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Abstract

ARTIFICIAL INTELLIGENCE is becoming ubiquitous and pervasive in our daily

lives. Machine learning (ML), a subset of Artificial intelligence (AI), supplies

more accurate internet searches, voice recognition in home appliances, tagging peo-

ple in photos, object detection in videos, and driver assistance systems in vehicles.

Convolutional neural networks (CNNs), a subset of ML, process these images, videos

and sometimes audio data. Captured and preprocessed by embedded internet of

things (IoT) devices, CNN data are often processed in internet data centres or on local

PCs with high-performance processors and acceleration cards, due to CNNs enor-

mous energy, bandwidth, and processing requirements. There is a need to move

more of this CNN processing to IoT edge and embedded devices for low-power and

potentially offline, processing.

The CNN convolution layer consists of millions of multiply-accumulates (MACs),

the arithmetic of which can be in fixed-point, integer or floating-point format. The

CNN can operate in training mode or inference mode. During inference, the con-

volution layer occupies up to 90% of the computation time and energy of the CNN,

convolving the input feature map (IFM) with the kernel weight data. The storage,

movement of weight data, and acceleration of the convolution computation are of-

ten beyond the energy, storage and compute bounds of embedded devices.

We investigate opportunities for optimising the hardware energy efficiency, gate-

level area, and execution time of the CNN convolution layer’s MAC arithmetic,

while maintaining inference classification accuracy of the CNN accelerator imple-

mentation. Our first contribution investigates reducing energy consumption and

application-specific integrated circuit (ASIC) die area while maintaining classifica-

tion accuracy of CNNs. We also investigate latency and resource efficiency when

implemented in field programmable gate array (FPGA). Our second contribution

focuses on decreasing software execution time of low-precision floating-point (FP)

CNNs by exploiting hardware optimisation of central processing unit (CPU) vector

register packing and single instruction multiple data (SIMD) bitwise instructions

used in the CNN MAC.
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1
Introduction

CONVOLUTIONAL NEURAL NETWORKS (CNNs) are a subset of machine learn-

ing (ML) which itself is a subset of artificial intelligence (AI). CNNs are very

capable across a diverse range of vision and audio processing tasks. CNNs are

excellent at classifying images [Krizhevsky et al. 2012], object detection of mul-

tiple objects within an image [Girshick et al. 2014a], real-time object detection in

videos [Redmon et al. 2016] and pattern recognition in audio samples [Hershey et

al. 2017]. CNNs require a large amount of storage, bandwidth, and computation of

the host device on which it is implemented. For example, the CNN VGG-16 requires

154.7GMACs, and 138.36MB of parameters [Simonyan and Zisserman 2014b]. An

increasing research focus is aimed at moving the CNN processing closer to ‘edge’ IoT

devices (e.g., Han et al.’s, Deep compression work [Han et al. 2016a]) while trying to

accelerate the CNN execution time and reduce energy (e.g., Howard et al.’s, Mo-

bileNets work [Howard et al. 2017]). As researchers move the models and data sets

closer to implementation on edge IoT devices, they attempt to increase efficiency

and reduce the size of the associated data sets. The improved efficiency will have

long term impact on the environment and prevent the ‘Earth glowing red-hot,’ as

Stephen Hawking somewhat facetiously suggested in his address to the Tencent WE

Summit, in 2017.

CNNs usually operate in one of two modes:

∙ training mode where the CNN model is trained to detect or recognise a pattern

in data, such as a human face in an image;
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Chapter 1. Introduction

∙ inference mode where the model is configured to infer or detect the pretrained

pattern in new data, e.g., detect if a human face exists in a new image not yet

‘seen’ by the CNN model.

This work will consider optimisations of inference operation of the CNN model

in embedded systems.

1.1 Motivation

For CNNs to operate in inference mode when implemented in embedded de-

vices, the implementation and host device requires some or all of the following:

∙ Reduce the execution time and memory requirements of the CNN model while

maintaining the classification accuracy;

∙ Hardware optimisations upon which the CNN model is to run;

∙ Optimise the arithmetic, numeric computation and data storage precision1of

the CNN model;

∙ Reduce the energy consumed by the CNN on its host device.

The acceleration of CNNs is typically split into two categories; one involves ac-

celerating the training of the CNN models; the other category is inference accelera-

tion.

The large energy and computational requirements of CNN inference makes it

challenging to implement CNNs on low-power IoT embedded devices. A contribut-

ing factor is that 90% of the computation time and energy in a CNN model is taken

by the convolution unit [Farabet et al. 2010], and more specifically, the large num-

bers of MAC operations required. These MACs are large in integrated circuit (IC)

die area, consume a large proportion of the energy, and decrease the throughput of

the CNN. While some solutions manage to optimise the CNN model and its imple-

mentation enough to run successfully on a mobile device [Howard et al. 2017], this

optimisation is often at the expense of throughput, performance, and classification

accuracy of the model.

1Note that arithmetic precision differs from CNN model precision. Model precision is the frequency
with which a model correctly predicts a class. Arithmetic computation and storage precision refer to the
bitwise precision of the arithmetic processing and storage medium.
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1.2. Objective and Approach

1.2 Objective and Approach

The contributions of this thesis investigate optimising the target hardware archi-

tecture implementation of the MAC arithmetic at the heart of the CNN. We inves-

tigate a reduction in gate-level area and energy consumption in hardware and an

improved execution time in both hardware and software.

These optimisation proposals are implemented for demonstration purposes in

the MACs of the CNN inference on aspects and layers of the Deep Compression

[Han et al. 2016a] and MobileNets [Howard et al. 2017] CNN models.

We ask if weight sharing, a novel compression scheme for weight data, could be

optimised in embedded hardware to save memory, bus bandwidth and thus energy.

Our work investigates the rearchitecting the MAC of a weight-shared CNN layer

to discover if efficiencies in energy and ASIC die area and FPGA resources can be

increased.

We also ask if bitslice optimisations of the MAC arithmetic, optimised with hard-

ware tools, can increase throughput and performance of the MAC of the convolution

layer of a CNN in software compiled for Arm and Intel CPUs.

1.3 Contributions

The first contribution investigates the reduction of hardware energy and IC die

area while maintaining the CNNs classification accuracy in a weight-shared CNN.

We call our contribution parallel accumulate shared MAC (PASM), see Chapter 3 on

page 41.

We implement PASM in a weight-shared CNN convolution hardware accelera-

tor and analyse its effectiveness. Our experiments for a weight-shared CNN layer

implemented on a 45nm ASIC process at a clock speed of 1GHz show that our ap-

proach results in 35% smaller sequential logic, 66% saving in total logic gates, and

70% less total power than the equivalent standard MAC. We also show the same

weight-shared-with-PASM convolutional neural network accelerator implemented

in a resource-constrained FPGA. PASM consumes 99% fewer digital signal proces-

sors (DSPs) units and 28% fewer block RAMs (BRAMs) units and consumes 18%

less total FPGA reported power consumption, with up to a maximum 12% increase

3
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in latency. Therefore, the power consumption of the convolution in an embedded

system can be dialed down at the expense of an increased latency of convolution.

PASM has attracted interest from industry by Thomas Guttenberger, Founder

and CEO of https://metacoder.ai/ who would like to implement PASM to reduce

energy consumption.

The second contribution decreases software execution time of arbitrary-precision

FP MACs contained in the convolution layer of a CNN. We exploit hardware syn-

thesis tool optimisation and bitslicing of vector register packing and SIMD bitwise

instructions for the CNN MAC. We exploit the hardware synthesiser as the C++

compiler does not perform the SIMD reduction and packing to the same efficiency.

We call this contribution hardware optimized bitslice-parallel floating-point opera-

tors (HOBFLOPS), see Chapter 4 on page 71.

Our experiments show that HOBFLOPS provides a fast approach to emulat-

ing custom, low-precision FP in software. We demonstrate implementing various

widths of HOBFLOPS multiplier and adder in the MAC of a CNN convolution.

On Arm and Intel processors, the MAC performance in CNN convolution of HOB-

FLOPS, Flexfloat, and Berkeley’s SoftFP are compared. HOBFLOPS outperforms

Flexfloat by up to 10× on Intel AVX512. HOBFLOPS offers arbitrary-precision FP

with custom range and precision, e.g., HOBFLOPS9, which outperforms Flexfloat 9-

bit on Arm Neon by 7×. HOBFLOPS allows researchers to prototype different levels

of custom FP precision in the arithmetic of software CNN accelerators. Furthermore,

HOBFLOPS fast custom-precision FP CNNs may be valuable in cases where mem-

ory bandwidth is limited.

HOBFLOPS attracted a technology journalist to interview the lead author of the

work on the Youtube channel Next Platform.

Having introduced the research contributions, we now present the structure of

this thesis.

1.4 Thesis Structure

Chapter 2, analyses the state-of-the-art research in ML model implementations.

We look at recent work from the late 1980s to today. We chart the key research

4
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concepts over this period and discuss and evaluate their contributions and where

they might lead the research contributions of this thesis.

Chapter 3, presents our first contribution, which focuses on weight sharing CNNs,

which we exploit to further reduce the energy dissipated by the MAC. The weight-

sharing compression scheme was chosen for the reduced energy dissipation from

the memory access when fetching the compressed and quantised weight data. Weight-

sharing uses a scheme of binning compressed weight values which we exploit in our

proposal. We rearchitect the MAC to replace hardware multipliers in the MAC cir-

cuit with adders and selection logic, which we call parallel accumulate shared MAC

(PASM). Rather than computing the MAC arithmetic directly, which requires a large

number of multipliers, we instead count the frequency of each weight and store

the counts of each bin. A subsequent multiply phase computes the accumulated

count value, sharing a single multiplier between multiple parallel accumulate and store

(PAS) units. We significantly reduce the number of multipliers and, therefore, the IC

area and energy consumption of the accelerator when implemented on ASIC. We

also show that the same weight-shared-with-PASM CNN accelerator can be imple-

mented in resource-constrained FPGAs, where the FPGA has limited numbers of

DSP units to accelerate the MAC operations.

Chapter 4, presents our second main contribution, hardware optimized bitslice-

parallel floating-point operators (HOBFLOPS). There is value in arbitrary and low-

precision FP on both embedded and high-end devices, so this work presents a method

of bitwise packing and arithmetic of FP compute while maintaining or increasing

performance and reducing power consumption. Our experiments show that HOB-

FLOPS provides a fast approach to emulating custom, low-precision FP in software,

offering up to 8× the performance of SoftFP16. HOBFLOPS allows researchers and

hardware developers to prototype different levels of custom FP precision for use in

the arithmetic of CNN accelerators, the equivalent HOBFLOPS9 of which achieves

up to 6× that of HOBFLOPS16. Furthermore, HOBFLOPS fast custom-precision FP

CNNs in software may be valuable in cases where memory bandwidth is limited.

Chapter 5, discusses and evaluates the findings, suggests future work and con-

cludes with some final thoughts for the research area.
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Appendix A, outlines the historical background to AI. We highlight the desire for

humans to automate tasks and model the physical aspects of a human to perform

those tasks. We show how this desire has fuelled research and development in AI,

ML and deep learning (DL), charting the major developments since World War II to

present-day achievements in activities such as facial recognition, voice recognition

and understanding in machines.

Appendix B, introduces CNNs, their properties and operation. We quickly bring

the reader up to speed on CNNs and how they are trained and implemented for use

in pattern recognition applications. We show some of the underlying mathematical

operations that the CNN use to train for and perform the task of e.g., image detection

and recognition.

1.5 Publications

Early versions of this thesis’s research appear in three refereed journal articles,

one conference presentation, two poster presentations, and a co-written book chap-

ter. At the time of writing, these works have resulted in twenty-eight citations. The

PASM work has gained interest from an industry CEO. The HOBFLOPS work has

garnered interest from a technology journalist.

1.5.1 Refereed Journals Articles

James Garland and David Gregg (2017). “Low Complexity Multiply Accum-

ulate Unit for Weight-Sharing Convolutional Neural Networks”. In: IEEE Com-

puter Architecture Letters 16.2, pp. 132–135. ISSN: 1556-6056. DOI: 10.1109/LCA.

2017.2656880

∙ Parts of this PASM work appear in chapter 3 on page 41.

∙ We presented a poster of this work at the 2017 High Performance and Embed-

ded Architecture and Compilation (HiPEAC) Advanced Computer Architecture and

Compilation for high-performance Embedded Systems (ACACES) summer school.

James Garland and David Gregg (2018). “Low Complexity Multiply-Accumulate

Units for Convolutional Neural Networks with Weight-Sharing”. In: ACM Trans-

actions on Architecture and Code Optimization 15.3, 31:1–31:24. ISSN: 1544-3566.

DOI: 10.1145/3233300. URL: http://doi.acm.org/10.1145/3233300
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∙ We built significantly on the research of the initial PASM work above.

∙ A modified version of chapter 3 on page 41 of this thesis has been published

in ACM Transactions on Architecture and Code Optimisation (TACO) journal.

∙ We presented the extended PASM work [Garland and Gregg 2018] at the HiPEAC

2019 conference in Valencia, Spain, on 23 JAN 2019 during paper track Session

12 Programming Models, Neural Networks2. The session Chair was Dr Luca

Fanucci of the Università di Pisa3. The research was also presented at the stu-

dent poster session at the same conference.

∙ Thomas Guttenberger, founder and CEO of https://metacoder.ai/ has ex-

pressed an interest in implemented PASM in their AI servers.

1.5.2 Journal Article Submitted and Under Review

James Garland and David Gregg (2021). “HOBFLOPS for CNNs: Hardware

Optimized Bitslice-Parallel Floating-Point Operations for Convolutional Neural

Networks”. In: PREPRINT (Version 1) available at Research Square. DOI: 10.

21203/rs.3.rs- 866039/v1. URL: [https://doi.org/10.21203/rs.3.rs-

866039/v1

∙ A modified version of chapter 4 on page 71 has been submitted for review to

the Springer Soft Computing for Edge-Driven Applications journal, a preprint

of which Springer store at the Research Square preprint server;

∙ The technology journalist, Timothy Prickett Morgan, of The Next Platform4

web site and Youtube channel5, interviewed the lead author on Monday 27th

July 2020 about our HOBFLOPS CNN work on their NextPlatformTV show.

1.5.3 Book Chapter Publications

Our initial PASM work [Garland and Gregg 2017], was published as a chapter in

the 2017 HiPEAC ACACES non-peer-reviewed book.

We were invited to write a chapter to contribute to an Institution of Engineering

and Technology (IET) published book in 2019.

2https://www.hipeac.net/2019/valencia/#/program/paper-track
3http://www.iet.unipi.it/l.fanucci/
4https://www.nextplatform.com/
5https://www.youtube.com/channel/UC-Q65AMbMP1tGIxzSagcmHg
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Chapter 1. Introduction

Andrew Anderson et al. (2019). “Hardware and software performance in deep

learning”. In: Many-Core Computing: Hardware and Software. Ed. by Geoff V.

Merrett Bashir M. Al-Hashimi. Computing. Institution of Engineering and Tech-

nology. Chap. 6, pp. 141–161. ISBN: 9781785615825. DOI: 10.1049/PBPC022E. URL:

https://digital-library.theiet.org/content/books/pc/pbpc022e

1.6 Journal Articles Peer Reviewed

During the duration of the PhD, the author of this thesis peer-reviewed the fol-

lowing IEEE journal articles. These works and their associated journals are very

much in line with this author’s research.

∙ IEEE TVLSI Journal Journal: Sungju Ryu et al. (2018). “Feedforward-Cutset-

Free Pipelined Multiply–Accumulate Unit for the Machine Learning Acceler-

ator”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.1,

pp. 138–146;

∙ IEEE Access Journal Journal: Bo Liu et al. (2019). “An Ultra-Low Power

Always-On Keyword Spotting Accelerator Using Quantized Convolutional

Neural Network and Voltage-Domain Analog Switching Network-Based Ap-

proximate Computing”. In: IEEE Access 7, pp. 186456–186469;

∙ IEEE Access Journal Journal: A High-Performance Multiply-Accumulate Unit

by Integrating Additions and Accumulations into Partial Product Reduction

Process. C. Tung and S. Huang (2020). “A High-Performance Multiply-Accumulate

Unit by Integrating Additions and Accumulations Into Partial Product Reduc-

tion Process”. In: IEEE Access 8, pp. 87367–87377;

∙ IEEE TVLSI Journal Journal: An Energy-Efficient Asynchronous and Recon-

figurable CNN Accelerator (To be published)

Here we have briefly covered from where the research motivations stem and

how they have aided the development and prototyping of the research. We will

now review the taxonomy of the background literature of AI to bolster the research

interests.
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2
Taxonomy and Review of Neural Network

Literature

2.1 Introduction

CONVOLUTIONAL NEURAL NETWORKS have become of increased interest with

researchers and industry since the proposal of the AlexNet [Krizhevsky et al.

2012] deep learning (DL) neural network model. However, there are many chal-

lenges to optimising CNNs execution time, energy consumption and implementa-

tion in embedded devices, some of the challenges of which are:

∙ CNN Model sizes and associated training data are very large, leading to in-

creased research in optimising the CNNs for efficient implementation and

throughput in CPU, GPU, FPGA and ASIC accelerators;

∙ Speed of training and inference of CNNs needs to increase, but is difficult due

to the large size of the CNN models and associated data;

∙ CNN energy efficiency needs to increase, but the large models and associated

data are demanding compute and memory bandwidth that is excessive to low-

power IoT edge devices.

Appendix A, outlines the historical background to AI. We highlight the desire

for humans to automate tasks and to model the physical aspects of a human to per-

form those tasks. We show how this desire has fuelled research and development in

AI, ML and DL, charting the major developments since World War II to present-day

achievements in activities such as facial recognition, voice recognition and under-

standing in machines.
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Table 2.1: Taxonomy of Related Research

Architecture Optimisation Algorithm Optimisation Customising Bit Precision
FINN [Umuroglu et al. 2017] (F) AlexNet [Krizhevsky et al. 2012] (G) FINN [Umuroglu et al. 2017] (F)
Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

Deep Compression [Han et al. 2016a]
(C,G,MG)

Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

GoogleNet [Szegedy et al. 2015] (C) Rethinking FP [Johnson 2018] (A)
Granular Sparsity [Mao et al. 2017] (P)
MobileNets [Howard et al. 2017] (P)
ResNet [He et al. 2015] (G)

A
cc

ur
ac

y

VGGNet [Simonyan and Zisserman 2014b]
(G)

EIE [Han et al. 2016b] (A) MobileNets [Howard et al. 2017] (P) Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

Rethinking FP [Johnson 2018] (A) Rethinking FP [Johnson 2018] (A)

Myriad 2 [Moloney et al. 2014] (A)
Project Brainwave [Chung et al. 2018] (F)
Rethinking FP [Johnson 2018] (A)

A
re

a

tensor processing unit (TPU) [Jouppi et al.
2017] (A)
Bismo [Umuroglu et al. 2018] (F) Deep Compression [Han et al. 2016a]

(C,G,MG)
EIE [Han et al. 2016b] (A)

DaDianNao [Chen et al. 2015b] (A) EIE [Han et al. 2016b] (A) Rethinking FP [Johnson 2018] (A)
DianNao [Chen et al. 2014] (A) Rethinking FP [Johnson 2018] (A) TPU [Jouppi et al. 2017] (A)
EIE [Han et al. 2016b] (A) Green AI [Schwartz et al. 2019] (C)
Eyeriss [Chen et al. 2016; Chen et al. 2019]

(A)
Myriad 2 [Moloney et al. 2014] (A)
NeuFlow [Pham et al. 2012] (A)
Prec’n Scalable Proc. [Moons and Verhelst
2016] (A)
Rethinking FP [Johnson 2018] (A)

En
er

gy

TPU [Jouppi et al. 2017] (A)
Bismo [Umuroglu et al. 2018] (F) Backprop Handwritten Recog. [LeCun et al.

1989] (C)
8-bit Approximation [Dettmers 2015] (G)

DaDianNao [Chen et al. 2015b] (A) BinaryConnect [Courbariaux et al. 2015a]
(P)

Bit-slice FP [Xu and Gregg 2017] (C)

DianNao [Chen et al. 2014] (A) BinaryNet [Courbariaux et al. 2016] (G) Deep Compression [Han et al. 2016a]
(C,G,MG)

Deep Learning with INT8 [Fu et al. 2016] (F) Deep Learning with INT8 [Fu et al. 2016] (F)
EIE [Han et al. 2016b] (A) EIE [Han et al. 2016b] (A) Fixed-point Quantisation [Lin et al. 2016] (P)
FINN [Umuroglu et al. 2017] (F) Faster Int. Multiplication [Fürer 2007] (P) Flytes [Anderson et al. 2017] (C)
Hardware Accel. CNNs [Farabet et al. 2010]

(F)
Grad. Learn’g of Doc. Recog. [Lecun et al.
1998] (C)

Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

Hi. Perf. FP Pipelines [De Dinechin et al.
2009] (F)

Ltd. Numerical Precision [Gupta et al. 2015]
(F)

Ltd. Numerical Precison [Gupta et al. 2015]
(F)

Myriad 2 [Moloney et al. 2014] (A) Opt. FPGA Accel. CNNs [Zhang et al. 2015]
(F)

MobileNets [Howard et al. 2017] (P)

NeuFlow [Pham et al. 2012] (A) Opt. Loop Oper’n/Dataflow [Ma et al. 2017]
(F)

Project Brainwave [Chung et al. 2018] (F)

Opt. FPGA Accel. CNNs [Zhang et al. 2015]
(F)

Parallel MCMK CNN [Vasudevan et al.
2017] (C)

TPU [Jouppi et al. 2017] (A)

Opt. Loop Oper’n/Dataflow [Ma et al. 2017]
(F)

Project Brainwave [Chung et al. 2018] (F)

Prec’n Scalable Proc. [Moons and Verhelst
2016] (A)

XNOR-Net [Rastegari et al. 2016] (C)

Project Brainwave [Chung et al. 2018] (F)

Ex
ec

ut
io

n
Ti

m
e

TPU [Jouppi et al. 2017] (A)
EIE [Han et al. 2016b] (A) BinaryConnect [Courbariaux et al. 2015a]

(P)
Deep Compression [Han et al. 2016a]

(C,G,MG)
FINN [Umuroglu et al. 2017] (F) BinaryNet [Courbariaux et al. 2016] (G) SqueezeNet [Iandola et al. 2016] (P)

Distilling Knowledge [Hinton et al. 2015] (P) XNOR-Net [Rastegari et al. 2016] (C)
Fixed-point Quantisation [Lin et al. 2016] (P)St

or
ag

e

SqueezeNet [Iandola et al. 2016] (P)
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There are many ways of tackling the above challenges. This chapter will look

at the current research literature and discuss how researchers are addressing these

challenges. The review is organised using the taxonomy shown in Table 2.1. The

hardware and software levels of abstraction are the primary axis (shown in the head-

ings at the top) of Table 2.1.

The orthogonal axis (headings on the left of Table 2.1) consists of the major re-

search themes of the works, ideas and techniques, focusing on optimising the target

hardware, optimising the algorithm or customising the bit-precision:

∙ Accuracy: Research that focuses on optimising the number representation ac-

curacy or CNN prediction accuracy;

∙ Area: How researchers optimise the utilised area of IC or memory footprint of

the CNN;

∙ Energy: Optimising the energy dissipated within the CNN, with a focus on

inference;

∙ Execution Time: Research proposals put forward to optimise the speed, through-

put or latency of the CNN. Much focus on execution time, both within software

and hardware has been the driver of a great deal of CNN research;

∙ Storage: The quantity of storage required by the CNN due to the optimisation

strategies. The storage and movement of the weights and parameters data will

increasingly move toward the memory elements.

In brackets after each piece of research, a letter appears in bold. These letters in-

dicate the implementation technology which may impact the energy consumption,

throughput and accuracy of the CNN:

∙ A means the research work implements the researcher’s proposal in an ASIC;

∙ F shows the target is FPGA implementation;

∙ G implements the proposal in general purpose GPU (GPGPU);

∙ MG targets a mobile GPU for the proposals implementation;

∙ C indicates a CPU implementation;

∙ P suggests the technique doesn’t state how the proposal is implemented; it is

presumed the contribution is implemented in software in a CPU.

We categorise the focus or investigation of each research area to determine under

which primary and orthogonal axis to place the work. Entries may appear more
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than once where the entries support either multiple research themes or multiple

levels of abstraction. The levels of abstraction form the sections of this chapter. Each

research theme and implementation technology is addressed within the levels of

abstraction sections.

While addressing the above challenges researchers implement various optimisa-

tion strategies, where applicable, in their hardware and software implementations.

There are several ways to optimise for accuracy while focusing on execution time

and energy dissipation, the popular methods of which are:

1. Optimise the CNN architecture e.g.,

(a) Create larger deep CNN models for improved classification accuracy (see

Table A.2);

(b) Compress, prune or change the sparsity of the weight and/or input fea-

ture map (IFM) data;

(c) Create a new layer type with few weights;

(d) Create alternative convolution methods;

(e) Produce a software library of functions, such as basic linear algebra sub-

programs (BLAS);

2. Optimise the number precision and operators of the CNN e.g.,

(a) Reduce the precision of the number format and arithmetic used in the

algebra of a CNN;

(b) Optimise arithmetic operators;

(c) Use other techniques such as bit slicing;

3. Create custom hardware accelerators e.g.,

(a) Create a specific DSP vector processor;

(b) Create specific FPGA and ASIC accelerators;

4. Focus specifically on energy conservation e.g.,

(a) Create space and time efficient models to fit on low-power devices;

12
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(b) Improve data efficiency by reducing data movement and reducing the

overall data requirements.

We shall investigate how the works of Table 2.1 use these optimisation strategies.

2.2 Architecture Optimisations

The next subsections will examine the architectural optimisations of the CNN

model (see column 1 of Table 2.1) mainly from an implementation perspective. How-

ever, as we will see, the optimisations of the implementation of the CNN model of-

ten go hand-in-hand with high-level model optimisations. We will highlight various

sub-categories with capitalised sub-headings, corresponding to the above-itemised

challenges.

2.2.1 Architecture Optimisation - Accuracy

Researchers strive to maintain or increase the CNN classification accuracy while

optimising CNN models for the target architecture such as an FPGA.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

A popular optimisation method is low-level reduction in precision of the num-

ber format and arithmetic performed by the CNN model. For example, reducing

weights and arithmetic to their binary representations. Umuroglu et al., [2016] pro-

pose FINN, a binary neural network (BNN) framework for building fast and flexible

FPGA accelerators. Using the Canadian Institute For Advanced Research (CIFAR)-

10 [Krizhevsky and Hinton 2009] and street view house numbers (SVHN) [Netzer

et al. 2011] datasets, Umuroglu et al., show 21906 image classifications per sec-

ond with 283𝜇𝑠 latency and 80.1% and 94.9% classification accuracy respectively,

the fastest classification in FPGA at the time of their publication. However, train-

ing the CNN with reduced binary representation weights is time-, compute- and

energy-intensive. Figure 1 of [Courbariaux et al. 2016] shows BNNs are at least 10×

slower to train, but exhibit accuracy close to that of 32-bit float deep neural networks

(DNNs).
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Design of FPGA and ASIC hardware accelerators at the register transfer logic

(RTL) level with reduced bitwise precision, can be laborious and prone to errors.

De Dinechin et al.’s, [2009; 2011] propose automated methods of producing VHDL

components with custom precision that can be used in CNNs. We exploit this type

of automation in our HOBFLOPS proposal (section 4.1).

2.2.2 Architecture Optimisation - Area

Today, CNNs are often very large such as ResNet [He et al. 2015]. The model size

has led researchers to optimise the overall area of the accelerator designs. Research-

ers often rearchitect the CNN to implement it in a DSP/vector processor or custom

ASIC and FPGA based CNN accelerators.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Designing dedicated hardware for FPGA and ASIC allows designers to produce

different number representations and data types. Alternative number represent-

ations reduce the data storage requirements, thus allowing a smaller gate-level area

of accelerator design to be produced.

Johnson [2018] proposes an alternative floating-point representation and a hy-

brid log multiply/linear add function, Kulisch accumulation, and tapered encod-

ings from Gustafson’s posit format for accelerators. Johnson shows that a 16-bit log

float multiply-add is 0.68× the IC die area compared with an IEEE-754 float16 fused

multiply-add while maintaining the same significand precision and dynamic range.

Microsoft propose the alternative MS-FP8 and MS-FP8 FP representations [Chung

et al. 2018], a highly quantised version of IEEE FP-754 standard, allowing tight im-

plementation in FPGA DSP units.

3. CREATE CUSTOM HARDWARE ACCELERATORS:

3(a). CREATE SPECIFIC DSP/VECTOR PROCESSOR:

The streaming hybrid architecture vector engine (SHAVE) v3.0 processor in the

Myriad 2 [Moloney et al. 2014] is a 128-bit SIMD 12-very long instruction word

(VLIW) vector processor which can support various bit widths of integer and FP

representations. Within the Myriad 2, there are 12 SHAVE processors connected

to their streaming image processing pipeline (SIPP) computational imaging hard-

ware accelerators via a crossbar. Myriad 2 employs optimised scratch pads, caches,
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Figure 2-1: The architecture of the Leading Non-zero Detection Node (a) and architecture
of Processing Element (b) [Han et al. 2016b].

instruction-level parallelism (ILP), first in first outs (FIFOs), and other queuing mech-

anisms. Myriad 2 produces an accelerator that has very competitive giga FLOPS

(GFLOPS)/W compared with the Nvidia’s Tegra K1 GPU accelerator but with a

very small IC die size. Myriad 2 is often used in embedded low-power applications,

such as DL vision systems on the DJI Spark and other drones [Movidius 2017].

3(b). CREATE SPECIFIC FPGA and ASIC ACCLERATOR:

De Dinechin et al., [2009; 2011] show that they can control the post synthesis

gate-level area of both of their 32-, and 64-bit RTL accelerators with their automation

mentioned above.

Han et al., [2016b] evaluate a pruned and compressed (via weight-sharing) infer-

ence engine implemented in both a TSMC 45nm and 28nm CMOS process ASICs.

Their efficient inference engine (EIE) hardware accelerator can store all weights in

on-chip static RAM (SRAM). They show that compared with DaDianNao [Chen et

al. 2015b] of Chen Y. et al., EIE achieves 3× smaller area. Han et al., layout a process-

ing element (PE) and approximate the area of a PE to be 638, 024𝜇 𝑚2. Figure 2-1

demonstrates the level of rearchitecting the CNN undergoes to reduce the area of

the CNN model and associated data. Their optimisations show no loss in accuracy.

Google’s TPU [Jouppi et al. 2017] area, when implemented in ASIC silicon mea-

sures around 331𝑚𝑚2 (see Figure 2-2 for a block diagram). This compares favourably

to the competing Intel Haswell CPU and Nvideo K80 GPU which are roughly dou-

ble the IC die area.

2.2.3 Architecture Optimisation - Energy

Often researchers target FPGA and ASIC architectures as they generally dissipate

lower energy than CPU or GPU implementations of the CNN accelerator.
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Figure 2-2: TPU Block Diagram [Jouppi et al. 2017].

1. OPTIMISE THE CNN ARCHITECTURE:

1(b). COMPRESSION, PRUNING, SPARSITY:

Moons et al., built on their Energy Efficient ConvNets work [Moons et al. 2016] to

produce the Precision Scalable Processor [Moons and Verhelst 2016], a CNN ASIC

that is a custom fully C-programmable processor. Their proposal applies quantisa-

tion schemes down to layer granularity, applies precision scaling to their accelera-

tor circuits and sparsity to reduce the computations needed due to the zero-valued

parameters of the precision scaling. Moons et al., claim the processor consumes 25-

288mW at 204 MHz.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Google’s TPU accelerator [Jouppi et al. 2017] uses brain floating point 16-bit

(bfloat16) in the systolic arrays to accelerate the matrix multiplication operations.

They use 32-bit IEEE FP for accumulation and claim their TPU has a tera operations

per second (TOPS)/Watt about 30X – 80X higher than that of contemporary GPUs

or CPUs. As Google implement the TPU circuits in an ASIC, they intrinsically pro-

duce a lower energy CNN accelerator and claim around 40W with a peak 92TOPS,

however Google does not publish exact comparisons of their energy reduction.
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Bismo FPGA accelerator [Umuroglu et al. 2018] build hardware cost models of

CNNs and show an energy efficiency of up to 1.4 TOPS/W on a PYNQ-Z1 board,

impressive for a small, circa US $200 consumer FPGA development board. Bismo

uses BNNs so inference is performed at the meagre energy budget of the PYNQ-Z1.

