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ABSTRACT 

This paper describes an auditory display system for smart 
city data for Dublin City, Ireland. It introduces and describes 
the different layers of the system and outlines how they 
operate individually and interact with one another. The 
system uses a deep learning model called a variational 
autoencoder to generate musical content to represent data 
points. Further data-to-sound mappings are introduced via 
parameter mapping sonification techniques during sound 
synthesis and post-processing. Conceptual blending and 
music theory provide frameworks, which govern the design 
of the system. The paper ends with a discussion of the design 
process that contextualizes the contribution, highlighting the 
interdisciplinary nature of the project, which spans data 
analytics, music composition and human-computer 
interaction. 

1. INTRODUCTION 

A Smart City is any contemporary urban space that uses 
Internet of Things (IoT) technologies to collect data that can 
then be used to manage, govern and define civil resources 
and policies within that area [1]. In essence, it is a city that is 
run with the aid of IoT technologies which allow everyday 
objects, and some more specialized objects, to connect to the 
internet in ways that make them readable, recognizable, 
locatable, addressable, and controllable. This allows a city to 
be more effectively and democratically managed and should 
in turn have a positive impact on the quality of life for urban 
citizens [2]. 
 

As a Smart City's infrastructure becomes increasingly 
complex, the data generated becomes more difficult to 
present in a meaningful manner and progressively more 
difficult for citizens to understand and extract meaning from 
[3]. Sonification, the mapping of data to sonic parameters to 
communicate information about the original data source, is 
emerging as a critical tool for understanding and 
communicating large complex data flows in the context of 
increasingly networked and data-driven societies [4,5] and 
researchers have recently begun to uncover strategies for 
representing complex Smart City [6] and IoT data [7] with 
sound. This has resulted in increased interest in sonification 
as a tool for observing network activity patterns, extending 
Smart City dashboards, and monitoring network security, as 
evidenced by a number of notable contemporary projects (see 
[8-10]. The project described in this paper provides a 
framework and system for sonifying IoT data related to 
Smart Cities (SC) that can be integrated into broader Smart 
City Dashboard projects.  

 

2. CONCEPTUAL BLENDING 

 
 

Figure 1: Conceptual Blending. 

 
A key concept in the study of embodied cognition that has 
recently come to the fore in sonification research [11,12] is 
the theory of Conceptual Blending. Introduced by Fauconnier 
and Turner [13] to describe how new structures of meaning 
can be created in acts of creative and artistic thinking, a 
conceptual blend involves the integration of two familiar 
concepts or input spaces. The resulting blended space 
contains properties that were not present in either of the 
original concepts in isolation. For example, the mythical 
concepts of the Pegasus and Centaur have been described as 
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blends between the concepts of a bird and a horse and the 
concepts of a man and a horse respectively [14]. Likewise, 
the conceptual blend ‘Cyborg’ is represented in figure 1 
above. 

Kendall [15] relates conceptual blending theory to sound 
and more specifically electroacoustic music. He argues that 
the novel emotional and phenomenal qualities found in music 
are blends of everyday emotional and phenomenal qualities 
familiar to listeners and music-makers. Goguen and Harrell 
[16] have argued for the generation of multimedia content, 
and analysis of style, on the basis of conceptual blending 
principles. Eppe et al. [17] put forward a novel computational 
framework for conceptual blending demonstrating how the 
system can be used to invent novel musical and mathematical 
concepts. Conceptual integration is employed here as a 
guiding principle in the design of the generative engine 
described shortly.  

2.1. Variational Autoencoders 

 
 

Figure 2: Variational Autoencoder 

The system described here uses a machine learning model 
called a variational autoencoder (VAE) to mimic or simulate 
the process of conceptual blending. An autoencoder is a 
machine learning model that uses a neural network to encode 
a compressed representation of features from an original high 
dimensional data space in a lower-dimensional 'latent space'. 
A decoder network can then be used to approximate the 
original input data from the compression in the latent space 
[18]. VAEs are generative models that also encode a 
probability distribution of the original data (mean and 
standard deviation). They learn regularized latent spaces of 
continuous feature vectors, where nearby points have similar 
yet slightly differing properties, resulting in smooth 
incremental changes across points in a latent space [18]. A 
VAE is a generative model, meaning that it can generate new 
content that was not present in the original data on which it 
was trained. Decoding a sample from a given point in the 
latent space essentially produces a blend of the features 
adjacent to that point. This essentially allows us to generate 
blends of features in the original dataset. The system 
described in this paper uses Google Magenta’s MusicVAE 
[18] to generate ‘blends’ of musical materials.  

