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Abstract

Light field imaging and processing is an emerging technique that motivates production of
3D visual content and makes it possible to provide high quality immersive 3D experiences.
The principle of light fields is designed to describe all light rays passing through a given
volume in 3D space, and only suitable acquisition can construct a dense light field,
which is advantageous in practical applications, such as medical imaging, computer
animation and post-capture photography. However, limited by the processing capability,
acquiring a sufficient amount of high dimensional information usually leads to significant
computational complexity and inaccuracy. Thus, to bridge the gap between acquisition
and the required visual information, in this thesis, we are looking for the establishment
of an efficient and accurate light field reconstruction framework, which only requires
sparse light field input.

First, we will introduce our contribution to depth estimation from the 4D light fields and
its application to render novel views for light field reconstruction. We build an optical
flow framework to estimate disparity by tracking pixel movement. To further improve the
efficiency, instead of using traditional global optimization, we use an alternative edge-
aware filtering to efficiently encourage the smoothness while retaining high-frequency
information. Compared to other state-of-the-art methods, our framework is capable of
extracting geometrical information in an efficient and accurate fashion. Furthermore,
we also move to light field reconstruction by warping input views to novel locations with
the estimated disparity map.

Second, we investigate subsampling and reconstruction strategies for light fields pro-
cessing. Limited angular resolution of acquired light fields is one of the issues in light
field data, which usually is massive requiring high computational expense to process.
Different from numerous previous works focusing on employing novel techniques, we
chose an unique angle to optimize the performance of light field reconstruction, which is
concentrated on comparing various commonly used view selection strategies. This work
could benefit a wide range of applications, such as camera hardware design, light field
compression and light field rendering.

Last but not least, we propose a deep learning based framework for light field view
synthesis. With the booming development of data-driven techniques, deep learning based
methods have been successfully applied to light field related tasks, such as material
recognition, depth estimation and view synthesis. However, learning methods usually
require a huge amount of data and collecting sufficient light field data is a challenging
task due to expensive acquisition. Thus, we employ cycle consistency to the light field
view synthesis task, which enables training to be performed in a self-supervised manner
and avoids the requirement for huge training data. Experimental results show that our
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method outperforms other state-of-the-art light field view synthesis methods, especially
when input views have wider disparity.
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1 Introduction

In this chapter, we first explain the motivation for exploring reconstruction of dense
lights field by presenting our general research statement. Then, the structure of the
thesis and the main content of each following chapter are presented. At the end of
this chapter, the main contributions are highlighted and related publications are listed
respectively.

1.1 Motivation

We live in the digital era. From advanced professional monitor systems to personal
smartphones and computers, modern graphic display systems have become an indis-
pensable part of our work and life. These display systems aim to visualize information
to the human visual perception system by reconstructing visual content from acquired
or received data. The visual perception system of human beings can easily understand
the 3D structure; however, nowadays, most of the digital systems are only capable of
displaying 2D (or pseudo 3D) content. It is a long-lasting desire to bring our digital
displays to the age of actual 3D content. Various scientific or practical attempts, in-
cluding light fields, super multi-view, integral imaging and holographic displays, have
been made towards recreating the 3D scene in digital devices. This 3D reconstruction
problem, which refers to a long-standing research area in computer vision and graphics,
has inspired numerous applications in gaming, medicine and film industry.

Many 3D reconstruction methods have been developed to be applied to a variety of
data, each of which is gathered through different acquisition processes, which usually
is composed of complex and multiple sensors. A sufficient amount of high-quality data
is the foundation stone to depict the desired real-world 3D scene accurately. However,
comprehensive data collection of the detailed 3D scene is expensive regarding time and
finances, which is mostly limited by the hardware capability. Hence, a robust and
efficient software framework becomes the practical solution to close the gap
between the collected data from available sensors that are typically limited
and the requirement of high-quality visual content for the future generation
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of display systems.

The 4D light field is a typical technique utilized for processing high dimensional visual in-
formation. It was originally introduced by Levoy et al. [8] for the purpose of image-based
rendering. The generalized framework of the 4D light field is designed to reconstruct
visual information of a target scene by mapping multi-perspective images to a multi-
dimensional light field function. The output light field data can be represented as the
collection of images arranged on a 2D grid with slight horizontal and vertical perspective
shifts. Due to the potential capability to describe the 3D representation of the scene,
light fields have gained a lot of attention in both industry and academia in recent years
and enabled various practical applications in extending dimensions beyond 2D spaces,
such as refocusing of photography and virtual reality. Light field images contain rich
3D information because they provide coherent information of every pixel not only along
the spatial dimensions but also in additional angular dimensions. However, existing light
field acquisition systems, varying from gantry controlled DSLR cameras, through arrays
of DSLR cameras, to the recently developed consumer-level plenoptic cameras, can only
produce sampled representations of light fields as collections of images of the target
scene, and generally suffer from a spatio-angular resolution trade-off as a result of the
limited hardware design.

1.2 Structure of the Thesis

In this thesis, we will concentrate on the reconstruction of high quality dense light fields
given a limited amount of multi-perspective views. We investigate two approaches to
solve this problem: the first approach is a traditional disparity-based model and the
second approach employs the deep learning technique. Besides, high-level light field
selection strategies are presented to optimize the performance of light field reconstruc-
tion.

In Chapter 2, we first introduce the development of light field imaging, along with the
derivation of the corresponding theoretical framework and development of its practical
implementation. We also review comprehensive literature regarding previous light field
reconstruction work, including depth estimation from light fields and depth-based image
rendering.

In Chapter 3, we present our initial attempt to synthesize views based on the depth-based
image rendering. This method follows the typical research path relying on the geometric
information of the target scene, e.g. depth information, as the prior knowledge. More
specifically, the captured sparse light field data is processed to estimate the geometric
primitives. These primitives are utilized to construct the underlying structure of the
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3D scene and estimate expected views under specific circumstances. The advantage
of this type of method is that the global structure of the 3D scene can be established
and corresponding visual information can be continuously obtained by rendered from the
model.

In Chapter 4, high-level view selection strategies are discussed to optimize the perfor-
mance of the light field reconstruction. Although state-of-the-art and our previous work
achieves impressive performance on the task of light field view synthesis, limited atten-
tion has been paid to explore the optimal view selection strategy, which has potential
impact on the performance of light field reconstruction. We selected one benchmark
method and utilized it to investigate various subsampling and reconstruction strategies,
and then our experiments demonstrate the optimal strategies in each case.

In Chapter 5, a data-driven approach is described to explore the possibility to learn
a model for reconstruction from limited input training samples. With the boom of
deep learning techniques, prior work showed remarkable performance and capability to
generalize to tasks related to light field reconstruction. As the training process usually
requires the support of a huge amount of data, which is the one shortcoming in the area
of light field processing, it is reasonable to transfer the comprehensive prior knowledge
from numerous single image and video datasets to the light field domain by establishing
the connection of the light field view synthesis problem to a video interpolation problem.
Furthermore, we apply cycle consistency to enable training in a self-supervised manner,
which also reduces the required amount of light field training data. Our experiments
demonstrate the success of our method, which outperforms state-of-the-art methods on
various benchmark datasets.

In Chapter 6, we conclude our main contributions introduced in this thesis and discuss
the potential directions to be explored in future work.

1.3 Main Contributions and Publications

The following contributions regarding light field reconstruction are results of my PhD
research, and the corresponding publications are listed as well:

In Chapter 3, we propose a spatial-angular edge-aware optical flow-based framework
and apply it along the angular domain light fields to estimate the corresponding depth
maps.

• [9] Yang Chen, Martin Alain, and Aljosa Smolic, Fast and Accurate Optical Flow-
based Depth Map Estimation from Light Fields, in Proceedings of the Irish Ma-
chine Vision and Image Processing Conference (IMVIP), IPRCS, Aug 2017. (Best
Paper Award)
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In Chapter 4, we discuss view selection strategies for light field subsampling and recon-
struction, and experimentally evaluate the performance of each strategy.

• [10] Yang Chen, Martin Alain, and Aljosa Smolic, A Study of Efficient Light Field
Subsampling and Reconstruction Strategies, in Proceedings of the Irish Machine
Vision and Image Processing Conference (IMVIP), IPRCS, Aug 2020.

In Chapter 5, we expand a video interpolation method in the angular dimension to be
applied to light field view synthesis. This involves cycle consistency, which allows the
network to be trained in a self-supervised manner.

• [11] Yang Chen, Martin Alain, and Aljosa Smolic, Self-supervised Light Field View
Synthesis Using Cycle Consistency, in 22th International Workshop on Multimedia
Signal Processing (MMSP), IEEE, Sep 2020. (nominated for Best Paper Award)
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2 Background

In this chapter, we will present the fundamental knowledge that establishes the basis for
developing the contributions presented later in this thesis. We will first introduce the
background concepts about light field imaging, i.e. light field parametrization, as well
as existing various light field acquisition methodologies. Then, depth map estimation
from light field is introduced as the initial research problem. We also will talk about the
resolution issue of collected light field data which is brought by the limitations of existing
acquisition systems. We also review state-of-the-art related work of depth estimation
and light field reconstruction, respectively.

2.1 Light Field Parametrization, Acquisition and

Application

After decades of development of the light field technology, the application of light field
on classic computer vision problems have received considerable attention both from
academia and industry. 4D light field images provide rich scene information via cap-
turing all light rays within a given volume of space. Compared to conventional pho-
tography, not only two spatial dimensions but also two extra angular dimensions are
provided. In particular, this additional information inherently reveals more details about
the geometry of the targeted scene. This boosts multiple applications, such as light-field
microscopy [12], post-capture refocusing [13], image-based rendering [14], near-eye light
field displays [15], glasses-free 3D display [16] and more. In this thesis, we will illustrate
how this rich information is processed to benefit vision tasks. Here, we first introduce
the derivation of the light field theory. We refer readers to [17] for a review about light
field processing.

