slice(0, 50)]

}

}

}

case ’UNDO’:

// go to the last state if possible

if (curState.prevStates.length > 0) {

const [cur , ...pre] = curState.prevStates

return {

...cur ,

prevStates: pre

}

} else {

return {

... curState

}

}

case ’RESET ’:

return init(action.payload)

default:

throw new Error(’Undefined action type.’)

}

}, initialState , init)

// handle keyboard listening

useEffect (() => {

document.addEventListener(’keyup’, handleKeyboard ,

false)

return () => {

document.removeEventListener(’keyup ’,

handleKeyboard , false)

}

}, [helpDisplayed , details , state.nextId ])



const handleKeyboard = useCallback(e => {

const kb = e.key.toLowerCase ()

if (kb === ’e’) {

createMark(’EVENT’)

} else if (kb === ’t’) {

createMark(’TIMEX3 ’)

} else if (kb === ’u’) {

dispatch ({type: ’UNDO’})

} else if (kb === ’s’) {

document.getElementById(’dosp’).click ()

} else if (kb === ’?’) {

// close other overlays before opening help

setDetails(null)

setExamineStringDisplay(null)

setHelpDisplayed (! helpDisplayed)

} else if (kb === ’escape ’) {

setHelpDisplayed(false)

setDetails(null)

setExamineStringDisplay(null)

}

}, [helpDisplayed , details , state.nextId ])

const dismissOverlay = e => {

e.stopPropagation ()

if (e.currentTarget === e.target) {

setDetails(null)

setHelpDisplayed(false)

setExamineStringDisplay(null)

}

}

// only highlight events under the mouse

const hoverLang = vocab => {

if (!! vocab) {

setNoHighlight(true)

vocab.forEach(v => {

document.querySelector (‘.tml -ev-ano[data -id="${v}

"]‘).classList.add(’highlight ’)

})



} else {

setNoHighlight(false)

document.querySelectorAll(’.tml -ev -ano’).forEach(e

=> e.classList.remove(’highlight ’))

}

}

// view TLINK etc

const examineString = async string => {

const vocab = [... new Set(string.split (/[ ,|]+/).

filter(v => v !== ’’))]

const newString = string.split(’|’).map(c => c.split(

’,’).map(e => state.parsedEvents.find(ev => ev.id

=== e)?.text.replace (/\s+/, ’_’)).join(’,’))

const res = await fetch(process.env.

NEXT_PUBLIC_NEW_TLINKS_ENDPOINT , {

method: ’POST’,

headers: {

’Accept ’: ’application/json’,

’Content -Type’: ’application/json’

},

body: JSON.stringify ({

data: {

vocabulary: vocab ,

strings: [[ string ]]

}

})

})

const data = await res.json()

if (data.error) {

console.error(data)

return []

}

setExamineStringDisplay ({orig: string , string:

newString , tlinks: data.tlinks })

}

const getNewTLINKs = async () => {

const res = await fetch(process.env.



NEXT_PUBLIC_NEW_TLINKS_ENDPOINT , {

method: ’POST’,

headers: {

’Accept ’: ’application/json’,

’Content -Type’: ’application/json’

},

body: JSON.stringify ({

data: {

vocabulary: state.parsedEvents.map(e => e.id),

strings: state.eventStrings

}

})

})

const data = await res.json()

if (data.error) {

console.error(data)

window.error(data)

return []

}

return data.tlinks

}

// tell the user what relation exists in the KB for a

given event pair

const tryFindRelation = async (e1, e2) => {

const res = await fetch(process.env.

NEXT_PUBLIC_NEW_TLINKS_ENDPOINT , {

method: ’POST’,

headers: {

’Accept ’: ’application/json’,

’Content -Type’: ’application/json’

},

body: JSON.stringify ({

data: {

vocabulary: [e1, e2],

strings: state.eventStrings

}

})

})



const data = await res.json()

if (data.error) {

console.error(data)

return []

}

const found = data.tlinks ?.[0]?. match(/ relType="([A-Z

|_]+)"/) ?.[1]. split(’|’);

if (found) {

window.alert(‘The following possible relations were

found:\n${found.map(f => e1 + ’ ’ + f + ’ ’ +

e2).join(’,\n’)}‘)

} else {

const ev1 = state.parsedEvents.find(e => e.id ===

e1)

const ev2 = state.parsedEvents.find(e => e.id ===

e2)

// try to suggest a relation based on Derczynski

(2013)

const suggestion = suggestTenseAspectRelation ({

tense1: ev1.attr.tense , aspect1: ev1.attr.aspect

}, {tense2: ev2.attr.tense , aspect2: ev2.attr.

aspect })

if (! suggestion || suggestion === ’un’) {

window.alert(’That relation could not be 

determined from current knowledge.’)

} else {

const suggestionStrings = freksa[suggestion ](e1,

e2)

window.alert(‘No relations were found , but the ${

suggestion.toUpperCase ()} relation (see Help

for extended relation types) is suggested

based on the tenses and aspects of the events.

