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• We explored bidirectional temporal relationships between timed-up-and-go (TUG) and five 

cognitive function domains: global cognition, processing speed, verbal fluency, executive 

function, and sustained attention.   

• The effect sizes in both directions (i.e., cognitive function predicting future changes in TUG, 

and TUG predicting future changes in cognitive function) were found to be small.  

• The ability for TUG to predict future cognitive function may have less clinical value than vice-

versa.  

• Global cognition, processing speed and sustained attention had the greatest clinical 
significance as predictors of future mobility. 

 

Abstract  

Introduction 

The bi-directional longitudinal associations between mobility and cognition in older adults are poorly 

understood. Our objective was to study the temporal associations between timed-up-and-go (TUG) 

and five cognitive function domains: global cognition, processing speed, verbal fluency, executive 

function, and sustained attention.   

 

Methods 

We designed two longitudinal samples: A (for cognition as predictor of mobility), and B (for mobility 

as predictor of cognition). To examine the associations between the five cognitive domains at wave 1 

and change in TUG times up to wave 5 (eight years), five linear mixed-effect models were fitted. To 

examine the associations between TUG times at wave 1 and change in the five cognitive domains 

between waves 1 and 3 (four years), five linear-regression models were fitted.  

 

Results  

After removing participants with missing data, sample A numbered 4913 participants (mean age 62), 

and sample B 3675 (mean age 61). Baseline cognitive domains were all significant predictors of future 

change in TUG times. Baseline TUG time was also a significant predictor of future change in all five 

cognitive domains. In both cases, poorer performance at baseline predicted greater future loss of 

function. 

 

Conclusion 
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There was evidence of bi-directional temporal relationships between cognition and mobility. In both 

directions, the effect of the explanatory variable was small, though cognition as predictor of future 

mobility may have greater clinical relevance than vice versa. Our findings underscore the importance 

for clinicians of considering the bi-directional associations between cognition and mobility when 

observing subtle changes in either, especially as impairments emerge. 

 

Key Words: 
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Abbreviations 

Body mass index (BMI) 

Choice Reaction Time (CRT) 

Colour Trails Test (CTT) 

Instrumental activities of daily living (IADL) 

Interquartile range (IQR) 

Montreal Cognitive Assessment (MOCA) 

Timed-up-and-go (TUG)  

The Irish Longitudinal Study on Ageing (TILDA) 

Standard deviation (SD) 

Sustained Attention to Response Task (SART)  
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1. Introduction 

Mobility and physical performance are recognised as key markers of successful ageing and overall 

health [1, 2]. At a population level, mobility is observed to decline from midlife onwards, with the rate 

of decline accelerating in older age [2]. Cognitive decline is associated with ageing and in some cases, 

it can lead to loss of independence and dementia [3, 4]. However, as with most aspects of ageing, 

individual mobility and cognitive trajectories are extremely heterogeneous [2, 5, 6], dependent on the 

aspect of mobility or cognition being measured [6], and a product of multiple behavioural factors and 

biological mechanisms that occur and accumulate over a lifetime [1, 7, 8]. 

There is evidence of cross-sectional associations between mobility and cognition [9], including 

between slower performance in the timed-up-and-go (TUG) and poorer performance in global 

cognition, executive function, and processing speed tests [10]. This would suggest that there is a 

common underlying pathophysiological process affecting both cognition and mobility trajectories [11] 

such as white matter lesions [12], or that one precedes and contributes to the other’s decline.  For 

example, reduced processing speed may contribute to falls [13] and fear of falling, which could 

subsequently lead to reduced gait speed and/or altered gait [14]; or reduced mobility may contribute 

to reduced social interactions [15], which may in turn accelerate cognitive decline [16].   

There is evidence that measures of mobility can predict future change in cognitive function [17-20]; 

in the reverse direction, some studies have reported baseline cognitive function as a significant 

predictor of change in measures of mobility [17, 18], but others have reported non-significant [20, 21], 

inconsistent findings [19], or association with certain cognitive domains only (e.g., executive function) 

[22]. In both directions, poorer performance at baseline predicted greater loss of function over time.  