3. SYSTEM SPECIFICATION 

The system is comprised of four component layers: Data 
Acquisition & Processing, the Generative Engine, Sound 

Synthesis Engine, and Post-processing. The output consists 
of three distinct sonifications presented in sequence. The first 
sonification represents weather data the second represents 
traffic data and the third represents the number of available 
bikes at city bike stands. When attended to in sequence, they 
are intended to give an overall sense of the state of the city in 
terms of these three categories.  
 
 

 

Figure 3: System Overview. 

 

3.1. Data Acquisition & Processing 

The system is written in JavaScript ECMAScript 11 so that it 
might be easily integrated into web-based SC data dashboard 
projects. Data can be acquired via the Fetch API. The 
implementation described here gathers data from APIs made 
available through the Dublinked Open Data Store 
(https://data.smartdublin.ie/), managed by Smart Dublin, and 
the OpenWeather Maps API 
(https://openweathermap.org/api). The system can use live 
metrics for estimated travel time on key routes around the 
city, multi-story car parking space availability, the 
availability of bikes in the city’s bike-sharing, scheme, noise 
monitoring data at 14 locations across the city, and weather 
data. This data is provided by Transport Infrastructure 
Ireland (TII), Dublin City Council (x2), Sonitus Systems, and 
OpenWeather Maps respectively. 

3.2. The Generative Engine 

 
 

 

Figure 4: High Rainfall Motif. 

 
As noted previously, the generative engine uses a MusicVAE 
to generate musical material. The model is pre-trained on the 
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MAESTRO dataset. This was sufficient for generating the 
melodic content required. It was trained with an Adam 
optimizer with a learning rate annealed from 10−3 to 10−5 
with an exponential decay rate of 0.9999 and a batch size of 
512. It was run for 50k gradient updates respectively with a 
cross-entropy loss function. 
  

 
Figure 5: Low Rainfall Motif. 

The generative engine produces musical materials which 
are consistent with a harmonic/tonal syntax. The upper limit 
of a data set is represented by one musical concept or motif 
and the lower limit of the data is represented by another. 
Both musical concepts will share some similarities (e.g. 
similar timbres, both an arpeggio or both a motif, etc.) but 
their internal structure (e.g. pitches, number of notes, note 
lengths) will be different to reflect the two opposite limits of 
the dataset. The specific configurations of these musical 
concepts are informed by the literature and more specifically 
Zbikowski’s [19] descriptions of how meaning emerges from 
harmonic musical structure and Fauconnier and Turner’s [13] 
Conceptual Blending Theory. 

 
Figure 6: High Traffic Motif. 

With the two opposing musical concepts in place a latent 
space of musical patterns can be created using MusicVAE 
[18]. Data can then be mapped to make selections from the 
latent space. When the data reaches a certain level, the 
corresponding musical concept from the latent space is 
played. This musical concept will represent a blend of the 
two input concepts as determined by the data. The degree to 
which the blended musical concept sounds like either the 
upper or the lower limit concept is indicative of the value of 
the current data point. The system produces 20 iterations of 
blended motifs by default. Therefore, changes in the data 
which represent 5% of the overall data result in the 
assignment of a new blended motif to the sound object. The 
motifs used to represent rainfall data are represented in 
figures 4 and 5 while the motifs used to represent travel time 
data on the key motorways that feed Dublin are represented 
in figures 6 and 7. The musical motifs in the project were 
written to sound analogous to the phenomena each one 
represented, using approaches described in detail elsewhere 
[7]. 
 
 

 
Figure 7: Low Traffic Motif. 

3.3. Sound Synthesis Layer 

Parameter mapping sonification (PMSon) involves the 
mapping of data to auditory parameters such as pitch, 
amplitude, duration, or timbre to communicate information 
about the original data source to a listener [20]. Fitch and 
Kramer [21] developed a “piggy-backing” approach to 

PMSon in which multiple streams of data are mapped to a 
variety of different parameters within a single sonification. 
They found that this approach to mapping resulted in a more 
effective auditory display. PMSon techniques, and the 
aforementioned “piggy backing” approach, in particular, are 
employed in the sound synthesis layer of the system 
described here. 
 

Data Layer Technique/Effect Parameters & 
Range 

Rain Generative Motif Blending  
Temp Synthesis  2 Voice Oscil Harmonicity: 1 - 

4 
 Post-proc Chorusing LFO Delay: 0-

8hz  
Wind Post-proc AutoPan Freq: 0-10hz 
 Post-proc AutoFilter 0-5hz 

Table 1: Mapping Strategy for Weather Data 

 
Musical information is rendered into audio at the sound 

synthesis layer and further data is also mapped in, using 
parameter-mapping techniques. The current implementation 
of the system uses the tone.js library to handle audio in 
JavaScript.  