Please exercise judgement whether this

suggestion seems accurate${ev1.attr.class ===

’REPORTING ’ || ev2.attr.class === ’REPORTING ’

? ’, as it appears that these events may have 

different temporal contexts ’ : ’’}. Strings :\

n${suggestionStrings.join(’,\n’)}‘)



}

}

}

// see if the string is entailed in the KB

const testRelation = async (e1, e2, rel) => {

fetch(process.env.NEXT_PUBLIC_TEST_ENDPOINT , {

method: ’POST’,

headers: {

’Accept ’: ’application/json’,

’Content -Type’: ’application/json’

},

body: JSON.stringify ({

data: {

strings: state.eventStrings ,

e1 ,

e2 ,

rel

}

})

}).then(response => response.json()).then(data => {

if (data.error) {

console.error(data.error)

window.alert(data.error)

return

}

const { status , strings } = data

window.alert(‘That relation is ${status} according

to the knowledge base.${status !== ’contradicted

’ ? ‘\nClick ’Add New Relation ’ to add:\n${

strings}‘ : ’\nAdding this relation is not 

recommended.’}‘)

}).catch(e => console.error(e))

}

// convert START data back into TimeML

const exportTML = async elem => {

const newTLINKs = await getNewTLINKs ()



const newText = elem.current.cloneNode(true)

newText.querySelectorAll(’.EVENT ’).forEach(node => {

const restAttr = Object.entries(state.parsedEvents.

find(e => e.id === node.dataset.id).attr).map(a

=> ‘${a[0]}="${a[1]}"‘).join(’ ’);

node.replaceWith(document.createTextNode(‘<EVENT

eid="${node.dataset.id}" ${restAttr}>${node.

textContent }</EVENT >‘))

})

newText.querySelectorAll(’.TIMEX3 ’).forEach(node => {

const restAttr = Object.entries(state.parsedEvents.

find(e => e.id === node.dataset.id).attr).map(a

=> ‘${a[0]}="${a[1]}"‘).join(’ ’);

node.replaceWith(document.createTextNode(‘<TIMEX3

tid="${node.dataset.id}" ${restAttr}>${node.

textContent }</TIMEX3 >‘))

})

return ‘<TimeML xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:noNamespaceSchemaLocation=

"http :// timeml.org/timeMLdocs/TimeML_1 .2.1. xsd">

${newText.textContent}

${newTLINKs.join(’\n’)}

</TimeML >‘

}

const downloadTML = async elem => {

const dlElem = document.createElement(’a’)

dlElem.setAttribute(’href’, ’data:text/xml;charset=

utf -8,’ + encodeURIComponent(await exportTML(elem)

))

dlElem.setAttribute(’download ’, ’export.tml’)

dlElem.style.display = ’none’

document.body.appendChild(dlElem)

dlElem.click()

document.body.removeChild(dlElem)

}



// tag the selected (highlighted) text as an event or

time

const createMark = useCallback(tag => {

if (window.getSelection) {

const sel = window.getSelection ()

if (sel.type === ’Range ’ && sel.anchorNode === sel.

focusNode && sel.anchorNode.parentElement ===

document.querySelector(’.text pre’) && sel.

toString ().trim() !== ’’) {

if (sel.rangeCount) {

const wrapEl = document.createElement(’span’)

wrapEl.classList.add(’tml -ev -ano’, tag)

if (tag === ’EVENT’) {

wrapEl.dataset.id = ‘e${state.nextId}‘

wrapEl.dataset.eventClass = ’OCCURRENCE ’

} else {

wrapEl.dataset.id = ‘t${state.nextId}‘

wrapEl.dataset.type = ’DATE’

}

wrapEl.textContent = sel.toString ()

const range = sel.getRangeAt (0).cloneRange ()

range.deleteContents ()

range.insertNode(wrapEl)

sel.removeAllRanges ()

sel.addRange(range)

dispatch ({type: ’ADD_EVENT ’, payload: {

event: {

id: wrapEl.dataset.id,

type: tag ,

text: wrapEl.textContent ,

elem: wrapEl ,

attr: {}

},

newText: sel.anchorNode.parentElement.

innerHTML}

})

}

}

}



}, [state.nextId ])

// remove the highlighting element

const removeMark = useCallback(id => {

const ev = document.querySelector (‘[data -id="${id}"].

tml -ev-ano ‘)

const textNode = document.createTextNode(ev.

textContent)

const par = ev.parentElement

ev.replaceWith(textNode)

par.normalize ()

dispatch ({type: ’REMOVE_EVENT ’, payload: {id , newText

: par.innerHTML }})

})

return (

<main id="annotate">

<Head ><title >START (String Temporal Annotation and

Relation Tool) </title ></Head >

{helpDisplayed && <Help extendedRels ={ extendedRels}

setExtendedRels ={ setExtendedRels} dismiss ={

dismissOverlay} limit={ superposeLimit} setLimit

={ setSuperposeLimit }/>}

{details && <Details event={state.parsedEvents.find

(e => e.id === details)} dismiss ={ dismissOverlay

} update ={(id, newAttribs) => dispatch ({type: ’

UPDATE_EVENT ’, payload: {id, newAttribs }})} />}

{examineStringDisplay && <ExamineString data={

examineStringDisplay} dismiss ={ dismissOverlay}

removeString ={s => dispatch ({type: ’

REMOVE_STRINGS ’, payload: [s]})}/>}

{!state.textHTML ? <TextEntry grabParse ={val =>

dispatch ({type: ’DO_PARSE ’, payload: val})}/> :

<TextDisplay noHighlight ={ noHighlight} text={

state.textHTML} reset ={() => dispatch ({type: ’