To contribute to the still poorly understood research field of longitudinal associations between 

mobility and cognition in older adults, the objective of this study was to utilise The Irish Longitudinal 

Study on Ageing (TILDA) datasets to assess the bidirectional temporal associations between TUG and 

five cognitive function domains: global cognition, processing speed, verbal fluency, executive function, 

and sustained attention.   
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2. Methods 

2.1. Setting 

We analysed data from TILDA, a population-based longitudinal study that collects information on the 

health, economic and social circumstances of community-dwelling adults aged 50 years and over in 

Ireland. Wave 1 of the study (baseline) took place between October 2009 and July 2011, and 

subsequent data was collected approximately 2-yearly over four additional waves (wave 2: February 

2012 to March 2013; wave 3: March 2014 to October 2015; wave 4: January to December 2016; and 

wave 5: January to December 2018). At each wave, participants completed a computer-assisted 

personal interview conducted by trained social interviewers in the participants’ own home, and a self-

completion questionnaire, which they completed in their own time. Waves 1 and 3 also included a 

detailed health assessment conducted by trained research nurses at a dedicated health-centre or in 

the participant’s own home. Health centre-based assessment data at waves 1 and 3 included four of 

the five cognitive measures of interest in this study (global cognition, processing speed, sustained 

attention, and executive function). All waves included assessment of verbal fluency and a TUG 

assessment. The full cohort profile has been described elsewhere [23, 24]. 

 

2.2. Design 

To bidirectionally investigate the longitudinal relationships between TUG and cognitive domains, we 

designed two samples: sample A (for cognition as predictor of mobility) and B (for mobility as predictor 

of cognition). 

 

2.2.1. Sample A  

To investigate whether the cognitive domains (global cognition, processing speed, sustained 

attention, executive function and verbal fluency) predicted future TUG times, the sample consisted of 

all participants with: TUG times at wave 1 and at least one other wave, all wave 1 cognitive scores, 

and complete baseline covariate data (age, sex, body mass index [BMI], grip strength, instrumental 

activities of daily living [IADL], fear of falling, number of medications, number of chronic conditions, 

and level of education). 

 

2.2.2. Sample B 

To investigate whether TUG times at wave 1 predicted future changes in cognitive scores, the sample 

consisted of all participants with wave 1 and 3 cognitive scores, wave 1 TUG times, and complete 

baseline covariate data. 
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2.3.Measurements 

The TUG test [25] is a well-validated measure of mobility [26]. Normative values for the TUG by age in 

older adults have previously been reported [27]. A time of over 12s to complete the TUG is a cut-off 

that is considered clinically significant for the identification of impaired mobility in community-

dwelling older adults [28]. At the wave 1 and 3 health assessments that took place in the health centre, 

the TUG was measured using a chair with armrests and a seat of height of 46 cm. At all other waves, 

the TUG was measured in the participants’ own homes using an available chair, which varied in height 

and design (assessors were instructed to find a chair that matched the centre chair as closely as 

possible). Participants were asked to rise from the chair, walk 3 metres at normal pace to a line clearly 

marked on the floor, turn around, walk back to the chair, and sit down again. Walking aids were 

allowed if required, and no instructions were given about the use of participants’ arms. The time taken 

from the command “Go” to when the participant was sitting again with his/her back resting against 

the back of the chair was recorded using a stopwatch.  

Cognitive function was separated into five domains: global cognition, processing speed, verbal fluency, 

executive function, and sustained attention. Global cognition was measured by the Montreal 

Cognitive Assessment (MOCA) [29]. The MOCA is widely used in clinical practice, scored out of 30 

points, and tests several cognitive domains. Processing speed was measured by the Choice Reaction 

Time (CRT) test [30]. The CRT test used a computer-based program where participants were asked to 

depress a central button until a stimulus appeared on-screen: either the word YES or the word NO. In 

response to the on-screen stimulus, participants were required to lift their finger from the depressed 

central button and depress a target yes/no button.  The CRT cognitive response time is measured from 

when the stimulus appears to when the participant lifts their finger from the button that is depressed. 

The CRT motor response time is measured from when the finger is lifted from the central button to 

when the target button is pressed. A return to the central button is necessary after each response for 

the next word to appear on-screen. There were approximately 100 repetitions [31] and we utilised 

the mean total response time (cognitive + motor). Verbal fluency was measured by asking participants 

to name as many animals as they could in one minute. Executive function was measured using the 

Colour Trails Test (CTT). The CTT is formed of two tests; for the first (CTT1), the participant is asked to 

draw a connecting line through consecutive circled numbers from 1 to 25. In the second test (CTT2) 

the task is repeated, but the participant is required to alternate between pink and yellow numbers 

whilst maintaining the ordered sequence of 1 to 25 [10]. Executive function was scored as a composite 

of the time taken to complete CTT2, and the difference in time between CTT2 and CTT1. A measure 

of sustained attention was constructed using the Sustained Attention to Response Task (SART) test 

[32]. The SART is a computer-based test where the participant is shown digits 1-9 in consecutive order 
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23 times. The participant is instructed to press a key in response to every digit other than ‘3’. A 

measure of sustained attention was constructed using the mean and standard deviation (SD) of the 

SART response time with intra-individual (single trial) outliers and errors of omission and commission 

removed. To aid comparison across the five cognitive domains, a standardised z-score of each of the 

domains was calculated by subtracting the sample mean from the individual scores and dividing by 

the sample SD. Each score was standardised so that a lower score represents better cognitive function 

(i.e., a standardised score of -1 at baseline represents a score of 1 SD better than the sample mean). 