2.1.1 Early Theories

According to the best of our knowledge, the very first article describing the idea of
capturing light-field-like data to create 3D photographs was first proposed by Lippmann
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(a) Cube (b) Two-plane
(c) Sphere

Figure 2.1: Illustration of different parameterization of light rays.

in 1908 [18], although the original term they used is "Photographies Integrales" ("Inte-
gral Photographs"). After almost one-century development of computational imaging
techniques, Adelson and Bergen firstly proposed to formalize the light, physical medium
transferring visual information, as the plenoptic function concept in 1991 [19], which is
expressed as a 7D function:

P = P(θ,ϕ,λ, t,Vx ,Vy ,Vz) (2.1)

This function describes the light from a scene as the intensity of all the rays pass-
ing through the observation position at the location (Vx ,Vy ,Vz) in the 3D spaces at
the direction (θ,ϕ) in the spherical coordinate system, the wavelength λ and the time
t.

As one of the subsequent work, in 1995, McMillan and Bishop [20] proposed to simplify
the 7D plenoptic function to 5D by employing a fixed time and wavelength constraint,
i.e. for only primary colors, and describing the flow of the light at different 3D locations
along with various 2D directions:

P = P(θ,ϕ,Vx ,Vy ,Vz) (2.2)

2.1.2 4D Light Field and Various Representation

To further reduce the complexity of computation and meet the requirement of practical
applications, the 4D light field is proposed in [14, 21], which reduced 5D parametrization
to the 4D space. This simplification is based on an important assumption that the
radiance does not change along a line unless blocked, so the 4D function can be expressed
in this way:

P = P(θ,Vx ,Vy ,Vz) (2.3)
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The core idea is to apply one-directional constraint and only consider the light passing
through the given direction instead of any direction. The beforehand representation
can be instantiated as the rays from the target scene through a closed convex hull, i.e.
virtual cube box, as shown in the Figure 2.1a, of which six surface planes are parametrized
by a pair of orthogonal coordinates s and t, which could define one plane (s, t). To
exclusively determine and describe the ray coming from the scene, the direction of any
ray is parametrized by a double-plane system, including plane (s, t) and another parallel
plane (x, y), as shown in the Figure 2.1b. Any directional ray can be mapped to a 4D
coordinate (s, t, x, y), which derives the commonly known two-plane representation.
Levoy and Hanrahan call this each pair of planes a light slab [14]; Gortler et al. [21]
propose an arrangement of six pairs of planes called the lumigraph. As this two-plane
representation of the light rays provides a more effective way to describe rays of light,
Levoy et al. [8] summarized 4D light field utilizing this representation and observed the
beginning of the blooming era of the light fields research with computational photography
and computer vision techniques.

Two-plane Representation

In this thesis, we will use the two-plane representation to formalize the geometric struc-
ture of the light field, which is the most utilized representation in related researches
nowadays. Mathematically, as visualized in the left part of Figure 2.2, the two-plane
parametrized light field can be represented as a 4D function:

L : Ω× Π → R, (s, t, x , y) → L(s, t, x , y) (2.4)

in which the image plane Ω represents the spatial distribution of light rays, indexed
by (x , y), while the focal plane Π corresponds to their angular distribution, indexed by
(s, t). To visualize a 4D light field image, perhaps the easiest way is to consider it
as a collection of views, also called sub-aperture images, taken from several viewpoints
arranged on a 2D grid with slight horizontal and vertical perspective shift. The light
field can then be considered as a matrix of views (see the middle part of Figure 2.2).
Note that there is an assumption in this thesis when using such representation that the
different views are rectified along the same angular dimension.

Epipolar Plane Image. Another common way to represent light fields is as a collection
of epipolar plane images (EPIs). The concept of epipolar plane image is originally from
the stereo geometry research and introduced to as epipolar geometry [22]. Later, the
epipolar geometry is generalized for the case of multiple images by Bolles et al. [23]. In
the case of light fields, an epipolar plane image is a 2D slice of the full 4D light field
obtained by fixing one spatial and one angular dimension. For example, by fixing the
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Figure 2.2: Light field two-plane parametrization and epipolar plane images representa-
tion.

xs-plane or yt-plane:

Lt∗,y∗(s, x) → L(s, t∗, x , y ∗) (2.5)

Ls∗,x∗(t, y) → L(s∗, t, x∗, y) (2.6)

These two ways of extracting epipolar plane images correspond to horizontal and vertical
directions respectively, as shown in the right part of Figure 2.2. Such representation can
help visualising the angular information using only 2D images, including the implicit
expression of the depth of the scene.

Spherical Representation

While we adopt the 2 parallel plane parameterization in the rest of the thesis, other
parameterization exists for various scenario. One example is the spherical representa-
tions, which is especially suited for immersive virtual reality applications. The spherical
representation of the light field is designed to avoid the artefact on the boundary of
the imaging plane, which usually happens with the two-plane representation, as it is
expected to acquire the light field in a (nearly) uniform fashion. The 4D spherical pa-
rameterization was introduced for light field acquisition systems that are set at a fixed
position while moving along a 360-degree direction, as shown in 2.1c, which are useful
for applications such as virtual reality. Ihm et al. [24] proposed the spherical representa-
tion of the light rays that can be expressed as the combination of two functions fd and
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(a) Stanford
(b) Technicolor

(c) SAUCE

Figure 2.3: Light field acquisition systems - camera arrays.

fp:

Lsphere = fd(θd ,ϕd) (2.7)

= (fp(θp,ϕp))(θd ,ϕd) (2.8)

where fp is a function defined on a sphere whose value is function fd . The term (θp,ϕp)

indicates the interaction point between the light ray with the positional sphere, and
(θd ,ϕd) determines the orientation of the light ray at the point (θp,ϕp) (see Fig-
ure 2.1c).

Other two sphere-based parameterization, two-sphere parametrization (2SP) and sphere-
plane representation (SPP), are introduced by Camahort [25]. Each ray is parameterized
by its intersection points with the same sphere (2SP), or by its angle and the 2D
coordinate of the intersection point of the ray and the orthogonal plane (SPP).

2.1.3 Acquisition Systems

Camera Array

Camera array is a typical imaging system that is capable of capturing sub-aperture
views with a single exposure of all cameras at the same time. In such a way, each sub-
aperture view from the two-plane parametrizations of light field can be directly captured
by cameras located at each perspective in the array. The early-stage effort for the camera
array-based system is from the Stanford group [26], who build a camera array consists
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(a) Stanford lego
gantry

(b) Fraunhofer gantry (c) CIVIT gantry

Figure 2.4: Light field acquisition systems - gantry controlled camera.

of more than one hundred cameras arranged in the same plane, shown as Figure 2.3a. A
more recent camera array system is proposed by Sabater et al. [27] with sixteen DSLR
cameras, as shown in Figure 2.3b, which extended the capability to capture light field
video. Along with the hardware system, a post-processing pipeline is also introduced
by [27], including color correction, calibration, depth estimation and view rendering.
Another multi-camera array system is constructed by Herfet et al. [28] producing the
light field video with high definition, as shown in Figure 2.3c. This work targets to
enhance the quality of light field content to match the up to date high-performance
display devices. The potential of camera rigs such as [28] for industrial film-making
and post-production is explored by Trottnow et al. in a follow-up work [29]. Although
camera array-based systems are efficient to capture light field, the density of captured
light field is limited by the number of cameras that can be set up, and it might require
further post-processing to reconstruct the dense light field. In addition, these systems
are bulky and inconvenient to carry around; thus, its potential application scenarios are
restricted.

Gantry Controlled Camera

One alternative method to acquire light field is to use a gantry controlled camera moving
through multiple perspectives as proposed in [30], as shown in Figure 2.4a. Ziegler et al.
utilize a gantry controlled DSLR camera to capture large scenes [5], which is guided by
a precise linear axe system, as shown in Figure 2.4b. Moreschini et al. released a dense
captured with a horizontally motorized positioning system [7], as shown in Figure 2.4c,
which can used as ground truth for light field reconstruction challenge [31]. With the
gantry controlled camera, it is easier to move and set up the system under various
circumstances. The spatio-angular quality of the light field can be determined by the
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(a) Raytrix R11 camera

(b) Lytro camera

(c) K-Lens

Figure 2.5: Light field acquisition systems - handheld camera.

specification of the single camera and the accuracy of the gantry control system. The
main shortcoming of this acquisition method is that it is time expensive to complete the
camera movement. Furthermore, since it requires some time to complete the imaging,
it can only be used to capture light field for a static scene. Note that the gantry setup
can also be modified to capture spherical light fields, as introduced by [30].

Handheld light field camera

As opposed to camera arrays or gantry controlled camera systems described above,
which are mainly restricted to lab setups, handheld devices have been designed allowing
for more portable light field capture. These devices either rely on micro-lens technology
or add-on inter-reflection lenses.

As the core component of a micro-lens array camera, also called plenoptic cameras,
micro-lens arrays are formed as multiple micro-lenses arranged in an grid, and placed
in front of the image sensor to form a two-plane system inside one camera. While
in traditional 2D cameras the main lens integrates light rays from different directions
onto a single point on the sensor, the micro-lenses redistribute the rays coming from
different angles to different sensor locations. Raytrix [32] markets commercial plenoptic
cameras and offers their signature plenoptic camera R11 with a three-megapixel effective
resolution, as shown in Figure 2.5a. The consumer-level plenoptic camera Lytro Illum
was then introduced to the public by Lytro Inc. [33], as shown in Figure 2.5b. The output
raw data from existing plenoptic cameras require post-processing, including decoding,
calibration, rectification and color correction [34, 35], to obtain sub-aperture views of
the light field. A similar structure of the plenoptic camera also been adapted to some
systems for specific tasks, such as light field microscopy for medical inspection.

Aside from plenoptic cameras, an inter-reflection camera add-on was introduced by
Manakov et al. [36], later developped in a product by the K-lens company, as shown in
Figure 2.5c. This optical component can be directly attached to a DSLR camera and
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(a) Google VR

(b) Google immersive video

Figure 2.6: Light field acquisition systems - immersive video systems.

then performs the light field acquisition. This system is designed to exploits the inter-
reflections mechanism in a kaleidoscopic structure implemented with parallel mirrors as
image multiplier to sample the aperture views of light fields.

