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Abstract

The Earth’s atmosphere consists primarily of nitrogen (N) in the form of dinitrogen
(N2), and oxygen as well as greenhouse gas (GHG) molecules including water vapour,
carbon dioxide (COz2), nitrous oxide (N20) and methane (CH4). Anthropogenic activity
through land use, land use change and intensive agricultural practices has contributed
to the increase in ambient concentrations of these GHGs, reaching annual averages of
440 ppm for CO2, 332 ppb for N20 and 1866 ppb for CH4 in 2021. Consequently, this
has resulted in changing climatic variables such as increases in global surface
temperatures of 0.99 °C between 2001 and 2020 relative to the period between 1850
and 1900. In Ireland, the occurrence of extreme climatic events has increased,
particularly in last decade, including heatwaves, droughts, storms, heavy precipitation,
flooding and extreme cold spells. Emissions of CH4 and N20 are important in forcing
such climatic events due to their respective globalwarming (GWP) potentials of 28 and
265 respectively, relative to CO2 over a lifespan of 100 years. In Ireland, agricultural
landscapes are dominated by grasslands, accounting for approximately 58 % of the
land surface area in Ireland, of which 40 to 279 kg N ha-1yr-1in the form of inorganic
N is applied to grassland pastures depending on the stocking rate for dairy cows (1.0
to > 2.47 LSU/ha1).Furthermorein 2020, 37.1 % ofIrelands total GHG emissions were
derived from the agricultural sector, and of this, 57.5 % was derived from enteric
fermentation, followed by agricultural soils at 26.8 %, and to a lesser extent manure
management, fuel combustion, liming and urea application at 10.3, 3.0, 1.9 and 0.5 %,
respectively. The intensification of agriculture to meet the demands ofa growing global

population has altered the natural production and emission of CHs and N20. The



formation of CHs is catalysed by methanogenic bacteria during anaerobic metabolism
where soil organic materials are broken down. In agricultural systems, CH4 is produced
by enteric fermentation from ruminant livestock, accounting for 58 % of Ireland’s
agriculture derived GHG emissions in 2020. Sources of N20 include the combustion of
fossil fuels, waste management and industrial processes such as the formation of
chemical N fertilizers. In Ireland, approximately 1 to 4 % of applied N to agricultural
soils as chemical N fertilizers or animal excreta is emitted as N20 depending on the N
loading rate of the inputs as well as environmental conditions which will influence the
rate of N20 emissions produced, such as temperature and soil moisture. In Ireland,
agriculture emits 90 % of the nation’s N20 emissions of which 38 % is derived from
synthetic fertilizers, 23 % is derived from animal excreta during grazing and 14 % is
derived manure management. Soil derived emissions of N20 are formed as either a by-
product of the microbial process of nitrification under aerobic conditions, or as a
transitional product of denitrification under anaerobic conditions. The spatial
heterogeneity of agricultural soils facilitates the presence of both aerobic and
anaerobic microsites existing in close proximity, and gradients of soil conditions that
will influence the magnitude of microbial produced N20, such as aeration, redox
potential, temperature, moisture, substrate availability and N inputs. Following the
application of N fertilizer to managed grasslands, N20 fluxes typically display a peak
and decay pattern over time which is characterized by a log-normal distribution,
normally lasting between 5 and 20 days. Due to the inherent spatiotemporal variability
associated with N20 emissions from agricultural landscapes, it is still a difficult task to
quantify field scale emissions of N20 with low uncertainties. To date the most
commonly used method to quantify field scale emissions of N20 is the static chamber

technique, which consists of taking manual gas samples, mainly once a day and over



small spatial domains, generally less than 1 m?2. Historically, these techniques has been
used for investigating treatment effects on N20 emissions, but due to its limited spatial
and temporal resolution, flux measurements are often attributed with high
uncertainties. Conversely, micrometeorological techniques, such as eddy covariance
(EC) are capable of making continuous, high frequency ecosystem scale (1 km?2) flux
measurements of N20 through recent developments in fast, high precision absorption
spectrometers such as quantum cascade lasers (QCL). On the other hand, both high and
low flux measurements by EC are integrated over a given area (i.e. the footprint), and
therefore it can be challenging to disaggregate between different emission sources

over a given spatial domain.

The overarching aims of this thesis were:

1. To investigate the spatial and temporal variability and potential disparity between
N20 flux measurements made using static chambers and EC techniques from a
uniformly emitting surface (i.e. a grassland under silage and fertilizer management)
and additionally, to assess the methodologies used to analyse and integrate log-normal

chamber N20 flux data (arithmetic and Bayesian statistics) (Chapter 4).

2. To optimize the application and use of both static chambers and EC techniques to
quantify N20 emissions under a more complex, heterogeneous emitting surface (i.e. a
grazed managed grassland), where the EC technique provides high resolution, low
uncertainty field scale flux measurements, and the static chamber technique assess the
source contribution of various N sources from the system in order to upscale localized

N20 flux measurements to the field scale (Chapter 5).



3. To assess the influence of cut and grazing management activities and their
associated emissions (CO2, N20 and CH4) on the net carbon (C), net N and net GHG
balance (NGHGB) (i.e. the net GHG exchange minus C exports) of the grassland at the

field scale (Chapter 6).

Key findings presented in Chapter 4 showed that EC and static chamber N20 flux
measurements were most comparable when N20 flux values were high (> 115 N20-N
ug m -2hr -1) and showed spatial and temporal alignment when the chamber sample
size was large (n 2 15) and the log-normal distribution of the dataset was accounted
for using Bayesian statics. Conversely, when the chamber sample size was small (n <
5), the Bayesian model produced large uncertainties due to the inability of the model
to constrain an arithmetic mean from a log-normally distributed data set, thus
suggesting that greater replication is necessary for constraining the spatiotemporal
variability of static chamber flux measurements. Field scale N20 flux measurements
using static chambers with Bayesian statistics (3.13 [+ 0.24] kg N ha -1) were closer in
magnitude with N20 flux measurements using EC techniques (3.35 [+ 0.5] kg N ha -1),
compared to the arithmetic approach (2.98 [+ 0.17] kg N ha-1), highlighting the
importance of accounting for the log-normal distribution of chamber N20 flux

measurements for quantifying more realistic estimates of field scale missions of N2O0.

In Chapter 5, the field site was under a grazing management regime, where different
sources of N were applied in the form of fertilizer and animal excreta. As the EC
technique is unable to disaggregate between emission sources, static chambers were
used in tandem to quantify emissions from N sources thatare characteristic of grazing
systems including calcium ammonium nitrate (CAN), the combination of CAN and

synthetic cow urine (SU+CAN), and the combination of CAN and dung (dung+CAN).



Mean emission factors (EF) for CAN, SU+CAN and dung+CAN were quantified from four
grazing events at 2.78 £ 0.90, 0.59 £ 0.12 and 0.64 + 0.15 %, respectively, and used to
upscale localised N20 flux measurements using static chambers to the field scale (Feu
riELp) for comparability with field EC based flux measurements. Similar to the
cumulative flux findings observed in Chapter 4, total N20-N emissions measured by EC
were higher and with lower uncertainties relative to Fcx rieLp at 6.62 + 0.33 and of 5.16
+ 2.04 kg N ha-1, respectively. The seven-fold higher uncertainty attributed to Fcn rimp
measurements relative to EC, was due to the low spatial and temporal resolution of the
static chamber technique coupled with a low sample size (n = 5 per treatment per
grazing), which collectively makes constraining the uncertainty in static chamber N20
flux measurements a difficult task. However using the static chamber technique in
tandem with the EC technique provided valuable insights into the source contribution
of field scale emissions of N20 from a grazing system. For instance, approximately half
of the total N20-N losses were derived from animal excreta, one third were derived
from CAN and the remaining emissions represented background fluxes. Furthermore,
approximately 20 % (1.01 kg N ha1) of the total N20-N flux calculated by Fcu e
occurred during a spring grazing event, where this observation was further reinforced
by statistical analysis showing a significant (p < 0.001) interaction between N:20
emission and time and treatment. These findings show that the timing of grazing

events can have a significant impact on the total annual N20-N losses.

Chapter 6 synthesizes the impact that management activities described in chapters 4
and 5 have on the net N, C and overall NGHGB at the field scale by quantifying the N
and C imports into and exports out of the grassland system. Findings from this study

showed that N imports influenced the net N budget of the grassland, where under
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silage management the system had a net neutral N balance of 0.1 + 6.0 g N m2yr-1In
contrast, under grazing management where N imports were higher (i.e. from both
fertilizer application and animal excreta) and the system transitioned into a net N sink
at-17.9 £ 5.5 g N m-2 yr-1. The net C balance showed that the grassland was a greater
sink of C under a grazing managementrelative to the cut managementat-311.5 +81.8
and 61.6 £ 26.7 g Cm-2 yr-1, respectively. This was mainly due to both larger C exports
from silage cuts reducing the C sink, while in comparison, biomass consumed by
grazing livestock was recycled back into the system through excretion and
additionally, due to a greater capacity for plants to assimilate C during grazing from
ungrazed paddock strips while silage cuts removed all available biomass to
approximately 4 cm. To assess the impact of emissions of non-CO2 gases onthe NGHGB,
budget components and emissions of N20 and CH4 were converted to CO2 equivalents
(COzeq), by multiplying GHGs by their respective GWPs. Under the cut management,
N20 emissions reduced the net ecosystem exchange (NEE) sink (-2010.8 g CO2 m-2 yr-
Dby 7 % (-1870.7 g CO2eq m2 yr-1), however emissions of N20 and CH4 reduced the
NEE sink under a grazing management (-1355.3 g CO2 m2yr-1) by 20 and 58 % (-296.5
g COzeq m2 yr-1), respectively. Overall, the grassland remained a sink of CO2 with a
NGHGB of -86.0 +£ 90.1 and -84.4 * 319.4 g COz2eq m2 yr-1, under a cut and grazed
management respectively. These findings show that at the field scale, both
management practices greatly offset CO2 sinks from temperate grasslands due large C
exports from biomass removal from the system, thus limiting the capacity of the
system to photosynthesize and also through emissions of non-CO2 gases and their

potent GWPs.
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The key results from this thesis offer the following recommendations to the research
community: (i) For quantifying field scale emissions of N20 using the static chamber
technique, a minimum of five chamber replicates should be used, but where practically
feasible up to 15 chamber replicates should be considered to further reduce the
uncertainty in flux measurements and to improve the statistical robustness of N 20 flux
datasets; (ii) The frequency of static chamber flux measurements for quantifying
baseline emissions should be at least once a week, but should increase to once a day
for one to two weeks in order to capture the ecosystem response to additional N in puts
from management over time i.e. the peakand decay pattern; (iii) Temporal upscaling
of N20 emissions for single management events can be achieved by using statistical
methods which explicitly account for the log-normal distribution of N20 emissions, for
example, Bayesian statistics, however further development of the Bayesian approach
is necessary for application to multiple management activities (i.e. fertilizer
application and grazing) and interacting emission sources; (iv) To best quantify field
scale emissions of N20 over space and time from managed grasslands, using EC and
static chamber techniques in a complimentary fashion is strongly recommended as it
enables a more informed quantification of field scale emissions in response to
management activities relative to utilizing both techniques in isolation; (v) At the field
scale, agricultural practices greatly offset the C sink of the grassland system in this
study, namely through C exports from biomass removal and GHG emissions from
livestock production. In order to reduce the impact of these systems in forcing climate
change, policy makers will be required to incentivise farmers to transition to more
sustainable agricultural practices with the aim of preventing large C losses through
grazing and harvest cuts, and to increase C inputs through enhanced organic

fertilization or increase soil organic carbon (SOC) stocks for example, through biochar
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additions below the 30 cm soil horizon where C decomposition rates are low and/or
the establishment of multi-sward species with deep and extensive root systems to

grassland systems.
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Chapter 1: Introduction

1.1 Nitrous oxide emissions in Ireland

Irelands national greenhouse gas (GHG) inventory is dominated by the agricultural
sector where approximately 37.1 % of Ireland’s GHG emissions are derived from
agriculture (EPA, 2019a). The primary GHG emissions from Irelands agricultural
sector are methane (CH4) (64 %) from enteric fermentation in cattle and nitrous oxide
(N20) (31 %) from nitrogen (N) inputs from fertilizer or animal excreta to agricultural
soils, with minor CO2 emissions (5 %) associated with liming and urea application to
pasture and fuel combustion (Lanigan et al., 2018). Emissions of N20 are intimately
linked with the increasing intensification of grassland systems to sustain livestock in
order to meet the dietary demands (animal-based proteins) of a growing global
population. As a result, there is potential for managed grasslands to act as a significant
source of N20 emissions. Temporal trends in Irelands’ N20 emissions by sector are
shown in Fig. 1.1, but for the purpose of this thesis, focus will be attributed to the
agricultural sector. Emissions of N20 from agriculture increased in the late 1990’s due
to increased N inputs from synthetic fertilizers and animal excreta from larger herd
sizes. In the early 2000’s, N20 emissions steadily decreased in response to a reduction
of inorganic and organic N applications to soils as part of the Common Agricultural
Policy (CAP) reform on animal numbers. However, between 2015 and 2019, increases
in N20 emissions were observed as a result of increased growth in the dairy sector and

the use of N fertilizers (EPA, 2019b).
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Figure 1.1: Nitrous oxide emissions by sector from 1990 to 2019. Data was sourced at
https://www.epa.ie/our-services/monitoring--assessment/climate-change/ghg/summary-

by-gas/#d.en.84384.

The production of N20 in grasslands soils is mediated by the nitrification of nitrite
(NO2) to nitrate (NO3-) and subsequentdenitrification of NO3-to N20. External N inputs
to managed grasslands has essentially disrupted the natural soil N cycle, ie. the
balance between N20 produced in the soil and its microbial transformation to inert N
compounds to the atmosphere (Syakila and Kroeze, 2011, Wecking, 2021). The
magnitude and duration of N20 emissions depends on the complex interaction
between climatic conditions and management practices that increase N inputs into the
system, as well as altering the physical and chemical properties of the soil. The
interaction between these variables forms a heterogeneous environment for N20
production, thus making it challenging to accurately quantify, understand and mitigate
emissions of N20 (Voglmeier et al,, 2019, Wecking, 2021). To date the most commonly
used method to quantify N20 emissions from agricultural soils is the static chamber
technique (Rochette, 2011, Lammirato et al.,, 2018), as it is easy to deploy, inexpensive
to operate,has many standardized protocols and is suitable for investigating treatment
effects on N20 emissions (de Klein and Harvey, 2015). However, individual static
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chamber N20 flux measurements are made over spatial areas less than 1 m2 and under
a low temporal resolution (e.g. once per week) and therefore, flux measurements are
often associated with large uncertainties. It is only in more recentyears that field scale
flux measurements of N20 at greater spatial scales and temporal frequencies have
become available through the development of high frequency gas analysers such as
quantum cascade laser (QCL) absorption spectrometers. When QCLs are incorporated
into micrometeorological techniques such as eddy covariance (EC), near-continuous
measurements of N20 fluxes over large spatial domains (1 km?2) are made possible
(Cowan et al, 2020, Liang et al,, 2018, Wecking et al,, 2020b). Prior to this study, there
has only been one other EC station monitoring field scale fluxes of N20 in Ireland that
investigated the contribution of N20 emissions to the GWP of a managed grassland, as
well as the impact management has on N20 emissions (Leahy etal,, 2004, Scanlon and
Kiely, 2003). Investigations comparing micrometeorological measurements of N20
with the static chamber technique are necessary to determine the applicability of this
new analytic approach in determining national N20 emission inventories (Jones et al,,
2011), as well as bridging the gaps in our understanding of the processes governing
emissions at the field scale and thus leading to the development of enhanced

agricultural mitigation strategies.

1.2 Project information

The funding for the Manipulation and Integration of Nitrogen Emissions project (grant
number 155655) was provided under the National Development Plan, through the
Research Stimulus Fund, administered by the Department of Agriculture, Food and the

Marine. This project was led by Teagasc in collaboration with Trinity College Dublin.



The field and laboratory analyses of this work were carried out in Teagasc, Johnstown

Castle, Co. Wexford, Ireland.

1.3 Thesis objectives

The primary aim of the thesis was to investigate the spatial and temporal variability
in N20 emissions from an intensively managed temperate grassland using the static
chamber and EC techniques, and to assess the impact that field scale management
activities have on the climate mitigation potential of grasslands. Few studies have
investigated flux dynamics from managed grasslands at different temporal and spatial
sales and as a result, there is still significant uncertainty surrounding the impact
agricultural practices have on soil N and C cycling and the exchange of N20 between
the atmosphere, soil and vegetation. The individual objectives of this thesis are

therefore;

[.  To assess the disparities and uncertainties in quantifying N20 emissions at
different spatiotemporal scales from a cut and fertilized managed grassland

using the static chamber and EC technique, as investigated in Chapter 4.

I. ~To quantify N20 emissions from a grazed grassland by utilizing the EC
technique to measure high frequency, low uncertainty field scale fluxes and in
tandem, use the static chamber technique to quantify the contribution of
different N sources from grazed grasslands (i.e. fertilizer, and the addition of
fertilizer to dung and urine) to both upscale localized N20 flux measurements

to the field scale, as investigated in Chapter 5.



[II. To determine the impact agricultural practices have on the mitigation potential
of managed grasslands to act as C, N and GHG sink at the field scale, as

investigated in Chapter 6.

1.4 Thesis structure

This thesis consists of seven chapters. Chapter 1 provides a brief overview of Ireland’s
N20 emissions, the microbial production of N20, the methods used to quantify N20
emissions and the thesis objectives. Chapter 2 summarizes the background knowledge
on the subject, identifies the gaps in the literature and highlights the necessity for the
research conducted in this PhD thesis. Chapter 3 describes the methodological
approaches used in the research chapters 4, 5 and 6, and explains their respective
experimental set ups. Chapter 4 explores the application of the static chamber and EC
technique in quantifying N20 emissions over various spatiotemporal scales from a
uniformly emitting surface (i.e. fertilizer application), and the application of log-
normal statistics in constraining the uncertainty associated with chamber based N20
flux measurements. The outcomes from this chapter provide recommendations that
are applicable to similar future studies on how to optimize static chamber and EC
techniques for robust field scale measurements of N20 emissions. Chapter 5
investigates how best to quantify N20 emissions from a heterogeneous emitting
surface (i.e. froma grazing management) by using the static chamber and EC technique
in tandem. Interactions between sources of N from grazed grasslands on N:20
emissions and their contribution to the total N20-N losses were assessed, and
highlighted the necessity for quantifications of N20 losses from interactive N sources
(i.e. fertilizer applied in combination with dung and fertilizer applied with urine), as

they bestrepresenthotspots of N20 from grazed pastures. Chapter 6 evaluates how the



management activities described in Chapters 4 and 5 influenced the capacity of the
grassland to actas a sink of N, C and GHGs, and illustrates how changes in management
regimes (i.e. a cut or grazing management) contribute differently to storing and
removing C from grasslands, and emitting non-CO2 GHGs. Chapter 7 synthesizes and
discusses the key findings outlined in Chapters 4, 5 and 6 while also illustrating the
limitations of these studies and the areas of research which require further
exploration. This chapter outlines the applicability of the work presented in this thesis
to further improve quantifying N20 emissions in space and time from managed
grasslands and the implications for improving the development of GHG mitigation

strategies in the agricultural sector.



Chapter 2: Literature review

2.1 Climate change

Climate change is defined as the long-term changes in the Earth’s temperature and
weather patterns (Pachauriet al, 2014), and over the last century, changes in climate
patterns have accelerated faster than ever before (Bereiter etal,, 2015, Neukom et al,,
2019).Between 2001 and 2020, mean global surface temperatures were 0.99 °C higher
than the period between 1850 to 1900, with larger increases over land at 1.56 °C
compared to oceans at 0.88 °C (IPCC, 2021a). In the Sixth Assessment Report (AR6) by
the Intergovernmental Panel on Climate Change (IPCC), it was projected that for every
1 °Crise in global temperatures, extreme rainfall events will intensify by 7 % (IPCC,
2021a). Moreover, the AR6 also outlined the high likelihood of warmer climates
intensifying very wet and dry weather and climatic events such as flooding or drought
Additionally, a 2 °C rise in global warming by the middle of the 21st century would
exceed critical thresholds for the global agriculture sector (IPCC, 2021a). The driving
force behind such adverse climate change is the input of anthropogenic greenhouse
gases (GHGs) e.g. carbon dioxide (CO2), nitrous oxide (N20) and methane (CH4)
associated with human activities such as fossil fuel burning, land-use change and
intensive agriculture. These GHGs contribute to global warming by absorbing and
trapping and then re-emitting longwave infrared radiation from the Earth’s surface.
There hasbeenan overall consistent increase in the concentrations of these GHGs since
the Industrial Revolution in 1750 as a result of human activity, and as of 2021 ambient
concentrations of CO2, N20 and CH4 were measured at 414 ppm, 334 ppb and 1888
ppb, respectively (NOAA, 2021). It is clearly outlined in the AR6 that human activity

has been the primary cause for observed increases in ambient concentrations of GHGs



since the pre-Industrial Era. The consequences of high atmospheric concentrations of
these GHGs is the occurrence of more frequentand extreme climatic events, such as
heatwaves, droughts, heavy precipitation, storms and subsequent flooding. More over,
extreme climatic events harbour significant globaleconomiclosses, accounting for USD
268 billion in infrastructure damages globally in 2020 (AON, 2020). The adverse
effects of climate change can and have affected the agricultural sector, where drought
conditions can cause nutrient immobilization and salt accumulation in soils, resulting
in dry, saline and infertile soils and likewise, extreme flooding can erode the top soil
and associated nutrients, resulting in reduced rates of crop productivity (Arora,2019).
During June and July 2018, Ireland experienced prolonged high temperatures, low
rainfall and dry conditions which subsequently led to a severe drought which had
various implications for Irish agriculture. For example, reduced crop yields from
spring sown crops, as well as a decrease in the average farm income by 15 %, with
greater reductions of 31 % from dairy farming systems due to inflation in animal feed
costs (Dillon et al,, 2019). Ultimately, climate change has the potential to threaten food
security with a high likelihood of reduced production and subsequently inflated food
prices if the currentsituation with GHGs emitted from agriculture and climate change
persists. Ultimately the task of providing for an ever increasing global population is all
the more challenging and as a result, there is an urgent need to better constrain the
nitrogen (N), carbon (C) and GHG budgets of agricultural systems and to then develop
and implement mitigation strategies which both maintain productivity within the
agricultural sector without causing additional environmental harm in the form of

increased GHG emissions.



2.2 Grasslands - a potential tool for climate change mitigation

Grasslands are ecosystems that are dominated by herbaceous vegetation, namely
grasses,sedges and rushes and by this definition, grasslandsaccountfor40.5 % or52.5
million km-2 of global terrestrial area (Suttie et al., 2005). Managed grasslands are
agricultural landscapes used to intentionally grow grasses or herbaceous forage for
grazing and/or silage cuts for winter based feed (JKI, 2021). Such managed pastures
represent 26 % of the global land surface area and 33 % of the land surface area within
Europe, both of which are comparable with Ireland where 58 % of the land surface
area is devoted to managed grasslands (CSO, 2020, Lemaire etal., 2011a, Van den Pol-
van Dasselaar etal,, 2019). Owing to the large spatial domain that managed grasslands
occupy, these landscapes play a vital role in controlling rates of GHG emissions from
the agricultural sector. The rate at which atmospheric CO2 is sequestered, i.e. captured
and stored in the vegetation or soil, will depend on two factors - the net C flow through
the soil-plant-atmosphere continuum, which will equate to the difference in plant
photosynthesis and plant respiration, and secondly, the mean residence time of C
within vegetation and the soil (Lemaire et al, 2011b). The residence time of C within
vegetation is relatively short, between 1 and 2.5 years due to the brief leaf lifespan of
grassland species and the high decomposition rates associated with leaf litter (Klumpp
etal., 2009). However, this will vary according to management where vegetation may
be consumed by grazing animals prior to senescence, resulting in losses of C to the
atmosphere in the form of COz and CHs4 through animal respiration, enteric
fermentation and excretal deposition. In contrast, the residence time in grassland soils
is far greater, ranging between 1 to >1000 years, where C in the form of soil organic
matter (SOM) is integrated into the soil through various pathways (Lemaire et al,

2011a), for example, from leaf litter incorporated by earthworms within soil micro-



aggregates, as well as organic matter inputs from excreta depositions by grazing
animals (Lemaire etal, 2011a).It is important to note however, that the residence time
of C in soils and subsequently plant productivity, will vary depending on the C:N ratio
of the fresh organic matter inputs and as well as soil fertility, as N is linked to C by soil
microbial processes (Lemaire etal.,, 2011a, Tateno and Chapin lii, 1997). For example,
on fertilized soils, plants that have low C:N ratios (i.e. high N concentrations in the
foliage) and a high assimilation rate (i.e. the uptake of C from atmospheric CO2 to form
organic compounds), will return leaf litter with alow C:N ratio to the soil (Tateno and
Chapin lii, 1997). This in turn, stimulates N mineralization due to the low C:N content
of the leaf litter, and promotes further plant growth and the potential to assimilate C
through photosynthesis. In contrast, the opposite can be true for infertile soils, where
the C:N ratio of leaf litter will be high, thus reducing the rate of N mineralization and in
turn plant growth and C assimilation (Tateno and Chapin lii, 1997). The management
of grassland soils is therefore an important factor in determining the capacity of these
systems to store C, however, it is projected that the intensification of managed
grasslands will increase in order to meet the dietary demands of an increasingly
growing global population (Shukla et al, 2019). If the enhanced intensification of
agricultural practices is not undertaken sustainably, it is estimated that global GHG
emissions fromagriculture (mainly from crop and livestock activities at the farm scale)
are likely to increase by approximately 30-40 % by 2050 (Shukla et al, 2019).
Therefore understanding the impact management practices have on grasslands and
the associated biogeochemical cycles is crucial in both dictating and optimizing the

mitigation potential of managed grasslands against climate change.
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2.3 Biogeochemical cycles

2.3.1 The terrestrial global carbon cycle

The C cycle describes the movement of C as it is recycled and reused through the Earth
system as well as the long-term (>1000 years) processes of C sequestration to remove
C from the atmosphere and store it within soils and vegetation. An overview of the
terrestrial global carbon cycle is shown in Fig 2.1. Atmospheric COz corresponds to a
mass of 828 Pg C yr-1 (Joos etal, 2013, Prather et al,, 2012), where the removal of CO2
from the atmosphere is mediated by plant photosynthesis, where light energy is used
to split molecules of CO2 and water into carbohydrates and oxygen for plant cellular
function. The amount of CO2 converted to carbohydrates is known as the gross primary
productivity (GPP) and globally accounts for the assimilation of 123 Pg C yr-1. Part of
the C which is fixed in plants by photosynthesis can be returned back into the
atmosphere by autotrophic (plant) and heterotrophic (animals and soil microbes)
respiration, where the sum of both make up the total ecosystem respiration (TER).
Approximately 119 Pg C yr-1 is returned to the atmosphere through TER. The
difference between the GPP and the TER gives the total net ecosystem exchange (NEE),
which subsequently accounts for a net sink of 4 Pg C yr-1stored globally in terrestrial
systems. However this value is only representative of the net CO2 balance and not the
total C balance, as C can also be imported and exported from terrestrial ecosystems
through dissolved C and agricultural management such as organic inputs through
slurry fertilizer applications and biomass removals from harvest cuts and/or grazing
(Jonesetal, 2017, Merbold et al., 2014, Myrgiotis et al,, 2021). By quantifying these C
imports and exports we can then develop a more robustassessment of the net biome
productivity (NBP) which describes the net rate of C uptake or loss by subtracting
additional C inputs and outputs from the NEE.
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Atmopshere 828 PgC

Soils 1500 - 2400 PgC

Figure 2. 1: The global terrestrial carbon cycle adapted from Ni Choncubhair (2014). Values
are derived from Ciais et al. (2014) where white numbers represent carbon stocks in PgC and
black numbers represent annual C exchange fluxesin Pg C yr-1 over the period between 2000
and 2009. TER is the total ecosystem respiration, GPP is the gross primary productivity and

NEE is the net ecosystem exchange i.e. the difference between GPP and TER.

To date, there is a lot of uncertainty surrounding the potential of managed grasslands
to serve as a sink of C, where previously published studies have shown rates of C
sequestrations ranging between 15 to 587 g C m-2yr-1 (Chang et al,, 2015, Jones et al,,
2017), others have highlighted that the intensification of managed grasslands has
transitioned these systems to net sources of C at a rate of between 29.1 to 266 g C m
yr-1 (Jones et al, 2017, Soussana et al, 2007). Variability in previously reported C
budgets are likely due to differences in weather and soil conditions between studies as
well as management activities such as the timing and frequency of cut and grazing
events as well as differences in the type and amount of N inputs. Moreover, as the
residence of soil C in grasslands spans over many hundreds of years, therefore the
legacy effects of land use and land management will also influence the amount of C

quantified over a given period of time (Smith, 2014).Often comparing the net C balance
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or NBP between studies is complicated due to inconsistency of variables within
respective budgets. As a result, there is an urgent need for robust data on the
implications that management practices have on the net C source or sink strength of

grasslands, and subsequently their climate change mitigation potential.

2.3.2 The nitrogen cycle

The C and N cycle are intrinsically linked through plant productivity where CO2 is
assimilated through photosynthesis using N containing organelles (i.e. chorophyll) and
compounds (fore.g. ATP and NADH) and therefore, the net C assimilation rate in plants
(and consequently net primary productivity) is a function ofleaf N content (Tateno and
Chapin Iii, 1997). Prior to the Industrial Era, the creation of reactive N ([Nr]; all N
nitrogen species except dinitrogen [N2]) occurred primarily through biological
nitrogen fixation (NBF) (Galloway et al.,, 2003), by a specialized group of prokaryotes,
for example, Rhizobium and Bradyrhizobium that form a symbiotic relationship with
legumes and other plants (Postgate, 1982). The prokaryotes utilize the enzyme
nitrogenase to catalyse the conversion of atmospheric N2 to ammonia (NH3) (Fig. 2.2).
In addition to this, atmospheric deposition provides inorganic forms of ammonium
(NH4*) and nitrate (NO3') as additional N sources into terrestrial ecosystems (Boring
etal, 1988, Ghaly and Ramakrishnan,2015). Gaseous species of Ny are readily available
to undergo a series of plant-soil biochemical transformations that are mediated
through plant litter production, the decomposition of soil organic matter (SOM) and
the redox potential of the soil (Buffam and Mitchell, 2015, Tipping et al., 2016). Such
transformations include the mineralization of organic forms of N (NH3) into
ammonium (NH4*) fromthe decomposition of SOM by microbial communities. The rate

of soil mineralization of N will vary depending on the C:N content of the soil organic
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matter deposited into the soil, where low C:N ratios of organic matter will enhance N
mineralization and conversely a high C:N with reduce the rate of N mineralization
(Tateno and Chapin Iii, 1997). Under anoxic/anaerobic conditions, the process of
denitrification occurs whereby denitrifying microbes use NO3- as a terminal electron
acceptor, producing N20 and N2. The balance between partial denitrification to N20
and total denitrification to N2 is primarily driven by soil redox potential, with a higher
N2/N20 ratio at lower redox potentials (Stevens and Laughlin, 1998). Additional Nr
losses of inorganic NOs3- through leaching can occur during periods of intense and
heavy rainfall as NOs- is negatively charged and so cannot bind to silt/clay particles

(Chapin Il etal., 2011).

N fixation Atmaospheric Deposition Fire / Harvest N, , N,O

l l

Microbes Par‘tlctflate Vegetation
OrganicN

Dissolved
OrganicN

I . Atmosphere

Figure 2. 2: Simplified illustration of the terrestrial nitrogen cycle adapted from Buffam and

Mitchell (2015). White boxes represent major nitrogen pools and arrows represent fluxes.
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2.3.3 Anthropogenic impacts on the nitrogen cycle

The global N cycle has been disrupted by human activity with Nrincreasing by 150 Tg
N yr-1between 1860 and 2000, primarily through food production activities such as
the production and application of synthetic fertilizer and leaching of N that is not
assimilated by crops (Galloway and Cowling, 2002, Galloway et al, 2003). The
anthropogenic pressures on agricultural land to produce food are likely to increase as
it is estimated that the global population increases by 0.9 % or 80 million per year,
with a projected population of 9.74 billion by 2050 (United Nations, 2019). However
the natural supply of Nr is not sufficient to sustain current or future population growth
(Galloway et al., 2008). It was only through the invention of the Haber-Bosch process,
where Nr is combined with hydrogen to produce NH3 under high pressures and
temperatures, that the nutrient limitations of agricultural land was overcome using
synthetic fertilizers. In managed grasslands, synthetic N fertilizer and animal excreta
account for the majority of additional N (Davidson, 2009, Tian et al, 2016). In 2019,
global estimates of N emissions from managed soils in the form of N20 from synthetic
fertilizers and animal manure accounted for 2.88 and 0.71 Tg N, respectively
(FAOSTAT, 2021). The N loading rate of a cow dung or urine patch can be as high as
1020 kg N ha'l (Chadwick et al, 2018) and 2000 kg N hal (Selbie et al, 2015),
respectively, making animal excreta prone to high losses of Nr. Where N; from N
fertilizer, dung and urine are in excess of plant demands, the negative consequences
can be far reaching within the Earth’s systems known as the N cascade (Galloway etal,,
2008). These impacts include, eutrophication of aquatic and terrestrial systems as well
as biodiversity loss in N sensitive ecosystems (Pitcairn et al,, 2002), the production of
tropospheric ozone and aerosols that have negative impacts on human health

including respiratory illnesses, cardiac disease and cancer (Follett and Follett, 2001,
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Wolfe and Patz, 2002), acidification of terrestrial and aquatic ecosystems (Gao et al,,
2014) and increases in N20 emissions (Skiba et al, 2005). In addition to this, grazing
and cut managements decouple the natural soil N and C cycles by (1) biomass removal
either by cutting or grazing animals which reduces the photosynthetic capacity for
grasslands to assimilate C (Gitelson et al, 2014); (2) biomass consumed by grazing
animals is returned to the atmosphere by releasing digestible C as CO2 and CH4 from
enteric fermentation (Soussana and Lemaire, 2014); (3) N is excreted to the soil
surface as dung and urine, and prone to leaching where the stocking density is high
and consequently the density of urine patchesis large (Ledgard etal,, 2009) and finally;
(4) emissions of CH4 from grazing animals and N20 from animal excreta and synthetic
fertilizers can offset the soil C sequestration and deteriorate the net GHG balance
(Joneset al, 2017, Soussana et al,, 2010). To date there have been few investigations
into the implications Nr has on C balances (Jones et al,, 2017, Merbold et al, 2014,
Wecking et al, 2020b) despite the necessity of such data for understanding GHG
dynamics in managed grassland systems, and developing appropriate sustainable

agriculture practices.

2.4 Nitrous oxide

[t is estimated that global N20 emissions reach 17.7 Tg N per year of which 6.7 Tg are
derived from human activity and of this, agricultural soils account for 2.8 Tg N yr-1
(Menon et al, 2007). Ambient concentrations in N20 have steadily increased since
1750 (Industrial Revolution), where pre 1750 atmospheric concentrations of N20
were 280 ppb and today are atan unprecedented 332 ppb (IPCC,2021a). According to
Ehhalt et al. (2001), atmospheric concentrations of N20 over the next century are

projected to rise to between 350 to 460 ppb under all IPCC emission scenarios outlined
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in Nakicenovic et al. (2000). The global warming potential (GWP) (i.e. the radiative
efficiency in W m-2 pbb-1) of a GHG is defined as how much energy the emissions of 1
tonne of a gas will absorb over a given period of time, compared to the emissions of 1
tonne of CO2 (EPA, 2020). The GWP of N20 is approximately 265 over a lifespan of 100

years, making N20 an extremely potent GHG in terms of driving climate change.

2.4.1 Soil microbial production of nitrous oxide emissions

The majority of N20 produced is through the microbial pathways of nitrification by
autotrophic aerobic nitrification by ammonia-oxidizing bacteria and nitrite-oxidizing
bacteria and denitrification by anaerobic denitrification by denitrifying bacteria
(Signor and Cerri, 2013). Additional microorganisms involved in denitrification and
nitrification include anammox bacteria which can convert NH4* and NOz- into N2 under
anaerobic conditions, some fungi are involved in both denitrification and
codenitrification which can produce N2 and N20 (Rex et al., 2018), and archeae have
previously been reported to stimulate denitrification in soils (Hayatsu et al., 2008).
Non-biological processes can also produce a small fraction N20 including
chemidenitrification, which is the chemical decomposition of nitrite [NOz-], and
hydroxylamine (NH20H) oxidation, although the N20 produced in these processes are
considered negligible (Bremner, 1997, Bremner et al., 1980). In the oxidation of NH4*
to NOs3-, the intermediate compound NH20H is cable of producing more N20 relative to

the chemidentrification process (Bremner, 1997).

The form of Nr emitted from soils is heavily determined by nitrification and
denitrification, and as both microbial pathways are intimately linked, they essentially
dictate the rate of N20 exchanged across the soil - plant - atmosphere continuum.

(Butterbach-Bahl et al, 2013, Harris et al, 2021, Norton and Ouyang, 2019).
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Nitrification is the aerobic oxidation of NH4* to NO3-and occurs in a two-step process
(Signor and Cerri, 2013); (1) nitritation; the oxidation of NHs+ to NO2- by Nitrosomonas
sp., Nitrosococcus sp, and Nitrosospira sp. (Eq. 2.1) and (2) nitration; where NO2" from

nitritation is further oxidized to NO3- (Eq. 2.2)

2NH,* 4+ 30, - 2NO,” + H,0 + 4H"* + energy Equation 2.1

2NO,” + 0, — 2NO;~ + energy Equation 2.2

Complete denitrification is the anaerobic reduction of NO3- formed from nitrification,
to N2 (Eq. 2.3), however where denitrification is incomplete, a greater proportion of

NOs-is converted to N20 instead of N2 (Smith, 2010)

5(CH,0) + 4NO,~ + 4H* - 5C0,~ + 7H,0 + 2N, + energy Equation 23

Both nitrification and denitrification can occur simultaneously where soil conditions
are favourable for both processes in adjacent microsites. In coupled nitrification -
denitrification, NO2- or NO3- produced during nitrification can be used by denitrifers
(Wrageetal, 2001).Early work by Khdyer and Cho (1983) measured both nitrification
and denitrification activity within a soil column treated with urea and under steady -
state 02 gradients. Nitrification occurred in the aerobic surface layer, while
denitrification activity was observed within the anaerobic sites. The authors showed
that N20 was predominately produce along the boundary of anaerobic - aerobic
conditions where the GHG diffused towards the soil surface, suggesting that N20
emissions were greatest under conditions that were partially optimal for both
nitrifiers and denitrifers. It is important to note that coupled nitrification -
denitrification and nitrifier denitrification are different microbial pathways that

produce N20. Nitrifier denitrification is a pathway of nitrification where autotrophic
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NH3s-oxidizers facilitate the oxidation of NH3 to NO2- followed by the reduction of NO2
to N20 and N2 (Wrage et al, 2001). A summary of the key soil microbial pathways for

the production of N20 can be seen in Fig. 2.3

NO, — NO — N,O — N,
Nitrification l
N,O NO;
Denitrification

NH, b NH,OH |mesb| NO, m—  NO — N (e N,

Nitrifier denitrification

Figure 2. 3: Simplified diagram of the soil microbial processes that produce N:O.

Adapted from Wrage etal. (2001).