SET_TEXT ’, payload: ’’})} download ={ downloadTML

}/>}

<div className="panel">

<p>Select some text , then tag as Event or Time </p



>

<div className="btns">

<button id="btn -help" onClick ={() =>

setHelpDisplayed(true)}>Help </button >

<button id="btn -undo" onClick ={() => dispatch ({

type: ’UNDO’})}>Undo </button >

<button id="btn -reset" onClick ={() => window.

confirm(’Are you sure? No undo.’) &&

dispatch ({type: ’RESET ’, payload:

initialState })}>Reset </button >

<button id="btn -tag -event" onClick ={() =>

createMark(’EVENT’)}>Tag Event </button >

<button id="btn -tag -time" onClick ={() =>

createMark(’TIMEX3 ’)}>Tag Time </button >

</div >

<EventList events ={state.parsedEvents} remove ={

removeMark} edit={ setDetails} hoverLang ={

hoverLang} />

</div >

<StringBank hoverLang ={ hoverLang} limit ={

superposeLimit} strings ={state.eventStrings}

updateStrings ={res => dispatch ({type: ’

SET_STRINGS ’, payload: [... res]})} examineString

={ examineString }/>

{state.parsedEvents.length > 0 ? <CreateRelation

extendedRels ={ extendedRels} events ={state.

parsedEvents} addRelation ={res => dispatch ({type

: ’ADD_STRINGS ’, payload: res})} testRelation ={

testRelation} tryFindRelation ={ tryFindRelation

}/> : <div className="relations"></div >}

</main >

)

}



"""parseTML.js"""

export const parseTML = inputString => {

const parser = new window.DOMParser ()

const xml = parser.parseFromString(inputString.trim()

, ’text/xml’)

if (xml.documentElement.nodeName == "parsererror" ||

xml.documentElement.getElementsByTagName(’

parsererror ’).length > 0) {

return {

imported: inputString

}

}

let nodes = []

if (xml.firstChild.getElementsByTagName(’TEXT’).

length === 0) {

nodes = xml.firstChild.childNodes

} else {

nodes = [... xml.firstChild.getElementsByTagName(’

DCT’)[0]. childNodes , ...xml.firstChild.

getElementsByTagName(’TEXT’)[0]. childNodes]

}

const instances = [... xml.getElementsByTagName(’

MAKEINSTANCE ’)].map(mi => {

const {eventID , eiid , ... rest} = Object.assign ({},

... Array.from(mi.attributes , ({name , value }) =>

({[ name]: value })));

return {

eventID ,

eiid ,

rest

}

})

const pieces = []

const events = []

for (let node of nodes) {

if (node.nodeName === ’EVENT’) {



const nodeAttr = Object.assign ({}, ... Array.

from(node.attributes , ({name , value}) =>

({[ name]: value })));

const span = document.createElement(’span’)

span.classList.add(’tml -ev -ano’, ’EVENT’)

span.textContent = node.textContent

const {eid , ... nodeRest} = nodeAttr

span.dataset.id = eid

const inst = instances.find(i => i.eventID

=== eid)

events.push({

id: eid ,

type: ’EVENT ’,

text: span.textContent ,

elem: span ,

attr: inst !== undefined ? {... nodeRest ,

... inst.rest} : {... nodeRest}

})

pieces.push(span.outerHTML)

} else if (node.nodeName === ’TIMEX3 ’) {

const nodeAttr = Object.assign ({}, ... Array.

from(node.attributes , ({name , value}) =>

({[ name]: value })));

const span = document.createElement(’span’)

span.classList.add(’tml -ev -ano’, ’TIMEX3 ’)

span.textContent = node.textContent

const {tid , ... nodeRest} = nodeAttr

span.dataset.id = tid

events.push({

id: tid ,

type: ’TIMEX3 ’,

text: span.textContent ,

elem: span ,

attr: {... nodeRest}

})

pieces.push(span.outerHTML)

} else {

pieces.push(node.textContent)

}



}

const tlinks = [... xml.getElementsByTagName(’TLINK’)

].map(tlink => {

const { eventID , eventInstanceID , timeID ,

relatedToEvent , relatedToEventInstance ,

relatedToTime , relType } = tlink.attributes

const e1 = eventID ? eventID.value : instances.find

(i => eventInstanceID !== undefined && i.eiid

=== eventInstanceID.value)?. eventID ?? timeID.

value

const e2 = relatedToEvent ? relatedToEvent.value :

instances.find(i => relatedToEventInstance !==

undefined && i.eiid === relatedToEventInstance.

value)?. eventID ?? relatedToTime.value

return relType.value.split(’|’).map(r => ({

rel: tmlToAllen[r],

e1 ,

e2 ,

warning: e1 === e2

}))

})

return {

imported: inputString ,

transformed: pieces.join(’’).trim(),

text: xml.documentElement.textContent.trim(),

events ,

tlinks

}

}

export const tmlToAllen = {

BEFORE: ’b’,

AFTER: ’bi’,

INCLUDES: ’di’,

DURING_INV: ’di’,

IS_INCLUDED: ’d’,

DURING: ’d’,

SIMULTANEOUS: ’e’,



IDENTITY: ’e’,

IAFTER: ’mi’,

IBEFORE: ’m’,

BEGINS: ’s’,

ENDS: ’f’,

BEGUN_BY: ’si’,

ENDED_BY: ’fi’,

OVERLAPS: ’o’,

OVERLAPPED_BY: ’oi’

}



"""suggestTenseAspectRelation.js"""

export function suggestTenseAspectRelation(e1, e2) {

const {tense1 , aspect1} = e1

const {tense2 , aspect2} = e2

if (! tense1 || !tense2 || tense1 === ’NONE’ || tense2

=== ’NONE’) {

return ’un’