Although these micro-lens array or inter-reflection based plenoptic devices are easy to
carry and go, the quality, especially the spatial resolution, of the output image is still
not competitive to images from cutting edge DSLR cameras. This is due to the fact
that the full spatio-angular information has to be multiplexed onto a single sensor. In
addition, color inconsistencies and noise can occur in the sub-aperture images due to
optics limitations.

Immersive Video Acquisition

Recently, Google released a spherical light field acquisition system demonstrating the
potential capability of light field techniques for virtual reality applications [37]. This ro-
tating system similar to gantry-based systems desceibed above, as shown in Figure 2.6a,
consists of sixteen consecutive GoPro cameras arranged on semi-circle, which is able to
capture a static scene in 360 degrees from the target point of view. Then, high quality
immersive panoramic light fields can be rendered within a consumer-level virtual reality
display. They generally follow a more conventional light field rendering pipeline, which
utilizes depth geometrical primitives to synthesize continuous views in real-time. Later,
Broxton et al. [38] introduced another light field video acquisition system, which has
a hemispherical arrangement of 46 low-cost action cameras and only covers a limited
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portion of the full 360 field of view, as shown in Figure 2.6b, but is capable of recording
six-degree-of-freedom (6 DOF) video content. A specific layered mesh representation is
designed for a better quality of the final panoramic light field content.

2.1.4 Applications of Light Fields

Light Field Imaging for Medical Inspection

Light field technology has been used to improve medical imaging inspection, especially
microscopy. A light field microscope was first introduced by Levoy et al. [12] as a 3D
computational imaging approach to capture all light passing through a specimen. A pro-
totype of this system is implemented by inserting a micro-lens array to a conventional
microscope, which enables computationally synthesizing focal stacks, flexibly control-
ling depth of field and achieving full volumetric reconstruction. A 3D deconvolution
microscope is proposed by [39] which provide improved quality of spatial resolutions
compared to [12]. A camera array-based light field microscope is introduced by Lin
et al. [40], which contains a two-stage relay system on the aperture-plane. Prevedel
et al. present the potential of a light field microscope to push the frontier of medical
research [41].

Another potential application of light field imaging used for medical inspection is light
field microendoscopy. Surgical microendoscopes is a sophisticated inspection device
designed especially for minimally invasive operations, so it requires a smaller size of
optical components than microscopes. Kwan et al. introduce the proof-of-concept light
field microendoscopes but limited by the physical size of available optical components
meeting the size constraints of the microendoscopes, the actual product is not produced
in this work [42]. Later, Orth et al. implement the concept of light field microendoscopes
with the optical fiber bundles. [43]. They utilize the physical property within the fiber
bundle to capture spatial and angular light information and construct an ultra-slim light
field imaging probe that enables light field imaging inside patients body with a minimized
injury.

Post-capture Refocusing Photography

Synthetic depth-of-field effects rendering has been a long-standing research topic in
computer graphics and computational photography [44, 45, 46, 47, 48]. Synthetic
aperture imaging, also known as refocusing, has been a well known application of light
fields since the early stages of research on the topic [49, 50]. Levoy et al. notably
introduced the popular “shift-and-sum” refocusing algorithm which consists in shifting
the light field views by a disparity value corresponding to the desired focus plane, and
averaging the shifted images [50]. Refocusing was revisited by Ng et al. who introduced
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the concept of Fourier slice photography [51], where the shifting and summing operations
are preformed in the Fourier transform domain. Refocusing from light field was also
extended to synthesize tilt-shift photography, where the focal plane is not fronto-parallel
to the camera plane [52, 53]. With the booming of the deep learning techniques, a
CNN based refocusing method was also recently proposed by Dayan et al., which only
requires a sparse light field as input [54]. Note that sparse light fields create angular
aliasing artefacts in defocused blur area of refocused images, thus, high quality light
field reconstruction method becomes critical for this application.

Light Field Free Viewpoint Rendering

The first application of light fields was the ability to render images corresponding to
novel free viewpoints, without the need for any geometric information [14, 21]. Using
the two-plane light field parameterization, novel views are generated by projecting rays
from the target viewpoint onto the light field two planes and performing a quadrilinear
interpolation, consisting of one bilinear interpolation on the image plane and another
bilinear interpolation on the camera plane. Free viewpoint rendering was later combined
with refocusing by Isaksen et al. [49]. While the field of view for two-plane light field
is limited to the volume of space comprised in-between the two planes, freeviewpoint
rendering can also be used with spherical light fields for a full 360 field of view [55].
More recently, the concept of multiplane images (MPIs) [56] and multisphere images
(MSIs) [57] have been introduced. These representations can be generated from two-
plane and spherical light fields respectively. An MPI consists in a collection of parallel
planes covering the depth range of the scene, where each plane is equipped with an
RGB texture and alpha map corresponding to the scene objects intersecting the planes.
Novel images can be efficiently rendered by warping the texture of each plane to the
target free viewpoint using homographies, and compositing the textures from back to
front using the "over" operator. A similar principle can be used to render images from
MSIs, except that the warping can not be performed using homographies. General light
field rendering techniques requires comprehensive information from dense light field to
avoid angular aliasing, which motivates the development of light field reconstruction
algorithms.

Light Field for Media Production

In recent years. the potential of light field for vidual media production has also been
explored [29, 58]. In [29], a complete pipeline of light field video production is sum-
marized, from light field video acquisition using an array of 64 cameras (shown in Fig-
ure 2.3c), to calibration and post-processing including depth estimation, point cloud
creation, and synthetic aperture rendering, to vizualisation and integration in standard
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post-production pipeline. In addition, production of immersive content for virtual and
augmented reality is another future direction of light field application, as aforementioned
in subsection 2.1.3.

Light Field Display

Virtual and augmented reality are among the most trending research areas and usually
require a wearable head-mounted display to maximize the immersive experience. Huang
et al. introduce a near-eye light field display combining stereoscopic display principles
with emerging factored light field [15]. As opposed to main-streaming virtual reality
headsets available on the market (such as HTC Vive and Facebook Oculus), this vir-
tual reality display is capable of presenting light fields in an immersive manner with
adjustable focus plane. Later, Sluka et al. introduce a new light field headset prototype
"CREAL3D", which emits several smaller pinhole-aperture light fields instead of one sin-
gle light field, guided to the eye by the reflection of mirrors [59]. Furthermore, Avegant
introduces a head-mounted display for light field augmented reality applications, which
shares a similar outlook to the Microsoft Hololens [60].

Glasses-free 3D display is another development direction of light field displays. Different
from a wearable head-mounted display, glasses-free displays aim to reproduce vivid 3D
visible content on a digital screen observable for multiple people at the same time.
Wetzstein et al. proposed a 3D glasses-free compressive light field display based on a
light field. They comprise stacks of light-attenuating LCD layers as a tensor display
illuminated by uniform or directional back-lightning [16]. Fattal et al. introduce a multi-
directional back-lighting technique which can be used for multiview 3D display on mobile
devices [61]. The team from the Looking Glass Factory introduced a desktop holographic
display for any professional or hobbyist creating content in 3D [62]. Hirsch et al. present
a novel way of displaying a 3D effect on a surface [63]. Instead of utilizing a digital
screen, they adapt computational display methods to the creation of hologram-like 3D
images on standard print material. More recently, Sony released a holographic display
called spatial reality display, which is equipped with eye-tracking and lenticular lenses
for glasses-free 3D viewing [64].

2.2 Depth Estimation from Light Field

Depth map estimation is a fundamental research topic in computer vision and graphics,
and new approaches have recently emerged taking advantage of light fields. This new
imaging modality captures much more information about the angular direction of light
rays compared to common approaches based on stereoscopic images or multi-view. Ac-
curate depth map estimation from light fields can benefit a wide range of consecutive
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Figure 2.7: Depth estimation from light fields.

applications such as depth-based rendering, digital refocusing and immersive video cap-
turing. As shown in Figure 2.7, the depth Z of the target point P in 3D space can be
expressed as:

Z = −f
∆s

∆x
(2.9)

where f is the focal length of the camera and ∆s are the baseline distance between
camera positions, which are known parameters at the time of capture. In other words,
the depth Z can thus be obtained by estimating the disparity ∆x , as long as the cam-
era configuration is available. Note that in this thesis we will later focus on disparity
estimation, as disparity can also be directly used for light field reconstruction, and does
not require any knowledge of the camera parameters. Please note in this thesis, the
camera parameters (focal length f and baseline distance ∆s) of some light fields are
not available, and we are focusing on rectified light fields, on which estimating disparity
∆x is sufficient to reconstruct light field subsequently.

2.2.1 Optimization Model Related Methods

Optimization model generally attempts to estimate the depth information by optimiz-
ing the various cost functions among the light field structure. Multiple methods taking
advantage of the existing literature in stereo disparity estimation have then been pro-
posed to estimate depth from light fields. These techniques rely on various matching
approaches to estimate the disparity between views from the light field and a reference
view (often the center one). In [65], the authors proposed an accurate block-matching
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method reaching sub-pixel accuracy based on the Fourier phase-shift theorem with graph
cut multi-label optimization. In [66], the authors proposed a complete pipeline using
a demultiplexing method to decode views from raw light field data captured with a
lenslet camera without demosaicking and then estimate the disparity with a robust
block-matching processing [67]. In [68], sparse and accurate matchings are first found,
and then interpolated using optical flow. To reduce the complexity, a multi-resolution
approach was proposed in [69]. In [70], a global matching is obtained through a low-rank
decomposition of the views, refined with homographies.

To better take into account the light field 4D structure, extensions of the previous
methods have been proposed based on the analysis of texture patches sampled along
the angular dimensions instead of the spatial dimensions. These angular patches, also
called SCam, were first exploited in [71]. This work was further extended in [72] to
be robust to occlusion. More recently, this idea was included in a global optimization
framework [73] in order to obtain a dense depth map estimation.