Changing the FP number representation, Johnson [2018] work mentioned earlier

shows that in 16 bits, their log float multiply-add is 0.59× the energy of IEEE-754

float16 fused multiply-add, in a 28nm ASIC process geometry.

3. CREATE CUSTOM HARDWARE ACCELERATORS:

3(a). CREATE SPECIFIC DSP/VECTOR PROCESSOR:

Independent analysis of the Myriad [Moloney et al. 2014] vector processor per-

formance [Ionica and Gregg 2015] show that Myriad 1 exhibits a performance/watt

ratio of 23.17 GFLOPS/W while Movidius claim a 500mW operation.

3(b). CREATE SPECIFIC FPGA and ASIC ACCELERATOR:

Custom accelerators are often more expensive initially to produce than vector

processors but allow for reduced energy consumption, smaller devices, and cheaper

mass production. Hardware can have reduced overhead of fetch/decode/execute

of instructions and reduced complex pipelines with ILP, by either reducing the in-

struction set architecture (ISA) or removing the ISA completely and implementing

a finite-state machine (FSM) in RTL. NeuFlow [Pham et al. 2012] does exactly this

by implementing Farabet’s NeuFlow [2011] on an IBM 45 nm silicon on insulator

(SOI) process. The implementation accelerates large numbers of convolutions and

matrix-to-matrix operations, thus reducing data movement due to the lower bit-

representation. NeuFlow can deliver up to 320 giga operations per second (GOPS)

with an average power consumption of 0.6W.

By optimising the locality and bandwidth of the required weight-data memory

accesses, DianNao, [Chen et al. 2014] implements large CNNs in a 65nm process

ASIC. Chen T. et al., rearchitect their ASIC to perform 496 parallel 16-bit fixed-point

operations, reducing the energy by 21.08× than that of a comparable 128-bit SIMD

processor core clocked at 2GHz.

Later Chen Y. et al., propose DaDianNao [2015b] which shrinks the process ge-

ometry of their ASIC accelerator to 28nm. Storage of the enormous weight data is

tackled by spreading the storage of all weights across the multiple accelerator nodes’

17



Chapter 2. Taxonomy and Review of Neural Network Literature

on-chip dynamic RAM (DRAM) or SRAM, thus requiring no main memory. DaDi-

anNao outperforms a single GPU reducing energy consumption by up to 150.31×

when using 64 nodes, taking 6.12W memory power and 15.97W total power. How-

ever, DaDianNao cannot exploit sparsity or weight sharing of the weights and acti-

vations as the exploitation would need to expand the network to dense form before

an operation, which would increase energy consumption.

The pruning, compression and weight-sharing scheme of EIE [Han et al. 2016b]

highlighted above, demonstrate a the compressed number of MAC operations. The

optimisation achieves 19× better energy efficiency than DaDianNao.

The Eyeriss [Chen et al. 2017; Chen et al. 2019] ASIC accelerators exploit the

row stationary dataflow with 168 processing elements and 16-bit fixed-point integer

operations, thus reducing data movement and energy. Chen et al., claim that the

row stationary dataflow reconfigures the computation mapping of a given shape,

maximally reusing data locally to reduce expensive data movement, such as DRAM

accesses and thus increasing energy efficiency. Eyeriss 2 tiles the MAC spatially

across the PEs through any of the dimensions of the layers. The layers can vary

in shape and size so to deal with these differences, Eyeriss 2 uses a hierarchical

mesh that adapts to these variations of kernels thus improving the computation

resources to perform 2.5× more energy efficiency than the predecessor Eyeriss v1

when running MobileNets.

2.2.4 Architecture Optimisation - Execution Time

Different researchers report different styles of metrics, e.g., frames per second or

TOPS, or the researchers implement different styles of an accelerator. However, all

contributions give some form of metric that often shows an improvement impacted

by their architectural change or form of implementation.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Han et al., apply their deep compression optimisation techniques (see Figure 2-

3) introduced above to VGG-16 CNN and find the model runs 3× to 4× faster on

a mobile GPU with no loss in accuracy [Han et al. 2016a]. Their EIE work [Han

et al. 2016b] achieves 2.9× better throughput than DaDianNao [Chen et al. 2015b],
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Figure 2-3: Weight sharing by scalar quantisation (top) and centroids fine-tuning (bot-
tom). [Han et al. 2016a].

impressive considering EIE is implemented on the older 45nm process technology

and DaDianNao is implemented on the newer, more efficient 28nm process.

Moons et al.’s, Precision Scalable Processor [Moons and Verhelst 2016] demon-

strates yields of 0.3-2.6TOPS/W, which is 3.9× higher than that of Eyeriss [Chen et

al. 2016].

Researchers in industry often settled on an 8-bit architecture for the CNN. 8-

bit architectures are less time consuming to train and implement than a BNN with

most of the benefits of BNNs and most of the classification accuracy of FP accelera-

tors. INT8 [Fu et al. 2016] changes the bit level type and precision to 8-bit integers

and achieves 1.75× peak solution-level performance deep learning operations per

second (OPS) compared to other FPGAs with the same resources.

Later in 2018, Microsoft’s MSFP8 and MSFP9 [Chung et al. 2018] proposal men-

tioned above again changes the number format and datatype to their FP 8-bit and

produce 720GOPS/W on an Intel Stratix 10 280.

3. CREATE CUSTOM HARDWARE ACCELERATORS:

3(a). CREATE SPECIFIC DSP/VECTOR PROCESSOR:

Myriad 1 [Moloney et al. 2014] has a performance of around 8.11GFLOPS, which

Movidius increased to 200GFLOPS in Myriad 2, and Myriad X boasts 4 TOPS of

operation.

3(b). CREATE SPECIFIC FPGA and ASIC ACCELERATOR:
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De Dinechin et al., [2009] showcase their custom accelerator on a Xilinx Virtex-4

part, showing performance can increase from 10 cycles to 29 cycles for 32-bit FP to

10 to 46 cycles for 64-bit FP when implementing the FP Collision operator on the

FPGA.

NeuFlow [Farabet et al. 2011; Pham et al. 2012] implemented on an IBM 45 nm

SOI process can deliver up to 320GOPS.

Ma et al., [2017] propose a CNN accelerator demonstrated on an Intel Altera Ar-

ria 10 GX 1150 FPGA. Ma et al., implement a VGG-16 CNN network which achieves

645.25 GOPS of throughput and 47.97ms of latency, a > 3.2× enhancement com-

pared to other FPGA implementations, and very roughly 10× that of the accelerator

of Zhang et al., [2015].

Bismo FPGA accelerator [Umuroglu et al. 2018] improve upon their FINN accel-

erator [2017] to build hardware cost models of CNNs in a bit-serial precision and

show a peak performance of 6.5TOPS on a PYNQ-Z1 board, orders of magnitude

greater than the above predecessors.

Several ASIC implementations change the number representation to fixed-point.

DianNao (Figure 12 of [Chen et al. 2014]) claim that there is a minimal classifica-

tion accuracy trade-off when comparing the training of Modified National Institute

of Standards and Technology (MNIST) using fixed point and FP representations.

32-bit FP has an error rate of 0.0311 while 16-bit fixed-point has an error rate of

0.0337. However, the storage, bandwidth, and compute needed for fixed-point is

significantly smaller than with FP. Chen et al., applies tiling of their loop nest for

data-locality optimisation of the convolution, pooling and classifier layers. Dian-

Nao is implemented on a 65nm process ASIC and can perform 496 parallel 16-bit

fixed-point operations in 1.02ns. Chen et al., claim the accelerator to be 117.87×

faster than the comparable 128-bit SIMD processor core clocked at 2GHz.

DaDianNao [2015b], implemented on a 28nm ASIC compared to DianNao’s 65nm

implementation, outperforms a single GPU by up to 450.65× when using 64 nodes,

a massive increase in performance.

The first generation of the TPU [Jouppi et al. 2017] was an 8-bit integer matrix

multiplication accelerator and tended to be used in inference only. Their second-

generation moved from fixed-point to FP support, so it could accelerate training
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and have increased classification accuracy. Google significantly improved the mem-

ory bandwidth to 600GB/s and performance of 45tera FLOPS (TFLOPS). Google

arranged the TPUs into 4-chip modules to raise the performance to 180TFLOPS.

Google goes further to cascade 64 modules increasing performance to 11.5peta FLOPS

(PFLOPS). Their third-generation TPU claims to be twice as powerful as the second-

generation, suggesting up to 23PFLOPS of performance. Google achieve this per-

formance by deploying the TPUs in pods with four times the number of TPU ICs as

TPU 2 showing an 8-fold increase in FLOPS.

Google reduced the functionality of their cloud-TPU to deliver their edge TPU,

called Coral. Coral is capable of 4TOPS while dissipating 2W. However, Coral only

supports 8-bit operations, so it is targeted at inference only using Google’s Tensor-

flow Lite framework. Users have to train the CNNs on a Tensorflow quantisation-

aware system [Abadi et al. 2016], such as their cloud-based TPU offering.

Farabet et al., [2010] show the first comparisons of performance of a CNN im-

plemented on CPU, FPGA and ASIC. The CPU is an Intel Core 2 Duo, the FPGA is

a Xilinx Virtex 4 device and the ASIC is performed in simulation only and report

frames/second as their metric. The researchers compare CPU, FPGA and ASIC im-

plementations of their CNN and show their FPGA implementation is approximate

an order of magnitude faster than a CPU implementation and an order of magnitude

slower than a comparable GPU implementation.

The FPGA implementation by Zhang et al., [2015] on a Xilinx VC707 develop-

ment board containing a Virtex 7 XC7VX485T part, designed 5 years after Farabet’s,

demonstrate 61.62GFLOPS performance for their CNN accelerator.

COMPARISON OF DIFFERENT HARDWARE AND SOFTWARE PLATFORMS:

Due to the inconsistent reporting of metrics of neural networks, Velasco-Montero

et al., [2019] attempt to tackle the inconsistent reporting issue by running CNN

inference on the CNN frameworks Caffe, OpenCV, TensorFlow, and Caffe2. The

researchers execute the frameworks on an Arm Cortex-A53 multi-core processor

platform, in this case, the Raspberry Pi 3 Model B. Using these frameworks, the

researchers implement GoogLeNet, ResNet-50 and SqueezeNet-v1.1 and capture

CPU utilisation, average throughput Frame per Second (FPS), instructions executed
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per second, data memory accesses, including cache loads and cache misses and

branch prediction. There is no clear winner, but the results show that if e.g., high

throughput on GoogLeNet is required then implement it with the TensorFlow frame-

work, whereas Squeezenet should be implemented with OpenCV for a 3.5-4FPS

throughput. Velasco-Montero et al., supply results to allow for a user to select the

best framework for the CNN of choice when implemented on a Raspberry Pi 3.

2.2.5 Architecture Optimisation - Storage

In inference mode, as the pretrained weight data is known, it can usually be

pruned, compressed or represented with a different number format to reduce its

size and therefore storage needs.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Deep Compression [2016a] achieves compression factors of 35× for AlexNet and

49× for VGG-16. The compression subsequently reduces AlexNet from 240MB to

6.9MB and VGG-16 from 552MB down to 11.3MB. The researchers also show that

even though the fully connected layers dominate the model size by 90%, these layers

compress the most by up to 96% of weights pruned in VGG-16 CNN.

The FINN accelerator [2017] shows that their BRAM utilisation is very efficient,

mainly due to the use of BNN.

ARCHITECTURAL OPTIMISATIONS CONCLUSION:

Architectural optimisations have proven fruitful for researchers in ASIC, FPGA

implementation. Researchers typically choose their preferred research area, such

as execution time, but not without affecting to one of the other orthogonal areas.

Researchers select their preferred hardware implementation, such as FPGA. Some

researchers move designs from FPGA to an ASIC, thus saving more energy and

gaining greater performance. New architectures are appearing such as the Green-

waves RISC-V processor based GAP-8 [Flamand et al. 2018] processor. GAP-8 is gar-
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nering increasing research focus, as this is typically cheaper than competing Arm-

based processors due to the open-source nature.

2.3 Algorithm Optimisation

Researchers optimise CNNs to lower test error and increase classification accu-

racy for a given dataset, however, this is often at the expense of compute and mem-

ory bandwidth. This section will highlight works (see column 2 of Table 2.1) that at-

tempt an algorithmic optimisation to improve compute and bandwidth, regardless

of the hardware or software platform in which it is implemented. We will highlight

various sub-categories with capitalised sub-headings.

2.3.1 Algorithmic Optimisation - Accuracy

As demonstrated by the ImageNet large scale visual recognition challenge (ILSVRC)

winners, Table A.2, classification accuracy was the driving force of research in CNNs

and still remains a driving influence.

1. OPTIMISE THE CNN ARCHITECTURE:

1(a). CREATE LARGER DEEP CNN MODELS:

Large neural network models of many layers are often used for increased classi-

fication accuracy e.g., AlexNet [Krizhevsky et al. 2012] and VGG-16 [Simonyan and

Zisserman 2014b]. However, training time is impacted. To speed up model training,

AlexNet distributes the load over two GPUs, as shown in Figure A-11. Krizhevsky

et al., achieve the ILSVRC winning Top-5 test error rate (see Table A.2) by by employ-

ing the regularisation method called “dropout” proposed previously by Srivastava

et al., [2013], to reduce overfitting and, reduce the data movement slightly within

the model. While the load distribution of training decreased the training time, it

increases the overall size and energy consumption of the network, making training

of AlexNet in a mobile device infeasible.

In comparison, when pretrained, the VGG-16 has 552MB of trained weight data,

and sixteen convolution layers in VGG-16. The greater depth of layers enabled Si-

monyan et al., to achieve a top-5 error rate, far surpassing AlexNet, but again pre-

venting implementation of the model and associated data on a mobile device.
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As shown in Table A.2, over the five years of the ILSVRC competition, the pro-

posed models’ number of layers, MAC count and the number of parameters rose

considerably. However, in general, the increase of these metrics led to the top-5 and

top-1 error rate gradually falling, surpassing the top-5 error rate of humans by 2016

[He et al. 2015]. Although not shown on Table A.2 both top-5 and top-1 error rates

have continued to decrease. FixEfficientNet [Touvron et al. 2020] boasts top-5 and

top-1 error rates of 88.5% and 98.7% respectively with 480 million parameters.

1(b). COMPRESSION, PRUNING, SPARSITY:

An alternative to large CNNs is to make the CNNs “as simple as possible but no sim-

pler”, to quote Einstein. Researchers focus on making the CNN more sparse by re-

ducing the network weights, the most significant component of a CNN to store and

compute. There are several methods to perform CNN reduction; pruning, quantisa-

tion, sparsity and reduced arithmetic precision are some of the effective methods.

Han et al., [2016a; 2016b] found that in a fully trained CNN, similar weight val-

ues occur many times. They proposed scalar quantisation of the weight data by

clustering around centroids to dictionary compress the weights into bins. They

found that between tens to hundreds of weight values were sufficient in network

inference while maintaining the high classification accuracy rate. They encode the

compressed weights with an index that specifies which of the shared weights should

be used. This form of pruning and compression reduces the number of connections

by 9× to 13×, with no impact on classification accuracy. We exploit this work for our

PASM proposal of chapter 3 on page 41.

Mao et al., demonstrate different granular levels of sparsity and how the dif-

ferent levels affect efficiency and classification accuracy. They show the surpris-

ing outcome that they can increase the Top-5 classification accuracy, albeit slightly

with their fine-grained pruning approach (i.e., prune individual weights) [Mao et

al. 2017]. Their proposal is an architectural optimisation as they do not change the

model algorithm. They only change the architecture of the model with different

styles and levels of sparsity.

1(c). CREATE NEW LAYER TYPE WITH FEW WEIGHTS:

As image recognition has surpassed human performance [Russakovsky et al.

2015], research effort is being applied to reducing the size of the network, weights,
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and parameters to be stored. Google was one of the first to drive down the number

of parameters and MACs required with their Inception model (see Table A.2).

Proposed by Howard et al., MobileNets [2017] is a different take on the convo-

lution schemes of other CNNs such as Inception (or GoogleNet as it has become

known). Regular convolution filter or weights are replaced with depthwise convo-

lution followed by pointwise convolution filters, a combination known as depth-

wise separable convolution, in a 30-layer configuration. The researchers compare

a full convolution MobileNets and a depthwise separable convolution MobileNets.

The depthwise separable convolution loses circa 1% classification accuracy but has

approximately 10% of the multiply-adds. When comparing the accuracy of the Stan-

ford Dogs training set [Khosla et al. 2011], with Google’s Inception V3, which has

84% top-1 accuracy, MobileNets exhibits 83.3% accuracy but lower computational

complexity and storage than Inception needs (see Table 10 of [Howard et al. 2017]).

2.3.2 Algorithmic Optimisation - Area

The area of CNNs, e.g., IC floor plan area or memory footprint, have to be re-

duced for a CNN to be implemented on a mobile device.

1. OPTIMISE THE CNN ARCHITECTURE:

1(c). CREATE NEW LAYER TYPE WITH FEW WEIGHTS:

The depthwise separable convolution of MobileNets [2017] vastly reduces the

size of the parameters to around 14% of that required by a comparable GoogleNet.

This optimisation only loses 0.7% classification accuracy, but the model requires

only 10% of the parameters of Inception requires, allowing for implementation in

small embedded systems at the edge.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Johnson [2018], discussed earlier, suggests “Rethinking floating-point”, which

they claim is a drop-in replacement for all FP32 maths and parameters (note: only
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round-to-nearest-even is supported). The replacement is only 8-bits and so is only

0.68× the area of an equivalent IEEE-754 FP16 fused multiply-add.

2.3.3 Algorithmic Optimisation - Energy

Larger CNN models generally mean greater memory references and associated

bus bandwidth and energy dissipation. Another challenge with CNNs is the irreg-

ular computation pattern.

1. OPTIMISE THE CNN ARCHITECTURE:

1(b). COMPRESSION, PRUNING, SPARSITY:

The sparsity of weight data of Deep Compression [2016a] reduces the energy

of data movement. Weight-sharing leads to 19× better energy efficiency compared

to DaDianNao, with a slight increase in classification accuracy. Han et al., further

tackle the issues of irregular computational patterns, [2016b]. The researchers im-

plement a sparse matrix which exhibits 90% static sparsity in the weight data, 10×

less computation and 5× less memory footprint. Their sparse vectors perform with

70% dynamic sparsity in the activation data and 3× less computation all driving

down the energy consumption. They demonstrate that their weight-shared values

can be stored on-chip consuming 5pJ per access rather than in off-chip DRAM that

consumed 640pJ per access when implemented on a CPU/GPU system.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

EIE [2016b] uses weight sharing of 4-bit weights and exhibits 8× less memory

footprint. The result of the irregular patterns mentioned above means the data can

fit in SRAM and consume 120× less energy than the equivalent implementation of

the network in DRAM. Furthermore, savings are multiplicative.

Reducing the overall computational complexity, Johnson [2018] mentioned above

shows that number representation of the network leads to an energy reduction. The

multiply-add functionality of the CNN is reduced by 0.59× that of an IEEE-754 FP16

fused multiply-add with no loss in exponent dynamic range, and maintaining the

significand precision.

4. ENERGY CONSERVATION:

Schwartz et al., of the Allen Institute, published some work [2019] that suggest

the following three points:
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1. Green AI is good for the environmental aspects, but Schwartz et al., also sug-

gest that universities should stop getting involved with "brute-force-AI". The

Baidu, Alibaba, Tencent (BAT) and Google, Microsoft, Apple, Facebook, In-

tel, Amazon (GMAFIA) have enough compute and storage resources toward

solving the brute-force problems. Instead, Schwartz et al., suggest universi-

ties should look at how to best optimise an AI problem for low floating-point

operations and low use of utility resources such as local compute and storage;

2. Schwartz et al., suggest researchers do not use a training set with e.g., every

face on the planet. The face data could violate various privacy laws such as

General Data Protection Regulation (GDPR) and lead to scaling problems;

3. Be more “green” by trying to define a problem where you minimise the "black-

box" area of deep learning that cannot be described. There will always be a

black-box, but researchers should make the black-box as small as possible so

that the internals of the network can be understood and optimised.

2.3.4 Algorithmic Optimisation - Execution Time

While researchers strive to move CNNs closer to the edge, execution time is often

negatively affected. Here we will look at how researchers tackle execution time.

1. OPTIMISE THE CNN ARCHITECTURE:

1(a). CREATE LARGER DEEP CNN MODELS:

LeNet [LeCun et al. 1989; Lecun et al. 1998] CNNs are examples of late 20th

century CNNs used in practice to deal with the performance of large amounts of

low-level information. While LeNet has many connections, it has few parameters

resulting in short training time. The final trained network and weights are small

enough to fit onto commercial DSP hardware of the time and can process more than

ten digits per second.

1(d). CREATE ALTERNATIVE CONVOLUTION METHODS:

Vasudevan et al., [2017] propose CNN convolution using general matrix multiply

(GEMM) that avoids the 𝑘2 growth in the size of the input data. The avoidance of

the growth increases the size of an intermediate matrix. The researchers produce 𝑘2

partial results in the result of the matrix multiplication, unlike Cho and Brand [2017],
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Figure 2-4: The kern2row method of performing convolution using matrix multiplication.
[Vasudevan et al. 2017].

who compute the outputs in sections. Vasudevan et al., call their contribution the

kern2row method, see Figure 2-4. The output of the matrix multiplication is a matrix

that is 𝑘2 times larger than the output. They sum the partial results within the large

matrix to produce the correct, smaller output matrix.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

As mentioned earlier, Project Brainwave [Chung et al. 2018] produces an 8-bit

(1-sign bit, 5-exponent bits and 2-mantissa bits) and 9-bit (1-sign bit, 5-exponent bits

and 3-mantissa bits) FP arithmetic that Microsoft exploits in a quantised CNN. MS-

FP8 and MS-FP9 offer different representative range and precision to standard FP8

or INT8. When compared to 8-bit integer operations, their MS-FP8 gives more than

90TFLOPS on the 14nm Stratix 10 280 FPGA running at 500MHz. The MS-FP8 and

MS-FP9 are suitable for neural net acceleration in FPGA in Microsoft data centres.

The EIE increases performance by 2.9× compared to DaDianNao, due to the

sparsity of their algorithm while maintaining prediction accuracy at the 32-bit float,

32-bit integer and 16-bit integer arithmetic precision.

Substituting FP units with low precision, fixed point 16-bit to 8-bit computations

are the focus of the work of Gupta et al., [2015]. The researchers replace round-

to-nearest with stochastic rounding for the large dot product accumulations and

show little or no detrimental effect on classification accuracy. The low precision

yields significant gains in energy efficiency and throughput when Gupta et al., im-

plement their accelerator in a FPGA. These computations yield a throughput of up
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to 260GOPS/s at a power efficiency of 37GOPS/s/W, way above the 1-5GOPS/s/W

of an Intel i7 CPU or NVidia GTX780 GPU.

With loop tiling, organisation of PE and buffer, and matching throughput of

the PE with off-chip interface bandwidth Zhang et al., [Zhang et al. 2015] demon-

strate their implementation has a performance of 61.62GOPS and a performance

density of 8.12−04𝐺𝑂𝑃𝑆/𝑠𝑙𝑖𝑐𝑒. These metrics are nearly four times the performance

and twice the performance density of the nearest competitor with 17 GOPS and

4.5−04𝐺𝑂𝑃𝑆/𝑠𝑙𝑖𝑐𝑒 respectively.

Courbariaux et al., significantly reducing the bit precision of the CNN to 2-bits

and call their solution BinaryConnect [2015a]. The researchers reduce the multipli-

cations by 2/3 by forcing the weights used in the forward and backward propaga-

tions to be binary; however, values may not necessarily be 1 or 0. They achieve com-

parable classification results on invariant MNIST, CIFAR-10 and SVHN datasets.

The bits reduction potentially reduces memory requirements by 16×. Courbariaux

et al., later coin the phrase BNN [Courbariaux et al. 2016]. BNNs can drastically

reduce memory size and accesses, and reduce computation by replacing arithmetic

operations with bitwise operations which substantially improves power-efficiency

while having comparable classification results on invariant MNIST, CIFAR-10 and

SVHN datasets. Courbariaux et al., offer a GPU library of BinaryConnect online1.

XNOR-Net [Rastegari et al. 2016] create a network of approximate weights with

binary weight and input values. The estimated network gains a 32× memory sav-

ing compared to a standard convolution of XNOR-Net accelerated AlexNet. The

researchers approximate the convolutions in the network with bitwise operations

achieving a 58× speed up in inference computations compared to a standard convo-

lution. Rastegari et al., also achieve a 44.2% classification accuracy compared to the

56.7% accuracy of a standard convolution.

2(b). OPTIMISE ARITHMETIC OPERATORS:

The underlying arithmetic operators of CNNs are multiplication and accumu-

lation, the performance of which researchers are continuously improving. To that

end, Fürer [Fürer 2007] propose a faster method of multiplication. Their work com-

pares the performance of Schönhage-Strassen’s fast fourier transform (FFT) based

1https://github.com/MatthieuCourbariaux/BinaryConnect
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Figure 2-5: Convolution Loop Interchange. [Ma et al. 2017].

Figure 2-6: Convolution Loop Interchange Code. [Ma et al. 2017].

algorithm (sometimes used by CNNs), see Equation 1, which computes integers in

time:

𝑂(𝑛 𝑙𝑜𝑔 𝑛 · 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) (1)

and has a lower bound of:

Ω(𝑛 log 𝑛) (2)

to that of their algorithm that computes integers of length 𝑛 in:

𝑂
(︀
𝑛 log 𝑛 · 2𝑂(log *𝑛))︀ (3)

time, where 𝑙𝑜𝑔 * 𝑛 is the iterated logarithm and thus reduces the gap between the

bounds.

3. CREATE CUSTOM HARDWARE ACCELERATORS:

3(b). CREATE SPECIFIC FPGA and ASIC ACCELERATOR:

Ma et al., [2017] build somewhat on the work of Zhang et al., and others to pro-

pose their loop unrolling and tiling optimisation algorithm. Where Ma et al., differ

from Zhang [2015] is in performing loop interchange, i.e., they alter the computa-
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tional order of the four convolution loops, ensuring the innermost loop is the MAC

within the kernel window 𝑁𝑘𝑥×𝑁𝑘𝑦. See Figure 2-5 and the code in Figure 2-6.

2.3.5 Algorithmic Optimisation - Storage

Compression of the CNN network and weights are often a means of reducing the

storage requirements of a CNN. Several researchers have focused on compression.

1. OPTIMISE THE CNN ARCHITECTURE:

1(b). COMPRESSION, PRUNING, SPARSITY:

Hinton et al., with their Distilling [Hinton et al. 2015], increases sparsity in the

network by building on the research of Bucilǎu et al., [2006] who compress an en-

semble of knowledge into a single model. Hinton et al., uses a different compression

technique to that of Bucilǎu et al.’s, work. Hinton et al., show that experiments in

MNIST with a distilled network that has 300 or more units in two hidden layers and

their temperature parameter set above 8, can correctly identify a written digit 3 to a

classification accuracy of 98.6%.

SqueezeNet is a much more sparse network proposed by Iandola et al., [2016].

SqueezeNet is easily implementable on mobile embedded devices as SqueezeNet

compresses the model parameters by 50× (thus the name). Iandola et al., optimise

the algorithm by adopting the following three design strategies:

∙ Replace 3 × 3 filters with 1 × 1 filters (similar to GoogleNet and MobileNets);

∙ Decrease the number of input channels to 3 × 3 filters which they do with

squeeze layers (a layer with only 1 × 1 filters);

∙ Downsample late in the network so that the convolution layers have large ac-

tivation maps.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Researchers often quantise weight data from FP32 to FP16 and 8-bit integer and

down to 1-bit binary values, thus reducing storage requirements.

Courbariaux et al.’s, BNN [2015a] and [2016], reduces their memory requirement

by a factor of 16×.

Other researchers posit that using uniform bit widths of data across the entire

network may be hampering efficiency. Lin et al., [2016] suggest a fixed-point quan-
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tisation alternative where they identify optimal fixed point bit-widths allocation

across the layers of the CNN, yielding greater than 20% reduction in model size,

with no loss in classification accuracy on the CIFAR-10 benchmark suite. Optimal

bit-width quantisation aids the implementation of the CNN in embedded systems.

ALGORITHMIC OPTIMISATIONS CONCLUSION:

The different proposals for optimising the network and weights for storage, be it

weight sharing or bit-precision alterations, allow users to select the correct network

that will correspond to the memory requirements/limitations of their embedded

mobile devices. The next section will look at custom bit-precision optimisations in

a little more detail.

2.4 Customising Bit-Precision

The following subsections highlight changes in bit precision or number repre-

sentation (see column 3 of Table 2.1), and how these changes affect classification

accuracy, area, energy, execution time and storage. We will highlight various sub-

categories with capitalised sub-headings.

2.4.1 Bit-Precision Optimisation - Accuracy

Researchers change bit precision to satisfy low compute or storage requirements.

At the same time, researchers have to strive to maintain or in some cases, improve

the top-5 and top-1 classification accuracy.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

FINN discussed previously, have reduced their weights and arithmetic to a bi-

nary representation. They managed to obtain a high level of classification accuracy

of CIFAR-10 and SVHN datasets of 80.1% and 94.9% respectively.

De Dinechin et al., [2009] demonstrate that as the bit width of the exponent and

mantissa of a FP operator can be changed to any arbitrary value, the classification

accuracy of the number representation can be set to any desired accuracy.

Johnson et al.’s, log-linear multiply-add type that they term ELMA [2018] reaches

just shy (-0.9%) of the top-1 classification accuracy of the FP equivalent ResNet-50

ImageNet validation set, and within only -0.2% of the top-5 classification accuracy.
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The bit-width reduction is useful where the size of the target system for the CNN is

of different size; the bit precision can be scaled based on storage or computation of

the mobile device.

2.4.2 Bit-Precision Optimisation - Area

One of the advantages of using FLOating-POint COres (FloPoCo) to automate

the design of customer precision arithmetic [2009], is the precise controllability it

offers the designer of the area the FP arithmetic design consumes. De Dinechin

et al.’s, results show the impact of different bit precisions of FP representation on

the performance and area, when the generated RTL is synthesised with an ASIC or

FPGA synthesiser. We rely on this for our HOBFLOPS proposal.

If researchers approach optimising CNNs from the bottom up and rethink how

numbers are represented, then, as we discussed earlier, Johnson [2018] demonstrates

a saving of between 5× and 10× the area of the implementation. However, this leads

to upfront design costs that only larger companies may afford.

2.4.3 Bit-Precision Optimisation - Energy

1. OPTIMISE THE CNN ARCHITECTURE:

1(b). COMPRESSION, PRUNING, SPARSITY:

Energy is conserved when, either there are fewer transactions on the whole on

the memory bus, or the transactions contain compressed data.

The EIE accelerator discussed above [Han et al. 2016a; Han et al. 2016b] shows

their quantised multiplier dissipates around 3.75pJ and maintains a classification ac-

curacy of around 80% of the FP32, 32-bit integer and 16-bit integer representations.

The researchers push the quantisation strategy down to 4-bits. They demonstrate

a power-efficient matrix-vector multiplication of 160.3GOP/s/W and claim more

than an order of magnitude greater than their next nearest competitor, the DaDian-

Nao and 24, 000× more efficient than CPU and 3400× more efficient than GPU.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

The TPU [Jouppi et al. 2017] performs at 92TOPS/s compared to the benchmark

Haswell E5-2699 v3 CPU partially due to their use of bfloat16 [Google 2019].
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Johnson’s [2018] reduced bit precision ELMA compares to that of float16 and

shows a 5× power saving.

2.4.4 Bit-Precision Optimisation - Execution Time

Often reduction in bit precision is at odds with execution time. However, research-

ers find this not necessarily the case, if careful consideration of the underlying hard-

ware architecture or algorithm is optimised.

1. OPTIMISE THE CNN ARCHITECTURE:

1(b). COMPRESSION, PRUNING, SPARSITY:

The reduction in bit precision of the EIE [Han et al. 2016a; Han et al. 2016b] in

both the convolution and fully connected (FC) layers shows no appreciable effect on

the top-1 or top-5 performance down to 16-bit integer arithmetic. They demonstrate

that, compared to CPU and GPU, the EIE is 189× and 13× faster.

1(c). CREATE NEW LAYER TYPE WITH FEW WEIGHTS:

Howard et al., [2017] compare their depthwise separable convolution to a stan-

dard baseline convolution. Their baseline gives a classification accuracy of 86.9%,

which contains 1600 million multi-adds and 7.5 million parameters. Their largest

equivalent 1.0 MobileNet-224 exhibits an accuracy increase of 88.7%, 568 million

multiply-adds and 3.2 million parameters. Howard et al., keep reducing the width

of the multiplier. At 0.25 MobileNet-128, they see a drop in accuracy to 0.5% below

that of the baseline. With a few arithmetic operations and parameters, the network

can be implemented in a mobile device while keeping the frame rate high.