2.4.2 Drivers of soil nitrous oxide emissions

As previously discussed, the production of N20 in soils is mediated by microbial
processes of nitrification and denitrification which are dependent on a combination of
factors including, soil oxygen concentrations, soil temperature, soil moisture, the soil
C:N and N20:N2 ratio, nutrient availability and soil texture (Bremner, 1997,
Butterbach-Bahl et al, 2013, Cameron et al,, 2013, Zhu et al,, 2020). For example, in
dry, well aerated and drained, coarse textured soils, nitrification will dominate N20
production. In contrast, wet, poorly aerated soils with a high C content and a fine

texture, N20 production will mainly be driven by denitrification (Signor and Cerri,
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2013). The microbial and ecological elements that control the production of N20 in soil
can be described by the conceptual model of Firestone and Davidson (1989) , known
as the “hole-in-the-pipe” (Fig. 2.4). The analogy of a leaky pipe represents the
production and consumption of N20. The flow of N through the pipe characterizes the
total rate of nitrification and denitrification which is regulated at the cellular level by
oxygen availability, substrate availability (NH3, NH4* and NOs3-) and electron donor
availability. The size of the holes along the pipe are a function of the presence of
favourable environmental conditions for the microbial production of N20, and relate

to the amount of gas released (Signor and Cerri, 2013, Wecking, 2021).
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Figure 2. 4: “Hole-in-the-pipe” model by Firestone and Davidson (1989) adapted from

Inatomi et al. (2019)

As the redox potential of soils is a key regulator of whether N20 production will be
stimulated by nitrification or denitrification, soil moisture (i.e. the water-filled pore
space[WFPS]) is considered a significant driver of N20 (Davidson, 1991). Linn and
Doran (1984) illustrated that variation in the WFPS could dictate whether nitrification
or denitrification was occurring, for instance up to a maximum WFPS of 60 %,
nitrification increases linearly and thereafter decreases while anaerobic
denitrification is considered negligible at a WFPS of 60 % but increases towards

saturation with increased soil moisture. At a WFPS of between 60 to 80 % maximum
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rates of N20 production have been observed (Rafique etal, 2011) however where the
WFPS exceeds 80 % (i.e. approaching water logged soil conditions), complete
denitrification occurs and the ratio of N20:N2 decreases. Furthermore, Congreves et al
(2019) showed the simultaneous occurrence of nitrification and denitrification atasoil
WFPS of between 53 and 78 %. The redox potential of soils is also mediated by soil
temperature where a positive feedback between denitrification and temperature exist
as increasing soil temperature enhances soil microbial activity and consequently soil
respiration, which in turn depletes the soil of oxygen creating an increase in anaerobic
sites for denitrification (Signor and Cerri, 2013, Wang et al., 2021). Soil temperature
also influences the ratio of N2:N20, for example, Maag and Vinther (1996) found that
the N2:N20 increased exponentially with increasing temperature. Lai and Denton
(2018) reported a temperature threshold of 35 °C for maximum N20 emissions, past

which N20 emissions production reduced and N2 production increased.

The amount of N20 emissions produced is also governed by management practices, ie.
fertilizer application and/or grazing, as this activity determines the soil N input which
is predominately in the form of NH4* and NOs-, while also adding organic C. Previously
reported N20 emission factors (EFs) (i.e. the percentage of N applied lost as N20) from
synthetic N fertilizers have ranged from 0.58 to 8.3 % (Cardenas et al, 2019, Harty et
al, 2016, Velthof and Losada, 2011), which is considerably larger than the refined
Intergovernmental Panel on Climate Change (IPCC) default value for synthetic
fertilizers (EF1) in wet temperate climate zones at 1.6 % (1.3-1.9 %). Variability in
reported N20 emissions from agricultural landscapes is likely due to differences in
management activity (e.g. N inputs), soil and environmental conditions which are site

specific and additionally, interactions between these variables which will vary over
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space and time. Earlier N2O emissions reported from grazing systems (urine and/or
dung) have ranged from 0.0027 to 0.95 %, which is within range to the IPCC revised
EF for pasture range and paddocks (EF 3prp) for cow urine and dung of 0.6 % (0 - 2.6
%) for wet temperate climates (Chadwick et al, 2018, Hyde et al,, 2016, Krol et al,,
2016, Simon et al,, 2018). Additionally, the N loading rate from such management
activities affects the total amount of N20 emissions lost from agricultural landscapes.
For example, annual N20 emissions from a winter wheat sown pasture treated with
400 kg N ha-lin the form of CAN produced emissions that were nearly twice as high as
pastures treated with 220 kg N ha1 at 0.56 % and 0.34 %, respectively, emitted as a

proportion of the N applied (Lebender etal,, 2014).

2.4.3 The spatial and temporal variability of nitrous oxide emissions in managed

grasslands

As previously discussed, soil properties, environmental conditions and agricultural
management influence the rate of N20 emissions but these variables change over space
and time, thus making N20 emissions extremely variable both spatially and temporally.
Studying N20 emissions from intensively managed grasslands is challenging due to the
heterogeneity of fertilizer and grazing related N inputs applied to these systems. This
can result in high N inputs to small areas across the pasture, which are liable to create
brief but high rates of N20 emissions known as hotspots. Hotspots of N20 occur where
multiple factors which favour the microbial production of N20 occur simultaneously.
For example, near water troughs or gateways, grazing animals are prone to congregate
and the soil compaction created by grazing animals’ results in localized changes to the
soil bulk density, reducing the macro-pore space and subsequently increase the WFPS,
thus altering the redox potential of the soil. When combined with additional N inputs

from urine and dung depositions, this favours the microbial production of N20 (Abbasi
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and Adams, 2000). Abdalla et al. (2009b) showed that modelled N20 emissions from
an intensively managed Irish grassland increased by 62 % when the bulk density of the
soil increased from 1.4 to 1.8 g cm1 (29 % increase). Hotspots of N20 have also been
observed within managed grasslands, for example, Cowan et al. (2015) reported N20
fluxesranging from 2 to 79,000 pg N20-N m2hr-1froma livestock farm in Scotland and
showed that 55 % of N20 fluxes were derived from 1.1 % of the field area which
represented shaded areas where sheep congregated in warm weather and manure

heaps.

Furthermore, the temporal variability of N20 emissions adds to the complexity of
accurately quantifying N20 fluxes from managed grasslands. Due to the episodic nature
of N20 emission events, it remains a difficult task to measure patterns of short-lived
N20 pulses over time from managed pastures (Barton et al,, 2015, Song et al., 2021).
Hot moments of N20 exhibit disproportionally high rates of emissions over a shorttime
frame, relative to longer periods of time (McClain et al, 2003). Such emission events
can occur either as a result of agricultural practices where external N inputs are added
to the system, enhancing substrate availability for the microbial production of N20 or
as a result of the heterogeneity of soil properties where favourable conditions for
nitrification and denitrification can co-occur resulting in elevated baseline emissions
(Congreves et al, 2019, Song et al,, 2021). Such events are a common phenomenon
within managed grassland systems, for example, Liet al. (2015) reported hot moment
events from a managed grassland in Japan of 114.46 pg N m2 hr-1 9 days following
harvest, and 109.90 pg N m-2 hr-1 and 206.83pug N m-2 hr-1 13 days after fertilizer
application. The authors also observed that fertilizer application coincided with 604

% of'the total N20 hot moments measured, and that such emission events accounted
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for 68.6 % of the total annual cumulative flux measured from the grassland. Similar
observations have been reported from an intensively grazed grassland in Ireland
where hot moment N20 emission events accounted for 51.1 % of the total cumulative
flux (Scanlon and Kiely, 2003). Diurnal trends in peak N20 emissions are still debated
within the flux community, with many published N20 studies not observing consistent
or regular peak emissions ata given time of day (Cowan etal., 2020, Jones etal., 2011).
On the contrary, a recent meta-analysis study by Wu et al. (2021) investigating the
diurnal variability in soil N20 emissions reported thatout ofthe 286 datasets analysed,
approximately 80 % of studies showed diurnal N20 patterns, with roughly 60 % of N20
emission peaks occurring during the day and 20 % occurring during night. It is
important to note that while the authors found similar diurnal patterns of N20 across
seasons, the sample size for autumn (n = 24), was considerably less relative to spring
(n=138), and summer (n=96), and winter N20 fluxes were notaccounted for, thus the
results for the overall diurnal patterns observed in N20 fluxes may be biased.
Moreover, in managed grassland systems peak N20 emissions observed during the
daytime could be due to the timing or legacy effects of agriculture practices and may
not be representative of a true diurnal pattern. While trends and correlations with
temperature are frequently used as a determinant for whether a diurnal relationship
exists within N20 emissions observed (Liang et al, 2018), additional parameters
relating to plant photosynthesis and the C cycle, such as solar radiation and
photosynthetic active radiation (PAR) have recently been applied, where labile organic
C through root exudation stimulated by PAR are suggested to control diurnal variants
in N20 emissions (Keane et al.,, 2018, Shurpali et al.,, 2016). For example, Keane et al.
(2018) showed that diurnal patterns in observed N20 emissions from an arable site in

the United Kingdom were more strongly related to PAR than temperature, implying
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that the availability of C from photosynthate influenced the diurnal trends in N20
emissions. The transfer of C from assimilating leaves to roots that will discharge C to
soil microbes provides an energy source for dentrifiers, and subsequently the
production N20 by denitrification under anaerobic soil conditions. At the seasonal
scale, N20 emissions from intensively managed pastures can vary with changes in
temperature, rainfall and soil moisture. Krol et al. (2016) showed that N20 EFs from
synthetic cow urine were lowest in summer (0.51 %), higher in spring (0.91 %) and
greatest in autumn (1.09 %) while EFs from dung were higher in autumn (0.52 %)
compared to spring (0.09 %) or summer (0.21 %). On the same experimental grounds,
Maire et al. (2020) showed that N20 EFs from cow urine were low and similar in both
spring (0.33 %) and summer (0.28 %) but were significantly different and highest in
autumn (0.82 %), while N20 EFs for CAN were negligible in summer (0.07 %), higher
in spring (0.31 %) and greatest in autumn (0.72 %). Despite a century worth of
investigations into understanding the processes driving N20 emissions, the multiple
scales of spatial and temporal variability of N20 emissions from managed grasslands
makes quantifying this powerful GHG with high certainty a persistently difficult task.

(Butterbach-Bahl et al,, 2013).

2.4.4 Mitigating nitrous oxide emissions fromintensively managed grasslands

Current mitigation practices often don’taccount for the heterogeneous nature of N20
emissions from agricultural soils, and instead enforce uniform management practices
across farmlands (Rees et al, 2020). In order to accurately mitigate N20 emissions
from managed grassland systems, the spatial and temporal variability in emissions
needs to be incorporated into future mitigation strategies. Such strategies can broadly

be categorised as (1) reducing organic and inorganic (animal excreta) N inputs; (2)
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manipulation of soil conditions and the processes of nitrification and denitrification
and (3) precision agriculture where agricultural practices are optimized in accordance
with plant nutritional needs as well as weather conditions to avoid direct and indirect
losses of N20 from managed pastures to the atmosphere and aquatic systems (de Klein
et al, 2020b, Rees et al, 2020). Previous studies have unequivocally shown a strong
positive correlation between N intake and animal N excreta (Huhtanen et al,, 2008,
Kebreab etal, 2001, Mulligan etal,, 2004). Therefore itis evident that reducing animal
N intake could reduce organic N inputs into managed pastures, provided the modified
diet was still able to meet the animals’ metabolic requirements for e.g. sufficient crude
protein levels, sugars and starch (Dalley et al., 2017). In New Zealand, studies have
shown a reduction in the N concentration of urine from animals grazing plantain
(Plantago lanceolata L.) or mixed pastures where it is incorporated, with a strong
likelihood of reducing the total amount of urinary N excreted (Box et al, 2017, Cheng
et al, 2017, Totty et al, 2013). Furthermore, O'Connell et al. (2016) showed that a
plantain diet could cause diuresis in sheep, which could explain the lower urinary N
concentration results in the studies cited above. Another strategy to reduce N:20
emissions could be to allocate more of the excreted N into dung compared to urine as
the EF for dung is generally lower than for urine. For example, Irelands Tier 2 EF for
cattle dung and urine is 0.3 and 1.2 % (Duffy et al,, 2021), respectively, and similarly
so is New Zealand’s Tier 2 EFs at 0.25 and 1 % for dung and urine, respectively
(Ministry for the Environment, 2018). Previous studies have shown that incorporating
condensed tannins (CT) into livestock diets reduced urinary-N-excretion and
increased the amount of N excreted in dung, while improving the overall N retention
in animals (Carulla et al, 2005, Misselbrook et al, 2005). Recent developments in

remotely piloted aircraft systems (RPAS) have enabled the quantification of the spatial
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heterogeneity of animal excreta (Maire et al,, 2018), and this coupled with site specific
EFs further enables estimates of field scale N20 emissions (Reesetal,, 2020). Such data
provides baseline information that can used to improve the application of other
mitigation tools such as the use of urease and nitrification inhibitors on animal excreta.
These synthetic compounds inhibit soil enzymes that are responsible for the
production of NH3 by urea hydrolysis and N20 by nitrification and denitrification. On
the other hand, urine patches only become visible approximately a week after
defaecation by visible variations in vegetation growth and colour (Auerswald et al,
2010), during which significant N20 losses can occur. An alternative approach could be
fitting grazing animals with GPS, thermal or urine sensors to enable quick deployment
of inhibitors to dung and urine patches (Betteridge et al, 2010, da Silva et al,, 2020,
Misselbrooketal, 2016).Furthermore, recentdevelopments in mapping urine patches
by measuring changes in the soil electrical conductivity have been conducted in New
Zealand and Ireland (Bates et al.,, 2015, Jolly et al, 2021) which would allow for fast

mediation and application of inhibitors to reduce N20 emissions.

Targeting the soil microbial processes that produce N20 in order to reduce emissions
is necessary for the development of N20 mitigation strategies. Studies have shown that
plant secondary metabolites are capable of supressing or inhibiting soil N
transformation processes, such as nitrification through the release of nitrifying
inhibitors from certain plant species roots, known as biological nitrification inhibition
(BNI) (Subbarao et al, 2013, Villegas et al, 2020). For example, Villegas et al. (2020)
found a 30 to 70 % reduction in nitrification rates across 119 germplasm accessions of
Guineagrass (Megathyrsus maximus L.), an important tropical crop for livestock

production. Byrnes etal. (2017) reported that N20 emissions from urine patches were
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three times lower where urine patches were deposited on tropical forage grasses with
a high BNI capacity (Brachiaria humidicoola cv. Tully) relative to tropical forage grass
species with low BNI capacity (Brachiaria hybrid cv. Mulato). Luo etal. (2018) showed
that urine patches deposited in monoculture pots of plantain (Plantago lanceolata L.)
emitted N20 emissions that were on average 28 % lower relative to urine patches in
monoculture pots of perennial ryegrass and attributed this reduction in emissions to
BNI mechanisms in plantain. Moreover, Carlton et al. (2018) showed lower rates of
nitrification and NO3 leaching from plantain soil compared to perennial
ryegrass/white clover soil due to a lower abundance of soil ammonia oxidiser bacteria

(AOB) in the plantain plots.

2.5 Quantifying nitrous oxide emissions

To date there are a variety of methodologies used to quantify N20 emissions over
different spatial and temporal scales. Over small spatial scales, the most commonly
used method is the closed chamber technique consisting of manually operated (i.e.
static chambers), where the chamber is closed and open by the person sampling
(Clough etal, 2020) or automated closed chambers whereby the chambersare opened
or closed through a pneumatic system (Rapsonand Dacres, 2014). When measuring
N20 fluxes using the static chamber approach, gas samples are manually taken from
the chamber headspace through a rubber septa using a syringe equipped with a needle
and stored in evacuated glass vials until processed using the analytical method known
as gas chromatography (GC). The attractiveness of the static chamber technique for
quantifying field fluxes of N20 is primarily due to its low cost to operate, enabling flux
measurements from multiple locations but the main disadvantage of this technique is

its low temporal resolution as flux measurements are frequently made once a day and
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generally within a constrained time window (Rapson and Dacres, 2014). In contrast,
automated chambers equipped with fast response gas analysers enable higher
frequency measurements of N20 fluxes, such as Fourier transform infrared
spectrometer, tunable diode laser absorption spectrometers and quantum cascade
lasers (QCLs) (Cowan et al.,, 2014, Wecking et al.,, 2020a). More recently, gas analysers
specifically designed for measuring soil derived GHG fluxes have become commerecially
available, such as the LI-7820 N20/H20 trace gas analyser, which when coupled with
the portable 8200-01S Smart Chamber by LICOR, enables the quantification of high
frequency N20 fluxes from multiple locations. In addition to automated chamber
systems, high frequency gas analysers, in particular QCLs, have recently been equipped
to eddy covariance (EC) apparatuses to allow for near continuous measurements of
the exchange of N20 between the atmosphere, soil and vegetation (Cowan et al., 2016,
Wecking etal, 2020b). The application of EC systems to measure field scale emissions
of N20 is a relatively new area of research, providing exciting opportunities for
determining the long term effects of management and climate on N20 emissions as well
as providing avenues for modelling and predicting N20 emissions under different
agricultural practices and climate scenarios. However at present, there are few long-
term datasets of continuous N20 flux measurements from managed pastures (Cowan
et al, 2020, Merbold et al, 2021), and subsequently there is a strong need for such
robust data sets in order to understand the long-term implications climate and
management have on N20 emissions. Investigations into the application of static
chamber and EC flux measurements of N20 from intensively managed pastures are
central to the findings of this thesis, with aims ofinvestigating the spatial and temporal
discrepancies between the EC and static chamber techniques from a fertilized

management (Chapter 4), as well as optimizing their application under a grazing
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management in the presence of mixed N sources (i.e. fertilizer and animal excreta)

(Chapter 5).

2.5.1 Static chambers

To date the static chamber technique is the most commonly used method to quantify
N20 fluxes, accounting for 95 % of all soil derived N20 flux measurements (Lammirato
et al, 2018). Measurements of N20 are determined by measuring the change in gas
concentration within the chamber headspace over time. Fluxes are typically calculated

in accordance with the Ideal Gas law (Eq. 2.4)

Fen = (%) * (Mx P) * (E) Equation 2.4

RxT

Where Fcn is the soil derived gas flux measured by the static chamber technique using
linear regression, dC is the change in headspace concentration of N20 during the
enclosure period in ppbv, dT is the enclosure period in hrs-1, M is the molecular weight
of N20 at 44.01 gmol-1, P and T are the atmospheric pressure in Pa and temperature in
K at the time of gas sampling, respectively, R is the ideal gas law constant at 8.314 ] K-
1 mol1, V is the volume in the chamber headspace in m3 and A is the ground area

enclosed by the chamber in m2.

Measurements of N20 from static chambers are made over small spatial scales
(typically between 0.1 and 0.5 m?2) and generally once a day (typically between 10am
and 2pm), fromthe chamber headspace where the gas concentration accumulates over
time (Hoffmann et al,, 2018, Pihlatie et al,, 2005a, Rochette and Eriksen-Hamel, 2008).
Historically, this technique has been used to investigate treatment effects on N20
(Hyde et al, 2016, Harty et al, 2016, Maire et al,, 2020), and quantify EFs which have

been incorporated into national (Duffy et al,, 2021) and international (Buendia et al,,
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2019) N20 emission inventories. A summary of the advantages and disadvantages of

this technique are shown in Table 2.

Table 2. 1: An overview of the advantages and disadvantages of the static closed chamber

technique.
Advantages Reference Disadvantages Reference
Jones et al. Low spatial and temporal Jones et al.
Inexpensive to operate (2011) resolution (2011)
Jones et al. Requires a dedicated Maire et al.
Easy to deploy (2011) measuring campaign (2020)
Ideal for treatment or source Hyde et al. High uncertainties in flux Lammirato et al.
specific investigations (2016) measurements (2018)
Clough etal.  Prone to artefacts during
. N (2020), sampling, such as
Standardised guidelines Pavelkaet al. pressure differentials Davidson et al.
(2018) (Venturi effect) (2002)
Increases in temperature
in the chamber Rochette and
Low power source Jones et al. headspace can impact .
. . i Hutchinson
(unless a fan is used) (2011) microbial processes and (2005)

increase N,O dilution via
increased humidity

Upscaling chamber N20 flux measurements to the field scale is often associated with a

high degree of uncertainty due to the heterogeneity of N20 emissions across

agricultural landscapes (Cowan et al, 2015, McDaniel et al, 2017, Wecking et al,

2020b). As aresultit is still a very challenging task buta necessary one to overcome in

order to understand how localized changes in N20 are represented at the larger,

ecosystem scale. Alternatively, the automated chamber approach can overcome the

temporal limitations of the static chamber technique by operating at far higher

frequencies,and is therefore able to capture the variability in N20 emissions over time.
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2.5.2 Eddy covariance

The EC technique continuously measures the exchange of GHGs between the
atmosphere, vegetation and the soil at high frequencies (10 - 20 Hz depending on the
experimental setup) and over areas as large as 1 km2. In essence, the EC GHG flux (Frc)
can be described as the covariance between the gas concentration (C) and the vertical
wind speed (w) where fluxes calculated from a given area are determined by the wind

speed and direction (Eq.2.5)

Fee =W0C Equation 2.5

The EC technique has frequently been used to measure COz fluxes and quantify C
balances in grasslands (Byrne et al, 2007, Lalrammawia and Paliwal, 2010), cropland
(Ni Choncubhair et al, 2017, Morrison etal., 2020), peatlands (Mikhaylov et al,, 2019,
Sottocornola and Kiely, 2010) and forests (Campioli etal.,, 2016, Saunders etal., 2014).
Less research has been conducted using the EC technique for measuring ecosystem
scale fluxes of N20 due to the low concentration changes that are required to be
detected and as a result, there are few of datasets available with the high spatial and
temporal resolution required to better understand N20 flux dynamics (Cowan et al,,
2020, ]Jones etal,, 2011, Merbold etal., 2014, Wecking et al.,, 2020b). A summary of the
advantages and disadvantages of the EC technique can be found in Table 2.2. One of
the main disadvantages of using the EC technique for quantifying field scale emissions
of N20 is the inability of this method to distinguish between different sources of N
within the footprint (i.e. the area over which fluxes are measured) and as a result it is
difficult to determine the contribution of different N sources to the total N20 losses
from a heterogeneously emitting surface. Moreover, sources of N from managed

pastures such as urine or dung patches, represent hotspots of N2O (Hyde et al, 2016)
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which can greatly contribute to the total N20 losses quantified from grazed grasslands
(Chadwick etal., 2018,Cowan etal,, 2015).As the presence of hotspots within managed
grasslands varies spatially and temporally (Cowan et al, 2015, Liang et al,, 2018), in
combination with changes in the EC footprint according to the EC mast height, wind
direction and speed, atmospheric turbulence and canopy height (Burba and Anderson,
2010), this means that the EC technique may notalways capture hotspot emissions of

N2O.

Table 2.2: An overview of the advantages and disadvantages of the eddy covariance technique

Advantages Reference Disadvantages Reference
Non-disruptive to the Kumar et al. lC)an t dlsaggr.eg.ate Wecking et al.
: : etween emission
surrounding environment (2017) (2020b)
sources
Does not require a Jones et al Expensive to operate
dedicated sampling 2011 " and requires longterm IPCC (2021b)
campaign ( ) maintenance
Provides high resolution Burba and Requires a high level of Jones et al.
L Anderson :
data in time and space (2010) expertise (2011)

Useful forinvestigating
inter annual variability in Kumar etal. Requires a continuous Kumar et al.
GHG in response to changes (2017) energy supply (2017)
in climate and land use
Dependence on

Standardised cuideli FLUXNET atmospheric and Kumar et al.
andardised guidetines (2021) environmental (2017)
conditions

2.5.2.1 Quantum Cascade Laser Spectroscopy

The recent development and deployment of high frequency, absorption spectrometers
such as QCLs integrated with EC systems has enabled the quantification of ecosystem
scale emissions 0of N20 (Gelfand etal,, 2018, Wang etal., 2020, Wojtas etal.,, 2011). QCLs
consist of alternating layers of semiconductors from which light is created by electron

transitions between two excited conduction-band states in quantum wells. As a result
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the emission wave-length of QCLs are independent of the materials used within its
structure and therefore, can be tuned by design to measure over specific spectral
ranges for different trace gases (for example, N20, CO, CH4 or NOx) (Chen et al,, 2016,
Maamary et al, 2016, Paiella, 2011, Sobanski et al, 2021). A single electron is able to
cause the emission of multiple photons as it cascades through the layers of semi-
conductors (Rapson and Dacres, 2014). One of the main advantages of QCLs relative to
other optical techniques is that it does not require cryogenic cooling and can operate
at room temperatures with minimal sensor drift. This feature enables QCL systems to
be coupled with EC for field scale measurements (Cowan et al., 2016, Merbold et al,
2021, Wecking etal,, 2020b). In addition to this, QCLs operate at high sensitivities, with
standard units in ppb, which is essential when trying to capture spatial and temporal

changes in low atmospheric concentrations of N20 (Curl etal,, 2010).

2.6 Reporting greenhouse gas emissions

2.6.1 Intergovernmental Panel on Climate Change (IPCC) Tier Methodologies
Inventories of N20 are determined using EFs that are derived by quantifying the
amount of N20 emitted relative to the amount of N applied. The application of EFs in
national inventories is advised by the IPCC, through a Tier system consisting of three
distinct methodological approaches; Tier 1, which represents the use of default EFs
provided by the IPCC, Tier 2, which are country specific EFs that includes activity data
or distinguishes between different N forms, e.g. livestock number, type of N applied
and varying application rates of N fertilizer; and Tier 3, which utilizes process based
(for example, DNDC and DAYCENT), and empirical models (such as the Cool Farm Tool
or CCAFS-MOT), and high resolution land use and land-use change data (Pachauri et

al, 2014).
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To date, most countries have adopted either the Tier 1 or Tier 2 approach in reporting
national N20 inventories including Switzerland (Bretscher, 2013), New Zealand
(Ministry for the Environment, 2018), the United Kingdom (Thorman et al, 2020) and
Ireland, where Ireland’s Tier 2 EFs are shown in Table 2.3 (Duffy etal, 2021), and with
the exception of America (McGlynn et al, 2019), Tier 3 inventories are significantly
under- developed. This can partially be attributed to a lack of available long term, high
resolution N20 flux datasets to enable low uncertainty modelling (Reay etal., 2012).
Default EFs for N20 from agricultural landscapes are available for synthetic N
fertilizers and grazing (i.e. pasture, range and paddocks, EFsprp) as outlined in the
[PCC’s 2006 and 2019 Good Practice Guidelines (Buendia et al., 2019, Eggleston et al,
2006). However such EFs have large uncertainties attributed with them, with
numerous studies reporting higher or lower N20 losses suggesting that Tier 1 EFs are
insufficient for capturing emissions which are driven by changes in site specific
management activities and weather conditions (Chadwick et al,, 2018, O’'Neill et al,,
2020, O’Neill etal,, 2021, Simon etal,, 2018, Thorman etal,, 2020, Zhou etal, 2017). As
aresult, the Tier 1 2006 guidelines have since been revised and further disaggregated
into N sources derived from agricultural landscapes such as urine and dung

depositions from grazing animals, as well as wet and dry temperate climates (Table

2.3) (Buendia et al., 2019).
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Table 2. 3: Nitrous oxide (N:0) emission factors (EFs) from the IPCC (2006) guidelines on
greenhouse gas inventories, the revised EFs in the 2019 revisions of the 2006 EFs, and the

Tier 2 EFsused in Ireland as part of the national emission inventory report.

N:0 EFs IPCC (2006) IPCC (Revised 2019)" Ireland
%
EFicaN 1(0.3-3) 1(1.3-19) 14
EF1urea - - 0.25
EFiurea+NBPT - - 0.4
EFsprp 2 (0.7-6) 0.6 (0-2.6) -
EF3 cattle urine - 0.77 (0.03-3.82) 1.2
EF3 cattle dung - 0.13 (0 -0.53) 0.31

*EFs listed are for wet temperate climates

Presently, there is a lack of available data on EFs from individual N inputs and even
less for integrated N sources which characterize grazing systems. For example, in a
standard grazing management, synthetic fertilizer will be applied to stimulate grass
growth and following sufficient increases in plant productivity, animals will enter the
pasture to graze, depositing urine and dung. In some cases, organic fertilizer in the
form of slurry will also be applied between grazing events. Therefore, grazing systems
are not only dominated by N20 emissions from fertilizer, urine and dung but rather
from the additive N inputs where synthetic fertilizer is combined with urine and/or
dung and potentially overlapping urine and dung patches. However, there is limited
data available which quantifies emissions from these mixed sources (Table 2.4), which
makes upscaling emissions from managed grasslands with low uncertainties a difficult
task. Hyde et al. (2016) showed that the application of CAN fertilizer with dung had an
additive effect on N20-N emissions, while CAN added to urine showed a multiplicative
effect. Furthermore, emissions from urine and dung patches can have considerable
legacy effects, lasting between 10 and 70 days after deposition (Buckthought et al,,

2015, Flessa et al, 1996, Bell et al, 2015, Hyde et al, 2016, Krol et al, 2017).
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Considering that agricultural soils account for 90 % of N20 emissions in Ireland, of
which 38 %is derived from synthetic fertilizers and 23 % is from animal excreta during
grazing (Teagasc, 2021b), there is an urgent necessity for robust data sets which
capture emission events from interactive sources. This in turn would provide more
accurate inventories of N20 emissions from managed grasslands, and would also offer

realistic and reliable data which will further supportthe modelling of N20 emissions.

Table 2.4: Nitrous oxide (N20) emission factors (EFs) and cumulative N20-N emissions

frominteractive treatments of cattle urine,dung and calcium ammonium nitrate (CAN)

Author Treatment N loading EF Cumulative

kg N ha™ % kg N,O-N ha™
Hyde et al. (2016) urine and dung 1629 - 0.56
dung and CAN 525 - 2.12
urine and CAN 1284 - 5.52
Krol et al. (2017) urine and CAN 901 0.55 5.07
Maire et al. (2020) urine and CAN* 635 0.74 4.87
urine and CAN? 788 0.52 418
urine and CAN3 701 0.76 5.39
Buckthought et al. (2015) urea and urine’ 1000 0.3 3.19
urea and urine® 1200 0.3 4.33
urea and urine? 1000 0.53 6.1
urea and urine? 1200 0.47 6.44

1 = spring, 2=summer, 3= autumn

2.6.2 Greenhouse Gas Budgets

Determining the net C balance of managed grasslands by quantifying changes in CO2
uptake and loss over time, as well as the lateral movement of Cimports to and C exports
from agricultural landscapes is important for assessing the baseline warming or
cooling effect exerted from managed grasslands. This initial net warming or cooling
response to management is further exacerbated through emissions of non-CO2 GHGs

such as N20 and CH4, which are driven by temporal changes in soil and weather
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conditions as well as the intensity and timing agricultural practices (Cowanetal,, 2021,
Luo et al, 2013). The net GHG budget (NGHGB) of a managed pasture quantifies the
sum of C imported into the system (for example, through plant assimilation of C or
external C inputs from management, for example organic fertilizer), and C exported
from the system (for example, by processes of autotrophic and heterotrophic
respiration as well as the removal of biomass from the pasture in silage cuts), as well
as the net GHG exchange (NGHGE) in terms of COz equivalents. The NGHGB is an
important tool atboth the globaland farm scale for determining if managed grasslands
are a net C source or sinkand subsequently the role these system play in mitigating or

forcing climate change.

At the global scale, C budgets are a useful tool for reporting country scale emissions
and aligning them with climate change policy. The global C budget (GCB) quantifies the
amount of CO2 that can be emitted to stay within a defined global temperature (Mc
Guire et al, 2020). The GCB provides the foundation upon which goals within
international legislation are determined and developed. For example, Article 2 of the
Paris Agreement describes keeping global mean temperatures “well below 2 °C”
relative to pre-industrial levels, with a strong emphasis on capping global
temperatures to 1.5 °C and additionally, Article 4 is focused on achieving net-zero GHG
emissions (Paris Agreement, 2015). The European Green Deal is the roadmap towards
the goal of net zero emissions outlined in the Paris Agreement, with an intermediate
target of reducing emissions by 55 % by 2030. European member states of the Paris
Agreement have utilized C budgets to monitor progress towards country specific
objectives to attain C neutrality by 2050. For example, France utilizes legally binding,

short-term (4-5 year) C budgets which are disaggregated by sector to govern progress
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made towards emission reduction targets (Ministry of ecology sustainable
development and energy, 2015). In the French 2015-2018 C budget efforts to reduce
emissions were deemed insufficient as emissions were in excess of 14 % (or 62 Mt CO2-
eq) (Fontan etal, 2019). Reporting and reviewing C budgets in the shortterm is useful
as it enables the revision of current mitigation practices and the implementation of

improved mitigation strategies.

At the field or farm scale, C budgets can provide meaningful insights into the
contributions of managed grasslands in driving or mitigating against climate change
and the implications management and environmental conditions have on this. For
example, Jones et al. (2017) showed that the C balance from a managed grassland in
Scotland over a nine year period illustrated system transitions between a net C source
at57.6 gCm=2yr1toanetCsink at-587.7 g C m2 yr-1. In years where the grassland
was net C sink, this was driven by high C uptake from the NEE of CO2, while in years
where the system was a net C source the authors attributed this to the grazing regime
where the stocking densities were relatively high (~0.90 LSU ha-1) resulting in higher
contributions of CO2-C losses through animal respiration. Jones etal. also showed that
N20 emissions (in terms of CO2 equivalents) measured from the grassland offset the
sink strength of the NEE of CO2 by 29 % over the nine year period, illustrating the
potency of the global warming potential (GWP) of N:20. Myrgiotis et al. (2021)
employed model-data fusion (MDF) algorithms to illustrate both the impact of
management and extreme weather conditions on the C budget of managed grasslands
across Britain in 2017 and 2018. Their findings showed that sward composition and
timing, intensity and type of defoliation were key factors in determining the C balance.

Additionally, the authors observed a nine-fold increase in the number of paddocks
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acting as C sources in 2018 during extreme drought conditions relative to 2017, no
extreme weather events were observed. Ammann etal. (2007) calculated the C budget
of a newly established temperate grassland in Switzerland that was segregated into
two plots, one plot under an intensive management (200 kg N ha-1 yr-1and frequent
cutting) and the other plot under an extensive management (no N application and
lower cutting frequencies). The authors showed that the intensive management
sequestered C at a rate of 147 + 130 g C m2 yr1, and conversely the extensive
management was a source of C ata rate of 57 (+ 130/-110) g C m2 yr-1, although this

was considered non-significant and thus could be considered neutral.
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Chapter 3: Materials and Methods

3.1 Experimental Site

The work presented in this thesis was conducted on an intensively managed temperate
grassland in the south-east of Ireland in Co. Wexford at Teagasc Johnstown Castle,
Environmental Research Centre (52.30°N, 6.40°W, 67 m above sea level ) (Fig. 3.1[a]).
The field site is approximately 2.65 ha-lin size and compromises of two paddocks -
paddock 10 (P10) and paddock 11 (P11) (Fig. 3.1[a]). A summary of the site
characteristics and management interventions applied during the course of this study
can be seen in Table 3.1 and Table 3.2, respectively. This field site was chosen as it is a
long term experimental research site, operating since 2002, where various studies on
greenhouse gas (GHG) dynamics had previously been conducted and long-term data
on agricultural management and soil characteristics are available (Krol et al.,, 2016,
Maire et al, 2020, Ni Choncubhair et al, 2017) . An eddy covariance (EC) tower
equipped with a 3-D sonic anemometer (CSAT-3, Campbell Scientific Ancillary, Logan,
UT, USA) is located in the north-west of the field site which is facilitated to measure the
ecosystem to atmosphere exchange of greenhouse gases (GHG), including carbon
dioxide (CO2) (LI-7500, LI-COR Biosciences, Lincoln, NE, USA) and nitrous oxide (N20)
(LGR 23R N20/CO analyser Los Gatos Research, California, USA). The EC mast was set
up at 2.2m and was equipped with a range of ancillary sensors, measuring air
temperature and relative humidity (HMP155C, Campbell Scientific, Logan, UT, USA)
soil temperature at 2-6 cm depth (TCAV-L, Campbell Scientific, Logan, UT, USA),
rainfall (Young, Michigan, USA), volumetric water content at 15 cm depth (CS616,

Campbell Scientific, Logan, UT, USA), photosynthetic active radiation (PAR) (PQS1,
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Kipp and Zonen, Delft, The Netherlands) and net radiation (NR-Lite, Kipp and Zonen,

Delft, The Netherlands).

Additionally there is weather station < 1 km from the field site which was used to gap-

fill missing meteorological data and extracting long-term averages (LTA). In the south-

west of the field site, a grazing exclusion area was erected in 2020 for dedicated

experimental trials (Fig. 3.1[b]). The mean air temperature and precipitation for the

field site in 2019 and 2020 was 11 and 10 °C, respectively, and 81 and 56 mm,

respectively, which were similar to the long term average (LTA) (1991 -2010) for the

field site at 11 °C,and 76 mm. (Fig. 3.2).
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Figure 3. 1: (a) Map of the island of Ireland where the red square marks the location of the

experimental field site at Teagasc Johnstown Castle, Environmental Research Centre, Co.

Wexford. (b) Map of the experimental field site where the light grey shaded areas represent
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the field site, P10 and P11 represent paddock 10 and 11, respectively, the dark grey area

represents the trial plot for the experimental campaign that was conducted in 2020 and the

black square in P10 represents the location of the eddy covariance tower.
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Table 3. 1: Site characteristics where values in brackets represent the standard deviation.

Area C K Mg N oM p pH  Sand/Silt/Clay Soil type Mg;‘; Cgizss
ha™ % mg/kg mg/kg % % mg/kg - % - -
Perennial
2 65 3.51 72.98 129.83 0.38 8.56 4.95 6.06 53/33/14 Moderately drained ryegrass
: (0.12) (5.29) (3.81) 001)  (018)  (020)  (0.04) /33/ sandy loam (Lollium
perenneL.)

Table 3. 2: A summary of the field management activity in 2019 and 2020

Month* F | M | A M ] ] A S 0 N D
Week 1 2 3 4|1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 12 3 4 1 2 3 4 1 2 3 4|1 2

CAN
applicat
ion (ki
2019 Nha™) € 40 70 80 40
Silage
Cut

CAN
applicati
on (kg N
ha™) 50 40 27 75 27 27
Grazing
period

2020

*From leftto right: J = January, F =February, M = March, A = April, M= May, J = June, J = July, Aug= August, S = September, O = October, N = November,
D= December
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Figure 3.2: Mean monthly (a) air temperature and (b) precipitation for 2019 and 2020, where

the straight black line represents the long term average (LTA) between 1978 - 2007 (Met

Eireann, 2021) for the field site.

3.2 N20 flux measurements

Measuring the spatial and temporal dynamics in N20 emissions is the focus of the
objectives of the work presented in this thesis. To date measurements of N 20 emissions
have been undertaken using a range of techniques including chamber methods, both
manual (Maire etal.,, 2020) and automatic (Courtois etal., 2019), micrometeorological
methods for example, eddy covariance (Cowan et al., 2020), and analytical techniques
for instance, gas chromatography (GC) (Wecking et al,, 2020a) and quantum cascade
lasers (QCL) (Wecking et al,, 2020b). Improvements in N20 flux measurements have
greatly enhanced our understanding of the processes involved in controlling the
production and emissions of N20 from agricultural landscapes at both the molecular
and ecosystem scale (Groffman et al,, 2000, Kumar et al, 2020). However, due to the
multitude of abiotic and biotic factors which govern N20 emissions in space and time
(Butterbach-Bahl et al., 2013), it is still a difficult task to quantify N20 fluxes with low

uncertainties.
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3.2.1 Static chamber

The static chamber method is based on the accumulation of GHGs emitted fromthe soil
surface within a chamber and collecting gas samples from the chamber headspace over
a short period at regular intervals for analysis by gas chromatography (Collier et al,,
2014). Mean daily N20 fluxes are typically estimated from chamber measurements
taken once a day, generally in the morning to midday hours, while spatially and
temporally integrated cumulative N20 emissions are based on the sum of frequent
mean daily N20 fluxes from a given number of chamber replicates, and are typically

calculated at the seasonal or annual scale (de Klein et al., 2020a).