Several techniques also exploit the light field structure through epipolar plane image,
as in such images the slope of a line has a linear relationship with the depth. In [74],
depth from high spatio-angular resolution light fields is obtained by first estimating high
confidence depth values on the epipolar plane image edges with a sparse representation,
and then propagating this information to homogeneous regions using a fine-to-coarse
refinement approach. A similar idea about high confidence regions is also introduced
by [75], which combines defocus and correspondence cues obtained from the epipolar
plane image by shearing the epipolar lines. The shearing angle optimizing the multiple
cues response gives the slope of the epipolar lines, and thus the depth. Wanner et al. [76]
proposed to estimate the slope of the epipolar lines and its confidence using the structure
tensor. In [77] a novel spinning parallelogram operator is introduced and integrated into
a depth map estimation framework which advantageously handles noise and occlusions.
Johannsen et al.[78] proposed a sparse decomposition of the epipolar plane image, which
is performed over a depth-based dictionary built from fixed disparities, and deduces the
scene disparity from the sparse coding coefficients. Jeon et al. [65] also used epipolar
lines to correct distortions before applying stereo-matching techniques on the views of
the light fields. Note that most of the aforementioned methods require an additional
regularization or optimization step, which is usually a computationally intensive global
process.

With the recent breakthrough of deep learning in computer vision research, applications
of Convolutional Neural Network (CNN) to light fields have naturally arisen, including
material recognition [79], view synthesis [80, 81] and super-resolution [82]. For depth
map estimation from the light field, CNN is a popular method to address certain lim-
itations of traditional methods, such as occlusions, specular highlights or reflections.
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Heber et al. [83] first proposed to apply a conventional CNN in a sliding window fashion
to predict the slop orientation in the epipolar plane images, which reduced the running
time because of the property of CNN but still relies on an additional refinement step
to handle textureless or uniform regions. A follow-up work [84] proposed an end-to-
end u-shape network structure that operates on entire 2D epipolar plane images. This
network achieved competitive results but suffered from streaking artefacts. To address
these problems, an additional spatial regularization is introduced by [85] to perform 3D
convolution operations on entire epipolar plane image volumes instead of independent
epipolar plane images. However, this work still only consider the epipolar geometry from
a single angular dimension of light field images when designing the network, resulting in
low reliability of depth predictions. A multistream network is proposed by Shin et al. [86],
which utilizes crosshair-shape geometric characteristics from each stack of images. Zhou
et al. extend the structure crosshair stacks using multi-orientation epipolar plane image
patches and adopt a multi-scale network for depth estimation [87]. Ma et al. introduce
end-to-end network VommaNet for handling challenging reflective and texture-less areas
when estimating accurate depth. This network features atrous convolutions of multi-
ple scales and depth-wise convolution decreased parameter numbers [88]. Shi et al.
propose to utilize several subsets of input views with different view selection strategies
instead of structured input views to estimate depth from light fields. This method also
demonstrates advantages on sparsely-sampled light fields with the large baseline [89].
Tsai et al. [90] employ the attention concept into the view selection strategy on the light
field. In this way, views can be utilized more efficiently and accurately to perform depth
estimation from the light field.

2.3 Light Field Reconstruction

Compared to sparsely-sampled light fields, densely-sampled light fields is generally ad-
vantageous for practical applications, including depth estimation, object segmentation
and image-based rendering [91]. However, even with the blooming development of com-
putational photography using modern digital devices, there still are some existing issues
when we are capturing a light field using existing imaging systems. This issue is generally
derived from the physical limitation of existing light field capturing systems. In our light
field reconstruction research, we aim to develop algorithms to improve the limited quality
of the collected light field data. In this section, we will introduce the formulation of light
field reconstruction and summarize existing work on light field reconstruction.
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2.3.1 Formulation of Light Field Reconstruction

To clarify the formulation of light field reconstruction, we will start from the analysis
of light sampling in the ray space, which is derived from geometric analysis of light
field rendering [92] and plenoptic sampling theory [93, 94, 95, 96]. Let’s consider one
continuous light field Lcontinuous(s, t, x , y), in which (s, t) denotes the camera plane and
(x , y) denotes the image plane. The sampled light field Lsampled can be obtained by a
sampling pattern function s(·):

Lsampled = s(Lcontinuous) (2.10)

and corresponding reconstructed light field L̂
reconstructed

can be obtained using a suitable
reconstruction function r(·):

L̂
reconstructed

= r(Lsampled) (2.11)

The minimal sampling rate, which is also considered as the maximum camera spac-
ing distance ∆smax , can be interpreted as the projection error from the reconstruction
process [93]:

∆smax =
1

2Kfx

(2.12)

where Kfx represents the maximum frequency of the transformed frequency domain along
the x dimension. To avoid overlapping between two adjacent sampling positions, ∆smax

equals to ∆x , i.e. one pixel, as if ignoring textural information to let Kfx = 1/(2∆x).
In the other words, densely-sampled light fields are defined as having a disparity of less
than 1px between neighbouring views on the angular dimension [93]. This is intuitive
as a pixel corresponds to the base unit size in the spatial dimension.

2.3.2 Light Field View Synthesis

To approach the ideal angular resolution of sparse light fields, one practical common
solution is to increase the number of views via synthesizing novel views among sparse
views. Note that in our work we adopt a looser definition of densely-sampled light fields,
and rather focus on generating denser light fields from sparse inputs. In practice, this is
limited by the existing hardware configuration of the acquisition systems mentioned in
section 2.1.3. When capturing light fields, we are not capable of ensuring the quality of
light field in both spatial and angular dimension.
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Figure 2.8: Trade-off of light field between number of pixels and number of views.

In the other words, the trade-off has to be made and the resolution has to be sacrificed
on either spatial or angular domain. For example, camera arrays are usually built with
dozens of high definition DSLR camera, which may provide ideal number of pixels (H ,W )

for each sub-aperture image but limited number of views (m, n). The number of DSLR
cameras that can be set up limits the number of views as M = α(m − 1) + 1 and
N = α(n− 1)+ 1, in which α is the downscale factor in the angular domain. Moreover,
the design of plenoptic camera based on a micro-lens array allows the user to capture
light fields with high number of views (M ,N), but only limited number of pixels (h,w),
in which H = β(h − 1) + 1, W = β(w − 1) + 1 and β is the downscale factor in the
spatial domain.

In this thesis, we will focus on reconstructing of sparse light field over the angular
dimensions, typically captured with a camera array, via novel angular view synthesis. To
formalize this problem, we can first define the dense 4D light field with high number of
views as:

LD(s, t, x , y), (s, t) ∈ [1 : M]× [1 : N], (x , y) ∈ [1 : H]× [1 : W ] (2.13)

where LD has a high number of pixels (H ,W ) and a high number of views (M ,N).
Similarly, a sparse 4D light field with low numeber of angular views can be depict
as:

LS(s, t, x , y), (s, t) ∈ [1 : m]× [1 : n], (x , y) ∈ [1 : H]× [1 : W ] (2.14)
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Figure 2.9: A generalized two-step depth based pipeline for light field view synthesis.

where LS has low number of views (m, n) and equally well number of pixels (H ,W ).

The task of light field view synthesis, also called light field interpolation, is to establish an
efficient and accurate framework, which is capable of super-resolving LS(s, t, x , y) in the
angular domain and obtain an angularly denser reconstructed light field L̂

D
(s, t, x , y).

The estimated dense light field is expected to be as close as possible to the original light
field. Such a problem can be mathematically formulated as:

L̂
D
(s, t, x , y) = fVS(LS(s, t, x , y)) (2.15)

Where fVS is the light field view synthesis framework. In the following sections of
this chapter, We will introduce two different directions, depth-based and depth inde-
pendent frameworks, to reconstruct densely-sampled light field from sparsely-sampled
input.

Note that in previous work, light field view synthesis is sometimes associated with free-
viewpoint rendering. In the rest of this thesis, unless specified otherwise, it will refer to
the specific task of light field reconstruction or interpolation, i.e. when the synthesized
views are positioned on the light field regular grid of viewpoints.

2.3.3 Depth Based View Synthesis for Light Field

Depth based view synthesis (or view interpolation) has been an active topic for many
years, even before light fields were introduced. Conventional image-based rendering
techniques [97, 98] consists of two steps: geometry estimation and view generation.
When adapting this generalized framework to light fields, as shown in Figure 2.9, the
first step is the estimation of the depth or disparity D from the light field, which is
denoted as:

D = fd(LS) (2.16)

Depth estimation from the light field is an active research area for which many existing
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approaches have been proposed, as described in section 2.2. The second step is to
synthesize missing intermediate views using the estimated depth or disparity map:

L̂
D
= fs(LS ,D) (2.17)

A basic implementation of fs consists in warping the closest input views to the target
view and merge them, e.g. using bilinear weighted average.

A more advanced light field view synthesis was introduced by Wanner et al., who pro-
posed a variational framework to generate novel views from sparse input views [99].
This work uses the structure tensor to perform disparity estimation, and then, input
sub-aperture images are warped to synthesize novel views based on estimated disparity.
An objective function is designed to be optimized to maximize the final generation qual-
ity. Although this optimization method is capable of producing plausible results in some
light fields, various artefacts can still be observed on their synthesized results. The first
reason is the loose connection between disparity estimation performed on the EPIs and
the view synthesis performed on the sub-aperture images, which could cause informa-
tion loss and reduce the quality of the final results subsequently. The second potential
reason is Wanner et al.’s method assumes that light fields are acquired under perfect
conditions. However, it is impractical to collect ideal images as most of the real-world
images suffer from blur, noise and distortions.