2. OPTIMISE THE NUMBER PRECISION AND OPERATORS OF THE CNN:

2(a). REDUCE PRECISION OF NUMBER FORMAT AND ARITHMETIC:

Interestingly, as discussed above, De Dinechin et al., [2009] demonstrate that their

10 cycles, 368MHz slow custom FP and their 13 cycles, 368MHz fast custom FP

performs faster than the equivalent 10 cycle, 319MHz 32-bit FP version, and only

requires two more cycles at the same frequency of operation for their fast version.

Gupta et al., [Gupta et al. 2015] recognise Courbariaux et al., are doing orthog-

onal research [Courbariaux et al. 2015b]. Courbariaux’s work proposes a hybrid

of the fixed-point and the conventional floating-point arithmetic for training deep

neural networks whereas Gupta’s proposal trains using low-precision fixed-point

arithmetic and stochastic rounding followed by fine-tuning with higher precision
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fixed-point computations. When Gupta et al., implement their 28 × 28 systolic array

in a Xilinx Kintex K325T FPGA they achieve a 137GOPS/s/W performance.

INT8 [Fu et al. 2016] (mentioned above) use of 8-bit integers accommodates the

bandwidth and storage of the FPGAs BRAM and DSP units. They claim the 8-bit

representation gives them a competitive advantage of a peak of 1.75 : 1 DSP multi-

pliers to INT8 MACs ratio. Their DSP units can perform two INT8 MACs, sharing

the same weights, if the multiplier is fed 24-bits and their carry accumulator with

32-bits.

Lin et al., [2016] agree with Han et al., that quantisation is the approach and so

propose a method of converting the FP model to a fixed point quantised equivalent.

The researchers propose an algorithm for the conversion but also put forward the

suggestion that different layers require different bit widths for each of the AlexNet

and CIFAR-10 CNNs.

The move to using TPUs [Jouppi et al. 2017] by Google for the training phase

significantly improves the ML memory bandwidth of 600GB/s and performance of

45TFLOPS.

Researchers propose many approaches of customised arithmetic to reduce the

arithmetic precision of CNN inference in FPGA. Some researchers suggest software-

only microprocessor methods of reducing inference precision. Low-overhead soft-

ware solutions can be provided if SIMD processors are targetted. Anderson et al.,

[2017] exploit the SIMD nature of the processor with flytes, their scheme for byte-

level customizable precision FP storage, packing and computing the SIMD vector

registers. They use SIMD instructions to convert between the custom format and

native FP while packing and unpacking the data into the vector registers.

Microsoft’s network processing unit (NPU) [Chung et al. 2018] as part of Project

Brainwave discussed above compare the performance of their MS-FP8 and MS-FP9

against 16- and 8-bit integer operations and Microsoft claim 90TOPS for MS-FP8 and

65TOPS for MS-FP9.

To decrease the training time of neural networks, one might consider using mul-

tiple processors, GPUs or FPGAs to accelerate the training. Dettmers [Dettmers

2015] suggests that the communications bottleneck between the multiple accelera-

tors is throttling the potential speedups parallelism offers. Dettmers develop 8-bit
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approximate algorithms to compress the 32-bit gradients and non-linear activations

to utilise the available bandwidth and show a 50× speedup compared with 32-bit

on a 96 GPU accelerator system.

2(c). BITSLICING:

Xu et al., [2017] propose an approach to vector computing based on bitslice vec-

tor formats and build arithmetic operators from bitwise instructions on general-

purpose processors with SIMD extensions. The bitwise arithmetic approach enabled

them to support a vector processing model that allowed for arbitrary precision data.

Xu et al., create vectors of integer or FP types of between five and eleven bits, for ex-

ample, they construct a vector of thirty-two 8-bit elements, or construct a vector

of thirty-two 17-bit elements. The bitwise arithmetic approach allowed optimisa-

tions of data precision on general-purpose processors that would only previously

be available on FPGA or custom ASICs. Instead of storing the vectors in the tra-

ditional sense of storing, say, 17-bit vectors inefficiently in a 32-bit register, they

instead store thirty-two 17-bit words that are conceptually rotated and flipped into

a bitsliced format and stored in memory. The researchers use bitwise arithmetic to

perform integer or floating-point arithmetic, such as addition and multiplication, on

the vectors while the vectors remained in bitsliced format.

Xu et al., show performances of 8- to 28-bit integer and floating-point arithmetic

on the AVX2 processor from Intel. The researchers also show some real-world ap-

plications by demonstrating their bitslice arithmetic implementation in xSCALE,

xAXPY, xGEMV and one-dimensional blur functions supplied in the BLAS library.

Xu et al., show that for low numbers of bits up to around 11-bits on AVX2 128-

bit and 14 bits for 256-bit, the massively parallel computation that bitslice arithmetic

offers to deliver significant speedup of code written for bitsliced format. They do not

show performance on Intel’s AVX512 or any Arm device. Furthermore, their manual

optimisations might be further optimised with other optimisation tools. Both of

these points are explored in our HOBFLOPS work on chapter 4 on page 71.

2.4.5 Bit-Precision Optimisation - Storage

Reducing the bit precision of the pretrained weights allows for reduced storage

and bandwidth costs.

1(b). COMPRESSION, PRUNING, SPARSITY:
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In Deep Compression [Han et al. 2016a] that we have discussed at length above,

the proposed 5.3-bits for the weights reduces to 4.1-bits when adding Huffman cod-

ing and gives a compression rate of 39× for LeNet. Compare that to the other VGG-

16, which uses around 6.4-bits for the weights, reduced to 4.1-bits when additionally

using Huffman coding and yields a 49× compression rate. AlexNet yields 35×, with

5.4-bits of weights, which is reduced to 4-bits with the additional Huffman coding.

Comparing Deep Compression to XNOR-Net [2016] (briefly discussed above),

XNOR-Net with their binary values estimate their network gains a 32× memory sav-

ing compared to a standard convolution of XNOR-Net accelerated AlexNet. How-

ever, XNOR-Net only supports CPU.

SqueezeNet [2016] performs comparisons with Deep Compression and shows

for 6-bit that they reduce the storage requirements by a factor of 10 and reduce the

model size vs AlexNet by 510× while maintaining the same top-1 and top-5 accuracy

as Deep Compression.

2.5 Conclusion

Highlighted above are three main areas of optimisations; architectural optimisa-

tions, algorithmic optimisations and bit-level optimisations. Researchers attempt to

improve the level of CNN classification accuracy while improving the orthogonal

areas.

Quantisation and compression techniques give excellent results and suggest fur-

ther areas of improvement. We investigate exploiting and optimising weight shar-

ing implemented in FPGA and ASIC in our PASM work, see chapter 3 on page 41.

Bitsliced arithmetic offers very good performance for low bit-widths. We inves-

tigate applying bitslicing techniques to the MAC of a CNN in high- and low-end

processors in our HOBFLOPS work, see chapter 4 on page 71.

Often the effect of reducing the bit-precision of the arithmetic or increasing quan-

tisation of the weight values is to decrease the area and energy consumed by the

CPU, FPGA or ASIC and at the expense of classification accuracy. However, our

works show that accuracy is not compromised with our optimisation strategies

while increasing efficiency and execution time.
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A further background of how CNNs work algorithmically can be found in Ap-

pendix B. There we introduce CNNs and explain how they work and how they are

trained. We show the associated arithmetic to demonstrate the scope of computation

needed and thus the potential optimisation avenues to explore. We find that opti-

misation is a big area of research, with a research priority of increasing classification

accuracy and execution time of CNNs, while also attempting to optimise the models

and associated data for implementation in low-power embedded IoT devices.

2.6 Central Tenets of this Research

The underlying floating- or fixed-point arithmetic of CNNs discussed in sub-

section B.2.4, and the number of MACs in a CNN outlined in subsection B.3.1, de-

termines largely how much compute, energy and throughput the CNN will con-

sume. These requirements make it challenging for researchers to implement CNNs

on embedded devices. As discussed in this chapter, researchers often tackle these

challenges by focusing on algorithmic and architectural optimisations to decrease

execution time or area and thus energy. If CNNs are to operate on mobile edge IoT

devices, then we require additional low-level optimisations, such as bit-precision

optimisation to reduce energy consumption and area and increase throughput of

CNNs accelerators.

Often researchers look to increase the performance of hardware CNN accelera-

tors by implementing, in parallel, as much of the underlying gate-level logic and

arithmetic as possible. The parallel hardware implementation leads to the replica-

tion of gate-level logic and arithmetic functions such as MACs. The MAC contains a

multiplier which is typically large and consumes a significant quantity of the energy

budget of the CNN accelerator.

Our first research area, chapter 3 on page 41, looks at reducing the number of

hardware parallel multipliers in a CNN. When implemented in an ASIC, multipliers

are large in gate-level area and power-hungry. Our research exploits “weight shar-

ing” which allows us to replace hardware multipliers in the MAC circuit with adders

and selection logic, followed by a single post-pass multiply. We implemented PASM

in ASIC and analyse PASMs effectiveness. We show our approach results in fewer

gates, smaller logic, and reduced power with only a slight increase in latency. We
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also show PASM implemented in resource-constrained FPGAs with improved utili-

sation of the FPGA fabric resources.

Another method researchers employ to increase software performance of acceler-

ators while retaining classification accuracy is to change the bit-precision of the un-

derlying software arithmetic. Reducing bit-precision typically reduces the volume

of weight data to be transferred from random access memory (RAM) and computed

in CPU and GPU by the model, thus reducing the storage and energy consumption

and increasing throughput of the accelerator. Hardware developers produce custom

mixed precision accelerators in FPGA and ASIC but in general CPUs do not support

fast, custom precision FP in software.

For our second research area, we propose HOBFLOPS, a generator of efficient

custom-precision emulated bitslice-parallel software (C/C++) FP arithmetic, see chap-

ter 4 beginning on page 71. We generate custom-precision FP routines, optimised

using a hardware synthesis design flow, to create circuits. We provide standard

cell libraries matching the bitwise operations on the target microprocessor archi-

tecture and a code-generator to translate the hardware circuits to bitslice software

equivalents. We exploit bitslice parallelism to create a novel, very wide (32—512

element) vectorized CNN convolution for inference. On Arm and Intel processors,

the MAC performance in CNN convolution of HOBFLOPS, Flexfloat, and Berke-

ley’s SoftFP are compared. HOBFLOPS outperforms Flexfloat by up to 10× on Intel

AVX512. HOBFLOPS offers arbitrary-precision FP with custom range and precision,

e.g., HOBFLOPS9, which outperforms Flexfloat 9-bit on Arm Neon by 7×. HOB-

FLOPS allows researchers to prototype different levels of custom FP precision in the

arithmetic of software CNN accelerators. Furthermore, HOBFLOPS fast custom-

precision FP CNNs may be valuable in cases where memory bandwidth is limited.
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3
Low Complexity MAC Units for CNNs with

Weight Sharing

3.1 Introduction

AS discussed in section A.1, page 103, CNNs are used on a daily basis for im-

age, speech and text recognition and their use and application to different

tasks is increasing at a very rapid rate. However, as discussed in section 2.1 be-

ginning on page 9, CNNs require huge memory storage and bandwidth for weight

data and large amounts of computation that would push to extremes the battery,

computation, and memory in mobile embedded systems. Under the optimisation

techniques of Table 2.1, researchers have proposed methods of quantising and dic-

tionary compressing the weight data to reduce the memory bottleneck and bus

bandwidth. Others have proposed various different CNN hardware accelerators

implemented in both FPGAs and ASICs that may contain hundreds to thousands

of parallel hardware MAC units to increase the computational performance. This

increase in computational performance comes at the great expense of power as the

MAC units contain a multiplier, each of which consumes large numbers of logic

gates and high-power consumption in an ASIC [Sabeetha et al. 2015].

Once trained, CNNs are extensively used in an inference mode (see section A.3

starting on page 119). As discussed in section 2.1, Han et al., [2016a; 2016b] found

that they can prune and diction compressed similar weight values of the trained

CNN. They found that tens to hundreds of weight values were sufficient while

maintaining classification accuracy. Weight-sharing does not reduce the number of
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MAC operations required; it reduces only the weight data storage and bandwidth

requirement.

Building on the research of Han et al., [2016a; 2016b], we propose a rearchitected

MAC circuit of the weight-shared CNN aimed at hardware accelerators. Rather

than computing the sum-of-products (SOP) in the MAC directly, we instead count

how many times each of the weight indexes appears and store the corresponding

IFM value in a register bin, thus replacing the hardware multipliers with count-

ing, selection, and accumulation logic. After this weighted histogram accumula-

tion phase, a post pass multiplication is performed of the accumulated IFM values

in bins with the corresponding weight value of that bin. We call this accelerator

optimisation the PASM. To evaluate PASM performance we implement PASM in a

convolution layer of a weight-shared CNN accelerator. Where weight bin numbers

are small, and channel numbers are large, the counting and selection logic can be

significantly smaller and lower power than the corresponding multiply-accumulate

circuit. We also show that PASM is beneficial when implemented in a resource-

constrained FPGA as PASM consumes fewer BRAMs and DSP units for the MAC

operations in the FPGA.

The rest of this chapter is organised as follows. Section 3.2 gives some back-

ground on CNN accelerators and introduces the PASM and how it compares to

other CNN accelerators. Section 3.3 shows how our PASM is implemented in a

convolution layer accelerator with examples compared to a weight-shared accelera-

tor. Section 3.4 describes how a weight-shared-with-PASM convolution accelerator

is designed and implemented in an ASIC at 45nm clocked at 1GHz and in a Zynq

FPGA clocked at 200MHz. Section 3.5 presents the experimental results showing

latency, power, and area projections for both FPGA and ASIC. Section 3.6 draws

conclusions.

3.2 DNN Convolution with Dictionary-Encoded Weights

3.2.1 CNN Accelerators

As outlined in section B.3 on page 144, a CNN contains convolution layers, acti-

vation function layers such as a sigmoid or rectified linear unit (ReLU) and pooling
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1 ifm[C][IH][IW], weight[M][C][KY][KX];
2 outFeat[M][OH][OW];
3
4 for (ihIdx =(KY/2); ihIdx <(IH -(KY/2)); ihIdx+= Stride) {
5 for (iwIdx =(KX/2); iwIdx <(IW -(KX/2)); iwIdx+= Stride) {
6 for (mIdx =0; mIdx <M; mIdx ++) {
7 summands = 0;
8 for (cIdx =0; cIdx <C; cIdx ++) {
9 for (kyIdx =0; kyIdx <KY; kyIdx ++) {

10 for (kxIdx =0; kxIdx <KX; kxIdx ++) {
11 imVal = ifm[cIdx ][(( ihIdx+kyIdx)
12 -(KY/2))][(( iwIdx+kxIdx)-(KX/2))];
13 kernVal = kernel[mIdx][cIdx][kyIdx ][ kxIdx];
14 summands += imVal * kernVal;
15 } } }
16 outFeat[mIdx][ihIdx/Stride ][ iwIdx/Stride] = summands;
17 } } }

Listing 3.1: Simplified pseudo-code of a convolution layer.

* + resultREGISTER 2W
W

W

IFM

weight

W = Bit Width (4-32 Bits)

2W

ⱡ Multipliers consume large amounts
of ASIC area and power resource

ⱡ

Figure 3-1: Simple MAC block diagram.

layers. Up to 90% of the computation time of a CNN is taken up by the convolution

layers [Farabet et al. 2010]. Within the convolution layer, there are many thousands

of MAC operations, as shown in the pseudo code in Listing 3.1. The convolution

operator has an IFM of dimensions 𝐼𝐻 × 𝐼𝑊 and 𝐶 channels and is convolved with

𝑀 kernels (typically 3 to 832 [Szegedy et al. 2015]) of dimension 𝐾𝑌 × 𝐾𝑋 and

𝐶 channels at a stride of 𝑆 to create an output feature map of 𝑂𝐻 × 𝑂𝑊 and 𝑀

channels. The loops can be unrolled into parallel MAC units and implemented in

hardware [Zhang et al. 2015] to accelerate the convolution.

A MAC unit (see Figure 3-1) is a sequential circuit that accepts a pair of numeric

values (IFM and weight values) of a predefined bit width and type (e.g., 32-bit fixed-

point integers), computes their product and accumulates the result in the local ac-

cumulator register each clock cycle. The locality of the accumulator register reduces

routing complexity and clock delays within the MAC.

In our review of the literature in section 2.1 on 9, Han et al., [2016a; 2016b] pro-

pose a weight-sharing architecture to reduce the power and memory bandwidth

consumption of CNNs. They found that similar weight values occur multiple times

in a trained CNN. By binning the weights and retraining the network with the
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+ resultREGISTER
2W

WCI

IFM
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FILE
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WCI=binIndex Bit Width
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n MACs

W       

W
ⱡ
*
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Figure 3-2: Simplified weight-shared MAC block diagram.

binned values, they found that just sixteen weights were sufficient in many cases.

They encode the weights by replacing the original numeric values with a 4-bit in-

dex that specifies which of the sixteen shared weights should be used. This greatly

reduces the size of the weight matrices. Figure 3-2 shows simplified weight-sharing

decode logic coupled with multiple MAC units of the CNN. When the kernel input

is encoded using weight-sharing, an extra level of indirection is required to index

and access the actual weight value from the weights register file.

Figure 3-3 shows an example of the weight-shared MAC in operation. Each

IFM value is streamed in, and its corresponding binIndex is used to access the pre-

trained weight against which to multiply and accumulate into the result register.

Figure 3-3 shows how IFM value 26.7 is multiplied-accumulated with the pretrained

weight 1.7 indexed by binIndex 0. Next 3.4 is multiplied-accumulated with the pre-

trained weight 0.4 indexed by binIndex 1. This continues until finally multiplying-

accumulating IFM value 6.1 with pretrained weight value 1.7 of bin 0 to give the

result of Equation 1.

result = (26.7 × 1.7) + (3.4 × 0.4) + (4.8 × 1.3) + (17.7 × 2.0) + (6.1 × 1.7) = 98.8.

(1)

In both a simple MAC (Figure 3-1) and a weight-shared MAC (Figure 3-2) the

multiplier is the most expensive unit in terms of floor area (i.e. large numbers of

gates) and power consumption in an ASIC or numbers of DSP units in an FPGA. As

a large number of MAC units are used in a parallel weight-shared CNN hardware

accelerator, the overall area and power is likely to be large.
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Figure 3-3: Simplified weight-shared MAC example.

Weight-sharing is an important factor in implementing CNN accelerators in an

off-line embedded, low power device (see section 2.1). Han et al., [2016a; 2016b]

show that when pruning, quantisation, weight-sharing and Huffman coding are all

used together in an AlexNet [Krizhevsky et al. 2012] CNN accelerator, the weight

data required are reduced from 240MB to 6.9MB, a compression factor of 35×. Un-

fortunately, they do not provide results for the effect of weight-sharing alone, with-

out these other optimisations. When they apply similar pruning, quantisation, weight-

sharing and Huffman coding to the VGG-16 [Simonyan and Zisserman 2014b] CNN

accelerator, the weight data is reduced from 552MB to 11.3MB, a 49× compression

ratio. The fully connected layers dominate the model size by 90%, but Han et al.,

[2016a; 2016b] show that these layers compress by up to 96% of weights pruned in

VGG-16 CNN. These newly weight-shared CNNs run 3× to 4× faster on a mobile

GPU while using 3× to 7× less energy with no loss in classification accuracy. As the

number of free parameters being learned is reduced in a weight-shared CNN, the

learning efficiency is greatly increased and allows for better generalisation of CNNs

for vision classification.

The trend is towards increasingly large networks, increasing the number of lay-

ers such as ResNet [He et al. 2015] or increasing the convolution types within each

layer such as GoogLeNet [Szegedy et al. 2015] (see section B.3 for more details).

Weight-sharing is one method that is getting increased research focus to reduce the
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overall weight data storage and transfer so that the networks can be implemented

on off-line mobile devices.

CNN hardware accelerators typically use 8-, 16-, 24- or 32-bit fixed-point arith-

metic [Chen et al. 2016]. A combinatorial 𝑊 -bit multiplier requires 𝑂(𝑊 2) logic

gates to implement which makes up a large part of the MAC unit. Note that sub-

quadratic multipliers are possible but are inefficient for practical values of 𝑊 [Fürer

2007].

3.2.2 The PASM Concept

We propose to reduce the area and power consumption of MAC units by rearchi-

tecting the MAC to do the accumulation first, followed by a shared post-pass mul-

tiplication. Our new PASM accelerator is shown in Figure 3-4. Rather than comput-

ing the SOP in the MAC directly, PASM instead counts how many times each 𝐵-bin

weight-shared index appears and accumulates the corresponding 𝑊 -bit IFM value

in the corresponding 𝐵 weight-shared bin register indexed by the binIndex. PASM

has two phases:

1. accumulate the IFM values into the weight bins (known as the parallel accum-

ulate and store (PAS));

2. multiply the binned values with the weights (completing the PASM).

Figure 3-5a shows an example of the accumulation phase. Our PAS unit is a

sequential circuit that consumes a pair of inputs each cycle. One input is an IFM

value, and the other is the binIndex of the weight value in the dictionary of weight

encodings. The PAS unit has a set of 𝐵 accumulators, one for each entry in the

dictionary of weight encodings. The accumulators are initially set to zero. Each

time the PAS consumes an input pair, it adds the IFM value to the accumulator with

index binIndex. For example, when the leftmost pair of inputs in Figure 3-5a are

consumed, the IFM value 26.7 is added onto accumulator numbered binIndex = 0.

Next 3.4 is accumulated into bin 1. This continues until finally accumulating 6.1 into

bin 0 to give 26.7+6.1 = 32.8. This accumulated result tells us that the weight stored

in dictionary location 0 has been paired with an accumulated IFM value of 32.8. For

the accumulation phase, the actual weight value stored in dictionary location 0 does
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not matter. We are simply computing a weighted histogram of the dictionary weight

indices.

In the second phase, the histogram of weight indices is combined with the actual

weight values to compute the result of the sequence of multiply-accumulate opera-

tions. Figure 3-5b demonstrates the multiply phase, multiplying-accumulating bin

0 pretrained weight with bin 0 accumulated IFM value, giving 32.8 × 1.7 = 55.76.

The contents of pretrained weight bin 1 is multiplied-accumulated with IFM bin 1

value and so on until all the corresponding bins are multiplied-accumulated into

the result register, giving 98.8, the same result found by the weight-shared MAC,

Figure 3-3.

This second multiply stage can be implemented using a traditional MAC unit

that is shared between several PAS units. Several MAC units can be replaced by

the same number of PAS units sharing a single MAC. For example, consider the

case where we must compute many multiply-accumulate sequences, where each

sequence consumes 1, 024 pairs (IFM and weight) of values. A fully-pipelined MAC

unit is a sequential circuit that will typically require a little over 1, 024 cycles to

compute the result.

If we have four such MAC units, we can compute four such results in parallel,

again in around 1, 024 cycles. If the weight data has been quantised and dictionary

encoded to, say, sixteen values, then we could use PAS units with 𝐵 = 16-bins to

perform the accumulate phase of the PASM computation. Four such fully-pipelined

PAS units could perform the accumulation phase in around 1, 024 cycles. However,

the accumulation phase of the PASM does not give us a complete answer. We also

need to perform the multiply phase, which involves multiplying and accumulating

𝐵 = 16 values in this example. If each PAS unit had a MAC unit, then the multiply

phase would take around sixteen cycles for a total of 1, 024 + 16 = 1, 040 cycles

for the entire multiply-accumulate operation. However, in this example, the four

parallel PAS units share a single MAC unit with the result that the total time will be

1, 024 + 4 × 16 = 1, 088 cycles. PASM can have higher throughput when compared

to the standard MAC due to the PAS units being much smaller than the MAC for

small values of 𝐵, up to about 𝐵 = 16.

47



Chapter 3. Low Complexity MAC Units for CNNs with Weight Sharing

W=BitWidth
     (4-32 Bits)
WCI=binIndex Bit Width
        (4 to 256 weight bins)

+

WCI

W

IMAGE
ACCUMULATION

REGISTER
FILE

WEIGHTS
REGISTER

FILE

+ REGISTER 2W2W

n PAS's

Shared MAC

W
W

W

IFM

binIndex

pretrained
weights

ⱡ 1 Multiplier per n PAS's
   therefore less area and power

*
ⱡ result
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Figure 3-5: PASM in Operation.

3.2.3 PASM accelerator

Table 3.1 compares the gate counts of the sub-components of a simple MAC, a

weight-shared MAC and a PAS. The gates column shows the circuit complexity in

gates of each sub-component, assuming fixed-point arithmetic. The bit-width of the

data is 𝑊 , and the number of bins is 𝐵 in the weight-shared designs. For example, a

simple MAC unit contains an adder (𝑂(𝑊 ) gates), a multiplier (𝑂(𝑊 )2) gates) and a

register (𝑂(𝑊 ) gates). A weight-shared MAC also needs a small register file with 𝐵

entries to allow fast mapping of encoded weight indices to shared weights. The PAS

needs a read and write port due to the interim storage of the accumulation results

48



3.2. DNN Convolution with Dictionary-Encoded Weights

Table 3.1: Complexity of MAC, Weight-shared MAC and PAS.

Simple Weight-Shared
Sub Component Gates MAC MAC PAS
Adder 𝑂(𝑊 ) 1 1 1
Multiplier 𝑂(𝑊 2) 1 1
Weight Register 𝑂(𝑊 ) 0 𝐵
Accumulation Register 𝑂(𝑊 ) 1 1 𝐵
File Port 𝑂(𝑊𝐵) 1 2

that need to be read by the post pass multiplier, whereas the MAC only needs a

write port.

From Table 3.1, we can also see that the efficiency of PAS depends on a weight-

sharing scheme where the number of bins, 𝐵, is much less than the total number of

possible values that can be represented by a weight value, that is 2𝑊 . For example,

if we consider the case of 𝑊 = 16, then in the absence of weight-sharing, a PAS

would need to deal with the possibility of 216 different weight values, requiring 216

separate bins. The hardware area of these bins is likely to be prohibitive. Therefore,

PAS is effective where the number of bins is much lower than 2𝑊 .

3.2.4 Evaluation of PASM as a Stand-alone Unit

We design an accelerator unit to perform a simplified version of the accumu-

lations in Figure 3-4. Our accelerator accepts four IFM inputs and four shared-

weight inputs each cycle and uses them to compute sixteen separate MAC opera-

tions each cycle. The weight-shared version performs these operations on sixteen

weight-shared MAC units (16-MAC). Our proposed PASM unit has sixteen PAS

units and uses four MAC units for post-pass multiplication (16-PAS-4-MAC). Both

the weight-shared and weight-shared-with-PASM accelerators are coded in Verilog

2001 and synthesised to a flat netlist at 100MHz with a short 0.1ns clock transition

time targeted at a 45nm process ASIC. We measure and compare the timing, power,

and gate count in both designs for the same corresponding bit widths and the same

numbers of weight bins.

The standard 16-MAC and the proposed 16-PAS-4-MAC each have 𝑊 -bit IFM

and weight inputs and the 16-PAS-4-MAC has a 𝑊𝐶𝐼-bit binIndex input to index

into the 𝐵 = 2𝑤𝑐𝑖 weight bins. The designs are coded using integer/fixed point pre-

cision numbers. Both versions are synthesised to produced a gate level netlist and
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timing constraints designed using Synopsys design constraint (SDC) [Gangadharan

and Churiwala 2013] so that both designs meet timing at 100MHz.

Cadence Genus (version 15.20 - 15.20-p004_1) is used for synthesising the RTL

into the Oklahoma State University (OSU) FreePDK 45nm process ASIC and ap-

plying the constraints in order to meet timing. Genus supplies commands for re-

porting approximate timing, gate count, and power consumption of the designs at

the post-synthesis stage. The “report timing,” “report gates,” and “report power”

commands of Cadence Genus are used to obtain the results for both 16-MAC and

16-PAS-4-MAC accelerators. Graphs of the gate count and power consumption re-

sults are produced for the two different designs at different bit widths and different

numbers of weight bins, showing that the PASM is consistently more area and en-

ergy efficient than the weight-sharing MAC.

Figure 3-6 shows comparisons of the logic resource requirements of a 𝐵 = 16

shared-weight-bin 16-PAS-4-MAC and 16-MAC for varying 𝑊 -bit widths. Gate

counts are normalised to a NAND2X1 gate. The PASM uses significantly fewer

logic gates. For example, for 𝑊 = 32-bit wide the 16-PAS-4-MAC is 35% smaller

in sequential logic, 78% smaller in inverters, 61% smaller in buffers and 68% smaller

in logic, an overall 66% saving in total logic gates. The PASM requires more accu-

mulators for the 𝐵-entry register file, but otherwise overall resource requirements

are significantly lower than that of the MAC.

Figure 3-7 shows comparisons of power consumption of the accelerators. 16-

PAS-4-MAC’s power is lower than the weight-shared 16-MACs and the gap grows

with increasing 𝑊 -bit width. For example, for the 𝑊 = 32-bit versions of each

design, the 16-PAS-4-MAC consumes 60% less leakage power, 70% less dynamic

power and 70% less total power than that of the 16-MAC version.

Figure 3-8 shows the effect of varying the number of bins from 𝐵 = 4 to 𝐵 = 256,

with gate counts normalised to a NAND2X1. For bit width 𝑊 = 32 and 𝐵 = 16-bins

the 16-PAS-4-MAC utilisation has 35% fewer sequential gates, 78% fewer inverters,

62% fewer buffers and 69% fewer logic and 66% less total logic gates compared to

the 16-MAC design. However, at 𝐵 = 256, PASM registers and buffers are less area

efficient than the MAC.
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Figure 3-6: Logic gate count comparisons (in NAND2X1 gates) for 𝑊 = 4, 8, 16, 32-bits
wide 16-MAC and 16-PAS-4-MAC for 𝐵 = 16 weight bins; lower is better.

Figure 3-7: Power consumption (in W) comparisons for 𝑊 = 4, 8, 16, 32-bits wide 16-MAC
and 16-PAS-4-MAC for 𝐵 = 16 weight bins; lower is better.

The 16-PAS-4-MAC also consumes 61% less leakage power, 70% less dynamic

power, and 70% less total power (Figure 3-9). More details can be found in our

original article, [Garland and Gregg 2017].

3.3 PASM in a CNN Accelerator

In this chapter, we asked the question would PASM offer similar power and area

savings when implemented in a layer of a CNN accelerator and how would it affect
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Figure 3-8: Logic gate counts comparisons (in NAND2X1 gates) for 𝐵 = 4, 16, 64, 256
weight bins for a 16-MAC and 16-PAS-4-MAC for 𝑊 = 32-bit width; lower is better.

Figure 3-9: Power consumption (in W) comparisons for 𝐵 = 4, 16, 64, 256 weight bins deep
16-MAC and 16-PAS-4-MAC for 𝑊 = 32-bit width; lower is better.

performance of the convolution accelerator? We attempt to answer this by imple-

menting PASM in a weight-shared convolution layer accelerator and evaluate and

compare its latency, power, and area performance with a weight-shared convolution

accelerator and baseline both against a non-weight-shared convolution accelerator

for the same clock speed. Figure 3-11 shows how, when PASM is implemented in

a weight-shared convolution accelerator, multiple PAS units are created in parallel
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to accelerate the accumulation of 𝐶 × 𝐼𝐻 × 𝐼𝑊 IFM data into the corresponding

𝐵-bin registers. Multiplexers are created to expand and parallelise the IFM and

binIndex data and demultiplexers then combine the PAS outputs for the post-pass

MAC. The post-pass MAC multiplies and accumulates the binned IFM data with

the corresponding 𝑀 ×𝐶 ×𝐾𝑋 ×𝐾𝑌 shared-weight value into the 𝑀 × 𝐼𝐻 × 𝐼𝑊

outFeat.

The IFM data of 𝐶 × 𝐼𝐻 × 𝐼𝑊 are buffered in registers, weight data of 𝑀 ×

𝐶 × 𝐾𝑋 × 𝐾𝑌 are buffered in shared weight registers, the binIndex data up to

sixteen values are registered, and finally, the output feature map of 𝑀 × 𝐼𝐻 × 𝐼𝑊

is registered in an outFeat register file. This allows for greater locality and reuse of

the data.

