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Abstract. This is a position paper which describes work in progress to develop 
an AI/ML driven auditory ambient information system which incorporates 
generative music techniques and considers some of the factors involved the 
design and development of a system of this nature.  The system is intended to 
represent and communicate information about cryptocurrency markets to a user. 
The generative music system uses evolutionary computing and machine 
learning techniques, which are driven by the original cryptocurrency data, to 
create musical information. This information is then mapped to synthesis 
parameters. The implementation described is web based running client-side in 
the browser. The paper describes the relevant background literature before 
presenting a generalised model for a system of this nature before discussing 
aspects of the implementation in its current state. The paper closes with a 
discussion of the system and future work. 
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1 Background and Introduction 

This section deals with the question of why the ambient monitoring of cryptocurrency 
market data is relevant and why a data-driven, generative music approach is suited to 
this task. It introduces and explores the diverse topics of cryptocurrency markets, 
sonic information design the relationship between generative music systems and 
ambient music as well as the concept of the ambient information system. It ties 
together a number of strings from these topics to present a two part research questions 
that is then further explored in section two of this paper.  

1.1 Cryptocurrency Markets 

 
A cryptocurrency is essentially a cryptographically secured digital currency built on a 
blockchain. Originally introduced by the mysterious Satoshi Nakmoto in his White 
Paper the Bitcoin cryptocurrency [1], a blockchain is a distributed ledger that uses a 
cryptographic technique called a hash function to allow information to be shared 
across a large network without actually being copied. In essence each block in a 
blockchain is comprised of its own information as well as a hash of the information 
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contained in the previous block. This makes it difficult to tamper with as changing a 
single block would require all following blocks in the sequence to be changed also. 
With this technology distributed ledgers can be generated by publicly sharing a 
blockchain across all nodes in a given network and introducing validation procedures 
for the encoding of a new block of information. Cryptocurrencies are basically tokens 
that are encoded on such a blockchain network.  
Thanks to a much discussed bubble the cryptocurrency market value hit 566.3 billion 
towards the end of 2017 up from 1.3b over the five year period from May 2013 [2].  
More recent moves towards regulation of what has become a highly speculative 
market saw the market value tumble to 335 billion in February and back to 429.6 b as 
of writing [2]. The cryptocurrency market is highly volatile. It has also attracted a lot 
of interest and investment from outside of the traditional financial investment circles 
[3]. Large numbers of young and amateur investors have flocked to the 
cyrptocurrency market many of whom hold a primary occupation in areas unrelated to 
finance. This places them at an obvious disadvantage to those who are investing in a 
professional capacity and are in a position to spend much of their day monitoring and 
working with cryptocurrency markets directly [4]. Recent FinTech relevant advances 
in the fields of Artificial Intelligence, Machine Learning and Sonic Information 
Design suggest that this gap might be addressed through the application of techniques 
and technologies which can help to level the playing field between the professional 
and amateur cryptocurrency investor.  
 

1.2  Sonic Information Design 

Sonic information design refers to the application of design research, as defined by 
Faste and Faste [5], to sonification, an auditory display technique in which data is 
systematically mapped to non-speech sound for the purposes of representation or 
communication [6]. In this context, design research is taken to involve “the study of 
design and the process of knowledge production that occurs through the act of design” 
and can be roughly defined as “the investigation of knowledge through purposeful 
design” [5]. Where visual information design is generally concerned with the 
presentation of information in a manner that can be effectively and efficiently 
understood [7] sonic information design "pays particular attention to user experience 
including physical, cognitive, emotional, and aesthetic issues; the relationship 
between form, function, and content; and emerging concepts such as fun, playfulness 
and design futures" [8]. 
Auditory display researchers are divided over the topic of music and its relationship to 
auditory display and sonification. Voices on one side argue that it is not necessarily 
useful or meaningful to distinguish between musical and non-musical sonifications 
[9] and those on the other side argue that music and sonification are inherently 
different practices, sonification being scientific and music being artistic [10], that 
should not be conflated if the field wishes to gain the acceptance of the wider 
scientific community [11]. Supper [12] recognizes this as an essential tension in the 
field and something of a limiting factor to its further development. However, within 
the context of sonic information design this essential tension can be overcome as 
auditory display and sonificaiton move away from purely scientific or artistic contexts 
towards a design based approach that can integrate aspects of both fields as required. 
In this context it has been argued that the bulk of research in the field of auditory 
display can generally be associated with and understood through the lens of the 
Second Wave of HCI [13] as defined by Bannon [14] and Bødker [15]. However 
Sonic Information Design has emerged in the context of the embodied and aesthetic 
turns in auditory display [16][17] aligning more closely with the methods and 
techniques of Third Wave HCI which is increasingly focused on meaning-making and 
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opens up a space for more creative and imaginatively motivated approaches to 
auditory display and sonification. This paper is focused on data-driven generative 
music systems which can be used for the ambient monitoring of highly volatile 
cryptocurrency market data. 