The static chamber design was consistent between individual experiments in this
study, and identical to those from previous experimental work conducted on this field
site (Cummins et al, 2021, Krol et al,, 2017, Maire et al,, 2020). The chamber design
consisted ofa 40 cm x 40 cm stainless steel collar and lids that were 10 cm high creating
an approximate headspace volume of 21 L (Fig 3.3). Chamber collars were inserted
into the ground atapproximately 5 - 10 cm depth at least, and at a minimum of 48 - 72
hrs-1 prior to chamber N20 flux measurements in order minimize uncertainties
associated with disturbing the surrounding soil and vegetation following installation.
The chamber headspace was measured after installation using a ruler and the volume
of vegetation inside the chamber was considered negligible (Rafique et al,, 2012). The
inner rim of the chamber collar was lined with a rubber (neoprene) or water seal, and
a 10 kg weight was placed on top of the chamber, both practices were to ensure an air
tight seal to prevent gas leaking between the collar and chamber (Fig 3.3). The
chamber lids were fitted with two double-wadded rubber septa (Becton Dickinson,

Oxford, UK) to facilitate gas measurements.
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Figure 3. 3: An image of the static chamber design used in to measure N0 flux measurements

in this study.

In 2019, chambers were positioned randomly across P10 and P11 (Fig. 3.4) using both
sector randomization (Chadwick et al, 2014) and pre-existing data on the soil
properties of the field site, thus ensuring that chamber locations were not biased

towards a certain collection of soil conditions.
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Figure 3.4: Chamber locationsin paddocks 10 (P10) and 11 (P11) for the experimental period
January 1st to December 31st 2019, as indicated by orange circles. The red square marks the

location of the eddy covariance towerin P10.

In 2020 static chambers were placed in the south-west of P10 within a fenced off trial
plot to avoid interference from grazing animals. The chamber trial plot consisted of a
gas sampling zone of five plots/replicates for measuring N20 emissions, and three
plots/replicates for measuring changes in soil mineral N. Soil and flux measurements
were made from four treatments - (1) control: without N application, (2) fertilizer in
the form of CAN, (3) SU+CAN and (4) dung+CAN. Both soil and gaseous measurements
were made from four grazing (G) events - 03/03/2020 - 02/04/2020 (G1),
03/05/2020-10/05/2020 (G2), 25/05/2020-03/06/2020 (G3) and 31/08/2020 -

21/09/2020 (G4). This enabled a quantification of the temporal variability in N20
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fluxes over the measurement period. A schematic description of the trial plotis shown

in Fig. 3.5.
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Figure 3. 5: Schematic of the randomized block design trial plot for soil sampling (left plots)

and N:0 flux measurements by static chambers (right plots). Each plot represents a different

replicate (i.e. 5 replicates for chamber measurements and 3 replicates for soil measurements)

and each row in each plot represents a different grazing event.
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3.2.1.1 Sampling N20 fluxes

Gas samples were taken between 10 am and 2 pm using a 10ml polypropylene syringe
(BD Plastiplak, Becton Dickinson) fitted with a hypodermic needle (BD, Microlance 3;
Becton Dickinson) to extract the gas sample from the chamber headspace through a
rubber septum. Gas samples were taken at three time intervals - 0,20 and 40 minutes
and 0, 15 and 30 minutes in 2019 and 2020 respectively. The longer time period
between consecutive sampling per chamber in 2019 relative to 2020 was to
accommodate a greater distance between chambers. Background gas samples, i.e. gas
samples which are representative of baseline emissions at the time, were taken on at
least two occasions prior to treatment application. Following treatment application in
both experimental years, gas samples were taken four times a week for the first two
weeks, twice a week for the following two weeks, and then once a week for the duration
of the experiment. In the experimental trial in 2020, the frequency of measurements
was extended post treatment application to account for prolonged legacy effects on
emissions. The same measurement frequency described was implemented but on the
fifth week post treatment application, gas samples were taken once a week for the
following five weeks, reducing to twice a month up until week 17 postapplication and

afterwards once a month until the end of the experiment.

3.2.1.2 Processing N20 gas samples

Gas samples taken from the chamber headspace were injected into a pre-evacuated 7
ml screw-cap septum glass vial and analysed in the laboratory using gas
chromatography (GC) immediately after sampling (Scion 456-GC, Kirkton Campus
Livingston, UK). All vials were over pressurised with a 10 ml gas sample to prevent

leaking over time if immediate analysis was not possible. The GC used in this research
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was equipped with an electron capture detector (ECD) using dinitrogen (N2) as the
carrier gas. Concentrations of N20 were calculated by using the software MS
Workstation by Bruker, to integrate the area under the N20 peak. Concentrations of
(CO2) were measured in tandem to N20 using a thermal conductivity detector. The
calibration of the GC used a set of five certified standards with ranges of 0.2 - 10 ppm
for N20 and 500 - 10,000 ppm for CO2. For each sequence of gas samples from a

chamber, the flux was calculated in accordance with the Ideal Gas Law (Eq. 3.1)

Fy = (Z—;) * (Mxp) * (E) Equation 3.1

RxT

Where Fcn (ug m2 hr-1) is the soil derived gas flux measured by the static chamber
technique using linear regression (LR), dC is the change in headspace concentration of
N20 during the enclosure period in ppbv, dT is the enclosure period in hrs-1, M is the
molecular weight of N20 at 44.01 g mol1, P and T are the atmospheric pressure in Pa
and temperature in K at the time of gas sampling, respectively, R is the ideal gas law
constant at 8.314 ] K-1 mol1,V is the volume in the chamber headspace in m3 and A is

the ground area enclosed by the chamber in m-2.

3.2.1.3 Post processing N20 fluxes

Establishing a quality control procedure for flagging bad quality chamber N20 flux
values is difficult due to the large spatial (Cowan et al., 2015, Turner et al,, 2008) and
temporal (McDaniel et al, 2017, Wu et al, 2021) variability attributed with N20
measurements. As CO2 fluxes were measured in parallel with N20 fluxes, ecosystem
respirationrates were used as a quality controlcheck forleaks ornon-linear responses

(de Klein and Harvey, 2015). In addition to this, if the correlation coefficient (r?)
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between N20 concentrations and time was < 0.70, N20 fluxes were further assumed to

be non-linear and removed from the data set.

Analysing static chamber N20 flux data is challenging due to the inherent spatial and
temporal limitations of this method (Jones et al, 2011), often resulting in high
uncertainties in N20 flux measurements, which are further exacerbated by frequently
small samples sizes (n < 5) (Chadwick et al, 2014, Maire et al, 2020). Moreover,
emissions of N20 typical display a peak and decay pattern over time, which is
characterised by a few high flux measurements following N inputs from fertilizer or
animal excreta in combination with favourable environmental and soil conditions,
followed by a return to baseline emissions in the days following the emission event
(Cowan etal, 2016, Hyde et al,, 2016, Krol et al, 2016). This temporal pattern in N20
emissions follows a log-normal distribution which further adds to the complexity of
handling static chamber N20 flux measurements with low uncertainties. Traditionally,
‘normal statistics’ are used to calculate daily mean fluxes from static chamber N20 flux
datasets but this is problematic as conventional approaches such as the arithmetic
mean, will give equal weight to all flux values in the dataset, even if the probability of
high flux measurements is far lower than low flux measurements. Consequently, where
the sample size is small and high flux values are presentin chamber N20 flux dataset
set, arithmetic approaches will typically overestimate the sample mean and likewise,
where high flux values are absent from the dataset the sample mean will be
underestimated (Levy et al,, 2017). Therefore, statistical methods which account for
the log-normaldistribution of chamber N20 flux measurements can reduce some of the
temporal uncertainty attributed with the static chamber method. In this study,

Bayesian statistics were applied to static chamber N20 flux data measured in 2019
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under a fertilizer treatment, as it explicitly accounts for the log-normal distribution of
the data and in doing so, reduces some of the intrinsic uncertainty associated with the
temporalupscaling of N20 flux measurements, and subsequently provides more robust
means and ranges of uncertainty relative to arithmetic approaches. Despite the
advancements of Bayesian statics in handling chamber N20 flux datasets from single
management events (Cowan et al, 2019, Levy et al,, 2017), its application on multiple
management events (i.e. grazing and fertilizer applications) has not yet been
successful, and therefore Bayesian statistics were not applied to chamber N20 fluxes
presented in Chapter 5. Indeed, upscaling chamber N20 emissions from a grazing and
fertilizer management regime is still a massively complicated and difficult task for a
variety of reasons. Firstly, there are multiple hotspots of N20 from grazed pastures
from dung and urine patches from grazing animals and the application of fertilizer to
these patchesin combination with the spatial heterogeneity of soil characteristics such
as the present of anaerobic and aerobic microsites which help mediate the microbial
production of N20. The duration of emission events from animal excreta varies
considerably, with previous studies reporting between 10 and 70 days to reach
background rates postapplication (Buckthought etal, 2015, Flessa etal,, 1996, Bell et
al, 2015, Hyde et al, 2016, Krol et al, 2017). Additionally, the magnitude of N20 fluxes
measured will depend on both the N loading rate from urine and dung deposits as well
as the probability of overlapping urine and dung patches. These factors will in turn
vary according to the length of the grazing event, water intake and diet. In this thesis,
chamber N20 fluxes measured under a grazing regime in 2020 were upscaled to the
field scale using site specific emission factors (EF) calculated from calcium ammonium
nitrate (CAN), the addition of CAN to cow synthetic urine (SU+CAN) and the addition

of CAN to cow dung (dung+CAN) for four out of nine grazing events, and scaled
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accordingto the length ofthe specific grazing event, the number of grazing animals and

estimated urine and dung depositions.

Missing mean daily N20 flux values from days not sampled and after filtering were gap -
filled using linear interpolation methods which drawa straightline between measured
flux values to create a gap-filled dataset over time. The simplicity of this technique is
in large the reason why it is the most commonly used method to gap-fill N20 fluxes
(Dorich et al, 2020). On the other hand, linear interpolation does not account for
current soil and environmental conditions, and management activity and is therefore
subjectto over or under-estimating emissions for where the data gap is large, i.e. more
than seven days (Barton et al, 2015). In order to minimize the uncertainty in
interpolating between data points, flux measurements were made frequently as

previously described in section 3.2.1.1.

3.2.2 Eddy Covariance

The EC tower was installed to the north-west of paddock 10 in order to maximize the
footprint from the prevailing south-westerly wind direction (Fig. 3.1). An image of the
EC set up is shown in Fig. 3.6. Data from the EC system was stored and collected on a
CR3000 micrologger (Campbell Scientific, Logan, UT, USA). Fluxes of COz and N20 were
measured using an open-path infrared gas analyser (IGRA) installed at 2.2 m (LI-7500,
LI-COR Biosciences, Lincoln, NE, USA) and a closed-path quantum cascade laser (QCL)
absorption spectrometer (LGR 23R N20/CO analyser Los Gatos Research, California,
USA) which was stored in a temperature regulated trailer (161 cm x98 cm x 127 cm)
adjacent to the EC tower, respectively. Flux measurements were made at 10 Hz and
blocked averaged over 30 minutes to account for the transport oflarger eddies across

the field site. A 3-D sonic anemometer (CSAT-3, Campbell Scientific Ancillary, Logan,
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UT, USA) also mounted at 2.2m to the EC mast was used in tandem with the gas
analysers to measure fluctuations in the 3-D wind components also at a frequency of
10Hz. Due to the closed path nature of the QCL, a perfluoroalkoxy (PFA) tube (10m
long, 10mm inner diameter) was attached from the QCL inlet and placed 30 cm apart
from the sonic anemometer in the same horizontal axis. A 2 mm fabric mesh was
attached Zcm from the entrance of the PFA tube in order to prevent debris from
entering the inlet line. In addition to this, two 2um filters (SS-4FW4-2, Swagelok™)
sealed with polytetrafluoroethylene (PFTE) tape along the threads were fitted along
the inlet tube on the outside of the QCL and a 2um and 10pum (Los Gatos Research,
California, USA) filters were fitted at the entrance ofthe inlet tubing inside the QCL and
upstream of the internal pump, respectively. In order to draw air into the inlet and the
QCL cell, the QCL was connected to an external dry scroll vacuum pump (XDS35j,
Edwards, West Sussex, UK) using a 2.4m long and 2.5cm wide PDTE clear suction hose
with steel spiral wired rings (Tec Industry, Dublin, Ireland). The cell pressure and

temperature was setto 85 torrs and 34 °C, respectively.

The EC set-up was equipped with a range of ancillary sensors for measuring variability
in environmental conditions every 30 minutes. These included an air temperature and
relative humidity probe (HMP155C, Campbell Scientific, Logan, UT, USA), two self-
calibrating soil heat flux plates installed at5 cm soil depth (HFP01SC, Hukseflux, Delft,
The Netherlands), averaging soil temperature probes (TCAV-L, Campbell Scientific,
Logan, UT, USA) installed at 2 cm and 6 cm depth above the soil heat flux plates, two
net radiation sensors (NR-Lite, Kipp and Zonen, Delftt The Netherlands),
photosynthetic active radiation (PAR) sensors (PQS1, Kipp and Zonen, Delft, The

Netherlands), a tipping bucket rain gauge (Young, Michigan, USA) and time domain
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reflectometers (CS616, Campbell Scientific, Logan, UT, USA) which measured soil VWC

in the upper 15 cm of soil.

(a)
Sonic anemometer I
lJ CﬂllTair and RH probe- |

"1 Net radiation sensor
... . -
f ..'\ ’\./4

CO; gas analyser .’

e

-

_Q-PAR Sensor **

S I 'l N.O gas analyser

82

External pump

»‘7 “

/

#

Figure 3.6: (a) The eddy covariance tower used in this research for measuring carbon dioxide
(CO2), nitrous oxide (N20), and environmental conditions (soil sensors are not shown). (b)
Inside the grey slated plastic box was the external pump for running the QCL in a high flow
mode in order to draw air from the opening the inlet tube to within the cell of thee QCL. (c)
Inside the trailer there is the central processing unit (left) for operating the quantum cascade

laser (right). *Tair = air temperature, RH = relative humidity; **PAR = Photosynthetic active radiation

3.2.2.1 Post processing greenhouse gas fluxes

Raw flux data was screened and post processed using the Eddypro software version

7.0.4. (www.licor.com/eddypro). Fluxes were quality controlled checked according to
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various peer viewed tests including statistical tests by Vickers and Mahrt (1997) for
drop-outs, amplitude resolution, absolute limits, skewness and kurtosis. Kaimal and
Finnigan (1994) double rotation test was performed to compensate for the
anemometer tilt. Low and high pass spectral corrections were determined using the
analytic methods outlined by Fratini et al. (2012) and Moncrieff et al. (2004),
respectively. For CO2, air density fluctuations were corrected using the WPL term
(Webb et al, 1980). For N20, a time lag between measurements of the gas
concentration and the vertical wind component was assessed using the covariance
maximization method in a two-step procedure. Firstly, the maximization of covariance
was determined for a small subset of data (six consecutive hours) over a wide window
of 10 seconds. Once a constant time lag was identified over the six hour block of data,
the covariance maximization procedure was repeated over a constricted time window
of 0.3 seconds using the median running time lag over a 7 day period as the mid-point.
Secondly, the mixing ratio of the data was re-paired with the wind data at a constant
time lag of -0.5 seconds based on the output from the previous maximization of
covariance and N20 fluxes were calculated with this time lag over a 30 minute period.
Flux data was further screened for bad quality and removed from the dataset under

the following quality control criteria:

¢ Lessthan 70 % ofthe flux contribution came frombeyond the boundaries of the
field site as calculated by the analytical footprint model described by Kormann
and Meixner (2001).

¢ If the flux quality control flags outlined by Foken (2003) were category 6 or

above
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*¢ Where turbulence was low, defined as a friction velocity < 0.1 m-1s-1 (Lognoul
etal, 2019).

% Where the flux random uncertainty integrated over a 10 second correlation
period was > 0.001 pmol N20 m2 s-1 or > 0.01 pmol CO2 m-2 s-1 (Finkelstein and
Sims, 2001).

¢ Where flux values were unrealistic for the field site such that N20 fluxes that
were <-0.1 pmol m2 s-.and COz fluxes were <-40 pumol m2s-1and/or>20umol
m2s1,

* Where the optical path ofthe IRGA was dirty or blocked defined as an automatic
gain control (AGC) value > 50.

¢ Where the standard deviation between 30 minute CO2 concentration values

were > 5 ppm.

After removing bad quality fluxes, gaps in the CO2 and N20 flux datasets required gap-
filling. The diurnal dynamics of CO2 are well understood, where CO2 uptake through
plant photosynthesis occurs during the day time (gross primary productivity [GPP])
and is mediated by temperature, vapour pressure deficitbut predominately PAR (Falge
et al, 2001), and COz release by ecosystem respiration (Reco) occurs both during the
daytime but mainly during the night time and is driven by temperature (Atkin et al,
2005, Reichstein et al,, 2005). Therefore, robust and validated empirical models for
gap-filling CO2 are well established. In this thesis, CO2 fluxes were gap-filled by firstly,
partitioning the dataset into day-time and night-time by using a PAR threshold of 10
umol m-2 s-1, respectively. Fluxes of Reco (umol m-2 s-1) were then modelled using the

temperature response function of Lloyd and Taylor (1994) (Eq. 3.3).
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_ 1 _ 1 :
Reco = Rio(e <E0 <(283 .2—230)) <(((T+273 .2)—230)))) Equation 3.3

Where Riois the ecosystem respiration rate at a reference temperature of 10°C, Ep is
the coefficient for ecosystem respiration (309) and T'is air temperature (°C). Modelled
Reco was then subtracted from measured daytime 30 minute values of net ecosystem
exchange (NEE) to derive GPP (umol m2 s-1). Gaps in the GPP dataset were then

modelled using the light response curve described by Rabinowitch (1951) (Eq. 3.4):

2
(x*PPFD +Amax)—(1/ (x*PPFD +Ap,0x ) )—(4*y)* (<*PPFD *Amax)
2xy

GPP =

Equation 3.4

Where a is the quantum yield based on incident irradiance (mol CO2 [mol photon]-1),
Amax is the maximum CO: assimilation rate (umol COz m2 s-1) and y is the convexity
coefficient. The gap-filling methods employed within the N20 flux community, include
generalized additive models (GAM) (Cowan et al, 2016), autoregressive integrated
moving averages (ARIMA) (Mumford etal., 2019), random forest (RF) (Philibert et al,,
2013), artificial neural networks (Goodrich et al,, 2021) and biogeochemical models
(Giltrap et al,, 2020). However, these methods lack significant validation due to a lack
available long term N20 datasets and limited N20 modelling research and are therefore
subject to high uncertainty when predicting N20 emissions over time. Therefore, in this
thesis gaps in the N20 flux dataset measured by EC were filled using a custom multi-
variate linear model. Firstly, N20 fluxes were segregated into two datasets prior to gap-
filling in order to isolate the influence of N inputs and environmental conditions on
fluxes. Firstly, “treatment” fluxes which was defined as the first 30 days post treatment
application and second “background” fluxes were defined as the first 30 days after the

treatment application. By segregating N20 fluxes into a treatment and background
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dataset, peak N20 fluxes observed outside of the treatment period were assumed to be
driven by environmental drivers and not directly due to N inputs from management
activity. Each dataset was gap-filled separately using a multivariate linear model that
included (1) air and soil temperature, water filled pore-space (WFPS),and rainfall over
6 hr-1,12 hr-1,24 hr-1,48 hr-1,100 hr-1 periods that were significantly correlated with
the log(N20-N flux) as determined from a subsets regression model using the leaps
package in Rstudio; (2) days since treatment application and (3) the previous and next
measured flux in the dataset. The gapfilled datasets were then combined, creating a

fully gap-filled EC N20 flux dataset.

3.3 Field sampling

3.3.1 Soil sampling

Soil sampling was conducted in order to understand both the drivers of N 20 emissions
and the influence of substrate availability on N20 emissions by soil microorganisms.
Soil sampling protocols have been optimized and developed over the last century by
Teagasc in Johnstown Castle (Teagasc, 2017). Soil was sampled approximately 1m
away from the chamber location in the paddock during the experimental campaign in
2019 or within adedicated soil sampling plotin the grazing exclusionzone in the south
west of paddock 10, approximately 10 m away from chamber locations in 2020. A
summary of the soil sampling design in 2019 and 2020 can be seen in Table 3.4. Soil
samples were taken atapproximately 10 cm depth using either a soil corer or probe. A
slightly narrower soil probe was used in 2020 to minimize soil destruction and
enhance longevity of the soil sampling plots. Soil samples were stored in plastic zip
lock bags at4 °C if same day analysis was not possible. In preparation for analysis, soil

samples were thoroughly mixed and wet sieved (<4 mm). Three replicate
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measurements of soil temperature, moisture and electrical conductivity were taken 1
m from the chamber locations using a handheld WET sensor (Delta-T Devices Ltd,
Burwell, UK) and averaged. The bulk density (mass of dry soil/volume of soil) of the
field site was measured prior to commencing experiments by taking 30 samples of the
surface topsoil using cylindrical rings that were 10 cm in depth and 3.7 cm in diameter,
drying the soil samples at 105 °C for 48 hrs-! and weighing samples for their dry

weight.

Table 3. 3: Details on the soil sampling design for 2019 and 2020 including the treatment,
depth at which samples were taken, the tool used to take samples, the number of samples per
sampling campaign, the frequency of sampling campaigns and the tests used on fresh soil
samples including nitrate (NO3-) and ammonium (NH,") concentrations, soil organic carbon

(SOC) and pH.

2019 2020
Control, CAN,
Treatment CAN synthetic urine + CAN,
dung + CAN
Depth (cm) 5-10 5-10
Tool Soil corer (10 cm depth, 1.7cm diameter) Soil probe (.10 cm depth, 1.5cm
diameter)
No. samp_les 30 12 (3 samples per treatment)
/ campaign
Frequency Once prior to and post CAN application Once aweek for the first eight weeks

post treatment application

Analysis NOs-, NH,*, SOC, pH NOz-, NH,*

3.3.2 Soil analysis

3.3.2.1 KCL extraction forammonium and nitrate analysis

Analysis for soil concentrations of NH,* and NO3- followed the guidelines of the
American Soil Society for soil analysis. Soil mineral N components were extracted by
creating a solution of 100 ml of 1 mol L-1 potassium chloride (KCL) solution added to

20 g of freshly sieved soil and placed onto an orbital shaker (Orbital Shaker SSL1,
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Stuart, Staffordshire, UK) for 1 hr-l. Samples were then filtered using grade two
Whatman filter paper and stored at -18 °C prior to analysis, with additional blank
samples of deionised water. Concentrations of NH,* and NO3 - were determined within
48 hrs-1of producing the filtrate sample using an Aquakem 600 Discrete Photometric
Analyzer (Thermo Electron OY, Vantaa, Finland). The concentrations of NH,* and NO;-
from the blank samples were deducted from mineral N concentrations from the
treatment samples. The mass of N in the form of NH,* or NO3z- (Massn) in g per kg soil

was determined using (Eq. 3.5):

Massy = CMLV Equation 3.5

Where C is the concentration of NH,* and NO3- in the KCL extractin mg L1,V is the
volume of the of the solution in which the soil sample was mixed with KCL in L, m is
the mass ofthe dry soil mixed with the KCL solution calculated as the gravimetric water

content.

3.3.2.2 Soil organiccarbonand pH

Of the remaining soil sample not used in the mineral N analysis, analyses to determine
the soil organic carbon (SOC) content and soil pH were performed. For SOC the
previously dried and sieved soil sample, was ball milled into a fine powder and a micro -
sample was weighed onto the autoloader of the LECO TruSpec Micro (St Joseph,
Michican, USA). The micro-sample (0.2 g) was then dropped into the high-temperature
combustion furnace where carbon is converted to CO2. Scrubbing agents were then
used to transport CO2 from the furnace to an infrared detector where the carbon
components of the sample are assessed. Soil samples analysed for pH were processed
using the Gilson 215 Liquid Handler, Middleton, USA and the processing software

Aqualyser 2.
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3.3.3. Biomass sampling

Biomass sampling was conducted in both experimental years. In 2019, biomass
samples (n = 4 per paddock) were taken randomly in a zig-zag pattern prior to silage
cuts over an approximate area of 10 m2 using a biomass harvester by Haldrup GmbH
and in 2020, biomass samples (n =8 per paddock) were taken in the same random
procedure using a 1 x 1 m quadrat. Biomass samples were stored in thin plastic porous
bags and the fresh weight of the samples was measured prior to placing the sample in
an oven at 70 °C for four days. Following drying, samples were re-weighed to
determine the dry biomass weight and grounded for total C and N content analysis
using the TrueSpec Micro elemental analyser as described above. Additionally, grass
height was also monitored over the course of this study in order to determine both dry
matter yields and changes in canopy height which may influence the size of the EC
footprint. Grass height measurements were taken once a week using a manual rising

plate meter (Charleville, Co. Cork, Ireland).

3.4 Animal excreta

3.4.1 Synthetic urine

The N loading rate of a urine patch can vary between 400 and 1200 kg N ha-1(Haynes
and Williams, 1993, Jarvis et al, 1995b), and this in turn can vary with the N content
and C:N ratio of animal feed (Van Vuuren etal.,, 1993, Yan et al,, 2007), the fertilization
intensity of grazed pastures (Petersen et al, 1998) and water intake by livestock
(Paquay et al,, 1970). As it was not feasible to monitor and measure these variables
over the duration of the grazing season, synthetic urine was used according to the
protocol outlined in de Klein et al. (2003). This approach was chosen as it provided an

N loading rate that was comparable to that of typical cow urination (Haynes and
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Williams, 1993). The total N loading rate of the synthetic urine solution was
determined by taking three replicate1:500 dilutions of homogenized sub-samples and
performing a Ganimede analysis (Hach Ganimede N analyser, Co. Cork, Ireland).
Alkaline potassium persulphate was used to partition the N compounds in the
synthetic urine solution under a temperature and pressure of 150 °C and 8
atmospheres of pressure, respectively. The mean N loading rates from both batches is
shown in Table 3.5. Synthetic urine was created on two occasions during 2020 in 60 L
batches and stored at 4 °C prior to application, which occurred when cattle were
grazing in strips in the south-west of paddock 10. The synthetic urine solution was
applied at a rate of 1.8 L. (Misselbrook et al, 2014) as opposed to the more common
application of 2.0 L (Selbie etal,, 2014) to minimize impacting the soil moisture content
and to avoid saturation within the chamber (Maire, 2020). A watering can was used to
apply synthetic urine within the chamber collar (0.16 m-2) to facilitate infiltration

(Forrestal etal,, 2017).

Table 3. 4: The mean total nitrogen content of the 1:500 diluted synthetic urine solution used
(g N/ L), and the equivalent application rate considering the volume of application (1.8 L) and
the area (0. 16 m2) of application (kg N ha-l). Values in brackets represent the range

surrounding the mean.

Date gN/L kg N ha™
26/03/2020  Batch #1 82(73-94) 517.3 (458.7 - 587.2)
06/06/2020  Batch #2 9.7 (8.9 - 10.5) 606.6 (554.2 - 659.0)

3.4.2 Dung

Dung was collected immediately after deposition from dairy cows in pastures grazed

within a week prior to grazing commencing in paddocks 10 and 11.Dung depositions
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were carefully scrapped from the top of the soil using a hand-held spear in order to
avoid incorporating topsoil and biomass into the sample, and stored at 4 °C in a 25 kg
bucket, where the lid was pierced with holes to prevent the build-up of manure gas
(hydrogen sulphide, methane, ammonia and CO2). Composite sub-samples of dung
were taken from the bucket for total C and N analysis. Sample preparation involved
freeze drying samples at - 20 °C for 48 hrs! (ScanVac Freeze Dryer, Vassingergd,
Denmark) and ball milling frozen samples in a mixer mill (Retsch MM200, Darmstadyt,
Germany) at a vibration frequency of 25 Hz for one minute (Ashekuzzaman et al,
2019). Ball milled samples were then analysed for total C and N as previously
described in section 3.3.3. The mean N and C loading rates from dung sub-samples for
grazing events monitored by chamber flux measurements is shown in Table 3.6. The
dry matter content of dung was determined by drying 20 g of fresh dung for 24 hrs-1 at
105°C. Dung applications inside the chamber collar and the allocated soil sampling
area within the trial plot were made in tandem with synthetic urine applications. Dung
was applied within a 30 cm diameter area within the chamber collar at 2 kg (Krol etal,,

2016).

Table 3. 5: The mean total nitrogen and carbon of dung (g m™) used and the equivalent

application rate (kg ha-1). Values in brackets represent the range surrounding the mean.

Date Grazing gN m™ kg N ha™ gCm™ kg C ha™
28/02/2020 1 (07500 (sa8mo5630)  (6469.6913) (64687 .69125)
27/04/2000 2 (5387%04)  (5382.5939)  (6486-7265) (6485972652
21/05/2020% 3 405 405.0 4734 4734
28/08/2020 4 (31.35-é9.3) (311.395-1 5292.7) (424%26-5 5717.3) (4242%46 ?'56172.7)

*Only 1 replicate was available for grazing 3
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Chapter 4: Assessing nitrous oxide emissions in time and space
with minimal uncertainty using static chambers and eddy
covariance from a temperate grassland

Abstract

Where nitrogen input from fertilizer application exceeds plant demands, hotspots of
microbially produced nitrous oxide (N20) can exhibit disproportionately high rates of
emissions relative to longer periods of time, known as hot moments. Hotspots and hot
moments of N20 are sensitive to changes in agricultural management and weather,
making it difficult to accurately quantify N20 emissions. This study investigates the
spatial and temporal variability of N20 emissions using both static chambers (CH) and
eddy covariance (EC) techniques, measured at a grassland site subject to four fertilizer
applications of calcium ammonium nitrate (CAN) in 2019. Daily mean CH emissions
were calculated using the arithmetic method and Bayesian statistics to explicitly
account for the log-normal distribution of the dataset. N20 fluxes measured by CH and
EC were most comparable when flux measurements were > 115 N20-N pg m -2hr -},
and EC and CH measurements showed spatial and temporal alignment when CHn = 15.
Where n < 5, the Bayesian method produced large uncertainties due to the difficulty of
fitting an arithmetic mean from a log-normally distributed data set with few flux
measurements. Annual EC fluxes, gap-filled using a multi-variate linear model, showed
a strong correlation with measured flux values (R 2= 0.92). Annual cumulative fluxes
by EC were higher (3.35 [+ 0.5] kg N ha -1) than CH using the arithmetic (2.98 [+ 0.17]
kg N ha -1) and Bayesian method (3.13 [+ 0.24] kg N ha -1), which quantified emission
factors of 1.46, 1.30 and 1.36 %, respectively. This study implies that a large sample

size and frequent CH flux measurements are necessary for comparison with EC fluxes
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and that Bayesian statistics are an appropriate method for estimating realistic means

and ranges of uncertainty for CH flux data sets.

Work presented in this chapter is published in Agricultural and Forest Meteorology

(https://doi.org/10.1016/j.agrformet.2021.108743) with author list as: Murphy, R.M.

Richards, K.G. Krol, D. Gebremichael, A, Lopez-Sangil, L. Rambaud, J. Cowan, N. Lanigan

G.J. and Saunders, M.

Author Contributions: RM, MS, and GL designed the experiment. RM conducted the
experiment and analysed the samples that were collected alongside ]JR, LL-S and AG.
Samples were analysed in the Teagasc Johnstown Castle with the supportoflaboratory
technicians. RM with the help of NC conducted the flux data analysis. RM wrote the

article with the contributions from all co-authors

The overarching objective of this thesis chapter was to compare the application of
static chambers and the eddy covariance technique to quantify the spatiotemporal
variability in N20 emissions from a managed pasture and in doing, highlight the
disparities and uncertainties associated with measuring N20 emissions over different

spatial and temporal domains.

4.1 Introduction

Nitrous oxide (N20) is a powerful greenhouse gas (GHG), with a global warming
potential (GWP) 265 times that of carbon dioxide (CO2), and a lifespan of over 100
years (Stocker, 2013). The global average concentration of atmospheric N20 reached
331.1 = 0.1 ppb in 2018, 23 % greater than pre-industrial levels (270 ppb) and is
primarily associated with the application of mineral or organic nitrogen (N) to soils

(WMO, 2019). Nitrogen fertilizers provide mineral N in the form of ammonium (NH4*)

67


https://doi.org/10.1016/j.agrformet.2021.108743

and nitrate (NOs3-) for the purpose of growing crops; however, soil microbes also
consume this N to produce N20 through the processes of nitrification and
denitrification (Luo et al., 2017). Where N is applied to soil when conditions favour
these microbial processes (water filled pore space (WFPS) 70 - 80 %, (Linn and Doran,
1984), substrate availability (NOsand NH4*) (Zanatta et al, 2010), temperature
induced increasesin soil respiration (Butterbach-Bahlet al. 2013), hotspots of N20 can
occur, releasing short-lived, but excessively high rates of emissions (Hargreaves etal,
2015). Hotspots coincide with changes in substrate availability, resources or the
physical environment (Pickett and White, 1985) for example, dry-wetting cycles of
soils or increases in soil moisture following fertilizer application where soil conditions
become favourable for microbial N20 production (Fuchs et al,, 2018). Pulses of N20
from hotspots can exhibit rates of emissions thatare 15-30 % higher relative to longer
periods of time. These emission events are known as hot moments (McClain et al,
2003), and typically last between 5-20 days (Groffman etal., 2009). The occurrence of
N20 hotspots and hot moments result in extremely heterogeneous emissions across
agricultural landscapes (Cowan et al, 2017) and it is extremely difficult to accurately

quantify N20 emissions without large uncertainties.

Micrometeorological techniques such as eddy covariance (EC) have been extensively
used to quantify fluxes of COz and methane (CH4) between the soil and the atmosphere
within grassland ecosystems (Felber et al, 2015, Soussana et al, 2010). One main
advantage of EC techniques is that it continuously measures the ecosystem to
atmosphere exchange of key gas scalars that are integrated at the ecosystem scale
without disturbing the soil or altering the microclimate (Wang et al.,, 2013). However,

due to the lower atmospheric concentrations of N20 and the higher sensitivities
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needed to capture baseline emissions (relative to COz), it is only in more recent years
that the EC technique has been capable of reliably measuring field-scale N20 fluxes
through the development and deployment of fast, high precision absorption
spectrometers such as quantum cascade lasers (QCL) (Voglmeier et al, 2019). In
contrast, static chambers (CH) measurements are the most commonly used method for
quantifying field fluxes of N20 (Bell et al,, 2015, Maire et al,, 2020, Rochette, 2011).
Manually-operated CH are relatively inexpensive to run, easy to deploy, have well-
established standardised guidelines for GHG measurements and are a highly cited
method for investigating N fertilization effects on soil N20 fluxes (de Klein and Harvey,
2015, Krol et al,, 2017, Maire et al, 2020). However, CH flux measurements provide
lower spatial and temporal resolution when compared to EC techniques, as single
measurements are typically made at a daily time-step over an area less than 1 m2.
Therefore, peak emissions, diurnal variation and decay patterns of N20 over time
following rainfall or re-wetting of dry soils and/or management interventions such as
fertilizer application, are not always fully captured using CH methods (Jones et al,
2011). The peak and decay pattern which is commonly observed in CH N20 fluxes over
time, typically display a log-normal distribution in space which is characterized by a
small number of high flux values (Levy et al,, 2017). The probability density ofa log-

normally distributed N20 flux (Fluxn,0) ata given time is (Eq. 4.1):

-1t —(log(FluxNzo)—ulo )2/2012 ;
f(Flux NZO) TErorsg Flixn g e g 0g Equation 4.1

where piog and o1ogare the mean and standard deviation of the log-transformed flux.

The mean distribution without log transformation is given by (Eq. 4.2):

1= exp(y,y + 0.5 0,) Equation 4.2
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Quantifications of the variables which make up the log-normal distribution, piog and
0Olog (and therefore the true p) are often insufficient because of the large variability,
measurement error and small sample size (Levy et al., 2017). In order to improve
estimates of CH flux measurements and make localized field measurements more
comparable with ecosystem scale EC flux measurements over space and time, a
method is required, that accounts for the uncertainty in p which arises from estimating
field-scale fluxes from a small, log-normally distributed sample. More recently,
Bayesian statistics have been utilized to analyse N20 fluxes as a lognormal distribution
and in doing so, reduce the spatiotemporal uncertainty associated with CH flux

measurements (Cowan et al.,, 2020, Nishina et al., 2009).

The objective of this paper was to investigate both technical disparities (spatially and
temporally) between EC and CH in measuring N20 fluxes, as well as the methods used
to handling CH N20 flux data (arithmetic and Bayesian) for a complete comparison
between methodologies. In this study we aim to (i) address the uncertainty in
upscaling CH N20 flux measurements to the field scale by using a Bayesian approach
to account for the log-normal distribution of flux measurements and to provide
realistic means (ii) compare N20 emissions quantified by both CH and EC methods in
a temperate grassland under a fertilized treatment and (iii) identify the influence of
fertilizer application and the environment in driving variability in N20 emissions in

space and time.

4.2 Materials and Methods
4.2.1 Site and experimental description

The study was carried out between January and December 2019 at the Long Term

Carbon Observatory experimental field site at Teagasc Environmental Research
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Centre, (Johnstown Castle, Co. Wexford) inthe south-east of Ireland (52.30 °N, 6.40 °W,
67 m above sea level). This area has a temperate oceanic climate with a mean annual
temperature and rainfall of 10.1 °Cand 1011 mm respectively. The EC system was set
up in the northern part of the experimental field site (Fig. 4.1). The field site has clay
loam alfisols and consists of two paddocks (known as paddocks 10 and 11) with a
collective area of 2.65 hal. The sward composition of the grassland is dominated by
perennial ryegrass (Lolium perenne) with white clover (Trifolium repens), herb-Robert

(Geranium robertianum) and broad-leaved dock (Rumex obtusifolius) (Maire et al,

2020).

In the year prior to measurements (2018), paddock 10 was managed for silage
production and paddock 11 was grazed by Holstein-Friesian dairy cows.
During the measurement year (2019), there were four fertilizer applications of CAN
and three silage cuts. N20 flux measurements were performed using both CH and EC
techniques and both were compared over seven comparison periods during this time
(see Table 4.1). Six different methods were used to calculate summary N20 flux
statistics to investigate spatial (CH inside or outside the half-hourly EC footprint (FP))
and temporal differences (half-hourly EC measurements for the day or made at the
same time as CH measurements) in measurements (Table 4.2). Mean fluxes measured
from CHs were calculated using the arithmetic method and the Bayesian method (see
section 4.2.6) to account for uncertainties in the log-normal distribution of N20 fluxes

in time.

71



Field site
Eddy covariance tower [JJj

Meters
0 375 75 150 225

A

Figure 4. 1: Map of the field site where boundaries represent paddocks (P), grey paddocks 10

and 11 represent the experimental field site (2.65 ha-1) and the black square represents the

eddy covariance tower.
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Table 4. 1: A summary of comparison periods where N20 fluxes were measured by eddy covariance and static chambers. The table provides
information on the length of each comparison period (N), management interventions including silage cuts and fertilizer application (calcium
ammonium nitrate [CAN]) dates and the N loading rates in addition to key meteorological variables including cumulative rainfall (mm), average air
temperature (Tair) and at 6.5cm depth soil temperature (Tsoil), water-filled pore space (WFPS), electrical conductivity (EC), and at 10 cm depth

organic C, pH, ammonium (NH4*) and nitrate (NO3-).

Management
Comparison period N Slla(jg:tgut Fezt;ltlezer Applr;ctitlon Rain Tair Tsoil WFPS EC Organic C pH NH, NO3
[kgNha'] [mm] [C] [°C] [%] [mSm™] [%] [kgha™]  [kgha™]
8/1/2019 -7/2/2019 30 54.1 5.8 9 61.4 56.9 7.9 5.4
4/3/2019 - 26/3/2019 22 05/03/2019 40 67.9 7.5 104 707 60.2 8.8 4.4
1/4/2019 - 24/4/2019 23 01/04/2019 70 70.2 85 116 66 78.4 3 5.9 16.2 28.7
14/05/2019
4/6/2019 - 27/6/2019 23 05/06/2019 80 73.7 88 169 486 90 3.1 5.9 43.7 57.9
04/07/2019
7/8/2019 - 27/8/2019 20 100.9 154 20.7 44 70.3 3.2 6 2.5 19.3
2/9/2019 -2/10/2019 30 05/09/2019 11/09/2019 40 793 13.7 178 429 85.1 3.2 5.9 20.4 47.5
10/10/2019 -3/12/2019 54 247.3 8.1 12 49.7 54.1
Total / Average 202 230 6934 9.7 141 54.8 70.7 3.1 5.9 16.6 27.2
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Table 4.2: Eddy covariance (EC) and static chamber (CH) N»O fluxes were partitioned into six
different methods to calculate summary N:O flux statics to investigate spatial and temporal

differences in measurements fromboth techniques.