The strength of deep learning based approaches has been demonstrated in many light
field related methods, and the two steps of depth-based view synthesis can also be
achieved by a combination of CNNs. Generally, one network would be responsible for
estimating disparity information and the other is for reconstructing light fields. Kalantari
et al. proposed the very first learning-based framework for light field view synthesis task,
which aims to generate all intermediate sub-aperture views with only 4 input corner
view [80]. This method consists of two cascade networks: the first CNN (fd) estimates
disparity on the location of each novel view from a set of features extracted from input
views of the sparse light field, i.e. 4 corner views. The estimated disparity can be
formulated as:

D = fd(LS(1, 1, x , y),LS(1,N , x , y),LS(M , 1, x , y),LS(M ,N , x , y)),

(x , y) ∈ [1 : H]× [1 : W ] (2.18)

The second CNN (fs) is then used as a color predictor to synthesize the target interme-
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diate views using both the estimated disparity and the input views:

L̂
D
(s, t, x , y) = fs(D,LS(1, 1, x , y),LS(1,M , x , y),LS(N , 1, x , y),LS(M ,N , x , y)),

(x , y) ∈ [1 : H]× [1 : W ] (2.19)

These two CNN are connected and trained consecutively within each pass of the back-
propagation with the ℓ1-norm loss computed between synthesized views and ground truth
views. Kalantari et al. used a set of 100 light field images captured from micro-lens
array plenoptic cameras as the training dataset. The network is fed with equal-sized
patches of 60× 60 resolution. The final results of Kalantari et al.’s method are superior
in comparison to [99] as the former method minimizes the error between the synthetic
views and ground truth views directly, instead of optimizing depth map. However,
it also can be observed that the results of Kalantari et al. [80] have failure cases
when handling scenes under complex conditions such as occlusion, reflection, or large
displacement.

Srinivasan et al. [100] provide a solution for light field view synthesis under a unique
problem configuration, which aims to synthesize the sub-aperture view from a single RGB
image with depth information detected by a depth sensor. This method synthesizes all
views and corresponding depths at the same time, rather than processing each view at a
time. Srinivasan et al. divide the problem of light field view synthesis to three tasks: the
first task is to estimate the 4D ray depth at each location of views in the light field; the
second task is to synthesize the lambertian approximation of the light field by utilizing
the input single image and estimated depth from the previous task; the third task is to
predict occluded rays and non-lambertian effects. Furthermore, these three tasks can be
formulated as three different functions. The first one can be expressed as a function (fs)
in the equation (2.18). Given the estimated scene geometry from task one, the other
two tasks can be formulated as a function flam and focc , respectively:

Llam(s, t, x , y) = flam(LS(
1

2
M ,

1

2
N , x , y),D),

(x , y) ∈ [1 : H]× [1 : W ] (2.20)

L̂
D
(s, t, x , y) = focc(Llam(s, t, x , y),D),

(s, t) ∈ [1 : M]× [1 : N], (x , y) ∈ [1 : H]× [1 : W ] (2.21)

Where Llam represents the synthesized lambertian approximate light field, and (1
2
M , 1

2
N)

represents the index of the single RGB input view at the center of the target light field.
This work also published a dataset containing over 3300 light fields, which is captured
using Lytro Illum camera and is claimed as the largest light field dataset available.

Recently, Jin et al. proposed an end-to-end learning approach that super-resolves sparse
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light field with large baselines [101]. This method contains three modules including a
CNN based depth estimation module modelling the scene geometry, a backward-warping
module synthesizing novel views at target locations, and another learning-based light field
blending module fusing warped views for each location. Different from previous depth
based view synthesis methods which perform fusion generally only using 2D convolution
layers, the key feature of this method is employing the spatio-angular interleaved con-
volution [79, 102, 103, 104] into a light field blending module as the fusion step. That
is, this blender is capable of modeling the angular coherency, which can be utilized to
improve the reconstruction quality. Moreover, Jin et al. introduce a novel gradient loss
computed on the epipolar-plane, which reveals the directional change of color intensity
and promotes the geometry consistency of relevant light field parallax structure. This
loss ℓe is defined as the ℓ1-norm between the gradient of the synthesized epipolar plane
image Ê and the ground-truth epipolar plane image E:

ℓe =
∑
t,y

(
∣∣∣∇x Êt,y (s, x)−∇xEt,y (s, x)

∣∣∣
+
∣∣∣∇sÊt,y (s, x)−∇sEt,y (s, x)

∣∣∣)
+
∑
s,x

(
∣∣∣∇y Ês,x(t, y)−∇yEs,x(t, y)

∣∣∣
+
∣∣∣∇tÊx ,s(y , t)−∇tEs,x(t, y)

∣∣∣). (2.22)

This work focuses on super-resolving a sparse light field with 2× 2 angular resolution to
a dense light field with 7 × 7 angular resolution, and the evaluation demonstrates the
advantages of this method when handling relatively wider baseline light fields.

As previous light field view synthesis methods mostly focus on the pixel level operation,
Shi et al. [105] improved a general depth-based view synthesis framework by employing
the feature level information for the reconstruction of light fields. A CNN is used to
estimate the geometry of the scene, which is then used to warp input sparse views
and their features to the target view locations. The key component of Shi et al.’s
method is the fusion of reconstruction in two different spaces: pixel-wise and feature-
wise space. Pixel wise reconstruction is similar to the refinement step from conventional
depth based view synthesis pipeline, which is capable of modelling occlusions and in-
painting on disoccluded areas via convolution layers. Feature wise reconstruction utilizes
a coarse-to-fine VGG-19 network [106] to extract the perceptual information in multiple
scales preserving high-frequency details. The whole network is trained in an end-to-end
fashion so that extracted knowledge from these two modules can be shared, and the
merge of these two domains brings an extra contribution to improve the quality of final
reconstruction results.
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Multi-plane image (MPI) is a new layered scene representation of the light field, which
is originally derived from the plane sweep volumes (PSV) for the stereo magnification
task [56]. The MPI representation can be used to generate novel views using homog-
raphy to reproject each plane of the MPI to the desired viewport. Mildenhall et al.
adapted this idea for light fields and proposed a practial solution to generate novel views
from unstructured sparse light field, which is irregularly sampled and can be acquired
via a smart phone [107]. The layered scene representation is promoted for each view
of the light field using a 3D CNN, and novel views are then synthesized by combining
intermediate generated views from the closest MPIs. Broxton et al. extend the concept
of layered scene representation from planes to the spheres, which is introduced as the
multi-sphere image (MSI) representation [38]. With specifically designed hardware con-
figuration, MSI is capable of producing playback immersive video. However, the use of
layered scene representation is computationally expensive, and the approach generates
blurry results in the case of dynamic depth uncertainty.

All these aforementioned conventional depth-based light field view synthesis approaches
utilize the estimated depth information to warp input views to generate and refine the
novel views. On the contrary, learning-based view synthesis methods employ a neural
network with supervised training to minimize the difference between the synthesized
views and ground truth, instead of optimizing the depth map, giving rise to a higher
quality of final results. However, all depth based methods still depend on the performance
of their depth estimator, which perform best for light fields with small baselines and
are prone to fail in challenging conditions, such as texture-less surface, non-lambertian
surfaces or unstable illumination.

2.3.4 Depth Independent View Synthesis for Light Field

As there are various shortcomings of depth based methods, it is reasonable and crucial to
explore depth independent methods for light field view synthesis. In order to enhance the
angular resolution of light fields, various depth independent view synthesis methods are
proposed and they can be utilized to generate dense intermediate views from sparse light
field input. There are two main categories for the state-of-the-art depth independent
methods: the first one is data-driven based methods; the other is domain transfer-based
methods.

One common depth independent practice is to utilize the approximation ability of CNN,
of which one example structure is shown in Figure 2.10. Features extracted by CNN
may contain more comprehensive information than geometrical knowledge. Yoon et
al. introduce the first depth-independent multi-stream neural network to improve both
spatial and angular resolution [82]. The end-to-end structure and supervised training
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Figure 2.10: An example of the CNN structure for Light field view synthesis without
depth estimation.

allow the parameters inside a network to be optimized by minimizing the difference
between synthesized views and ground truth views, without considering to optimize a
depth map. This method split input views to three different groups: horizontal, vertical
and corners, which is fed to the corresponding input stream of the network. This design
allows each stream of the network to follow the corresponding direction and also share
the extracted geometrical features with each other. However, Yoon et al.’s network is
only constructed with a limited number of plain convolutional layers, which leaves space
for improvement, e.g. by employing advanced deep learning techniques, such as residual
connection, batch normalization etc., which have been proven to greatly improve the
performance of neural network on computer vision tasks.

Further research on deep learning-based light field view synthesis focus on exploiting
the inherent consistency along the angular dimensions of the light field. Specifically,
rather than extracting features using plain 2D convolution kernels on simply concate-
nated views, 3D or 4D convolution kernels are employed to enable high dimensional
feature extraction. The significant advantage of the extra dimensions can also drasti-
cally increase the number of parameters and the global computational cost. Balanced
strategies thus need to be designed when using such solutions, For this purpose, Wang et
al. proposed an end-to-end network with pseudo-4D convolution to process 4D light field
directly [108]. This pseudo convolution is implemented by efficiently combining a 2D con-
volution and a sequential 3D convolution. Given a input sparse light field LS(s, t, x , y),
this method perform the pseudo 4D convolution on a 3D volume Vt∗(s, x , y), which
consists of stacked sub-aperture views. This 3D volume is constructed by fixing one
angular dimension of t = t∗. Yeung et al. introduced a two-step method, which first
generates the whole set of novel views using a view synthesis network, and then retrieves
intrinsic structure details using a view refinement network [103]. Different from Wang et
al.’s method [108], Yeung et al. implement the network using an efficient spatio-angular
alternating 2D convolution in a coarse-to-fine fashion, which can exploit the coherent
structure on the 4D light field instead of the 3D volume. Inspired by the success of
residual learning in image reconstruction area [109, 110], this method also employs the
guided residual learning by connecting the input light field to various intermediate and
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final results.