1.3   Generative Music Systems and the Birth of Ambient Music 

 
Algorithmic approaches to music composition, the use of formal rule sets in the 
creation of music, have a long history in Western culture being explored by thinkers 
ranging from Pythagoras to Mozart and more recently Lejaren Hiller and John Cage  
[18][19]. The term “Generative Music” entered circulation when Brian Eno [20] 
coined it in relation to his compositional activities in 1995 with the Koan system 
(superseded in 2014 by Intermorphic’s Wotja). Eno thought of generative music as 
system-propagated music that is in a state of constant flux. He quickly became a 
pioneer and advocate of generative music practices producing a wealth of generative 
music compositions across his career [21] and more recently collaborating on a series 
of mobile apps for generative and ambient music with Peter Chilvers [22]. While the 
term rose to prominence in the 1990s Eno recognized that like algorithmic music, 
generative music had existed in some form or other since at least the invention of the 
Wind Chime [23]. In fact Eno himself had been making music with generative 
systems since his release of Discreet Music in 1975 [24] and further explored 
generative processes in Ambient 1: Music for Airports [25]. Discrete Music involved 
a simple generative music system which used a delay line to reconfigure the collation 
of dual melodic loops giving rise to seemingly endless harmonic possibilities in a 
musical form that was “part of the ambience of the environment”. This approach is 
somewhat similar to approaches adopted by Steve Reich and most especially his 1965 
piece It’s Gonna Rain [26]. This experiment in generative music was also Eno’s first 
step towards Ambient Music which would be more fully realized on Ambient 1: 
Music for Airports. A similar generative system was adopted for this record creating a 
new instrumental musical form which is intended to sit in the background on the 
periphery of ones awareness creating an atmosphere or environment rather than 
defining a strict musical narrative. This relationship between generative musical 
practices and the birth of the ambient music genre in Eno’s work of key importance to 
the system described in this paper.  

1.4   Ambient Information Systems 

Ambient information systems are aesthetically pleasing displays of information which 
sit on the periphery of a user’s attention and support them in monitoring of 
information that is of less importance than their primary work task. While they are 
designed for a variety of modalities, this paper is concerned with auditory ambient 
information systems. Pousman and Stasko [27] associate ambient computing with the 
concept of Ubiquitous Computing and more specifically Weiser and Brown’s [28] 
concept of “calm computing.” These points echo Eno’s intent for ambient music to 
“induce calm and a space to think” [29]. As such generative music systems might be 
particularly well suited to applications in the context of ambient information systems 
as generative music techniques have been integral to the birth and development of 
ambient music composition which, like the ambient information system, is concerned 
with aesthetic presentation in a non-intrusive manner. With the introduction of a sonic 
information design component, generative music systems might be mapped to some 
data in order to present information to a listener in the context of an auditory ambient 
information system.  
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Such systems may be of particular relevance for the amateur cryptocurrency investor 
who is primarily employed in some occupation outside of financial investment. It 
allows them to focus on the task at hand while retaining access to information 
throughout the day about their investments in volatile cryptocurrency markets. The 
volatility of these markets means that close monitoring is required on the part of 
investors and traders who are interested in the short-term performance of these 
markets. Systems of this nature might also be of use to professional who needs to 
monitor a large amount of market data or information and can off-set some of that 
load with the help of an ambient information system.  

This in turn leads to the central questions of this paper:  

1. How can we use data-driven generative music strategies to create an ambient 
information system for cryptocurrency market monitoring?  

2. What tools are available for leveraging generative music systems for the 
design and development of data-driven ambient information systems? 