Abbreviation Method

ECan All EC measurements over the comparison period

ECcn EC measurements during the time of chamber measurements

CHan All CH flux measurements averaged using the arithmetic mean

CHaayes All CH flux measurements averaged using the Bayesian mean

CHep Daily averaged CH flux measurements within the footprint of the EC tower

using the arithmetic mean
Daily averaged CH flux measurements within the footprint of the EC tower

CHaayes- . )
Bayes FP using the Bayesian mean

4.2.2 Static chamber measurements

N20 fluxes were measured using the closed CH method, as outlined in de Klein et al.
Thirty square stainless-steel collars (40 cm wide, 15 cm height) were installed in
September 2018 across the field site to a depth of 5-10 cm depth following a sector
randomization design (Chadwick et al, 2014). The CH lids were 10 cm high which
created a headspace of approximately 20-22 L. CHs were closed during tractor
spreading of CAN fertilizer, opened immediately afterwards and subsamples of CAN
fertilizer were applied at the same rate homogeneously by hand within the chamber
area. N20 fluxes were measured between 10:00 h and 14:00 h (GMT) to best reflect
daily average N20 emissions (de Klein and Harvey, 2015). Background N20 fluxes were
measured once a week. Following CAN fertilizer applications, the measurement
frequency increased to 4 measurements per week (for the first 2 weeks) and 2 times
per week (for the following 2 weeks) before returning to the background (weekly)

measurement frequency.
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Gas samples were taken from the CH headspace over a 40-minute period at 20 minute
intervals (To, T20 and Tao0). Headspace gas measurements were extracted through a
rubber septum (Becton Dickinson, Oxford, UK) using a 10ml polypropylene syringe
(BD Plastiplak, Becton Dickinson) fitted with a hypodermic needle (BD, Microlance 3;
Becton Dickinson). Gas samples were injected into a pre-evacuated (to -1,000 mbar)
7ml screw-cap septum glass vials (Labco, High Wycombe, UK). N20 concentrations
were analysed using gas chromatography (GC) with a detection limit of 0.05 ppm
(Scion 456-GC, Kirkton Campus Livingston, UK), equipped with an electron capture
detector with high purity helium as a carrier gas. Hourly fluxes in pg N20 m-2 hr-1 were
calculated by linear regression of changes in N20 concentration within the chamber

headspace between To to T4 (Kroletal, 2017) (Eq. 4.3)

Fehamper = (i—;) X (Z;C:) X (%) Equation 4.3

Where ACis the change in headspace concentration of N20 during the enclosure period
in ppbv, AT is the enclosure period in hours, M is the molecular weight of N20 (44.01 g
mol1), P and T are the atmospheric pressure and temperature at the time of gas
sampling, respectively, R is the ideal gas law constant (8.314 ] K-1 mol1), V is the
headspace volume in a closed chamber (m3) and A is the area covered by the collar of
the gas chamber (m?2). Linearity of N20 accumulation within the chamber headspace
was determined by assessing the coefficient of determination (R2); where the R2< 0.7
flux measurements were removed from the dataset. In addition to this, CO2
concentrations were measured adjacent to N20 by GC, and where CO2 concentrations
showed deviations from a linear accumulation within the chamber headspace (i.e. a
transition from plant respiration to photosynthesis), it was assumed there was a leak
within the chamber and N20 flux measurements were removed from the dataset.
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4.2.3 Soil measurements

Soil temperature (°C), electrical conductivity (mS m-1) and volumetric water content
(VWC %) measurements (WET sensor, Delta-T Devices Ltd, Burwell, UK) were taken
at the same time as the CH flux measurements at 6.5 cm depth and 50 cm from the CH
location. Topsoil cores were taken a meter away from CH locations 48 hours before
and 24 hours after each fertilization event, using a 10 cm depth and 1.7 cm diameter
soil corer. Data derived from soil core analysis were used to characterize the key soil
characteristics across the field site over the annual sampling campaign (Table 4.1). Soil
cores were kept undisturbed and refrigerated at 4 °C until thoroughly mixed and wet
sieved (4 mm). Composite subsamples were immediately taken to determine mineral
N contents (NH4* and NO3-), using 2M KCL as extractant (1:5 ratio), 1-h agitation and
filtration (Whatman No. 2) following recommendations from Jones and Willett (2006).
Extracts were analysed using an Aquakem 600 discrete analyser (Thermo Electron 0Y,
Vantaa, Finland) for NH4*-N (Standing Commitee of Analysts, 1981)and NO3-N (Askew,
2012). The remainder of the mineral N soil subsample was oven dried at 105 °C over
24 hours to determine soil moisture content. The rest of the composited sample was
air-dried and analysed for pH (Gilson 215 Liquid Handler, Middleton, USA) and soil
organic carbon (SOC) contents (infrared CN analyser after ball-milling; LECO TruSpec,
USA). Sharpened cylindrical rings (n =30; 10 cm depth; 3.7 cm diameter) were used to
sample the soil bulk density (BD, debris > 2 mm not considered) of surface topsoil
across the field site prior to commencing the experiment and subsequently, the water-
filled pore space (WFPS) by dividing the VWC by the total porosity of the BD sample

(Linn and Doran, 1984).
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4.2.4 Micrometeorological measurements

An EC mast was installed with a 3-D sonic anemometer (CSAT-3, Campbell Scientific
Ancillary, Logan, UT, USA) mounted at 2.2m to measure fluctuations in the 3-D wind
components at a frequency of 10 Hz. A 10 m long, 10 mm inner diameter
perfluoroalkoxy (PFA) tube was attached and placed 30 cm apart from the sonic
anemometer in the same horizontal axis. To minimize debrisand pollution obstructing
the PFA tubing, a 2 mm fabric mesh was fitted approximately 2cm out from the tip of
the inlet tubing. The air inlet extended to a temperature controlled trailer (161 cm x
98 cm x 127 cm) where it was connected to a quantum cascade laser (QCL) absorption
spectrometer (LGR 23R N20/CO analyser, Los Gatos Research, California, USA) for
measuring N20 fluxes at 10 Hz with a detection limit of 0.03 ppb over a 30 minute
period. The inlet tube was fitted with two in-line 2 um filters (SS-4FW4-2, Swagelok™)
and the filter threads were wrapped in polytetrafluoroethylene (PFTE) tape to
minimize air leaks. Additional 2 pm and 10 pm (Los Gatos Research, California, USA)
filters were fitted within the QCL at the entrance of the inlet tubing and upstream of
the internal pump, respectively. A 2.4 m long and 2.5 cm wide PDTE clear suction hose
with steel spiral wired rings (Tec Industry, Dublin, Ireland) connected the QCL to a dry
scroll vacuum pump (XDS35i, Edwards, West Sussex, UK) which was used to draw air
into the inlet and cell of the QCL with an approximate flow rate of 30 -35 standard L
min-1. The cell pressure was set at 85 torr and the replacement rate of air within the

cell was 0.097 s-1.

Ancillary sensors at the EC site included an air temperature and relative humidity

probe (HMP155C, Campbell Scientific, Logan, UT, USA), two netradiation sensors (NR-
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Lite, Kipp and Zonen, Delft, The Netherlands), two self-calibrating soil heat flux plates
installed at 5 cm soil depth (HFPO1SC, Hukseflux, Delft, The Netherlands),
photosynthetic active radiation (PAR) (PQS1, Kipp and Zonen, Delft, The Netherlands)
and averaging soil temperature probes (TCAV-L, Campbell Scientific, Logan, UT, USA)
installed at 2 cm and 6 cm depth above the soil heat flux plates. Time domain
reflectometers (CS616, Campbell Scientific, Logan, UT, USA) measured soil VWC in the
upper 15 cm of soil. Data from the EC system was stored and collected from the CR3000

micrologger (Campbell Scientific, Logan, UT, USA).

4.2.5 Post-processing eddy covariance flux data

Ecosystem scale N20 fluxes were continuously measured over a 365-day period in
2019 with the exception of short equipment maintenance intervals that accounted for
45 days.Raw EC data at 10 Hz was processed using the Eddypro software, version 7.0.4

(www.licor.com/eddypro). EC N20 fluxes (umol m™ s™') were calculated as the

covariance between the vertical wind speed (w) and the N20 concentration (pc) (Eq.
4.4) (Burba, 2013). To compare EC N20 fluxes to CH N0 fluxes, units were converted

from umol N20 m™ s to ug N20-N m™ hr™™,

)

Fee =wpc Equation 4.4

Raw data was screened and statistically evaluated according to Vickers and Mahrt
(1997) for drop-outs, amplitude resolution, absolute limits, skewness and kurtosis
tests for de-spiking tests. Double rotation was performed to compensate for the
anemometer tilt by nullifying the average cross-stream and vertical wind components
(Kaimal and Finnigan, 1994). Block averaging was used to calculate turbulent
fluctuations. The time lag for N20O was estimated using the covariance maximization
procedure in two steps. First, the maximization of covariance of data over six hour
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chunks of sequential data was determined over a large window of 10 seconds. Second,
once a steady time lag was identified throughout the measurement period, a second
covariance of maximization of the same six hour data chunk was re-run over a
narrower window of 0.3 seconds, using the median running time-lag over a 7 day
period as the mid-point. Finally, the mixing ratio data was re-paired with the wind data
at a fixed time-lag of 0.5 seconds based on the previous maximisation of covariance,
and eddy pro was run with a fixed time-lag, with fluxes calculated over a 30 minute
period. Spectral attenuation effects following analytic methods described in Fratini et
al. (2012) and Moncrieff et al. (2004) determined low and high-pass spectral
correction factors for the data, respectively. A 5-step quality control protocol was
applied for filtering bad quality N20 fluxes. Flux data was removed from the data set if
(1) less than 70 % of the flux contribution came from inside of the boundaries of the
field site, as determined by the analytical footprint model described by Kormann and
Meixner (2001), (2) if flux quality control flags by Foken (2003) were category 6 or
above; (3) where low turbulent conditions were present, defined as the friction
velocity (u*) < 0.1 m1s'1(Lognoul etal, 2019); (4) where the flux random uncertainty
integrated over a fixed 10s correlation period was > 0.001 pmol N20 m=2 s as
estimated by the method of Finkelstein and Sims (2001); and (5) where flux values
were <-0.1 pumol N20 m~2 s-1as such values were deemed unrealistic for this field site
and similarly managed grasslands (Wecking et al, 2020b). After filtering, 46 % of
measured fluxes passed the quality control procedure. N20 flux measurements were
partitioned into two dataset (1) fertilizer events, defined as the first 30 days following
fertilizer application, and (2) background, defined as 30 days outside of a fertilizer
event. Each datasetwas gap-filled separately using a simple multivariate process based

model that included: (1) rolling averages of Tair, Tsoil, WFPS and rolling sums of
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rainfall over 6 hr-1,12 hr-1,24 hr-}, 48 hr-1,100 hr-1 periods (Mishurov and Kiely, 2011)
where data correlated significantly with log(N20-N flux) as determined from a subsets
regression model performed in R studio (Rstudio Team, 2020); (2) days since fertilizer
application; and (3) the previous and next measured flux in the dataset. The gap-filled
fertilizer events and background datasets were merged, creating a gap-filled EC N20

flux data set for the experimental year.

4.2.6 Data analysis
The coefficient of variation (CV) was used to describe the variability of N20 fluxes over

each comparison period for each subset of EC and CH data Eq (4.5):

d .
cV = (;) %100 Equation 4.5

Where 0 is the standard deviation and p is the arithmetic mean, expressed in
percentage. An overlay analysis was performed on ArcMap (Plummer, 2015) to
identify which CH measurements were within the footprint of the EC. Using a hand-
held GPS device (GPSMAP 64, Garmin, Shaffhausen, Switzerland), GPS coordinates of
CH locations within the field site were measured and overlaid on images of the EC
footprint (Kljun et al, 2015) during the time of CH measurements (Fig. 4.2).
Comparisons between EC and CH flux measurements were made using orthogonal
regression in order to avoid biases between methodologies (Jones et al,, 2011). CH
hourly fluxes were assumed to be representative of daily emissions and were used to
calculate the daily mean N20 flux. In order to approximate the total N20 produced from
CAN, cumulative fluxes by CH and EC were calculated by linear interpolation between
daily mean fluxes. Cumulative fluxes were used to derive emission factors (EFs) from

CAN (Eq. 4.6). EFsrepresent the % of N20-N emitted from CAN applied.
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— [NZO CAN _NZO Control] .
EF = ( N applied ) *100 Equation 4.6

Where N20canis the cumulative N20 emissions (kg N20-N ha-1yr-1) from CAN, N2Ocontrol
is the cumulative N20 emission (kg N20-N hal yr-1)from a control (in this study,
defined as 0), N applied is the rate of CAN applied (kg N ha-1yr-1).In order to compare
field scale CH flux measurements with ecosystem scale EC flux measurements, daily
mean CH measurements were upscaled using a Bayesian approach (Wild et al., 1996).
Markov Chain Monte-Carlo (MCMC) simulations were performed using Gibbs sampling
to estimate the posterior distribution of 4 by combining the prior data with this study’s
data. MCMC simulations were run on the freely-available JAGS software (Plummer,
2015). The prior dataset selected for this study was from Cowan et al. (2017) as log-
normal distributions from both datasets overlapped well. The posterior distribution is
primarily influenced by the data, except where the data does not possess a log-normal
distribution and therefore cannot constrict the fit of piog and o10g variables. The prior
prevents the range of p from expanding into unrealistic ranges by reducing the
influence high, outlier values have on u. The Bayesian method was used to estimate u

and the 95 % confidence intervals of the posterior distribution from CH measurements

(see Table 4.3).
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Figure 4. 2: Static chamber (CH) locations within the eddy covariance (EC) footprint for 2019
(Kljun et al. 2015) where black circles with rings represent CH, the grey circle with a cross is
the EC tower and grey contour lines represent the footprint of the EC where the outer to inner

contour line represents 90 % - 10 % of the footprint, respectively.

4.3 Results

4.3.1 Meteorological data

Meteorological data measured at the EC station can be seen in Fig. 4.3. Mean daily air
temperature ranged from 0.9 °C in January to 18.2 °C in July, with an annual mean
temperature of 10.3 °C (Fig. 4.3a). Soil temperature at 6cm depth was greatestin July
and lowest in December with valuesof20.0 °Cand 1.7 °C, respectively. WFPS measured
in the upper 15 cm of the soil, peaked in November at 74.9 % and was lowest in
September at 39.6 % (Fig. 4.3b). Prolonged dry periods (greater than 14 consecutive
days at <50 % WFPS) were observed in July and September. The total annual rainfall
for the experimental period was 958.4 mm (Fig. 4.3c), with heavy rainfall events of

40.1 mm and 30.7 mm occurring in Augustand April, respectively.
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Figure 4. 3: Meteorological data measured at the field site from January 2019 to December
2019 where panels (a), (b) and (c) show mean daily, soil temperature (°C) (Tsoil) (solid line) ,
and air temperature (°C) (Tair) (dashed line), water-filled pore space (WFPS %), and rainfall

(mm) respectively.

4.3.2 Observed fluxes of N20 using chamber and eddy covariance methods

All N20-N fluxes measured by both CH and EC exhibited a log-normal distribution
throughout the year (Fig. 4.4). Measured N20-N emissions from both techniques
increased exponentially in the days immediately following fertilizer application (Fig.
4.5). Fluxes returned to background magnitude (defined as 48 N20-N pg m-2hr-1 which
represents the 85 % quantile for flux measurements made 30 days post fertilizer
application) between 4 and 29 days. The maximum mean daily N20-N fluxes observed

were 814.76 pg N20-N m-2 hr-1using EC technique and occurred 18 days post- summer
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fertilizer application and was preceded by a heavy rainfall event (17.6 mm). Maximum
mean daily N20-N fluxes measured by CH were observed in spring at 538.89 pg N20-N
m-2hr-1, also coinciding with a heavy rainfall event (20.9 mm). Delayed peaks in N20-N
emissions were also measured during autumn, with peak emissions 0f417.14 pg N20-
N m-2hr-1(CH) and 313.22 ug N20-N m-2 hr-1(EC) occurring 31 days post application,
during which the WFPS increased from 48.77 % to 63.85 % (Fig. 4.3b). Minimum daily
averaged N20 flux measurements represented a zero flux from the system and were
observed in winter at -0.14 pg N20-N m-2 hr-land -0.40 pg N20-N m2 hr-1 for EC and

CH techniques, respectively.

Spring Summer

o —’_’_‘_’1
07 Flux
Autumn Winter . Megative

004 = I:I Positive
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o]

01 1 10 100 1000 01 1 10 100 1000
NLO-N Flux / pg m™ hr'

Data Count

Figure 4.4: Frequency distribution of collective N20 fluxes measured from both chambers and
eddy covariance in 2019 for each season where spring fluxes were measured in February,
March and April, summer fluxes were measured in May, June and July, autumn fluxes were
measured in August, September and October and winter fluxes were measured in November,
December and January. N2O fluxes are shown on a log-transformed axis but real values on the

axis. Negative fluxes are shown on a positive scale but coloured black.
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Figure4. 5: 2019 N20-N fluxes where black circles represent mean daily eddy covariance flux
measurements, grey diamonds represent mean daily chamber flux measurements, grey lines

represent the 95 % confidence interval of flux measurements, and broken lines mark the date

of fertilizer application.

4.3.3 Comparison of chamber and eddy covariance fluxes

Linear comparisons between subsets of daily averaged EC and CH (see Table 4.2) N20
flux measurements from the comparison periods (see Table 4.1 for dates) are shown
in Fig. 4.6. Summary statistics on flux measurements for each subset for each
comparison period are shown in Table 4.3. Over the individual comparison periods, CH
measurements were within the range of EC measurements. The most robust
relationship between CH and EC measurements was for ECcuand CHrp (R% = 0.81) (Fig.
4.6d), where both methods were measuring N20 fluxes over the same space and time,
ECch and CHan (R? = 0.79) (Fig. 4.6b) and ECcx and CHpgayes (R? = 0.80) (Fig. 4.6f) where
EC measurements made during the time of CH measurements are in close agreement

with CH measurements where the sample size was large (n = 30) and the log-normal

85



distribution of the sample size was accounted for. This suggests that temporal
alignment between techniques was more import than spatial alignment for
comparable flux measurements. The weakest relationships involved smaller subsets of
CH data calculated by the Bayesian method (ECanvs CHgayes-rp R2= 0.45 [Fig. 4.6g]; ECcu
vS CHBayes-Fp R2= 0.36 [Fig. 4.6h]). Agreementbetween subsets of CH and EC fluxes, was
primarily driven by a few high flux measurements following fertilizer applications,
which made up only a small portion of the dataset (15 %). For smaller subsets for daily
averaged CH measurements inside the footprint of the EC tower, the Bayesian method
produced asymmetrical error bars. Where flux values were greater than 115 pg N20-N
m-2hr-1, error bars were often several orders of magnitude larger than the estimated
flux, due to the inability to constrain an arithmetic mean from a log-normally
distributed data set with a low number of measurement points. In general, variability
in N20-N flux measurements (CV %) was greater for N20-N fluxes measured by CH

compared to EC over the comparison periods (Table 4.3).
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Figure 4. 6: Comparison plots for (a) all half-hourly eddy covariance (EC) N2O-N fluxes (ECan)

and all daily averaged chamber (CHai) N20-N fluxes and (b) EC measurements during the time

of chamber measurements (ECci) and CHai, (c) ECan and daily averaged chamber flux

measurements within the footprint of the EC tower (CHep), (d) ECct and CHep, () ECan and all

chamber flux measurements daily averaged using the Bayesian mean (CHgayes), (f) ECcn and

CHaayes, (g) ECanand daily averaged chamber flux measurements within the footprint of the EC

tower using the Bayesian mean (CHgayesrp) and (h) ECen ECrcn and CHgayesrr. Black bars
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represent the 95 % confidence interval error of half-hourly EC N2O-N flux measurements, grey
bars represent the 95 % confidence interval error of daily averaged chamber N;0-N flux, and
the broken grey line represents the 1:1 ratio. Ranges on the error bars have been curtailed for

showing clearer comparisons between both techniques. See Table A.1 and Table A.2 in the

Appendix for full values.

Table 4. 3: Summary statistics of N.O flux measurements from chambers (CH) and eddy
covariance (EC) for seven comparison periods. No. of samples represents the number flux
measurements made during the measurement period. Methods used for calculating N20 fluxes
for each comparison period included all daily averaged chambers flux measurement (CHan)
and daily averaged chamber flux measurements from chambers that were located within the
EC footprint (CHep), calculated using both arithmetic and Bayesian methods, all half-hourly EC
flux measurements (ECan) and half-hourly EC flux measurements that were made during the
time of chamber measurements (ECcu). The Coefficient of Variation (CV %) is averaged overall

flux measurements (either daily arithmetic averages or half-hourly flux measurements).

N,O-N flux pg m™ hr?

Comparison period # Method N Arithmetic Bayesian
95 % C.1. 95 % C.1.
no. of samples min max mean min max mean CV %
8/1/2019-7/2/2019 1 CHa 105 177 2.58 2.18 177 2.60 2.18 97.57
CHep 43 1.62 2.69 215 161 2.72 2.16 82.54
ECum 94 59.89 62.01 13.89 118.25
ECcu 12 172 46.48 15.74 74.29
4/3/2019-26/3/2019 2 CHa 295 79.04 139.71 109.38 67.67 100.60 82.77 243.02
CHep 87 56.94 147.98 102.46 54.82 120.56 82.03 211.41
ECu 367 20.07 1088.96 96.29 202.40
ECcu 31 1.08 640.27 97.25 191.77
1/4/2019-24/4/2019 3 CHa 353 35.05 43.91 52.77 33.19 44.32 38.46 160.96
CHgp 59 12.49 23.37 34.24 15.21 30.14 22.04 125.63
ECu 341 34.48 345.85 86.17 99.25
ECcu 39 15.53 304.51 70.82 76.86
4/6/2019-27/6/2019 4 CHu 390 20.83 29.39 2511 21.03 25.81 23.34 171.60
CHpp 94 22.56 48.47 35.51 26.30 39.49 32.36 180.28
ECa 321 81.07 418.44 104.15 92.43
ECcn 43 58.38 329.71 80.72 109.07
7/8/2019-27/8/2019 5 CHu 150 6.71 11.56 16.41 814 13.04 10.50 184.70
CHpp 39 6.12 9.63 13.14 6.43 13.48 9.73 90.06
ECa 99 12.10 51.02 18.11 53.36
ECcn 14 12.10 35.69 18.09 79.29
2/9/2019-2/10/2019 6 CHa 388 38.24 55.89 73.54 35.65 48.07 41.48 241.23
CHpp 123 29.90 46.13 62.35 31.18 51.53 40.46 147.25
ECu 339 29.85 539.44 102.59 126.31
ECcn 58 2.68 403.32 79.56 139.07
10/10/2019-3/12/2019 7 CHa 299 8.36 10.79 13.22 8.63 12.02 10.29 162.31
CHpp 69 9.42 14.57 19.72 10.25 19.46 14.53 110.61
ECa 283 46.48 61.30 17.17 90.33
ECcu 34 46.48 41.44 15.29 129.07
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4.3.4 N20 fluxes and environmental variables

Diurnal patterns in N20 emissions were not observed suggesting that changes in
temperature between day and night and potential root exudation of carbon during
photosynthesis (and therefore changes in soil carbon availability), did not have a
significant control on N20 production. Mean daily log(N20-N) emissions showed the
greatest variability within a temperature range of 7 °C and 15 °C, across WFPS values
of 55 % to 65 % and with increasing cumulative rainfall. Rolling averaged data
presented in Table 4.4 best explained the variability in log(N20-N) fluxes from the
respective environmental factor, as determined by a subsetregression model. The full
output of this model can be seen in Table A.3. Correlations with background log(N 20-
N) fluxes (30 days outside of fertilizer events) and WFPS, rainfall, air and soil
temperature were weak but improved in the 30 days following fertilizer application.
Environmental variables in Table 4.4 were significantly correlated (p < 0.05) with

log(N20-N) flux measurements.

Table 4. 4: Variance in log(N:0-N) fluxes explained by a subset regression model on water-
filled pore space (WFPS %), rainfall (mm) air temperature (Tair °C) and soil temperature (Tsoil
oC) over rolling averages of 48hrs-1 and 100 hrs! periods in the 30 days following fertilizer

application (Fertilizer) and in the 30 days outside of fertilizer applications (Background).

Variable Treatment R”

WFPS48 hr Fertilizer 0.50
Rainfall 100 hr*  Fertilizer 0.50
Tsoil 100 hr™ Fertilizer 0.48
Tair 100 hr™? Fertilizer 0.43
WFPS 100 hr Background 0.31
Rainfall 48 hr™ Background 0.31
Tsoil 48 hr? Background 0.31
Tair 100 hr? Background 0.27
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4.3.5 Modelled eddy covariance N20 emissions

Alinear multivariate regression model consisting of (1) WFPS, rainfall, air and soil
temperature over 6 hr-1,12 hr-1, 24 hr-1,48 hr-1and 100 hr-1 periods (Table. A.4); (2)
time since fertilizer application; and (3) the previous and next available measured flux
value between the gap in the dataset, was used to gap-fill EC flux measurements, and
calculate the associated uncertainty. Where correlation between environmental
variables and fluxes were found to be significant (p<0.05), these were included in the
gap-filling model (see Table A.4 for a summary of the model output). Modelled and
measured flux values showed a strong correlation (R% = 0.92) (Fig. A.1). The upper and
lower uncertainty surrounding modelled N20-N flux values was expressed as the 2.5 %
and 97.5 % confidence intervals (Fig. 4.7). Uncertainty was greatest for high N20 flux
values (particularly around fertilizer events) compared to flux measurements outside

of fertilizer events.
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Figure 4. 7: Linearly modelled half-hourly N20O-N flux values (black line) and uncertainty

(shaded areas), whichrepresents the upper (97.5 %) and lower (2.5 %) limits of the modelled

flux value. The dashed lines represent fertilizer applications (see Table 2 for dates).

4.3.6 Measured Cumulative fluxes

Cumulative N20 fluxes were calculated for each subset of EC and CH data over each
comparison period (see Table A5 for a summary). Cumulative N20 emissions
measured by EC were greater than cumulative emissions measured by CH. Cumulative
N20 emissions for ECan, CHan and CHgayes were lowest in the winter (comparison #1)
and greatest in the autumn (comparison #6). Cumulative emissions from CHBgayes-Fp
were consistently higher than other CH methods due to the small sample size and high
variance in the data. Modelled flux values were used to gap-fill measured EC flux values
in order to calculate cumulative emissions for the field site for 2019. Cumulative

annual N20-N fluxes from Januaryto December were 3.35(+ 0.5) kg Nha-1,2.98 (x 0.17)
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kg N ha-land 3.13 (* 0.24) kg N ha-1, which translated to EFs of 1.46, 1.30 and 1.36 %
for EC, and CH fluxes by the arithmetic and Bayesian method, respectively (Fig. 4.8).
Cumulative fluxes between CH (both arithmetic and Bayesian) and EC were quite
similar overall, with both methods showing four distinct emission events following
fertilizer applications. EC cumulative emissions were consistently lower than CH
emissions from March to mid-June but following the June fertilizer application, higher
cumulative flux values were observed by EC compared to CH for the duration of the

year.

ha o
L L

MyO-N Flux / kg N ha '

Jan Apr Jul Oct Jan

. EC == CHay CHpaves

Figure 4. 8: Cumulative daily averaged N:0-N fluxes (black line) and uncertainty (shade)
(expressed as the least squares) from January to December 2019 by eddy covariance (solid

line) and chambers by the arithmetic (dashed line) and Bayesian method (dot-dashed line) and

the solid vertical lines represent fertilizer applications.
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4.4. Discussion

4.4.1 Drivers of N20 fluxes observed

The range of N20 fluxes observed in this study from CH and EC methods are
comparable with those at other fertilized temperate grassland sites (e.g., Cowan et al.
2020 for EC, Rafique et al. 2011 for CH). N20 emissions were greatest in the summer
and autumn following fertilizer application where extended dry periods (< 50 %
WFPS) were followed by heavy rainfall events (= 17 mm) and which led to higher WFPS
values (> 60 %). Similar temporal trends in N20 emissions following fertilizer
application have been documented in cropland sites (Waldo et al.,, 2019), restored
grasslands (Merbold et al, 2021) and at various soil systems (Shcherbak and
Robertson, 2019). While N20 emission events often coincided with the climatic
conditions described above, peak emission events were driven by management. The
variability in N20 emissions was better explained by WFPS, air and soil temperature
and rainfall following fertilizer application (R? < 0.50) compared to outside of
management (R2 <0.31). Similar drivers of variability in N20 emissions were identified
in Krol et al. (2016) and Maire et al. (2020). N inputs from fertilizer in excess of plant
demands can result in N losses of up to 50 % (Fageria and Baligar, 2005), where
residual N accumulates in soils. N-fertilizers create peak N20 emission events by
creating hotspots of N20 through the introduction of substrates for denitrification
(NH4* and NO3-) into the soil, where by emissions of N20 increase with greater soil NO3
(Zanatta etal,, 2010). Increasesinsoil NH4* and NO3- were observed following fertilizer
application (Table 4.1), with the highest mineral N content following the June fertilizer
application (43.7 kg ha-1 NH4* and 57.9 kg ha-1 NO3-), which coincided with the greatest

emission event of the entire experimental period at814.76 pg N20-N m-2 hr-1.
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4.4.2 Comparison of chamber and eddy covariance flux measurements

CH and EC flux measurements were most comparable when flux measurements were
high (>115 pg m2 hr-1), the CH sample size was large for a given day (n = 15) (for both
the arithmetic and Bayesian approach)and when EC and CH measurements were taken
over the same area and time (i.e CH flux measurements made in the EC footprint and
EC flux measurements made during the time of CH measurements). This agreement
between EC and CH fluxes has been observed in previous studies (Christensen et al,,
1996, Jones et al,, 2011, Laville et al,, 1997). Using the arithmetic mean when all CH
measurements were considered (n = 30) was sufficient in estimating the sample mean
and comparable with daily mean EC flux values (ECcu and CHan (R% = 0.79) (Fig. 4.6b)).
This is because the arithmetic sample mean will not deviate systemically from the
population mean where the sample size is large and variance is low. However, as a
large sample size is required (which is not always the case in CH flux studies - (Hyde
etal, 2016, Krol et al, 2017, Maire et al, 2020, Wecking et al., 2020b)), the arithmetic
mean is considered an unreliable estimator of the true flux mean within a sample (Levy
et al, 2017). Where the sample size is small and the variance is large (as is typical of
N20 flux data), the arithmetic method will typically underestimate the sample mean as
infrequent, high flux values will often be absent from the sample. Where high flux
values are included in the sample, the arithmetic mean will typically overestimate the
sample mean. The Bayesian approach on the other hand, reduces some of the bias in
N20 flux measurements by accounting explicitly for the log-normal distribution and as
aresult providing realistic ranges of uncertainty within flux measurements. Where the
CH sample size was small on a given day (n < 5) (i.e. when selecting CH flux
measurements that are only in the EC footprint), the Bayesian approach produced

larger, more asymmetrical uncertainties compared to the arithmetic method. In this
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instance, N20 flux measurements did not meet the expectations based on the Bayesian
model (i.e flux measurements showing a peak and decay pattern or multiple peaks or
a large sample size with low variance) (Levy et al, 2017) and therefore, the N20 flux
data collected was not sufficient for accurately capturing the existing variability of N 20

fluxes.

Over the 86 days where both EC and CH measurements were compared, mean daily EC
flux measurements were greater than CH flux measurements for a total of 63 days.
Similar to the findings in this study, Wang et al. (2013) showed that CH N20 flux
measurements were lower than EC flux measurements by 17-20 % from a cotton field.
However, numerous studies have reported contrasting results. For example, Pihlatie
et al. (2005b) found CH N20 flux measurements were consistently greater than EC
measurements and Jones et al. (2011) found that 70 % of N20 fluxes measured by EC
were within the range of CH N20 measurements in a grassland system, although this
varied seasonally. Likewise, disagreement between EC and CH flux measurements
have also been observed for CO2 respiration rates, both in agri-ecosystems (Schrier-
Uijjl et al, 2010) and peatland sites (Cai et al,, 2010). Disparities in flux measurements
from both CH and EC can be the product of the limitations of the methods themselves.
The CV was frequently greater in CH measurements compared to EC measurements
due to the small scale variability detected in CH measurements. CH flux measurements
represent single point measurements in space and time and, as a result, sudden
dynamic variations in emissions due to either management or weather events for
example, are not always quantified (Kroon et al, 2008). However, EC provides
continuous, high frequency measurements and is therefore capable of capturing high

emission events derived from hotspots and hot moments of N20. For example, two
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days post fertilizer application in March and in conjunction with a cumulative rainfall
event of 27.3 mm over this period, daily average EC emissions were 219.02 pg N20-N
m-2 hr-1, while CH fluxes measured at midday and integrated as a daily average were
36.63 pg N20-N m-2 hr-1l. Moreover, the footprint of the EC tower may not always
overlap with the location of where CH measurements are made and therefore take
measurements over different sources of N20 emissions, for example in Fig. 2, 70 % of
the EC flux footprint contribution does not encompass CH locations in the far South -

Westregion of the field site.

In addition, EC measurements are completely in situ and thus, avoid artefacts caused
by enclosure within a CH which are prone to under or over estimating the soil derived
flux (Davidson et al,, 2002). Such artefacts are caused by a) pressure differentials
(Venturi effect) when lids are closed or in windy conditions, b) alterations in the
boundary layer conditions and disturbance of diffusion gradients which can affect
canopy coupling to the atmosphere within the CH, c) increases in temperature which
can impact on both microbial processes and increase N20 dilution via increased
humidity (Davidson et al, 2002, Rochette and Hutchinson, 2005, Bain et al, 2005,

Bertora etal, 2018, Clough et al,, 2020).

4.4.3 Gap-filling N20 flux data

Unlike CO2 fluxes, there are no robust, validated process-based models available for
gap-filling N20 fluxes (Moffat et al,, 2007). Emissions of N20 are primarily controlled
by N inputs (in the form of NH4* and NO3-) into the system (Harty etal, 2016), as well
as soil physical and microclimatic properties such as WFPS (Davidson et al., 2000),
temperature (Butterbach-Bahl and Dannenmann, 2011), texture (Tan etal,, 2009) and

porosity (Choudharyetal, 2002). While repeated measurements of these variables are
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feasible, in many cases continuous high frequency measurements (both spatially and
temporally) are too costly or logistically not viable. Commonly used methods for gap-
filling N20 fluxes include linear interpolation (Mishurov and Kiely, 2011), 30-day
running medians (Merbold et al, 2021) and general additive models (Cowan et al,
2020). While these methods have been accepted within the flux community, they
should be used with due consideration for any potential limitations. Such gap-filling
approaches for N2O measurements are either too simplistic in approach, pronetolarge
uncertainties or where a model is applied, are subject to overfitting and
multicollinearity, which can reduce the sensitivity of model predictions by
underestimating the variance of the fitted modelled parameters (Dorich et al., 2020).
Here we proposed a multi-variate linear model that incorporates environmental data
where the temporal pattern in the data is retained in order to account for ‘emission
events’ over time and in doing so, provides an empirical method for interpolating
between data points. The relatively high data coverage, with limited gaps exceeding a
few hours and not during fertilization events (or the 30 days after), helped to reduce
the uncertainties in this study. Though itis important to note that while this model was
successful in gap-filling N20 flux measurements in this study, it incorporates
environmental and management data which are site-specific, and therefore maynotbe
as successful where the experimental site is under a different management, climate
and where the gaps in the data are more common. In order to further reduce
uncertainties in gap-filling N20 fluxes, we need to enhance our understanding of
microbial communities and their role in N20 production (Thompson et al., 2016) and
implement methods that can facilitate this at high resolutions, both spatially and
temporally. As flux datasets become larger, the use of neural networks (NN) for data-

driven predictive modelling of N20 will become more viable (Dorich et al,, 2020).
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4.4.4 Cumulative N20 fluxes and emission factors

Cumulative CH N20 fluxes are derived from non-continuous measurements commonly
made during the daytime, expressed as a daily average and linearly interpolated
between days (Dorich etal.,, 2020). Where the frequency of measurements are low, the
uncertainty in the integration of measurements for cumulative flux estimates
increases. As N20 is highly variable in space and time, reducing the uncertainty in
interpolating between measurement points requires many and frequent flux

measurements (Lammirato et al., 2018).

In this study, cumulative N20 emissions by CH were greater than EC cumulative fluxes
prior to the June fertilization event, but following this event, cumulative emissions
measured by EC were consistently greater than CH. Daily emissions of N20 measured
by EC peak following the June fertilizer event at 814.76 pg N20-N m-2 hr-1 following a
rainfall event of 17.6 mm. Daily emissions captured by CH during this period were
considerably lower at 7.74 pg N20-N m-Z2 hr-1, suggesting that both frequency and the
time of CH measurements (midday) were not sufficient to capture the N20 emission
event observed in the EC measurements. Similarly, cumulative EC emissions from the
time of CH emissions (ECcu) (typically between 10:00am and 2:00pm) were 19 % -
38 % (depending on the comparison period [Table A.5]) lower than cumulative EC
emissions from the entire day (ECan). While studies have shown higher N20 emissions
in the midday (Liang et al,, 2018, Shurpali et al, 2016) our results suggest that only
considering midday flux measurements could under-estimate the cumulative flux, and
the magnitude of this under-estimation could be greater following fertilizer
application. We recommend that daily CH flux measurements should be made at least

twice a day (mid-day and night), with increasing frequency following N-inputs into the
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system and rainfall events. Ideally, an automated chamber system should be used for
comparison with EC flux measurements, where continuous flux measurements are
available over high temporal resolutions. Annual cumulative N20 fluxes measured by
EC (3.35kg N ha1) were more similar to CH cumulative fluxes determined using the
Bayesian method (3.13 kg N ha-1) compared to the arithmetic method (2.98 kg N ha-1).
The Bayesian method captures the post-fertilization temporal pattern of peak and
decay that is commonly observed in N20 flux measurements (Cowan etal,, 2019, Levy
etal, 2017) by accounting for the log-normal distribution of the data. In doing so, the
Bayesian mean will not attribute equal weight to all data points, as the arithmetic
method does, and is therefore less likely to over or under-estimate the sample mean
and will provide a more robust mean for a log-normally distributed dataset. EFs from
this study for EC and CH derived using arithmetic and Bayesian methods were 1.46,
1.30 and 1.36 %, respectively, which is higher than the Intergovernmental Panel on
Climate Change (IPCC) Tier 1 default value of 1 % (0.03 -3 %) EF for all fertilizers
(Pachauri et al,, 2014). EFs reported are within a similar range for EFs calculated by
Harty etal. (2016) in a permanentpasture in Ireland (0.58 - 3.1 %), Cowan etal. (2020)
in managed grasslands across the British Isles (0.7 - 1.3 %) and Smith et al. (2012) in
grassland and arable sites across the United Kingdom (0.9 - 3.93 %). While a control
treatment was not used in this study, we estimate that EFs with the inclusion of a
cumulative control N20-N flux (Krol etal.,, 2016) would be 1.25,1.09 and 1.16 % for EC
and CH by the arithmetic and Bayesian methods respectively. Our study suggests that
a default EF value for mineral fertilizer is too simplistic to account for the variability of
N20 atdifferent spatial and temporal scales. The Tier 1 approach does notincorporate
changes in emissions due to agricultural management or environmental variability

(Dobbie and Smith, 2003). When considering the developmentof national and regional
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level EFs for N20 (Tier 2), it is essential that management data (e.g. fertilizer rates) is
available over different spatial and temporal scales in order to produce robust

estimates of N2O emissions (Skiba etal,, 2012).