For executive function and sustained attention, the measures used to construct the scores were first 

standardised and an average of the standardised measures was then used to represent the two 

cognitive domains.  

 

Other covariates were age, sex, BMI in kg/m2, level of education (up to primary school level, secondary 

school level or tertiary/higher level), number of self-reported chronic diseases (counted from the 

following list: heart attack or heart failure or angina, cataracts, hypertension, high cholesterol, stroke, 

diabetes, lung disease, asthma, arthritis, osteoporosis, cancer, Parkinson’s disease, peptic ulcer and 

hip fracture), number of regular prescribed medications, fear of falling (not afraid, somewhat afraid, 

very afraid), handgrip strength (maximum grip strength was measured from four tests [2 on each 

hand] using a hydraulic hand dynamometer [Baseline, Fabrication Enterprises, Inc., White Plains, NY] 

[27]), and number of self-reported difficulties in IADL (counted from the following list: preparing a hot 

meal; doing household chores [laundry, cleaning]; shopping for groceries; making telephone calls; 

taking medications; and managing money such as paying bills and keeping track of expenses) [33]. 

2.4. Analysis 

Data was analysed with R software [34]. Descriptive statistics were presented as mean with standard 

deviation (± SD), median with interquartile range (IQR), or count with percentage (%). To examine the 

association between the five cognitive domains at wave 1 and change in TUG times over the five 

waves, five linear mixed effect models (one for each domain) were fitted using the R packages lme4 

[35] and lmerTest [36]. The marginal R2 values were calculated using the MuMIn package [37] using 

methods based on Nakagawa, Johnson [38]. These models used a random intercept to account for 

repeated measures of the same individual. The effect of the cognitive domain on TUG at subsequent 

waves was of interest, therefore the interactions between cognition at wave 1 and time (in waves) 

were analysed. The resulting estimate for the interaction term can be interpreted as the estimated 

number of seconds change in the TUG from one wave to the next for 1 SD of change in the 

standardised cognitive score. All covariates listed above were measured at wave 1 and were fixed. In 
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addition to the covariates listed, TUG time at wave 1 and each standardised cognitive measure were 

included as independent variables in the models. 

 

To estimate the association between TUG times at wave 1 and change in the five cognitive domains 

between wave 1 and wave 3, five linear regression models (one for each domain) were fitted. The 

dependent variable was the standardised cognitive variable value at wave 3. All covariates listed above 

were measured at wave 1 and were fixed. In addition to the covariates listed, the wave 1 value of the 

dependent variable was entered as a covariate to model change in said value.  

 

Marginal effects plots were created for all models using the ggeffects [39]and ggplot2 [40] packages.  

 

2.5. Ethics 

Ethical approval for each wave was obtained from the Faculty of Health Sciences Research Ethics 

Committee at Trinity College Dublin, Ireland: Wave 1: "The Irish Longitudinal Study on Ageing (granted 

2 May 2008)"; Wave 2: "The Irish Longitudinal Study on Ageing (granted 19 October 2011)"; Wave 3: 

“Main Wave 3 Tilda Study (granted 9 June 2014)”; Wave 4: "Ref: 150506"; and Wave 5: "Ref: 170304". 

All participants provided written informed consent prior to inclusion in the study. 
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3. Results 

TILDA wave 1 recruited a total of 8173 participants aged 50 years or older. After removing participants 

with missing data, Sample A (used to investigate the predictive ability of baseline cognitive domains 

on change in TUG times) consisted of 4913 participants, and Sample B (used to investigate the 

predictive ability of baseline TUG time on change in cognitive domain scores) consisted of 3675 

participants (Figure 1). Both samples are described in Table 1. The majority of both samples received 

secondary or tertiary level education (sample A = 78%, sample B = 81%); 41% of sample A and 44% of 

sample B were in employment; and 18% of sample A and 17% of sample B lived on their own.  

 

Fig. 1. Number of participants included in each sample and reasons for missing data.  

 

*reasons for missing TUG values at subsequent waves may differ 
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Table 1. Description of the samples at wave 1. 
 