The light field view synthesis problem could also be re-modelled as high-frequency details
restoration problem in the epipolar plane image space. The first attempt is made by Wu
et al. [111]. Given a input epipolar plane image ES transformed directly from a sparse
light field, Wu et al. consider the reconstruction of target reconstructed dense epipolar
plane image Ê

D
as formula below:

ÊH = fup(EL) (2.23)

Where fup is the high-frequency up-sampling framework proposed by Wu el al. This
framework consists of three cascaded modules: the first module is a blurring and up-
sampling module, which is a Gaussian kernel k to extracts low-frequency information
in the spatial domain. The next module is used to reconstruct details angular domain
from blurred and up-sampled epipolar plane image exported from previous module. This
module is implemented as a residual neural network fcnn with three convolution layers,
together with small-sized kernels as feature extractor and rectified linear units as the ac-
tivation function. The last module Dk is designed to deblur and restore spatial details by
employing a non-blind deblurring operation [112]. Thus, the proposed "blur-restoration-
deblur" framework is assembled with these three modules, and is applied along both
vertical and horizontal angular direction to fully reconstruct the dense epipolar plane
images, and then build the complete 4D light field. The framework is optimized to solve
the view synthesis problem by minimizing the following target function that describes
the ℓ2 distance between synthesized and ground-truth epipolar plane images:

min
∣∣∣∣∣∣EH − ÊH

∣∣∣∣∣∣
2

= min
∣∣∣∣∣∣EH − Dk(fcnn(EL ∗ k))

∣∣∣∣∣∣
2

(2.24)

They also demonstrate the extension of their method on various applications, including
depth enhancement, reconstruction of unstructured light fields and depth-assisted ren-
dering [109]. It is worth to mention the depth-assisted rendering here, as it addresses the
narrow baseline limitation of the original framework [111], which is caused by poor per-
formance when using large blurring kernel k . The authors of [109] propose to discretize
disparities and then apply appropriate shearing to corresponding epipolar plane image
regions. In this way, large disparities can be transformed to a couple of small disparities,
which satisfy the requirement of the original "blur-restoration-deblur" framework. Fur-
ther, Wu et al. improved this work via replacing the depth assistance by a learning-based
shearing module in [113]. This method disentangles the depth information by shearing
the original epipolar plane images and convert the light field view synthesis problem to
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the fusion of differently-sheared epipolar plane images. In this way, the uncertainty of
the depth estimation results can be avoided, and scene geometry information can be
explicitly expressed by the properly sheared epipolar plane images. To select the suit-
able shearing value, an evaluation CNN is adapted in this work to estimated optimal
sheared epipolar plane image structure. Wu et al. introduce a new similarity measure-
ment between sheared epipolar plane image with ground truth epipolar plane image to
find the optimal parameters of the evaluation CNN. Moreover, a coarse-to-fine fusion
strategy is employed to integrate multiple reconstructed sheared epipolar plane image
results eventually.

One common challenge of light field processing is collecting sufficient light fields that
could approximate continuous properties of the target plenoptic function so that it
can be reconstructed properly. One direction to resolve this issue is to find a suitable
transform domain where dense light fields could become very sparse. Transform domain
sparsification is a powerful prior, which can avoid the requirement for a huge amount
of light field data. Shi et al. proposed an optimization framework in the continuous
Fourier domain to reconstruct the dense light field [114]. The basis of this method
is an important observation that the sparsity of light fields in the continuous Fourier
spectrum is much greater than in the discrete Fourier spectrum, which is caused by the
windowing effect. To formalize the problem, a signal x(n) of length N is k-sparse in
the continuous Fourier domain if it can be represented as a combination of k , k < N

continuous frequencies at arbitrary and non-integer locations:

x(n) =
1

N

k∑
i=0

aiexp(
2πjtωi

N
), (2.25)

where ωi
i=0
k are the continuous positions of frequencies and ai

i=0
k are their correspond-

ing coefficients. This formulation can be adapted to the 4D light field reconstruction
problem, which is to recover the sparsity of the continuous spectrum from the 1D tra-
jectory of the viewpoints. Given a sparse input light field LS(s, t, x , y), a 2D slices
LS
ωx ,ωy

(s, t), which describes the fixed spatial frequency as a function of viewpoint, are
obtained by applying 2D Discrete Fourier Transform on each input view individually. To
reconstruct the dense light field, the 2D angular spectrum L̂

D

ωx ,ωy
(ωs ,ωt) are recovered

for each spatial frequency (ωx ,ωy ) from the input 2D slices. Later, a more advanced
framework using the shearlet transform is proposed by Vagharshakyan et al. [115]. This
method extended the concepts of light field sparsification and utilized the sparse repre-
sentation of epipolar plane image in the shearlet domain, which exploit the anisotropic
property of the epipolar plane image space. To handle the special characteristic of the
epipolar plane image, the standard shearlet transform is modified to process straight
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lines. The results of this approach show better quality on challenging semi-transparent
objects, compared to the results of [114]. Furthermore, Vagharshakyan et al. also de-
velop a couple of accelerated extensions [116], which are based on the original method
from [115]. Various techniques, including double overrelaxation, guided colorization and
inter-EPI decorrelation, are utilized to enhance the final performance.
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3 Disparity Estimation and Dispar-
ity based Light Field Reconstruc-
tion

In this chapter, we will introduce our contribution to light field disparity estimation and
corresponding application to synthesize novel views for light field reconstruction. The
background knowledge and related work, including optical flow estimation, edge-aware
filtering and single image depth image-based rendering, are firstly outlined. More back-
ground details are described in section 2.2. Inspired by existing optical flow estimation
and edge-aware filtering methods, we propose an accurate and efficient disparity esti-
mation from light fields framework, producing geometrical information required by the
consecutive view synthesis step. The optical flow estimator is applied on a sequence
of images taken along an angular dimension of the light field, which produces several
disparity map estimates. Considering both accuracy and efficiency, we choose the spatio-
angular edge-aware method as our optical flow estimator. Thanks to its spatio-angular
edge-aware filtering properties, the different disparity map estimates that we obtain are
very consistent, which allows a simple one-step variational refinement to obtain the fi-
nal disparity maps. Next, utilizing estimated disparity maps from the input light field,
novel views are synthesized by warping input views to target locations. The evaluation
is performed on both synthetic and real-world light field datasets and demonstrates the
advantages of our disparity estimation and disparity based view synthesis method.

3.1 Related Work

3.1.1 Optical Flow Estimation

In computer vision, optical flow estimation is an active research domain. The original
concept of optical flow is introduced to describe the motion trajectory of moving objects.
Many methods have been proposed to estimate optical flow between frames considering
both speed and accuracy, and each of them has to work under specific assumptions,
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which usually limits their performance. Horn and Schunck [117] introduced a pioneering
energy minimization framework with a brightness consistency assumption, which became
a common assumption for most of the following methods. Given this brightness consis-
tency assumption, a generalized pixel relationship between two adjacent frames It , It+1

from a continuous sequence could be formulated as:

I (x , y , t) = I (x + dx , y + dy , t + dt) (3.1)

and with correspondent Taylor series expansion and ignoring the high-order component,
the equation becomes:

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0 (3.2)

where dx , dy , dt could be divided by dt at the same time, then the x and y components
of the optical flow field at image I (x , y , t) are obtained as u = dx

dt
and v = dy

dt
:

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= 0 (3.3)

which is known as Gradient Constraint Equation. However, mathematically, two un-
known variables u, v can not be solved from one equation. Thus, additional conditions
are required to solve this function. In [117], a global smoothness constraint is added
with Gradient Constraint to establish an energy function:

E =

∫∫ ((
∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)2

+ λ
(
|∇u|2 + |∇v |2

))
dxdy (3.4)

which can be summarized to the classic form of energy function to be minimized for
optical flow estimation:

E (J) = Edata(J) + λEsmooth(J) (3.5)

where J represents the motion vector (u, v) in the optical flow field. Directly solving
such a large non-linear system is very challenging and usually time expensive. The
class of global minimization problems requires optimizing a large number of independent
variables, which usually leads to computationally expensive convergence. One direction
to solve this problem is to replace variational optimization with the efficient edge-aware
filtering process. Xiao et al. [118] integrated bilateral filtering into an iterative variational
framework, replacing the traditional anisotropic diffusion step. More recently, iterative
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edge-aware filtering is introduced to efficiently approximate costly global regularization.
Lang et al. [119] proposed an iterative spatio-temporal edge-aware filtering method which
provides competitive accurate results and significantly reduced running time.

Some other methods aim to push the boundary of the accuracy aspect of optical flow
estimation. With a focus on handling the local deformation details, Li et al. [120] propose
a hybrid energy-based method which introduces a novel discrete Laplacian mesh energy
concept as the additional term for core energy function expressed as:

E (J) = Edata(J) + λEsmooth(J) + ξELap(J) (3.6)

Another main issue that much optical flow work, including the original work from [117],
suffer from is the inaccurate estimation when dealing with large pixel displacements.
To improve the accuracy of such challenging cases, a patch-based similarity function is
proposed [121] and integrated into data term, which was also initially introduced for the
nearest neighbor field estimation. This patch match concept has been widely adapted
to the optical flow problem. Patch match (PM) method usually could only provide
sparse pixel correspondences, and the final optical flow estimation is then considered as
a labelling problem leveraging the coherent information such as the geodesic distance of
natural images. To further obtain a dense flow map, Revaud et al. [122] propose an edge-
preserving interpolation scheme applied on the top of sparse matching correspondences.
In this context, Hu et al. [123] propose a coarse-to-fine extension of the basic patch
match method, which is proven efficient in finding reliable correspondences on large
pixel displacements.