As can be seen from Table 3.1 and Table 3.2, the PASM is only efficient when the

number of PAS units created is much smaller than the number of items to accum-

ulate, i.e., the PASM is efficient only where the number of bins, 𝐵, is much smaller

than the number of pairs of inputs to be multiplied and summed, Equation 2. In the

absence of quantisation and weight-sharing, the PASM would not be viable. For ex-

ample, if we tried to use PASM for 16-bit weight values without using quantisation

or weight-sharing, then we would need 216 bins in the PASM. A PASM unit with so

many bins would not be competitive with a conventional MAC unit.

Any weight-shared network such as a weight-shared AlexNet [Krizhevsky et

al. 2012], weight-shared VGG [Simonyan and Zisserman 2014b] or weight-shared

GoogLeNet [Szegedy et al. 2015], and more generally regional CNNs, recurrent neu-

ral networks (RNNs) and long short term memorys (LSTMs) are possible good can-

didates for the use of PASM, although the evaluation in these networks is beyond

the scope of this chapter.

3.3.1 Examples

For a simplified weight-shared accelerator, Figure 3-10, each kernel channel is

“slid” across the corresponding IFM channel, multiplying and accumulating each

of the pixel values with the kernel’s pretrained weight-shared values into the corre-
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Figure 3-10: Example of a simplified weight-shared convolution.
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Figure 3-11: Example of a simplified weight-shared convolution with PASM.

sponding interim feature map channel. Each of the interim feature map channels is

then “stacked” to produce the output feature map.

Now assume a simplified weight-shared-with-PASM accelerator with the same

number of channels and kernels, Figure 3-11. Again, each kernel channel is “slid”

across the corresponding IFM channel; however, the “kernel” contains bin indices

that address the interim feature map bin into which the IFM pixel values are accu-

mulated. After all the IFM channels have been accumulated into the IFM bins of

the interim feature map, the bin indices are “slid” across the interim feature map,

multiplying each of the accumulated IFM values with the corresponding kernel’s in-
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1 bi[C][KY][KX], sk[B], bias[M], ifm[C][IH][IW],
2 ifmBin[B], outFeat[M][OH][OW];
3 #pragma HLS ARRAY_PARTITION variable=ifmBin complete dim=1
4 #pragma HLS ALLOCATION instances=mul limit =1 operation
5 for (ihIdx =(KY/2); ihIdx <(IH -(KY/2)); ihIdx+= Stride) {
6 for (iwIdx =(KX/2); iwIdx <(IW -(KX/2)); iwIdx+= Stride) {
7 for (mIdx =0; mIdx <M; mIdx ++) {
8 #pragma HLS PIPELINE II=1 rewind
9 // Reset the ifmBin register file

10 for (bin=0; bin <B;bin++) {
11 #pragma HLS UNROLL
12 #pragma HLS LOOP_MERGE
13 ifmBin[bin ]=0;
14 }
15 binIdx =0;
16 // For each channels , stride kernel -sized -bin indices over IFM
17 // accumulate IFM value in corresponding ifmBin PAS
18 for (cIdx =0; cIdx <C; cIdx ++) {
19 for (kyIdx =0; kyIdx <KY; kyIdx ++) {
20 for (kxIdx =0; kxIdx <KX; kxIdx ++) {
21 imVal=ifm[cIdx ][(( ihIdx+kyIdx)-(KY/2))][(( iwIdx+kxIdx)
22 -(KX/2))];
23 binIdx=bi[cIdx][kyIdx][kxIdx ];
24 ifmBin[binIdx] += imVal;
25 } } }
26 // Once looped over channels , stride kernel -sized -bin indices
27 // over PAS , multiply with corresponding shared -weight value
28 cIdx =0;
29 for (kyIdx =0; kyIdx <KY; kyIdx ++) {
30 for (kxIdx =0; kxIdx <KX; kxIdx ++) {
31 mul[cIdx][kyIdx][kxIdx] =ifmBin[bi[cIdx][kyIdx ][kxIdx]] *
32 sk[bi[cIdx][ kyIdx][kxIdx ]];
33 } }
34 // Sum all channel ’s together into each OFM channel
35 for (cIdx =0; cIdx <C; cIdx ++) {
36 for (kyIdx =0; kyIdx <KY; kyIdx ++) {
37 for (kxIdx =0; kxIdx <KX; kxIdx ++) {
38 outFeat[mIdx][ihIdx/Stride ][ iwIdx/Stride] +=
39 mul[cIdx][kyIdx][kxIdx ];
40 } } } } } }

Listing 3.2: Simplified SystemC code for the weight-shared-with-PASM convolution.

dexed pretrained weight-shared values, and accumulated into the associated output

feature map channel.

Listing 3.2 shows the simplified SystemC code for weight-shared-with-PASM

implemented within a convolution layer. It demonstrates an IFM of 𝐶 × 𝐼𝐻 × 𝐼𝑊 ,

a kernel of 𝑀 ×𝐶 ×𝐾𝑌 ×𝐾𝑋 , with 𝐵 weight bins, a stride of 𝑆, and an outFeat of

𝑀 ×𝑂𝐻 ×𝑂𝑊 .
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3.4 Design and Implementation of the PASM CNN Ac-

celerator

For comparison, three versions of the accelerator, a non-weight-shared, a weight-

shared and a weight-shared-with-PASM accelerator, are designed and synthesised.

The accelerators are coded in SystemC which allows the designs to be partitioned,

unrolled and pipelined to optimise power and area (NAND2 equivalent gate count)

by using SystemC #pragma directives rather than having to hand-code the partition-

ing, unrolling, and pipelining in Verilog.

To increase the throughput of the PAS phase of the weight-shared-with-PASM

CNN accelerator, the 𝐼𝐹𝑀𝐵𝑖𝑛 array of line 12 in Listing 3.2 is partitioned com-

pletely using the directive ARRAY_PARTITION dim=1 (see line 2) to inform Xilinx

Vivado_HLS to implement all bins in registers. When the for loop of line 9 to line 13

is unrolled using the directive UNROLL (see line 10) and loop merged using the di-

rective LOOP_MERGE (see line 11), Vivado_HLS implements 𝐼𝐹𝑀𝐵𝑖𝑛 in registers

rather than BRAM, allowing the high-level synthesis (HLS) to create multiple copies

of the loop body so that it can parallelise the accumulation registers and associated

accumulator logic and thus reduce the number of clock cycles of reads and writes to

the 𝐼𝐹𝑀𝐵𝑖𝑛 registers.

The rest of the loops including the post pass MAC loop on lines 33 and 42 are

pipelined with the directive PIPELINE II=1 rewind that has an iteration interval of

1, suggesting to Vivado_HLS that the loops shall need to process a new input every

cycle that Vivado_HLS will try to meet if possible. The rewind option is used with the

pipeline function to enable continuous loop pipelining such that there is no pause

between one loop iteration ending and the next beginning. This is effective as there

are perfect nested loops in the convolution.

The partitioning, unrolling and loop merging reduces the latency cycles of the

non-weight-shared, weight-shared and weight-shared-with-PASM accelerators by

92% at the expense of increasing the flip flop count by 97% and thus the power

and area of these combined function and loop pipeline registers. Implementing the

𝐼𝐹𝑀𝐵𝑖𝑛 array in registers allows for cell compatibility in the ASIC synthesis tool

and quick synthesis time as no SRAM needs to be modelled and implemented to

56



3.4. Design and Implementation of the PASM CNN Accelerator

store the input IFM and outFeat values. This increased power and area overhead of

the accelerators is a good trade-off for the increased throughput and lower latency.

As outlined in section B.3 on page 144, the three versions of the CNN accelerators

are based on the AlexNet [Krizhevsky et al. 2012] CNN and accelerate one layer of

the convolution to allow for implementation in an FPGA. The accelerators include

stride, an activation function, ReLU, and bias (a means for the network to learn more

easily) as the activation function and bias parameters are not shared. Striding (lines

4, 5, and 42 of Listing 3.2 allows for compression of the IFM or input feature map

by allowing differing pixel strides of the kernel across the input feature map. For a

stride value of 1, the kernel is moved across the input feature map at a stride of one

pixel at a time. With a stride of 2 or more, the kernel jumps two or more pixels as the

kernel strides across the feature map. This sliding of the kernels produces smaller

spatial output feature maps. The use of PASM in the weight-shared accelerator is

transparent to the functionality of the stride, activation function or biasing. Note

that the numbers of weight parameters for a weight-shared system must be clus-

tered (usually with K-means) and quantised to fit into 16- to 256-bins (see Han et al.,

[2016a; 2016b] research), as this reduction in numbers of weights is what allows the

PASM reduction in power and area by doing the PAS accumulations first followed

by a single post pass MAC.

Our accelerators are high-level-synthesised to a hierarchical Verilog netlist using

Xilinx Vivado_HLS (version 2017.1), which allowed for quick functional simulation

and hardware co-simulation and could also allow for implementation in both ASIC

and later FPGA. Vivado_HLS reports the approximate latency of the design along

with the approximate utilisation results for BRAM, DSP, flip flops, and look up ta-

bles (LUTs) after high-level synthesis has been executed.

When implementing the accelerators in FPGA, Xilinx Vivado (version 2017.1) is

used to synthesise, optimise, place, and route the netlist from Xilinx Vivado_HLS

into a Xilinx 7-series Zynq XC7Z045 FPGA part running at 200MHz. When im-

plementing the accelerators into a 45nm process ASIC running at 1GHz, Cadence

Genus is used to synthesise and optimise the design for ASIC. Cadence Genus sup-

plies commands for reporting approximate timing, gate count and power consump-

tion of the designs at the post-synthesis stage. The “report timing,” “report gates,”
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and “report power” commands of Cadence Genus are used to obtain the ASIC tim-

ing, gate count, and power results. The gate count is normalised to a NAND2 gate,

and this number reported as the overall gate count.

The designs are coded using integer/fixed-point precision numbers (INTs). The

bit widths of the IFM are maintained at 32-bit INTs while the weights are stored as

variable 8-bit, 16-bit, and 32-bit INTs. The bin indexes are stored as 22-bits for four

weights up to 24-bits for sixteen weights.

The encoding of finite state machines is set to grey encoding to keep the power

consumption of the designs to a minimum. All registers and memories in the accel-

erators derived from variables in the SystemC are reset or initialised to zero. The

resets are set as active low synchronous resets.

The number of kernels 𝑀 is kept small, i.e., 𝑀 = 2 to keep the synthesis time the

ASIC tools to a minimum. The number of channels 𝐶 is made as large as possible

such that the 𝑁 of Equation 2 is larger than 𝐵-bins to demonstrate the power saving

effect of PASM compared to the same number of channels for the weight-shared

version of the accelerator, as suggested in Table 3.1 and demonstrated in Table 3.2.

The 𝐼𝐹𝑀 cache was kept to a small tile of the IFM of multiple channels (𝐼𝐻 =

5, 𝐼𝑊 = 5, 𝐶 = 15) to allow its implementation in a register file. However, the

𝐼𝐹𝑀 cache could be implemented in SRAM in an ASIC. This would allow for larger

cache storage of IFM and weight values and further reduce the power and area

of the accelerators but would require more “back-end” layout design work of the

accelerator, something not considered for this chapter1. The 𝑏𝑖𝑛𝐼𝑛𝑑𝑒𝑥 would remain

in a register file as a maximum of 16 × 32-bit values would be stored.

To further ensure the lowest number of multipliers utilised in the PASM acceler-

ator, the ALLOCATION directive is used to ensure that only one post pass multiplier

is used which further reduces the area and power while very slightly increasing the

latency.

1The OSU FreePDK 45nm ASIC process cell library used for the experiments does not have a facil-
ity to synthesise on-chip SRAM in our implementation of the weight-shared-with-PASM accelerator.
If we had access to a library that would allow SRAM synthesis, then we would be able to operate
on larger data blocks in our ASIC design. The weight-shared-with-PASM is likely to be even more
effective with larger input blocks (particularly a large value of 𝐶) because the cost of the post-pass
multiplication can be amortised over more inputs.
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The Verilog netlists that are produced by Xilinx Vivado_HLS are synthesised for

ASIC to produce a gate-level netlist. Timing constraints in SDC are created [Gan-

gadharan and Churiwala 2013] so all versions of the accelerator meet timing at an

iso-frequency of 1GHz with a short 0.01ns clock transition using Cadence Genus

(version 17.11) synthesiser.

The synthesis targets the OSU FreePDK 45nm ASIC process cell library. Timing,

latency, gate count (normalised to a NAND2 gate) and power consumption at differ-

ent 𝐵-bins and 𝑊 -bit widths are captured. These values are approximations as they

are the post-synthesis estimates. The values will be optimised when implemented

in ASIC or FPGA.

The weight-shared-with-PASM introduces a delay in processing the output of

the PAS units. The PAS unit has a throughput of one pair of inputs per cycle, and so

computes the initial accumulated values in about 𝑁 cycles, where

𝑁 = (𝐾𝑋 ×𝐾𝑌 ) × 𝐶 (2)

The post pass MAC unit also has a throughput of one pair of inputs per cycle,

so requires one cycle for each of the 𝐵 accumulator bins, for a total of 𝑁 + 𝐵 PASM

cycles. In contrast, a simple MAC unit requires just 𝑁 cycles, however, consumes

significantly more area and power, when compared to an accelerator with more than

one PAS per MAC.

Table 3.2 shows the number of MAC operations that contribute to each output

for various values of 𝐶 and 𝐾𝑋 and 𝐾𝑌 . For example, if 𝐶 = 32 input channels are

used with kernels of dimensions 𝐾𝑋 ×𝐾𝑌 = 5 × 5, then each computed value will

be the result of 800 MAC operations. A simple fully pipelined MAC unit might be

able to compute this result in a little more than 800 cycles. As can be seen from lines

11 to 13 of Listing 3.1, each element of the output of a convolution layer of a CNN

is the result of the Equation 2 multiply-accumulate operations or 800 cycles in this

example.

In contrast, a PASM has two phases: a PAS phase and a post-pass MAC phase.

The PAS phase computes a histogram of the frequency of each weight input and

depends entirely on the number of inputs. However, the post-pass MAC phase

depends not on the number of inputs but on the number of different weights that

59



Chapter 3. Low Complexity MAC Units for CNNs with Weight Sharing

Table 3.2: Typical Numbers of MAC Operations.

input_channels (𝐶)
32 128 512

1x1 32 128 512
3x3 288 1152 4608
5x5 800 3200 12800ke

rn
el

s
(𝐾

)

7x7 1568 6272 25088

can appear (each of which occupies one of the 𝐵-bins). Provided the number of

inputs, 𝑁 (see Equation 2), is much larger than the number of bins, 𝐵, the cost of

the post-pass remains small relative to the cost of the PAS phase. For example, if

𝐵 = 16, then the cost of the post-pass will be a small fraction of the 800 opera-

tions needed at the PAS phase. Careful consideration of the size of bins used with

respect to the number of channels and kernels is important due to the 𝑠𝑢𝑚𝑚𝑎𝑛𝑑𝑠

being multiplied-accumulated many times before the outFeat is updated as can be

seen on lines 11-13 of Listing 3.1. The number of accumulations should therefore

be much larger than 𝐵 for PASM to be area and energy efficient in a weight-shared

convolution accelerator.

3.5 Evaluation of PASM in a CNN accelerator

3.5.1 ASIC Results

The PASM is implemented in a weight-shared CNN accelerator and synthesised

into an ASIC. The latency is compared with that of the weight-shared accelerator.

The latency results for each of the non-weight-shared, weight-shared, and weight-

shared-with-PASM accelerators is obtained from Vivado_HLS Synthesis reports and

the percentage differences graphed as seen in Figure 3-12. The latency of the weight-

shared-with-PASM in Figure 3-12 was between 8.5% for 4-bin and 12.75% for 16-bin

greater than that of the corresponding weight-shared version, which is expected due

to the indirection of the PAS units.

Latency can be further reduced by relaxing the ALLOCATION directive (see line

3 of Listing 3.2) constraint on the multiplier. If more post-pass multipliers are used,

then the latency drops with a corresponding increase in power and area, which may

be acceptable depending on target device resources available.
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Figure 3-12: Latency of weight-shared-with-PASM convolution compared to weight-
shared convolution.

(a) ASIC Gate count for 32-bit kernel, 4-bin
accelerators.

(b) ASIC Power consumption for 32-bit ker-
nel, 4-bin accelerators.

Figure 3-13: 4-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in ASIC.

For a 4-bin PASM accelerator, with 32-bit wide kernels, Figure 3-13a shows the

gate count reports obtained from Cadence “report gates” command and normalised

to a NAND2 gate. PASM uses 47.2% fewer total NAND2 gates compared with the

non-weight-shared version and 47.8% fewer total NAND2 gates compared with

weight-shared design. Figure 3-13b obtained from Cadence “report power” com-

mand, PASM uses 54.3% less total power when compared with its non-weight-

sharing counterpart and 53.2% less total power when compared with the weight-

shared version.

For an 8-bin, 32-bit wide kernel PASM accelerator, Figure 3-14a obtained from

Cadence “report gates” command and normalised to a NAND2 gate, PASM uses
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(a) ASIC Gate count for 32-bit kernel, 8-bin
accelerators.

(b) ASIC Power consumption for 32-bit ker-
nel, 8-bin accelerators.

Figure 3-14: 8-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in ASIC.

9.4% fewer total NAND2 gates compared with the non-weight-shared and 8.1%

fewer total NAND2 gates compared with the weight-shared accelerators. Figure 3-

14b obtained from Cadence “report power” command, PASM consumes 18.1% less

total power when compared with its non-weight-sharing and 15.2% less total power

when compared with the weight-sharing accelerator.

For a 16-bin, 32-bit wide weight-shared-with-PASM accelerator, PASM no longer

offers a good return with this level of unrolling, pipelining and partitioning of the

IFMBin, at least when targeted at a 1GHz ASIC with this 45nm process cell library

as it uses more NAND2 gates (see Figure 3-15a) and power (see Figure 3-15b) com-

pared with the weight-shared accelerator. This is due to the ASIC tools increasing

the area and the power to meet timing at 1GHz for the 16-bins at 32-bit wide PASM.

To achieve better power and area results for PASM at 16-bins or greater, it might be

better to target a lower clock frequency, for example, 800MHz. Alternatively, use a

more efficient geometry ASIC cell library. Design changes could be made to reduce

pipelining and unrolling of the levels of the inner four of the for loops of the convo-

lutional code. The for loop changes would reduce the area and power while making

it easier for the ASIC tools to achieve timing. However, this may increase the latency

of the accelerator.

Due to the increased academic and industrial interest in applying INT8 approx-

imations to reduce memory storage and bandwidth of the kernel data [Dettmers

2015; Fu et al. 2016], we show the results for the 8-bit kernel versions of the accel-
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(a) ASIC Gate count for 32-bit kernel, 16-bin
accelerators.

(b) ASIC Power consumption for 32-bit ker-
nel, 16-bin accelerators.

Figure 3-15: 16-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in ASIC.

(a) ASIC Gate count for INT8-bit kernel, 4-
bin accelerators.

(b) ASIC power consumption for INT8-bit
kernel, 4-bin accelerators.

Figure 3-16: 4-bin, INT8-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate
Count and Power Comparisons in ASIC.

erators with 4-bins. This demonstrates that for a bin depth of 4, PASM achieves a

19.8% reduction in gate count. Figure 3-16a obtained from Cadence “report gates”

command is normalised to a NAND2 gate and a 31.3% reduction in power com-

pared to the weight-sharing version, Figure 3-16b also obtained from Cadence “re-

port power” command.

3.5.2 FPGA Results

We implement the weight-shared-with-PASM accelerator in the Xilinx 7-series

Zynq FPGA, the XC7Z045 part implemented on the Zynq ZC706 development board.

Timing constraints in Xilinx design constraint (XDC) are created such that the accel-

erator designs met timing at 200MHz. The resets are set as active high synchronous
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resets for better FPGA power performance. The state machines are set to grey en-

coding.

The IFM, IFMBin, and kernel were cached in BRAM in the FPGA. This allows

for larger cache storage of IFM and weight values and further reduce the power

and area of the accelerator. However, a larger IFM and kernel cache could be em-

ployed for greater throughput of the accelerators, but for comparison with the ASIC

implementation, the same IFM and kernel dimensions are used.

When using the UNROLL and PIPELINE directives with the for loops and using

Vivado_HLS synthesis followed by RTL synthesising and fully implementing the

designs with Vivado, the non-weight-shared and weight-shared versions of the 16-

bin, 32-bit kernel data designs utilises 405 DSP units on the FPGA of the ZC706

board. If a smaller, more resource-constrained FPGA is required for cost reasons,

like the Xilinx XC7Z020 part found on the Xilinx PYNQ-Z1 low-cost development

board, then the non-weight-shared and weight-shared versions of the design would

over utilise the 220 DSP units of the PYNQ-Z1 board’s XC7Z020 FPGA part.

The weight-shared-with-PASM version of the design for the same 4-bin, 32-bit

kernel, Figure 3-17a obtained with Vivado’s “report_utilization” command, sim-

ilarly unrolled and pipelined, HLS synthesised in Vivado_HLS followed by RTL

synthesised and fully implemented in Vivado, only utilises 3 DSP units, 99% fewer

DSPs than the other versions of the accelerator with the same 12% increase in la-

tency as the ASIC implementation. PASM also consumes 28% fewer BRAMs, while

consuming 64% less power than the weight-shared accelerator, Figure 3-17b, ob-

tained with Vivado’s “report_power” command. Increasing the number of post-

pass MACs decreases the latency slightly while increasing the power consumption

and DSP usage. The bottleneck is in the accumulators of the PAS which can be de-

fined by Equation 2 and must be larger than that of 𝐵-bins for PASM to be effective,

and area, and energy efficient, as seen in Table 3.1 and Table 3.2.

For an 8-bin PASM accelerator, with 32-bit kernels, Figure 3-18a obtained with

Vivado’s “report_utilization” command, PASM uses 99% fewer DSPs and 28% fewer

BRAMs compared with the weight-shared design. Figure 3-18b obtained with Vi-
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(a) Cell count for 32-bit kernel, 4-bin accel-
erators.

(b) Power consumption for 32-bit kernel, 4-
bin accelerators.

Figure 3-17: 4-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in FPGA.

(a) Cell count for 32-bit kernel, 8-bin accel-
erators.

(b) Power consumption for 32-bit kernel, 8-
bin accelerators.

Figure 3-18: 8-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in FPGA.

vado’s “report_power” command, PASM uses 41.6% less total power when com-

pared with its weight-shared version.

For a 16-bin PASM accelerator, with 32-bit kernels the utilisation reported with

Vivado’s “report_utilization” command, Figure 3-19a, PASM uses 99% fewer DSPs

and 28% fewer BRAMs compared with the weight-shared design. Figure 3-19b,

PASM uses 18% less total power when compared with its weight-shared version,

reported with Vivado’s “report_power” command.

It is also possible to clock the PASM at higher clock speeds for the same latency

than that of the weight-shared counterpart, but again for the sake of comparison,

clock speeds are kept consistent between all versions of the accelerators.
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(a) Cell count for 32-bit kernel, 16-bin accel-
erators.

(b) Power consumption for 32-bit kernel, 16-
bin accelerators.

Figure 3-19: 16-bin, 32-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate Count
and Power Comparisons in FPGA.

(a) Cell count for INT8-bit kernel, 8-bin ac-
celerators.

(b) Power consumption for INT8-bit kernel,
8-bin accelerators.

Figure 3-20: 8-bin, INT8-bit Kernel Weight-shared-with-PASM vs. Weight-shared Gate
Count and Power Comparisons in FPGA.

If INT8 approximations are desired for the weight data, an 8-bit wide, 8-bin

PASM accelerator, Figure 3-20a again obtained with Vivado’s “report_utilization”

command, uses 99% fewer DSPs but the same number of BRAMs as it’s weight-

shared counterpart. Figure 3-20b, PASM uses 18.3% less total power when com-

pared with its weight-shared version.

For a 16-bin, 8-bit wide PASM accelerator, PASM no longer offers a good return

when targeted at a 200MHz FPGA with this level of unrolling, pipelining and parti-

tioning of the IFMBin as it uses more flip-flop gates and power, exceeding the gate

count and power of the DSP units being used in the weight-shared accelerator. At

this stage, it would be better to either implement the IFMBin in dual port BRAM
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and incur a slight increase in latency or do not unroll and pipeline as many levels of

the inner four of the for loops of the convolutional code.

3.5.3 Overall Results

The precision of the results of a weight-shared CNN accelerator that uses PASM

are identical to that of a weight-shared CNN accelerator using traditional MACs.

The same filters and IFM data are being used for the weight-shared accelerator as

demonstrated in Figure 3-3 and the weight-shared-with-PASM accelerator shown

in Figure 3-5. While PASM has a different underlying process of permuting the

convolution, the results of a convolution layer are identical to that of a standard

MAC weight-shared accelerator, except PASM adds a 12.5% increase in latency in

obtaining the result but with vastly reduced power consumption and area (NAND2

gates) compared to the traditional MAC version.

As suggested in Han et al., [2016b], they show that the Top-5 classification accu-

racy of their weight-shared CNN accelerator is 19.70% compared to 19.73% Top-5

classification accuracy of the baseline non-weight-shared CNN accelerator due to

there being many less filter weight values. When PASM is used in a weight-shared

CNN accelerator, the classification accuracy is unaffected when compared to the

baseline weight-shared CNN accelerator counterpart as the same filter weight val-

ues of the weight-shared CNN accelerator are used, and the same output feature

map results are obtained.

PASM is beneficial for up to sixteen weight bins and 32-bits for FPGA at an iso-

frequency of 200MHz and eight weight bins and 32-bits for ASIC at an iso-frequency

of 1GHz on a 45nm process when coded using SystemC with the above unrolling,

pipelining and partitioning configuration. As demonstrated earlier in the chapter,

were a weight-shared-with-PASM CNN accelerator to be coded in Verilog, the num-

bers of bins supported could indeed be higher. We wanted to experiment with dif-

fering pipelining, unrolling and partitioning directives and their effect on making

PASM more efficient, something which would have been impractical had it been

coded in Verilog, so SystemC was used. Further SystemC and other SRAM opti-

misations (for IFM and output feature map caching) could have been done to the
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accelerators, but this was not the focus of this chapter and maybe undertaken as

future work.

3.6 Conclusion

As discussed in section 2.1, ASICs and FPGAs are often used to hardware accel-

erate the convolution layers of a CNN where up to 90% of the computation time is

consumed. This computation requires large amounts of multipliers as part of the

many thousands of MAC operations needed in the convolution layer. These mul-

tipliers consume large amounts of physical and computational IC die resources or

DSP units on a FPGA. Hardware accelerators have been proposed that reduced the

amount of kernel data required by the neural network by dictionary compressing

the weight values after training the network. This “weight-sharing” reduces the

bandwidth and power of the data transfers from external memory but still requires

large numbers MAC units.

We reduce power and area of the CNN accelerator by implementing PASM in

a weight-shared CNN accelerator. PASM re-architects the MAC to count the fre-

quency of each weight instead and place it in a bin. The accumulated value is com-

puted in a subsequent multiply phase, significantly reducing gate count and power

consumption of the CNN. We code in Verilog a 16-MAC weight-shared accelerator

and a 16-PAS-4-MAC weight-shared-with-PASM accelerator and compare the logic

resource requirements of a 𝑏 = 16 bin for varying 𝑤-bit widths. Gate counts are nor-

malised to a NAND2X1 gate. For 𝑤 = 32-bit wide the 16-PAS-4-MAC has overall

66% fewer logic gates and consumes 70% less total power than the 16-MAC.

To further evaluate the efficiency gains of PASM, we implement PASM in a weight-

sharing CNN accelerator. We compare it to a non-weight-shared accelerator and

a weight-shared accelerator, targeted at a 1GHz 45nm ASIC. The gate count area

and power consumption for the weight-shared-with-PASM is lower compared to

the weight-shared version. For a 4-bin weight-shared-with-PASM accelerator that

accepts a 5× 5 IFM with a 3× 3 kernel and 15 input channels and 2 output channels,

an ASIC implementation of PASM saves 48% NAND2 gates and 53.2% power when

compared to its weight-shared counterpart, with only a 12% increase in latency.
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We show that the weight-shared-with-PASM accelerator can be implemented in

a resource-constrained FPGA. For an accelerator with the same dimensions as the

ASIC version implemented on the FPGA to run at 200MHz, PASM uses 99% fewer

DSPs and 28% fewer BRAMs compared with the weight-shared design. For 16-bin

PASM, PASM uses 18% less total power when compared with its weight-shared

version.

Even if INT8 approximations are desired for the weight data, an 8-bit wide, 4-bin

PASM accelerator running at 200MHz on the FPGA uses 99% fewer DSPs and 28%

fewer BRAMs compared with the weight-shared design. An INT8 operation PASM

also uses 47% less total power when compared with its INT8 weight-shared version.

Quantisation and weight-sharing neural networks are active research areas, par-

ticularly for reducing DRAM bus bandwidth usage and in applications such as

RNNs and LSTM networks. Weight-sharing allows for the implementation of a

CNN in small, low power embedded systems as less RAM is required to store the

weight values. Weight-sharing also offers a more rapid way of implementing an

inference network on a small memory embedded device without the large training

phase required of, say a BNN. Weight-sharing is used in other types of networks

such as regional-CNNs, RNNs and LSTMs so PASM may be a good fit there too.

Wherever the number of shared weights is sufficiently small, PASM units may be

an attractive alternative to a conventional weight-sharing MAC unit.

The clock frequency verses the concurrency of PASM was not investigated. Fu-

ture work might investigate what energy efficiencies could be made if different im-

plementation clock frequencies are used at different layers of the CNN.

PASM could be used in any shared binned data system that might be used in

other arenas, such as GPU acceleration. However, this has not be investigated or

measured in this work but might be an avenue for future investigation.
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4
Hardware Optimised Bit-sliced Floating-Point

Operators (HOBFLOPS) for CNNs

4.1 Introduction

MANY researchers have shown that CNN inference is possible with low-precision

integer [Jouppi et al. 2017] and floating-point (FP) [Chung et al. 2018; Fow-

ers et al. 2018] arithmetic (see section 2.1 beginning on page 9 for more details). Al-

most all processors provide support for 8-bit integers, but not for bit-level custom-

precision FP types, such as 9-bit FP. Typically processors support a small number

of relatively high-precision FP types, such as 32- and 64-bit [Intel 2020]. However,

there are good reasons why we might want to implement custom-precision FP on

regular processors. Researchers and hardware developers may want to prototype

different levels of custom FP precision that might be used for arithmetic in CNN

accelerators [Zaidy 2016; Gupta et al. 2015; DiCecco et al. 2017]. Furthermore, fast

custom-precision FP CNNs in software may be valuable, particularly in cases where

memory bandwidth is limited.

To address custom-fp in software of CPUs, FP simulators, such as the Flexfloat

[Tagliavini et al. 2018], and Berkeley’s SoftFP [Hauser 1999], are available. These

simulators support arbitrary or custom range and precision FP such as 16-, 32-, 64-

, 80- and 128-bit with corresponding fixed-width mantissa and exponents respec-

tively. However, the simulators’ computational performance may not be sufficient

for the requirements of high throughput, low latency arithmetic systems such as

CNN convolution.
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We propose hardware optimized bitslice-parallel floating-point operators (HOB-

FLOPS). HOBFLOPS generates FP units, using software bitslice parallel arithmetic,

efficiently emulating FP arithmetic at arbitrary mantissa and exponent bit-widths on

processors that do not otherwise contain low-precision FP. We exploit bit-slice par-

allelism techniques to pack the SIMD vector registers of the microprocessor more

efficiently. Also, we exploit bitwise logic optimisation strategies of a commercial

hardware synthesis tool to optimise the associated bitwise arithmetic. A source-to-

source generator converts the netlists to the target processor’s bitwise SIMD vector

operators. We propose HOBFLOPS as low-precision FP arithmetic in the MAC of-

fers increased classification accuracy compared with INT8 or other number repre-

sentation counterparts. As we will see, HOBFLOPS saves machine operations for a

comparable convolution compared to its counterparts.

To evaluate performance we benchmark HOBFLOPS8 through to HOBFLOPS16e

parallel MACs against arbitrary-precision Flexfloat, and 16- and 32-bit Berkeley’s

SoftFP, implemented in CNN convolution with Arm and Intel scalar and vector

bitwise instructions. We show HOBFLOPS offers significant performance boosts

compared to Flexfloat, and SoftFP. We show that our software bitslice parallel FP is

both more computationally efficient and offers greater bit-level customisability than

other software FP emulators.

We make the following contributions:

∙ We present a full design flow from a VHDL FP core generator to arbitrary-

precision software bitslice parallel FP operators. HOBFLOPS are optimised

using hardware design tools and logic cell libraries, and domain-specific code

generator.