MusicVAE outputs notes values in a range from 0 to 100, 
a lower pitch resolution than the 128 available MIDI pitches. 
These outputs are mapped into a useful range allowing us to 
produce the motifs described in the previous section. The 
weather motif is synthesized using two synthesis voices each 
consisting of an oscillator with an amplitude envelope 
connected to a filter with its own frequency envelope, a 
configuration called a DuoSynth in the tone.js documentation. 
Temperature data is mapped to the harmonicity ratio, the 
frequency ratio between the two voices. The data here is 
mapped to a harmonicity range of 1 - 4 giving a range of 3 
octaves between voices. The polarity of the mapping is 
reversed so that the lower the temperature, the higher the 
harmonicity. 

The traffic motif is synthesized using AM (amplitude 
modulation) synthesis methods where the amplitude of one 
oscillator is controlled by the output of a second oscillator. 
The traffic motifs are synthesized at the synthesis layer using 
AM techniques but there is no extra data mapped to the 
control parameters of the AM synthesis routine. 

The third component of the synthesis layer is a simple 
pink noise generator. This noise source will ultimately be 
used to represent the number of bicycles in use in the city 
when that data is mapped in at the post-processing layer.  

3.4. Post-processing Layer 

Data Layer Technique/Effe
ct 

Parameters & Range 

Traffic  Generative Motif Blending  
 Synthesis  AM Synthesis  
Noise  Post-proc Distortion Distortion: 0-75% 
 Post-proc Reverb Wet/Dry 0 – 75% 
Parking  Post-proc Low Pass  Cutoff: 220hz – 22khz 

 

Table 2: Mapping Strategy for Traffic Data 

 

 This work is licensed under Creative Commons 
Attribution – Non-Commercial 4.0 International License.  
The full terms of the License are available at 
 http://creativecommons.org/licenses/by-nc/4.0/ 
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3.4.1. Traffic Data 

At the post-processing level, a distortion unit and a reverb 
unit are added to the signal chain for the traffic object. Noise 
data is mapped to both distortion and reverb W/D amount. 
The reverb in question is an implementation of the popular 
Freeverb algorithm and the tone.js distortion implementation 
employs a waveshaping technique to generate rich spectra 
from more simple harmonic components. The reason both 
distortion and reverb are used is because the distortion alone 
isn't noisy enough and reverb helps to increase the sense of 
noisiness.  

Noise Level maps to Distortion & Reverb scale of 0 to 
75% for both and Freeverb retains a room size of .7 and a 
dampening factor of 3000. The reason this scale was chosen 
was so that the combination of reverb and distortion does not 
overpower and obscure the underlying motif.  

The number of free car park spaces in the city is mapped 
to control the cutoff frequency of a lowpass filter. The filter 
runs from 220hz to 22000hz. The polarity of the mapping is 
reversed so that higher numbers of free parking spaces result 
in lower cutoff frequencies thus creating more empty space 
in the frequency spectrum of the sound. 

 

 

Figure 3: Mapping Strategy for Bike Data. 

 

3.4.2. Weather Data 

The temperature data is mapped to modulate the frequency of 
the LFO controlling the delay time between a range of 0 to 
8hz. Depth is set to 1 or 100% and delay time is 2.5 ms. the 
polarity of the mapping is reversed so that the lower the 
temperature, the higher the chorusing. 

On the FX Level wind speed is mapped to control 
the frequency of an auto panning algorithm in the range of .0 
to 2, or more specifically hard left to hard right. Depth is set 
to 1 (100%) and the shape of the LFO is a sine wave. 

Wind speed is also mapped to the depth and 
frequency of an auto-filter. The frequency of the LFO driving 
the is mapped to the data in the range of 0hz to 4hz and depth 
of the LFO is mapped in the range of 0 to 100%. The LFO 
uses a sine wave shape. The base frequency for the filter is 
440. This is a low pass filter so everything below 440 is 
passed through. The filter is applied to everything in a range 
of 4 octaves above 440 and the filter has a roll-off of -24db 
and a Q factor of 1. 

3.4.3. Bike Availability Data 

A filter, amplitude envelope, and two delay units are added to 
the signal chain for the noise generator. The delay units are 
configured to create a classic ping-pong delay effect. This is 
a feedback delay effect that can be applied across two or 
more channels where the first echo is heard in channel A, the 

second is heard in channel B, the third in channel A again, 
and so on until the echoes have faded out. This is 
implemented in our system with 2 feedback delays routed to 
the left and right stereo channels using the tone.js 
PingPongDelay object. Bicycle availability data is mapped to 
control the ping-pong delay and the amplitude envelope for 
the noise generator is controlled to simulate the sound 
generated when cycling a bike. The amplitude envelope has 
even attack, decay, and sustain periods, of 100ms each 
followed by a sharp 1ms release. The ping pong delay 
introduces repeats of the original pattern alternating between 
hard left and hard right presentations of each successive 
repeat to create a sound similar to a cycling motion. The data 
is mapped to control the delay in the range of .15 to 1.5. 