4.5. Conclusions

Fluxes of N20 measured by CH and EC were most comparable when (1) N20 fluxes were
high (>115 pg N20-N m-2 hr-1); (2) both methodologies were measuring fluxes over the
same space and time; and (3) when the number of CH replicates were = 15 on a given
sampling day. Measurements of N20 emissions using the EC technique were greater
than CH flux measurements (arithmetic or Bayesian) 76 % ofthe time over the outlined
comparison periods. The Bayesian method was useful in upscaling CH N20 flux
measurements and providing reliable means and confidence intervals by accounting
for the log-normally distributed nature of the data. Where the CH sample size was 2
15, the arithmetic and the Bayesian method showed similar daily averaged fluxes over
the comparison periods. Where n < 5, uncertainties in CH flux measurements
calculated by the Bayesian method were large and asymmetrical due to the inability to
fit an arithmetic mean from a log-normally distributed data set where the sample size
is low. A multi-variate linear model that incorporates environmental data was used to
gap-fill annual N20 fluxes measured by EC and showed a strong correlation with
measured flux values (R2 = 0.92). Annual cumulative N20 fluxes from January to
December 2019 from gap-filled EC fluxes and CH fluxes derived from the arithmetic
and Bayesian method, were 3.35 (+ 0.5) kg N ha-1,2.98 (+ 0.17) kg N ha-land 3.13 (*
0.24) kg N ha-l respectively. EFs from EC and CH by the arithmetic and Bayesian
method were 1.46, 1.30 and 1.36 %, respectively. N20 emissions were greatest

following CAN fertilizer application when conditions for denitrification were
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favourable (WFPS> 60 %). In order to reduce EFs from mineral N fertilizer application,
applications should be made where conditions for denitrification are limited, such as
low soil moisture content and rainfall. Where potential hotspots of N20 are present on
agricultural landscapes (Cowan etal., 2017), N fertilizer application should be avoided
on theses hotspotareas or nitrification and urease inhibitors should be used to reduce

the availability of N for N20 production (Luo et al. 2016).
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Chapter 5: Nitrous oxide emission factors from an intensively
grazed temperate grassland: a comparison of cumulative
emissions determined by eddy covariance and static chamber
methods.

Abstract

Quantifying nitrous oxide (N20) emissions from grazed pastures can be problematic
due to the presence of hotspots and hot moments of N20 from animal excreta and
synthetic fertilizers. In this study, we quantified field scale N20 emissions from a
temperate grassland under a rotational grazing management using eddy covariance
(EC) and static chamber techniques. Measurements of N20 by static chambers were
made for four out of nine grazing events for a control, calcium ammonium nitrate
(CAN), synthetic urine (SU)+CAN and dung+CAN treatments. Static chamber N20 flux
measurements were upscaled to the field scale (FcurieLp) using site specific emission
factors (EF) for CAN, SU+CAN and dung+CAN. Mean N20 EFs were greatest from the
CAN treatment while dung+CAN and SU+CAN emitted similar N20-N emissions.
Cumulative N20-N emissions over the study period measured by Fcu rimD
measurements were lower than gap-filled EC measurements. Emission factors of N20
from grazing calculated by Fcu rieLpand gap-filled were 0.72 and 0.96 %, respectively.
N20-N emissions were derived mainly from animal excreta (dung and urine)
contributing 50 % while N20-N losses from CAN and background accounted for 36 and
14 %, respectively. The study highlights the advantage of using both the EC and static
chamber techniques in tandem to better quantify both total N20-N losses from grazed
pastures while also constraining the contribution of individual N sources. The EC
technique was most accurate in quantifying N20 emissions, showing a range of

uncertainty that was seven times lower relative to that attributed to static chamber
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measurements, due to the small chamber sample size per treatment and highly

variable N20 flux measurements over space and time.

Work presented in this chapter is published in Agriculture, Ecosystems and

Environment (https://doi.org/10.1016/j.agee.2021.107725) with author list as:

Murphy, R.M. Saunders, M. Richards, K. G. Krol, D. J. Gebremichael, A. W. Rambaud, J.

Cowan, N. and Lanigan, G.].

Author Contributions: RM, MS, DK and GL designed the experiment. RM conducted the
experimentand analysed the samplesthat were collected alongside JR and AG. Samples
were analysed in the Teagasc Johnstown Castle with the support of laboratory
technicians. RM with the help of NC conducted the flux data analysis. RM wrote the

article with the contributions from all co-authors.

The overarching objective of this thesis chapter was to quantify field scale N20
emissions from a grazed pasture using both static chambers and EC in tandem, where
site specific N20 emission factors from N sources (fertilizer, urine and dung) were used
to upscale chamber N20 measurements to the field scale, and the contribution of
fertilizer, urine and dung to the total N20-N losses was determined for identifying

source specific mitigation strategies.

5.1 Introduction

Nitrous oxide (N20) is a potent greenhouse gas (GHG), with a global warming potential
(GWP) 265 times higher than carbon dioxide (COz), over a 100 year lifespan (Pachauri
etal, 2014). The largest contribution to global anthropogenic emissions of N20 comes
from the agricultural sector, and livestock production systems account for 30-50 % of

the total N20 emissions from agriculture (Grossi et al., 2018). Sources of N20 from
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agriculture include the use of chemical and organic nitrogen (N) fertilizers and animal
excreta (Flechard etal., 2007), with nitrogen in these materials converted to N20 either
as a by-product of the microbial process of nitrification or as an intermediate product
of denitrification (Davidson et al, 2000). Intensively managed grassland pastures
require frequent N fertiliser applications to stimulate grass growth between rotational
grazing events. As a result, a portion of the mineral N applied as fertilizer is added to
pre-existing N pools deposited by animal excreta, which cansubstantially increase N20
losses (Hyde et al, 2016). The spatial heterogeneity of urine and dung deposits
(Carpinelli et al., 2020, Maire et al.,, 2018) can lead to ‘hotspots’ of N20, with N loading
rates of 400-2000 kg N ha'l in the affected areas (Jarvis et al, 1995b). Such
concentrations of N outweigh the uptake capacity of grass in the affected area, and this
in conjunction with temporal variation in plant N demand and soil microclimatic
conditions can further increase N20 emissions from pastures (O’Connell et al., 2004).
As aresult, it can be difficult to accurately quantify N20-N losses at the field scale from

grazing systems.

The Intergovernmental Panel on Climate Change (IPCC) developed a standardised
method forreporting N20 emissions using a tiered approach based on emission factors
(EFs) to quantify the amount of N20-N lost as a proportion of N applied to pastures (De
Klein et al,, 2010). The IPCCs default (Tier 1) EFs for mineral fertilizers (EF1) is 1 %
with an uncertainty range of 0.3 - 3 %, and for urine and dung N deposition on pasture,
range and paddocks by grazing animals (EF3prp) is 2 % with an uncertainty range of
0.7 - 6 % (Eggleston etal,, 2006). However, numerous studies have reported lower EFs
for N20-N from urine and dung patches, ranging from 0.12 to 0.69 % and 0.0027 to

0.19 %, respectively (Chadwick et al,, 2018, Hyde et al., 2016, Krol et al,, 2016, Simon
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etal., 2018). As a result, the IPCC has revised the default EF3prp from 2 % down to 0.6
% (0 - 2.6 %) and has disaggregated grazing EFs for dung at 0.13 % (0 - 0.53 %) and
urine 0.77 % (0.03-3.82 %), as well as revising the EF1at 1.6 % (1.3 - 1.9 %) in wet
temperate climates (Buendia et al, 2019). However, (van der Weerden et al,
2021)reported higher mean emissions from dung and urine in wet temperate climates
relative to the revised IPCC default values at 0.20 % (0.17 - 0.27 %) and 0.95 % (0.88
- 1.03 %). Default EFs reported by the IPCC use a Tier 1 methodology for reporting
national N20 emissions, however, there are large uncertainties surrounding these
values. As a result, the IPCC encourages the use of country-specific (Tier 2) values
which incorporate data on soil and climatic conditions, and farm management (Skiba
et al, 2012). Ireland has developed Tier 2 disaggregated EFs for calcium ammonium
nitrate (CAN) EF1can (1.4 %), cattle urine, EF3cattle -urine (1.2 %), and cattle dung, EF 3catte

~dung (0.31 %) (Harty et al,, 2016, Krol et al,, 2016, Roche et al,, 2016).

The most commonly used method to quantify N20 EFs is the chamber technique,
accounting for 95 % of the total field data on N20 flux measurements (Rochette et al,,
2008, Rochette, 2011, Wecking et al, 2020b). Manually-operated chambers are the
most commonly used method for investigating treatment effects on soil N20 fluxes at
small spatial scales (Clough et al., 2020, Krol et al,, 2017, Maire et al,, 2020). However,
due to the highly heterogeneous nature of N20 emissions from intensively managed
pastures (Cowan etal, 2017), and the limited spatial and temporal resolution of single
point static chamber measurements (Jones et al,, 2011), the chamber technique is not
always sufficient to characterise field-scale emissions of N20 from grazing systems. In
addition, static chamber flux measurements are often associated with large

uncertainties due to artefacts that de-couple the chamber microclimate from external
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conditions. These include pressure differentials in the chamber headspace, as well as
fluctuations in temperature and humidity (Hutchinson and Livingston, 2002, Rochette
et al, 2008). Conversely, the eddy covariance (EC) technique provides real time,
continuous measurements of the ecosystem to atmosphere exchange of N20 that are
integrated from multiple sources at the ecosystem scale. This technique is widely used
to measure field scale N20 emissions within agricultural landscapes (Cowan et al,
2016, Cowan et al, 2020, Haszpra et al.,, 2018, Liang et al,, 2018), however, as EC flux
measurements represent a single non-replicated flux value that is integrated over a
large spatial area, it does not provide disaggregated emissions from various emission
sources. Therefore, in order to more accurately quantify emissions from grazed
pastures, the use of static chamber and EC techniques in a complimentary fashion is
advised (Cowan etal, 2017, Wecking et al, 2020b). Flux estimates by EC can be used
to quantify field scale emissions, while individual contributions from various sources

can be determined by static chambers.

The objectives of this study were to 1) quantify the total field scale N20 fluxes
associated with a temperate grassland under a rotational grazing management sys tem
using the EC technique; 2) assess the contributions of background, fertilizer and animal
excreta as determined by static chamber N20 flux measurements and 3) evaluate how
field scale emissions of background (i.e. no N applied), calcium ammonium nitrate
(CAN), synthetic urine (SU)+CAN and dung+CAN compare with previously reported

values in the literature.
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5.2 Materials and Methods

5.2.1 Site description and experimental design

The study was carried out from January 1stto October 14th 2020 on a sandy loam soil
site at the Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford in
the south-east of Ireland (52.30 °N, 6.40 °W, 67 m above sea level. The mean annual air
temperature and rainfall for this region over the last 10 years, is 10.1 °Cand 1101 mm,
respectively. The field site has a soil pH of 6.06, carbon (C), nitrogen (N) and
phosphorus content of 3.52 % (* 0.12 %), 0.38 % (+ 0.01 %) and 4.95 % (+0.20 %),
respectively. The field site is a perennial ryegrass (Lolium perenne) grassland,
consisting of two paddocks (10 and 11) with a total area of 2.65 ha-1 (Fig. 5.1).
Historically, paddock 10 was managed for silage production receiving 230 kg of CAN
ha-lin 2019 and 255 kg CAN ha-lin 2018. Paddock 11 has been under both a silage
production system (the same as paddock 10 in 2019) and managed for livestock
production, grazed by Holstein Friesian dairy cows in 2018, receiving 277 kg ha1of
urea coated with the urease inhibitor (n-Butyl) thiophosphoric triamide, (NBPT). In
this study, there was a total of nine rotational grazing events occurring approximately
every 21 days, with an average stocking density of 3.2 livestock units (LU) ha-1, and six
fertilizer applications of CAN (see Table. 5.1). The prevailing wind direction is south-
westerly, and the EC tower was set up in the North-East part of the field site to
maximize the footprint (Fig. 5.1). During the measurement campaign, N20 flux
measurements were not available between 23rd March - 27th March, and 13t June -
15th June, for instrument maintenance. Additionally, field measurements of N20 fluxes
by EC were also not possible after the 14th of October due to delays in acquiring parts

necessary for maintenance of the quantum cascade laser (QCL) as a result of the
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coronavirus (COVID-19) pandemic. The chamber trial plot was located in the south-
westofpaddock10 (Fig.5.1) and was 93 x 20 m in size and fenced off from surrounding
grazing animals. The chamber trial plot consisted of two zones; a gas sampling zone
(59 m X 10 m) and an adjacent soil sampling zone (36 m X 9 m). The grass within the
trial plot (excluding inside chambers) was mechanically cut with an Etesia mower
(Hydro 124 DL) while grass within the chamber was cut with a strimmer and removed
following grazing outside the trial plot, within the paddocks. The gas sampling zone
consisted of five different sub-trial zones for measuring N20 emissions, and the soil
sampling zone consisted of three different sub-trial zones for measuring soil mineral
N (NH4* and NO3°), both from four grazing events (see Table 5.1 for dates) - one in
spring, two in summer and one in autumn in order to account for the temporal
variability in N20 fluxes. Each grazing sub-trial was designed in a randomized block of
five replicate blocks for gas sampling or three replicate blocks for soil sampling, from
four treatments - (1) control: without N application, (2) fertilizer in the form of CAN,
(3) SU+CAN and (4) dung+CAN. Stainless steel collars and associated chambers were
identical to those described by Harty et al. (2016), and collars were inserted into the
soil 1.5 m apart both in length and width, in order to minimize cofounding effects
between treatments. SU was prepared in the laboratory as outlined in de Klein et al.
(2003),in 60 L batches that were stored at 4 °C prior to application. The N loading rate
was equivalent to that of a standard cow urination (at approximately 500 - 700 kg N
ha1) (Haynes and Williams, 1993). Dung was collected a week prior to application in
the field immediately after defecation and stored as described above for SU. Composite
sub-samples of SU and dung were analysed for total N using the LECO TruSpec high
temperature Dumas Combustion system (St Joseph, Michican) and Ganimede analysis,

respectively, and subsequent N loading rates were calculated for each application
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(Table. 5.1). Dung and SU treatments were applied to the gas and soil measurement
areas within the chamber trial plot when cows were grazing in strips within the South-
West region of paddock 10, in frontof the chamber trial plot. SU was applied using a
water can to facilitate infiltration (Forrestal et al, 2017) at a volume of 18 L
(Misselbrook et al, 2014) in an area of 0.16 m2 within a chamber frame to reduce
runoff through soil pores outside of the chamber. Dung was applied at 2kg to a 30 cm

diameter area within the chamber collar (Krol et al., 2016).

(a) (b)

Field site
Eddy covariance tower [l

Trial plot [l

Meters
0 375 75 150 225

Figure 5. 1: (a) Map of the experimental field site at Johnstown Castle. Boundaries represent
paddocks. P10 and P11 denote paddock 10 and paddock 11, respectively. The light grey
paddocks represent the experimental field site (2.65 ha-1) and the dark grey patch represents
the chamber trial plot (0.09 ha-1). The black square in P10 represents the eddy covariance (EC)
tower and panel (b) shows the EC footprint for 2020 as calculated by the footprint model

outlined in Kljun et al. (2015). The footprint contour lines represent 10 % to 90 % of the flux
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source in 10 % increments. The axis represents distance (meters) from the EC tower (black

Cross).

Table 5.1: Management for the experimental site in 2020 and rates of application (kgnitrogen
(N) ha?) for calcium ammonium nitrate (CAN), synthetic urine (SU) and dung that were

applied to static chambers for four out of nine grazing events.

Date Management Application date Application rate
kg N ha
CAN SU Dung
04/02/2020 -10/02/2020 Grazing!™+ - - - -
03/03/2020 -22/03/2020 Grazing!* 03/03/2020 - 517 551
02/04/2020 Fertilizer!* 02/04/2020 50 - -
10/04/2020 -18/04/2020 Grazing - - - -
03/05/2020-10/05/2020 Grazing?* 04/05/2020 - 517 559
11/05/2020 Fertilizer2x 11/05/2020 40 - -
25/05/2020-03/06/2020 Grazing3* 25/05/2020 - 517 405
03/06/2020 Fertilizer3x 03/06/2020 27 - -
17/06/2020 -24/06/2020 Grazing - - - -
29/06/2020 Fertilizer - 20 - -
09/07/2020 -18/07/2020 Grazing - - - -
01/08/2020 -12/08/2020 Grazing - - - -
14/08/2020 Fertilizer - 27 - -
31/08/2020 -21/09/2020 Grazing** 01/09/2020 - 542 355
14/09/2020 Fertilizer4x 14/09/2020 27 - -

x Grazingevents and CAN applications where N, 0 emissions and mineral N were monitored for the duration of the experiment

within the chamber trial plot . 1,2,3,4 is the number assigned to each grazing period, and is herein used in tables and figures.

+ Due to wet soil conditions, spring grazing events were extremely sporadic and inconsistent, and as a result grazing 1 was

extended from February to March.

5.2.2 Chamber N20 sampling and analysis

N20 measurements were made using the closed static chamber technique as outlined
in de Klein and Harvey (2015). Stainless steel 40 cm x 40 cm chambers were inserted
into the ground at 5 - 10 cm depth at least three days prior to flux measurements.
Chamber lids were 10cm high creating an approximate headspace volume of 20-22 L.
During sampling, chambers were closed for 30 minutes and flux measurements were
taken at0, 15 and 30 minutes from chamber closure through a rubber septum (Becton
Dickinson, Oxford, UK) using a 10ml polypropylene syringe (BD Plastiplak, Becton

Dickinson) fitted with a hypodermic needle (BD, Microlance 3; Becton Dickinson). Gas
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samples were injected into a pre-evacuated 7ml screw-cap septum glass exetainers
(Labco, High Wycombe, UK). N20 fluxes measurements occurred between 10:00h and
14:00h (UTC) to best reflect daily average N20 emissions (Charteris et al, 2020b).
Measurements were made more frequently following the application of CAN, dung and
SU inside chambers, with five sampling measurements for the first week, four sampling
measurements in the second week post treatment application, two sampling
measurements per week for following two weeks, then one sampling measurement a
week for the following five weeks before reducing the measurementfrequency to twice
a month until week 17 post application, and thereafter once a month until the end of
the experiment. N20 concentrations were analysed using gas chromatography (GC)
with a detection limit of 0.05 ppm (Scion 456-GC, Bruker Inc, Kirkton Campus
Livingston, UK) equipped with an electron capture detector. For each series of gas
samples from a chamber, the hourly flux (Fcu) (pg N20 m-2 hr-1)was calculated using

the following equation (Eq. 5.1)

Fey = (E) X (MXP) X (g) Equation 5.1

AT RxT

Where AC/ AT is the change in headspace concentration of N20 (ppbv) during the
enclosure period in hours calculated by linear regression, M is the molecular weight of
N20 (44.01 g mol-1),Pand T are the atmospheric pressure (Pa) and temperature (K) at
the time of gas sampling, respectively, R is the ideal gas law constant (8.314 ] K-1 mol-
1), V is the headspace volume in a closed chamber (m3) and A is the ground area
enclosed by the chamber (m?2). Linearity of N20 accumulation within the chamber
headspace was checked from three headspace samples per chamber (de Klein and

Harvey, 2015).
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5. 2.3 Eddy covariance flux measurements

The EC system was equipped with a 3-D sonic anemometer (CSAT-3, Campbell
Scientific Ancillary, Logan, UT, USA) mounted at 2.2 m to measure fluctuations in the
3-D wind components at a frequency of 10 Hz. Concentrations of N20 and H20 were
measured at 10 Hz by a quantum cascade laser (QCL) (Los Gatos Research, California,
USA), with a detection limit of 0.03 ppb over a 30 minute period. The QCL was housed
in a temperature controlled trailer adjacent to the EC mast. The inlet line into the QCL
was a 10 m long, 10 mm inner diameter perfluoroalkoxy (PFA) tube with an airflow
rate of approximately 30 - 35 standard L min-1, controlled by an external dry scroll
vacuum pump (XDS35i, Edwards, West Sussex, UK). Two in line 2 um filters (SS-4FW4-
2, Swagelok™) were fitted on the PFA tube and an additional 2 pm and 10 pm (Los
Gatos Research, California, USA) filters were fitted within the QCL at the entrance of
the inlet tubing and upstream of the internal pump, respectively. The air inlet into the
QCL sensor was placed in the same horizontal axis, 30 cm apart from the sonic
anemometer reference. The QCL contained an internal temperature regulator that
maintained the cell temperature to 34 °C = 0.5 °C and the cell pressure was set at 85
torr. Environmental variables at the EC site were measured using a range of sensors
including an air temperature and relative humidity probe (HMP155C, Campbell
Scientific, Logan, UT, USA), tipping bucket rain gauge (Young, Michigan, USA), two net
radiation sensors (NR-Lite, Kipp and Zonen, Delft, The Netherlands), two self-
calibrating soil heat flux plates that were installed at 5 cm soil depth (HFPO1SC,
Hukseflux, Delft, The Netherlands), photosynthetic active radiation (PAR) (PQS1, Kipp
and Zonen, Delft, The Netherlands) and averaging soil temperature probes (TCAV-L,

Campbell Scientific, Logan, UT, USA) that were installed at 2 cm and 6 cm depth above
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the soil heat flux plates. Time domain reflectometers (CS616, Campbell Scientific,
Logan, UT, USA) measured soil volumetric water content (VWC) in the upper 15 cm of
soil. Soil bulk density (0-10 cm) was measured prior to the experiment by a core
method (USDA, 1999) in order to calculate the water filled pore space (WFPS %) as
outlined in Linn and Doran (1984). Data from the EC system was recorded and
collected weekly from the CR3000 micrologger (Campbell Scientific, Logan, UT, USA).
EC fluxes of N20 (Fec) were calculated over 30 minute intervals using the Eddypro

software version 7.0.4 (www.licor.com/eddypro), based on the covariance between

the N20 concentration (N) and wind speed (w) Eq (5.2):
Fee =W'N Equation 5.2

Raw half-hourly EC N20 flux measurements were initially processed for amplitude
resolution, drop-outs, absolute limits, skewness and kurtosis, as outlined in Vickers
and Mahrt (1997). To compensate for the tilt of the sonic anemometer, double rotation
was performed to nullify the average cross-stream and vertical wind component
(Kaimal and Finnigan, 1994). Low and high pass spectral corrections were accounted
for using the analytical methods described by Fratini et al. (2012) and Moncrieff et al.
(2004), respectively. The covariance maximization procedure was used to calculate
the time lag for N20 as described in Cowan etal. (2020). Flux data were removed if less
than 70 % of the flux contribution came from outside of the field site (Kormann and
Meixner, 2001) and if flux values were < -0.1 pumol N20 m2 s-1. Additional filtering for
bad quality fluxes were derived from Cowanetal. (2020).Missing N20 fluxes were gap-
filled using a multi-variate linear model including the previous and next measured

value in the dataset, and air and soil temperature, WFPS and rainfall over 2, 12, 24, 48
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and 100 hour periods. Gap-filled EC N20 flux measurements presented in this study are

expressed as a daily average.

5.2.4 Soil sampling and analysis

Soil was sampled on 45 occasions during the experimental period, once before
treatment application and once a week for the next eight weeks following treatment
application, in a randomized block design sampling area adjacent to the gas sampling
area within the trial plot. The soil cores were taken using a hand core at 10 cm depth
and 15 mm diameter and then mixed, homogenised and processed in the laboratory
for ammonium (NH4*), nitrate (NO3-) and gravimetric moisture content within 24 hrs.
Soil mineral N concentrations were analysed from a 20g sample of freshly sieved soil
(<4 mm), extracted with 100ml KCL (1 M) and analysed colorimetrically using an
Aquakem 600 discrete analyser (Thermo Electron OY, Vantaa, Finland) for NH4*-N
(Standing Committee of Analysts, 1981) and NOs-N (Askew, 2012) concentrations. The
gravimetric moisture content was determined by oven-drying samples at 105 °C for 24

hrs.

5.2.5 Data analysis

Data analysis was carried out on the statistical software R (Rstudio Team, 2020).
Hourly chamber fluxes were assumed to be representative of daily emissions and were
used to calculate the daily mean N20 flux. In order to approximate the total N20
produced from CAN, dung+CAN and SU+CAN, cumulative fluxes were calculated using
loess regressions. Cumulative chamber N20 fluxes were used to derive EFs for each
treatment and each grazing (Eq. 5.3). EFs represent the % of N20-N emitted from

dung+CAN, SU+CAN or CAN applied
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EF = ([NZO Treai.;\r]nz;l)t;l;elvjo Control]) * 100 Equation 53

Where N applied is the N applied from the treatment (CAN, SU or dung) (kg N ha-1yr-
1), N2Otreatments is the cumulative N20 emissions (kg N20-N ha-1 yr-1) from dung+CAN,
SU+CAN or CAN per grazing and N2Ocontrol is the average N20 emission (kg N20-N ha'l
yr-1)fromthe control treatment per grazing cumulated over the duration of the grazing
event (Cowan et al, 2019). The IPCC Tier 1 methodology assumes a standard, annual
EF (Pachaurietal, 2014), however, in this study treatment EFs were calculated over
29,34, 27 and 28 days for grazing 1, 2,3 and 4 respectively. Therefore the EFs reported
in this study are considered partial EFs, but are unlikely to vary from those measured
at annual scales as N20 emissions from control plots were deducted from N:20
emissions measured from treatment plots and over a range of temporal conditions

(Maire et al,, 2020).

A direct comparison between chamber and EC cumulative flux measurements fora 288
day period was possible by upscaling chamber measurements to the paddock scale.
Chamber fluxes were upscaled (Fcu riep) by using EF from grazing 1-4 for each

treatment (Table 5.3) (Eq. 5.4).

__ Napp+*EF .
Fen piep = 100 Equation 5.4

Where Napp is the N applied to the field (kg N ha-1) and EF is the mean emission factor
(%) calculated over the 4 grazing events for a given treatment. For livestock emissions
of dung and urine, the Napp at the field scale (NappLivestock ) (EQ.5.5) was determined

by the N rate per patch (Npatch) and total number of daily patches (Patchdaily)

Napp ivestock = PatChdaily * Npatch Equation 5.5
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Where Patchaaily (Eq. 5.6) was calculated as,

Patchyg;y, = grazing duration * herd size * Patch,,, Equation 5.6

where the grazing duration is the time cows spent grazing (hr-1), herd size quantified
the number of cows grazing, Patchno. was the number of urine or dung patches
specified for Holstein Friesian at 7.5 (Dennis etal,, 2011) and 10.9 (White et al,, 2001)

per grazing day (21hrs-1), and Npatch (Eq. 5.7) was quantified as
Npatch = Areapatch * u(Napp) Equation 57

Where Areapatch was the wetted surface for each deposition event, with 0.33 m-2 for
urine (Dennis et al, 2011) and 0.12 m?2 for dung (Wilkinson and Lowrey, 1973) and
u(Napp) was the average N application rate for dung or SU from grazing 1-4 (Table.

5.1) quantified as 443 kg N ha-1and 554 kg N ha-1, respectively.

Literature values for EFs of CAN (Harty et al., 2016), dung (Krol et al,, 2016)and urine
(Maire et al,, 2020) were used to calculate cumulative emissions for comparison with
this study as these studies were carried out at the same experimental site or sites
within the same research farm (Table. 5.4) (Fig. 5.4). These literature background
cumulative emissions were also derived from a previous study on the same

experimental site (Kroletal, 2017).

The 95 % confidence interval (20) was used to determine if differences between N20
emissions measured by chambers from individual treatments were significantly
differentfrom zero.The Shapiro-Wilk Test was used to assess normality in the N20 flux
datasets (both chambers and EC) using the stats package in R. Where the p value from
the Shapiro-Wilk Test was greater than 0.05, the dataset was deemed normally

distributed. Where the p value was less than 0.05, i.e. the dataset was log normally
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distributed, measured N0 fluxes were transformed to a normal distribution using the
bestNormalize package in R (Peterson and Cavanaugh, 2019) for statistical analysis.
Linear correlations between daily field scale N20 fluxes by EC and rainfall and WFPS
were performed to determine significance and the coefficient of determination (R2). A
repeated measures ANOVA was used to investigate interaction effects between

chamber N20 fluxes, treatment and time using the car package in R.

5.3 Results

5.3.1 Weather and eddy covariance N20 flux data

Daily weather and field-scale N20 flux data measured at the EC station between
January 1st and October 14th 2020 is shown in Fig 5.2. Daily mean air temperature
ranged from 2.2°C in February to 19.8°C in August (Fig 5.2a), which represented a
cooler February and warmer August, relative to the 10 year mean (2009-2019) for
those respective months (Table B.1). Soil temperature at 6 cm depth was greatest in
June and lowest in January with values of 20.3 °C and 2.1 °C (Fig 5.2a), respectively,
which represented a warmer June and colder January compared to the 10 year mean
for these months (Table B.1). Cumulative rainfall for the experimental period was 502
mm (Fig 5.2b). Rainfall was most frequent in the winter and spring resulting in high
WEFPS (=2 60 %) but the heaviest events (>15 mm daily) were observed in the summer
and autumn. Extended dry periods (<50 % WFPS) were observed between May 25t

and 18t June (Fig 5.2c).

Peaks in daily N20 emissions principally occurred post-fertiliser application or during
grazing, but both emission intensity and timing were strongly mediated by both
temperature and rainfall (Fig 5.2a, b, d). A bell-curve relationship was observed with

N20 fluxes and WFPS, and N20 emissions were greatest within a WFPS range of 60 % -
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70 % (Fig B.1). Daily mean N20 emissions were greatest within a soil temperature
range of 15 °C - 20 °C (Fig 5.1A) but were only significantly correlated (p < 0.05) with
soil temperature during the February (r2=0.63) and March (r2 = 0.29) grazing (Table
B.2). Daily emissions of N20 were significantly correlated with rainfall (p < 0.05) for
grazing events’ in February (r2=0.84), March (r?2 = 0.14), May (r2= 0.67), and June (r?
= 0.47) (Table. B.2) .Emissions of N20 were also significantly correlated with WFPS (p
< 0.05) during grazing events’ in February (r2 = 0.66), March (r2 = 0.20), April (r?2=
0.58), June (r2=0.76) and July (r2= 0.34) (Table. B.2). Rainfall prior and during the
June grazing co-occurred with fluctuations in N20 emissions ranging from 0.05 nmol
N20-N m2s-1to 2.9 nmol N20-N m2 s-1. The highest emission event observed was 9.9
nmol N20-N m-2 s-1, following a series of small rainfall events (< 0.6 mm) and increasing
WFPS from 48 % to 61 %. No peaks were observed during grazing periods in early
spring (February-March) where rainfall was consistent (WFPS >50 %) and soil

temperatures were < 10 °C.

118



20
—~ 151
g 10+

5

Tsoil Tair [ LT NIRRT Sy
I FI LY Yol

Temperature

Rainfall

W O I S _uI.L.I

‘51% u|lll..|..u.um[].ulu.1 1. |-, -

WFPS
(0
a
o

.of. 3 L 1 . .

N, O-N Flux
(hmolm=s™"
~

. = ¢ . .- & . L™ o.. +
04 o a - J’.."-HM--\M-""“'.'\-M-‘.M T4 cmentfany, 't\"‘".

G1 G1 G2 G3 G4

Jan Feb Mar  Apr  May  Jun  Jul Aug  Sep  Oct

Figure 5. 2: Panels (a) - (c) represent the daily mean soil temperature (Tsoil) (solid line) and
air temperature (Tair), (dashed line), daily sums of rainfall and daily mean water-filled pore
space (WFPS), respectively. Panel (d) represents daily average N>O-N fluxes measured by eddy
covariance where blue lines represent the 95 % confidence interval. The grey back drop
represents grazing periods where G1-G4 represents grazing events 1-4 that were measured
for N,O flux measurements by static chambers. Black arrows mark the date of fertilizer

applications.

5.3.2 Cumulative N20 emissions from grazing treatments
Cumulative N20-N emissions and partial N20-N EFs measured by chambers from
control, CAN, SU+CAN and dung+CAN for grazing events’ 1-4 are shown in Table. 5.2.

There was a significant interaction between N20 emissions and time and treatment (p<
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0.001). The control treatment (no N applied) showed low cumulative emissions with a
mean value of 0.12 + 0.07 kg N ha'l. Mean cumulative N20-N emissions were
significantly lower (p < 0.05) for CAN (1.24 + 0.44 kg N ha-1) compared to SU+CAN
(3.42 £ 0.69 kg N ha-1) and dung+CAN (3.35 £ 0.83 kg N ha-1). The N loading applied to
the treatments varied with grazing due to differences in CAN rates and the N contents
ofdung and SU (Table. 5.1). EFs were calculated for comparability between treatments
(Table. 5.2). Over the four grazing events, mean EFs from CAN were greatest (2.78 *
0.90 %), followed by dung+CAN (0.64 + 0.15 %) and SU+CAN (0.59 * 0.12 %). The CAN
treatment had consistently higher EFs in each grazing event compared to SU+CAN and
dung+CAN treatments. The EF for SU+CAN was greater than the EF for dung+CAN in
grazing 1 (spring) at 1.28 * 0.31 % and 0.38 + 0.14 %, respectively. The dung+CAN
treatment showed higher EFs compared to SU+CAN in grazing 2 during summer
(dung+CAN 1.01 £ 0.24 %; SU+CAN 0.28 + 0.06 %) and in grazing 4 during autumn
(dung+CAN 0.87 * 0.16 %; SU+CAN 0.49 * 0.06 %). In grazing 3 during summer EFs

for the SU+CAN and dung+CAN treatments were the same at0.30 * 0.04/0.06 %.
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Table 5. 2: Cumulative N20-N emissions and partial emission factors (EF) measured by static chambers for each treatment per grazing (n= 5 per

treatment per grazing). Treatments included no N applied (Control), fertilizer in the form of calcium ammonium nitrate (CAN), synthetic urine (SU)

and CAN applied together and dung and CAN applied together

Cumulative N,0-N emissions Partial N,O-N EF
Grazing Control CAN SU+CAN Dung+CAN CAN SU+CAN Dung+CAN
0, 0, 0,
kg N ha™ 92 I/O kgNha' 95%CIl kgNhat 92 I/O kg N ha™ 9(5: IA) % 95 % C.I. % 95 % C.I. % 95 % C.I.
1 0.27 0.21 3.06 1.48 7.51 1.83 2.53 0.95 5.58 2.70 1.28 0.31 0.38 0.14
2 0.07 0.02 0.71 0.06 1.64 0.36 6.12 1.47 1.60 0.14 0.28 0.06 1.01 0.24
3 0.08 0.03 0.68 0.17 1.69 0.23 1.36 0.25 2.22 0.57 0.30 0.04 0.30 0.06
4 0.06 0.01 0.53 0.06 2.84 0.33 3.37 0.64 1.73 0.18 0.49 0.06 0.87 0.16
Mean 0.12 0.07 1.24 0.44 3.42 0.69 3.35 0.83 2.78 0.90 0.59 0.12 0.64 0.15
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5.3.3 Field scale cumulative N20 emissions by eddy covariance and upscaled
chambers

Upscaling chamber fluxes (section 5.2.5) to the paddock scale allowed for a direct
comparison with EC fluxes on a daily basis. Cumulative N20 emissions over 288 days
of the grazing period were calculated for gap-filled EC fluxes and FcH rieLp. Emissions of
5.16 + 2.04 kg N ha-! measured from Fcu rieLp compared well with EC emissions of 6.62
+ 0.33 kg N ha'l showing a similar cumulative pattern over time (Fig 5.3). Fcu rimp
emissions were consistently higher than EC emissions following the April grazing, up
until the August fertilizer application where an increase in EC emissions was observed.
The largest proportion of the total Fcu rieLp emissions (5.51 kg N ha-1),at 19.67 % were
observed from managementin April, followed by managementactivities in September
at 14.20 % and March at 12.56 % (Table 5.3). The February grazing accounted for the
lowest proportion of the total cumulative flux at 1.34 %, while emissions from early
and late May, June, July and August accounted for 8.18, 10.14, 9.34,9.61 and 11.92 %

of the total Fcu rieLD emissions, respectively (Table 5.3).
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Figure 5. 3: Field scale cumulative N,O-N emissions over 288 days by gap-filled eddy
covariance (EC) (blue line) and up scaled static chamber (FcH rieLD) (orange line) and where
the blue and orange shades represent the 95 % C.I. for EC and chamber measurements,
respectively. The grey back drop represents grazing periods where G1-G4 represents grazing
events 1-4 that were measured for N20 flux measurements by static chambers. See Table 5.1

for dates on management activities. Black arrows mark the date of fertilizer applications.
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Table 5.3: The proportions of cumulative emissions from each grazing period to the total field
scale chamber cumulative (Fcu rieLp). N is the number of days incorporated into the
cumulative, which is the period between the start of a grazing event and the beginning of the

next grazing event.

Event# Grazing N Cumulative N,O-N flux Proportion of total flux
kg N ha™ %

Pre-grazing  01/01/2020 - 03/02/2020 34 0.08 1.63
1 04/02/2020 - 10/02/2020 28 0.07 1.34

2 03/03/2020 - 02/04/2020 38 0.65 12.56

3 10/04/2020 - 18/04/2020 23 1.01 19.67
4 03/05/2020 - 10/05/2020 22 0.42 8.18

5 25/05/2020 - 03/06/2020 22 0.52 10.14
6 17/06/2020 - 24/06/2020 23 0.50 9.61
7 09/07/2020 - 18/07/2020 23 0.48 9.34

8 01/08/2020 - 12/08/2020 30 0.60 11.62

9 31/08/2020 - 21/09/2020 22 0.73 14.20
Post-grazing 22/09/2020 - 14/10/2020 23 0.09 1.71

Total 288 5.16 100.00

5.4 Discussion

5.4.1 Temporal trends in N20 emissions

Mean daily N20 emissions observed were within the range of similar studies where
livestock grazing and mineral fertiliser events occurred in tandem (Hyde etal., 2016,
Liang et al, 2018, McAuliffe et al, 2020, Wecking et al, 2020b). The significant
interaction (p < 0.05) between N20 measurements by chambers and treatment and
time indicates that the timing of management activities affects the rate of N20
emissions. Similar findings have also been reported by Krol et al. (2017) and Hyde et
al. (2016) from the same experimental grounds. Emissions in April accounted for the
highest proportion of the total FcurieLpN20-N flux and similarly, high instantaneous
emission events were recorded by EC in April. Such high emission events are likely due
to denitrification for a number of reasons. Firstly, observations of heavy (> 3 mm)

and/or consistent rainfall and subsequently an increasing the WFPS (> 60 %), prior to
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the April emission event as well as moderate soil temperatures (mean 11 + 1 °C
standard deviation) were recorded. It is important to note that all of the above listed
environmental variables are key regulators for the production of N20 by dentrifiers
(Butterbach-Bahl et al, 2013). Secondly, WFPS, rainfall and soil temperature were
positively and significantly correlated with N20-N emissions during this period (Table
B.2), further validating the significance of the observations mentioned. An additional
stepwise regression analysis merging N20-N EF and soil property data measured in
this study with data from the same experimental site by Krol etal. (2016) and Maire et
al. (2020) also showed that soil moisture drives N20 emissions from this site (Table
B.3). Itis worth mentioning, that similar environmental conditions were also recorded
during the August N20 emission peak measured by EC. Finally, N inputs from both
urine and dung from grazing animals, and fertilizer N showed high mean
concentrations of NH4* and NOs3- prior to April at 13.7 and 21.4 mg N kg-! soil,
respectively, suggesting an availability of N substrates for denitrification during April
(Table B.4). The co-occurrence of favourable environmental conditions promoting
anoxic conditions in combination with sufficient substrate availability from
management, thus creates optimum conditions for the denitrification of NO3- to N20
(Butterbach-Bahlet al, 2013). Overall, these findings suggest thatreducing or delaying
management activity during wet seasons or periods could potentially reduce annual

N20 emissions i.e. implementing precision management (Rees etal,, 2020).