A data-driven generative music system for ambient monitoring needs to accomplish a 
number of tasks.  
 

1. Accurately represent and communicate the Data.  
2. Be easily Interpretable by the user. 
3. Remain Non-Intrusive while the user is otherwise engaged.   

  
 
A data-driven generative music system involves the parameterization of a generative 
music system such that meaningful changes in the original data source are made 
manifest in the music generated. By adhering to the aesthetic principles of ambient 
music we can ensure that a data-driven generative music processes can be deployed in 
the context of an auditory ambient information system, remaining on the edge of the 
listeners awareness but accessible nonetheless when needed. Recourse can be made to 
literature on auditory display design, sound in HCI, cognitive science and the 
bourgeoning field of sonic information design to determine strategies by which the 
system can accurately communicate the data and remain easily interpretable to a user.  

1.5   The State of the Art  

The state of the art has moved on quite a bit since the early days of generative music 
as the tools and techniques for creating generative music systems have become 
increasingly sophisticated and advanced. Papadopoulos and Wiggins [30] present a 
survey of AI techniques which have been used for algorithmic music composition. 
They review the application of mathematical models (e.g Markov chains), knowledge 
based systems (symbolic rule based systems), grammars like Cope’s [31][32][33] 
EMI (or Emmy) system, evolutionary methods (e.g. genetic algorithms and cellular 
automata) and systems which learn (e.g. neural networks and hybrid systems which 
combine multiple techniques. Collins [21] presents summary of the many programs 
and programming languages available for the creation of generative music in a real-
time performative and compositional context and Briot et al. [34] present an in depth 
survey of deep learning approaches and their applicability to generative music 
composition. The field has seen much development form a theoretical point of view 
also. Miranda’s [35] Evolutionary Computer Music, comprised of chapters authored 
by key thinkers and practitioners in the field, has contributed to the systematization of 
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thinking in regards to evolutionary methods in generative music while Boden’s 
[36][37] research on the relationship between creativity and computing has influenced 
the design of a number of generative music systems [38] [39] [40] [41] [42][43]. 
While advances have been taking place in the field of generative music much greater 
advances have been taking place in computing more generally with the emergence 
and maturation of the Internet and recent developments in IoT, cloud, mobile and 
smart technologies [44]. These technologies have reshaped Western culture and 
defined a new set of practices around how we consume and interpret information and 
create and listen to music [13][44]. This cultural shift towards an online and 
networked approach to information consumption and music listening needs to be 
addressed and accounted for in the design of a system which is intended to present 
key information to a listener through music. Services and functionalities, from word 
processing to video editing, which could previously only be provided by desktop 
applications are moving online.   

2.1    Overview of the System  

Figure 1 presents a general model describing how data-driven generative music 
techniques can be employed in an ambient information system for monitoring 
cryptocurrency market data. The implementation described in this paper is currently 
in active development and this process is guided by the model presented in figure 1. 
The first layer acquires data through a relevant API. This data is then processed so 
that it is in a useful range which can be mapped to control and drive parameters across 
the system. There are two distinct aspects to the generative system. The first uses 
evolutionary computing methods to generate musical information while the second 
employs machine-learning techniques. Data is mapped to control how these 
components generate musical information before that information is submitted to the 
synthesis layer. In the synthesis layer musical information is mapped to synthesis 
parameters and data can be further mapped to control synthesis parameters. In the 
post production layer the audio signals created in the synthesis layer are processed 
further and this processing is controlled by the data also. Each of these processes is 
underpinned by relevant libraries and frameworks and each layer in the model can be 
interacted with through a front end framework. This front-end framework can, for 
example, allow the user to choose between evolutionary computing approaches and 
machine learning approaches in the generative layer. 
Generally smart technologies data, spatial media data, network traffic and IoT data 
are represented visually through data dashboards. An auditory ambient information 
system can be used to compliment this approach by allowing users to focus on the 
core data streams of relevance to a specific, while monitoring less vital information in 
the background. Key to this approach is the concept of the “target state”. This was a 
critical design concept for the sonic representation of data to emerge in research 
conducted with the Pervasive Nation IoT Network [57]. A target state is simply a state 
of interest to a user that is indicated by the some predefined number of monitored 
data-streams falling into specific pre-defined ranges. These target states in the data 
can be paired with specific sonic patterns, or target sound, indicating to a user that the 
state has been reached. The task of the system is to inform the listener when one of 
these target states has been reached and outside of those times to represent 
information to the listener as a measure of distance from one of those target states. 
This allows the user to gauge their “distance” from a target state on the basis of how 
similar a given sonic pattern is to a target sound. This approach also supports the 
listener in determining whether the data is trending towards or away form the target 
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state. The following sections describe an implementation of the model and discuss the 
functionality of a number of the layers in greater detail. 
 