Variables Sample A (n = 4913) Sample B (n = 3675) 

Age  62.1 (±8.6) 61.4 (±8.1) 

Female 2684 (54.6%) 1986 (54.0%) 

BMI (kg/m2) 28.7 (±5.1) 28.5 (±4.9) 

Education up to primary school level 1102 (22.4%) 697 (19.0%) 

Education to secondary school level 2053 (41.8%) 1550 (42.2%) 

Education to tertiary/higher level 1758 (35.8%) 1428 (38.9%) 

Number of chronic conditions  1.0 (1.0—3.0) 1.0 (1.0—2.0) 

Number of medications  2.0 (0.0—4.0) 2.0 (0.0—3.0) 

Fear of falling - Not afraid 3879 (79.0%) 2977 (81.0%) 

Fear of falling - somewhat afraid 824 (16.8%) 569 (15.5%) 

Fear of falling - Very afraid 210 (4.3%) 129 (3.5%) 

Grip strength (kg) 27.5 (±9.8) 27.9 (±9.8) 

IADL score 0.0 (0.0—0.0) 0.0 (0.0—0.0) 

TUG time (seconds) 8.8 (±2.8) 8.6 (±1.9) 

MOCA  26.0 (23.0—28.0) 26.0 (24.0—28.0) 

Mean total CRT (milliseconds)  818.9 (±281.4) 790.6 (±237.2) 

Animal naming score 21.5 (±6.9) 22.1 (±6.9) 

CTT 2 time (seconds) 109.3 (±40.2) 104.0 (±35.1) 

CTT 2 time – CTT 1 time (seconds) 54.6 (±27.8) 52.2 (±25.6) 

Mean SART response time (milliseconds) 379.3 (±98.8) 375.0 (±97.3) 

 
Data presented as mean (± SD) or count (%) or median and (IQR). 
TUG = timed up and go; BMI = body mass index; IADL = instrumental activities of daily living; MOCA = Montreal Cognitive Assessment, CRT = Choice 
Reaction Time; CTT = Colour Trails Test; SART = Sustained Attention to Response Task.  
 

 
 
As shown in Table 2, baseline cognitive domains were all found to be significant independent 

predictors of future change in TUG times, with similar estimated marginal R2 values of 0.36. The effect 

varied across domains, with verbal fluency (Model 3) showing the weakest relationship, with a very 

small 0.06-second reduction in TUG time per wave being associated with a verbal fluency score of 1 

SD above the sample mean at baseline (higher cognitive scores represent poorer performance). 

Sustained attention (Model 5) had the largest estimated effect of a 0.30-second higher TUG time per 

wave being associated with a sustained attention score of 1 SD above the sample mean at baseline.  
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Table 2. Results of the repeated-measures mixed models for the prediction of change in timed up 

and go times (seconds) over five waves in Sample A (n=4913). 

 
 

 Model 1 Model 2 Model 3 Model 4 Model 5 

 Global cognition Processing speed Verbal fluency Executive function Sustained attention 

 Marginal R2 = 0.36 Marginal R2 = 0.36 Marginal R2 = 0.36 Marginal R2 = 0.36 Marginal R2 = 0.36 

  Estimate (seconds) 

[95% CI] 

Estimate (seconds) 

[95% CI] 

Estimate (seconds) [95% 

CI] 

Estimate (seconds) [95% 

CI] 

Estimate (seconds) 

[95% CI] 

Age at wave 1 0.06 [0.05 to 0.07]* 0.06 [0.05 to 0.07]* 0.06 [0.05 to 0.08]* 0.06 [0.05 to 0.07]* 0.06 [0.05 to 0.07]* 

Female -0.26 [-0.49 to -0.03]* -0.26 [-0.50 to -0.03]* -0.30 [-0.53 to -0.06]* -0.28 [-0.51 to -0.04]* -0.33 [-0.56 to -0.09]* 

BMI (kg/m2) at wave 1 0.03 [0.01 to 0.04]* 0.03 [0.01 to 0.04]* 0.03 [0.01 to 0.04]* 0.03 [0.01 to 0.04]* 0.03 [0.01 to 0.04]* 

Grip strength (kg) at wave 1 -0.04 [-0.05 to -0.02]* -0.03 [-0.05 to -0.02]* -0.04 [-0.05 to -0.02]* -0.04 [-0.05 to -0.03]* -0.04 [-0.05 to -0.02]* 

IADL at wave 1 0.44 [0.24 to 0.65]* 0.42 [0.21 to 0.63]* 0.45 [0.24 to 0.65]* 0.44 [0.24 to 0.65]* 0.45 [0.24 to 0.66]* 

Fear of falling at wave 1      

  not afraid reference reference reference reference reference 

 
 somewhat afraid 0.45 [0.25 to 0.66]* 0.45 [0.24 to 0.66]* 0.44 [0.24 to 0.65]* 0.44 [0.23 to 0.64]* 0.46 [0.25 to 0.67]* 

 
 very afraid 1.11 [0.73 to 1.50]* 1.18 [0.79 to 1.56]* 1.14 [0.75 to 1.52]* 1.11 [0.72 to 1.50]* 1.15 [0.76 to 1.53]* 

Number of medications at wave 

1 

0.07 [0.03 to 0.11]* 0.07 [0.04 to 0.11]* 0.07 [0.04 to 0.11]* 0.07 [0.04 to 0.11]* 0.07 [0.04 to 0.11]* 