}

return lookup[‘${tense1}-${aspect1 === ’

PERFECTIVE_PROGRESSIVE ’ ? ’PREFECTIVE ’ : aspect1}_${

tense2}-${aspect2 === ’PERFECTIVE_PROGRESSIVE ’ ? ’

PREFECTIVE ’ : aspect2}‘]

}

const lookup = {

’PAST -NONE_PAST -NONE’: ’un’,

’PAST -NONE_PAST -PROGRESSIVE ’: ’contemprary ’,

’PAST -NONE_PAST -PERFECTIVE ’: ’succeeds ’,

’PAST -NONE_PRESENT -NONE’: ’survived_by ’,

’PAST -NONE_PRESENT -PROGRESSIVE ’: ’survived_by ’,

’PAST -NONE_PRESENT -PERFECTIVE ’: ’un’,

’PAST -NONE_FUTURE -NONE’: ’precedes ’,

’PAST -NONE_FUTURE -PROGRESSIVE ’: ’survived_by ’,

’PAST -NONE_FUTURE -PERFECTIVE ’: ’before ’,

’PAST -PROGRESSIVE_PAST -NONE’: ’contemprary ’,

’PAST -PROGRESSIVE_PAST -PROGRESSIVE ’: ’contemprary ’,

’PAST -PROGRESSIVE_PAST -PERFECTIVE ’: ’survives ’,

’PAST -PROGRESSIVE_PRESENT -NONE’: ’older’,

’PAST -PROGRESSIVE_PRESENT -PROGRESSIVE ’: ’un’,

’PAST -PROGRESSIVE_PRESENT -PERFECTIVE ’: ’un’,

’PAST -PROGRESSIVE_FUTURE -NONE’: ’older’,

’PAST -PROGRESSIVE_FUTURE -PROGRESSIVE ’: ’

born_before_death ’,

’PAST -PROGRESSIVE_FUTURE -PERFECTIVE ’: ’older’,

’PAST -PERFECTIVE_PAST -NONE’: ’precedes ’,

’PAST -PERFECTIVE_PAST -PROGRESSIVE ’: ’survived_by ’,

’PAST -PERFECTIVE_PAST -PERFECTIVE ’: ’un’,



’PAST -PERFECTIVE_PRESENT -NONE’: ’precedes ’,

’PAST -PERFECTIVE_PRESENT -PROGRESSIVE ’: ’survived_by ’,

’PAST -PERFECTIVE_PRESENT -PERFECTIVE ’: ’precedes ’,

’PAST -PERFECTIVE_FUTURE -NONE’: ’before ’,

’PAST -PERFECTIVE_FUTURE -PROGRESSIVE ’: ’survived_by ’,

’PAST -PERFECTIVE_FUTURE -PERFECTIVE ’: ’before ’,

’PRESENT -NONE_PAST -NONE’: ’survives ’,

’PRESENT -NONE_PAST -PROGRESSIVE ’: ’younger ’,

’PRESENT -NONE_PAST -PERFECTIVE ’: ’succeeds ’,

’PRESENT -NONE_PRESENT -NONE’: ’contemprary ’,

’PRESENT -NONE_PRESENT -PROGRESSIVE ’: ’contemprary ’,

’PRESENT -NONE_PRESENT -PERFECTIVE ’: ’survives ’,

’PRESENT -NONE_FUTURE -NONE’: ’precedes ’,

’PRESENT -NONE_FUTURE -PROGRESSIVE ’: ’older ’,

’PRESENT -NONE_FUTURE -PERFECTIVE ’: ’older ’,

’PRESENT -PROGRESSIVE_PAST -NONE’: ’survives ’,

’PRESENT -PROGRESSIVE_PAST -PROGRESSIVE ’: ’un’,

’PRESENT -PROGRESSIVE_PAST -PERFECTIVE ’: ’survives ’,

’PRESENT -PROGRESSIVE_PRESENT -NONE’: ’contemprary ’,

’PRESENT -PROGRESSIVE_PRESENT -PROGRESSIVE ’: ’contemprary

’,

’PRESENT -PROGRESSIVE_PRESENT -PERFECTIVE ’: ’survives ’,

’PRESENT -PROGRESSIVE_FUTURE -NONE’: ’older ’,

’PRESENT -PROGRESSIVE_FUTURE -PROGRESSIVE ’: ’

born_before_death ’,

’PRESENT -PROGRESSIVE_FUTURE -PERFECTIVE ’: ’older’,

’PRESENT -PERFECTIVE_PAST -NONE’: ’un’,

’PRESENT -PERFECTIVE_PAST -PROGRESSIVE ’: ’un’,

’PRESENT -PERFECTIVE_PAST -PERFECTIVE ’: ’succeeds ’,

’PRESENT -PERFECTIVE_PRESENT -NONE’: ’survived_by ’,

’PRESENT -PERFECTIVE_PRESENT -PROGRESSIVE ’: ’survived_by ’