∙ We demonstrate how 3-input Arm NEON bitwise instructions e.g., SEL (mul-

tiplexer), and AVX512 bitwise ternary operations are used in standard cell li-

braries to improve the efficiency of the generated code.

∙ We present an algorithm for implementing CNN convolution with the very

wide vectors that arise in bitslice parallel vector arithmetic.

∙ We evaluate HOBFLOPS on Arm Neon and Intel AVX2 and AVX512 proces-

sors. We find HOBFLOPS achieves approximately 3×, 5×, and 10× the perfor-

mance of Flexfloat respectively.
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∙ We evaluate various widths of HOBFLOPS from HOBFLOPS8–HOBFLOPS16e.

We find e.g., HOBFLOPS9 outperforms Flexfloat 9-bit by 7× on Intel AVX512,

by 3× on Intel AVX2, and around 2× Arm Neon. The increased performance

is due to:

– Bitslice parallelism of the very wide vectorisation of the MACs of the

CNN;

– Our efficient code generation flow.

The rest of this article is organised as follows. Section 4.2 highlights our moti-

vation and gives background on other CNN accelerators use of low-precision arith-

metic types. Section 4.3 outlines bitslice parallel operations and introduces HOB-

FLOPS, shows the design flow, types supported and how to implement arbitrary-

precision HOBFLOPS FP arithmetic in a convolution layer of a CNN. Section 4.4

shows significant increases in performance of HOBFLOPS8–HOBFLOPS16e com-

pared with Flexfloat, and SoftFP on Intel’s AVX2 and AVX512 and Arm Neon pro-

cessors. We outline related work in Section 4.5 and conclude with Section 4.6.

4.2 Background and Motivation

Arbitrary precision floating-point computation is largely unavailable in CPUs.

Soft FP simulation is available but typically lacks the computation performance re-

quired of low latency applications. Researchers often reduce the precision to a de-

fined fixed-point basis for CNN inference, potentially impacting CNN classification

accuracy [Lo et al. 2018].

Reduced-precision CNN inference, particularly CNN weight data, reduces com-

putational requirements due to memory accesses, which dominate energy consump-

tion. Energy and area costs are also reduced in ASICs and FPGAs [Sze et al. 2017].

Johnson [Johnson 2018] suggests that little effort has been made in improving

FP efficiency so proposes an alternative floating-point representation. They show

that a 16-bit log float multiply-add is 0.68× the IC die area compared with an IEEE-

754 float16 fused multiply-add, while maintaining the same significand precision

and dynamic range. They also show that their reduced FP bit precision compared
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to float16 exhibits 5× power saving. We investigate if similar efficiencies can be

mapped into software using a hardware tool optimisation flow.

Kang et al., [Kang 2018] investigate short, reduced FP representations that do

not support not-a-numbers (NANs) and infinities. They show that shortening the

width of the exponent and mantissa reduces the computational complexity within

the multiplier logic. They compare fixed point integer representations with varying

widths up to 8-bits of their short FP in various CNNs, and show around a 1% drop

in classification accuracy, with more than 60% reduction in ASIC implementation

area. Their work stops at the byte boundary, leaving us to investigate other arbitrary

ranges.

Researchers often use custom precision in the design of arithmetic accelerators

implemented in hardware such as FPGA or ASIC as discussed in section 2.1 on page

9. Microsoft proposes MS-FP8 and MS-FP9, which are 8-bit and 9-bit FP arithmetic

that they exploit in a quantised CNN [Chung et al. 2018; Fowers et al. 2018]. Mi-

crosoft alters the Minifloat 8-bit that follows the IEEE-754 specification (1-sign bit,

4-exponent bits, 3-mantissa bits) [IEEE 2019]. They create MS-FP8, of 1-sign bit, 5-

exponent bits, and 2-mantissa bits. MS-FP8 gives a larger representative range due

to the extra exponent bit but lower precision than Minifloat, caused by the reduced

mantissa. MS-FP8 more than doubles the performance compared to 8-bit integer

operations, with negligible accuracy loss compared to full float. To improve the pre-

cision, they propose MS-FP9, which increases the mantissa to 3 bits and keeps the

exponent at 5 bits. Their later work [Fowers et al. 2018] uses a shared exponent with

their proposed MS-FP8 / MS-FP9, i.e., one exponent pair used for many mantissae,

sharing the reduced mantissa multipliers. We do not investigate shared exponent.

Their work remains at 8- and 9-bit for FPGA implementation and leaves us to inves-

tigate other bit-precision and ranges.

Rzayev et al.’s, Deep Recon work [Rzayev et al. 2017] analyses the computation

costs of DNNs. They propose a reconfigurable architecture to efficiently utilise com-

putation and storage resources, thus allowing DNN acceleration. They pay partic-

ular attention to comparing the prediction error of three CNNs with different fixed

and FP precision. They demonstrate that FP precision on the three CNNs is 1-bit

more efficient than fixed bit-width. They also show that the 8-bit FP is around 7×
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more energy-efficient and approximately 6× more area efficient than 8-bit fixed pre-

cision. We further the area efficiency investigation.

Existing methods of emulating FP arithmetic in software primarily use existing

integer instructions to implement the FP computation steps. This works well for

large, regular-sized FP types such as FP16, FP32, or FP64. Berkeley offer SoftFP

emulation [Hauser 1999] for use where, e.g., only integer precision instructions are

available. SoftFP emulation supports 16- to 128-bit arithmetic and does not support

low bit-width custom precision FP arithmetic or parallel arithmetic.

The Flexfloat C++ library of Tagliavini et al., [Tagliavini et al. 2018], offers alterna-

tive FP formats with variable bit-width mantissa and exponents. They demonstrate

Flexfloat is up to 2.8× and 2.4× faster than MPFR and SoftFloat, respectively for

various benchmarks. They do not explore arbitrary bit-precision or other optimi-

sation techniques on the proposed number formats, which our work does. Both

Flexfloat and SoftFP simulators operate at a much lower performance than that of

the hardware floating-point unit (FPU).

Other researchers investigate optimising different representations of FP arith-

metic. Xu et al., [Xu and Gregg 2017] propose bitslice parallel arithmetic and present

FP calculations undertaken on a fixed point unit. Instead of storing vectors in the

traditional sense of storing 17-bit vectors inefficiently in a 32-bit register, they in-

stead store thirty-two 17-bit words transformed into bitslice parallel format. Xu et

al., manually construct bitwise arithmetic routines to perform integer or FP arith-

metic, while the vectors remain in a bitslice parallel format. When coded in C/C++

and AVX2 SIMD instructions, they demonstrate this approach is efficient for low-

precision vectors, such as 9-bit or 11-bit arbitrary FP types. We investigate beyond

11-bit and AVX2 implementation by generating and optimising the process using

ASIC design flow tools and applying HOBFLOPS to CNN convolution on Arm

Neon, Intel AVX2 and AVX512.

Researchers investigate different bit precision and representations of the FP num-

ber base. Google’s TPU ASIC [Jouppi et al. 2017] implements bfloat16 [Google 2019],

a 16-bit truncated IEEE-754 FP single-precision format. Bfloat16 preserves dynamic

range of the 32-bit format due to the 8-bit exponent. The precision is reduced in the

mantissa from IEEE’s 24-bits down to 7-bits.
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Figure 4-1: Flow for Creating HOBFLOPS Bitwise Intrinsic Operations. Yellow signifies
third party tools. We start in the hardware domain and cross into the software domain.

Nvidia has proposed the new tensor float 32 (TP32) number representation [Cho-

quette et al. 2021], which is a sign bit, 8-bit exponent and 10-bit mantissa. This 19-bit

floating-point format is an input format which truncates the IEEE FP32 mantissa to

10-bits. TP32 still produces 32-bit floating-point results to move and store in the

GPU. Similar to Google, Nvidia does not investigate other bit-widths of FP range

and precision, something our work demonstrates.

4.3 Approach

In this section, we present how to produce HOBFLOPS arithmetic units. HOB-

FLOPS generates efficient software emulation parallel FP arithmetic units optimised

using hardware synthesis tools. HOBFLOPS investigates reduced complexity FP,

[Kang 2018; Johnson 2018] that is more efficient than fixed-point [Rzayev et al.

2017]. HOBFLOPS considers alternative FP formats [Tagliavini et al. 2018] and reg-

ister packing with bit-sliced arithmetic [Xu and Gregg 2017]. We demonstrate HOB-

FLOPS in a CNN convolution layer.

Figure 4-1 outlines our flow for creating HOBFLOPS arithmetic units. We gen-

erate the RTL representations of arbitrary-precision FP multipliers and adders us-

ing the FP unit generator, FloPoCo [De Dinechin et al. 2009]. We configure the FP
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1 flopoco FPMult pipeline =0 useHardAdd =0 frequency =1 plainVHDL =1 target=Virtex6 wE=5 wF
=2 wFOut=3 outputFile=FPMult _5_2_3. vhd

2 flopoco FPMult pipeline =0 useHardAdd =0 frequency =1 plainVHDL =1 target=Virtex6 wE=5 wF
=2 wFOut=5 outputFile=FPMult _5_2_5. vhd

3 flopoco FPAdd pipeline =0 useHardAdd =0 frequency =1 plainVHDL =1 target=Virtex6 wE=5 wF
=3 outputFile=fpAdd _5_3. vhd

4 flopoco FPAdd pipeline =0 useHardAdd =0 frequency =1 plainVHDL =1 target=Virtex6 wE=5 wF
=5 outputFile=fpAdd _5_5. vhd

Listing 4.1: Example FloPoCo Script for standard and extended precision Multipliers and
Adders.

1 library(avx512) {
2 cell (LUT000X1) {
3 area : 1.0;
4 cell_leakage_power : 0.0;
5 pin(Y) {
6 direction : output;
7 capacitance : 0;
8 rise_capacitance : 0;
9 fall_capacitance : 0;

10 max_capacitance : 0;
11 function : "0";
12 }
13 }
14 }

Listing 4.2: Snippet Showing One Cell of AVX512 Standard Cell Library.

range and precision of HOBFLOPS adders and multipliers, Listing 4.1. Note the op-

tion frequency=1 is set so FloPoCo relaxes timing constraints to produce the smallest

asynchronous gate count design. The low number of gates will 1-1 map to bitwise

logic SIMD vector instructions.

We produce standard cell libraries of logic gate cells mapped to bitwise logic

instructions of the target microprocessor architecture. For example, AND, OR, XOR,

the SEL (multiplexer) bitwise instructions are supported on Arm Neon. The 256-

ternary logic LUT bitwise instructions of the Intel AVX512 are supported. NOTE:

due to the lack of availability of Arm Scalable Vector Extension (SVE) devices, we

show results for an Arm Neon device. The same approach can be applied to creating

a cell library for an Arm SVE device or other SIMD vector instruction processor,

when available.

We use the ASIC tool, Cadence Genus with our standard cell libraries, Listing 4.2,

and small gate area optimisation script, Listing 4.3. Genus synthesises the adders

and multipliers into Verilog netlists. The synthesis and technology mapping suite,

Yosys ASIC [Wolf et al. 2013] and ABC optimiser [Brayton and Mishchenko 2010],
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1 proc runFlow {} {
2 read_libs cellLib/avx.lib
3 read_hdl -library work -f filesList.txt
4 set top FPMult_5_2_5_2_5_3
5 elaborate
6 ungroup -all -flatten -force
7 syn_generic -effort high
8 syn_map -effort high
9 syn_opt -effort high

10 set netsList [get_nets]
11 sort_collection $netsList name
12 writeReps reports netlists $top
13 }
14 proc writeReps {_repsDir_ _netsDir_ _top_} {
15 report gates > ${_repsDir_ }/${_top_}_gates.rpt
16 report area [get_designs $_top_] > ${_repsDir_ }/${_top_}_area.rpt
17 write_hdl -mapped > ${_netsDir_ }/ $_top_.v
18 write_sdc > ${_netsDir_ }/ constraints.sdc
19 }
20 file mkdir reports
21 file mkdir netlists
22 runFlow

Listing 4.3: Example Cadence Genus Script.

1 read_liberty -lib ../cellLib/avx2.lib
2 read_verilog FPMult_5_2_5_2_5_3_comb_uid2.v
3 hierarchy -check -top FPMult_5_2_5_2_5_3_comb_uid2
4 synth -top FPMult_5_2_5_2_5_3_comb_uid2
5 abc -liberty ../cellLib/avx2.lib
6 proc; opt; flatten; proc; opt; pmuxtree; opt; memory -nomap; opt; clean;
7 techmap; opt
8 clean
9 torder -noautostop

10 write_verilog FPMult_5_2_5_2_5_3_comb_uid2Topo.v

Listing 4.4: Example Yosys-ABC script.

Listing 4.4, allows further optimisation and topologically sort of the netlists with the

same cell libraries.

Our custom domain-specific source-to-source generator, Listing 4.5, converts the

topologically sorted netlists into a C/C++ header of bitwise operations. In parallel,
1 cd $1/netlists
2 for i in $(find . -name "*.v");
3 do
4 TOP_MODULE=$(basename $i .v)
5 cp template.h ${TOP_MODULE }.h
6 sed -i "s/TEMPLATE_H_/${TOP_MODULE }_H_/g" ${TOP_MODULE }.h
7 sed -i "s/void template/void ${TOP_MODULE }/g" ${TOP_MODULE }.h
8 sed -e ’1,11d’ < ${TOP_MODULE }.v > ${TOP_MODULE }_1.h
9 sed -i ’s/wire/BSFP_T/g’ ${TOP_MODULE }_1.h

10 sed -i "s/.A (/\&/g" ${TOP_MODULE }_1.h
11 sed -i "s/.B (/\&/g" ${TOP_MODULE }_1.h
12 sed -i "s/.C (/\&/g" ${TOP_MODULE }_1.h
13 sed -i "s/.Y (/\&/g" ${TOP_MODULE }_1.h
14 sed -i "s/) ,/,/g" ${TOP_MODULE }_1.h
15 sed -i "s/));/);/g" ${TOP_MODULE }_1.h
16 sed -i "s/ g.*(/(/g" ${TOP_MODULE }_1.h
17 sed -i "s/endmodule /\}/" ${TOP_MODULE }_1.h
18 sed -e "\$a#endif \/\/ ${TOP_MODULE }_H_" ${TOP_MODULE }_1.h > ${TOP_MODULE }_2.h
19 cat ${TOP_MODULE }.h ${TOP_MODULE }_2.h > ${TOP_MODULE }_3.h
20 mv ${TOP_MODULE }_3.h ${TOP_MODULE }.h
21 rm ${TOP_MODULE }_1.h ${TOP_MODULE }_2.h
22 done

Listing 4.5: Example Source-to-Source Generator.
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1 void AND2X1(u256 *A, u256 *B, u256 *Y) {
2 *Y = _mm256_and_si256 (*A, *B);}
3 void NOTX1(u256 *A, u256 *Y) {
4 // Inverter could be implemented in many ways
5 *Y = _mm256_xor_si256 (*A, _mm256_set1_epi32 (-1));}
6 void OR2X1(u256 *A, u256 *B, u256 *Y) {
7 *Y = _mm256_or_si256 (*A, *B);}
8 void XOR2X1(u256 *A, u256 *B, u256 *Y) {
9 *Y = _mm256_xor_si256 (*A, *B);}

10 void ANDNOT2X1(u256 *A, u256 *B, u256 *Y) {
11 *Y = _mm256_andnot_si256 (*A, *B);}

Listing 4.6: Macros for AVX2 Cell Library Bitwise Operator Definitions

Table 4.1: HOBFLOPS Cell Libraries’ Support for Arm Neon and Intel Intrinsic Bitwise Logic
Operations.

Arm
(64-bit)

Arm Neon
(128-bit) [Arm 2019]

Intel
(64-bit)

Intel AVX2
(128-, 256-bit)

Intel AVX512
(512-bit) [Intel 2020]

AND A & B AND A & B AND A & B AND A & B LUT000 0
OR A | B OR A | B OR A | B OR A | B LUT001 (A | (B | C)) ˆ 1
XOR A ˆ B XOR A ˆ B XOR A ˆ B XOR A ˆ B LUT002 ~ (B | A) C
NOT ~A NOT ~A NOT ~A NOT ~A LUT003 (B | A) ˆ 1
ORN A & (~B) ORN A | ~B ANDNOT ~A & B LUT004 ~(A | C) B

SEL (~((S & A) | (~S & B))) LUT005 (C | A) ˆ1
... ... (truncated)
LUT253 A | (B | (C ˆ 1))
LUT254 A | (B | C)
LUT255 1

the generator converts the standard cell libraries into equivalent C/C++ cell library

headers of SIMD vector extension instructions of the target processor ISA.

We create a CNN convolution layer to include the HOBFLOPS adder, multiplier

and cell library headers corresponding to the target ISA, e.g., Listing 4.6, and com-

pile with G++.

4.3.1 HOBFLOPS Cell Libraries for Arm Neon, Intel AVX2 and

AVX512

We create three Liberty standard cell libraries mapping hardware bitwise represent-

ations to Arm Neon Intel X86_64, AVX, AVX2 and AVX512 SIMD vector intrinsics,

architectures which were readily available to us. Other processors such as PowerPC

and RiscV can be targetted as long as the target processor contains SIMD bitwise

vector instructions that can be modelled in the hardware cell library.

The Arm Neon SEL (multiplexer) bitwise multiplexer instruction is a 3-input

bitwise logic instruction, whereas all other Neon bitwise logic instructions modelled

in the cell library are 2-input. The ternary logic LUT of the Intel AVX512 is a 3-input

bitwise logic instruction that can implement 3-input Boolean functions. An 8-bit

immediate operand to this instruction specifies which of the 256 3-input functions
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Figure 4-2: Full Adders (Implemented in Intel’s AVX2 and AVX512 and Arm’s Neon Intrin-
sic Bitwise Operations.)

should be used. We create all 256 equivalent cells in the Liberty cell library when

targeting AVX512 devices. Table 4.1 lists the bitwise operations supported in the

cell libraries for each architecture. The AVX512 column shows a truncated example

subset of the available 256 bitwise logic instructions [Intel 2020] in both hardware

and software cell libraries.

To demonstrate the capabilities of the cell libraries, we show an example of a full

adder. Figure 4-2a shows a typical 5-gate full adder implemented with our AVX2

cell library.

The same full adder can be implemented in three Arm Neon bitwise logic in-

structions, Figure 4-2b, one of which is the SEL bitwise multiplexer instruction. In-

tel AVX512 intrinsics can implement the full adder in two 3-input bitwise ternary

instructions, Figure 4-2c. While the inputs and outputs of the hardware gate level

circuits are single bits, these inputs and outputs are parallelised by the bit-width of
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(a) Many 9-bit FP Values Transformed to
9-bit bitsliced FP Data Layout.

(b) 512 9-bit Bitslice FP Add Operation
Using AVX512 Registers.

Figure 4-3: Bit-sliced Parallel FP Transformation and Bit-sliced FP Add Operation.

the SIMD vector registers. The bitwise instructions, converted to bitwise software

operations, produce extensive parallel scaling of the arithmetic.

4.3.2 HOBFLOPS Bitslice Parallel Operations

HOBFLOPS exploits bitslice parallel operations to represent FP numbers in a

bitwise manner that are processed in parallel. For example, many 9-bit values are

transformed to bitslice parallel representations, see Figure 4-3a. A simple example

of how nine registers of 512-bit bitslice parallel data are applied to a 512-bit wide

bitslice parallel FP adder is shown in Figure 4-3b. Each adder instruction has a

throughput of between a 1/3 and 1 clock cycle [Intel 2020; Arm 2019]. In this ex-

ample, the adder’s propagation delay is related to the number of instruction-level

parallelism and associated load/store commands. The number of gates and thus

SIMD vector instructions in the HOBFLOPS adder or multiplier is dependent on

the required HOBFLOPS precision. See Table 4.3 for examples of HOBFLOPS MAC
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Table 4.2: Bit Width Comparisons of Existing Custom FP.

Sign Exponent Mantissa Type, Availability, Performance
1 4 3 IEEE-FP8 (Slow in S/W) [IEEE 2019]
1 5 2 MS-FP8 (Fast in H/W) [Chung et al. 2018; Fowers et al. 2018]
1 5 3 MS-FP9 (Fast in H/W) [Chung et al. 2018; Fowers et al. 2018]
1 5 10 SoftFP16 (Slow in S/W) [Hauser 1999]
1 8 23 SoftFP32 (Slow in S/W) [Hauser 1999]
1 Arbitrary Arbitrary Flexfloat (Slow in S/W) [Tagliavini et al. 2018]
1 Arbitrary Arbitrary HOBFLOPS (Fast in S/W) (Ours)

Table 4.3: HOBFLOPS MAC Standard and Extended Range and Precision Types

hobflops(IEEE)XX Inputs
Bit Width

Outputs
Bit Width hobflops(IEEE)XXe Inputs

Bit Width
Outputs

Bit Width
Expo Mant Expo Mant Expo Mant Expo Mant

HOBFLOPSIEEE8 4 3 4 4 HOBFLOPSIEEE8e 4 3 4 7
HOBFLOPS8 5 2 5 3 HOBFLOPS8e 5 2 5 5
HOBFLOPS9 5 3 5 4 HOBFLOPS9e 5 3 5 7
... (truncated) ... ... ... ... ... (truncated) ... ... ... ...
HOBFLOPS16 5 10 5 11 HOBFLOPS16e 5 10 5 21

precision, and section 4.4 for associated HOBFLOPS MAC SIMD vector instruction

counts and performance.

4.3.3 HOBFLOPS Design Flow

Taking inspiration from Microsoft’s MS-FP8 / MS-FP9 [Chung et al. 2018; Fowers

et al. 2018] and Minifloat 8-bit that follows the IEEE-754 2019 specification, we create

single- and extended-precision HOBFLOPS adders and multipliers. For example,

we create the single-precision HOBFLOPS8 multiplier to take two 5-bit exponent, 2-

bit mantissa, 1-bit sign inputs and produce a single 5-bit exponent and 3-bit mantissa

and 1-bit sign output. We also create extended-precision HOBFLOPS8e multiplier

to take two 5-bit exponent, 2-bit mantissa, and 1-bit sign to produce a single 5-bit

exponent, 5-bit extended mantissa and 1-bit sign output.

When using HOBFLOPS, any quantisation method may be employed, such as

those investigated by Gong et al., [Gong et al. 2014]. These quantised values are

stored and computed during inference mode. Therefore we set FloPoCo to the re-

quired range and precision. For comparison, Table 4.2 shows the range and pre-

cision of IEEE-FP8 of MS-FP8 and MS-FP9, respectively, available in simulated soft-

ware and FPGA hardware. These FP solutions only support specific ranges and do

not allow for arbitrary exponent and mantissa values.
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Figure 4-4: Zoomed Snippet of An Example HOBFLOPS8 Multiplier Netlist Using Arm
Neon Cells.

Details of the evaluated HOBFLOPS are in Table 4.3, although, other arbitrary

combinations of mantissa and exponent bit-widths are supported in the flow (see

Figure 4-1).

FloPoCo [De Dinechin et al. 2009], generates VHDL descriptions of FP adders

and multipliers of varying exponent and mantissa bit-widths for standard and ex-

tended precision HOBFLOPS types, see Table 4.3. As a performance baseline, we

produce the 16- and 16e-bit IEEE-754 FP versions of the multiplier and adder, for

comparison against Flexfloat and SoftFP. FloPoCo automatically produces the cor-

responding VHDL test benches and test vectors required to test the generated cores.

FloPoCo has a slightly different way of encoding the FP numbers when compared

to the IEEE-754 2019 specification and does not support subnormal numbers. A

FloPoCo FP number [De Dinechin et al. 2009] is a bit-vector consisting of the follow-

ing 4 fields: 2-bit exception field (01 for normal numbers); a sign bit; an exponent

field wE bits wide; a mantissa (fractional) field wF bits wide. The significand has an

implicit leading 1, so the fraction field ff...ff represents the significand 1.ff...ff.

We configure FloPoCo to generate combinatorial plain RTL VHDL cores with

a 1MHz frequency, no pipelining, and no use of hard-macro FPGA multipliers or

adders, Listing 4.1. These settings ensure that FloPoCo generates reduced area
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rather than reduced latency multipliers and adders. We simulate the FP multipli-

ers and adders in a VHDL simulator with the corresponding FloPoCo generated

test bench to confirm that the quantised functionality is equivalent to IEEE-754 FP

multiplier and adder.

We create Synopsys Liberty standard cell libraries to support the target processor

architecture, e.g., Listing 4.6. Cadence Genus (version 16.22-s033_1) the industry-

standard ASIC synthesis tool, synthesises the adder and multiplier VHDL cores

with our standard cell libraries and configuration and small gate area optimisation

script, Listing 4.3, into a Verilog netlist of the logic gates. See Figure 4-4 for an ex-

ample of the HOBFLOPS8 multiplier logic produced by FloPoCo when synthesised

with our Arm Neon cell Library. Note how Genus has synthesised the design to

include the 3-input SEL gate (multiplexer) supported by Arm Neon.

HOBFLOPS designs are combinatorial, so synthesis timing constraints are un-

necessary. In the standard cell libraries Liberty file, we assign a value of 1.0 to cell

area and cell leakage power of the cells. We configure the cell capacitance and timing

values to zero. These values ensure the synthesizer assigns equal optimisation pri-

ority to all gates and produces a netlist with the least number of logic gates rather

than creating a netlist optimised for hardware timing propagation.

We further optimise the netlist using the open-source Yosys ASIC synthesizer

[Wolf et al. 2013] and ABC optimiser [Brayton and Mishchenko 2010]. We use ABC’s

strash command to transform the current network into an AND-inverter graph (AIG)

by one-level structural hashing. We then use the refactor function to iteratively col-

lapse and refactor the levels of logic and area of the netlist. We configure Yosys to

produce a topologically sorted Verilog netlist of gates, Listing 4.4. The topological

sorting is required as Cadence Genus writes the netlist file in an output port to input

port order, whereas the C/C++ compiler requires the converted netlist to have input

to output ordering. We formally verify the topologically sorted netlist against the

original netlist with Yosys satisfiability (SAT)-solver. These netlists are re-simulated

with the test bench used to simulate the FloPoCo generated VHDL designs and

compared for correlation.

Our domain-specific source-to-source generator, Listing 4.5, translates the Ver-

ilog adder and multiplier netlists to Intel AVX2, AVX512, or Arm Neon bitwise oper-
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Figure 4-5: HOBFLOPS CNN Convolution (IFM and Kernel data pre-transformed to
HOBFLOPS, output feature map (OFM) remains in HOBFLOPS layout for use in the next
layer. IFM values are broadcast across the kernel values. Arm Neon SIMD LANES are up
to 128-bit wide and Intel SIMD LANES are up to 512-bit wide.)

ALGORITHM 1: HOBFLOPS Code for a Simple AVX2 2-bit Binary Full Adder (unrolled by
Synthesis) - 256 wide 2-bit adders in 12 Bitwise Operations.
Input: x[2] of SIMD width
Input: y[2] of SIMD width
Input: cin of SIMD width
Output: HOBFLOPS register sum[2] of SIMD width
Output: HOBFLOPS register cout of SIMD width
XOR2X1(x[1], y[1], n_5); // Wide XOR Operation
OR2X1(x[1], y[1], n_2); // Wide OR Operation
OR2X1(cin, x[0], n_1);
AND2X1(x[1], y[1], n_0); // Wide AND Operation
AND2X1(cin, x[0], n_3);
AND2X1(y[0], n_1, n_6);
OR2X1(n_3, n_6, n_8);
AND2X1(n_2, n_8, n_9);
OR2X1(n_0, n_9, cout);
XOR2X1(n_5, n_8, sum[1]);
XOR2X1(x[0], y[0], n_4);
XOR2X1(cin, n_4, sum[0]);

ators with the correct types and pointers. Algorithm 1 shows the HOBFLOPS code

for a simple 2-bit binary adder with carry, generated from 12 bitwise operations,

referenced from the cell library of Listing 4.6. A single input bit of the hardware

multiplier becomes the corresponding architecture variable type e.g., uint64 for a

64-bit processor, an __mm256i type for an AVX2 processor, an __mm512i type for an

AVX512 processor, uint32x4_t type for a Neon processor (see also Figure 4-2). Algo-
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ALGORITHM 2: HOBFLOPS Code for a Simple AVX512 2-bit Binary Full Adder - 512 wide
2-bit adders in 4 Bitwise Operations.
Input: x[2] of SIMD width
Input: y[2] of SIMD width
Input: cin of SIMD width
Output: HOBFLOPS register sum[2] of SIMD width
Output: HOBFLOPS register cout of SIMD width
LUT232X1(cin, y[0], x[0], n_1); // (𝐵&𝐶)|𝐴&(𝐵 ∧ 𝐶)
LUT232X1(x[1], n_1, y[1], cout);
LUT150X1(y[1], x[1], n_1, sum[1]); // 𝐴 ∧𝐵 ∧ 𝐶
LUT150X1(y[0], x[0], cin, sum[0]);

rithm 2 demonstrates the gate-count and thus the SIMD operational efficiency of the

AVX512 implementation of the same simple 2-bit adder, generated from 4 bitwise

operations.

A HOBFLOPS8 multiplier targeted at the e.g., AVX2 processor is generated in 80

bitwise operations, and a HOBFLOPS8 adder is generated in 319 bitwise operations.

When targeted at the AVX512 processor, the HOBFLOPS8 multiplier is generated

in 53 bitwise operations, and the HOBFLOPS8 adder is generated in 204 bitwise

operations.

4.3.4 CNN Convolution with HOBFLOPS

We present a method for CNN convolution with HOBFLOPS arithmetic. We

implement HOBFLOPS MACs in a CNN convolution layer, where up to 90% of the

computation time is spent in a CNN [Farabet et al. 2010]. We compare HOBFLOPS

MAC performance to IEEE FP MAC and to Flexfloat [Tagliavini et al. 2018] and

SoftFP [Hauser 1999].

Figure 4-5 shows HOBFLOPS IFM and kernel values convolved and stored in

the OFM. To reduce cache misses, we tile the IFM 𝐻×𝑊 ×𝐶 dimensions, which for

Conv dw / s2 of MobileNets CNN is 14× 14× 512 = 100, 352 elements of HOBFLOPS

IFM values. We tile the 𝑀 kernel values by 𝐿𝐴𝑁𝐸𝑆 × 𝑁𝐼𝑁𝐵𝐼𝑇𝑆, where 𝐿𝐴𝑁𝐸𝑆

corresponds to the target architecture registers bit-width, e.g., 512-lanes corresponds

to AVX512 512-bit wide register. The 𝐿𝐴𝑁𝐸𝑆×𝑁𝐼𝑁𝐵𝐼𝑇𝑆 tiles of binary values are

transformed to 𝑁𝐼𝑁𝐵𝐼𝑇𝑆 of SIMD width values, where SIMD width correspond to

the target architecture register width, e.g., uint64 type for a 64-bit processor archi-

tecture, __mm512i type for AVX512 processor.

We broadcast the IFM channel tile of 𝑁𝐼𝑁𝐵𝐼𝑇𝑆 across the corresponding chan-

nel of all the kernels tiles of 𝑁𝐼𝑁𝐵𝐼𝑇𝑆 to convolve image and kernel values using

HOBFLOPS multipliers, adders and ReLU activation function. The resultant convo-
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lution SIMD width values of 𝑁𝑂𝑈𝑇𝐵𝐼𝑇𝑆 wide are stored in corresponding location

tiles in the OFM. The HOBFLOPS IFM and kernel layout for single-precision, as

defined by FloPoCo is outlined in Equation 1.

NINBITS=EXC+SIGN+EXPO_IN+MANT_IN (1)

The HOBFLOPS OFM layout for single-precision is shown in Equation 2.

NOUTBITS=EXC+SIGN+EXPO_IN+MANT_IN+1 (2)

and for extended-precision, see Equation 3.

NOUTBITS=EXC+SIGN+EXPO_IN+(2 × MANT_IN)+1 (3)

For example, HOBFLOPS9, as can be seen in Table 4.3, the input layout 𝑁𝐼𝑁𝐵𝐼𝑇𝑆

has 2-bit exception 𝐸𝑋𝐶, 1-bit sign 𝑆𝐼𝐺𝑁 , 5-bit exponent 𝐸𝑋𝑃𝑂_𝐼𝑁 , 3-bit man-

tissa 𝑀𝐴𝑁𝑇_𝐼𝑁 , which added comes to 11-bits. The single-precision 𝑁𝑂𝑈𝑇𝐵𝐼𝑇𝑆

would be 12-bits (𝑁𝐼𝑁𝐵𝐼𝑇𝑆 + 1). The extended-precision 𝑁𝑂𝑈𝑇𝐵𝐼𝑇𝑆 would be

15-bits.