  
Fig. 1 Data-driven Generative Ambient Information System Model 

 
Web app architectures which carry out the bulk of their processing client-side, in the 
browser, are becoming increasingly relevant as we move towards a context-aware, 
ambient internet serving as a pervasive and ubiquitous platform for powerful apps. In 
the era of the Ambient Computing, Progressive Web Apps (PWAs) will offer the 
functionality of native mobile apps from standard web pages [45] while distributed 
apps or D-apps will offer similar functionality while running on specific blockchains 
[46]. The standard client-server architectures prevalent prior to the era of mobile and 
smart computing are expected to become less and less relevant as the internet 
becomes more widely distributed and decentralized [46] [47] as functionalities that 
were previously driven by server-side architecture are increasingly running in the 
browser on client-side architectures driven by powerful JavaScript frameworks [48].  
Recent developments in web technologies, discussed later in this paper, have made 
the deployment of client-side evolutionary computing, machine learning and sound 
synthesis methodologies feasible. 
 
The implementation discussed below utilizes the core web technologies: HTML, CSS 
and JavaScript. The development of dynamic and single-page applications (SPA) 
have been supported by JavaScript frameworks like Node.js, Angular.js, Backbone.js 
for many years (2009, 2009 and 2010 respectively). Node.js has particularly 
encouraged the development and proliferation of JavaScript libraries as it executes 
JavaScript, a traditionally client-side scripting language, on the server [49]. More 
recently a wide range of JavaScript libraries and frameworks have appeared which are 
leveraging the WebGl [50] and Web Audio APIs [51] to extend the traditional 
capabilities of JavaScript arguably bringing it closer to the status of a platform rather 
than just a language. This trend is set to continue as at present the W3C are adding a 
set of components, termed Web Components [53], to the HTML and DOM 
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specifications. Web components has the potential to revolutioise web app 
development especially in the context of progressive web apps and Google’s Polymer 
library, written in JavaScript is already allowing developers to access and implement 
some of these new features and functionalities by creating their own custom elements 
[53]. APIs (application programming interfaces) are critical components driving much 
of the functionality of todays Internet. An API is essentially a set of tools that allow 
one application to access and leverage data and functionalities from another 
application [54]. For example the Google Maps API allows developers to embed a 
fully functional Google map in their own applications. A general shift in web 
development practices and business models for online companies towards SaaS 
(Software as a Service), B2B (Business to Business) and platform models has driven 
the API economy, the exchange of value between tech companies on the basis of their 
APIs [54]. In January of 2018 the ProgrammableWeb which maintains a database of 
core APIs topped 19,000 APIs up from 17,000 the previous January and 121 in 
January 2006. Accounting for the fact that 90% of APIs are private and never listed at 
ProgrammableWeb the API economy is booming [55]. This API driven web 
ecosystem is valuable for the development of ambient information systems for 
Cryptocurrency monitoring as many of the online platforms for buying, selling and 
monitoring currencies offer fully featured API’s which support developers in building 
their own monitoring tools. The following sections explore an implementation of the 
model describing the functionality of some of the model layers in greater detail. 
 

2.2 Data Acquisition and Processing 

 
Data acquisition is managed in JavaScript using XMLHttpRequest (XHR) objects. A 
number of APIs offer up to date cryptocurrency information for trading. This 
application uses the Global Digital Asset Exchange (GDAX) API [56] and data is 
updated once every second. Incoming data streams are rescaled to represent a 
percentage of the all time high market cap for the currency represented. This data can 
then be mapped to modulate parameters in the generative, synthesis and post 
processing layers. 