,

’PRESENT -PERFECTIVE_PRESENT -PERFECTIVE ’: ’un’,

’PRESENT -PERFECTIVE_FUTURE -NONE’: ’before ’,

’PRESENT -PERFECTIVE_FUTURE -PROGRESSIVE ’: ’survived_by ’,

’PRESENT -PERFECTIVE_FUTURE -PERFECTIVE ’: ’before ’,



’FUTURE -NONE_PAST -NONE’: ’succeeds ’,

’FUTURE -NONE_PAST -PROGRESSIVE ’: ’younger ’,

’FUTURE -NONE_PAST -PERFECTIVE ’: ’after’,

’FUTURE -NONE_PRESENT -NONE’: ’succeeds ’,

’FUTURE -NONE_PRESENT -PROGRESSIVE ’: ’younger ’,

’FUTURE -NONE_PRESENT -PERFECTIVE ’: ’after ’,

’FUTURE -NONE_FUTURE -NONE’: ’un’,

’FUTURE -NONE_FUTURE -PROGRESSIVE ’: ’contemprary ’,

’FUTURE -NONE_FUTURE -PERFECTIVE ’: ’survived_by ’,

’FUTURE -PROGRESSIVE_PAST -NONE’: ’survives ’,

’FUTURE -PROGRESSIVE_PAST -PROGRESSIVE ’: ’

died_after_birth ’,

’FUTURE -PROGRESSIVE_PAST -PERFECTIVE ’: ’survives ’,

’FUTURE -PROGRESSIVE_PRESENT -NONE’: ’younger ’,

’FUTURE -PROGRESSIVE_PRESENT -PROGRESSIVE ’: ’

died_after_birth ’,

’FUTURE -PROGRESSIVE_PRESENT -PERFECTIVE ’: ’survives ’,

’FUTURE -PROGRESSIVE_FUTURE -NONE’: ’contemprary ’,

’FUTURE -PROGRESSIVE_FUTURE -PROGRESSIVE ’: ’contemprary ’,

’FUTURE -PROGRESSIVE_FUTURE -PERFECTIVE ’: ’survives ’,

’FUTURE -PERFECTIVE_PAST -NONE’: ’after’,

’FUTURE -PERFECTIVE_PAST -PROGRESSIVE ’: ’younger ’,

’FUTURE -PERFECTIVE_PAST -PERFECTIVE ’: ’after ’,

’FUTURE -PERFECTIVE_PRESENT -NONE’: ’younger ’,

’FUTURE -PERFECTIVE_PRESENT -PROGRESSIVE ’: ’younger ’,

’FUTURE -PERFECTIVE_PRESENT -PERFECTIVE ’: ’after’,

’FUTURE -PERFECTIVE_FUTURE -NONE’: ’survived_by ’,

’FUTURE -PERFECTIVE_FUTURE -PROGRESSIVE ’: ’survived_by ’,

’FUTURE -PERFECTIVE_FUTURE -PERFECTIVE ’: ’un’,

}



"""CreateRelation.js"""

import { useState , useEffect } from ’react’

import * as freksa from ’../fns/freksa ’

export default function CreateRelation(props) {

const [ev1 , setEv1] = useState(’’)

const [ev2 , setEv2] = useState(’’)

const [rel , setRel] = useState(’’)

const addNewRelation = () => {

props.addRelation(freksa[rel](ev1 , ev2))

}

useEffect (() => {

setEv1(’’)

setEv2(’’)

setRel(’’)

}, [props.extendedRels ])

return (

<div className="relations">

<ul >

<li >

<label htmlFor="ev1 -select">Event 1:</label > <

select id="ev1 -select" value={ev1} className="

ev1" onChange ={e => setEv1(e.currentTarget.

value)}>

{ev1 === ’’ && <option disabled value=’’>Select

Event </option >}

{props.events.map(ev => <option key={‘ev1 -${ev.

id}‘} value ={ev.id}>{ev.id}</option >)}

</select >

</li>

<li >

<label htmlFor="rel -select">Rel:</label > <select

value={rel} className="rel" onChange ={e =>

setRel(e.currentTarget.value)} disabled ={ev1

=== ev2 || ev1 === ’’ || ev2 === ’’}>

{rel === ’’ && <option disabled value=’’>Select



Relation </option >}

<option value="b">BEFORE (|{ev1 }||{ ev2}|) </

option >

<option value="bi">AFTER (|{ev2 }||{ ev1}|) </

option >

<option value="m">IBEFORE (|{ev1 }|{ev2}|) </

option >

{/* <option value="m">MEETING (|{ev1}|{ev2}|) </

option > */}

<option value="mi">IAFTER (|{ev2 }|{ev1}|) </

option >

{/* <option value="mi">MET BY (|{ev2}|{ev1}|) </

option > */}

<option value="s">BEGINS (|{ev1},{ev2}|{ev2 }|)