In addition to the accuracy in the spatial domain, the optical flow temporal consistency
has been an important and challenging research topic. In the early work, Murray et
al. [124], proposed to add a temporal smoothness term to improve the temporal con-
sistency. Sliding windows [125] and Kalman filtering [126] based methods have been
proposed later, focusing on temporal stability, however, performance of those approaches
would highly rely on the selection of the window size. Feature flow (FF) [119] proposed
a novel local edge-aware filtering to replace the expensive global optimization, which
significantly reduced the computation cost while giving an accurate estimation. Tempo-
rally extended permeability filter (PF) [127] is proposed to produce competitive results
with reducing halo artefacts efficiently. However, these filtering based methods usually
rely on a sparse correspondence initialization, which has a significant impact on the final
result.
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3.1.2 Edge-aware Filtering

Edge-aware filters are important basic building blocks in many image and video process-
ing methods, such as the aforementioned optical flow estimation. Barash et al. enable
the multi-dimensional interpretation of the edge-preserving filters [128]. On a 2D RGB
color image I , RGB values at pixel p with spatial coordinates (xp, yp) can be depicted as
range coordinates I (p) = (rp, gp, bp). Consider I : Ω ⊂ R2 → R3 as a 2D manifold MI

in R5, the quintuplet p̂ = (xp, yp, rp, gp, bp) represents a point on this manifold, which
corresponds to pixel p on image I [129]. For each pixel p to be filtered, the generalized
edge-aware filtering kernel F (p̂, p̂i) can be defined as:

J(p) =

∫
pi∈Ω

I (pi)F (p̂, p̂i)dpi (3.7)

where J is the filtered image, Ω is the window around pixel p and pi is another pixel
within the window range. In prior work, one remarkable edge-aware filter work is the
bilateral filter, which is introduced by [130]. The bilateral filter replaces the intensity of
each pixel with the weighted average of its neighboring pixels, which first provides the
capability to preserve sharp edges while smoothing images. The bilateral filter kernel
can be expressed by instantiating the generalized kernel F (p̂, p̂i) with the normalization
term W :

Fbilateral(p̂, p̂i) =
1

W
Gσs (||p − pi ||)Gσr (||I (p)− I (pi)||) (3.8)

where ||·|| is the measurement of ℓ2 distance, Gσs and Gσr are Gaussian based spatial and
range filters, with the support of coefficients σs and σr , respectively. Various edge-aware
filters [131, 132, 133, 134, 135, 136, 137, 138] have been developed for different image-
based applications such as stylization, HDR tone mapping and denoising. To address the
drawbacks of the bilateral filter, the weighted least squares (WLS) filter [133] was shown
to produce high quality filtering results and to suppress halo artefacts with a penalizing
factor calculated from a distance between the original and filtered image. However, since
it requires solving of a large linear system, the performance of this method is limited
by its high computational cost. Later, edge-avoiding wavelets [134] were proposed to
reduce the computational complexity, but suffer from aliasing problems and irregular
edges because of the restricted size of kernels [138]. The local Laplacian filter is capable
of producing high-quality results, but it also has the downside of being computationally
demanding [137]. Aubry et al. provide a more efficient upgraded implementation of
the Laplacian filter, but it is not clear how to extend the method into the temporal
domain [138]. Besides, Criminisi et al. presented a geodesic-distance based framework
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for the luma channel in grayscale images [139]. More recently, the guided image filter
exploits a local linearity assumption which considers the relationship between guidance
I and filtered output J as a linear model [135], which can be formulated as:

J(p) =
1

N

∑
pi∈Ω

(apI (pi) + bp) (3.9)

where J is the linear transform of I in a window region Ω centered at the pixel p. This
model can be transformed into a similar form of generalized filter (3.7), and the guided
filter kernel can be expressed as:

Fguided(p̂, p̂i) =
1

N

∑
pi∈Ω

(
1 +

(Ip − µ)(Ipi − µ)

σ2 + ϵ

)
(3.10)

where N is the number of pixels in the window region Ω, and µ, σ are the mean and
variance of all I (pi) in Ω. For the detailed mathematical derivation of this expression,
we refer readers to read the supplementary material of [135]. Other state-of-the-art
edge-aware filtering techniques such as the permeability filter [131, 140], the domain
transform [132] and its extension for high-order recursive filtering [136] are all efficient
techniques which offer a good quality-performance trade-off. However, as pointed out
in [138], the guided image filter and domain transfer still suffer from halo artefacts,
whereas the permeability filter does not, since it has specifically been designed to mimic
similar behaviour as the high-quality weighted least squares filter, but with significantly
lower computational complexity. Milanfar et al. [141] give an extensive overview of many
filtering approaches.

3.2 Disparity Estimation and Disparity based View

Synthesis on 4D Light Field

We propose a novel scheme for efficient and accurate estimation of disparity maps from
the 4D structure of light fields using optical flow. Our approach consists of three main
steps, as illustrated in Figure 3.1. First, input data is redefined as a 3D spatio-angular
volume extracted from the light field by taking views along a given angular dimension.
Second, the core algorithm of our framework is an optical flow estimation performed
over this spatio-angular volume V . The displacements measured by the optical flow
thus correspond to disparity estimates between consecutive views of the light field. The
optical flow problem can be formulated as classic minimizing error energy function in
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Figure 3.1: Overview of the proposed approach. The method can be applied on any
number of rows or columns of the matrix of views in order to obtain more disparity map
estimates.

the following form as below:

E (J) = Edata(J) + λEsmooth(J)

where J represents the motion vector (u, v). Initialization with a sparse matching corre-
spondence technique [123] is first performed to initialize Edata(J) locally, then an efficient
spatio-angular edge-aware filter replaces the expensive global optimization Esmooth(J) to
obtain a dense flow estimation. To accomplish this volumetric edge-aware filtering
on the light field, we employed the feature flow method [119] and permeability flow
method [127], which is suitable for multi-dimensional processing. Finally, a variational
refinement step is performed to obtain the final disparity maps. Variational approaches
are common in most state-of-the-art methods and perform computationally costly global
energy minimization on the disparity map estimates to obtain the final accurate disparity
map. Thanks to the edge-aware filtering along the angular dimension of the optical flow,
we can reduce this step to a one-step variational energy minimization. Futhermore, we
demonstrate the use of the estimated disparity maps in a light field view interpolation
scenario.

3.2.1 3D Spatio-angular Volume Extraction

To obtain a 3D spatio-angular volume, we fix one of the angular dimensions t = t∗,
as step 1 in Figure 3.1, and then extract N views over the remaining dimension s as a
complete volume. This volume thus consists in a sequence of sub-aperture images along
horizontal direction, noted V = {In}, n = 1 ...N . The same extraction operation can
be performed along the vertical direction to obtain a corresponding disparity map. Here
and for the rest of this chapter, we assume without loss of generality that we fix t∗ and
take the sub-aperture images over s.
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Figure 3.2: Coarse-to-fine Patch Match. Patches are initialized at the coarsest bottom
level, and then patches matching are performed. Matched patches at each level will be
used as the initialization for the next level.

3.2.2 Sparse Patches Matching Initialization

To calculate reliable quasi-dense sparse correspondences from views of the light field as
initialization, we propose to use a recent extension of the PM method [121], the so-
called Coarse-to-fine Patch Matching (CPM) technique [123], because it is both more
efficient and accurate than the SIFT flow used in [119].

One level patch matching. We first introduce the basic matching algorithm on
image pairs, which corresponds to two adjacent views from volume V . The CPM
method aims to compute sparse matching between a pair of images, by applying a
randomized nearest-neighbor field (NNF) algorithm on the pyramid constructed from
the input image pair, as shown in Figure 3.2. The NNF method consists of three main
components: initialization, propagation and search. First, the patches are paired with
either random offset or inherited prior information from previous level. Considering
the local smooth property of optical flow estimation, CPM performs matching only on
selected seeds instead of on every pixel on input images. Given two views Ii , Ij ∈ V , we
define a set of initial seeds S = {sm}, and each seed is located at pixel location p(sm).
Each seed corresponds to the central pixel of a regular square patch with a spacing of d
pixels. The goal of this method is to determine the flow f (sm) at each location pi(sm)

in Ii pointing to a corresponding patch M(pi(sm)) = pi(sm) + f (sm) in Ij . Note that
as we only look for sparse matches, the number of seeds is much lower than the total
number of pixels. Second, coupled patches are iteratively examined in both scan order
and reverse scan order. For a current seed sm, the flow of its neighbor seeds will be
propagated to sm until the optimal flow is selected. This procedure can be formulated
as:

f (sm) = argmin
f(sa)

C (f (sa), sa), sa ∈ sm ∪ Nm (3.11)
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where the cost function C (·) is designed to measure the difference between two patches
from two images. In this method, it is implemented as the sum of absolute difference
(SAD) of the SIFT descriptors, and Nm is a set comprising all patches examined in
the current iteration. Last, to decide the final matching, a random search algorithm
is applied for current sm within a window region with radius r , in order to test some
candidate flow around the current best flow. Note that in our context, the sub-aperture
images of a light field are rectified, and we can further reduce the complexity of the
matching search by limiting the search window to an epipolar line.

Pyramid Structure. The CPM method adapts the NNF method on a hierarchical
architecture to estimate the optical flow. A pyramid with K levels is first constructed
from the original images with a downsampling factor η. This pyramidal decomposition
is noted Iki , I

k
j with level k = 1, ... ,K . The seeds {sk} are also constructed on each

level, we consider {sk} as the seeds on the k-th level, which is downscaled level by level,
beginning from the first level:

sk =
1

η
· {sk−1}, 2 ≤ k ≤ K (3.12)

After the construction of image pyramids, we first perform the random initialization on
the {sK}, which is located on the bottom level. Then, the propagation and random
search are performed to obtain the flow estimation f (sK ) in the first level. Then,
this obtained flow is utilized as the initialization for the next level. Such operation is
iteratively performed on Ik1 and Ik2 with k = K − 1 ... 1 using the output of the previous
level k + 1 as initialization:

{f (sk)} =
1

η
· {f (sk+1)}, 1 ≤ k ≤ K − 1 (3.13)

To initialize our optical flow, we apply the CPM method on consecutive pairs of views
In, In+1 with n = 1, ... ,N − 1 taken from the volume V built previously, and we note
F init
n the flow between these views.

3.2.3 Edge-aware Filtering

Once sparse matches {F init
n } are obtained as described in the previous section, we perform

edge-aware filtering on the estimated matches along the spatio-angular volume in order
to obtain dense consistent correspondences. Here, we will describe two spatio-angular
edge-aware filters: feature flow [119] and permeability filter [127], which can approximate
and replace the global optimization process of traditional optical flow estimation.
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Figure 3.3: Spatio-angular edge-aware filtering. One iteration of the spatial filtering
consists of one X Pass and one Y Pass. Angular filtering is performed within a sliding
window along the angular dimension.