Low N20 emissions were observed for grazing events in February and March by EC
despite coinciding with consistent rainfall and an elevated WFPS (> 60 %). In this case,
it is likely that the potential for nitrification was reduced as determined by low mean

NO3- concentrations measured in February and March at 9.5 and 11.0 NO3-N mg kg
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soil, respectively (Table B.4). Additionally, lower soil temperatures (mean 6.7 + 1.5 °C
SD) relative to the rest of the year, could have resulted in changes in the composition
of denitrifying communities, potentially limiting the soil microbial production of N20
emissions (Braker et al, 2010) . Furthermore, it is possible that low N20 emissions
were due to available NOs- being utilized for N2 production via codenitrification. Selbie
et al. (2015) reported high N losses following urine deposition of 55.8 g N m-2as N2 by
the process of codenitrification. Despite unfavourable conditions for the production of
N20 during this period (G1), high emissions were reported by static chamber
measurements. Flux measurements of N20 by static chambers typically display a log-
normal distribution over time which is characterized by a few high flux measurements
(Cowan etal, 2015, Hyde et al., 2016, Maire etal.,, 2020). Due to the limited spatial and
temporal resolution of this technique, where high flux values are recorded, static
chambers will typically over-estimate the sample mean, and where such values are
absent from the dataset, chamber fluxes will underestimate the sample mean (Levy et
al,, 2017). In this study chamber flux values ranged over five orders of magnitude (Fig
B.2), where the sample mean is weighted towards a few high flux measurements. Due
to the small sample size (n =5 per treatment), it is difficult to constrain the variability
and therefore the high uncertainty associated with chamber flux measurements.
Previous studies have also reported large spatial differences in chamber N20 flux
measurements. For example, Cowan et al. (2015) measured N20 fluxes ranging from 2
to 79,000 pg N20-N m2 hr! over 100 sampling points, from a 7 hectare grazed
grassland in Scotland. Similarly, Turner et al. (2008) recorded N20 fluxes from an
Australian irrigated dairy pasture that ranged from 45 to 765 ng N20-N m-2 sl in
summer and 20 to 953 ng N20-N m2 s-1 in autumn. Conversely, the EC technique is

cable of integrating both high and low fluxes over large areas (approximately 1 km?)
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with constant 24 h measurement coverage, thus providing more certain estimates of
field scale emissions of N20 relative to the static chamber technique. Therefore higher
emissions reported by static chambers compared to EC are likely due to its limited
spatial and temporal resolution and potential for large interpolation uncertainties, a
major disadvantage of static chambers which previous studies have reported on

(Cowanetal, 2019, Jonesetal, 2011).

5.4.2 Emission factors of CAN, SU+CAN and dung+CAN

In this study EFs for CAN, SU+CAN and dung+CAN were highly variable over the four
grazing events. CAN showed the highest EF relative to the other treatments, with a
mean EF of 2.78 % (1.60 - 5.58 %). The lower-end CAN emissions observed in this
study have also been reported by Cardenas et al. (2019) from four grassland sites in
the UK (0.58 - 1.36 %) and Harty et al. (2016) from two different grassland sites in
Ireland (1.44 + 0.90 % and 1.67 * 0.49 % ). Harty et al. (2016) also reported similar
high-end EFs from CAN from an additional grassland site in Ireland at 3.81 * 0.20 %
and Velthof and Losada (2011) reported a maximum EF of 8.3 % from a grassland site
in the Netherlands. The variability in CAN EFs could be explained by soil conditions at
the chamber location, with the greatest emissions occurring in grazing 1 in spring
where the soil moisture content was predominately high (WFPS > 60 %), favouring
denitrification (Linn and Doran, 1984), whereas EFs were lower during summer

grazing events where soil conditions were relatively drier (WFPS < 60 %).

To date, only a few studies have quantified N losses from the interactive effects of CAN
applied to urine and dung patches from grazed pastures (Hyde et al,, 2016, Krol et al,,
2016, Maire et al,, 2020). Interactions between fertilizer N and animal excreta create

hotspots of N20 which are a common feature of rotational grazing management (Luo
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et al, 2017). Currently there are no recommended default EFs by the IPCC or at the
national level, for mineral N fertilizer applied to urine or dung patches. In this study,
EFs from SU+CAN and dung+CAN were measured in order to quantify emission events
which arerepresentative of rotational grazing systems. The SU+CAN treatment EF was
0.59 % (0.28 - 1.28 %) which was approximately four times lower than the combined
EF1and EFsprefor cattle urine by the IPCC of 2.37 % and Irelands combined Tier 2 EF1
caNn and EF3cattle-urine0f 2.6 %. However, mean EFs for SU+CAN were comparable with
previously reported SU+CAN EFs in Ireland, by Maire et al. (2020) at 0.26-0.74 % and
Krol et al. (2017) at 0.55 %. Hyde et al. (2016) showed a multiplicative effect on
cumulative N20 emissions from CAN and urine applied together, relative to N20
emissions from these treatments individually. In this study, emissions from SU+CAN
showed more of an additive effect where frequently, cumulative N20-N losses from
SU+CAN were approximately twice that of N20-N losses observed from the CAN

treatment.

In this study, mean EFs quantified from dung+CAN were 0.64 % (0.30-1.01 %), which
was roughly half of the combined EF1 and EFsprp for cattle dung by the IPCC, and
Irelands combined Tier 2 inventory value for EF1 can and EF3cattle-dung, both at 1.7 % .
Few studies have investigated the interactive effects of dung and CAN on N:20
emissions, however Hyde et al. (2016) showed that applying dung and CAN together
had additive effects on N20 emissions, reporting N losses of 2.15 %. Cumulative
emissions from the dung+CAN treatment were greater than cumulative emissions
fromthe CAN treatment alone for grazing 2 and 3, which could be explained by possible
additive effects between treatments. An independent dung treatment however, would

be necessary to validate these assumptions. The readily available carbon (C) in dung
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can increase rates of microbial oxygen consumption, thus creating anaerobic
conditions (van Groenigen et al, 2005). Increased C availability can also accelerate
microbial activity as nitrifiers and denitrifiers require readily available C for the
oxidation of NH4* and the reduction of NO3- (Wang et al,, 2021). Additionally, the soil
nitrate N pool available from CAN alone was frequently lower than the dung+CAN
treatment (Table B.3). This in combination with pre-existing amino-sugars from the
dung patch, and high soil moisture, would create optimum conditions for the

production of N20 by either denitrification or co-denitrification, thus increasing

emissions (Rex etal, 2018, Rex et al., 2019).

5.4.3 Field scale grazing N20 emissions

Total cumulative N20-N emissions measured by gap-filled EC and Fcu rieLD were 6.62 *
0.33 kg N ha-land 5.16 * 2.04kg N ha-1, which representa global EF of 0.96 and 0.72
%, respectively, and both are similar to mean of the IPCCs default value for EF1 and
EF3prp at 0.95 %. It is important to note that larger disparities between gap-filled EC
and Fch rieLp cumulative N20-N emissions would have been observed if the temporal
frequency of static chamber flux measurements were lower. For example, if N20 flux
measurements were not measured during March and April (which accounted for 32.23
% of the total FcurieLp emissions [Table. 5.3]), the cumulative N20 losses calculated
from Fcu rieLp would have been 3.45 kg N ha-1, which is approximately 50 % lower than
total N20 emissions measured by EC. Our study highlights the importance of high
chamberreplication and measurements both spatially and temporally in order to make
field scale estimates of N20 comparable with high frequency N20 flux measurements
by EC. Similar conclusions were also outlined by Murphy et al. (2022a), who showed

that N20 flux measurements by static chambers and EC were most comparable when
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chamber replication was high and when measurements from both techniques

displayed temporal and spatial alignment.

Both Fcu_rield and EC cumulative emissions were within range for previously reported
N20-N emissions from intensively grazed dairy pastures. Flechard et al. (2007)
reported total emissions of 6.48 kg N20-N ha-1usingthe static chamber technique from
a grassland site in the Netherlands which received 300 kg N ha-1. Hortnagl et al. (2018)
quantified cumulative emissions by EC of 2.55 - 7.89 kg N20-N ha-1from a grassland
site in Switzerland with an N application rate of 232 - 219 kg N ha-1, while Wecking et
al. (2020b) reported cumulative N20 emissions of 3.82 and 7.30 kg N20-N hatl
measured by static chambers and EC respectively, from a grazing system in New
Zealand which received 40 kg N ha! from fertilizer and 424 kg N ha-! from animal

excreta during grazing.

The uncertainty associated with Fcu rieLD was approximately seven times greater than
the uncertainty attributed to emissions measured by gap-filled EC. The high
uncertainty associated with Fcu rieLD estimates can partly be explained by small sample
sizes per treatment (n = 5 * treatments per grazing). Studies have shown that where
chamber sample sizes are large (n > 40), the uncertainty in chamber flux
measurements is reduced (Cowan et al. 2020). However, it is not always practical or
feasible to manage high static chamber replications for multiple treatments. Where the
sample size is small and the data is both highly variable and exhibits a log-normal
distribution, as is frequently the case for N20 flux datasets (Cowan et al, 2016),
conventional arithmetic methods for handling flux data are not sufficient for providing
robust estimates of uncertainty. More recently, Bayesian methods have been used to

report N20 EFs and uncertainty from static chamber measurements (Cowan et al,
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2020). Bayesian statistics provide more robust estimates of uncertainty relative to
arithmetic methods, by explicitly accounting for the log-normal distribution of the
dataset and is therefore, less likely to over or underestimate the sample mean and
associated uncertainty (Levy et al, 2017). Previous studies have demonstrated the
success of the Bayesian method in quantifying the uncertainty of chamber N:20
emissions from single management events (Cowan et al, 2019). However, at present
the Bayesian method still requires further developmentin order to quantify chamber
measurements of N20 from emission events arising from consecutive, multiple
management practices. Flechard et al. (2007) reported high uncertainty values of up
to 50 % in annual flux measurements by static chambers due to the spatial and
temporal limitations of the technique. Due to the low temporal and spatial resolution
of static chamber measurements relative to the EC technique, static chambers are not
suitable for capturing hot moments and hotspots of N2O due to management, rainfall

events and re-wetting of dry soils (Jones etal. 2011).

In this study, gap-filled EC cumulative emissions exceeded F cH rieLD estimates following
the August fertilizer application and the September grazing, which coincided with
heavyrainfall events (sum 35 mm) and high soil temperatures (mean 16 °C). Maximum
differences between EC and Fcn rieLp cumulative emissions were 1.09 kg N ha-! during
these periods. Our results imply that quantifying N20 emissions using only the static
chamber approach could lead to underestimations of annual N20-N flux estimates from
grazing systems where climatic conditions favour hotspots and hot moments of N20,
as the total variability in N20 emissions may notbe captured due to the low spatial and

temporal resolution of the static chamber technique.
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Cumulative estimates of Fcu rieLp N20-N emissions showed the same total cumulative
N20-N losses as reported in literature values (Table. 5.4). This study had consistently
higher Fcu rieLp cumulative estimates across all treatments compared with literature
value with the exception of CAN, where emissions were 65.61 % lower (difference of
0.98 kg N ha1) compared to literature values. Emissions from background accounted
for 14 % (0.71 kg N ha1) and CAN accounted for 36 % (1.87 kg N ha-1) of the total N20-
N losses reported in this study, while animal excreta accounted for 50 % (34 % or 1.77
kg N ha-1- urine; 16 % or 0.81 kg N ha-1 - dung). Voglmeier et al. (2019) also reported
high contributions of N20-N losses fromurine (57 %) butreported lower contributions
from dung (5 %) from an intensively managed grassland in Switzerland. Variability in
reported EFs from grazing systems in this study and the literature, may be due to the
interactive affects between treatments, which can increase N20-N emissions due to

enhanced substrate availability and soil moisture (Hyde et al.,, 2016).

Table 5. 4: Cumulative N,O-N emissions for background (i.e. no N application), calcium

ammonium nitrate (CAN), urine and dung using literature emission factor (EF) values by Krol

etal. (2017), Harty et al. (2016), Krol et al. (2016) and Maire et al. (2020), respectively.

Author Treatment EF N applied to field Cumulative N,0-N flux
% 95 %.CI kg N ha™ kg N ha™ 95 % C.L
Krol et al. 2017 Background - - - 0.11 -
Harty etal. 2016 CAN 1.49 0.71 191 2.85 1.36
Krol et al. 2016 Dung 0.38 0.31 125 0.39 0.31
Marie et al. 2020 Urine 0.47 0.10 299 1.41 0.50
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Figure 5. 4: Cumulative N20-N emissions by gap-filled eddy covariance (EC) measurements

(dark blue) and upscaled static chamber measurements (FcH rieLD) for background emissions

(light blue), calcium ammonium nitrate (CAN) (green), dung (brown) and urine (orange).
Literature values for background, CAN, dung and urine can be seen in Table 5.4. Error bars

represent the 95 % confidence interval.

5.4.4 Recommendations for future N20 flux studies

In this study, constant values fromthe literature were used to quantify the number and
area of dung and urine patches per day (Dennis et al, 2011, White et al, 2001,
Wilkinson and Lowrey, 1973). The N content of dung and urine is often unknown or is
simulated using a constant N content to evaluate the effect of deposition timing on
emissions. The N content of urine varies greatly over the season reflecting factors such
as the feed N content, feed dry matter, feed and water intake and inter animal
differences. To date, there is still a lot of variability surrounding the use of constant
values in characterizing dung and urine depositions (Aland et al,, 2002, Moir et al,,

2011, Oudshoorn et al,, 2008, Weeda, 1967). Ideally, site specific quantifications of
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dung and urine deposition events should be made for more accurate estimates of
upscaled N20 emissions from static chamber measurements. For instance, using
survey-grade global positioning system (GPS) technology to precisely measure field
scale variability in distribution, coverage and diversity of excreta patches (Carpinelli
etal, 2020, Dennis et al, 2011, Maire et al,, 2018). Furthermore, there is still at large a
degree of ambiguity surrounding the probability of overlapping urine or dung patches
occurring during grazing, that could potentially lead to greater Nlosses than individual
patches (Cichota et al,, 2013, Snow etal, 2017). As a result, there is still a necessity to
further our understanding in the variability of N20 emissions from combined
treatments of fertilizer, urine and dung and quantifying dung and urine patchesat high
precision at the field scale. There is also aneed to trial management practices to reduce
N20 emissions such as precision fertilisation and grazing to avoid hot moments (Rees
et al, 2020). Additionally, we need more datasets quantifying N20 emissions and
investigating the associated drivers from grazing systems to improve and reduce the
uncertainty in modelling EFs from grazed pastures (Tier 3). Improvements in
modelling N20 EFs would in turn avoid the burden of conducting dedicated

measurement campaigns for estimating local EFs (Lépez-Aizpun et al,, 2020).

5.5 Conclusions

Quantifying field scale emissions of N20 in grazed pastures is complicated due to the
spatial heterogeneity of dung and urine patches by grazing animals. The EC technique
provided spatially and temporally robust annual estimates of N20 emissions (6.62 *
0.34 kg N ha-l) from the grazing management, while high uncertainties in emission
factor derived chamber cumulative flux (Fcu rieLp) estimates were observed (5.09 +

2.01 kg N ha-1). Using chamber N20 flux measurements in a complimentary fashion
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with N20 flux measurements made by EC provided insights in the differential
contributions of grazing and fertilization on the field N20 budget over the grazing
season. Management related emissions accounted for 86 % of the total cumulative

N20-N emission, with 50 % of N20-N losses derived from animal excreta.
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Chapter 6: The net nitrogen, carbon and greenhouse gas budget
of an intensively managed temperate grassland system at the
field scale.

Abstract

Globally managed grasslands represent approximately a quarter of the land surface
area and can therefore contribute to greenhouse gas (GHG) mitigation, but also in
forcing climate change. We assessed the netnitrogen (N), carbon (C) and GHG balance
(NGHGB) of a temperate grassland under a cut and grazed management in 2019 and
2020, respectively, at the field scale. Imports and exports were quantified through
eddy covariance measurements of ecosystem scale carbon dioxide (CO2) and nitrous
oxide (N20) fluxes, farm management data and/or literature values for where both
field and methane (CH4) flux measurements were not possible. The N budget was
dominated by imports from fertilizer in both years and additionally, animal excreta in
2020. Accounting for all measured and estimated N exports and imports, the grassland
had a net neutral N balance under a cut management (0.1 + 6.0 g N m2 yr-1), but
transitioned into a higher net N sink under the grazing management (-17.9 £+ 5.5 g N
m-2yr-1), due to greater N imports. The net ecosystem exchange (NEE) results showed
a higher C assimilation rates under the cut management (-547.9 g C m2 yr-1) relative
to the grazing management (-369.3 g C m-2 yr-1) butwas weakened by C exports, mainly
biomass removal in 2019 (482.3 g C m2 yr-1) and enteric fermentation (23.8 gCm-2yr
1)in 2020, yielding an estimated net biome productivity of -61.6 + 24.6 g C m-2 yr-1and
-311.5 + 81.8 g C m2yr-lunder a cut and grazing management, respectively. In terms
of CO2eq, the NGHGB of the site under cut and grazed management was -86.0 + 918
and -84.4 *+ 319.4 g COzeq m2yr-1, respectively, where emissions of CH4 and Nz0

reduced the GHG sinkby 58 and 27 %respectively, over the two year period. This study
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shows the impact that both management activities, (namely biomass removal) and
non-CO2 gas emissions have on offsetting the net C sink of managed grasslands, and
highlights the need for sustainable agricultural practices in order to reduce the

potential of these systems in forcing climate change.

Work presented in this chapter is based on the manuscript to be submitted to Science
of the Total Environment with the authors list as: Murphy, R.M. Lanigan G.J. Richards,

K.G. Krol, D. K. Gebremichael, A. W. Rambaud, J]. Maire, ]. Cowan, N. and Saunders, M.

Author Contributions: RM, DK, MS, and GL designed the experiment. RM conducted the
experimentand analysed the samples that were collected alongside JR and AG. Samples
were analysed in the Teagasc Johnstown Castle with the support of laboratory
technicians. RM with the help of NC and DK conducted the flux data analysis. RM wrote

the article with the contributions from all co-authors

The overarching objective of this thesis chapter was to investigate the impact that
silage cut and grazing management have on the N and C sinks of managed grasslands
by quantifying the flow of N and C imports and exports into and out of the system, in
addition to greenhouse gas emissions of CO2, N20 and CHs associated with the
management regimes at the field scale. In doing so, this study highlights areas where
large losses of CO2 are emerging at the field scale from management activities, and

offers potential mitigation strategies.

6.1 Introduction

Managed grasslands account for approximately 26 % of the global land surface area
(Lemaireetal, 2011a) and 58 % ofland surfaceareain Ireland (CSO, 2020). Therefore,

the influence of this land cover on greenhouse gas (GHG) emissions, (carbon dioxide
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[CO2], nitrous oxide [N20], methane [CH4]) and carbon (C) sequestration across
managed grasslands is of both global and national importance. Quantifying emissions
of N20 and CH4 from managed grasslands is particularly important due to their global
warming potentials (GWP) of 265 and 28, respectively, relative to CO2 over a lifespan
of 100 years. In natural grasslands, nitrogen (N) and C cycles are coupled closely
through plant productivity via the assimilation of CO2 and N leading to plant growth
(Rumpel et al,, 2015). Following plant senescence, leaf litter is returned to the soil,
microbial decomposition is initiated, and decoupling of the N and C cycles is mediated
through N mineralisation. The C and N balance in managed grassland systems is
further influenced via nutrient inputs through fertilization or animal excreta, grazing
and cutting exports and soil disturbance due to reseeding and/or compaction (Wall
and Lanigan, 2020). In the long term however, the tight coupling between the N and C
cycles isreduced as the N/Cratio of soil increases. For instance, the addition of N from
synthetic fertilizers or animal excreta to grassland systems produceslow C:N leaf litter
which is returned to the soil and stimulates the mineralization of organic N to inorganic
nitrogen (i.e. ammonium [NH4*] ) which is then oxidized to nitrate (NO3’) in the
microbial process of nitrification and finally, the resulting NOs- is then reduced by
denitrifiers to produce N20 as an intermediate product of denitrification (Tateno and
Chapin lii, 1997). Over time, the microbial production of N20 emissions can outweigh
the benefits of increased soil organic carbon (SOC) from decomposing plant litter

(Davidson etal,, 2000, Jones etal,, 2017).

In addition to N20, grasslands can be a sink (Mosier etal,, 1997) or source of ecosystem
CH4 emissions (Flessa et al.,, 2002) depending on the microbial processes that control

the production or consumption of this GHG. In soils, methanogenic bacteria produce
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CH4 during the breakdown of organic material under anaerobic conditions and high
soil organic carbon contents and simultaneously, CH4+ consuming bacteria known as
methantrophs are also presentin soils, thus reducing the potential for soil derived CHa
emissions (Cowan etal,, 2021, Stams, 1994). Furthermore, grassland systems managed
for livestock production will also produce CHs through enteric fermentation of
ruminant livestock. In enteric fermentation, CHs is produced during the microbial
degradation of carbohydrates, mainly in the form of cellulose, in the digestive tract of
ruminants (Crutzen et al, 1986). In managed pastures, fluxes of CH4 from grazing
animals by enteric fermentation far exceed those reported from soils alone (Dangal et

al,, 2020), and vary with livestock density and feed digestibility (Allard et al., 2007).

As aresult, there is still a large degree of ambiguity concerning the role of managed
grasslands asa potential sink or source of C. In terms of actual net Cbalances, Soussana
et al. (2007) showed that nine European grasslands acted as a sink of C with a mean
measured flux of -240 + 70 g C m 2 yr-1, subsequently translating to a net C sink of -104
+ 73 g Cm2 yr-1, after C exports and imports were accounted for. Conversely, Smith
(2014) argued that such C sequestration rates are likely due to improved grassland
management and/or legacy effects of land use prior to commencing flux
measurements,and it should not be assumed that grasslands sequester C continuously.
Likewise, Jones etal. (2017) showed from a multi-year C balance from a grassland site
under arotationally grazed management in Scotland, that the system transitioned from
asource of Cin 2004 (57.4 g Cm=2yr-1)to a sink of Cin 2009 (-587.7 g C m-2yr-1), due
to greater C imports from the NEE and lower C exports from animal utilization (i.e.
meat and wool) and leaching in 2009 relative to 2004. In terms of GHG equivalents of

CO2 (CO2eq), recent studies have reported that, although still a net C sink, intensively

139



managed grasslands have acted as a net GHG source over the last decade at a rate of
2.0 £ 0.4 Gt COze yr-1 (Changetal, 2021), which is comparable to cropland systems at
2.0 £ 2.2 Gt COzeq yr-! (Carlson et al, 2017). The inconsistency in previously reported
values highlights the strong need for robustdata to investigate the net source or sink
strength of grassland systems, and subsequently the contribution to GWPs under

different management regimes over time.

As partof the European Green Deal, the EU aims to achieve climate neutrality by 2050,
with an intermediate target of atleasta 55 % netreduction in GHG emissions by 2030.
In order to achieve such ambitious targets, several mitigation strategies have been
developed within the Agriculture, Forestry and Other Land Use sector in Ireland. For
example, the Common Agricultural Policy (CAP) provides financial incentives to
farmers for implementing sustainable land use practices (e.g. preserving permanent
grasslands) which maintain or increase SOC under the Green, Low-carbon Agri-
environmental Scheme (GLAS) (DAFM, 2015). Furthermore, the Nitrates Directive
(91/676/EEC) prohibits the application of organic and inorganic fertilizers past the
14th of September and 14th of October, respectively (Department of Housing Local
Government and Heritage, 2021). In doing so, N inputs into grassland systems is
limited during wet weather conditions which would favour N leaching and the

microbial production of N20 (Velthof et al, 2014).

One way in which we can assess the effectiveness of such GHG reduction strategies is
through an understanding and quantification of the C and net GHG balance (NGHGB)
of managed grasslands. In a grassland ecosystem, the C balance is determined by the
net biome productivity (NBP) which accounts for the difference between the net

ecosystem exchange (NEE) of CO2 and C imports to and exports from the system. In
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managed grasslands, C imports are mainly from the application of organic fertilizers
and animal excreta, while C exports are primarily through biomass removal. In
addition to this, emissions from N20 and CH4 can make considerable contributions to
the overall NGHGB. For example, Merbold et al. (2014) found that N20 emissions
accounted for 48 % of a GHG flux budget from an intensively managed grassland in
Switzerland and Soussana et al. (2007) showed that CH4 emissions from four grazed

pastures in Europe offset the CO2 assimilated through NEE by between 13 and 95 %.

The objective of this study was to assess the impact of management practices and their
associated emissions (CO2, N20 and CH4) on the net C and N balance of an intensively
managed grassland at the field scale. We also assess the impact that GHG emissions
from differing management practices have on the net GWP of the grassland site as

inferred by the net CO2eq flux of the system.

6.2 Materials and Methods

6.2.1 Site description and management

The experimental site, Johnstown Caste, is located in the South-East of Ireland, in Co.
Wexford. (52.30°N, 6.40°W, 67 m above sea level). The mean annual air temperature
and rainfall (2009 - 2018) for this regionis 10 + 4 °C and 952 + 352 mm, respectively.
The soil type is sandy loam with a pH of 6.1 and C, N and phosphorus contents of 3.5 +
0.1 %, 0.4 £ 0.01 % and 5.0 £ 0.2 %, respectively. The field site consisted of two
perennial ryegrass (Lolium perenne) paddocks (paddock 10 and 11 Fig. 6.1), where the
eddy covariance (EC) tower was positioned in the North-East part of the field site to
maximize the footprintcontribution fromthe prevailing south-westerly wind direction
(Fig. 6.1). EC measurements were made fromthe 1stJanuary 2019 to the 31stDecember

2020, during which flux measurements were not available for a total of 53 days due to
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instrument maintenance. The field site has been under a permanent grassland
management for >20 years, and in 2019 the site was managed for silage production
receiving 230 kg of N ha-lin the form of calcium ammonium nitrate (CAN).In 2020 the
field site was under an intensive rotation-based grazing management (21-day
rotation) consisting of nine grazing events with an average stocking density of 3.2 LSU
ha-1.During 2020 the field site also received 191 kg N ha-lin the form of CAN (see Table
6.1 for further details). The N loading rate (kg ha-1) from excreta by grazing animals
was calculated by multiplying the number of dung [10.9 patches over 21 hrs-1(White
et al, 2001)]or urine deposits [7.5 patches over 21 hrs-1(Dennis et al,, 2011)] from
each cow per day, with the N application of a single dung (5 g N ha'1) or urine (10 gN
ha1) patch. Total N contents of dung and urine were determined by analysing
composite sub-samples of dung and synthetic urine according to the protocol outlined
in de Klein etal, using the LECO TruSpec high temperature Dumas Combustion system
(St Joseph, Michican, USA) and Ganimede analysis (Hach Ganimede N analyser, Co.

Cork, Ireland), respectively.
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Figure 6. 1: (a) Boundaries represent paddocks where the light grey paddocks represent the

experimental field site (2.65 ha-1) at Johnstown Castle. Paddocks, P10 and P11 are paddock 10
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and paddock 11, respectively. The black square in P10 represents the eddy covariance (EC)
tower. (b) Wind rose plot for the experimental site fromthe 1st January 2019 to 31st December
2020, illustrating the predominant wind direction, south-westerly and the contribution of

varying wind speed classes in m/s-1.

Table 6. 1: Management for the experimental site in 2019 and 2020, and rates of application

in kg nitrogen (N) for calcium ammonium nitrate (CAN) and grazing (dung and urine),

respectively.

Year Date Management Application
rate
kg N ha™*
2019 05-Mar CAN 40
01-Apr CAN 70
14-May Silage cut -
05-Jun CAN 80
04-Jul Silage cut -
05-Sep Silage cut -
11-Sep CAN 40
2020 04-Feb - 10-Feb* Grazing -
03-Mar - 02-Apr Grazing 29
02-Apr CAN 50
10-Apr - 18-Apr Grazing 46
03-May - 10-May Grazing 45
11-May CAN 40
25-May - 03-Jun Grazing 51
03-Jun CAN 27
17-Jun - 24-Jun Grazing 46
29-Jun CAN 20
09-Jul - 18-Jul Grazing 53
01-Aug- 12-Aug Grazing 64
14-Aug CAN 27
31-Aug - 21-Sep Grazing 91
14-Sep CAN 27
22-Oct - 07-Nov Grazing 99

*Due to wet soil conditions this grazing event was incomplete, consisting of a few hours (< 21 hrs) intotal and therefore emissions
were considered negligible
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6.2.2 Carbon and nitrogen imports and exports

6.2.2.1. Net ecosystem exchange of COz and N20

Flux measurements of COz and N20 were made using the EC technique. The EC mast
was set-up at 2.2 m and consisted of a 3-D sonic anemometer (CSAT-3, Campbell
Scientific Ancillary, Logan, UT, USA) coupled with an open-path infrared gas analyser
(IGRA) (LI-7500, LI-COR Biosciences, Lincoln, NE, USA) to measure concentrations of
CO2 and H20, and a quantum cascade laser (QCL) (Los Gatos Research, California, USA)
to measure concentrations of N20. The QCL was stored in a temperature controlled
trailer where an inlet line of perfluoroalkoxy (PFA) tube (10 m long and 10 mm inner
diameter) was positioned 30 cm apart from the sonic anemometer in the same
horizontal axis. Two 2 pum filters (SS-4FW4-2, Swagelok™) were fitted along the inlet
line and a 2 and 10 um filter (Los Gatos Research, California, USA) were fitted on the
inside of the QCL atthe entrance of the inlet tubing and upstream of the internal pump,
respectively. Airflow along the inlet tubing was controlled by an external dry scroll
vacuum pump (XDS35i, Edwards, West Sussex, UK), which maintained the airflow rate
at 30-35 standard L min-! and the QCL cell pressure at 85 torr. The QCL cell

temperature was maintained at 34 °C £ 0.5 °C by an internal temperature regulator.

Fluxes were calculated over 30 minute intervals at 10 Hz based on the covariance
between the gas concentration and the vertical wind speed using Eddypro 7.0.6. (Eq.

6.1) (LICOR, 2017)
Flux;,, = WGHG Equation 6.1

The overbar signifies time averages, GHG’' is the 30 minute concentrate of the
respective GHG (ppm for CO2; ppb for N20) and W’ is the vertical wind speed. Data from

the EC system was logged and collected weekly from the CR3000 micrologger
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(Campbell Scientific, Logan, UT, USA). Raw half-hourly GHG fluxes were statistically
evaluated and screened as outlined in Vickers and Mahrt (1997). Double rotation was
performed to compensate for the anemometer tilt by nullifying the average cross-
stream and vertical wind components (Kaimal and Finnigan, 1994). Spectral
attenuation effects following analytic methods described in Fratini et al. (2012) and
Moncrieff et al. (2004) determined low and high-pass spectral correction factors for
the data, respectively. Air density fluctuations were accounted for according to Webb
et al. (1980) for CO2. As the QCL is a closed path gas analyser, the time lag between
measurements of N20 concentrations and the vertical wind speed was accounted for

by using the covariance maximization procedure as outlined in Cowan etal. (2020).

Flux measurements of N20 and CO2 were removed from the dataset according to the
following criteria: (1) where values were deemed unrealistic for the field site (-40 pmol
m2s1<CO2>20pmolm2?s1;<-0.1 umol N20 m2s-1); (2) ifless than 70 % of the flux
contribution was derived from the experimental site as calculated by the analytical
footprint model of Kormann and Meixner (2001); (3) where flux quality control flags
by Foken (2003) were = category 6; (4) where turbulence was low, defined as a friction
velocity (u*) < 0.1 m-1s-1(Lognoul etal, 2019); (5) where the flux random uncertainty,
estimated by the method of Finkelstein and Sims (2001) integrated over a fixed 10 s
correlation period, was > 0.01 umol m-2 s-1; (6) where the optical path of the IGRA was
dirty (automatic gain control, AGC > 50); and finally (7) where the standard deviation

between half-hourly concentrations of CO2 were > 5 ppm.

Missing flux values of N20 and CO: were gap-filled by correlating flux data with
common driver variables. A multivariate linear model was used to gap-filling missing

half-hourly N20 fluxes as described by Murphy et al. (2022b). Missing half-hourly CO2
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fluxes (i.e. the NEE) was partitioned into ecosystem respiration (Reco) and gross
primary productivity (GPP) by segregating the dataset into night and day time,
respectively. It was assumed that the plant canopy was photosynthetically inactive at
night, defined by a photosynthetic photon flux density (PPFD) <10 pmolm-2 s-1,if PPFD
values were > 10 pmol m2s-1, it was considered day time data (Merbold et al., 2014).

Reco was modelled by using the exponential Lloyd and Taylor (1994) equation (Eq. 6.2)

1 1 .
Reco = Ryp(e <E0 ((m)) - ((W))) Equation 6.2

Where Riois the ecosystem respiration rate at a reference temperature of 10°C, Ep is
the coefficient for ecosystemrespiration which is defined as 309 and T air temperature
(°C). GPP was initially estimated by subtracting modelled Reco from measured daytime
half-hourly NEE. Missing values in GPP following this were modelled using a light

response function (Rabinowitch, 1951) (Eq. 6.3)

_ («*PPFD+Apygy)—({ (KPPFD +Amgy ) ) —(45y)% (xPPFD % Apy)
GPP = 2oy

Equation 6.3

Where «a is the quantum yield based on incident irradiance (mol CO2 [mol photon]-1),
Amax is the maximum CO2 assimilation rate (umol CO2 m-2 s-1) and y is the convexity

coefficient.

6.2.2.2 Dinitrogen emissions

Dinitrogen (N:) emissions were not measured from our field site during the
experiment, but are recognised as an important element which is frequently
overlooked in N balances within grassland systems (Zistl-Schlingmann et al., 2019).
Therefore we estimated N2 emissions from the ratio of N20:Nz in the first top 10 cm of
soil as outlined in Jahangir et al. (2010) at 1.42:1 (Nnz). This ratio was chosen as work
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by Jahangir et al. (2010) was conducted on the same experimental grounds as this

study.

6.2.2.3. Nitrogen imports by management

The N applications from CAN (Ncan) in 2019 and 2020 are presented in Table 6.1. Cows
were given a feed concentrate of 3.98 (18 % protein), 2.44 (14 % protein) and 2.15 (16
% protein) kg day-1during the grazing season in spring, summer and autumn/winter,
respectively. This resulted in an average extra N import of 0.07 kg N day-! per cow
(NFeed). Imports of N from animal excreta (Nexcreta) during grazing were calculated as

described in section 6.1 and are shown in Table 6.1.

6.2.2.4 Carbon and nitrogen export from harvest

In 2019, biomass samples were taken randomly (n =4 per paddock) prior to silage cuts
at 4 cm over an approximate area of 10 m-2 using a biomass harvester by Haldrup
GmbH. Biomass were processed to determine the dry matter (DM) content (%) by
weighing freshly harvested biomass from the paddocks followed by oven drying at 70
°C for 4 days, and then re-weighing biomass samples. The C and N content of the
biomass harvested in 2019 was not measured and therefore, C and N values outlined
in Maire et al. (2020) from the same experimental site during the summer harvest for
the CAN treatment were used in this study. In 2020 biomass samples were taken from
P10 and P11 prior to grazing events, by randomly placing a 0.25 m?2 quadrat across the
field site (n = 16 per sampling campaign) and harvesting material to 4 cm using shears
and also processed for DM content. Dry biomass samples were ground to measure the
total N (NHarvest) content using a TruSpec Micro elemental analyzer (LECO Corp., St.

Joesph, MI, USA).

147



6.2.2.5 Carbon and nitrogen export from leaching

Dissolved organic carbon (DOC) (Creaching) was not measured in this study, therefore
values were derived from Maire et al. (2020) from the same experimental site. N
leaching (NLeaching) in the formofnitrate (NO3-) was measured and analysed as outlined
in Clagnan et al. (2018), also on the same experimental site. It was estimated that of
the total amount of N leached, 0.75 % was indirectly emitted as emissions of N20

(Buendia et al,, 2019).

6.2.2.6 Carbon and nitrogen export from milk

The average fat and protein content from milk in this study was 4.26 and 3.56 %,
respectively. The N contentin milk (Nwmik) was calculated asthe amount of milk protein
produced per cow per year divided by 6.38, which is the conversion factor of milk
protein to N (Poulsen and Kristensen, 1998). The C content of milk fat and protein

(Cmilk) was assumed to be 70 and 46 %, respectively (Wells, 2001).

6.2.2.7 Methane emissions in the field

It was assumed that dung depositions per cow accounted for 2.5 g CHsday1 (Ccu4)
according to experimental work by Jarvis et al. (1995a), where authors investigated
the magnitude of CH4 emissions from dung deposited by grazing cows under different
managements. It was estimated that each cow emitted 121.56 kg CHs head-! yr!
through enteric fermentation according to Ireland’s national GHG inventory report

(Duffy et al.,, 2021) (Centeric).

6.2.2.8 Ammonia volatilization from animal excreta and CAN

The volatilization of ammonia (NH3) from urine and dung was determined according
to the findings outlined in Fischer etal. (2016) from the same experimental grounds,
where NH3-N losses from dung were 5.3, 2.8 and 3.5 % in spring, summer and autumn,
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respectively, and NH3-N losses from urine were 14.9, 9.8 and 8.7 % in spring, summer
and autumn, respectively. Volatilization of NH3 from CAN was assumed to be 0.8 % in

accordance with national inventory on NH3 emissions (Carbo, 2016).

6.2.2.9 Atmospheric nitrogen deposition
Data on N deposition was derived from the European Monitoring and Evaluation

Programme (EMEP) database (https://emep.int/) over the most readily available and

most recent periods between 2017 and 2019. Of the total N deposited, it was assumed

that 0.25 % was emitted as indirect N20 emissions (Krol et al,, 2017).

6.2.2.10 Soil carbon and nitrogen measurements

The total C content of the soil was measured in 2019 in April, June and July and in 2021
in March. The total N content was also measured in March 2021. Soil cores were taken
at 0-10 cm using a using a soil corer and samples were thoroughly mixed and wet
sieved at 4mm prior to being oven dried at 40 °C over 36 hrs. Total C and N
concentrations were determined using the LECO TruSpec high temperature Dumas
Combustion system (St Joseph, Michican, USA) elemental analyser. The bulk density of
the field site was measured in both 2019 and 2020 across using sharpened cylindrical
rings (10 cm depth and 3.7 cm diameter) that were inserted vertically into the soil

surface.

6.2.3 Carbon and nitrogen balance

The C and N budget was constructed by either measuring or estimating the importand
exportofrelevantfluxesto and fromthe grassland onayearly basis. With the exception
of CH4 emissions from dung and the C content of milk fat and protein, all literature
values were derived fromthe same experimental site as used in this study. Throughout
this paper, positive fluxes represent the loss of either C or N from the grassland to the
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wider environment (i.e. exported from the field), and negative fluxes represent the
uptake or assimilation of either C or N (i.e. imported to the field). We assumed that the
NEE of CO2 measured by the EC system, quantified the difference between C uptake
through photosynthesis and C lost through both heterotrophic and autotrophic
respiration. The change in the C balance (ACB) within the grassland over time (AT) is

equivalent to NBP which can be considered as follows (Eq. 6.4)

AAL: = NBP = NEE., *Cparvest t Creaching + Ccn, t Centeric + Cyue  Equation 6.4
where NEEco: is the NEE of CO2; Charvest is the C offtake through biomass; CLeachingis C
lost through dissolved organic carbon (DOC); Ccus is CH4-C emissions from dung
depositions made within the field; Centericis CH4-C emissions from enteric fermentation
by livestock and Cwiik is the C offtake through milk production. Weight gain increases
were considered negligible as the average dairy cow weight at the start of the grazing
season was approximately 590 kg, with minor weight gain increases of 40 kg during
lactation, returning to 590 - 600 kg at the end of the grazing season. The input of C
from dung and urine deposits from grazing animals was not included in the budgetas
it was assumed to be recycled within the system. Emissions of C from on farm

operations, such as tractor emissions, and off-farm activities, such as fertilizer

production, are notincluded in the C budget.