</option >

{/* <option value="s">STARTING (|{ev1},{ev2}|{

ev2}|) </option > */}

<option value="si">BEGUN_BY (|{ ev1},{ev2}|{ ev1

}|) </option >

{/* <option value="si">STARTED BY (|{ev1},{ev2

}|{ev1}|) </option > */}

<option value="f">ENDS (|{ev2}|{ ev1},{ev2}|) </

option >

{/* <option value="f">FINISHING (|{ev2}|{ev1},{

ev2}|) </option > */}

<option value="fi">ENDED_BY (|{ ev1 }|{ev1},{ev2

}|) </option >

{/* <option value="fi">FINISHED BY (|{ev1}|{ev1

},{ev2}|) </option > */}

<option value="di">INCLUDES (|{ ev1 }|{ev1},{ev2

}|{ ev1}|) </option >

<option value="d">IS_INCLUDED (|{ ev2}|{ev1},{

ev2 }|{ev2}|) </option >

<option value="d">DURING (|{ev2 }|{ ev1},{ev2 }|{

ev2 }|) </option >

<option value="di">DURING_INV (|{ ev1}|{ev1},{

ev2 }|{ev1}|) </option >

{/* <option value="di">CONTAINING (|{ev1}|{ev1

},{ev2}|{ev1}|) </option > */}



{/* <option value="d">CONTAINED BY (|{ev2}|{ev1

},{ev2}|{ev2}|) </option > */}

{<option value="o">OVERLAPS (|{ev1 }|{ev1},{ev2

}|{ ev2}|) </option >}

{<option value="oi">OVERLAPPED BY (|{ev2 }|{ev1

},{ev2 }|{ ev1}|) </option >}

<option value="e">SIMULTANEOUS (|{ ev1},{ev2 }|)

</option >

<option value="e">IDENTITY (|{ev1},{ev2}|) </

option >

{props.extendedRels && <option value="ol">OLDER

</option >}

{props.extendedRels && <option value="yo">

YOUNGER </option >}

{props.extendedRels && <option value="hh">

HEAD_TO_HEAD </option >}

{props.extendedRels && <option value="tt">

TAIL_TO_TAIL </option >}

{props.extendedRels && <option value="sv">

SURVIVES </option >}

{props.extendedRels && <option value="sb">

SURVIVED_BY </option >}

{props.extendedRels && <option value="pr">

PRECEDES </option >}

{props.extendedRels && <option value="sd">

SUCCEEDS </option >}

{props.extendedRels && <option value="bd">

BORN_BEFORE_DEATH </option >}

{props.extendedRels && <option value="db">

DIED_AFTER_BIRTH </option >}

{props.extendedRels && <option value="ct">

CONTEMPORARY </option >}

{props.extendedRels && <option value="ob">

OLDER_SURVIVED_BY </option >}

{props.extendedRels && <option value="oc">

OLDER_CONTEMPORARY </option >}

{props.extendedRels && <option value="sc">

SURVIVING_CONTEMPORARY </option >}

{props.extendedRels && <option value="bc">



SURVIVED_BY_CONTEMPORARY </option >}

{props.extendedRels && <option value="yc">

YOUNGER_CONTEMPORARY </option >}

{props.extendedRels && <option value="ys">

YOUNGER_SURVIVES </option >}

</select >

</li>

<li >

<label htmlFor="ev2 -select">Event 2:</label > <

select value ={ev2} className="ev2" onChange ={e

=> setEv2(e.currentTarget.value)}>

{ev2 === ’’ && <option disabled value=’’>Select

Event </option >}

{props.events.map(ev => <option key={‘ev2 -${ev.

id}‘} value ={ev.id}>{ev.id}</option >)}

</select >

</li>

</ul>

<button id="testRelation" disabled ={ev1 === ev2 ||

ev1 === ’’ || ev2 === ’’ || rel === ’’} onClick

={() => props.testRelation(ev1 , ev2 , rel)}>Test

Relation </button >

<button id="createRelation" disabled ={ev1 === ev2

|| ev1 === ’’ || ev2 === ’’ || rel === ’’}

onClick ={ addNewRelation}>Add New Relation </

button >

<button id="tryFindRelation" disabled ={ev1 === ev2

|| ev1 === ’’ || ev2 === ’’} onClick ={() =>

props.tryFindRelation(ev1 , ev2)}>Try Find

Relation </button >

</div >

)

}



"""Details.js"""

import { useState , useEffect , useRef } from ’react ’

export default function Details(props) {

const [attribs , setAttribs] = useState ({... props.event.

attr})

const detailsRef = useRef(null)

useEffect (() => {

detailsRef.current && detailsRef.current.focus ()

}, [])

return (

<div className="overlay" onClick ={props.dismiss}>

<div className="add -details">

<h2 >{ props.event.id}: {props.event.text}</h2>

<h3 >Edit attributes </h3>

{props.event.type === ’EVENT ’ ? <ul className="

attr -list">

<li >

<label htmlFor="class -select">Class:</label >

<select ref={ detailsRef} id="class -select"

defaultValue ={ attribs.class} onChange ={e

=> setAttribs(prev => ({...prev , class: e.

target.value}))}>

<option value="OCCURRENCE">OCCURRENCE </

option >

<option value="PERCEPTION">PERCEPTION </

option >

<option value="REPORTING">REPORTING </option

>

<option value="ASPECTUAL">ASPECTUAL </option

>

<option value="STATE">STATE </option >

<option value="I_STATE">I_STATE </option >

<option value="I_ACTION">I_ACTION </option >

</select >

</li>

<li >

<label htmlFor="tense -select">Tense:</label >



<select id="tense -select" defaultValue ={

attribs.tense} onChange ={e => setAttribs(

prev => ({...prev , tense: e.target.value})

)}>

<option value="NONE">NONE </option >

<option value="PAST">PAST </option >

<option value="PRESENT">PRESENT </option >

<option value="FUTURE">FUTURE </option >

</select >

</li>

<li >

<label htmlFor="aspect -select">Aspect:</label

> <select id="aspect -select" defaultValue

={ attribs.aspect} onChange ={e =>

setAttribs(prev => ({...prev , aspect: e.