If HOBFLOPS is implemented in a multi-layer CNN, the data between each layer

could remain in HOBFLOPS format until the last convolution layer. The OFM at

the last convolutional layer could be transformed from HOBFLOPS values to floats

resulting in the transformation overhead only occurring at the first and last convo-

lutional layers of the CNN model. An additional pooling layer could be developed

in the HOBFLOPS format, for the interface between the last convolutional layer and

the fully connected layer, not done in this work.

We repeat for MACs up to HOBFLOPS16e on each processor architecture up to

the 512-bit wide AVX512 registers.

4.4 Evaluation

We implement each of the 8- to 16e-bit HOBFLOPS multipliers and adders in a

convolution layer of the MobileNets CNN [Howard et al. 2017]. We use layer Conv

dw / s2 of MobileNets as it has a high number of channels 𝐶 and kernels 𝑀 , perfect
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for demonstrations of high-dimensional parallelised MAC operations. We compare

the HOBFLOPS16 multipliers and adders round-to-nearest-ties-to-even and round-

towards-zero modes performance to SoftFP16 rounding near_even and round min

modes [Hauser 1999]. This 16-bit FP comparison acts as a baseline as Soft FP8 is not

supported by Berkeley’s emulation tool.

We target 32-bit to 512-bit registers for AVX2 and AVX512 processors and target

32- and 128-bit registers for the Cortex-A15 processor. We implement 32- to 512-

lanes of HOBFLOPS multipliers and adders and capture each of the AVX2 32-, 64-,

128- and 256-bit, AVX512 32-, 64-, 128-, 256 and 512-bit, and Cortex-A16 32-, 64- and

128-bit results.

Three machine types are used to test the HOBFLOPS MAC:

∙ Arm Cortex-A15 Neon embedded development kit, containing ARMv7 rev 3

(v7l) CPU at 2GHz and 2GB RAM;

∙ Intel Core-i7 PC, containing Intel Core-i7 8700K CPU at 3.7GHz and 32GB

RAM;

∙ Intel Xeon Gold server PC, containing Intel Xeon Gold 5120 at 2.2GHz and

256GB RAM.

Our cell libraries model-specific cells, see Table 4.1. We omit the bit clear (BIC) of the

Arm Neon in our cell library. Inclusion of bit clear (BIC) prevents the synthesis tool,

Cadence Genus, from optimising the netlist with SEL (multiplexer) units, leading to

a less area efficient netlist.

To further decrease area and increase performance, we produce round-towards-

zero versions of the HOBFLOPS8–HOBFLOPS16e adders as the rounding can be

dealt with at the end of the layer in the activation function, assuming the non-

rounded part of the FP value is retained through to the end of the layer.

The MACs per second of an average of 1000 iterations of a HOBFLOPS adders

and multipliers are captured and compared. We use the GNU G++ compiler to

optimise the code for the underlying target microprocessor architecture and num-

bers of registers. We compile the HOBFLOPS CNN code (see Figure 4-5) to include

our HOBFLOPS adders and multipliers, and our cell library (e.g., Listing 4.6 for

AVX2) with G++ (version 8.2.1 20181127 on Arm, version 9.2.0 on Intel AVX2 and

version 6.3.0 20170516 on Intel AVX512 machines). We target C++ version 17 and
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(a) Throughput of Arm Neon,
HOBFLOPSIEEE8-32, and
HOBFLOPS8-16e MACs/s Compared to
Flexfloat and SoftFP MACs/s - higher
throughput is better.

(b) Arm Neon SIMD Bitwise Vector
Instruction Count HOBFLOPSIEEE8-32,
and HOBFLOPS8-16e MACs - lower
gate count is better.

Figure 4-6: Throughput and SIMD-Bitwise-Vector-Instruction Count of Arm Neon,
HOBFLOPSIEEE8-32, and HOBFLOPS8-16e MACs in Convolution of Two Rounding Meth-
ods.

using -march=native, -mtune=native, -fPIC, -O3 compiler switches with −𝑚𝑠𝑠𝑒 for

SSE devices and -mavx2 for AVX2 devices. When targeting an Intel AVX512 ar-

chitecture we use the the -march=skylake-avx512, -mtune=skylake-avx512, -mavx512f, -

fPIC, -O3 switches. When targeting an Arm Neon device we use -march=native, -

mtune=native, -fPIC, -O3, -mfpu=neon to exploit the use of Neon registers.

After the G++ compilation, we inspect the assembler object dump. Within the

multiplier and adder units, we find an almost one-to-one correlation of logic bitwise

operations in the assembler related to the gates modelled in the cell libraries, with

additional loads/stores where the compiler has seen fit to implement.

4.4.1 Arm Cortex-A15 Performance

We configure an Arm Cortex-A15 Development kit with 2GB RAM, ARCH Linux

version 4.14.107-1-ARCH installed, and fix the processor frequency at 2GHz. We run

tests for 32-, 64- and 128-lanes and capture performance. We use taskset to lock the

process to a core of the machine for measurement consistency.

Figure 4-6a shows 128-lane performance for all arbitrary-precision HOBFLOPS

FP between 8- and 16e-bits, IEEE 8- and 32-bit equivalents, Flexfloat, and SoftFP

versions. HOBFLOPS16 round-to-nearest-ties-to-even achieves approximately half
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the performance of Flexfloat and SoftFP 16-bit rounding near_even mode on Arm

Neon. However, HOBFLOPS offers arbitrary precision mantissa and exponent FP

between 8- and 16-bits, outperforming Flexfloat and SoftFP between HOBFLOPS8

and HOBFLOPS12 bits.

Similarly, HOBFLOPS16 round-towards-zero version shown in Figure 4-6b demon-

strates a slight improvement in performance compared to Flexfloat and SoftFP round-

ing min mode. Figure 4-6b also shows HOBFLOPS round-towards-zero versions

have an increased performance when compared to HOBFLOPS round-to-nearest-

ties-to-even.

HOBFLOPS appears to exhibit a fluctuation around HOBFLOPS8e and HOB-

FLOPS9 in Figure 4-6b. While there is 1-bit more in the input mantissa of HOB-

FLOPS9 compared to HOBFLOPS8e, which leads to HOBFLOPS9 containing larger

adder/accumulators, Figure 4-6b shows the round-towards-zero HOBFLOPS9 func-

tionality almost counter-intuitively exhibiting slightly greater throughput than HOB-

FLOPS8e. The greater throughput of the round-towards-zero HOBFLOPS9 is due to

the lack of rounding adder, reduced gate area and latency.

The low bit-width and thus reduced hardware synthesis gate count or area as

seen in Figure 4-6 would benefit memory storage and bandwidth within the em-

bedded system. This allows for reduced energy consumption, however, energy con-

sumption is not measured here.

4.4.2 Intel AVX2 Performance

We configure an Intel Core i7-8700K desktop machine with 32GB RAM, and

ARCH Linux 5.3.4-arch1-1 installed. For consistency of performance measurements

of various HOBFLOPS configurations, within the BIOS we disable:

∙ Intel’s SpeedStep (i.e., prevent the CPU performance from ramping up and

down);

∙ Multi-threading (i.e., do not split the program into separate threads);

∙ TurboBoost (i.e., keep all processor cores running at the same frequency);

∙ Hyperthreading Control (i.e., keep one program on one processor core);

∙ C-States control (i.e., prevent power saving from ramping down the core clock

frequency).
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(a) Throughput of Intel AVX2,
HOBFLOPSIEEE8-32, and
HOBFLOPS8-16e MACs/s Compared to
Flexfloat and SoftFP MACs/s - higher
throughput is better.

(b) Intel AVX2 SIMD Bitwise Vector In-
struction Count of HOBFLOPSIEEE8-
32, and HOBFLOPS8-16e MACs - lower
gate count is better.

Figure 4-7: Throughput and SIMD-Bitwise-Vector-Instruction Count of Intel AVX2,
HOBFLOPSIEEE8-32, and HOBFLOPS8-16e MACs in Convolution of Two Rounding Meth-
ods.

We alter GRUB’s configuration so intel_pstate (i.e., lock the processor core clock fre-

quency) and intel_cstate are disabled on both GRUB_CMDLINE_LINUX and

GRUB_CMDLINE_LINUX_DEFAULT. This BIOS and Linux Kernel configuration

ensures the processor frequency is fixed at 4.6GHz, no power-saving, and each

HOBFLOPS instance running at full performance on a single thread and single CPU

core. When executing the compiled code, taskset is used to lock the process to a

single core of the CPU. These configurations allow a reproducible comparison of

timing performance of each HOBFLOPS configuration against SoftFP16.

We run tests for 32-, 64-, 128- and 256-lanes and capture performance. Fig-

ure 4-7a shows 256-lane results for all arbitrary-precision HOBFLOPS FP between

8- and 16e-bits, IEEE 8- and 32-bit equivalents, Flexfloat, and SoftFP versions. HOB-

FLOPS16 performs over 2.5× higher MACs/second when compared to Berkeley’s

SoftFP16 MulAdd rounding near_even mode. The round-towards-zero version of

HOBFLOPS16 performs at around 2.7× higher MACs/second when compared to

Berkeley’s SoftFP16 MulAdd rounding min mode. In fact, HOBFLOPS outperforms

SoftFP for all versions of between HOBFLOPS8 and HOBFLOPS16 for both round-

to-nearest-ties-to-even and round-towards-zero rounding modes. HOBFLOPS out-

performs Flexfloat up to HOBFLOPS12e for both rounding modes.
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(a) Throughput of Intel AVX512,
HOBFLOPSIEEE8-32, and
HOBFLOPS8-16e MACs/s Compared to
Flexfloat and SoftFP MACs/s - higher
throughput is better.

(b) Intel AVX512 SIMD Bitwise Vector
Instruction Count of HOBFLOPSIEEE8-
32, and HOBFLOPS8-16e MACs - lower
gate count is better.

Figure 4-8: Throughput and SIMD-Bitwise-Vector-Instruction Count of Intel AVX512
HOBFLOPSIEEE8-32 and HOBFLOPS8-16e MACs in Convolution of Two Rounding Meth-
ods.

HOBFLOPS performance gain is due to reduced synthesis area of the HOB-

FLOPS units as seen in Figure 4-7b. Again, this reduction in area, also seen for

round-towards-zero, is key to reduced SIMD bitwise operations being created for

the HOBFLOPS MACs and therefore reduced latency through the software HOB-

FLOPS MACs.

4.4.3 Intel AVX512 Performance

We configure an Intel Xeon Gold 5120 server with 256GB RAM, and Debian

Linux 4.9.189-3+deb9u2. This shared server-grade machine BIOS or clock could not

be changed as done for the AVX2-based machine. However, taskset is used to lock

the process to a single CPU core.

We run tests for 32-, 64-, 128-, 256- and 512-lanes. Figure 4-8a captures 512-

lane results for HOBFLOPS FP between 8- and 16e-bits, IEEE 8- and 32-bit equiva-

lents and, Flexfloat, and SoftFP versions. HOBFLOPS16 performs with 8.2× greater

MACs throughput than SoftFP16 MulAdd rounding near_even mode. For the 512-

lane round-towards-zero results, HOBFLOPS16 performs at 8.4× the MACs through-

put of SoftFP16 MulAdd rounding min mode. HOBFLOPS significantly outperforms

Flexfloat for HOBFLOPS8 to HOBFLOPS16 for both round-to-nearest-ties-to-even
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and round-towards-zero. HOBFLOPS9 performs at approximately 2 billion MAC-

s/second, around 7× the performance of Flexfloat 9-bit.

HOBFLOPS performance is due to HOBFLOPS lower hardware synthesis area.

When the netlists are converted to software bitwise operations, HOBFLOPS trans-

lates to fewer SIMD 3-input ternary logic LUT instructions the MACs. Figure 4-

8b shows HOBFLOPS16 area on the AVX512 platform is 38% smaller than HOB-

FLOPS16 area on AVX2. A further slight performance boost is seen for round-

towards-zero.

4.5 Related Work

As discussed in section 2.1 starting on page 9, CNNs require a great deal of com-

putation, so, many researchers focus on proposing methods of optimising FP arith-

metic within the CNNs either at the register level or the bit-precision level. Tradi-

tionally, researchers propose SIMD register and data path optimisations from within

the compiler. An early example from Fisher et al., [1998] is the SIMD within a regis-

ter (SWAR) model which treats a wide data path within a processor as multiple, thin

SIMD parallel data paths. This model accelerates arithmetic, allowing wide registers

to be partitioned for smaller operations, such as subdividing 32-bit integer adders

into eight 8-bit adders, assuming one adder’s carry to the next adder is suppressed.

The work of Fisher et al., is an early work of efficient register packing which inspires

the bitslice packing of our work.

Researchers investigate different bit precision and representations of the FP num-

ber base. As outlined in section 2.1, Google’s TPU ASIC implements bfloat16 [Google

2019], preserving dynamic range but reducing the precision. Bfloat16 only reduces

the bit-width of the mantissa and does not investigate different exponent or man-

tissa bit-widths. Our work addresses these arbitrary exponent and mantissa bit-

widths.

Nvidia has proposed the new TP32 number representation [NVidia 2020], which

is a sign bit, 8-bit exponent and 10-bit mantissa. This 19-bit floating-point format is

an input format which truncates the IEEE FP32 mantissa to 10-bits. TP32 still pro-

duces 32-bit floating-point results to move and store in the GPU. Similar to Google,
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Nvidia does not investigate other bit-widths of FP range and precision, something

our work does.

As we show in section 2.1, typically 32-bit or 64-bit precision FP arithmetic is

used for inference or training of a CNN. Johnson [2018] shows that changes in range

and precision that lead to increased performance, typically lead to overall reduced

energy consumption.

Note there are converter tools, such as Verilator, that converts hardware descrip-

tion language (HDL) code like Verilog to C/C++. Verilator does not merely convert

Verilog netlists to C/C++ as Verilator’s focus is on fast, optimised, threaded com-

piled C++ model of Verilog for simulation purposes. Verilator does not produce a

circuit in a format convertible to bitwise instructions, something our custom code-

generator does.

4.6 Conclusion

Arbitrary precision floating-point computation is largely unavailable in CPUs or

FPUs. FP simulation latency is often too high for computationally intensive systems

such as CNNs. FP simulation has little support for 8-bit or arbitrary precision.

We propose HOBFLOPS, that generates fast custom-precision bitslice-parallel

software FP arithmetic. We optimise HOBFLOPS using a hardware design flow, cell

libraries and custom code-generator. We generate gate-count in hardware and thus

low SIMD operationally efficient software-emulated FP operators with an arbitrary

precision mantissa and exponent. We pack the generated FP operators efficiently

into the target processors SIMD vector registers. HOBFLOPS offers FP with custom

range and precision, useful for FP CNN acceleration where memory storage and

bandwidth are limited. Low-precision FP arithmetic in the MAC offers increased

classification accuracy compared with INT8 or other number representation coun-

terparts. HOBFLOPS saves machine operations for a comparable convolution com-

pared to its counterparts.

We experiment with large numbers of channels and kernels in CNN convolution.

We compare the MAC performance in CNN convolution on Arm and Intel proces-

sors against Flexfloat, and Berkeley’s SoftFP. HOBFLOPS outperforms Flexfloat by

over 10×, 5×, and 3× on Intel AVX512, AVX2 and Arm Neon respectively. HOB-
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FLOPS offers arbitrary-precision FP with custom range and precision, e.g., HOB-

FLOPS9, which outperforms Flexfloat 9-bit by over 7×, 3×, and 2× on Intel AVX512,

AVX2 and Arm Neon respectively.

The performance gains are due to the optimised hardware synthesis area of the

MACs, translating to fewer bitwise operations. Additionally, the bitslice parallelism

of the very wide vectorisation of the MACs of CNN convolution contributes to the

performance boost. While we show results for 8- and 16-bit with a fixed exponent,

HOBFLOPS supports the emulation of any required precision of FP arithmetic at

any bit-width of mantissa or exponent, e.g., FP9 containing a 1-bit sign, 5-bit expo-

nent and 3-bit mantissa, or FP11 containing a 1-bit sign, 5-bit exponent and 5-bit

mantissa, not efficiently supported with other software FP emulation.

Other processors, e.g., RiscV or Arm SVE (when available) can be supported by

producing a standard cell library of the processors bitwise vector extensions. HOB-

FLOPS allows researchers to prototype different levels of custom FP precision in the

arithmetic of software CNN accelerators. Furthermore, HOBFLOPS fast custom-

precision FP CNNs may be valuable in cases where memory bandwidth is limited.

The application of HOBFLOPS could therefore be extended to areas outside of CNN

acceleration, such as GPGPU acceleration, however, this has not been investigated.

95



Chapter 4. Hardware Optimised Bit-sliced Floating-Point Operators for CNNs

96



5
Conclusion

5.1 Contributions and Discoveries

THIS thesis investigates opportunities for improving the energy efficiency and

gate-level area of the CNN convolution layer MAC arithmetic, when imple-

mented in embedded hardware such as an ASIC, FPGA. We also investigate op-

portunities to improve the execution time and floating-point precision of the CNN

convolution layer arithmetic in software on embedded and high-end CPUs.

The convolution layer consists of millions of MACs, the arithmetic of which can

be in fixed-point, integer or floating-point format. The CNN can operate in training

mode or inference mode. During inference mode, the convolution layer occupies up

to 90% of the computation time of the CNN, convolving the input feature map (IFM)

with the kernel weight data. The storage and movement of weight data and com-

putation of the convolution layer are often beyond the energy, storage and compute

bounds of edge devices. We investigate two areas for optimising the MAC arith-

metic of the convolution layer while maintaining FP accuracy in inference mode, for

CNN accelerator implementation in edge devices:

∙ For successful CNN inference, large quantities of weight data have to be moved

from RAM to the layers of the CNN. Researchers optimise the energy con-

sumption of data transfers from RAM with a data compression method of

weight-sharing [Han et al. 2016a]. However, weight-sharing does not ap-

proach optimising the arithmetic of the weight data with the IFM within the

convolution operation. Our PASM work proposes the optimisation of the com-

putational arithmetic of a weight-shared CNN. PASM focuses on optimising
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the power and area of ASIC and FPGA implementations of the convolution

layer MAC arithmetic. We demonstrate how we build on the weight-sharing

scheme to reduce the numbers of multiply operations required in the MAC

of the convolution layer. We show that our PASM accelerator consumes up

to 66% fewer logic gates in ASIC and 99% less energy consumption than the

equivalent weight-shared MAC, with up to a 12% increase in latency. We orig-

inally planned to decrease ASIC area and increase energy efficiency. However,

the discovery of reduced DSP utilisation and therefore energy in FPGA sug-

gests that PASM could be quickly and cheaply implemented in accelerators

before engineering silicon of the ASIC accelerator implementation is available;

∙ Due to the computational, bandwidth, and energy restrictions of 32-bit FP

in embedded systems, researchers have trended towards reduced precision

fixed-point arithmetic in CNNs, often at the expense classification accuracy.

Bitsliced FP operations are more efficient and faster than FP operations and

exhibit more range and precision than equivalent bit-width fixed-point arith-

metic [Xu and Gregg 2017]. Our HOBFLOPS work proposes a method of

producing low-precision floating-point arithmetic in embedded and high-end

server software for CNN acceleration. HOBFLOPS is suitable for performance

and reducing memory transfers with increased FP precision. HOBFLOPS is a

software algorithm and code generation flow for implementing CNN convolu-

tion with the very wide vectors that arise in bitslice parallel vector arithmetic.

We experiment with large numbers of channels and kernels in CNN convolu-

tion and show that HOBFLOPS outperforms Flexfloat by over 10×, 5×, and

3× on Intel AVX512, AVX2 and Arm Neon, respectively. HOBFLOPS offers

arbitrary-precision FP with custom range and precision, e.g., HOBFLOPS9,

which outperforms Flexfloat 9-bit by over 7×, 3×, and 2× on Intel AVX512,

AVX2 and Arm Neon respectively. This indicates that HOBFLOPS is very effi-

cient for low-precision FP. We originally set out to use HOBFLOPS on embed-

ded devices. However, we discovered that HOBFLOPS is also very efficient

when implemented on high-end 512-bit processors, potentially saving energy

in edge embedded devices and data centre applications.
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5.2 Future Directions

We show that the PASM accelerator reduction in multipliers significantly re-

duces the hardware ASIC and FPGA area and energy consumption. While these

PASM results are impressive, we measure efficiency benefits using the conservative

post-synthesis Cadence design tools timing, power and area reports. We would see

even better results if the energy measurements of PASM were measured when im-

plemented in fully placed and routed ASIC silicon. Measurements of performance

within the full hardware accelerator [Dinelli et al. 2020] for area, latency and en-

ergy efficiencies of PASM would highlight the effectiveness of an ASIC PASM CNN

accelerator.

We implement HOBFLOPS with fixed range (5-bit exponent) [Chung et al. 2018]

and vary the precision (mantissa bit width). The change of mantissa yields impres-

sive results as the multiplier exists in the mantissa. It would be interesting to run the

experiments with additional different bit widths of exponent and changing mantissa

bit width. We show a 4-bit exponent for the IEEE-754 8-bit implementation and in-

crease to a 5-bit exponent for the remaining results, however, the mantissa bit-width

also changes. Investigating the RTL from FloPoCo suggests that an increase in bit-

width of the exponent linearly increases the gate-level area for both FP multiplier

and FP adder. The increase in the gate-level area of the exponent would suggest a

linear increase in latency but with an increase in order-of-magnitude of supported

range for both HOBFLOPS adder and HOBFLOPS multiplier.

The HOBFLOPS proposal would allow for the scaling of different arbitrary bit-

widths of mantissa and exponent in different layers of a CNN. One might exper-

iment with e.g., higher precision HOBFLOPS for early layers and scaling to low

precision for later layers of the CNN.

Another interesting area to investigate might be to mix the Xilinx FPGA FP oper-

ator IP with HOBFLOPS. Xilinx FP IP only support 16-, 32- and 64-bit FP arithmetic.

HOBFLOPS can offer lower custom precision FP arithmetic, unsupported by Xilinx

IP.

As the number of bits in the HOBFLOPS mantissa and exponent increases, HOB-

FLOPS becomes expensive in gate-level area, which translates to longer execution

time in the subsequent software HOBFLOPS. Approximate arithmetic circuits typi-
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cally guarantee precision for a few low-order bits e.g., precision scaling of input and

intermediate operands, lossy compression, inexact adder and multiplier [Xu et al.

2015; Mittal 2016]. It would be interesting to investigate the application of approxi-

mate arithmetic circuits to produce the HOBFLOPS arithmetic. The potential lower

gate-level area of using approximate arithmetic in HOBFLOPS may shorten the ex-

ecution time of larger mantissa and exponent HOBFLOPS software arithmetic.

Both the PASM and HOBFLOPS optimisations would benefit greatly from being

implemented together to accelerate a weight-shared CNN. Comparisons of imple-

menting PASM and HOBFLOPS on various microprocessors, FPGA and ASIC with

combinations of PASM bins and HOBFLOPS range and precision should show ben-

efit. Additionally, PASM and HOBFLOPS accelerators could also be applied to ac-

celerate the convolution layers of Fast Region Based CNNs (RCNNs) [Girshick 2015]

and You Only Look Once (YOLO) [Redmon et al. 2016].

Processing in-memory is a style of computer architecture where hardware for

some processing capacity is incorporated into memory. Ambit [Seshadri et al. 2017]

is a bulk bitwise accelerator-in-memory that performs AND, OR and NOT bitwise

operations in DRAM. The cell library of HOBFLOPS could be configured to sup-

port such bitwise operations to produce HOBFLOPS custom-precision bitwise FP

operations that can be performed in memory. Furthermore, approximate comput-

ing techniques identified above, such as an inexact adder and multiplier, could be

used to implement HOBFLOPS in-memory, offering a great benefit to this area of

DRAM accelerator research.

5.3 Final Thoughts

AI and the subset of ML are changing the world daily in many ways. ML infer-

ence at the edge needs to be fully achieved at low levels of application latency and

energy. Researchers are focusing on producing lower power, lower bandwidth and

lower storage ML models to aid the move of CNN acceleration closer to the edge.

In our contributions, we have reduced the number of multipliers in a weight-shared

CNN significantly reducing area and energy consumption with PASM. We have in-

vestigated implementing bitslicing strategies in the MAC of a CNN and show a

significant reduction in execution time for CNN in Arm Neon and Intel processors.
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Our work is a small and important component in transforming the world through

AI at the edge.
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A
Neural Networks: Background and History

THE HISTORY of Automata and robots, right up to today’s artificial intelligence

and machine learning systems has fascinated the minds of humans for mil-

lennia. The historical review will show common threads throughout the research

with a special interest in energy consumption and optimisation techniques applied

to machine learning.

A.1 Introduction

For millennia, designers have strived to enable automata (usually in the form of

robots) and machine learning systems to automate mundane tasks, entertain and,

more recently, make medical diagnosis. These designs have been applied to several

areas of ML in differing ways. Some fields of application, discussed below, are:

∙ Automata and robotics, e.g., [Dynamics 2019];

∙ Gameplay to beat human champions [Kasparov and Greengard 2018; Wang

et al. 2016b];

∙ Medical diagnostics and devices for detection of skin cancers [Esteva et al.

2017], brain cancers [Jermyn et al. 2016], breast cancers [Wang et al. 2016a],

and most recently the Coronavirus [Maghdid et al. 2020], and genetic diseases,

autism and spinal muscular atrophy [Xiong et al. 2015; Zhou and Troyanskaya

2015; Alipanahi et al. 2015; Zeng et al. 2016];

∙ Speech e.g., [Hinton et al. 2012], natural language processing (NLP) [Collobert

et al. 2011] and on-the-fly speech translation [Deng et al. 2013];
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Figure A-1: Silver Swan (photo Stephen Curry).

∙ Image classification [Russakovsky et al. 2015], object localisation and detec-

tion [Girshick et al. 2014b], image segmentation [Long et al. 2015] and action

recognition [Simonyan and Zisserman 2014a] in images and videos.

A.1.1 Automata and Robotics

Homer was the first to use the word Automata around 500 BC when describing

the use of an automatic door [Bryant 1870a] and wheeled tripods [Bryant 1870b].

Hephaestus created Automata of walking tripods and maidens of gold for his work-

shop [Bryant 1870c]. Daedalus used quicksilver (now known as Mercury) to install
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Combinatorial Logic

Finite State Machine

Pushdown Automaton

Turing Machine

Figure A-2: Classes of Automata Theory [Wikipedia 2020].

voices in his moving statues [Kang 2002], and King Alcinous of the Phaeacians em-

ployed gold and silver watchdogs [Faraone 1987].

A self-operated automaton is designed to follow a programmed set of instruc-

tions. Humans have produced many iterations of Automata over the centuries, and

few examples of early Automata remain. Some examples have stood the test of

time. The Silver Swan by John Joseph Merlin, constructed in 1773 and housed in the

Bowes Museum in England, is a clock-work life-size automaton of a swan sitting in

a stream containing fish, Figure A-1. He made the stream from rotating glass rods,

giving the illusion of flowing water. The swan’s head bends down into the water to

‘catch’ one of the fish.

Another early example is Henri Maillardet’s multi-tasking automaton that he

designed and built in 1805. The automaton can draw four drawings and write three

poems and has a life-size torso and head of a human. Maillardet’s automaton is

working and on display in the Franklin Institute Science Museum in Philadelphia,

USA.

Automata spawned Automata theory or the study of abstract machines and com-

putational problems. Figure A-2 shows some of the classes of Automata from the

lowest level of abstraction, combinatorial logic that has a finite number of inputs and

outputs, up to a Turing machine (more on the Turing Machine in subsection A.2.1).

Karel Capek, the Czech playwright, coined the word ‘Robot’ in his 1920 play

Rossum’s Universal Robot [Capek 2004]. The term robot comes from a combina-

tion of the Czech term for forced labour, ‘robota’, and the Slovak word for worker

‘robotnik’. Robots, by today’s definition, are machines designed to accomplish a

task. However, the definition has gone further to define machines that use their
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programming to make decisions. The sensor input guide the robot’s decisions, the

control systems make the decisions, and the actuators produce the desired output of

the decisions. The sensors are designed to detect, for example, images and sounds.

The actuators have to be fast and flexible enough to perform the task, and the con-

trol system has to make all the decisions to get the sensors and actuators working

together, often in real-time and in the real world.

The WABOT-1 is considered the first full-scale anthropomorphic robot developed

by researchers at Waseda University in Japan in 1973. It had arms and legs, could

walk, pick things up with hands that contained tactile-sensors and could talk in

Japanese. WABOT-1 was considered to have the mental capacity of a one-and-a-

half-year-old child. It was slow, walking at a pace of 45 seconds per step and would

only reply to specific questions with prerecorded statements. Later in 1980, the same

group of researchers constructed WABOT-2, which was specialised to play the piano

as piano playing was considered an activity that would require human-like dexter-

ity and intelligence. The researchers concluded that it was easier to design robots to

do one task at a time. This single task application is part of the reason today’s robots

are designed to do one job, such as vacuuming the floor or cleaning the dishes. These

robots can be designed to be more efficient at these tasks than a general-purpose

machine trying to perform the same task in similar power constraints. However,

WABOT research allowed humans to interact with the robots verbally or physically

and has led to the development of artificially intelligent systems.

George Devol’s ‘Unimation’ robot [Devol 1961], was granted a patent in 1961.

From this patent, Devol, in partnership with Joe Engelberger, developed Unimate.

Unimate was a welding arm robot weighing in at a metric tonne. A magnetic

drum containing the program told the robot arm to stack and weld the metal. The

first industrial robot to be controlled by a computer was the IRB6 in 1974. The

Swedish company, ABB developed the robot and gave it 16KB of RAM, made it pro-

grammable and gave it a display that could show four digits with LEDs [ABB 1974].

To perform more complex tasks than the tube polishing that the IRB6 performed

would require the robot to have some form of a vision system. A good camera,

lenses, and AI were needed to allow the camera to discern objects and interact with

situations in real-time in the real world. By the late 1970s, research engineers had
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Figure A-3: Sawyer And Baxter (photo Jeff Green/Rethink Robotics).

developed these cameras and AI systems to recognise edges and shapes. By 1981

this research left the lab and headed to the industry where another General Motors

factory implemented a system of vision called Consight [Holland et al. 1979]. Con-

sight’s system comprised of three different robots that used three vision systems to

sort six different forms of automotive parts moving on a conveyor belt.

Some industrial robots of today are becoming more general purpose. Baxter is

a humanoid industrial robot which is 2 metres tall and weighs 136kg and has a

screen with a cartoon-like face, Figure A-3, to avoid the ‘uncanny valley syndrome’

[Mathur and Reichling 2016]. Baxter uses the robot operating system (ROS), which

is a framework for writing robot control software. The ROS contains

“a collection of tools, libraries and conventions that aim to simplify the task of

creating complex and robust robot behaviour across a wide variety of robotic

platforms.” [Quigley et al. 2009]

Today’s robots include ubiquitous physical and verbal “assistants”. The grasp-

ing robot arm was one of the first steps [Levine et al. 2016], with motion planning

[Pfeiffer et al. 2017] and visual navigation [Chen et al. 2015a], [Gupta et al. 2017].

The visual interaction with the outside world has led to the development of sta-

bilised quadcopters [Zhang et al. 2016] and driving strategies for autonomous vehi-

cles [Shalev-Shwartz et al. 2016] at which Google’s Waymo and Tesla are at the fore-
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Figure A-4: (from left): HANDLE, SPOT and ATLAS Boston Dynamics Robots (composite
photo Boston Dynamics).

front. Boston Dynamics [Dynamics 2019], a robotics research company, recently pur-

chased from Google by Tesla, have been developing animal and humanoid robots

for some years, partially driven by Defense Advanced Research Projects Agencys

(DARPAs) Robotics Challenge [DARPA 2015]. Boston Dynamics address three chal-

lenges with their robots:

∙ balance and dynamic mobility;

∙ mobile manipulation;

∙ mobile perception [Raibert 2017].

These robots have become very advanced, demonstrating their sensing and in-

spection abilities in the animal-like SPOT variant; their parkour abilities with their

humanoid ATLAS variant; and their wheel-driven mobile manipulation machine

called HANDLE, see Figure A-4. The robots movement, sensing and manipulation

within the real world require AI to be successful.

A.1.2 Machine Learning (ML)

The term Machine Learning appears to be first coined in Samuel’s work [1959],

where Samuel proposes schemes for a machine to learn to play checkers to greater

proficiency than that of the programmer. AI and ML are connected but distinct. ML

is considered a subset of AI, as Figure A-5 shows. ML is a subset and a narrow form

of AI, i.e., we tailor the AI to a specific task. ML algorithms are used to collect and

analyse huge amounts of data to enable the machine to ‘learn’, i.e., identify patterns
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Brain Inspired Learning

Machine Learning (ML)

Artificial Intelligence (AI)
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Figure A-5: AI, ML, DL [Sze et al. 2017].

and make intelligent decisions from the data, with little or no human intervention.