The change in the N balance (ANB) within the grassland over time (AT) can be

considered as follows (Eqg. 6.5)

ANB

AT = NEENZO + NExcreta+ NCAN+ NDep +

NN2 + NFeed + NHarvest + NLeaching + NMilk + NNH3 Equation 6.5
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where NEEn:o is the NEE of N20 and includes indirect emissions of N20 from NH3
leaching and total N deposition; Nexcreta is N inputs from dung and urine deposits from
grazing animals; Ncan is N inputs from CAN fertilizer; Nazis N loss through N2, Nreeq is
N inputs through concentrate feed; Nuarvest is the N removal through biomass; Nieaching
is N losses through NOs- leaching, Nwmiik is the N incorporated in milk production and

Nnnz is N loss through NHsvolatilization from dung and urine patches and CAN.

The NGHGE for the grassland site was calculated from annual NEE¢, , NEEy o and
estimated CH4 emissions from dung and enteric fermentation using a global warming
potential of 265 and 28 relative to CO2 over a time horizon of 100 years for N20 and
CHgy, respectively (Pachauri et al,, 2014). Finally, the net GHG balance (NGHGB) was

determined by including Charvest, CLeaching , Cmilk, Ccrisand Centeric (Eq. 6.6)

NGHGB = NGHGE + Cyypyp0s: + C,, + Chyine + Con, + C Equation 6.6

Harves eaching Enteric

6.2.4 Ancillary measurements

The EC station was equipped with a range of ancillary sensors to measure air
temperature and relative humidity (HMP155C, Campbell Scientific, Logan, UT, USA),
soil temperature at 2 and 6 cm depth (TCAV-L, Campbell Scientific, Logan, UT, USA),
precipitation (tipping bucket rain gauge, Young, Michigan, USA) net radiation (NR-Lite,
Kipp and Zonen, Delft, The Netherlands), PPFD (PQS1, Kipp and Zonen, Delft, The
Netherlands), soil heat flux at 5 cm depth (2 x HFPO1SC, Hukseflux, Delft, The
Netherlands) and volumetric water content (VWC) at 15 cm depth (CS616, Campbell

Scientific, Logan, UT, USA).

151



6.2.5 Uncertainty analysis

As the modelled output from equations 6.2 and 6.3 did not produce estimates of
uncertainty for each gap-filled half hourly flux, a conservative approach was applied
for estimating the uncertainty in gap-filled CO2 fluxes. This involved calculating the
difference between the 95 % and 2.5 % quantile of binned fluxes according to air
temperature and the PPFD to give an estimate of flux uncertainty for each half-hour.
The uncertainty on the cumulative CO2 flux was calculated using the least squares
method, i.e. the square root of the sum of the model uncertainty for each half-hourly
flux squared. The uncertainty in the cumulative gap-filled N20 flux was also calculated
using the least squares method on the 95 % confidence interval for each half-hourly
flux. The uncertainty in N and C budget components was calculated as the 95 %
confidence interval and the total estimated uncertainty on the final value for the total
C exports from management (Mex), the net N balance, the net C balance or NBP, and
NGHGB was calculated using the least squares method on the uncertainty of the
individual components of the respective balances. Where budget components were
derived from the literature, the estimated uncertainty was considered conservative as
literature values were predominately derived from studies conducted on the same

experimental grounds.

6.3 Results

6.3.1 Weather data

Monthly weather data for 2019 and 2020 can be seenin Fig. 2 where spring represents
February, March and April, summer represents May, June and July, autumn represents
August, September and October and winter represents November, December and

January. Air temperature followed similar trends in both 2019 and 2020, with a mean
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annual temperature of 15 °C. Soil temperature was frequently lower in 2019 compared
to 2020, showing lower monthly values in summer, autumn and winter. Precipitation
was greater in 2020 (1150 mm) compared to 2019 (959 mm) but was highly variable,
with higher rainfall observed in autumn/early winter (74 -150 mm) in 2019 and late-
winter/early spring (101 - 164 mm) in 2020. Periods of low precipitation were
observed in summer in both yearsranging from24 to 77 mm in 2019,and 17 to 61 mm
in 2020. The same temporal pattern was observed in the annual variation in VWC
measurements with high soil moisture observations in spring, autumn and winter
ranging from 33 to 41 % in 2019 and 38 to 45 % in 2020, and low soil moisture

observations in summer ranging from 30 to 39 % in 2019 and 28 to 35 % in 2020.
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Figure 6. 2: Mean monthly values for (a) soil temperature (dashed line) and air temperature
(solid line), (b) volumetric water content (VWC) and (c) total precipitation for 2019 (orange)

and 2020 (green).
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6.3.2 Nitrogen budget

The N budgetand net balance for the grassland site in 2019 and 2020 is shown in Table
6.2. The total N imports in 2020 were greater compared to 2019 at-51.4 and -23.7 gN
m2 yr-1, respectively. Of the -51.4 g N m2 yr-1 imported in 2020, animal excreta
accounted for -19.8 g N m-2 yr-1. Total N exports in 2020 were also larger compared to
2019 at33.5and 23.7 gN m-2yr-1, respectively. The largest N export was from biomass
removal, either through harvest cuts in 2019 (21.7 g N m2 yr-1) or through biomass
grazed by livestock in 2020 (22.2 g N m-2yr-1). The remaining N exportsin 2019 of N20,
N2, NO3- leaching and NH3 volatilization from CAN were small relative to the harvest at
0.3,0.2,1.3and 0.2 g N m-2yr-1 respectively. The second largest N exportin 2020 was
NH3 volatilization from animal excreta at 5.3 g N m2 yr-1, followed by NO3- leaching at
3.0 g N m2yr-1, which was approximately twice that of N losses from milk at 1.6 g N m-
2 yr-1. NHs volatilization from CAN was the same in 2020 to 2019 values at 0.2 g N m-
yr-1. Losses of N from N20 and N2 were greater in 2020 compared to 2019 at 0.7 and
0.5 g N m2 yr-1, respectively. Under a cut management, the site had an overall net
neutral N balance of 0.1 £ 6.0 g N m2 yr-1, while under a grazing management the site
was a greater net sink of N at a rate of -17.9 # 5.5 g N m2 yr-1. Soil N stocks derived

from soil cores taken at 0-10 cm in 2021 were 507 g N m-2 (Table 6.4).
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Table 6. 2: Nitrogen budget and balance for the grassland site under a cut (2019) and grazed
(2020) management (g N m2 yr1) where values in brackets represent the uncertainty,
calculated using the least squares method. Negative values represent nitrogen imports, while

positive values represent nitrogen exports.

Component 2019 | 2020

gN m™?yr!
CAN -23.0 [2.0] -24.6 [1.3]
Animal excreta - - -19.8 [1.5]
Concentrate feed - - -6.3 [0.4]
Total deposition -0.66 [0.09] -0.66 [0.09]
N,0 0.3 [0.004] 0.7 [0.002]
N, 0.2 [0.1] 0.5 [0.1]
Harvest 21.7 [5.6] -
Biomass consumed by livestock - - 22.2 [5.0]
Milk - - 1.6 [0.03]
NO3- leaching 1.3 [0.4] 3.0 [1.0]
NH; volatilization (excretion) - - 5.3 [0.6]
NH; volatilization (can) 0.2 [0.02] 0.2 [0.01]
Net nitrogen balance 0.1 [6.0] -17.9 | [5.5]

6.3.3 Carbon dioxide fluxes

Half hourly fluxes of NEE measured under a cut (2019) and grazed (2020)
management are shown in Fig 6.3. Maximum rates of instantaneous net CO:
assimilation were recorded in June 2019 at -30.9 pmol CO2 m-2 s-1 and July 2020 at -
36.2 pmol COz m2 s-1 (Fig. 6.3). The grassland showed lower rates of Reco in 2019
relative to 2020, with maximum Closses of 14.8 and 35.6 pmol CO2 m2 s-1, respectively
(Fig. 6.3). The temporal trends in CO2 uptake and release showed a typical seasonal
pattern (Fig. 6.3 and 6.4). The NEE remained positive (emission source of CO2) for
January and February in both years, after which NEE became increasingly negative
(COz sink) during the growing season (March - September).Increases in the NEE C sink

reduced from September in 2019 and November in 2020, when the assimilation
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capacity of the system was lower. The grassland showed a greater capacity to
assimilate C under a cut management at a cumulative rate of -547.9 g C m2 yr-},
compared to the grazing management at a cumulative rate of -369.3 g C m2 yr-L
Following silage cuts, recoveryinthe photosynthetic activity was rapid with maximum
daily rates of GPP of -9.0, -7.3, and -3.1 g C m-2 in the first 30 days following harvest
and subsequent fertilizer application in May, July and September, respectively. Overall
maximum daily rates of GPP in 2019 of-10.6 and -10.5 g C m'2 were recorded in June
and August, respectively. Increases in Reco were observed with plant growth following
silage cuts and fertilizer application, where maximum daily Reco of 5.0 g C m'2 was
observed in September, seven days following fertilizer application. The grazing
management in 2020 showed maximum rates of daily GPP in May, August and July,
with values 0f-10.1,-9.1 and -8.9 g C m2, respectively. In 2020 higher rates of Reco were
observed relative to 2019, where maximum daily values of 6.4, 5.8 and 5.4 g C m-2were
measured during the July grazing event, following the August fertilizer application and

during the October grazing event, respectively.
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Figure 6. 3: Flux fingerprint depicting the diurnal course of half-hourly fluxes of NEE under a
cut(2019) (left) and grazed management (2020) (right). Negative values represent the uptake

of CO2 and positive values represent the release of CO2 fromthe system.
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Figure 6. 4: (a) 2019 and (b) 2020 daily total ecosystem respiration (Rec) (grey area), daily
gross primary productivity (GPP) (black area) and cumulative net ecosystem exchange (NEE)
(solid orange line). The dashed green line represents fertilizer application, the solid yellow line

represents silage cuts and blue background blocks represent grazing periods.

6.3.4 Carbon budget

The NBP for the grassland site under a cut (2019) and grazing (2020) regime can be
seen in Table 6.3. Annual C assimilation through GPP was 10 % lower (140 g C m-2 yr-
1) under the grazing management relative to the cut management at -1358.2 and -
1498.3 g C m2yr-1, respectively, while annual C losses through Reco were similar under
both management regimes at 950.4 and 988.9 g C m2 yr1 for cut and grazing,
respectively. The grassland was a greater sink of C under the cut management
compared to the grazing management with NEE values of -547.9 and -369.3 gCm-2yr-
1, respectively. The largest C exports from management were from harvests in 2019 at
482.3 g C m2yr-1and enteric fermentation in 2020 at 23.8 g Cm-2yr-1. Exports of DOC
were approximately five times lower from the cut management compared to the

grazed managementat4.0 and 20.2 g C m2yr-1, respectively. In 2020 exports of C from
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dung were negligible at 0.2 g C m-2yr-1, while C exports from milk were considerably

larger at 13.6 g C m-2yr-1. When incorporating the NEE with the above C exports (Mex)

to give the NBP, C was sequestered at a rate of -61.6 + 24.6 g Cm=2yr-land-311.5 +

81.8 g C m2yr-1under the cut and grazing management, respectively. The total soil C

content was higherin 2019 compared to 2021 at 5619.4 + 125.2 and 4940.0 + 11154

g C m2 (Table 6.4).

Table 6. 3: Carbon budget for the grassland site under a cut (2019) and grazed (2020)

management (g C m-2 yr-1) where values in brackets represent the uncertainty calculated using

the 95 % C.I. for individual C exports and imports and the least squares method for GPP, Rec,

NEE, Mex and the NBP. Negative values represent carbon uptake, while positive values

represent carbon loss.

Component 2019 2020
gCm?yrt
GPP -1498.3 [20.0] -1358.2 [80.8]
Reco 950.4 [8.9] 988.9 [49.1]
NEE -547.9 [21.9] -369.3 [64.1]
CH4-C - dung in field - - 0.2 [0.004]
CH,4-C - enteric fermentation - 23.8 [00.6]
Harvest 482.3 [2.7] - -
DOC 4 [0.3] 20.2 [0.8]
Milk - - 13.6 [0.2]
Mex" 486.3 [2.7] 57.8 [1.0]
NBP -61.6 [24.6] -311.5 [65.1]

*
Mex is the sum of C exports from management at the field scale.

Table 6. 4: Carbon (C) and nitrogen (N) soil stocks measured in 2019 and 2021 at 0 to 10 cm

depth.

Year Total C Total N

g C/m™ 95%CIl. | gN/m™ 95 % C.L
2019 5619.4 125.2 - -
2021 4940.0 1115.4 507.0 0
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6.3.5 The net greenhouse gas balance

Values of NEE (CO2), N20, CH4, NGHGE and NGHGB in 2019 and 2020 are presented in
Fig. 6.5 (detailed numbers for each year are listed in Table C.1). The NEE showed the
largest contribution to the NGHGB in both years, with higher contributions under the
cut management in 2019 at -2010.8 * 80.5 g CO2 m2 yr-! relative to the grazing
management in 2020 at -1355.3 + 296.4 g CO2 m2yr-1. The grassland was a greater
source of N20 under a grazing management relative to a cut management at 275.6 +
1.0 g CO2eq m2yr-land 140.1 £ 1.5 g COz2eq m2yr-1, respectively, while emissions of
CH4 were greater than N20 emissions in 2020 at 783.2 + 18.3 g CO2eq m2 yr-1. The
grassland was a net GHG sink (CO2+N20+CH4) under both management regimes, but
showed a six-fold greater CO2 sequestration rate under the cut management relative
to the grazing management at -1870.7 + 82.0 g CO2eq m2yr-! and -296.1 + 3157 g
COzeq m2yr-1, respectively. Overall, N20 emissions reduced the sink strength of the
NEE by 7 % and 20 % in 2019 and 2020 respectively, while CH4 emissions reduced the
NEE sink strength by nearly a three-fold more comparedto N20 in 2020 at 58 %. When
accounting for CO:z exported from management (Mex), COz losses from the cut
management were an eight-fold greater than CO2 losses from the grazing management
at 1784.7 £9.9 g CO2eq m2yr-1and 212.1 + 3.7 g CO2eq m2yr-1, respectively. Overall,
the NGHGB showed that the grassland system was a net sink of CO2, with similar CO2
sequestration rates of -86.0 + 91.8 and -84.4 * 258.3 g CO2eq m2yr-1, for the cut and

grazed management respectively.
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Figure 6. 5: The greenhouse gas (GHG) fluxes of the net ecosystem exchange (NEE), nitrous
oxide (N20), methane (CH4), the net GHG exchange (NGHGE) and net GHG balance (NGHGB)
which incorporates CO. exports from management (Me). The error bars were calculated
according to the least squares method. Negative values represent the uptake of CO: into the

system and positive values represent the release of CO; from the system.

6.4 Discussion

6.4.1 Nitrogen balance

Few studies have attempted to quantify net N balances from managed grasslands
(Ammann etal, 2009, Chen et al,, 2004, Jones et al,, 2017, Syakila and Kroeze, 2011),
largely due to the complexity of management related imports and exports which
includes various forms of direct and indirect emissions of reactive N. Our results
indicate that under a cut management the field site had a net neutral N balance (-0.1 *
6.0 g N m-2 yr-1), while under a grazing management the field site acted as a sink of N
(-179 + 55 g N m2 yr1). Large differences in the net N balance between both
managements highlights the importance of field scale activities in determining
whether grassland systems act as a net source or net sink of N. Indeed, Watson et al.

(2007) showed that N fertilizer had a significant effect on the rate of N accumulation
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in soils, and due to greater N inputs from CAN and animal excreta from the grazing
management, this likely explains in partthe higher N storage in 2020 relative to 20109.
Our findings are within the range previously reported by Jones et al. (2017) who
showed that the N balance of an intensively managed grassland in Scotland varied
between 13.2 and -18.2 g N m-2 yr-1 over a nine year period. In this study total soil N
stocks 0of 507 g Nm-2 at 10 cm depth were measured in 2021, and are similar to those
reported for managed grasslands, ranging from 22 to 870 g N m-2 between 0-5 and 0-

60cm depth (Denefetal,, 2013, Jones etal,, 2017).

The largest N imports were from CAN in both years, and the amount applied was
determined by national recommendations according to the timing and rates of N
fertilizer applications in grazed and non-grazed pastures (Teagasc, 2021a). High N
losses from harvests (21.7 g N m-2 yr-1) and biomass consumed by livestock (22.2 gN
m-2 yr-1) were reported in this study. Lower N losses from biomass offtake from
intensively managed grasslands have been documented in Scotland at 11.8 and 10.4 g
N m2 yr-1 over a two year period (Jones et al, 2017) and Switzerland at 6.8 g N m2
(Ammann et al., 2009). Such disparities with this study could be due to a number of
reasons which influence plant productivity and thus the amount of N that is assimilated
and later removed, for example the amount of organic and inorganic N applied to the
system, the timing and frequency of cutting and grazing events which influence the rate
at which N is assimilated by plants, as well as differences in climatic conditions which
favour plant growth during the time of data collection. While estimated atmospheric N
deposition rates calculated in this study were comparable with previously reported
values in the literature from other grassland sites (Jones et al, 2017, Kugler et al,,

2008), it is important to note that the value used in this study (0.66 g N m2 yr-1)is at
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the regional scale and is likely to be an underestimation of N deposition at the field
scale. Presumably the majority of NH3 that volatizes from the field from fertilizer or
animal excreta will return back to the pasture in combination with NH3 sources from
adjacent paddocks resulting in higher N deposition rates at the field scale compared to
the regional scale. This in turn would mean a higher estimated N storage under both

managements.

N losses through milk production were moderate at 1.6 g N m-2 yr-1, but similar to
modelled values reported by Ryan et al. (2011) at 3.5 - 4.2 g N m2 yr-1 for dairy
production systems in Ireland. Estimates of NO3- leaching were double under the
grazing management compared to the cut management at 3.0 and 1.3 g N m2 yr-},
respectively. Grazed pastures often have greater N leaching rates compared to cut
pastures as biomass which is consumed by grazing animals is returned to the system
in the form of dung and urine patches with high N loading rates (approximately 550 kg
N hal, Vogeler et al. (2016)), often exceeding plant N demands and thus is liable to
leaching. Moreover, Vogeler etal. (2016) used a process based model to show that the
risk of direct NO3-leaching from fertilizer alone was low, but the risk of indirect NOs-
leaching increased where fertilizer was applied to urine patches in late winter/early
spring. In this study, the second largest estimated N export from the grazing
management was from NH3 volatilization at 5.3 g N m-2 yr-1 from excretion. The rate of
NHs volatilization is mediated by a range of meteorological factors such as soil
temperature which enhances urease activity in soil (Schwenke et al,, 2014) and small
rainfall events (<5 mm) with low intensity which help stimulate the hydrolysis of urea
(Lockyer and Whitehead, 1990). In this study, weather conditions during grazing were

favourable for NH3 volatilization with mean monthly soil temperate ranging from 6.2
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°C (February) to 16.8 °C (June) and VWC ranging from 28.2 % (June) to 45.6 %
(October). The volatilization of NH3 promotes the microbial production of N20 through
nitrification of NH4* and subsequent denitrification of NOs-. A detailed discussion on
measured N20 emissions reported in this study are available in Murphy et al. (2022a)
and Murphy etal. (2022b). N20 losses were higher under the grazed management (0.7
g Nm=2 yr-1) compared to the cut management (0.3 g N m-2 yr-1), and subsequently, so
were estimated Nzlosses at 0.5 and 0.2 g N m-2 yr-1, respectively. Previous studies have
also reported higher gaseous losses of N from grazed pastures relative to cut pastures
(Flechardetal, 2007, Rafique etal,, 2012). There are two likely reasons for this; firstly,
the presence of dung and urine patches creates hotspots of N20 which can enhance C
and N cycling through additional C and N inputs from animal excreta (Abdalla et al,,
2009a) and secondly, soil compaction by grazing animal reduces soil porosity,
increases soil density and reduces hydraulic conductivity which in turn can create

anaerobic soil conditions, favouring N20 production by denitrification (Hyde, 2004).

6.4.2 Impact of management on COz exchange

The range of GPP (1358.16 - 1498.28 g C m-2 yr-1) and Reco (950.36 - 988.87 gC m2 yr-
)Y measured at our field site are within range of previously reported values from other
managed temperate grasslands (Jones et al,, 2017). Our results showed the extended
impact silage cuts have on COz exchange, such as reductions in GPP and NEE following
cuts, which have previously been reported and linked to a reduction in leaf area and
total biomass (Gitelson et al, 2014, Schmitt et al.,, 2010, Zheng et al,, 2010). Recovery
periods following silage cuts to reach pre -harvest C fluxes (in this study ranged from
-6.1 to -10.1 g C m2) varied between 19 and 34 days, which is similar to previously

reported periods of 14 to 21 days from the same experimental site (Peichl etal, 2012).
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The length of the recovery period depends on the time taken to reach pre-cut fluxes,
which will vary according to the presence of favourable conditions for plant growth.
For example, shorter recovery periods were observed post the summer silage cut in
July where soil temperatures were high (18 °C), rainfall events occurred (31 mm) and
light levels were at their highest (1072 - 1979 pmolm™s™,data notshown) to promote

plant productivity.

Conversely, the grazing management showed less pronounced effects on NEE, as re-
growth of vegetation from earlier grazed strips occurs by the time the last strip is
grazed within the paddock during a single rotational grazing period (Peichl et al,
2012). As aresult, sharp declines in GPP were not observed following grazing of an
individual paddock. Conversely, higher rates of Reco were observed from the grazing
management compared to the cut management. This is likely due to presence of grazed
strips and grazing animals within the EC footprint (Fig. C.1), releasing carbon either
throughrespiration or excretion. Itis also possible that grazingincreased labile carbon
through an increase of carbon allocation to roots in response to herbivory (Hafner et
al, 2012), which in the presence of high soil and air temperatures, would promote
higher rates of soil respiration and subsequently Reco. Indeed, Sharkhuu et al. (2016)
reported higher rates of soil respiration in lightly grazed plots which had a greater total
SOC content relative to ungrazed plots which showed lower rates of soil respiration.
Maximum Reco rates during the grazing periods were observed in July, August and
October where the mean monthly air temperature values were high at 14, 15 and 11
oC, respectively. High air temperatures in combination with fertilization effects from
urine and dung patches on plant growth and microbial activity have also been shown

to increase Reco (Augustine etal,, 2003, Bardgett and Wardle, 2003, Lietal,, 2013b, Wei
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et al, 2012). It is important to note that previous studies have shown that grazing
pressure and grazing density can affect the rate of CO2 fluxes (Cao et al,, 2004, Chen et
al, 2015, Sjogersten et al, 2012), and therefore it is possible that under a longer
grazing management regime and a higher grazing pressure, substrate availability for

soil respiration would reduce and consequently Reco (Sharkhuu etal,, 2016).

6.4.3 Carbon balance

Whenall C imports and exports were accounted for and combined with the NEE to give
the NBP, we found that under the grazing management the system had a higher net C
sink at-311.5 + 81.8 g C m2 yr-1 compared to the cut management at -61.6 + 24.6 g C
m2yr-1. Lower C sequestration rates under the cut management relative to the grazing
management were due to high C exports frombiomass removal during silage cuts (482
g Cm2 yr-1), whereas a proportion of the biomass consumed by grazing livestock was
recycled back into the system in the form of excreta. Similar observations have been
reported for European grasslands, for example Soussana et al. (2007) reported the
mean NBP from nine managed European grassland sites as -104 + 73 g C m2 yr-L
Furthermore, the study by Soussana et al. included a grazed grassland in Italy with a
similar NBP to that reported in this study, ranging from -253 to -462 g C m-2 yr-1. Wall
etal. (2019) reporteda mean NBP of-71+77 gCm=2yr1(-45to-113gCm-2yr-1) over
a three year period from an intensively managed grassland in New Zealand. In the
United Kingdom, Myrgiotis et al. (2021) used modelling and earth observations to
determine the C balance of Great Britain over a two year period and re ported NBP
values ranging from-120 + 10394 g Cm=2yr-1to -232 £+ 94 g Cm2 yr-1. Mean annual C
stocks (5280 g C m-2) measured from this managed grassland system are comparable

with values from similar sites found in the literature. For example, Denefet al. (2013)
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reported C stocks ranging from 1410 to 4980 g C m-2 yr-1 between 0-30 cm depth from
three grassland sites in Europe. While soil samples were only taken from 0-10cm
depth, it is well recognized that the majority of soil C stocks are distributed within this
top soil horizon (Carter etal,, 1997) and thus are comparable with the cited literature.
However, the potential to sequester SOC is more prominent at deeper soil horizons (1
m) where the turnover time and recalcitrance of SOM increases with depth due to an
increase in soil anaerobic conditions (Lorenz and Lal, 2005). Consequently, to improve
our understanding of C storage dynamics from managed grasslands, itis also necessary
to sample soil C beyond the 0-30cm soil horizon. While this study clearly demonstrates
the impact that management activities have on the net C balance of grassland systems,
longer term datasets are necessary for more informative quantifications of the long-
term C changes from managed pastures.Indeed, Smith (2014) proposed thatthe legacy
effects of management activities are important for assessing the C sequestration
potential of managed grasslands and therefore, analysing datasets over longer time
periods would provide more meaningful insights into the role of these systems in

storing C.

In this study, C offtake through milk exports were on the lower end (13.6 g C m-2) of
previously reported values, ranging from 21 to 78 g C m-2 yr-1(Byrne et al, 2007,
Rutledge et al,, 2015). Similar C losses from enteric fermentation (23.8 g C m2 yr-1)
estimated in this study were also reported from an intensively managed grassland in
Switzerland at 17+ 1 gCm2yr-1(Felberetal, 2016).Jonesetal. (2017) reported lower
C losses from enteric fermentation ranging from 1.5 to 5.2 g C m-2 yr-1, although the
stocking density was substantially lower (0.27 - 0.99 LSU ha-1 yr-1). Exports of C from

DOC were approximately five times greater under the grazing managementrelative to
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the cut management. This could be due to greater DM productivity from higher N
inputs under the grazing management relative to the cut management. For example,
McTiernan etal. (2001) found a signification positive correlation between DOC export
froma grazed grassland in south-west England and rates of N fertilizer application, and
suggested thatenhanced DM production from increased N fertilizer inputs was central
to this relationship. Furthermore, increases in DM production would lead to higher

returns of organic matter to the soil through leaf litter and decaying roots.

6.4.4 The net GHG balance

In terms of CO2eq, the grassland remained a net sink of CO2 with a NGHGB at -86.0 =
91.8 and -84.4 + 319.4 g CO2eq m™2 yr-l, under a cut and grazed management
respectively. Similarities in the final NGHGB value from both managements was due to
the varying influence of C exports and emissions ofnon-CO2 gases in offsetting the NEE
sink strength. Under the cut management regime, C exports greatly reduced the NEE
sink strength by 89 % (primarily through biomass removal from silage cuts), while
emissions of N20 only slightly reduced the NEE sink strength by 7 %. Conversely, C
exports from the grazing managementhad less of an impact in offsetting the NEE sink
strength at 16 % relative to the cut management, but emissions of N20 and CH4 greatly
reduced the NEE sink strength by a total of 78 %. Of this 78 %, CH4 emissions from
enteric fermentation accounted for 58 % (783.2 g CO2eq m2yr-1) as aresult of alarge
stocking density (3.2 LSU ha-1). Felber et al. (2016) also reported high CH4 emission
from enteric fermentation of 573 g COzeq m2 yr-! from an intensively managed
grassland in Switzerland. Likewise, Allard et al. (2007) found a high reduction in the
NEE sink strength due to CH4 emissions from enteric fermentation by 56 and 82 %

from an extensive and intensive grazing management, respectively, from a semi-
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natural grassland in France. Reductions in the NEE sink, from both management
regimes illustrates the impact management practices have on the capacity of managed
grasslands to store CO2. Our results further highlight the urgent need for sustainable
agricultural practices in order to mitigate and reduce GHG emissions from intensively
managed pastures. Such practices could include the reduction of synthetic N fertilizers
in favour for multi-species mixtures (Cummins et al,, 2021), lower N inputs through
improved livestock diets (Carulla et al., 2005), precision agriculture (Rees etal,, 2020),
commencing grazing and cutting later in the growing season, inhibiting or reducing the
microbial production of N20 (Villegas et al,, 2020) as well as reducing stocking rates
(Adler et al, 2015). Additionally, frontier technologies which can enhance soil C
sequestration and increase soil C stocks may provide avenues for producing negative
emissions in agriculture upon future research and development (Paustian etal., 2019).
For example, biochar amendments can increase the soil C stock as it is highly resistant
to microbial degradation, with an average residence time of 100 years (Santos et al,
2012, Wanget al, 2016), and thus when introduced to grassland soils can persist for a
long time. Furthermore, previous meta-studies have implied that biochar additions
may reduce soil derived N20 emissions, ranging between 9 to 50 % (Cayuela et al,
2014, Verhoeven etal, 2017), although the mechanism driving these observations are
uncertain due to the range of abiotic and biotic factors that influence the production of
N20, for example, soil oxygen concentrations, soil water content and mineral N
concentrations (Butterbach-Bahl et al, 2013). Moreover, soil C stocks may also be
enhanced through improved cropping systems, for example, utilizing crop species that
have deep and extensive root systems, where more dry matter is distributed to the
belowground biomass relative to the aboveground. Similarly to the addition of biochar

to grassland soils, deep rooting systems would lower nitrate leaching and in turn
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possibly N20 emissions along the soil-plant-atmosphere continuum (Abalos et al,
2016). Relative to annual grain species, perennial grains typically produce lower yields
and subsequently lower economicreturns (Culman etal,, 2016), thus requiring further
developments in order to be consider as a viable mitigation tool against climate

change.

6.5 Conclusion

Our study shows that over a two year period, management activities at the field scale
influenced N and C balances from the grassland system. Additionally, emissions of N 20
and CH4 greatly reduced (85 %) the COz sink strength from the grassland over the two
years, highlighting the impact of the GWP of these GHGs in offsetting CO:2 sinks.
Ultimately, there is a strong need for the implementation of sustainable agricultural
practices in order to both mitigate and reduce GHG emissions from managed pastures.
To further assess and predict the long term changes in the CO2 storage in managed
grasslands, higher temporal resolution datasets (= 10 years) which encompass a
gradient of management intensities across various agricultural practices and from
different soil types as well as measurements of soil organic carbon at different soil
horizons, are required for more robust estimates of NGHGBs from managed

grasslands.
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Chapter 7: General Discussion and Conclusion

7.1 Overview

The agricultural sector accounts for approximately 18 % of globaland 37 % ofIrelands
GHG emissions (CO2, N20 and CH4) (Teagasc, 2020). A large body of work has been
undertaken to better understand the mechanisms which control CO2 emissions atboth
the cellular and ecosystem level (Fatichi et al,, 2016, lida et al.,, 2009), as well as the
influence of abiotic and biotic factors, and the role of management on autotrophic and
heterotrophic COz emissions in grasslands (Wohlfahrtetal,, 2008). Additionally, there
have been advancements in the development of high frequency gas analysers to
quantify CO2 and CH4 uptake and emission at different spatial and temporal scales
(Zellweger et al, 2016). It is only in more recent years, that ecosystem scale
measurements of N2O have become feasible through the development and deployment
of high frequency and precision absorption spectrometers (Liang et al., 2018, Wecking
etal, 2020b).Previous studies have highlighted the importance of managed temperate
grasslands as a sink of CO2 but a source of N20 (Giraud et al,, 2021, Li et al,, 20133,
Soussana et al, 2007), however there is still a large degree of uncertainty in both
national (Duffy etal, 2021) and international inventories (Buendia etal,, 2019) of N20

emissions from agricultural landscapes.

The main aim of this thesis was to add to the understanding ofhow N20 emissions vary
both in space and time from an intensively managed temperate grassland that is
subject to a heterogeneous mixof N sources and loading rates. Static chamber and eddy
covariance (EC) flux measurements were central to this work and were used to

investigate the differences and uncertainties in N20 emissions quantified at varying
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spatial and temporal scales under a fertilized and cut management (Chapter 4). In
Chapter 5 the contrasting limitations of the static chamber and EC techniques in
measuring N20 emissions were overcome by using both methods in parallel to quantify
N20 emissions from a more complex management system, whereby field scale
measurements of N20 emissions were made and the contribution of emissions from a
grazing regime (background, fertilizer, urine and dung) were assessed. The effect of a
cut (Chapter 4) and grazing (Chapter 5) management, as well as the global warming
potential of N20 and CH4 emissions, on the carbon (C) sink strength of a temperate
grassland was explored further in Chapter 6. This chapter provides synthesis of the
research questions from the individual research chapters and discusses the context of
the respective results within the scientific community (Section 7.2). To summarize, the
conclusions (Section 7.3) and broader implications (Section 7.4) of the work are
highlighted along with the limitations of the research (Section 7.5) and suggestions for

future research (Section 7.6) are outlined.

7.2 Evaluation of research questions

Research question 1: How do we quantify N20 emissions at different spatial and
temporal scales, and how can we reduce the uncertainty in upscaling localized N 20 flux
measurements to the field scale?

In Chapter 4, annual N20 flux measurements were made as single point measurements
in space and time using the static chamber technique and as continuous, high
frequency (10 Hz), field scale measurements using the EC method. As chamber N20
flux measurements display a log-normal distribution over time, daily mean flux values
were calculated using commonly practiced normal (arithmetic), and log-normal

(Bayesian) statistics. Results from this study showed that N20 flux measurements
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using static chambers were most comparable (R2 = 0.80) with EC measurements when
(1) chamber replication was high (i.e. when all available chamber flux measurements
were considered [n = 30]) and (2) when the log-normal distribution of chamber N20
flux measurements was accounted for using the Bayesian approach. Where the sample
size was small (n < 5), the Bayesian approach produced uncertainties that were many
orders of magnitude greater than the flux measurement itself. This was due to the
inability of the Bayesian model to constrain an arithmetic mean from a log-normal
dataset where the sample size was low and the variance was high. The nature of these
findings suggests that if field scale measurements of N20 are made using the static
chamber technique, there needs to be high replication (n = 15) and frequent sampling
(where possible, at least once a week, with increased frequency following N inputs
and/or during/following rainfall events) in order to reduce the uncertainty in flux
measurements. Furthermore, normal statistical approaches are not advised when
analysing chamber derived N20 flux data from single management events, as such
methods have a tendency to over or underestimate the sample mean of alog-normally

distributed data set.

Research question 2: What is the best practice for estimating N20 emissions at the
field scale under a complex N management (i.e. rotation grazing, where there is more
than one treatment)?

In Chapter 5 static chamber and EC techniques were used in a complimentary fashion
to overcome the contrasting limitations of these methods (as discussed in Chapter 4),
to quantify field scale emissions from a rotation-grazed management and to
disaggregate between the different emission sources. Results from this study showed

higher cumulative emissions but lower uncertainty from EC (6.62 + 0.34 kg N ha'1)
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relative to upscaled static chamber flux measurements (Fcu rieLp) (5.09 +2.01 kg N ha-
1), where Fcu rieLD estimates were derived fromlocal partial EFs of CAN (2.78 + 0.90 %),
SU+CAN (0.59 # 0.12 %) and dung+CAN (0.64 * 0.15 %). While cumulative N20
emissions by EC and FcurieLp were with within the same order of magnitude, disparities
between total N20-N losses from both techniques were likely due to reasons discussed
in Chapter 4 such as (1) the static chamber technique has limited spatial and temporal
resolution and therefore subject to high uncertainties and (2) normal statistics on log-
normal data is prone to over-or (in this case) under-estimating the sample mean. Of
the total N20-N emissions estimated by Fcu rieLD, animal excreta accounted for 50 % of
emissions, while CAN and background accounted for 36 and 14 %, respectively. This
study showed that the EC technique was suitable for measuring field scale emissions
of N20 with low uncertainty, while the Fcu rieLp used in tandem could help constrain the
different source contributions to total field N20 emissions from rotationally-grazed

grassland.

Research question 3: At the field scale, how do management practices affect the net
C and N balance of a temperate grassland, and what is the impact of the management
related emissions (CO2, N20 and CH4) on the net greenhouse gas balance of grassland
systems?

In Chapter 6 the management activities described in chapters 4 and 5 were assessed
to understand their impact on N and C sinks, but also on the overall net GHG balance
(NGHGB). Results from this study showed that under a cut management the grassland
had anet neutral N balance atarate of 0.1 + 6.0 g N m-2yr-1, but under a grazing regime
where N imports were greater, the net N sink of the grassland increased to -17.9 + 5.5

g N m2 yr-l. The C balance was dominated by C imports from the gross primary
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productivity (GPP) and C exports from ecosystem respiration (Reco), the difference of
which yield the net ecosystem exchange (NEE) and showed a higher C sequestration
rate under the cut management compared to the grazing management at -547.9 and -
369.3 g C m-2yr-1. Exports of C greatly reduced the NEE sink strength to -61.6 + 24.6 g
Cm2yrland-311.5 + 81.8 g C m2yr-1 under the cut and grazing management with a
notable reduction of 482.3 g C m2yr-! from silage cuts alone. Findings from this study
strongly highlight the influence of field management activities on the net N and C sink
of temperate grasslands. In order to assess the impact of non-CO2 gases on the C sink
of the NEE (net greenhouse gas exchange [NGHGE]), budget values were converted to
CO2 equivalents (COzeq). Under the cut management, emissions of N20 only slightly
reduced the NEE sink strength by 7 % (-1870.7 g CO2eq m-2 yr-1), while in stark
contrast, emissions of N20 and CH4 from enteric fermentation reduced the NEE sink
strength from the grazing management by 20 and 58 % (-296.5 g COzeq m2 yr-1),
respectively. This study clearly demonstrated the potency of non-CO: gases in
offsetting C sinks from managed grasslands. When management exports at the field
scale were further deducted from the NGHGE, the grassland remained a sink of CO2
with a NGHGB of-86.0 +91.8 and -84.4 + 319.4 gCOzeq m 2 yr-1, under a cut and grazed
management respectively.. In summary, the findings from this study showed that
management practices and their associated GHG emissions strongly dictate whether
managed grasslands serve as a net sink or source of C and/or GHG emissions, thus

advocating for the implementation of more sustainable agricultural practices.

7.3 Conclusions
In conclusion, the work presented in this thesis has contributed to the following

findings in the field of methodologies used to quantifying and assess the impact of C
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dynamics and N20 emissions from intensively managed grasslands: (1) This research
has demonstrated how best to utilize the static chamber technique, both practically in
the field and when post-processing flux data, to make field scale measurements of N20
comparable with ecosystem scale flux measurements from recently developed high
precision absorption spectrometers (EC). (2) It has shown that using the EC and static
chamber techniques in tandem to measure field scale emissions of N20 from grazed
pastures, provides data which can supportthe implementation of source specific GHG
mitigation strategies. (3) It has contributed to our understanding of the impacts field

scale management practices have on the NGHGE and NGHGB in temperate grasslands.