Number of chronic conditions 

at wave 1 

0.12 [0.05 to 0.19]* 0.12 [0.05 to 0.19]* 0.12 [0.05 to 0.19]* 0.13 [0.06 to 0.20]* 0.12 [0.05 to 0.19]* 

Education      

  To primary school level reference reference reference reference reference 

 
 To secondary school level 0.08 [-0.12 to 0.28] 0.00 [-0.19 to 0.20]* -0.02 [-0.22 to 0.18]* 0.05 [-0.15 to 0.25]* 0.03 [-0.17 to 0.23]* 

 
 To tertiary/higher level 0.12 [-0.10 to 0.34] -0.02 [-0.23 to 0.19]* -0.04 [-0.25 to 0.18]* 0.03 [-0.18 to 0.24]* -0.02 [-0.23 to 0.19]* 

TUG (sec) at wave 1 0.76 [0.73 to 0.79]* 0.75 [0.72 to 0.78]* 0.77 [0.73 to 0.80]* 0.76 [0.72 to 0.79]* 0.76 [0.73 to 0.79]* 

Standardised cognitive score  -0.28 [-0.45 to -0.11]* -0.25 [-0.43 to -0.08]* -0.07 [-0.22 to 0.07] -0.19 [-0.36 to -0.02]* -0.68 [-0.88 to -0.48]* 

Time (waves) 0.60 [0.56 to 0.63]* 0.58 [0.54 to 0.61]* 0.56 [0.53 to 0.60]* 0.58 [0.54 to 0.61]* 0.59 [0.55 to 0.63]* 

Standardised cognitive score * 

Time (waves) 

0.19 [0.15 to 0.23]* 0.19 [0.14 to 0.24]* 0.06 [0.02 to 0.10]* 0.16 [0.11 to 0.20]* 0.30 [0.25 to 0.35]* 

 
TUG = timed up and go; BMI = body mass 
* p < 0.05 

 
Figure 2 shows the marginal effect plots of models 1-5 showing the effect of cognitive domain scores 

on TUG times, where baseline cognition value 0 represents sample mean at baseline; 1 represents 1 

SD above the sample mean at baseline (poorer cognitive function); and 2 represents 2 SD above the 

sample mean at baseline (standardised scores). Echoing the results in Table 2, the most apparent 

divergence of trajectories was for sustained attention, and the least apparent for verbal fluency. For 

sustained attention, for baseline cognitive values 2 SD above the sample mean, the adjusted marginal 

estimated mean of TUG was below 9 seconds at baseline, and above 12 seconds at 8 years. At 2 SD 

above the cognitive mean at baseline, estimated TUG means had also reached 12 seconds at 8 years 

for MOCA and CRT, and almost reached 12 seconds for executive function.  
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Fig. 2. Marginal effect plots of models 1-5 showing the effect of cognitive domain scores on TUG 
times. 
 

 
Baseline cognition value 0 = sample mean at baseline (standardised score) 
Baseline cognition value 1 = 1 SD above the sample mean at baseline (standardised score) 
Baseline cognition value 2 = 2 SD above the sample mean at baseline (standardised score) 
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As Table 3 shows, baseline TUG times predicted change in all five cognitive domains from wave 1 to 

wave 3. Processing speed had the largest estimated effect, a baseline increase in TUG of 1 second 

predicted an increase of 0.05 units (1 unit is equal to the standard deviation of the cognitive score at 

wave 1, higher score representing poorer cognitive performance). However, the model had the lowest 

R2 value of 0.20, significantly lower than global cognition (R2 = 0.45), executive function (R2 = 0.41) and 

sustained attention (R2 = 0.45).  

 

Table 3. Results of the linear models for the prediction of change in standardised cognitive scores from 

wave 1 to wave 3 in Sample B (n=3675). 

 Model A Model B Model C Model D Model E 

Dependent variable Global cognition Processing speed Verbal fluency Executive function Sustained attention 

 R2 = 0.45 R2 = 0.20 R2 = 0.26 R2 = 0.41 R2 = 0.41 

 Estimate [95% CI] Estimate [95% CI] Estimate [95% CI] Estimate [95% CI] Estimate [95% CI] 

Age at wave 1 0.01 [0.01 to 0.02]* 0.02 [0.01 to 0.02]* 0.01 [0.01 to 0.02]* 0.02 [0.01 to 0.02]* 0.01 [0.01 to 0.02]* 

Female 0.01 [-0.05 to 0.07] -0.06 [-0.18 to 0.06] -0.05 [-0.12 to 0.02] -0.02 [-0.09 to 0.05] 0.03 [-0.03 to 0.08] 