3.5. Discussion of Design Process and its Implications 

The system described here has emerged from a larger project, 
which is focused on the sonification of IoT data across a 
range of contexts. One such context was the Pervasive 
Nation, an Internet of Things testbed run from the Connect 
Centre at Trinity College Dublin. The design process 
involved an initial gathering of requirements through 
discussions with stakeholders who had originally designed 
the system, those responsible for running and maintaining the 
system, and additional stakeholders who were making use of 
the system.  These meetings focused on the kinds of tasks for 
which they would require auditory displays and the kinds of 
information such displays should provide for stakeholders 
with different roles. Initial prototypes, written with Python 
and Csound, were developed and presented to the 
stakeholders who provided further feedback to guide the 
design of data to sound mapping strategies.  

Iterative design cycles and rapid prototyping techniques 
were employed to drive the development of the system. An 
early result of this process was a design framework for the 
sonification of IoT network traffic data [7]. Feedback on later 
iterations of that system suggested that the techniques 
developed in the context of network traffic data sonification 
might be further extended through generative music, AI, and 
machine learning techniques.  

At this point, two new systems were devised. The first 
system was designed for live electronic music improvisation 
and incorporates IoT data from the Smart Dublin Project with 
an AI-driven generative music system to augment and 
develop musical ideas presented to the system by a 
performer. An early iteration of this system is discussed 
elsewhere [7]. The second, the ambient monitoring system, 
was an iteration upon and extension of concepts integrated 
into the design of the original Pervasive Nation sonifications. 
This system made use of evolutionary computing and deep 
learning approaches to generative music composition in the 
context of an ambient auditory display of cryptocurrency 
data. It is discussed in depth elsewhere [6]. 

The current system represents a further iteration of this 
ambient monitoring system. Feedback on the system after its 
initial presentation [6] at the Third Conference on the 
Computer Simulation of Musical Creativity suggested that 
Smart City data might be of more interest as a source domain 
than cryptocurrency data and that multiple streams of data 
should be integrated into the display. The idea of creating a 
tool that might augment or provide an auditory alternative to 
purely visual SC dashboards was also introduced, and this 
became a core concept driving the design of the current 
implementation. Feedback also suggested the adoption of a 
standard auditory display approach, as an ambient 
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information systems [6] approach was not relevant to the data 
being represented and were not likely to be relevant in an SC 
context either. Another suggestion was that the system 
should sound less like a single cohesive piece of music and 
more like a presentation of information using a mixture of 
sound and music.  

The system, in its current state, accounts for the feedback 
and input of stakeholders involved at each stage of the design 
process. A particular attempt has been made here to integrate 
the tonal language of the Western harmonic system with a 
broader conception of music akin to Varèse’s definition of 
music as “Organised Sound” [22]. We rely on MusicVAE to 
generate variations on harmonic materials originally 
composed by the author. These outputs have broadly tonal 
syntaxes. The timbres of these blended motifs however are 
then determined using Fitch and Kramer’s PMSon-based 
piggy-backing techniques which results in complex sound 
objects that, on the textural level, bear relation to Godøy’s 
[23] Gestural-Sonorous Objects. This is especially true of the 
bike data sonification, which contains no melodic content 
and instead acts as what Smalley [24] might describe as a 
surrogate for the physical, gesture (cycling), that a listener 
might associate with the generation of the sound. On a 
practical level, these techniques allow us to sonify an 
increased number of data streams at any given time, but more 
importantly, they allow us to better exploit the listeners 
capacity for sonic and musical meaning-making, or simply 
put, the listener’s ability to interpret meaning from, and /or 
assign meaning to, a given sound. Our general approach to 
designing sonifications that utilize a fuller range of listening 
skills and sonic meaning-making skills is informed by the 
embodied sonification listening model elucidated elsewhere 
[25].  

Conceptual blending theory is becoming increasingly 
important in the design of effective HCI [26, 27] and 
sonification [11, 12] solutions. Here, we use a machine 
learning model (MusicVAE) to provide listeners with the 
kind of blended harmonic spaces that Zbikowski [19] and 
Brower [28] have shown to be compatible with our faculties 
for meaning-making in Western musical contexts. With the 
further mapping of data at the sound synthesis and post-
processing levels, we achieve a sonic result more akin to 
Kendall’s [15] model of meaning-making via conceptual 
blending in electroacoustic music. The authors hope that the 
system and design process represented here, leveraging 
conceptual blending via MusicVAE, as well as consideration 
of conceptual associations of various auditory affordances in 
the sound design (e.g. the use of cyclical, modulated noise 
representing bike availability data, and the use of filtering to 
create space in the harmonic spectrum of a sound, with more 
such space representing more available parking spaces) can 
provide a guide for similar work carried out across the field 
in the future. 
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