7.4 Implications of research

7.4.1 Appropriation of methodologies used to measure N20

Current methodology guidelines for static chamber flux measurements of N20 suggest
a minimum of three replicates per treatment (Charteris et al, 2020a), with earlier
studies showing a 10-fold reduction in N20 flux measurement error when increasing
chamber replication from two to five (Chadwick et al, 2014), however the findings
from Chapter 4 and Chapter 5 advocate for far greater chamber replication where
logistically feasible (n>5). High chamber replication per treatment is notalways viable
as observed in Chapter 4, however if implemented as a standardised approach when
using static chambers to investigate soil derived N20 fluxes this would lead to (1)
improved experimental design, (2) data sets which are more statically robustand (3)
estimates of N20 emissions with lower uncertainties. In addition to low replication,
chamber N20 flux data is frequently analysed using Gaussian statistics. As discussed in
Chapter 4, this is problematic as chamber N20 flux datasets are typically log-normally

distributed. Both Tier 1 emission factors (EFs) (IPCC default) and Tier 2 (Ireland’s
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national approach) are based on chamber flux data which has historically been
analysed using the arithmetic or naive mean. It is likely that such estimates are either
over or under estimating actual N20-N losses. Indeed, this has been commented on by
many authors (Chadwick et al., 2018, Maire et al,, 2020, Wecking et al,, 2020b), but it
is important to note that such over or under estimations relative to the IPCC default
EFs can also be partially attributed to differing climatic conditions and management.
The application of log-normal statistics (e.g. Bayesian) for national and international
inventories of N20 emissions would provide the research community with more
reliable estimates of uncertainties to base their respective research findings on.
However at present, the application of Bayesian statistics for chamber N20 flux
datasets is limited to single management treatments, and thus requires further
development in order to broaden its application. As shown in Chapter 5, using both
static chambers and EC in a complimentary fashion can provide more insightful and
informative conclusions on the effect of management on cumulative N20-N losses
relative to using both techniques in isolation. Not only is this applicable to intensively
managed grasslands, but could also be insightful for other land management
approaches where there are multiple sources of emissions, for example peatland sites

where there are mixed ecotypes or grasslands consisting of multi-species swards.

7.4.2 N20 emission factors from grazed pasture systems in Ireland

EFs for N20 for CAN, SU+CAN and dung+CAN were produced in this research which
provide valuable information on the interactive effects of treatments that are
characteristic of a rotation grazing management (Chapter 5). Ireland’s Tier 2 EF values
for CAN, dung and urine are 1.4, 0.3 and 1.2 % respectively. To date, both Ireland and

the IPCC do not have interactive EFs for grazing treatments despite previous studies
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showing both additive and multiplicative effects from dung+CAN and urine+CAN,
respectively (Hyde et al, 2016). Few studies have investigated the implications of
mixed treatment effects on N20 emissions (Hyde et al,, 2016, Krol et al,, 2016, Krol et
al, 2017,Maire etal,, 2020) even though such treatments create hotspots of N20 within
agricultural landscapes. By recalculating the N20 emissions according to Irelands Tier
2 EFs, where interactive EFs are the sum of the EFs from their individual treatments,
the emissions from Chapter 5 would change as follows (Table 7.1); N20 emissions from
CAN would decrease by 50 % and urine+CAN and dung+CAN would increase by
approximately 430 and 460 %, respectively. By using specific interactive EFs, soil
system dynamics at the time of treatment application such as changes in substrate
availability, microbial communities, C:N ratios, soil oxygen concentrations etc, which
all influence the production of soil derived N20, are accounted for and N20 emissions
are less likely to be overestimated as is the case when independent EFs are added
together. These research findings highlight the need for Tier 2 aggregated EFs from

grazing systems alongside the disaggregated Tier 2 EFs.

Table 7. 1: Comparison of aggregated emission factors (EFs) measured from this study and

combined EFs of calcium ammonium nitrate (CAN) and urine, and CAN and dung from Tier 2

EFs.
Measured Tier 2 Emission Difference
EF  95%C.. Cumulative 95%C.. [ EF*  Cumulative 95% C.I.
Treatment % kg N ha™ % kg N ha™ kg N ha™
CAN 2.78 0.90 1.24 0.44 1.4 0.62 0.24 0.62
Urine+CAN 0.59 0.12 3.42 0.69 2.6 14.66 0.34 11.24
Dung+CAN | 0.64 0.15 3.35 0.83 1.7 8.68 1.95 5.33

*Tier 2 EFs for urine+CAN is EFscattle -urine (1.2 %) + EF1 can (1.4 %) + and dung+CAN is EF3cattle -aung (0.31 %) + EF1
CAN.
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7.4.3 Management implications on the climate change mitigation potential of
grasslands

The results from Chapter 6 contribute to our existing understanding of the impact that
agricultural management has on the potential for grassland systems to act as a
reservoir of C. Ultimately, farm management can alter the sink strength of grasslands
by decoupling soil C and N cycles where C is lost to the atmosphere as CO2 by either
respiring animals during grazing or enhanced soil respiration via N fertilization, and N
is imported into the soil primarily through either animal excreta or fertilizer
application. Where grasslands are managed for silage production or grazing, the
recovery period following biomass removal or plant defoliation will determine the
response of the plant-soil system to uptake C and shift towards a C sink following
extensive C exports. Therefore, farm management decisions regarding the frequency
of grazing and cut events will strongly dictate the capacity of the system to store more
C than is lost through farming practices (Wecking, 2021). Policy measures will be
required to incentivise farmers to adjust their management practices accordingly to
prevent excessive C losses through grazing and harvest cuts, and to increase C inputs
through enhanced organic fertilization. This in turn would complement national
emission reduction targets of 51 % between 2018 and 2030, and emission neutrality
by 2050 as outlined in the Climate Action and Low Carbon Development(Amendment)
Bill 2021. Furthermore, as part of Ireland’s contribution to the Paris Agreement, the
Effort Sharing Regulation framework published by the European Commission in 2016,
set a national emission reduction target of 30 % by 2030 relative to 2005 emissions.
Of this target, 5.6 % can be achieved through offsetting emissions by C sequestration.
However, research findings from Chapter 6 showed that the GWP of N20 and CH4 can

considerably offset the C sequestered from managed grasslands over time. The

178



radiative forcing of N20 and CH4 is 265 and 28 times that of CO2 over a 100 year

lifespan, respectively. Therefore it is highly recommended that policy measures are

implemented to incentive farmers to modify currentmanagement practices in order to

reduce non-CO2 emission from managed pastures. This could include switching from

CAN to urea based formulas of synthetic N fertilizer (Harty etal.,, 2016) or encouraging

the development of legume-containing pastures for grazing which have previously

shown high nitrogen-use efficiency (NUE) from N inputs from animal excreta and low

N20 emissions (Nyameasem et al., 2021).

7.5 Limitations of research

Some of the limitations of this research included:

Urine and dung patch characteristics (frequency and area), were taken as
constant literature values, when in reality these characteristics would vary and
ultimately alter the N loading rate.

Interactive effects of overlapping urine on urine patches and/or dung on dung
patches on N20 emissions were not investigated, which could have possibly
bridged the gap between disparities in field scale cumulative N20 estimates by
EC and chambers in Chapter 4.

N2 losses from urine depositions through the process of co-denitrification were
not accounted for in this research but have been shown to be significantly
greater than N2losses through denitrification (Selbie etal,, 2015), and therefore
could have significant implications for the N budget of the site.

The interaction between the availability of soil organic C (SOC) and nitrogen
processes was not measured which could have explained some of the variability

observed in N20 emissions.
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The chamber replication in Chapter 5 was 5 replicates per treatment per
grazing i.e. 5 replicates each for four treatments (control, CAN, SU+CAN and
dung+CAN) for each of the four grazing events monitored in 2020. Due to the
variety of treatments and number of grazing events, as well as time and
logistical constraints, it was not feasible to increase the chamber replication
however, under optimum circumstances the chamber replication should be
greater (n 2 15) to account for variability in N20 emissions.

Static chambers and EC both have their strengths and limitations. While the
static chamber technique is cheaper, easy to deploy and useful in investigating
treatment effects on N20 emissions (as shown in Chapter 5), its restricted
spatial and temporal resolution means flux measurements are often attributed
with high uncertainties (as shown in Chapter 4). On the other hand, the EC
technique provides high frequency, real time measurements of the GHG
exchange across the soil and atmosphere continuum, however as flux
measurements are integrated over a given area, the emission sources within

that area are not defined.

7.6 Suggestions for future research

Where high resolution, low uncertainty ecosystem scale GHG measurements
are necessary, the EC technique has shown to be successful in capturing the
spatial and temporal dynamics in emissions from grassland systems (Chapter
4,5 and6). To date, there are very few Irish studies investigating the application
of the EC technique to quantify terrestrial GHG exchange between the
atmosphere and the soil (Kiely et al, 2018). Therefore a significant knowledge

gap exists in understanding the variability of N20 emissions from different land
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uses for example, peatlands, arable pastures and forests,as well as differentsoil
types such as mineral and organic/peatsoils

In Ireland, the recently developed National Agricultural Soil Carbon
Observatory (NASCO) aims to address some of these knowledge gaps with the
overarching aim of constructing long-term GHG datasets for quantifying and
modelling future emissions under different managements and climate
scenarios and in doing so, would provide a foundation upon which climate
change policy decision making can occur.

In addition to this, such large datasets would allow for the development of
process based gap filling models for N20, an area of research that is still
undeveloped both at the national and international level.

In order to better understand the relationships between GHGs and C and N
cycling, measurements of soil nutrient stocks should be taken alongside flux
measurements.

To date there is extremelylimited knowledge on the effect of interactive grazing
treatments on the magnitude of N20 emissions. Future studies may consider
investigating this under the following treatments,

Urine + Urine

Dung + Dung

Urine +Dung

Urine +Fertilizer
Dung + Fertilizer

O O O O O

and ideally over a period of 12 months to also encompass legacy effects as well
as seasonally variability in emissions.

The development of methodologies that can quantify animal excreta in the field
would provide more certainty in the spatial and temporal upscaling of N20
emissions. This can be achieved in two ways (1) using multi-spectral aerial or
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ground-based imagery to assess the grass growth response following animal
defaecation and where such imagery datasets are large enough, (2) develop
machine learning algorithms to identify animal excreta under a various grazing

systems (mobbed or rotation) and different climatic conditions (Maire et al,,

2018)
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Appendices
APPENDIX A - Supplementary material for Chapter 4

Table A.1: Chamber (CH) flux measurements (N20-N pug m™ hr") derived from the arithmetic

and Bayesian method where FP refers to CH measurements inside the footprint of the eddy

covariance footprint.

Arithmetic Method Bayesian Method
95% C.I. 95% C.I. 95% C.I. 95% C.I.
Date mean Iwr upr mean Iwr upr mean Iwr upr mean Iwr upr
CHan CHrp CHBayes CH Bayes-FP
8/1/2019 2.67 1.69 3.66 2.82 1.87 3.77 2.69 1.63 3.81 2.84 1.72 3.98
17/1/2019 1.82 11 2.53 1.24 0.31 2.17 1.83 1.05 2.64 1.26 0.16 242
25/1/2019 3.04 2.09 3.99 3.07 1.68 4.46 3.05 2.02 4.15 3.14 1.25 5.26
1/2/2019 1.52 0.64 2.4 1.16 -0.39 2.72 1.54 0.55 2.55 1.3 -1.02 4.12
7/2/2019 1.97 1.06 2.88 2.38 1.42 3.35 1.98 1 3.01 242 1.12 3.89
4/3/2019 1.89 0.64 3.14 4.14 0.59 7.68 191 0.66 3.23 4.71 -0.25 11.47
5/3/2019 1.9 0.11 3.69 0.31 -1.19 1.81 1.95 0.24 3.79 0.37 -1.39 2.24
6/3/2019 538.89 359.79 717.99 626.7 49093 76247 677.88 40025 1223.65 670.86 491.66 985.96
7/3/2019 356.28 17838 534.17 234.11 30.5 437.72 39146 232.66 701.46 949.89 1139 25944.48
8/3/2019 165.66  99.28 232.05 147.1 44.64 249.57 202.68 11135 380.34 318.16 74.1 1211.42
11/3/2019 74.75 44.07 105.43 28.68 -5.46 62.83 80.56 49.22 130.54 33.95 9.53 86.26
12/3/2019 36.27 18.05 54.49 10.77 1.81 19.72 36.8 22.14 57 11.54 3.73 22.31
14/3/2019 7.37 1.86 12.88 1.48 -7.84 10.79 8.06 233 15.41 14.76 -7.93 61.6
19/3/2019 7.43 3.99 10.87 2.71 1.75 3.67 7.46 4.59 10.72 2.73 1.6 39
26/3/2019 5.62 2.65 8.58 1.93 0.78 3.08 5.65 3.15 8.44 1.98 0.25 3.83
1/4/2019 5.67 1.45 9.89 1.9 -245 6.25 5.65 245 9.17 3.34 -4.12 15.66
2/4/2019 33.99 15.39 52.6 3.2 2.04 4.36 33.89 20.27 52.36 343 0.54 7.24
3/4/2019 18.05 297 33.13 -0.2 -1.95 1.54 17.19 8.49 28.67 0.1 -3.8 5.28
4/4/2019 26.19 -0.54 52.92 5.29 -4.55 15.13 22.37 11.82 36.93 9.75 -3.59 36.72
5/4/2019 11792  53.07 182.77 63.54 0.22 126.87 134.64 70.71 258.17 171.12 24.86 634.1
8/4/2019 79.57 38.65 120.5 26.73 14.52 38.93 81 48.97 132.2 30.3 14.73 58.3
10/4/2019 89.67 46.23 133.12 67.51 1.81 133.22  93.08 56.52 153.62 42498 24.85 6218.68
11/4/2019 77.84 46.81 108.87 39.48 25.05 5391 82.2 52.83 127.82 46.14 23.14 89.87
16/4/2019 36.46 19.27 53.65 8.44 4.62 12.27 36.77 23.67 55.03 19.06 2.06 25.26
17/4/2019 16.64 5.06 28.23 8 -9.42 25.41 17.25 8.02 29.85 2111 -7.43 2405.36
23/4/2019 44.68 13.62 75.74 13.02 5.11 20.94 41.93 23.26 70.38 21.11 251 54.37
24/4/2019 20.5 -10.03 51.04 7.01 3.24 10.77 14.67 5.68 26.74 50.58 0.43 34.83
4/6/2019 24.06 14.05 34.07 24.13 14.8 33.46 24.25 16.35 34.25 25.22 15.69 37.79
5/6/2019 18.98 9.56 28.39 10.78 5.53 16.04 1891 11.87 27.58 12.08 3.52 25.71
6/6/2019 39.63 25.55 53.7 52.76 32.52 73 39.86 28.98 53.88 56.81 35.46 92.08
7/6/2019 15.51 12.07 18.95 18.35 10.46 26.23 15.64 12.28 19.38 19.52 10.51 32.31
8/6/2019 16.49 11.32 21.65 16.92 9.07 24.77 16.64 12.11 21.82 20.53 7.97 39.2
10/6/2019 115 9.16 13.85 12.84 9.11 16.56 11.57 9.27 14.09 13.11 8.67 18.27
11/6/2019 8.28 5.82 10.74 8.32 6.1 10.73
12/6/2019 23.02 15.62 30.43 25.66 12.62 38.71 23.29 16.76 31.02 28.95 13.46 55.17
13/6/2019 22.69 14.67 30.71 21.59 13.49 29.68 22.83 16.52 30.36 22.86 13.44 36.8
17/6/2019  101.03  60.55 14151 126.67 3392 21942 106.14 69.37 164.17 203.53 64.29 620.08
19/6/2019 27.83 18.74 36.92 26.4 54 47.4 28.09 20.56 37.16 80.44 8.31 198.83
26/6/2019 12.95 9.79 16.12 21.14 12.41 29.87 13.06 10.02 16.37 23.2 11.75 40.66
27/6/2019 8.56 6.47 10.66 13.95 9.42 18.48 8.62 6.53 10.85 14.57 8.3 22.28
7/8/2019 6.81 3.17 10.44 8.29 -1.22 17.79 7.07 3.24 115 13.56 -0.93 37.75
9/8/2019 38.64 14.63 62.64 17.86 6.92 28.79 37.52 23 58.43 20.49 7.73 42.6
13/8/2019 10.96 8.15 13.76 13.56 8.34 18.78 11.01 8.43 13.78 14.01 8.6 20.84
21/8/2019 3.86 2.18 5.54 6.68 0.7 12.66 3.88 2.27 5.56 7.96 0.15 19.91
28/8/2019 1.52 -0.24 3.28 1.28 -3.01 5.58 1.6 -0.23 3.58 1.8 -3.12 8.28
2/9/2019 4.12 2.15 6.09 5.37 1.51 9.23 4.16 2.25 6.27 5.83 0.79 12.43
10/9/2019 14.73 11.09 18.37 14.46 9.19 19.73 14.82 11.34 18.65 14.76 9.78 20.69
12/9/2019 11.44 8.11 14.76 12.13 4.34 19.93 11.6 8.3 15.3 13.26 4.65 25.31
13/9/2019 18.55 14.06 23.03 18.01 7.13 289 18.78 14.39 23.73 19.79 8.52 36.58
14/9/2019 1.23 -2.73 5.19 5.22 -4.24 14.67 1.4 -2.15 5.51 6.95 -2.77 2243
16/9/2019 7.69 4.47 1091 791 3.37 12.45 7.79 4.79 11.19 841 3.28 14.95
17/9/2019 17.86 13.71 22 18.61 10.2 27.01 18.03 14.16 22.44 19.49 11.36 30.5
19/9/2019 2.12 -0.9 5.13 -0.42 -6.24 541 247 -1.07 6.59 1.15 -6.59 13.64
20/9/2019 3.28 0.4 6.17 7.51 -091 15.93 343 0.54 6.63 9.98 -1.26 30.24
24/9/2019  417.14 221.24 613.04 25544 147.27 363.61 43886 279.03 727.07 349.62 167.12 843.77
25/9/2019 12798  82.16 173.8 84.9 48.31 1215 13164 9319 189.39 92.51 56.63 155.62
1/10/2019 66.95 38.75 95.15 95.42 24.7 166.13  67.24 46.49 96.73 282.22 46.41 1265.31
2/10/2019 67.99 34.56 101.43 94.83 8.46 181.2 71.35 4191 118.69 510.06 37.71 6100.45
10/10/2019  26.55 10.76 42.34 24.03 7.06 41.01 26.37 15.16 4141 26.62 11.79 51.1
16/10/2019  15.14 10.43 19.84 19.95 7.42 32.49 15.27 11.07 20.1 22.53 9.23 45.23
22/10/2019  14.07 4.6 23.54 13.75 7.59 21.25
31/10/2019 5.72 231 9.12 10.14 1.88 184 5.94 244 9.94 11.77 2.14 26.52
4/11/2019 7.65 341 11.89 12.54 -8.55 33.64 7.71 4.28 11.71 53.89 -2.67 16141
14/11/2019 2.5 1.09 391 4.04 1.35 6.72 2.53 1.15 4 4.38 0.4 9.38
20/11/2019 9.95 6.46 13.45 14.3 6.36 22.25 10.07 6.9 13.75 15.23 7.2 26.51
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27/11/2019 -0.4 -4.19 3.38 -2.62 -13.34 8.09 -0.01 -3.96 4.81 2.68 -11.32 3551
3/12/2019 5.83 1.86 9.8 15.67 0.99 30.35 5.79 2.77 9.11 19.79 4.02 50.31
11/12/2019  18.85 8.28 2941 26.16 -1.32 53.64 18.89 10.83 29.17 52.29 7.29 138

Table A. 2: Eddy covariance (EC) flux measurements (N20-N pug m™ hr*) where ECcx are EC

flux measurements made during the time of chamber measurements

95% C.I. 95% C.I.
Date Mean Iwr upr Mean lwr upr
ECan Ecn

8/1/2019 16.4 10.38 23.67 4.82 392 5.46
17/1/2019 39.22 20.32 59.34 9.12 5.51 12.72
25/1/2019 13.44 4.52 20.01

1/2/2019

7/2/2019 4.1 -33.88 17.44 2.03 0.53 4.59
4/3/2019 25.1 5.89 53.12 7.2 1.75 9.82
5/3/2019 25 5.31 116.41 4.18 1.67 10.73
6/3/2019 537.74 162.79 1021.16 168.7 160.6 177.36
7/3/2019 218.07 115.45 441.38 71.14 71.14 71.14
8/3/2019 48.03 2247 76.69 19.56 171 22.48
11/3/2019 10.06 -17.68 28.79 4.16 0.55 6.45
12/3/2019 9.92 -7.72 30.55

14/3/2019 9.72 -5.9 2745

19/3/2019 9.99 -14.34 28.85 349 0.9 6.33
26/3/2019 9.68 1.39 26.98 2.52 2.52 2.52
1/4/2019 21.05 2.53 86.79

2/4/2019 61.17 2691 93.3 14.56 12.91 17.57
3/4/2019 2541 11.96 55.64

4/4/2019 98.95 88.17 110.28

5/4/2019 180.98 70.84 278.95 60.62 45.7 82.95
8/4/2019 307.41 234.05 344.38

10/4/2019 133.34 98.68 168.46

11/4/2019 101.08 56.79 136.32 27.66 24.47 31.96
16/4/2019 57.3 32.11 79.06 13.93 12.23 16.39
17/4/2019 39.83 28.1 5791 1047 8.61 12.54
23/4/2019 41.08 -19.44 126.04 26.37 204 34.53
24/4/2019 46.91 25.19 86.82 13.74 7.15 24.45
4/6/2019 40.54 -1.02 103.26 15.06 13 17.12
5/6/2019 40.36 129 71.04 8.77 448 17.45
6/6/2019 65.89 12.66 178.47 14.98 43 22.05
7/6/2019 138.33 57.21 269.42 2413 21.82 30.59
8/6/2019 219.31 83.01 325.55 53.5 46.33 60.43
10/6/2019 63.42 63.42 63.42 17.62 17.62 17.62
11/6/2019 81.14 20.24 148.9 2791 19.83 35.99
12/6/2019 2141 -42 90.34 1.42 -9.83 6.78
13/6/2019

17/6/2019 51.12 -0.36 94.35 13.16 11.17 17.72
19/6/2019 237.28 142.7 412.34 71.93 49.83 90.86
26/6/2019 63.74 29.74 96.32 16.8 8.61 22.32
27/6/2019 14.58 -64 65.86 6.57 -7.36 16.95
7/8/2019 17.14 -60.08 80.02 -9.84 -15.78 -5.93
9/8/2019 19.06 7.73 31.66 8.78 8.18 9.83
13/8/2019

21/8/2019

28/8/2019 16.71 6.61 28.21 6.04 4.73 7.73
2/9/2019 19.2 -8.12 50.88 11.11 6.09 14.77
10/9/2019 16.17 -091 3741 7.28 3.82 10.25
12/9/2019 29.92 12.09 49.92 5.14 3.7 9.85
13/9/2019 17.57 6.11 37.25 5.82 1.17 10.44
14/9/2019 19.71 8.43 35.66 446 2.96 6.17
16/9/2019 19.99 7.16 35.56 4.96 292 8.9
17/9/2019 17.04 9.22 28.97 5.09 3.05 7.98
19/9/2019 13.94 6.11 25.15 2.68 1.49 438
20/9/2019 17.92 -13.88 80.08 15.32 5.14 36.02
24/9/2019 315.1 127.22 510.38 90.86 66.6 110.8
25/9/2019 270.17 159.41 354.39 70.02 58.71 80.96
1/10/2019 90.16 53.72 135.19

2/10/2019 82.88 52.05 111.01 2131 18.01 24.6
10/10/2019 321 12.74 59.02 9.61 6.78 11.37
16/10/2019 17.08 5.21 28.5 4.55 3.77 495
22/10/2019
31/10/2019 11.26 -21.39 27.59

4/11/2019 13.59 -2.36 40.82
14/11/2019 -1.21 -1.21 -1.21
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20/11/2019 10.39 -7.97 21.21 511 43 5.92
27/11/2019 15.39 5.76 30.62

3/12/2019 -3.14 -42.78 20.88 -3.26 -12.75 5.5
11/12/2019 26.27 9.83 45.88 7.17 6.76 8.01

Table A. 3: The full output from a regression subset model explaining the variancein log(N-O-

N) fluxes by water-filled pore space (WFPS %), rainfall (mm) air temperature (Tair °C) and soil

temperature (Tsoil °C) over rolling averages of 6 hrs-1, 12 hrs-1, 24 hrs-t, 48hrs-1 and 100 hrs-1

periods in the 30 days following fertilizer application (Fertilizer) and in the 30 days outside of

fertilizer applications (Background).

Variable Treatment R?

WFPS48 hrt Fertilizer 0.50
WFPS100 hr? Fertilizer 0.50
WFPS6 hrt Fertilizer 0.50
Rainfall 100 hr? Fertilizer 0.50
Rainfall 48 hr?! Fertilizer 0.50
Rainfall 24 hr? Fertilizer 0.49
Rainfall 12 hr? Fertilizer 0.49
Rainfall 6 hrt Fertilizer 0.49
Tsoil 100 hrt Fertilizer 0.48
Tair 100 hr™ Fertilizer 0.43
Tair 48 hr? Fertilizer 0.40
WFPS100 hr*  Background  0.31
Rainfall 48 hr*  Background  0.31
Rainfall 24 hr*  Background  0.31
Tsoil 48 hr* Background  0.30
Tsoil 12 hr? Background  0.29
Tair 100 hr*  Background  0.27
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Table A. 4: Output from a linear multivariate model for log(N.0-N) emissions measured by

eddy covariance 30 days post fertilizer application (Fertilizer) and 30 days outside of the

fertilizer application (Background) using rolling averages of air (Tair) and soil temperature

(Tsoil), water filled pore space (WFPS %) and rolling sums of rainfall over 6 hrs-1, 12 hrs-, 24

hrs1, 48 hrst and 100 hrst periods

Treatment Parameter Estimate  Standard Error  tValue
Fertilizer Intercept -1.99 0.51 -3.91
Tair 48 hr* 0.24 0.02 10.96

(Tair 48 hr') 22 -0.01 0.00 -7.22
Tair 100 hr* -0.85 0.04 -23.21

(Tair 100 hr'*) A2 0.03 0.00 19.96

Tsoil 100 hr? 0.68 0.03 25.86
(Tsoil 100 hr't) A2 -0.02 0.00 -23.81

(Rainfall 6 hr™* ) 22 0.00 0.00 -8.04

Rainfall 12 hr? -0.03 0.00 -5.27

(Rainfall 12 hr'") A2 0.00 0.00 7.80

Rainfall 24 hr? 0.02 0.00 5.35

(Rainfall 24 hr'') A2 0.00 0.00 2.12
(Rainfall 48 hr'!) A2 0.00 0.00 -12.95

Rainfall 100 hr™ 0.00 0.00 22.62

WFPS6 hrt 0.11 0.02 691

(WFPS6 hrt) » 2 0.00 0.00 -6.08

WFPS48 hrt 0.29 0.03 9.48

(WFPS48 hr'') A2 0.00 0.00 -8.68
WFPS100 hr™ -0.18 0.03 -5.60

(WFPS100 hr') ~2 0.00 0.00 3.61

Days Since Fertilizer App. 24 hr™* -0.01 0.00 -6.70

(Days Since Fertilizer App. 24 hr™") 2 0.00 0.00 4.07
Background Intercept 4.04 0.27 14.71
Tair 100 hr™* -0.05 0.02 -2.99

(Tair 100 hr'!) 22 0.01 0.00 7.25

(Tsoil 12 hr') 22 0.00 0.00 11.50

Tsoil 48 hrt 0.05 0.01 4.12
(Tsoil 48hr™) ~2 -0.01 0.00 -11.64

Rainfall 24 hr* 0.02 0.00 6.42

(Rainfall 24 hr'!) A2 0.00 0.00 -4.54

Rainfall 48 hr* -0.01 0.00 -8.91

WFPS6 hrt 0.15 0.01 10.71

(WFPS6 hr't) » 2 0.00 0.00 -9.33

WFPS48 hrt -0.13 0.02 -8.30

(WFPS48 hr'') » 2 0.00 0.00 11.68
(WFPS100 hr't) ~ 2 0.00 0.00 -20.99

Days Since Fertilizer App. 100hr™ 0.00 0.00 -5.01

(Days Since Fertilizer App. 100 hr™) ~ 2 0.00 0.00 3.37
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Figure A.1: The correlation between measured and linearly modelled N,O-N fluxvalues where

the broken line represents the 1:1 ratio.
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Table A. 5: Cumulative N;O fluxes from mean daily chamber and half-hourly eddy covariance (EC) flux measurements from seven comparison

periods (see Table 4.1 for dates) where ECan is all measured EC measurements over the comparison period, ECcn is measured EC measurements

during the time of chamber measurements, CHan and CHsgayes are all chamber flux measurements daily averaged using the arithmetic and the

Bayesian mean, respectively and CHrr and CHgayes-rp are daily averaged chamber flux measurements within the footprint of the EC tower using the

arithmetic mean and the Bayesian mean, respectively.

Comparison # ECan ECcn CHan CHpp CHBayes-all CHpgayes-Fp
N 95% C.I. N 95% C.I N 95% C.I N 95% C.I. N 95% C.I. N 95% C.I.
mean upr Iwr mean upr Iwr mean upr Iwr mean upr Iwr mean upr Iwr mean upr Iwr
N20-N kg* ha™* comparison™
1 94 0.127  0.090 -0.085 12 0.026  0.019 -0.018 105 0.016  0.009 -0.009 43 0.015  0.009 -0.008 105 0.017  0.009  -0.009 43 0.016 0.009 -0.009
2 367 0257 0.178 -0.168 31 0.079  0.055 -0.054 295 0.366  0.247 -0.221 87 0.303  0.218 -0.200 295 0.430 0.296  -0.261 87 0.582 0.423 -0.351
3 341 0483  0.265 -0.224 39 0.107  0.048  -0.046 353 0.295  0.141 -0.127 59 0.127  0.059 -0.056 353 0.305 0.148  -0.132 59 0.511 0.217 -0.174
4 321 0444 0.215 -0.192 43 0.119  0.053  -0.051 390 0.172  0.067 -0.063 94 0.199  0.075 -0.069 390 0.176  0.068  -0.064 94 0.319 0.110 -0.095
5 99 0.064  0.022 -0.021 14 0.025  0.009 -0.008 150 0.054  0.032 -0.031 39 0.049  0.026 -0.025 150 0.054  0.032 -0.031 39 0.056 0.030 -0.029
6 339  0.579 0.180 -0.134 58 0.150  0.050  -0.047 388 0.473  0.157 -0.122 123 0.375  0.119 -0.101 388 0.491 0.163 -0.126 123 0.699 0.192 -0.134
7 283  0.153  0.084 -0.082 34 0.029 0.019 -0.019 299 0.141  0.083 -0.081 69 0.166  0.084 -0.081 299 0.142  0.083  -0.082 69 0.290 0.138 -0.129
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APPENDIX B - Supplementary material for Chapter 5

Table B. 1: Mean values of air and soil temperature at 10 cm depth, and total rainfall for each

month over a 10 year period (2009 - 2019). Data was retrieved from the Johnstown Castle

Weather station whichis within 100 m of the experimental field site.

Month Air temperature Soil temperature Rainfall
(°C) (°Q) (mm)
January 5.76 541 1064.50
February 5.87 5.70 824.00
March 6.62 7.11 823.30
April 8.56 10.10 715.50
May 11.09 13.57 695.30
June 13.78 17.19 849.20
July 15.51 18.55 903.50
August 14.99 17.03 920.50
September 13.49 14.85 817.10
October 11.36 11.88 1299.50
November 8.05 8.11 1356.20
December 6.58 6.12 1382.10
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Figure B. 1: Boxplots of N20 on a log scale against WFPSbinned by 10 % groups (left) and soil

temperature (Tsoil) binned by 10 % group. The boxplots shows the median with hinges onthe

25 % and 75 % quantiles.
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Table B. 2: Adjusted R2 and p values from a linear regression analysis between normalized

daily N20 emissions and water filled pore space (WFPS), rainfall and soil temperature (Tsoil),

where the symbol * indicates significance.

Date of grazing events WEFPS rain Tsoil
pvalue Adj.R? pvalue  Adj.R? pvalue  Adj.R?
04/02/2020 -10/02/2020 0.02 * 0.66 0.00 * 0.85 0.02 * 0.63
03/03/2020 - 02/04/2020 0.02 * 0.20 0.05 * 0.14 0.01 * 0.29
10/04/2020 - 18/04/2020 0.02 * 0.58 0.73 -0.14 0.21 0.12
03/05/2020 - 10/05/2020 0.97 -0.25 0.55 -0.13 0.90 -0.24
25/05/2020 - 03/06/2020 0.08 0.25 0.00 * 0.67 0.51 -0.06
17/06/2020 - 24/06/2020 0.00 * 0.76 0.04 * 0.47 0.16 0.19
09/07/2020 - 18/07/2020 0.04 * 0.34 0.15 0.15 0.13 0.17
01/08/2020 -12/08/2020 0.75 -0.09 0.59 -0.07 0.92 -0.10
31/08/2020 -21/09/2020 0.07 0.11 0.38 -0.01 0.17 0.05

Table B. 3: Model of a stepwise wise regression analysis for N;O-N EFs measured from

synthetic urine (independent of calcium ammonium nitrate) using cumulative rainfall and soil

moisture deficit data measured in this study and combined with measurements made by Krol

etal. (2016) and Maire et al. (2020)

Standard

Parameter Estimate error t Value adj R?
Intercept 2.21 0.17 13.03 -
Cumulative rainfall 3 days prior to application -0.24 0.02 -10.27 0.13
Cumulative rainfall 3 days prior to application *2 -0.16 0.02 -6.88 0.47
Mean soil moisture deficit 10 days prior to application 0.28 0.03 6.66 0.56
Mean soil moisture deficit 7 days prior to application -0.06 0.01 -4.38 0.59
Mean soil moisture deficit 0 days prior to application 0.01 0 10.81 0.64

A2 = squared
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Table B. 4: Soil ammonium (NH4*) and nitrate (NO3-) concentrations for four treatments

(control, calcium ammonium nitrate [CAN], synthetic urine [SU]+CAN and dung+CAN) from

four grazing events . Summary statistics include arithmetic mean and the standard deviation

in brackets.
Grazing Date Control CAN SU+CAN dung+CAN Mean
NH,* NO3~ NHs* NOs~ NHs*  NOs~ NHg* NO;- NH,* NO3~
mg N kg™ soil mg N kg™ soil

1 04/02/2020 5.2 9.3 9.2 9.2 8.2 9.3 13.0 10.2 8.9 [3.2] 9.5 [0.5]
04/03/2020 4.9 3.3 53 4.0 82.9 2.3 6.4 2.8 249 [38.7] 3.1 [0.7]
11/03/2020 3.6 2.3 3.5 3.2 117.5 18.7 9.8 4.3 33.6 [56.0] 7.1 [7.7]
18/03/2020 2.9 2.6 3.9 3.7 90.9 37.8 12.4 4.9 27.5 [42.5] 12.3  [17.1]
25/03/2020 23 2.4 3.6 4.4 30.2 70.6 18.7 8.1 13.7 [13.3] 21.4  [32.9]
29/04/2020 4.3 1.4 5.2 3.8 4.4 42.7 7.0 6.0 5.2 [1.2] 13.5 [19.6]
06/05/2020 4.1 1.7 4.4 3.7 5.6 37.2 4.9 5.0 4.8 [0.7] 11.9 [16.9]

2 29/04/2020 4.3 1.4 2.3 1.1 2.8 13 2.6 11 3.0 [0.9] 1.2 [0.1]
06/05/2020 4.1 1.7 2.9 1.2 179.3 8.9 4.3 14 47.7 [87.8] 3.3  [3.7]
13/05/2020 5.1 1.0 6.5 1.8 1426 247 12.8 4.8 41.7 [67.3] 8.1 [11.2]
19/05/2020 3.5 2.9 9.6 8.5 73.5 1380 11.1 9.4 24.4  [32.9] 39.7 [65.6]
27/05/2020 15.0 14.7 10.3 13.4 40.6 1474 8.8 8.6 18.7 [14.9] 46.0 [67.6]
03/06/2020 6.6 4.1 12.0 7.1 146 1641 11.4 6.0 11.1 [3.3] 453 [79.2]
10/06/2020 14.3 8.0 339 349 446 156.6 265 186 | 29.8 [12.7] 54.6 [68.9]
17/06/2020 7.6 7.6 9.0 32.6 29.4 1118 376 52.8 | 209 [14.9] 51.2 [44.4]
25/06/2020 2.0 3.6 3.9 7.5 5.2 53.6 6.0 8.8 4.3 [1.7] 18.4 [23.6]

3 22/05/2020 9.5 10.6 2.5 0.7 3.0 1.2 2.0 0.4 4.3 [3.5] 3.2 [5.0]
27/05/2020 15.0 14.7 3.8 11 113.6 9.1 3.1 0.8 33.9 [534] 6.4 [6.7]
03/06/2020 6.6 4.1 43 1.8 85.2 33.9 6.2 2.7 25.6  [39.8] 10.6 [15.5]
10/06/2020 14.3 8.0 36.2 371 37.9 50.7 124 9.7 25.2  [13.7] 26.4 [21.0]
17/06/2020 7.6 7.6 1.8 19.2 4.9 62.7 2.8 12.3 4.3 [2.6] 25.4 [25.3]
25/06/2020 2.0 3.6 2.3 2.5 3.7 19.7 2.7 2.7 2.7 [0.7] 7.1  [8.4]
01/07/2020 4.1 6.6 14.3 16.4 15.9 27.4 114 9.4 114 [5.2] 149 [9.3]
07/07/2020 5.4 6.5 5.5 6.9 10.3 46.1 6.9 5.7 7.0 [2.3] 16.3 [19.9]
15/07/2020 6.3 6.4 6.3 7.0 7.8 31.1 7.4 53 7.0 [0.8] 12.5 [12.4]

4 27/08/2020 3.6 1.0 4.2 1.0 3.9 11 4.1 1.0 3.9 [0.3] 1.0 [0.0]
02/09/2020 2.1 3.8 2.0 4.4 246.0 6.4 28.4 0.7 69.6 [118.2] 3.8 [2.4]
09/09/2020 2.9 6.9 3.9 8.3 179.7 100.8 22.6 133 | 52.3 [85.4] 323 [45.7]
15/09/2020 3.1 5.8 10.2  20.2 76.6  163.2 6.1 21.5 | 24.0 [35.2] 52.7 [74.0]
21/09/2020 3.2 1.5 11.7 18.9 62.2 176.5 7.0 455 | 21.0 [27.7] 60.6 [79.3]
30/09/2020 3.4 11 109 341 364 157.6 3.6 56.7 | 13.6 [15.6] 62.4 [67.5]
06/10/2020 5.3 3.2 4.9 13.0 232 120.7 6.4 25.3 | 10.0 [8.8] 40.5 [54.2]
14/10/2020 29 3.8 3.6 9.4 9.9 67.3 2.7 17.2 4.8 [3.5] 24.4  [29.1]
21/10/2020 1.6 3.8 3.2 9.4 87.8 67.7 10.7 16.9 | 259 [41.5] 24.5 [29.3]
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Figure B.2: Frequency distribution of N0 fluxes measured using the static chamber technique
shown on a log-transformed axis but real values are on the axis. Columns represent fluxes from
different grazing events (see Table 5.1 for dates) and rows represent four different treatments
- control (i.e. no nitrogen applied), calcium ammonium nitrate (CAN), synthetic urine

(SU)+CAN and dung+CAN.
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APPENDIX C - Supplementary material for Chapter 6

Table C. 1: Components and uncertainties in brackets expressed using the least squares (LS)

method of the net ecosystem exchange (NEE), methane (CHa4), nitrous oxide (N:0), net

greenhouse gas exchange (NGHGE), C exports from management (Mex) and the net greenhouse

gas balance (NGHGB) for the experimental site in 2019 and 2020.

Component 2019 | 2020
gCO,eqm2yr™
CO, (NEE) | -2010.8 [80.5] | -13553 [296.4]
CH, - - 783.2  [183]
N0 1401 [L5] 275.6 [1.0]
NGHGE | -1870.7 [82.0] | -2965 [315.7]
Mex 17847  [9.9] 212.1 [3.7]
NGHGB -86.0  [91.8] 844 [3194]

¥ outside grazing event ¢ cows ¢ grazed € pre-grazing

20 1 1 1 1 1
I 1 1
I 1 1
- [ 1 1
Il’a".l b | /
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Figure C. 1: Half hourly gap-filled CO: fluxes measured in 2020 the peach backdrop represents
individual grazing events (see table 6.1 for dates), where grey diamonds represent fluxes
measured outside of individual grazing events, orange diamonds represent fluxes measured
when cows were in the footprint, blue diamonds represent fluxes that were measured in
previously grazed strips within an individual rotation grazing cycle, and green-diamonds
represent fluxesthat were measured fromnot grazed strips within an individual grazing event.

The black dashed line marks the date of fertilizer application
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