target.value}))}>

<option value="NONE">NONE </option >

<option value="PROGRESSIVE">PROGRESSIVE </

option >

<option value="PERFECTIVE">PERFECTIVE </

option >

<option value="PERFECTIVE_PROGRESSIVE">

PERFECTIVE_PROGRESSIVE </option >

</select >

</li>

<li >

<label htmlFor="polarity -select">Polarity:</

label > <select id="polarity -select"

defaultValue ={ attribs.polarity} onChange ={

e => setAttribs(prev => ({... prev ,

polarity: e.target.value}))}>

<option value="POS">POS </option >

<option value="NEG">NEG </option >

</select >

</li>

</ul>

:

<ul className="attr -list">

<li >



<label htmlFor="type -select">Type:</label > <

select ref={ detailsRef} id="type -select"

defaultValue ={ attribs.type} onChange ={e =>

setAttribs(prev => ({...prev , type: e.

target.value}))}>

<option value="DATE">DATE </option >

<option value="TIME">TIME </option >

<option value="DURATION">DURATION </option >

<option value="SET">SET </option >

</select >

</li>

<li >

<label htmlFor="function -in-doc -select">

Function in doc:</label > <select id="

function -in-doc -select" defaultValue ={

attribs.functionInDocument} onChange ={e =>

setAttribs(prev => ({...prev ,

functionInDocument: e.target.value}))}>

<option value="NONE">NONE </option >

<option value="CREATION_TIME">CREATION_TIME

</option >

<option value="EXPIRATION_TIME">

EXPIRATION_TIME </option >

<option value="MODIFICATION_TIME">

MODIFICATION_TIME </option >

<option value="PUBLICATION_TIME">

PUBLICATION_TIME </option >

<option value="RELEASE_TIME">RELEASE_TIME </

option >

<option value="RECEPTION_TIME">

RECEPTION_TIME </option >

</select >

</li>

<li >

<label htmlFor="temporal -func -select">

Temporal function:</label > <select id="

temporal -func -select" defaultValue ={

attribs.temporalFunction} onChange ={e =>

setAttribs(prev => ({...prev ,



temporalFunction: e.target.value}))}>

<option value="false">false </option >

<option value="true">true </option >

</select >

</li>

<li >

<label htmlFor="value -input">Value:</label > <

input id="value -input" defaultValue ={

attribs.value} onChange ={e => setAttribs(

prev => ({...prev , value: e.target.value})

)}/>

</li>

<li >

<label htmlFor="anchor -time -input">Anchor

time ID:</label > <input id="anchor -time -

input" defaultValue ={ attribs.anchorTimeID}

onChange ={e => setAttribs(prev => ({...

prev , anchorTimeID: e.target.value}))}/>

</li>

</ul>

}

<button className="update -attr" onClick ={e => {

props.update(props.event.id, attribs)

props.dismiss(e)

}}>Update </button >

</div >

</div >

)

}



"""EventList.js"""

export default function EventList(props) {

return (

<ul className="event -list">

{props.events.map(ev => <EventListItem key={ev.id}

event={ev} remove ={() => props.remove(ev.id)}

edit ={() => props.edit(ev.id)} hover ={ props.

hoverLang} />)}

</ul>

)

}

function EventListItem ({event , remove , edit , hover }) {

return (

<li onMouseEnter ={() => hover([event.id])}

onMouseLeave ={() => hover()}>{event.id}: {event.

text} <div style ={{ display: ’flex’}}><button

onClick ={edit }>&#43;</button ><button onClick ={

remove}>&times;</button ></div ></li>

)

}



"""ExamineString.js"""

export default function ExamineString(props) {

return (

<div className="overlay" onClick ={props.dismiss}>

<div className="examine -string">

<div style ={{ overflowX: ’auto’}}>

<button style ={{ marginBottom: ’0.2em’}} onClick

={(e) => {props.dismiss(e); props.removeString

(props.data.orig)}}>Remove </button >

<div className="source" >{props.data.orig}</div >

<div className="examined">{props.data.string.map

((com , i) => <span key={i} className="

component -box">{com === "" ? ’ ’ : com}</span

>)}</div >

</div >

<ul className="tlinks" >{props.data.tlinks.map((t,

i) => <li key={i}>{t}</li >)}</ul >

</div >

</div >

)

}



"""Help.js"""

import { useState } from ’react’

export default function Help(props) {

const [page , setPage] = useState (1)

return (

<div className="overlay" onClick ={props.dismiss}>

<div className="help">

<h3 >START (String Temporal Annotation and

Relation Tool) </h3>

{page === 1 && <div id="help -p1">

<p>

Use the mouse to highlight text , then press

’Tag Event’ to tag that text as an

event , or press ’Tag Time’ to tag that

text as a time. Tagged events and times

will appear in the upper right panel ,

where they may be removed or their

attributes may be edited.

</p>

<p>

Keyboard shortcuts:

</p>

<ul >

<li >E: Tag Event </li>

<li >T: Tag Time </li>

<li >U: Undo </li>

<li >S: Superpose </li >

<li >?: Toggle Help </li>

</ul>

<a style ={{ cursor: ’pointer ’, float: ’right’

}} onClick ={() => setPage (2)}>More </a>

</div >}

{page === 2 && <div id="help -p2">

<p>

Test or create relations from the tagged

events and times in the lower left panel

. Created relations will appear as



strings in the String Bank. The string

that will appear can be previewed to the

right of the relation name when

selecting a relation. You can also try

to find the relations between a pair of

temporal entities that are currently

present in the String Bank.