A subset of ML is called deep learning (DL) and delivers common techniques that

cover activities such as machine vision [LeCun et al. 1999], natural language pro-

cessing [Collobert et al. 2011] and robotics [Sze et al. 2017], where hidden patterns

can be learnt to arrive at a more efficient set of decision rules.

A.2 A Concise History of AI

How did we go about getting machines and automata to exhibit some form of

“intelligence”? What does exhibiting intelligence mean? Today’s significant devel-

opments in AI did not happen overnight. The innovation and development first

started in the late 1930s, hitting two AI winters along the way before emerging as

today’s data-hungry Automata. A non-exhaustive list of the significant milestones

achieved in AI is shown in Table A.1.

A.2.1 Highlights of Early AI Discovery, Innovation and Develop-

ment

Alan Turing, in 1936, invented The Turing Machine [Church 1937], which is a

mathematical model of computation to define an abstract machine. It would ma-

nipulate symbols on a strip of tape according to his proposed table of rules. He sug-

gested that one could construct a Turing machine capable of simulating any given
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Figure A-6: Stochastic Neural Analog Reinforcement Calculator (SNARC) (photo Mar-
garet Minsky).

computer algorithm, regardless of the machines simplicity or the complexity of the

algorithm.

McCulloch and Pitts [McCulloch and Pitts 1943], proposed their Thresholded

Logic Unit which shows how a neuron model with an activation function would fire

and can be modelled mathematically using Boolean logic. Vannevar Bush’s seminal

work ‘As We May Think’ [Bush and Bush 1945], proposed a system which amplifies

people’s own knowledge and understanding. Alan Turing, five years later, wrote

the article ‘Computing Machinery and Intelligence’ [Turing 1950], suggesting that

machines could simulate human beings and undertake intelligent things such as

play Chess.

Turing went on to develop his early work and proposed the ‘Imitation Game’

[Turing 1950]. The work suggests that if a computer could imitate human sentient

behaviour, then this might imply that the computer was sentient! This idea has far-

reaching implications. According to Turing, building a computer capable of passing

the imitation game would require the computer to, for example, process natural

language, learn from the conversation, remember what was said and the context,

communicate the ideas back to humans and understand the implications of the com-

munication. Turning also speculates that the imitation the computer might display

might be interpreted as a form of common sense1.

In 1956, John McCarthy, of Stanford and one of the godfather’s of AI, coined

the term artificial intelligence (AI). He coined the term when, along with Marvin

1Horace Greeley said, “Common sense is very uncommon!”. The opinion of the author is that if
humans cannot display common sense, even though we might recognise it, how can we expect com-
puters to exhibit common sense, especially as we are training them with our biased, nonsensical
data?
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Table A.1: Timeline Taxonomy of major milestones of AI, ML and DL.
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-> 1937 Turing’s “Turing Machine”, mathematical model of computation [Church 1937]
1943 McCulloch and Pitt’s Threshold Logic Unit (early neural network) [McCulloch and Pitts 1943]
1948 Shannon’s “A Mathematical Theory of Communication” [Shannon 1948], pathing the way for modern digi-

tal communication
1950 Turing’s “Imitation Game” asks can machines think? [Turing 1950]
1951 Minsky builds the first 40-neuron neural net machine, called SNARC, see Figure A-6
1956 McCarthy coins the term AI [McCarthy et al. 2006]
1958 Rosenblatt’s Perceptron, a binary classifier proposed [Rosenblatt 1958]
1959-1961 Widrow’s Adaline [Widrow and Hoff 1960], a single layer neural net proposed;

Rosenblatt’s multi-layer perceptron (MLP) proposed [Rosenblatt 1961]
1959 Lettvin probes frog’s optic nerve to find patterns, not pixels [Lettvin et al. 1959]
1959 Hubel and Weisel probe cat’s cortex to find neurons firing [Hubel and Wiesel 1959]
1965 Moore’s law proposed; transistors to double in chips yearly [Moore 1965]
1969 Minksky et al., Perceptron Problem posed [Minsky and Papert 1969]
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–> 1974 Dennard proposes metal oxide semi-conductor field effect transistor (MOSFET) Scaling (referred to as
Dennard Scaling) [Dennard et al. 1974]

1974 Werbos discovers backpropagation [Werbos 1974]
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–> 1982 Hopfield proposes the RNN [Hopfield 1982]

1985 Ackley et al., publish “A Learning Algorithm for Boltzmann Machines” [Ackley et al. 1985], proving multi-
layered networks can learn, a counterpoint to Minsky’s Perceptron Problem

1986 Rumelhart et al., publish “Learning Internal Representations by Error Propagation” [Rumelhart et al. 1985],
introducing the BackProp algorithm used in DNNs

1986 Restricted Boltzmann machine (RBM) proposed [Hinton et al. 1984];
Navlab, the first autonomous car is produced [Thorpe et al. 1988]
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–> 1987 Madaline, the multi-layer Adaline [Widrow 1987]

1988 Sutton publishes “Learning to predict by the methods of temporal differences” [Sutton 1988] suggesting tem-
poral difference learning is believed to be how human brains learn

1989 Mead publishes “Analog VLSI and Neural Systems” [Mead 1989], founding the field for neuromorphic
engineering, building ICs inspired by biology

1989 Time-delay neural network, proposed [Waibel et al. 1989]
1989 The Connection Machine invented [Hillis 1989]
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-> 1989 First deep neural net to recognise digits, LeNet proposed [LeCun et al. 1989]

1992-1995 Support vector machine (SVM) and non-linear classifiers [Boser et al. 1992; Cortes and Vapnik 1995]
1997 LSTM [Hochreiter and Schmidhuber 1997];

Bidirectional recurrent neural network (BRNN) proposed [Schuster and Paliwal 1997]
1997 IBM’s Deep Blue beats Kasparov at Chess [Kasparov and Greengard 2018]
1998 First ML dataset, MNIST [LeCun et al. 1998]
1998-1999 CNN with backpropagation, [Werbos 1974; Rumelhart et al. 1985; Lecun et al. 1998; LeCun et al. 1999]
2005 Thrun and his team win the DARPA Grand Challenge for an Autonomous Vehicle [Thrun and Monte-

merlo 2005]
2006-2007 Deep learning and deep belief network (DBN) proposed [Hinton 2002; Hinton et al. 2006; Hinton and

Salakhutdinov 2006]
2007 First ML framework, Theano, introduced [Team et al. 2016]
2008 Delbruck develops spiking retina chip, dynamic vision sensor (DVS) [Delbruck 2008], which uses asyn-

chronous spikes rather than synchronous frames used in cameras
2009 ImageNet dataset created [Deng et al. 2009]
2009 CIFAR-10/100 datasets created [Krizhevsky and Hinton 2009]
2011 First Hardware Neural Network accelerator released [Farabet et al. 2011]
2012 AlexNet [Krizhevsky et al. 2012], the ‘one that started it all’;

Dropout proposed [Srivastava 2013]
2013 ReLU and Dropout Works for speech recognition [Dahl et al. 2013]
2014 Generative adversarial network (GAN) [Goodfellow et al. 2014];

DeepFace [Taigman et al. 2014] introduced
2015 Tensorflow [Abadi et al. 2016] and Keras [Chollet 2015] frameworks introduced
2015 Intel Acquires FPGA company Altera [Intel Completes Acquisition of Altera]
2016 Pytorch framework released [Paszke et al. 2017]
2016 Alphabet’s AlphaGo beats Sedol at Go and posits conjecture of a connection to Church-Turing Thesis

[Wang et al. 2016b]
2016 Tesla Autopilot introduced in limited-access highways [Dikmen and Burns 2016]
2016 Intel Acquires AI startup Nervana Systems [Intel Agrees to Acquire Nervana Systems]
2016 Intel Acquires AI at the edge Irish startup Movidius Systems [Intel to Acquire Movidius]
2017 AlphaZero [Silver et al. 2017], Capsule Networks [Sabour et al. 2017] released
2017 Waymo’s self driving car [Brown 2016]
2017 First ML ASIC accelerator, TPU [Jouppi et al. 2017]
2016-2019 DeepFakes [Thies et al. 2016; Suwajanakorn et al. 2017] seen in the wild
2018 Bidirectional encoder representations from transformers (BERT) [Devlin et al. 2018], 10% improvement

in search
2017-2018 Unsupervised machine translation [Lample et al. 2017] proposed
2019 Alphabet’s AlphaStar beats humans at Starcraft II [Arulkumaran et al. 2019]
2019 OpenAI’s robot hand solves Rubik’s Cube [Akkaya et al. 2019]
2019 OpenAI’s AI plays Hide-and-seek games, breaks physics [Baker et al. 2019]
2019 Boston Dynamics release SPOT, ATLAS and HANDLE robots [Dynamics 2019]
2019 Intel Acquires AI chipmaker Habana Labs [Intel to Acquire Artificial Intelligence Chipmaker Habana Labs]
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Figure A-7: Perceptron [Sharma 2017].

Minsky of Harvard University, held the first academic conference called the ‘Dart-

mouth Summer Research Project on Artificial Intelligence Workshop’ [McCarthy et

al. 2006].

A.2.2 The Perceptron and Multi-layer Networks

Building on McCulloch and Pitts 1943 work, Rosenblatt, in 1958, proposed the

Perceptron [Rosenblatt 1958], which is a supervised learning algorithm for binary

classifiers, something upon which some of today’s DNNs rely. A binary classifier’s

function determines if an input is categorisable into classes to determine predictions

based on a linear predictor function, which combines a set of weights with the fea-

ture vector. The activation or transfer function receives the output and adjusts the

weights during learning and is usually a step function in the Perceptron, see Fig-

ure A-7.

By 1959, Lettvin et al., placed probes into the optic nerve of a frog from which

they worked out that the signal that was being sent from the eye to the brain was

not just a pixel, it was a pattern that could detect a black dot moving across a white

background [Lettvin et al. 1959]. The nerve cells of the eye were encoding infor-

mation that was passed to the brain. At the same time, Hubel and Weisel in 1959

[Hubel and Wiesel 1959] were trying to understand how the visual cortex works by

studying how neurons fired in a cat’s cortex. Their discoveries won them the Nobel

Prize in 1981. The neuron work was essential for illuminating our understanding of

the visual system and supplying the framework for modern-day neural nets. From
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this work, they found that similar to the cat’s striate cortex the neuron models can

detect edges of objects.

In 1960, Widrow and his graduate student Hoff took McCulloch’s Perceptron

idea further. Widrow et al., produced a network of nano electric circuit elements

called “memistors”, an ad hoc 3-terminal device-specific to one application, and not

to be confused with memristors (see Kim et al., for clarification [2012]). During the

learning phase, the memistor would adjust the weights according to the weighted

sum of its inputs. In comparison, the Perceptron passed the weighted sum onto

the transfer function. The researchers called these single-layer networks an Adap-

tive Linear Neuron or Adaptive Linear Element (ADALINE) [Widrow and Hoff

1960]. Widrow, in 1987, produced a multi-layer version of the network and termed it

MADALINE [Widrow 1987] and appeared at the first IEEE International Conference

on Neural Networks.

A.2.3 Amdahl’s Law And Its Effect on AI

The work of Adaline and Madaline was proposing increased parallel compu-

tation. Amdahl proposes a formula to show the theoretical parallel speedup of a

program, and its execution latency is a function of the number of processors execut-

ing the program [Amdahl 1967]. He suggests that the serial portion of the program

limits the speedup. He shows in Equation 1 that the speedup of a parallel system is:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1 − 𝑝 + 𝑝
𝑛

(1)

where:

p = proportion of the algorithm that can be parallelised;

n = number of CPU cores or threads.

So for a program that runs for e.g., 20 hours on a single processor core or thread,

if a non-parallelisable portion of that program takes one hour to execute, then the

whole program cannot take less than one hour, regardless of how much more of the

remainder of the program is parallelised, see Equation 2. That is:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1 − 0.95 + 0.95
2048

= 19.82 (2)
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Parallel Portion

Figure A-8: Amdahl’s Law [Amdahl 1967].

where:

p = 19
20

= 0.95 and number of cores = 2048

Thus, Amdahl proposed, the theoretical speedup is, in this example, limited to

20×. Therefore parallel processor systems would only be used for highly parallelis-

able programs, see Figure A-8. This limit might suggest a bottleneck for the progress

of AI systems (more on this in subsection A.2.6).

A.2.4 The XOR Problem and the Dawn of the First AI Winter

XOR logic is a gate with two binary inputs and one output, the output of which

should return and true value if the two inputs do not match. One would think that

this would be a simple function for a machine to learn. However, in 1969 Min-

sky and Papert [Minsky and Papert 1969] showed that Perceptrons are incapable of

learning the simple XOR function due to the Perceptron needing the output func-

tionality to be linearly separable into correct classification categories, something an

OR gate has but an XOR gate does not. The XOR problem meant many researchers

lost interest in the field of AI and so ushered in the first AI winter, where research in

the area dwindled. One researcher, Werbos, was not put off and in his 1974 disser-

tation, [Werbos 1974] described the training of neural networks through a process

of backpropagating the error into the network. The collaborative backpropagation
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work of [Rumelhart et al. 1985] in 1985 that built on Werbos work. Ackley et al., , in

the same year [Ackley et al. 1985], published work that proposed a solution to the

XOR problem that help neural networks learn non-linear concepts. Both the XOR

solution and the backprop were two key works that helped bring the field out of the

first AI winter.

A.2.5 Moore’s Law and Dennard’s Scaling

As research in AI increased again in the late 1980s, a requirement for faster micro-

processing was required. Gordon Moore, who founded Fairchild Semiconductor, in

his 1965 research proposed that transistors in a microchip would double about every

year [Moore 1965] which he later revised to every 18 months. Robert H. Dennard

co-authored work in 1974 [Dennard et al. 1974] that suggests for every new technol-

ogy generation of transistors, as the geometry of the transistor decreases, the energy

consumption will stay constant for twice the number of transistors if the transistor

density doubles. In turn, the circuit shall become 40% faster and 30% smaller. Den-

nard et al., called this MOSFET scaling, but it would later become known as Dennard

Scaling. Moore, in 1975, revised his law to state that transistor count would double

every two years. When combined, Moore’s law and Dennard scaling show that per-

formance per watt grows even faster, doubling about every 18 months.

A.2.6 Connection Machines

In 1983, during his PhD studies, Danny Hillis, under his adviser, Sussman, with

input from Minsky and Shannon, founded the company Thinking Machines Cor-

poration with Sheryl Handler. To Hillis, it is evident that the brain worked much

faster than computers, and that if computers were even to get close to matching

that of the brains capability, the computer would have to have a similarly massively

parallel architecture. Hillis challenged Amdahl’s notion was of a theoretical par-

allel processor limit. He demonstrated that as machines got more substantial, the

machines could solve more extensive problems with more data on which to work

[Hillis 1989]. Hillis demonstrates that the speedup does not peak. The peak can

be increased even as the problem, and thus, the parallelism increases. Hillis shows

how a separate processor and memory element could process each pixel of an im-

age producing the first two-dimensional processor grid at a micro-architectural level
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and built this parallel processor to demonstrate the fact. The CM-1 super-computer

that Hillis built contained 65,536 processors that processed one-bit at a time but in a

SIMD manner. For comparison, at the time, Cray had the fastest super-computers in

the world. In comparison to the CM-1, the Cray computers were deeply pipe-lined,

fast switching, clocked as high as possible, and liquid-cooled. The wire tracks of

processors chips were made as short as possible to reduce the latency of the signals

in the processor and between four and eight parallel processors were implemented.

A year later, Hillis’ company built the CM-2 which upgraded the CM-1’s fixed-point

computation to FP with its floating-point co-processor and added more RAM and

a larger hard drive. Geoffrey Hinton, a Turing Award-winning AI researcher, was

one of the first people to use the CM-2 machines for his connectionist algorithms

[Hinton 1989].

A.2.7 The Second AI Winter

In the late 1980s, interest and funding in AI waned again, forcing the area to enter

a second AI winter which may have been partly due John McCarthy’s 1984 criticism

of expert systems and their lack of common sense and knowledge about their limi-

tations. The collapse of the Lisp market may have also contributed. Jack Schwarz,

Director of DARPA/ISTO (Defense Advanced Research Projects Agency/Informa-

tion Science and Technology Office) from 1987 to 1989 argued that AI had yet to

demonstrate:

“any unifying principles of self-organisation,”

meaning that its

“applications must still be seen as adaptations of diverse ideas rather than as

systematic accomplishments of a still mythical AI technology.” [Roland et al.

2002]

A.2.8 The Advent of Modern-Day Vision Machine Learning

Hubel and Wiesel’s work [Hubel and Wiesel 1959] on the visual cortex in mam-

mals was Fukusima et al.’s, inspiration for the Neocognition work [Fukushima 1980]

Figure A-9, which could work for some aspects of computer vision. Neocognitron
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axon
Synapse

Neuron

axon

Dendrite

Figure A-9: A Model of a Brain Neuron 𝑎𝑖 (activation), 𝑤𝑖 (weight), 𝑓(.) (non-linear func-
tion), 𝑏 (bias). [Li et al. 2017b].

was made from a set of layers. An input layer is presented with a stimulus, for ex-

ample, the pixels in a digital image. Subsequent layers would analyse the image,

looking for variations, in contrast, edges, ultimately culminating in an output layer

that would categorise the group to which the image belongs. Connections between

each layer allow for all the relevant processing to take place.

In the late eighties and nineties, Waibel et al., [1989] and separately LeCun et al.,

[LeCun et al. 1989; Lecun et al. 1998; LeCun et al. 1999] took this work further to

propose CNNs with backpropagation. Backpropagation is used to train supervised

(data is labelled) feedforward networks. Improved computation coupled with the

large amount of large data available from the postal service in the USA allowed

LeCun et al., to apply their research to Zip code recognition on envelopes and pack-

ages.The mid-to-late 1990s with backpropagation in CNNs and LSTM, a type of re-

inforcement learning (RL), marked the beginning of the end of the second AI winter.

A.2.9 ImageNet

Deng and his colleagues at Princeton, under Processor Li Fei-Fei generated Im-

ageNet [Deng et al. 2009]. ImageNet is an extensive visual database designed for

image recognition. More than 14 million images are hand-annotated with informa-

tion about the contents of the images. More than one million of the images provide
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Table A.2: ILSVRC Winning CNNs.

Year Model Top-1
Error

Top-5
Error

Total
Layers MAC Number of

Parameters
2012 AlexNet [Krizhevsky et al. 2012] ≈ 36.7% ≈ 15.4% 8 724M ≈ 62𝑀
2013 ZFNet [Zeiler and Fergus 2013] ≈ 36% ≈ 14.7% 5 n/a n/a
2014 VGG-16 [Simonyan and Zisserman 2014b] ≈ 25.6% ≈ 8.1% 16 154.2G ≈ 138𝑀
2014 VGG-19 [Simonyan and Zisserman 2014b] ≈ 25.5% ≈ 8% 19 n/a ≈ 144𝑀
2015 Inception V1 [Szegedy et al. 2015] ≈ 30.2% ≈ 10.1% 27 1.43G ≈ 7𝑀
2016 ResNet-152[He et al. 2015] ≈ 19.4% ≈ 3.6%2 152 11.3G n/a
2017 SeNet-154 [Hu et al. 2018] ≈ 18.7% ≈ 4.5% 154 3.87G ≈ 440𝑀

bounding boxes around the annotated contents. Without this dataset, training of

CNNs would prove difficult.

A.2.10 ILSVRC and Kaggle Competitions

The ILSVRC competition [Russakovsky et al. 2015], which started in 2010 cov-

ered the following tasks:

∙ Classification: classify an object in an image;

∙ Localisation: localise the classified objects in the image with bounding boxes;

∙ Detection: detect an object and assign a top-5 prediction or predict the back-

ground class when there are no objects detected.

The winners of the ILSVRC between 2012 and 2017, before Kaggle took owner-

ship of the competition, are listed in Table A.2. The trend in improving top-5 and

top-1 error of the models often means an increase in the number of parameters and

layers. The increase in layers and parameters suggests larger compute and band-

width requirements, although not all works quote these operational or bandwidth

performance.

Researchers focus on optimisations that training of CNNs is performed on larger

models with more parameters, which in turn exhibit lower error or better classifica-

tion accuracy of the CNN. More extensive models, e.g., ResNet with its thousand-

plus layers, have several inherent problems such as compute and memory band-

width. The next section will highlight research areas and work that attempt an

algorithmic optimisation, regardless of the hardware or software platform imple-

mentation.

2Human Beings’ Top-5 Error Rate is ≈ 5.1%
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Figure A-10: LeNet’s Architecture. [LeCun et al. 1989].

A.3 Most Influential CNN Models

Researchers often build on the work from LeCun et al., and their LeNet [1998;

1989] CNN, that has since been widely used by the postal services to recognise hand-

written postal addresses. LeNet network consists of:

∙ two 5 × 5 convolution filters which are applied at a stride of one to the input;

∙ two sub-sampling or pooling layers (Pool below) of a 2 × 2 configuration ap-

plied at stride two;

∙ two fully connected layers (FC below) to give the output, all connected in the

sequence (see Figure A-10).

For each algorithmic optimisation, the following subsections highlight how the

classification accuracy, area, energy, performance and storage are affected and how

the layer configuration is compared to the above LeNet version. Typically the latter

work cover areas of data types and sparsity of the weights or network.

CNNs perform with optimal classification accuracy of inference when comput-

ing using 32-bit or 64-bit FP arithmetic [IEEE 2019]. To increase performance and

throughput of FP arithmetic, a hardware FPU is typically implemented on the same

IC die as the CPU.

Krizhevsky et al., in their AlexNet [2012] network, implement five convolutional

layers and three fully-connected layers in a different configuration to LeNet. They

adopt the configuration as shown in Figure A-11.

They connect the last fully-connected layer output to a 1000-way softmax ex-

ponential function layer which corresponds to 1000 class labels in the ImageNet

dataset. Between each convolution layer the researchers employ ReLU as their

non-linear activation function instead of the hyperbolic tangent function TanH that
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Figure A-11: AlexNet Architecture, split across two GPUs [Krizhevsky et al. 2012].

LeNet [LeCun et al. 1989] employs (see Figure A-10 for LeNet’s architecture). ReLU

helps to fix the vanishing gradients problem that Sigmoid and TanH functions ex-

hibit, see subsection B.2.4 for more in-depth discussion. AlexNet exploits overlap-

ping maximum pooling to prevent over-fitting. AlexNet also uses “dropout” which

zeroes the output of each hidden neuron with a probability of 0.5. The “dropped

out” neurons do not contribute to the forward pass or backpropagation. These al-

gorithmic changes improve the Top-1 classification accuracy of 14 million images

belonging to 1000 classes from the previous ILSVRC years’ Sift and Fisher Vectors

of 45.7% to the record-breaking and 2012 ILSVRC winning 37.5% and a top-5 error

rate of 15.4%. AlexNet requires a large amount of training data, such as that sup-

plied by ImageNet [Deng et al. 2009]. When pretrained, AlexNet has up to 240MB

of trained kernel weight data.

ZFNet [Zeiler and Fergus 2013] demonstrated an 11.7% top-5 error rate. This

research also demonstrated a visualisation technique, see Figure A-12. Figure 2 of

the work aids the understanding of what each filter in each layer of AlexNet was

trying to detect in an image, i.e., edges or lines of items in an image, or certain high-

level features like letters of a word, faces or eyes, essentially a much more detailed

version of the visualisation of AlexNet.

In 2014, VGG-16 [Simonyan and Zisserman 2014b], shows that VGG-16 has in-

creased the layer count to between sixteen and nineteen layers in comparison to

AlexNet’s eight layers. However, they only employ convolution with 3 × 3 filters at

a stride of one, and a padding of one (also known as “same convolution"). Their max

pooling is 2 × 2 with a stride of two, see Figure A-13.
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Figure A-12: Snippet of Figure 2 of the work to demonstrate the faces and eyes visualisa-
tions of layer 5. [Zeiler and Fergus 2013].

Figure A-13: VGG-16 Architecture (image by Frossard). [Frossard 2016].
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Figure A-14: GoogLeNet’s Inception Module. [Szegedy et al. 2015]

Simonyan et al., find that a stack of three 3 × 3 convolution layers has the same

effective receptive field as one 7×7 convolution layer. VGG-16 is, therefore, a deeper

network with more non-linearity units between the convolution layers. While it may

be deeper, VGG-16 contains fewer parameters with:

𝑘 * (𝑘2𝐶2) (3)

where 𝑘 = 3 compared to:

𝑘2𝐶2 (4)

where 𝑘 = 7 for ZFNet for C channels per layer.

Google’s GoogLeNet [Szegedy et al. 2015] further deepens the network. The

computational complexity is more straightforward than the previous years’ ILSVRC

contestants. There are no multiple, expensive FC layers at the output and the whole

network contains approximately 12× fewer parameters than that of AlexNet, demon-

strating a top-5 classification error rate of 6.7%.

Google achieved this by proposing layers of Inception Modules, that perform

dimensionality reduction, and they claim also reduced computational complexity.

The inception module is designed with network topology in mind, see Figure A-

14, and applies parallel filter operations and pooling from the previous layer. The

output of these operations is concatenated. To reduce the computational complexity,

Google applies “bottleneck” convolution units with filters. They claim the bottleneck,

and convolution units with filters preserve spatial dimensions and reduce the depth

while projecting the depth to lower dimensions in the form of a combination of
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feature maps. Google add small stem networks before the inception modules and

an auxiliary classification layer to inject additional gradients at the lower layers, see

Figure A-15.

ResNet [He et al. 2015] proposed by Microsoft’s He et al., further increases the

layer count. ResNets can range from 18- to 152-layers. They demonstrate a 152-layer

version applied to ImageNet reaches a top-5 classification error of 3.57%, which is

better than human performance [Russakovsky et al. 2015]. Their research asked

what would happen if the number of layers in a network is continually increased. If

the increase in layers is performed naively, they show that both the training and test

error increase, but over-fitting does not cause the error. They go on to hypothesise

that this is due to an optimisation problem as deeper models are harder to optimise.

They found that a solution is to copy the learned layers from the shallower model

and set additional layers to identity mapping. In other words, they found that in-

stead of trying to fit a desired underlying mapping directly, a better approach is to

use network layers to fit a residual mapping.

The ResNet learning block in Figure A-16 shows that the researchers use layers

to fit residual 𝐹 (𝑥) = 𝐻(𝑥) − 𝑥 instead of 𝐻(𝑥) directly as in a plain-layers ver-

sion. These residual blocks have two 3 × 3 convolution layers. The Learning Block

is ResNet’s attempt to tackle backpropagation’s vanishing gradient problem of very

deep models. Vanishing gradients occur when the element of the gradient becomes

exponentially small as the updates flow backwards to the initial layers of the model.

The update to the initial layers becomes increasingly small and thus increasing train-

ing time and reduces convergence. The skip connections of the Learning Block allow

the gradient to flow back to the initial layers unhindered.

Figure A-17 shows that to create the full network, the researchers stack residual

blocks. Periodically through the layers, there are double the number of filters ap-

plied and downsampled spatially using a stride of two, i.e., divided by two in each

dimension. The researchers add a convolution layer at the beginning of the network.

They apply a global average pooling layer after the last convolution layer. Notice

that there are no FC layers at the end, only a FC-1000 to output the classes. Similar

to GoogleNet, ResNet adds a bottleneck layer, Figure A-18 to improve efficiency, for

ResNet-50 layers and above.
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Figure A-15: Complete GoogLeNet. [Szegedy et al. 2015].

Howard et al., proposed MobileNets [Howard et al. 2017] which is a different

take on the convolution schemes of other networks such as GoogleNet. They replace
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Figure A-16: ResNet Learning Block. [He et al. 2015].

regular convolution filters with depthwise convolution, followed by 1×1 pointwise

convolution filters. They call this combination a depthwise separable convolution.

They configure a 30-layer model, the first layer containing a regular convolution

followed by thirteen layers containing depthwise, followed by pointwise convolu-

tions with differing stride values. The model finishes with an average pool, fully

connected layer and a softmax classifier.

When compared to a full convolution, in their experiments MobileNets depth-

wise separable convolution only loses about 1% classification accuracy but has ap-

proximately 10% of the multiply-adds operations which would otherwise account

for a large amount of compute and latency. Their Stanford Dogs training [Khosla

et al. 2011] classification accuracy is 83.3%, marginally behind that of GoogleNet.

However, their computational complexity and storage are far less than GoogleNet

(see Table 10 of [Howard et al. 2017] for more details).

A.4 Challenges of Deep Learning

The above history has pointed out some of the challenges researchers have had

to surmount to get DL to where it is today. There seem to be three main reasons why

researchers and engineers find DL so hard to implement:

1. Large datasets are required;

∙ DL requires large amounts of data that has to been cleaned and often

preprocessed in order to generalise the large feature hierarchies;

2. A Large amount of computational energy is required;
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Figure A-17: ResNet Example. [He et al. 2015].
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Figure A-18: ResNet Bottleneck Layer. [He et al. 2015].

∙ For the above large dataset, a large number of computations will be re-

quired to iterate over the training data in order for learning to converge,

while not overfitting the test data;

3. It is hard to train and optimise DL algorithms;

∙ Unless the features of the model that are being learnt are known ahead of

time, it is difficult to know the reasons that DL algorithms are failing to

converge.

A.5 Conclusion

As can be seen from the ILSVRC winners, Table A.2, the trend of improving

performance of the CNNs is in part due to the massively parallelised CNN imple-

mentations, larger CNN models and datasets and not due to scaling with Moore or

Dennard’s laws. Furthermore, to sum up, some of the achievements of neural net-

works, LeCun, Bengio and Hinton3discuss how deep learning allows computational

models to learn representations of data at multiple levels of abstraction [LeCun et

al. 2015] in existing hardware. They show how these methods have dramatically

improved speech recognition, vision object recognition and detection in all sorts of

domains from drug discovery to genomics and automated vehicle driving.

We have highlighted the significant milestones in the history of AI, DL and

DNNs. Major obstacles have been overcome over the last 90 years to get AI to the

point today of advanced robotics, speech and image recognition and gameplay. We

3LeCun, Bengio and Hinton: 2019 Turing Award recipients, the Nobel Prize of computer science.
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have highlighted various areas for comparison of the research works in order to

identify common themes of investigation or gaps in the research.
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B
Introduction to Convolutional Neural Networks

(CNNs)

B.1 Introducing Neural Networks

CONVOLUTIONAL NEURAL NETWORKS are key to modern-day AI, as can be seen

from the extensive and wide-ranging applications highlighted from the arti-

cles in chapter 2 beginning on page 9. However, how exactly does a CNN work and

what can be done to make them perform faster and more efficiently? This chapter

will detail simple CNNs, delving into the arithmetic of how the CNN can recog-

nise a digit in an image, and then build on this underlying understanding to show

how a naive CNN does a similar task of recognition. From there, the chapter sug-

gests where optimisations of these CNNs might occur and introduce how this thesis

research tries to address how it tackles these optimisation needs.

B.2 Artificial Neural Networks and Machine Learning

In Appendix A beginning on page 103 we discuss how modern AI has had sev-

eral highs and lows since the 1940s, but it was McCulloch and Pitt’s Threshold Logic

Unit [McCulloch and Pitts 1943] that convinced humans to believe the dream that

computers could one day achieve human-level abilities. The 1970s and 1980s saw

two AI winters where research slowed almost to a halt. The 1990s brought a Chess

champion beating machine [Kasparov and Greengard 2018], and by the 2000s we

saw the dawn of the modern voice and image recognition in neural networks, most

notably demonstrated in the 2011 Jeopardy game show winning Watson AI machine

from IBM. Since then, the pace of AI in academia and industry has accelerated, to the
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point where AI and its subset ML are touching many aspects of our lives. Manufac-

turing and production [Li et al. 2017a], image tagging of our photos [Bambha et al.

2011], diagnosing medical conditions [Kapil et al. 2018] and prescribing appropri-

ate drugs or interventions [Ferrucci et al. 2013], NLP and understanding [Cambria

and White 2014] to speech synthesis [Ning et al. 2019] for communication back to

us by our Google Home and Amazon Alexa and self-driving vehicles all have be-

come accepted norms in our lives. How does AI work, and why has it become so

ubiquitous?