BMI (kg/m2) at wave 1 0.00 [-0.01 to 0.00] -0.01 [-0.01 to 0.00] 0.01 [0.00 to 0.01]* 0.00 [-0.01 to 0.00] 0.00 [0.00 to 0.01] 

Grip strength (kg) at wave 1 0.00 [0.00 to 0.00] -0.01 [-0.02 to 0.00]* -0.01 [-0.01 to 0.00]* 0.00 [0.00 to 0.00] 0.00 [0.00 to 0.00] 

IADL at wave 1 0.04 [-0.03 to 0.11] 0.00 [-0.14 to 0.14] 0.00 [-0.08 to 0.08] 0.06 [-0.02 to 0.14] 0.01 [-0.05 to 0.08] 

Fear of falling at wave 1      

  not afraid reference reference reference reference reference 

 
 somewhat afraid 0.02 [-0.04 to 0.07] 0.18 [0.07 to 0.29]* -0.01 [-0.07 to 0.06] 0.00 [-0.06 to 0.07] 0.05 [0.00 to 0.10] 

 
 very afraid 0.02 [-0.09 to 0.13] 0.23 [0.01 to 0.45]* 0.05 [-0.07 to 0.18] -0.02 [-0.15 to 0.10] 0.09 [-0.01 to 0.19] 

Number of medications at wave 

1 

0.00 [-0.01 to 0.01] 0.00 [-0.02 to 0.02] -0.01 [-0.02 to 0.01] 0.01 [-0.01 to 0.02] 0.01 [0.00 to 0.02] 

Number of chronic conditions at 

wave 1 

0.00 [-0.02 to 0.02] 0.02 [-0.02 to 0.06] 0.00 [-0.02 to 0.03] 0.01 [-0.01 to 0.03] 0.00 [-0.02 to 0.02] 

Education      

  To primary school level reference reference reference reference reference 

 
 To secondary school level -0.16 [-0.21 to -0.10]* -0.08 [-0.19 to 0.03] -0.05 [-0.12 to 0.01] -0.15 [-0.21 to -0.09]* -0.05 [-0.10 to 0.01] 

 
 To tertiary/higher level -0.23 [-0.29 to -0.17]* -0.10 [-0.22 to 0.01] -0.27 [-0.34 to -0.20]* -0.21 [-0.27 to -0.14]* -0.10 [-0.15 to -0.04]* 

Standardised cognitive score at 

wave 1 

0.59 [0.57 to 0.62]* 0.64 [0.58 to 0.69]* 0.32 [0.29 to 0.34]* 0.60 [0.57 to 0.63]* 0.55 [0.52 to 0.58]* 

TUG (sec) at wave 1 0.03 [0.02 to 0.04]* 0.05 [0.02 to 0.07]* 0.03 [0.01 to 0.04]* 0.01 [0.00 to 0.03]* 0.02 [0.01 to 0.03]* 

 TUG = timed up and go; BMI = body mass index; IADL = instrumental activities of daily living 
* p < 0.05 
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Figure 3 shows the marginal effect plots of models A-E showing the effect of TUG times at wave 1 on 

cognitive domain scores at wave 3. One unit in each standardised cognitive score is equal to the 

standard deviation of the cognitive score at wave 1 and higher cognitive scores represent poorer 

cognitive function. A change in wave 1 TUG time from 5 (very fast) to 25 (very slow) seconds was 

associated with very modest increases in cognitive scores, below 1 SD of the cognitive score at wave 

1 except for processing speed, which reached 1 SD at baseline TUG of 25 seconds. 

 

Fig. 3. Marginal effect plots of models A-E showing the effect of TUG times at wave 1 on cognitive 
domain scores at wave 3. Higher cognitive scores represent poorer cognitive function. 
 

 
Predicted cognition value 0 = sample mean at baseline (standardised score) 
Predicted cognition value 1 = 1 SD above the sample mean at baseline (standardised score) 
Predicted cognition value 2 = 2 SD above the sample mean at baseline (standardised score) 

  