2.3 The Generative Engine 

The generative layer of the model drives the generation of musical information that 
can then be mapped to synthesis parameters in the following layer. The generative 
engine in the system implementation described has two functionalities. It employs a 
genetic algorithm to generate musical information, and it also employs a variational 
autoencoder, a machine learning technique, to generate a latent space of musical 
information. These points are explored in further detail below. 

2.3.1 Evolutionary Computing  
When employing evolutionary techniques for the purposes of representing data using 
generative music the question of how best to paramaterise the algorithm or how to 
map the data to control the algorithm is of key importance. Historically when GAs 
have been used in generative music, fitness functions have been determined by the 
composer [30]. A composer will generate some music, listen to it and decide whether 
to keep it or dispose of it. For the purposes of representing and monitoring data we 
can map data to the fitness in the system described previously. In this case target 
states in the data can be represented by the target solutions for which GAs are solved. 
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In this way as the data tends towards a certain value the GA will tend towards a target 
solution, and the musical output will tend towards a specific motif. This dynamic can 
then be leveraged so that a value of interest in the data is represented by specific 
musical or sonic pattern. The ambient information system then describes the distance 
of the current data value from the target value through the “distance” between the 
current musical content heard and the target musical pattern.  
 
There are many libraries for evolutionary computing listed on the JavaScript package 
manage npmjs.com and even more repositories on github featuring different libraries 
and frameworks. While the majority of these tend to focus on specific applications 
Genetic.js [58] casts as a general purpose tool. Genetic.js is a lightweight library of 
genetic and evolutionary algorithms that can be run in the browser. It contains a 
number of useful functions constituting some of the basic building blocks of 
evolutionary computing, e.g. functions for evaluating fitness and performing 
mutations and crossovers.  The library can be used to build simple genetic algorithms 
or solve more complex operations such as curve fitting and phrase solving. [58]. In 
similar fashion the inveniemus.js library is intended for search and optimisation 
applications that includes genetic algorithms, particle swarm optimisation and 
differential evolution as well as a number of other metaheurstic algorithms.  It can be 
run in the browser or server side with Node.js. JeneticS.js [59] is another similar 
library for creating genetic algorithms. evospace.js [60] and NodEO [61] are more 
heavily reliant on the support of server side architecture implemented in Node.js 
though nodEO can be converted for use in the browser. While all of these solutions 
are serviceable none of them are adapted to work with musical information straight 
out of the box. Furthermore some of these libraries are quite bulky and rather than 
loading an entire library and using up valuable resources while creating excess 
redundancy the choice was made to write genetic algorithms specifically tailored to 
the creation of melodic, harmonic and rhythmic content in the MIDI format. The 
design of this algorithm was guided and informed by the literature [35].  