</p>

<p>

Check this box to allow Freksa relation

input (these will not appear in the

exported TimeML , click <a target="_blank

" rel="noopener noreferrer" href="/

freksa.html">here for more info </a>): <

input type="checkbox" checked ={props.

extendedRels} onChange ={e => props.

setExtendedRels(e.currentTarget.checked)

} />

</p>

<p>

The String Bank contains all of the known

temporal relations , as strings.

Triggering a superposition will attempt

to consolidate this knowledge into a

smaller number of strings by combining

the data where it is sensible to do so,

i.e. |a|b| + |b|c| = |a|b|c|. Since some

superpositions may produce multiple

strings as a result , the program will

attempt to limit the resulting set to no

more than <input style ={{ width: ’6ch’}}

type="number" min="0" max="99"

defaultValue ={props.limit} onChange ={e

=> props.setLimit(parseInt(e.

currentTarget.value))}/> strings (use 0

for no limit - this may be slow and

produce unwieldy results). Clicking on a

string will show the <code >{‘<TLINK

>‘}</code > tags derivable from it.



</p>

<a style ={{ cursor: ’pointer ’, float: ’left’}}

onClick ={() => setPage (1)}>Back </a>

<a style ={{ cursor: ’pointer ’, float: ’right’

}} onClick ={() => setPage (3)}>More </a>

</div >}

{page === 3 && <div id="help -p3">

<p>

Clicking Export will export the annotated

text as a TimeML (v1.2) file. Note that

<code >{‘<MAKEINSTANCE >‘}</code > tags are

not output , and their attributes are

shifted to the <code >{‘<EVENT >‘}</code >

tags. <code >{‘<TLINK >‘}</code > tags use

eventIDs instead of eventInstanceIDs ,

and the relType may include a

disjunction of relations if multiple

options were derivable from the String

bank , e.g. relType="BEFORE|IBEFORE". The

OVERLAPS and OVERLAPPED_BY relations

are also permitted in the output if they

are derived.

</p>

<a style ={{ cursor: ’pointer ’, float: ’left’}}

onClick ={() => setPage (2)}>Back </a>

</div >}

</div >

</div >

)

}



"""StringBank.js"""

import { useState } from ’react’

export default function StringBank(props) {

const [loading , setLoading] = useState(false)

const doSuperposition = async () => {

setLoading(true)

const res = await fetch(process.env.

NEXT_PUBLIC_SUPERPOSE_ENDPOINT , {

method: ’POST’,

headers: {

’Accept ’: ’application/json’,

’Content -Type’: ’application/json’

},

body: JSON.stringify ({

data: {

strings: props.strings ,

limit: props.limit

}

})

})

setLoading(false)

const data = await res.json()

if (data.error) {

console.error(data.error)

window.alert(data.error)

} else {

props.updateStrings(data.strings)

}

}

return (

<div className="string -bank">

<h4 >String bank ({ props.strings.length }) <button

disabled ={ loading || props.strings.length < 2}

id="dosp" onClick ={ doSuperposition}>Superpos{

loading ? ’ing’ : ’e’}</button ></h4>

<ul className="strings">

{props.strings.map((l, i) => <Language key={‘sb-${i



}‘} langid ={i} language ={l} hoverLang ={props.

hoverLang} examineString ={props.examineString}

/>)}

</ul>

</div >

)

}

function Language(props) {

const vocab = [... new Set(props.language.reduce ((acc ,

cur) => {

return [...acc , ...cur.split (/[ ,|]+/).filter(v => v

!== ’’)]

}, []))]

return (

<li onMouseEnter ={() => props.hoverLang(vocab)}

onMouseLeave ={() => props.hoverLang ()} className="

sb -language"><span className="sb -lbracket" >[</span

><div >{ props.language.map((s, i) => <String

examineString ={ props.examineString} key={‘s-${

props.langid}-${i}‘}>{s}</String >)}</div ><span

className="sb -rbracket" >]</span ></li>

)

}

function String(props) {

return (

<span onClick ={() => props.examineString(props.

children)} className="sb-string">{props.children

}</span >

)

}



"""TextDisplay.js"""

import { useRef } from ’react ’

export default function TextDisplay(props) {

const elem = useRef(null)

return (

<div className="text">

<pre className ={props.noHighlight ? ’no-highlight ’

: ’’} dangerouslySetInnerHTML ={{ __html: props.

text}} ref={elem}></pre >

<div className="btns">

<button id="btn -new" onClick ={props.reset}>New </

button >

<button id="btn -export" onClick ={() => props.

download(elem)}>Export </button >

</div >

</div >

)

}



"""TextEntry.js"""

import { useState , useCallback } from ’react ’

export default function TextEntry(props) {

const [textareaValue , setTextareaValue] = useState(’’)

const handleTextarea = useCallback(e => {

setTextareaValue(e.target.value)

}, [textareaValue ])

return (

<div className="input -text">

<textarea value={ textareaValue} onChange ={

handleTextarea} placeholder="Enter text or a 

TimeML file to annotate"></textarea >

<div className="btns">

<button onClick ={() => { props.grabParse(

textareaValue) }}>Annotate </button > <a target=

"_blank" rel="noopener noreferrer" href="https

:// www.scss.tcd.ie/~ dwoods/thesis/code/example

.tml">Sample 1</a> <a target="_blank" rel="

noopener noreferrer" href="https ://www.scss.

tcd.ie/~ dwoods/thesis/code/example2.tml">

Sample 2</a>

</div >

</div >

)

}