−0.5

0.0

0.5

1.0

1.5

5 10 15 20 25

TUG time (seconds) at wave 1

P
re

d
ic

te
d

 g
e

n
e

ra
l 
c
o

g
n

ti
o

n
 s

c
o

re
 a

t 
w

a
v
e
 3

Global cognition

−0.5

0.0

0.5

1.0

1.5

5 10 15 20 25

TUG time (seconds) at wave 1

P
re

d
ic

te
d

 p
ro

c
e

s
s
in

g
 s

p
e

e
d

 s
c
o

re
 a

t 
w

a
v
e

 3

Processing speed

−0.5

0.0

0.5

1.0

1.5

5 10 15 20 25

TUG time (seconds) at wave 1

P
re

d
ic

te
d

 v
e

rb
a

l 
fl
u

e
n

c
y
 s

c
o

re
 a

t 
w

a
v
e

 3

Verbal fluency

−0.5

0.0

0.5

1.0

1.5

5 10 15 20 25

TUG time (seconds) at wave 1

P
re

d
ic

te
d

 e
x
e

c
u

ti
v
e

 f
u

n
c
ti
o

n
 s

c
o

re
 a

t 
w

a
v
e

 3

Executive function

−0.5

0.0

0.5

1.0

1.5

5 10 15 20 25

TUG time (seconds) at wave 1

P
re

d
ic

te
d

 s
u

s
ta

in
e

d
 a

tt
e
n

ti
o

n
 s

c
o

re
 a

t 
w

a
v
e

 3
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Variable

Age at wave 1

Level in models
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Grip strength (kg) at w ave 1
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Fear of falling

Number of medications

 at wave 1

Number of chronic 
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Standarised cognition score at w ave 1

Level of education
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Male
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26.0

0.0

Not afraid

2.0

1.0

0.0

Up to primary school
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Discussion 

The aim of the study was to contribute to the still poorly understood research field of bidirectional 

longitudinal associations between mobility and cognition in older adults, we utilised the TILDA dataset 

to assess the temporal associations between TUG and five cognitive function domains: global 

cognition (MOCA), processing speed (CRT), verbal fluency (animal naming), executive function (CTT), 

and sustained attention (SART). Findings suggest that associations were statistically significant in both 

directions i.e., cognition predicting mobility and mobility predicting cognition. Not all cognitive 

domains seemed equally predictive of mobility decline. The cognitive domain that seemed to have the 

greatest predictive effect for TUG decline was sustained attention, followed by processing speed, 

global cognition, executive function, and verbal fluency. On the other hand, baseline TUG was weakly 

associated with change in cognitive parameters. The effect of TUG on change in processing speed 

seemed to be the strongest, though the overall model had the poorest fit. The effect of TUG on change 

in sustained attention was smaller, but TUG explained much more of the variance in sustained 

attention values at wave 3. However, all effects were of very small clinical significance. 

On the direction of cognition predicting mobility, our findings suggest that the mechanisms through 

which lower cognition may lead to progressive mobility decline are very slow acting, with the mobility 

impairment being more likely to become clinically significant as more years go by. Minimal clinically 

important differences in TUG have been suggested as being between 0.8 and 1.4 seconds in patients 

with hip osteoarthritis [41], and 0.9 – 1.4 seconds in patients with COPD [42]. Based on the more 

conservative estimate of 1.4 seconds, after 8 years, those above 2 SD of the standardised baseline 

cognitive scores for sustained attention, processing speed and general cognition would be classified 

as having a clinically important reduction in mobility compared to those with average cognitive scores 

at baseline. Thus, our findings highlight that cognitive impairment in the absence of clinically apparent 

mobility impairment may herald an accelerated pattern of mobility decline in subsequent years. Our 

findings are consistent with previous research that reported that TUG is often normal in those with 

mild cognitive impairment [43]. Our findings also mirror those from the Women's Health and Aging 

Study II, in which both impairments in and declines in executive functioning were associated with risk 

of physical frailty onset, which includes slowness in its definition [44].  

Whilst we cannot provide mechanistic explanations for the effects of baseline cognition on mobility 

decline, early neurodegeneration may be a possible reason. However, our study has the limitation in 

that none of the cognitive tests employed are per se diagnostic of underlying neurodegeneration (e.g., 

Alzheimer’s disease), in the absence of other clinical findings including neuropsychology, 

neuroimaging, or biomarkers. In our study, we cannot differentiate between non-neurodegenerative 
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and neuro-degenerative cognitive impairment. Indeed, access to neuroimaging and data-driven 

approaches are necessary to further understand mobility-cognition phenotypes [45-47]. 

On the direction of mobility predicting cognition, our results agree with a previous analysis of the 

same cohort that baseline mobility was not significantly associated with decline in cognitive function 

[21]; however, the previous analysis only included baseline participants aged 65 years or more, while 

the present analysis included those aged 50 or more. In the present study, a larger cohort may have 

been responsible for the detection of statistically significant associations of low clinical relevance.  

As regards mobility predicting future cognition, the clinical meaningfulness of the models is more 

difficult to interpret due to the dependent variable (cognition) being on a standardised scale. 

However, except for processing speed, even a 20-second difference in TUG times at baseline did not 

predict over 1 unit (1 unit is equal to 1 SD in cognition at baseline) of difference in the cognitive 

domains at wave 3 (approximately 4 years later). For example, based on the baseline SD in MOCA of 

3.2 in sample A, a difference of 11 seconds in the TUG would predict an approximate 1-point change 

in the MOCA score at wave 3. The predictive value of mobility on future cognition is therefore 

considered to be weak, despite the statistical significance, and may be of less clinical value than using 

cognitive function to predict future mobility. However, direct comparison between Models 1-5 and 

Models A-E needs to be cautious as TUG is not on a standardised scale as the cognitive domain 

variables are, and in Models 1-5, the coefficient estimates refer to change over 1 wave (approximately 

2 years) compared to Models A-E where the coefficient estimates refer to change from wave 1 to 3 

(approximately 4 years).  