2.3.2 Machine Learning  
 
Google’s Tensorflow [62] is an open source Python framework for deploying 
machine learning across a varied range of platforms and devices. It has become an 
invaluable tool for machine learning research and development.  
Tensorflow.js, [63] the successor to deeplearn.js, is a recently introduced (March 
2018) WebGL accelerated, browser based JavaScript library for training and 
deploying ML models. It runs ML applications client-side in the browser. 
Tensorflow.js can import existing pretrained ML models to perform inference in the 
browser and it also supports the retraining of imported models as well as the creation 
of new models in the browser. Tensorflow.js represents an important step in the 
proliferation of ML technologies in an online context and is very good news for 
browser based generative music. ML methods have been successfully deployed in a 
generative music context. DeepMinds’s WaveNet [64] is a deep generative model for 
audio waveforms like speech and music. It is a deep autoregressive network of dilated 
convolutions (CNN) which models sound on a sample by sample basis inspired by 
Pixel-RNN which was also developed by DeepMind. WaveNet has a number of 
shortcomings in the context of the generalized model presented here. It is trained on 
and outputs raw waveforms which conflicts with the models prescription that the 
generative engine output information that can then be mapped to sound after 
production. Furthermore it is difficult to map the data to control the output without 
interfering with the network at run time and there is currently no way of running 
WaveNet in a browser.  
The Magenta Project’s NSynth [65] employs a WaveNet-style autoencoder that 
conditions an autoregressive decoder on temporal codes learned from the raw audio 
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waveform. The NSynth training data-set consisted 305,979 musical notes of 3 seconds 
length with a 1 second ring out phase. Each one had a unique timbre, and envelope. 
These were sampled from 1,006 unique commercial sample libraries across the 
standard MIDI piano pitch range (21-108) at five MIDI velocity levels (25, 50, 75, 
100, 127). In essence NSynth network creates blends of characteristic timbral features 
from the input dataset. NSynth has been released as a MaxForLive device. The 
Magenta project has introduced some important advances in the application of 
machine learning techniques to art and music. In a web context Performance RNN 
[66] employs an LSTM-based neural network for generating polyphonic music.  
The network was trained on the Yamaha e-Piano Competition dataset, comprised of 
MIDI data from roughly 1400 competition performances. Crucially this data contains 
velocity values and fluctuations in micro-timing which allow the network to model 
expressive dynamics. More recently (May 2018) they released Magenta.js [67] which 
includes implementations of a number of Magenta’s music models to be run in the 
browser. The Melody RNN model applies language modelling to melody generation 
using an LSTM while ImprovRNN conditions an underlying chord scheme on 
melodies generated by MelodyRNN. DrumsRNN works in a similar fashion to 
MelodyRNN but with drums. Crucially these models are trained on and produce 
MIDI information rather than raw sound files so they are more compatible with the 
generalised model than WaveNet and NSynth. They provide useful tools for 
generating musical content. Of critical interest in the context of data-driven generative 
music however is MusicVAE [68]. This is a hierarchical recurrent variational 
autoencoder for learning latent spaces of musical features. Autoencoders differ from 
standard neural networks in that the input is the same as the output. As such they can 
be used as generative models. An autoencoder creates a compressed representation of 
features in a high dimensional data-space. The decoder can then recreate the original 
input from this lower dimensional representation called a latent space. A variational 
autoencoder also learns to model the original data with a probability distribution. 
Sampling from the latent space on the basis of this probability distribution allow for 
the reconstruction of attribute vectors which represent smoothly and continuous 
sequences of learned properties from the original data-set. In essence NSynth 
generates a latent space of timbre populated by different blends of characteristic 
timbral features from the input data-set. MusicVAE generates latent spaces of musical 
content, represented in MIDI where adjacent points in the space share similar but 
slightly different properties.  
The potential here for data-driven generative music consists in mapping input data to 
control which points in the latent space are passed to the synthesis engine. Moreover 
because of the continuous attribute vectors of in the latent space increases in specific 
properties of the data can be mapped to increases in analogous or metaphorically 
related sonic properties.  
Using a variational autoencoder, and MusicVAE more specifically, a target state in 
the data can be represented using a melodic pattern. The listener can then gauge how 
close or far the data is to the target state on the basis of how close or far the melody is 
from the target melody. 

2.4 Sound Synthesis and Post Processing 

 
There are a number of JavaScript libraries and frameworks for synthesizing audio 

in browser; many of them utilize the Web Audo API. Tone.js [51] is a framework 
built on top of the Web Audio API that provides a set of synthesis algorithms, effects, 
event scheduling tools and musical abstractions suited to creating interactive browser 
based music. Flocking.js [69] is another framework built on the Web Audio API 
which adopts a declarative approach to creative sound and music programming. 
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WebPD [70] is a runtime JavaScript environment that is also built on the Web Audio 
API and runs Pure Data patches in the browser. This may present an obvious 
advantage over the other libraries for Pure Data users. Another library of note is 
Gibber [71] which provides a live coding environment for audiovisual performance 
and composition. While not necessarily well suited to this particular context it 
nonetheless provides useful and interesting functionalities. The system described in 
this paper uses Tone.js. Tone.js allows for the control of low level synthesis 
parameters as well as higher level musical parameters. This makes it a good fit for use 
with the musical information output by the generative component of the system and 
also means that synthesis parameters can be more directly controlled by the incoming 
data stream.  Tone.js also contains a number of effects functions that can be used for 
post processing. The data can be directly mapped to parameters including reverb, 
panning, pitch-shifting, granulation, convolution, chorusing, delays, filters and 
distortion. While these can be used in the traditional manner they are applied in 
standard studio production (e.g to achieve the best possible presentation of a sonic 
idea) they can also be used for communicative purposes. These effects routines can be 
used to create spectromorphological sound shapes [72] from the harmonic materials 
created by the system. Data can be mapped to control these sound shapes allowing for 
the representation of data across an additional sonic layer. Testing is currently being 
carried out to determine how effectively Tone.js’s effects modules can be used to 
recreate some of the spectromorphological sound shapes described by Smalley [72]. 