B.2.1 Categories and Applications of ML

First, let us drill down into AI to its subset of ML to investigate the categories

and example applications of ML. There are four major categories of ML models: su-

pervised; semi-supervised; unsupervised; reinforcement learning, and very briefly

they work as follows:

∙ Supervised: The ML model learns to predict the output of a model from the

input after being trained with a labelled data set. Very briefly this is done as

follow:

– Supply input data and a labelled data set and train your ML model (see

subsection B.2.5 for more details on training a supervised CNN);

– Supply some unseen data to make:

* a classification (e.g., there is a cat in the image) [Krizhevsky et al. 2012]

or object detection (e.g., a dog is in the bottom left of the frame) [Red-

mon et al. 2016];

* a regression (e.g., house price prediction [Varma et al. 2018]).

∙ Unsupervised: The ML model learns the structure of the unlabelled input data

as follows:

– Supply your unlabelled input data to the ML model. The model shall:

* group or cluster the data (e.g., group images that contain dogs to-

gether and those that don’t in separate groups);

* associate certain data with features or activities (e.g., user X on the

streaming video service Netflix watched ‘Y’ show(s), therefore they

will probably like ‘Z’ show(s) [Koren 2009]).
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∙ Semi-supervised: The ML model leans from both labelled and unlabelled

data:

– Supply a small set of labelled data to train from (e.g., a small set of hand

labelled computed tomography (CT) scans of Covid-19 patients [Fan et al.

2020] or cancer biopsies [Kapil et al. 2018]);

– The model expands on the small dataset to extrapolate its training set

from which to learn;

– GANs [Goodfellow et al. 2014] are a good example of semi-supervised

ML. Among other tasks, GANs can generate faces that have never existed

[Bao et al. 2017].

∙ Reinforcement learning: The ML model learns by being given rewards for

outcomes:

– Place ML agent in an environment and give it an action (e.g., where are

my glasses) and an expected outcome (e.g., I can see where they are). A

reward, positive or negative is given on some distance from the actual

outcome;

– The training is iterated until the ML arrives at the correct outcome (if ever)

(e.g., training a car to drive on the road [Thrun and Montemerlo 2005]. Do

not hit pedestrian humans!)

So from the major categories above, choosing an ML model for a dataset is

application-specific. One chooses what type of ML model is required based on the

required outcome, e.g. prediction or clustering! However, ML is not always the per-

fect choice and can be overkill for applications that require simple data analytics.

Now we have an overview of the types and applications of ML, we shall now look

in more depth at the inner workings of ML models.

B.2.2 The Brain and Vision

To understand better how neural networks (NNs) work, let us start with the

brain and see how it has inspired today’s ML. The basic unit of a human brain is

the neuron (or nodes), and the synapses connect the neurons, see Figure A-9. The

brain consists of around eighty-six billion neurons and approximately one and a half

trillion synapses [Azevedo et al. 2009]. These neurons and synapses can do amaz-

131



Appendix B. Introduction to Convolutional Neural Networks (CNNs)

ing things to process our five primary senses, automating movement, breathing and

making sounds, all within seconds of birth and with no prior training. The adapt-

ability and plasticity of the brain allow humans to do very generalised learning from

a very young age. Even one of the simplest forms of life with a whole connectome,

the hermaphrodite nematode worm, has 302 neurons and 7446 synapses [Cook et al.

2019] yet can search for food and burrow unaided. So it is no wonder why research-

ers take inspiration from the brain to model its capabilities in a computer.

Let us focus on a subset of ML called deep learning (DL) and apply it to the field

of vision processing. To apply DL to vision processing, we much first try to under-

stand how human vision works at a high-level. When we see a digit, e.g., 3, our

brains can recognise it as a 3 and not an 8 or the letter 𝐸. The visual receptors of the

eye would respond differently to a handwritten 3 from a printed 3, yet enough neu-

rons and synapses of the visual cortex in our brain still recognise both as 3. To write

a computer algorithm heuristically, that can recognise any number 3, in whichever

manner it is written or printed, becomes a significant task for a computer scientist,

and certainly does not scale well to larger recognition tasks.

B.2.3 Deep Learning

Researchers build a DNN and automatically train it with lots of different exam-

ples of e.g., printed and handwritten 3 digits. The “deep” aspect of the name DNN

refers to the number of hidden layers the DNN contains, see subsection B.2.4. The

DNN is allowed to ‘learn’ the configuration parameters of the DNN for a 3 digit. The

trained DNN is then run in inference mode to infer the recognition of a new printed

or written 3 in any context, to within the desired degree of prediction accuracy.

So how does this happen at the lowest level in the NN? Modelled on neurons and

synapses of the human brain, see Figure A-7, NNs are a set of algorithms trained to

recognise patterns in data. The NN is trained using a form of perception to detect,

cluster and classify input data. The NN captures the patterns from real-world data,

such as images from a camera, sounds from a microphone, text from a keyboard

or time-series data from speech, and convert the data to a numerical format for the

NN to process, usually employing a DSP. These example images, sounds or text
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Figure B-1: Multi Layer Perceptron.

have features within them, e.g., faces in the images, that the NN detect, classify and

recognise.

B.2.4 Artificial Neural Network Model

To demonstrate how a artificial neural network (ANN) works in more detail,

let us consider how one of the simplest ANNs called the multi-layer perceptron,

Figure B-1, might recognise the digit 3.

A handwritten digit 3 is drawn on a grid of 28× 28 = 784 pixels (left of Figure B-

1), and each pixel represents a neuron. Assume each of the neurons holds a grey-

scale FP value of that pixel called an activation, i.e., if the pixel has not been written

on and remains white, the neuron shall hold a 1.00 to represent white. As the levels

of black increase in a pixel, the number stored in the neuron will approach 0.00. 0.00

will represent an entirely black pixel.

The 784 neurons containing the features of a 3 are the first layer in the network

known as the IFM. At the output, the OFM of the network is a fully-connected layer

and has ten neurons representing one of the digits zero (0) to nine (9). These neu-

rons or operators that accept activation, weight and bias operands, and generate a

number between 0.00 and 1.00 representing the probability of that digit being pre-

dicted from the IFM. Between the IFM and OFM is an arbitrary number of hidden

layers, each layer containing an arbitrary number of neurons. The exact number of
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hidden layers and hidden neurons are variables called hyperparameters and along

with many other hyperparameters are used in tuning the model, and is the subject

of significant research.

Each hidden layer is trained to detect more and more abstract representations of

the image presented at the IFM. For example, as the first hidden layer of Figure B-1

might contain activations for all the curved segments of the loops of a digit, and

the last hidden layer might contain activations for all the horizontal and vertical

segments of the digit. The values of the activations 𝑎, 𝑎𝐿𝑗−1

𝑁𝑖
of the neurons 𝑁 in the

preceding layer 𝐿, combined with a weighted 𝑤 value 𝑤
𝐿𝑗−1

𝑁𝑖
of the connection, and

some 𝑏 bias 𝑏𝐿𝑗
, determine the values of the activations of each neuron in a layer

(see subsection B.2.5 for more about the training phase). The weights determine the

“strength” of a connection, and the bias indicates how “active” the neuron tends to

be. If there is a requirement for the weighted sum in any layer to be larger than the

value one, i.e., some bias is needed for inactivity, then bias is added to the weighted

sum before it is passed to the activation function. The bias suggests how large the

weighted sum of the neuron needs to be before the neuron becomes active.

The resultant weighted sum for a single neuron 𝑎
𝐿𝑗

𝑁𝑖
can is written as Equation 1:

𝑎
𝐿𝑗

𝑁𝑖
= (𝑎

𝐿𝑗−1

𝑁𝑖
× 𝑤

𝐿𝑗−1

𝑁𝑖
+ 𝑎

𝐿𝑗−1

𝑁𝑖+1
× 𝑤

𝐿𝑗−1

𝑁𝑖+1
+ . . . + 𝑎

𝐿𝑗−1

𝑁𝑖+𝑛
× 𝑤

𝐿𝑗−1

𝑁𝑖+𝑛
+ 𝑏𝐿𝑗−1) (1)

where:

𝑎
𝐿𝑗

𝑁𝑖
is the activation value (𝑎) of neuron 𝑁𝑖 in layer (𝐿𝑗).

The bias is added to all neurons in the layer indicated as (𝑏𝐿𝑗−1).

Activation Function

The non-linear activation function assists in determining if the output of the neu-

ron should activate or fire based on a non-linear input [Jarrett et al. 2009]. Activation

functions are often used between convolution layers and between the last layer and

the fully connected layer. The activation value 𝑎
𝐿𝑗

𝑁𝑖
has a broad dynamic range; how-

ever, the resultant values are often required to be within a constrained range e.g., 0

to 1. There are several functions, like sigmoid, tanh and ReLU that can compress the

vast value range into a range between zero and one and a commonly used one for

Perceptrons is the non-linear Logistic function or Sigmoid activation function (𝜎),
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Figure B-2: Logistic or Sigmoid Activation Function.

see Equation 2 and Figure B-2. The sigmoid function trends large negative inputs to

0 and large positive numbers to 1. Therefore the sigmoid function gives a measure

of how positive the weighted sum of the neuron is in Equation 1.

𝜎(𝑎) =
1

1 + 𝑒−𝑎
(2)

Gradients of sigmoids become infinitesimally small as the value of 𝑥 increases,

thus vanish, especially if the NN has many layers with multiple gradients that are

approaching zero. Vanishing gradients negatively impact CNN training time as

“vanishing gradients make it difficult to know which direction the parameters should move

to improve the cost function” [Goodfellow et al. 2016]. Sigmoid likely always gener-

ates non-zero values and thus a dense representation. The activation function also

allows stacking of multiple layers of neurons while retaining clear predictions. A

more commonly used activation function today is the ReLU [Nair and Hinton 2010]

due to its reduced likelihood of vanishing gradients [Glorot et al. 2011], as the gradi-

ent has a constant linear value for 𝑎 > 0, which incidentally reduces computational

complexity. ReLU also exhibits greater sparsity as all values are zeroed out when

𝑎 ≤ 0. ReLU tends to exhibit better convergence than Sigmoid [Krizhevsky et al.

2012]. However, ReLU is not without its issues. ReLU creates an unbounded acti-

vation as there is no means of constraining the output of the neuron as 𝑎 increases.

There is also the ‘Dying ReLU’ problem where the output tends to zero and thus

‘dies’, prohibiting learning and preventing convergence if there are many activa-

tions that are below zero. Many other types of activation can be used, such as Leaky

ReLU, exponential linear unit (ELU), parametric rectified linear unit (PRELU), to

name a few. Careful consideration of the activation function needs to be made when
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designing a CNN, but ReLU suits the low-compute and low-storage requirements

of low-power embedded systems.

Returning to the sigmoid function, the complete equation for one neuron of the

multi-layer perceptron with sigmoid activation function is shown in Equation 3:

𝑂𝐹𝑀𝑁 = 𝜎

(︃
𝑛∑︁

𝑖=1

𝑊𝑖𝑎𝑖 + 𝑏

)︃
(3)

Every neuron of a layer is connected with a weighted connection and bias to

every neuron in the next layer. Assume there are 49 arbitrarily chosen neurons in

each of the two hidden layers, 784 input neurons from the 28 × 28 image presented

at the IFM, then there are 784 weights per neuron and a bias for each of the neuron

of each layer. This results in:

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 784 × 49 + 49 × 49 + 49 × 10 = 41, 307 (4)

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑎𝑠𝑒𝑠 = 49 + 49 + 10 = 108 (5)

The network contains a total of 41, 415 parameters (the addition of Equation 4

and Equation 5). Therefore, to predict the digit correctly, the network training has

to converge on the correct combination of these 41, 415 weights and biases.

A more compact way to present the multipliers of Equation 1 required for ev-

ery neuron in a layer is by using matrix-vector notation and perform matrix-vector

arithmetic, see Equation 6.

𝑂𝐹𝑀𝐿𝑗
= 𝜎

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
𝑎
𝐿𝑗

𝑁𝑖

𝑎
𝐿𝑗

𝑁𝑖+1

...

𝑎
𝐿𝑗

𝑁𝑖+𝑛

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑤

𝐿𝑗−1

𝑁𝑖
𝑤

𝐿𝑗−1

𝑁𝑖+1
· · · 𝑤

𝐿𝑗−1

𝑁𝑖+𝑛

𝑤
𝐿𝑗

𝑁𝑖
𝑤

𝐿𝑗

𝑁𝑖+1
· · · 𝑤

𝐿𝑗

𝑁𝑖+𝑛

...
... . . . ...

𝑤
𝐿𝑗+𝑘

𝑁𝑖
𝑤

𝐿𝑗+𝑘

𝑁𝑖+1
· · · 𝑤

𝐿𝑗+𝑘

𝑁𝑖+𝑛

⎤⎥⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏𝐿𝑗−1

𝑏𝐿𝑗

...

𝑏𝐿𝑗+𝑘

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

Equation 6 can be further simplified as Equation 7

𝑂𝐹𝑀 = 𝜎
(︀
aW𝑇 + b

)︀
(7)
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where:

𝑊 𝑇 represents the weights matrix;

𝑎 the activations;

𝑏 the biases.

Component representations of the neurons of the last hidden layer are combined

and connected to the OFM. The neuron in the OFM layer with the highest value

(top-1) shall be the predicted inferred digit, in this example, say, a 98% probability

the network detected a 3 and, say, only a 20% probability the network suggested it

was an 8.

The successive abstraction of the IFM into more and more fine-grained compo-

nents for the OFM to predict are useful for different types of recognition from edge

detection of items in an image to the breaking down of speech into phrases, sen-

tences, words and letters.

Much the same as the multi-layer perceptron, the hidden neurons of the hidden

layers are trained to detect certain features at different levels of abstraction within

the image, e.g., curves or straight lines, edges or not edges, eyes, nose, mouth, animal

or not an animal, human or not!

There are many variants of DNNs used for the image recognition (CNNs) and

time-variant streams such as speech recognition (LSTM), however, this chapter will

focus on CNNs.

B.2.5 Training The Neural Network

Now that the essential inner workings of a feed-forward NN have been defined

and how the NN recognises objects in a scene, the CNN algorithm needs to be

trained for the recognition task.

The CNN is exposed to training data of, e.g., 1000s of images of handwritten dig-

its with text labels naming the digit. The network learns to recognise those digits

with a desired high degree of prediction accuracy. The training stage initialises the

CNN to a random value and runs a detection, that is a forward pass inference, to

make a prediction. The prediction accuracy, no doubt low at first, is adjusted by

propagating an error adjustment to the weights and biases in the CNN in a back-

ward pass manner, called backpropagation. The error adjustment is calculated from
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a cost function 𝐶0, which is the square of the differences between the expected value

of the output neuron and the actual value. In so far as the average of the cost func-

tions over the entire training set tends to zero, the accurate prediction tends toward

100%.

We make another inference, and then test the prediction accuracy for any im-

provement. The weights are adjusted again in another backpropagation (backprop)

based on the delta between the expected and actual prediction accuracy. The iter-

ative process of inference and backprop continues until the accuracy of prediction

of the input image converges on the desired accuracy, e.g. 95 − 98% accuracy of

predicting a 3 in the input image. To prevent over-fitting of prediction in the fully-

connected layer, Krizhevsky et al., proposed employing the dropout regularisation

method [Krizhevsky et al. 2012].

Typically, the labelled training data is split up into three groups:

∙ a large training set (circa 70%) to train the CNN;

∙ a smaller validation set (circa 20%) to test the model for fit and prediction ac-

curacy and tune the hyperparameters appropriately;

∙ a gold standard test set (circa 10%) that the CNN has not seen. The golden set

tests how accurately the CNN classifies the new images.

Gold standard test sets are often used in competitions such as the ILSVRC and

Kaggle competitions.

Neural Network Datasets

Datasets to train CNNs can be created and cleaned from scratch, which is ex-

tremely intensive work, or a predefined and cleaned dataset can be downloaded

from many third-party sources. Some datasets are free and open-source while oth-

ers may be closed and charge for their use. Google supplies an excellent search

engine, [Google 2018] for finding the relevant datasets for the training task. For this

simple multi-layer perceptron CNN LeCun et al., [1998] produced a database of tens

of thousands of labelled hand-written digits, called MNIST.

Stochastic Gradient Descent

The cost function essentially informs the weights and biases in the backpropaga-

tion phase how to change their values to improve the prediction accuracy.
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From a calculus perspective, the cost function needs to find the input that min-

imises the value of the function, i.e., the loss. However, for a complicated input such

as the above CNN with 41, 415 parameters, there is a risk of finding only local min-

ima without finding the global minimum, i.e., the smallest value of the cost function.

So, the weights and biases are updated with backpropagation (see subsection B.2.5

for more details). The global minimum is approached by iteratively making the step

sizes and direction changes of the weights and biases proportional to the downward

rate of change of slope and direction of the gradient, like a ball rolling down a hill.

The negative sign of the step change required might indicate a downhill change of

direction of weight value. The magnitude of the step change might represent the

weight connections’ impact on the cost function, thus which connections matter the

most. Therefore, the gradient vector effectively encodes the relative importance of

each weight and bias on the cost function. The nudging of the ball down the slope

by taking gradually smaller negative deltas from the weights is called stochastic

gradient descent (SGD);

∙ stochastic to reduce the compute requirements as the changes are made based

on a randomised ”subset” or ”batch” of training data, i.e., have a random prob-

ability distribution;

∙ gradient descent representing the change in weights and direction needed to

head downhill.

The step sizes reduce as the slope reaches a horizontal level on the hill and thus,

a local minimum. The gradual reduction in slope step size prevents overshooting

the minimum (like the ball rolling to the bottom of a hill and back up the other side).

However, changing the step size rate too quickly will increase the time to find the

minimum, if ever (e.g., the ball never settles at the bottom of the hill).

Backpropagation

Backpropagation is a method for computing and optimising the stochastic gradi-

ent descent (SGD). Briefly, the CNN is a huge differentiable cost function that takes

data and weights at the input of a computational graph and produces a predicted

loss at the output of the system.
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SGD provides rapid reduction of the cost function and propagates that update to

all the weights in the CNN. The SGD tries to highlight the impact of a weight value

in the layer, so weights with more impact have stronger connections i.e., larger val-

ues. If a digit 3 is the required output, the output layer weight corresponding to

the digit 3 might be expected to be increased by a delta, and the rest of the weight

values decreased by a delta. The deltas by which a weight is changed shall be pro-

portional to how far from the target value the weight is at present. Backpropagation

updates the bias 𝑏 and weight 𝑊𝑖. The new activation 𝑎𝑖 is proportional to the up-

dated weight, 𝑊𝑖; SGD has the effect of strengthening the weights of the activations

that detect a 3, and weakening the other weights.

Returning to the maths, let us simplify the multi-layer perceptron of Figure B-1

to a single neuron in each of the input, hidden and output layers. For this simple

4-layer-4-neuron multi-layer perceptron, if we assign a number label to each neuron

from 1 for the input layer to 4 for the output layer, the cost function 𝐶 becomes

C(w_1, b_1, w_2, b_2, w_3, b_3).

We need to discover the weight and bias values to which the cost function is most

sensitive, i.e., find values of 𝑊𝐿 and 𝑏𝐿 that results in the most efficient decrease in

the cost function 𝐶.

The activations shall be labelled similarly to Equation 1. We label the output

neuron 𝑎𝐿 and the previously hidden layer 𝑎𝐿−1 and continue along the layers, rela-

belling similarly.

If the required prediction 𝑦 is 100% of predicting a 3, then the simple cost function

𝐶0 is the square of the difference between the neurons activation value 𝑎𝐿𝑗 and the

desired value 𝑦, Equation 8

𝐶0 = (𝑎𝐿 − 𝑦)2 (8)

where 𝐶0 is the cost function for all the weights and biases, the activation 𝑎𝐿,

(see Equation 9), is a simplified version of Equation 1 for the activation of a single

neuron in a layer.

𝑎𝐿 = 𝜎(𝑤𝐿𝑎𝐿−1 + 𝑏𝐿) (9)
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Figure B-3: Cost Function Computational Graph.

Let 𝑧𝐿 equal to the non-sigmoid activation, Equation 10:

𝑧𝐿 = (𝑤𝐿𝑎𝐿−1 + 𝑏𝐿) (10)

Then the activation is simplified to Equation 11

𝑎𝐿 = 𝜎(𝑧𝐿) (11)

The cost function computational graph of the Equation 8, Equation 10 and Equa-

tion 11, can be seen in Figure B-3.

We need to find the delta change in 𝑊𝐿 needed to affect 𝑧𝐿. We also need to find

how much that change in 𝑧𝐿 affects 𝑎𝐿−1 which, in turn with the desired 𝑦 input, that

delta change of 𝑎𝐿 creates a delta change in the cost function 𝐶0. Equation 12 shows

these partial differential changes (𝜕) of the weights and is known as the Chain Rule

and gives the sensitivity of 𝐶0 to small changes in 𝑊𝐿.

𝜕𝐶0

𝜕𝑤𝐿
=

𝜕𝑧𝐿

𝜕𝑤𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿
𝜕𝐶0

𝜕𝑎𝐿
(12)

Now taking the derivative of Equation 8 gives cost function derivative, Equa-

tion 13:

𝜕𝐶0

𝜕𝑎𝐿
= 2(𝑎𝐿 − 𝑦) (13)

Taking the derivative of Equation 9 gives the activation derivative Equation 14:

𝜕𝑎𝐿

𝜕𝑧𝐿
= 𝜎′(𝑧𝐿) (14)
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And the derivative of the non-sigmoid activation, Equation 10 gives Equation 15

𝜕𝑧𝐿

𝜕𝑤𝐿
= 𝑎𝐿−1 (15)

Bringing all the constituent parts of Equation 13, Equation 14 and Equation 15

together gives the cost function derivative Equation 16:

𝜕𝐶0

𝜕𝑤𝐿
=

𝜕𝑧𝐿

𝜕𝑤𝐿

𝜕𝑎𝐿

𝜕𝑧𝐿
𝜕𝐶0

𝜕𝑎𝐿

= 𝑎𝐿−1𝜎′(𝑧𝐿)2(𝑎𝐿 − 𝑦)

(16)

The cost function of Equation 16 is the function for one training example over

one neuron, whereas the derivative of all neurons’ cost functions, as an average of

all the training examples, is needed, which can be seen in Equation 17.

𝜕𝐶

𝜕𝑤𝐿
=

1

𝑛

𝑛−1∑︁
𝑘=0

𝜕𝐶𝑘

𝜕𝑤𝐿
(17)

The solution of Equation 17 is one component of the gradient vector, the sum of

which is Equation 18.

∇𝐶 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐶
𝜕𝑤1

𝜕𝐶
𝜕𝑏1

...
𝜕𝐶
𝜕𝑤𝐿

𝜕𝐶
𝜕𝑏𝐿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

As the sum of average derivative costs of weights has been found, a similar pro-

cedure is undertaken for the bias. This is easier as the framework of Equation 16 is

used, substituting the weights’ terms for the bias terms, i.e., Equation 19.

𝜕𝐶0

𝜕𝑏𝐿
=

𝜕𝑧𝐿

𝜕𝑏𝐿
𝜕𝑎𝐿

𝜕𝑧𝐿
𝜕𝐶0

𝜕𝑎𝐿

= 1𝜎′(𝑧𝐿)2(𝑎𝐿 − 𝑦)

(19)

The process of Equation 8 to Equation 16 should be iteratively repeated for ev-

ery layer preceding this until all the layers’ weights and biases have been updated.

Here the previous equations can be used as frameworks for the next layer, so taking
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Figure B-4: Cost Function Computational Graph for Multiple Layers.

Equation 16, 𝐿 can be substituted for 𝐿 − 1 and 𝐿 − 1 for 𝐿 − 2 and so on for each

layer, as can be seen in Figure B-4.

The process above is repeated for all the neurons in all the layers. Firstly, the sum

of all the cost functions of all the neurons in every layer is required, Equation 20.

𝐶0 =

𝑛𝐿−1∑︁
𝑗=0

(𝑎𝐿𝑗 − 𝑦𝑗)
2 (20)

Now making 𝑧 equal to the non-sigmoid activation for all layers and neurons,

Equation 21:

𝑧𝐿𝑗 = 𝑤𝐿
𝑗0𝑎

𝐿−1
0 + . . . + 𝑤𝐿

𝑗+𝑛𝑎
𝐿−1
𝑗+𝑛 + 𝑏𝐿𝑗 (21)

The activation now becomes Equation 22:

𝑎𝐿𝑗 = 𝜎(𝑧𝐿𝑗 ) (22)

The Chain rule derivative of the cost function for the weights of all the neurons

in all layers becomes Equation 23:

𝜕𝐶0

𝜕𝑤𝐿
𝑗𝑘

=
𝜕𝑧𝐿𝑗
𝜕𝑤𝐿

𝑗𝑘

𝜕𝑎𝐿𝑗
𝜕𝑧𝐿𝑗

𝜕𝐶0

𝜕𝑎𝐿𝑗
𝜕𝐶

𝜕𝑤𝐿
𝑗𝑘

= 𝑎𝐿−1
𝑘 𝜎′(𝑧𝐿𝑗 )

𝜕𝐶

𝜕𝑎𝐿𝑗

(23)
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And the Chain Rule derivative of the cost function summed across all layers

becomes Equation 24:

𝜕𝐶0

𝜕𝑎𝐿−1
𝑘

=

𝑛𝐿−1∑︁
𝑗=0

𝜕𝑧𝐿𝑗

𝜕𝑎𝐿−1
𝑘

𝜕𝑎𝐿𝑗
𝜕𝑧𝐿𝑗

𝜕𝐶0

𝜕𝑎𝐿𝑗

𝜕𝐶

𝜕𝑎𝐿𝑗𝑘
=

𝑛𝐿+1−1∑︁
𝑗=0

𝑤𝐿+1
𝑗𝑘 𝜎′(𝑧𝐿+1

𝑗 )
𝜕𝐶

𝜕𝑎𝐿+1
𝑗

= 2(𝑎𝐿𝑗 − 𝑦𝑗)

(24)

Therefore any particular neuron in the network influences the cost function through

multiple weight connection paths and so all those influences have to be added to

reach the final cost function for the entire network as shown by Equation 24.

The neural network model and training above introduced here demonstrates the

computational complexity of the simplest neural networks. The network was con-

figured to recognise a single digit in a single channel grey-scale image. The network

works well if just numerical text is to be recognised, such as zip codes for the postal

service. If more objects in colour images are to be recognised, then the above net-

work needs to be further developed to produce a CNN.

B.3 Convolutional Neural Networks

CNNs build on the deep learning we’ve just encountered in subsection B.2.4.

CNNs can recognise objects from multiple channels, usually red, green and blue

of a colour photograph. CNNs are trained in much the same way as above with

backpropagation and SGD. The major differences are that CNNs have scaled up the

number of channels, layers and weights. With the previous artificial neural network

model, it was supposed that the layers contain segments of a digit to be recognised,

a similar assumption can be made here with the layers of weights containing aspects

(or filters) of the image, again segments of the image such as curves or lines. Another

significant difference CNNs exhibit compared to the “Hello World” of ANNs above is

that CNNs do not have a weight per input pixel. The same weights are used across

the channels of the IFM. CNNs are a little more complex again in that they allow

us to detect and recognise much more complete patterns such as eyes, nose, mouth,

person, man, woman, a dog with translation invariance characteristics, allowing the

144



B.3. Convolutional Neural Networks
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Figure B-5: “Hello World” CNN Example.

extraction of spatiotemporal features [Lecun et al. 1998]. Let us compare it with the

“Hello World” of CNNs, LeNet-like network of Figure B-5.

The CNN takes an image (IFM) of 3-channel (red, green and blue) and dimen-

sions 32 × 32 pixels and no padding of a digit 3 into the first layer. Six filters or

kernels of dimensions 5 × 5 pixels slide across the image, from top left to bottom

right, with a stride of 1, multiplying and accumulating the values with the corre-

sponding image 5 × 5 tile and placing the results in the OFM layer Conv1. Bias and

a non-linearity such as sigmoid or ReLU1will be applied in Conv1.

Before moving on, the detail of how the convolution operation alone works

needs to be highlighted. Figure B-6 shows the CNN takes an IFM of 𝐶 channels

and dimensions 𝐼𝐻 × 𝐼𝑊 pixels2. 𝑀 kernels are slid with a stride3 of 𝑆 across each

of the 𝐶 channels performing MAC operations. The MAC results is placed at the 𝑀

channel point corresponding to the MAC operation.

Next in Figure B-5 is a Pooling layer which is applied to the OFM of the Conv1

layer. In the Max Pooling layer, 2 filters and a stride of 2 are used. The max pool

reduces the height and width of the representation by a factor of 2. The Pool1 out-

put of this pooling layer becomes 14 × 14 with the same 6 channels. Pool layers

compresses height and width dimensions and not channel dimensions. The Conv1

and Pool1 complete the first layer of the CNN.

A further layer of Convolution of 16 kernels of dimensions 5 × 5 are applied to

Pool1 with a stride of 1 to produce a feature map Conv2 of dimensions 10× 10× 16.

1ReLU is more widely used as a non-linear activation function as it is less compute-intensive,
requires less storage of resultant parameters and faster to converge during train.

2The image may also be padded with extra 𝑃 pixels in width and height
3A stride of 1 means the kernel is moved up, down, left or right by 1-pixel after completion of the

MAC operations.
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Figure B-6: Naive Convolution Example.

Max Pooling of 2 filters and stride of 2 are applied to Conv2 to give Pool2 of reduced

height and width dimension and increased channels of 5× 5× 16. Conv2 and Pool2

complete the second layer of the CNN.

Pool2 of Figure B-5 is now flattened or vectorised into a 400 × 1 vector of neu-

rons. These 400 neurons are densely connected to the 120 neurons in a FC layer FC3,

reducing the vector to 120 neurons. The bias is also reduced to a vector of 120 values.

A further FC layer is added with the bias to reduce the vector down to 84 values in

FC4. At the output classification layer, a softmax function is applied to FC4. The

softmax will have ten outputs corresponding to the 0 to 9 digits to be recognised by

the CNN. The softmax of Figure B-5 will provide a probability of, say, 95% that the

network recognised the 3 supplied at the CNN input.

B.3.1 Calculating the MAC Operations in a CNN

Up to 90% of the compute of a CNN is performed in the convolution layers [Fara-

bet et al. 2010]. The performance of the compute within the convolution layer is

mostly data movement and MAC operations. Optimising the data movement and

MAC operations in the convolution layer would deliver efficient returns and po-

tentially increase computational performance. Let us baseline the number of MACs

operations that a naive convolution layer would perform. The convolution opera-

tion is determined by the following:

∙ Dimensions of the filter (or Kernel), 𝑘 × 𝑘;
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Table B.1: Number of Arithmetic Operations, Activations and Parameters in CNNs.

MAC Comparisons Addition Division Exponent Activation Parameters
VGG-16 154.7G 196.85M 10k 10k 10k 288.03M 138.36M
GoogleNet 16.04G 161.07M 8.83M 16.64M 8.83M 102.19M 7M
FCN-16s 89.38G 99.99M 5.26M 5.25M 5.25M 159.63M 134.82M
SqueezeNet v1.1 387.75M 6.02M 197k 1000 1000 7.69M 1.24M
ResNet-50 3.87G 10.89M 16.21M 10.59M 1000 46.72M 25.56M
ResNet-152 11.3G 22.33M 35.27M 22.03M 1000 100.11M 60.19M
YOLO 20.29G 21.83M 0 0 0 30.22M 271.7M
ZynqNet 529.3M 3.22M 66.56k 1.02k 1.02k 8.61M 2.53M
Inception V4 12.27G 21.87M 53.42M 15.09M 1000 72.56M 42.71M

∙ Number of filters in the layer, 𝑀 ;

∙ Dimensions of the IFM, 𝐻 ×𝑊 ;

∙ Number of batches of IFM, 𝑁 ;

∙ Number of IFM channels, 𝐶;

∙ Stride of the kernel over the IFM, 𝑆.

Using these parameters, the maximum number of MAC operations in a convo-

lution stage of a CNN can be calculated as Equation 25.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝐴𝐶𝑠 =
𝐻 ×𝑊 × 𝐶 ×𝑀 × 𝑘 × 𝑘 ×𝑁

𝑆2
(25)

Taking VGG-16’s IFM first layer as an example, its dimensions are:

∙ 𝑘 = 3;

∙ 𝑀 = 64;

∙ 𝐻 = 𝑊 = 224;

∙ 𝑁 = 10;

∙ 𝐶 = 3;

∙ 𝑆 = 1.

So the number of MACs in the first convolution layer are Equation 26. The calcu-

lation for a single layer demonstrates the very large number of MACs, compounded

with multiple convolution layers, confirmed by Table B.1.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝐴𝐶𝑠 =
224 × 224 × 3 × 64 × 3 × 3 × 10

12

= 867, 041, 280

(26)
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