The ability of the TUG to predict future cognitive function may depend on the population studied. This 

study used a relatively healthy and independent-living population-based cohort. In more clinical 

cohorts where mobility impairments are more significant and advanced, the predictive value of 

mobility on future cognition may have greater clinical significance. Nevertheless, worse TUG 

performance has been related to poor performance on cognitive tests of executive function and 

independently associated with severe medial temporal area atrophy in community-dwelling older 

adults [48], suggesting that not all cognitive domains are equally associated with mobility [49]. 

Interestingly, in Alzheimer's disease it was found that motor performance was affected already at its 

mild stages [50], and even at the subjective cognitive decline stage [51]. Another study showed that 

the trajectory pattern of greater decline in amyloid positive subjects was predicted by greater baseline 

impairment of cognition and function [52]. While mobility within a functional independence range 

may not predict decline in cognition, more severe mobility impairments (such as those associated with 
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a state of frailty) may herald subsequent cognitive impairment [53, 54]. Interestingly, in a previous 

study, only the mobility subtype of the frailty phenotype was associated with cognitive impairments 

[55]. In the National Health and Aging Trends Study, incident dementia was associated with greater 

likelihood of cognitive impairment onset first, and frailty-cognitive impairment co-occurrence, but 

lower likelihood of frailty onset first [56]. Overall, it is possible that cognition may be more predictive 

of mobility in a population-based cohort where the prevalence of significant cognitive impairment is 

very low (and not included at baseline), while in more frail, clinical cohorts, mobility impairment may 

well follow cognitive decline as patients become more disabled during their progression to dementia.  

The multiple significant associations between other covariates and mobility in the repeated-measures 

mixed models investigating cognitive functions as predictors, suggest that there may be scope for 

interventions to slow down adverse trajectories of mobility decline even in the presence of baseline 

cognitive impairment, by acting on potentially modifiable factors (e.g., improving muscle strength, 

addressing fear of falling, optimising medications). Intervention approaches including physical 

exercise may also be appropriate [57-59], although not necessarily effective in improving cognition 

[60]. Indeed, in community-based samples, comprehensive geriatric assessment and individually-

tailored interventions may contribute to improvements in the health and functional status of older 

persons with multimorbidity [61]. A comprehensive approach assessing mobility and cognition 

simultaneously may be better because previous research has suggested that the combination of slow 

gait and cognitive impairment posed the highest risk for progression to dementia [62]. Indeed, 

considering both physical frailty and cognition as a single complex phenotype may be crucial in the 

prevention of dementia [63]. This is termed by others as motoric cognitive risk syndrome (MCR) [64]. 

TILDA previously showed that MCR is characterised by strong negative associations with global 

cognition, attention, and memory [65]. Identifying these complex mobility-cognition phenotypes is 

important; indeed, a previous study showed that a multidomain community group-based intervention 

among community-dwelling older adults with physio-cognitive decline syndrome can be effective to 

improve both cognition and mobility in some participants [66]. 

A general limitation of a longitudinal study of older adults is attrition, which can be due to refusal to 

participate at a particular wave, complete withdrawal from the study, loss to follow-up or death. 

Whilst TILDA wave 1 recruited a total of 8173 participants aged 50 years or older, there were only 

4913 participants in sample A and 3675 in sample B.  Even with a multiple imputation analysis 

replicating the same findings, we would not be confident that our findings are truly population 

representative. Further, only participants who participated in health centre assessments were 

included in both sample A and B, and previous analysis has demonstrated that participants were 
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generally fitter than the entire TILDA cohort [67], limiting generalisability further. Finally, three 

covariates were obtained by self-report: level of education, number of chronic diseases and number 

of medications. They are therefore considered open to information bias. 

In conclusion, our results support that cognitive processes play an important role in the control of 

motor functions, and therefore it is important to incorporate examination of cognitive functions as 

early as possible in older people [68], even if their mobility is independent. Our findings underscore 

the importance for clinicians to take subtle changes in cognition seriously, especially when subtle 

mobility impairments start to emerge over time, as this may provide an opportunity to offer disability-

slowing interventions when they could be most effective. Greater understanding of these 

relationships may aid clinicians in their choice of cognitive assessments and support management 

plans for individuals demonstrating decline in particular cognitive domains. Further, results may 

stimulate further research into common cause mechanisms of functional and cognitive decline. 
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