3.1 Discussion  

There are a number of novel aspects to this work. The concept of matching target 
states in the data to specific sonic representations is novel. Generally approaches in 
sonic information design are informed by parameter mapping sonification practices.  
This approach is focused on defining a systematic mapping strategy to describe how 
the data should be mapped to synthesis parameters. The approach described in this 
paper side steps that issue. There is of course a systematic mapping strategy involved, 
but the focus is not on the conscious definition or design of the mapping strategy. 
Instead much of the mapping strategy design is deferred to the genetic algorithm and 
variational autoencoder which produce musical information. The task then shifts from 
mapping data to synthesis parameters to mapping the musical outputs of these 
generative models to synthesis parameters. This may help to contribute to finding a 
solution for the mapping problem [73], which is a general open problem in the field of 
auditory display that asks how data should be mapped to sound in order to accurately 
represent it to a listener. 

The target states approach also provides a novel solution for the problem of 
representing useful information a user. Approaches in the field of auditory display 
tend to involve mapping all of the data to sound in the hopes that some kind of high-
level meaning emerges for a listener, even though this is rarely the case [73]. This 
approach allows for the most important aspects of the data to be represented. 
Monitoring the changes in a data set on the basis of distance from a target sonic 
patterns is also another novel aspect of this approach. It shifts focus away from the 
usual kinds of cognitive and listening skills employed in auditory display design, 
where value changes are often represented using pitch changes. This allows users 
instead to rely on their cognitive capacity for matching sonic patterns to interpret the 
data. Given the musical nature of the system in question it would be expected that 
musically inclined listeners would find it easier to interpret the data. 

Recent research has advocated for the creative potential represented in latent 
spaces generated by variational autoencoders [74], and this was realised musically in 
Magenta’s creation of MusicVAE [64]. This project represents an early adoption and 
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application of these methods to problems in sonic information design. A shortcoming 
of the system is that the implementation of MusicVAE used in this project has been 
trained on the Yamaha e-Piano Competition dataset. In order to preserver the ambient 
aesthetic aimed for in the system it would make more sense to train MusicVAE on a 
data-set comprised of relevant ambient music compositions, future work will aim to 
address this shortcoming. 

3.1.1 Data Dashboards and Future Work 
At present the core functionality of the system has been implemented allowing the 

listener to monitor changes in cryptocurrency data streams through an ambient 
auditory information display. There is still a need to build a front-end that will allow 
the user to interact with the code and determine some of the parameters across the 
different levels of the system. With this is in place the usability of the system will be 
gauged through user centric evaluation. After this current plan is to incorporate the 
functionality into a broader data dashboard. Data dashboards aggregate important data 
and information for the purposes of monitoring and analysis providing a visual 
summary of critical information to aid users in a variety of tasks and decision-making 
processes [75]. They have become critical in the context of smart cities [76][77], 
network traffic and security monitoring [78][79] and asset management in business 
and financial contexts [79][80]. A number of researchers have recently begun to 
explore the limitations involved in the visual display of data to users in the context of 
data dashboards [81][82]. Incorporating the functionalities discussed here would 
allow for some of visual data to be offloaded to the ambient information system, thus 
recruiting the listeners’ auditory cognitive abilities to support  

Another plan for future work is to further adapt the system to create a generalized 
sound enabled data dashboard template in Angular.js. This template can then be 
adapted for application to problems in a number of related spaces including smart 
asset management, smart city monitoring and IoT network monitoring. One such 
application of the template will be the Pervasive Nation, a nationwide internet of 
things testbed operated by CONNECT. Earlier iterations of the implementation 
described here were written in Python and Csound for use with the Pervasive Nation 
network. It is planned to eventually adapt the finished template to the Pervasive 
Nation.  

A further goal is to introduce the concept of musical interaction to the 
implementation. The system will be expanded to allow a user to perform a piece of 
music using their keyboard or a MIDI controller. This information will be captured 
and used to represent the target states for the genetic algorithm and variational 
autoencoder. 
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