Spatio-angular Edge-aware Filtering #1: Feature Flow

Spatial Filtering. Inspired by the success of efficient edge-aware filtering process, we
employ the feature flow method [119], an efficient edge-aware filter, to diffuse sparse
matches with coherent information and obtained dense results. One of the main advan-
tages of the feature flow is that the global energy minimization operation used in many
optical flow approaches is replaced with a local volumetric edge-aware filtering operation.
We first introduce how this method works on the spatial domain. To properly detect
object edges in sub-aperture images and their disparity variations, a domain transform
filter [132] is iteratively applied on the spatial dimension. Given this 2D image J , which
is equal to the obtained matches {F init

n }, J : Ω ⊂ R2 → R2 defines the manifold MJ in
R4. The spatial coordinates of the pixel p in J are denoted as (xp, yp), and the range
coordinates of p is (up, vp), as the target image is a flow image instead of a plain RGB
image. Thus, this edge-preserving filtering process can be formulated as:

JXY (k+1)
p =

∑
q∈Ω

JXY (k)
q H(ct(p), ct(q)) (3.14)

where Jk
p denotes the pixel range value at pixel p after k iterations of filtering, ct

transforms p to the target domain, and H is a 1D kernel to filter a domain transferred
1D signal. The key idea of the domain transform filtering is to seek a suitable transform
function ct, which is capable of transferring information to a lower-dimensional space and
enables corresponding lower-dimensional filter kernel H while preserving high-frequency
details in original domain. This construction is important as it could be more efficient
when estimating ct and H than estimating an original high-dimensional kernel. According
to the mathematical derivation from [132], by setting ct(0) = 0, the target domain
transform ct can be expressed as:
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ct(x) =

∫ x

0

1 +
σs

σr
|J ′(p)| dp, x ∈ J (3.15)

where J ′(p) denotes the derivative of J(p) with respect to p; σs and σr are the spatial and
range parameters, which control the effect of the corresponding filters. When the spatial
parameter σs increases, the kernel H tends to produce less smooth results. Furthermore,
the amount of smoothing is inversely proportional to the gradient magnitude of the input.
When the range parameter σr increases, the capability of retaining edge details decreases.
Besides, to complete the filtering process on the 2D input matches, a succession of
1D filtering is performed, usually alternating between two passes scanning pixels along
X-axes direction from left to right, and along Y-axes direction from top to bottom,
respectively, until convergence and final processing of spatial filtered images {FXY

n },
where n = 1, ... ,N − 1.

Angular Filtering. After accomplishing the spatial filtering, the next step is to utilize
coherent information along the angular dimension of the light field. To accomplish this
goal, an angular filter inspired by the temporal filter from [119] is applied to the views
from the volume V , which is extracted along one angular dimension. Given the spatially-
filtered flows FXY

n with n = 1, ... ,N −W + 1, angularly-filtered are produced within a
sliding window which contains W contiguous views.

To guide the filtering process, motion trajectories of pixels along the 1D angular dimen-
sion are used when applying the 1D filter kernel H . Starting from the first view I1, each
pixel will start one path to be filtered within the sliding window W . However, different
from the spatial domain where each row or column is well-defined, each motion path has
to be strictly restricted to ensure its uniqueness for producing unbiased results. Thus,
three rules are established as follows to determine the exclusive motion paths:

1. Once a path leaves the image boundary, the sliding window filter stops;

2. Once a pixel does not have previous paths mapped to it, a new path will be
established from this pixel;

3. Once multiple paths collide at one pixel, we randomly allocate this pixel to one of
those paths and let it continue, while terminating the others at the previous view;

One complete spatial-angular filtering process consists of one spatial filtering and one
following angular filtering. For the first iteration of the angular filtering process, the
sparse matching with one pass of spatial filtering FXY

n is utilized as the initial pixel paths.
After accomplishing each iteration of the angular filtering process, angular filtered results
FXYT
n will be used as the reference motion paths for the next iteration. Besides, as the

scale of paths is variable, a double linked list is implemented and maintained to store
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paths with flexible length. Meanwhile, corresponding filter parameters σra and σsa in the
angular domain are also carefully selected.

Confidence normalization for the sparse-to-dense conversion. Although edge-
aware filter is not designed as the interpolator, their mathematical properties allow
them to spread sparse data, such as sparse matches {F init

n }, following the guidance of
image edges and producing dense results. This can be implemented first by involving a
confidence map G as the normalization term. We initialize values of G (x , y) as following
principles:

G (x , y) =

{
1, if J(x , y) contains a valid value
0, otherwise

(3.16)

The map G is subject to the same filtering operation and then is applied to the corre-
sponding sparse data locations. The raw input {F init

n }, which is to be filtered, is replaced
by the dot product between G and {F init

n }, which is depicted as: G ·F init . After comput-
ing K iterations of filtering for both G and F , the map is utilized to normalize the filter
output using a element-wise multiplication as FXY = (G · F )XY (K)./G (K). Moreover,
when estimating the optical flow or disparity map, this confidence term is capable of
encouraging pixels with higher confidence score contribute more to the final result than
low confidence pixels. To improve the accuracy of the flow estimation, we compute
the confidence by measuring the difference between forward and backward matching, of
which the value is normalized to the range 0.0 to 1.0. Additionally, we also integrate
the occlusion handling function to the normalization map G by introducing a penalty
function ρ:

ρ = (1−
∣∣w⃗ f + w⃗b

∣∣)θ (3.17)

where w⃗ f , w⃗b denotes forward and backward flow at each view, respectively,

and parameter θ determines the shape of the penalty curve. Beginning with the initial
normalization G 0, the confidence penalty function is updated: G n = G n−1 · ρn−1 and
applied to the input data: Jn = Jn−1 · ρn−1, before the filtering for each iteration. This
term is capable of lowering the confidence of unreliable matching regions. In turn, this
also increases the influence of those high confidence pixels on occlusion regions.

Spatio-angular Edge-aware Filtering #2: Permeability Filter

Although feature flow has already reached competitive performances in terms of accuracy
and efficiency, some drawbacks remain when trying to achieve real-time applications on
resource-limited devices. First, even for the optical flow estimation, an accurate optical
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Figure 3.4: Spatial permeability filtering results on light field. Intermediate permeability
maps and filtered results after 5 iterations are presented.

flow estimation is required at the beginning as prior alignment knowledge for angular
filtering to initialize filtering iterations, which is difficult to obtain efficiently. Second, it
has to operate iteratively along a complete image sequence or within a sliding window
which leads to relatively high computation cost and extra memory use. Third, results
from feature flow still suffer from typical halo artefacts, according to [138]. Therefore,
one improvement direction of our previous disparity map estimation framework imple-
mentation is to replace feature flow method with a recently proposed permeability filter,
which offers high quality and halo reduction with competitive speed. Besides, inspired
by the mathematical derivation of permeability filter, the angular filtering process is
also reformulated as an infinite impulse response filter, which can efficiently perform
an incremental operation without costly motion path calculation or long-range frame
alignment.

Spatial Filtering. The permeability filter is a type of edge-aware filter, which is usually
used in a class of iterative problem of the following form:
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J (k+1)
p =

∑
q∈Ω

HpqJ
(k)
q + λXYHpp(Ap − J (k)

p ) (3.18)

where Ap denotes the unfiltered input image intensity at pixel position p at frame t,
J
(k)
p is the diffusion result at position p after k iterations. The set Ω contains all pixel

positions of a frame, and Hpq are elements of the row stochastic matrix H := {Hpq}
defining the filter. Different from the aforementioned filters, the permeability filter adds
one reference term A to guide the filtering process.

Given the obtained matches {F init
n }, the iteration is initialized with A = F init

0 and J0 = A,
where F init

0 represents the first frame of the sequence. Please note that all frame indices
are omitted in this subsection since all operations are limited inside one single frame.
The first term of equation (3.18) is the actual shift-variant convolution that denotes a
diffusion estimate, and the second term is a fidelity term with λXY ∈ [0, 1] which can
be used to to induce bias in the iteration towards the input data A. We refer the reader
to [131] for more details about the significant halo reduction induced by setting λXY to
1.

The permeability filter is a specific instance of equation (3.18) with H derived from
two separate filter matrices HX and HY for filtering operations in horizontal and vertical
direction, respectively. These operations are applied independently, and a single spatial
filtering iteration consists in a X pass followed by a Y pass. The two matrices HX and
HY are defined via permeability weights πpq between two pixels p and q which control
the local diffusion strength and show a low diffusion strength close to significant image
edges. The permeability between two neighboring pixels p = (x , y) and p′ = (x + 1, y)

is defined as a variant of Lorentzian edge-stopping function:

π̃X
p =

(
1 +

∣∣∣∣∥Ip − Ip′∥2√
3 · σXY

∣∣∣∣αXY
)−1

(3.19)

where I is the guiding image from original input data, σXY indicates the transition
point from large to low permeability, and αXY controls the transition rate of the edge-
stopping function around σXY . In our implementation we use σXY = 0.017 and αXY = 2.
Extending equation (3.19) to the general case, we can define the permeability between
two arbitrary pixels p and q as :
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πX
pq =



1 if p = q∏qx−1
n=px

π̃X
(n,py )

if px < qx , py = qy∏px−1
n=qx

π̃X
(n,py )

if px > qx , py = qy

0 else

(3.20)

Then the final filter coefficients Hpq in equation 3.18 could be obtained by normalizing
the pairwise permeabilities:

Hpq = πX
pq

(
w∑

n=1

πX
(n,py ),q

)−1

(3.21)

where w is the image width. Instead of following the normal steps that separately
calculate the two terms in equation (3.18) and then sum them together, an efficient
formulation for this filtering process is illustrated by [127, 140], which contains two-pass
scan line operations, in both horizontal and vertical direction, with only constant compu-
tational complexity per pixel. In this formulation, the calculation of matrix H is actually
avoided by using the permeability map instead, which only requires pairwise pixel calcu-
lation with lower computation complexity. After reformulating, one full filtering iteration
consists of two steps: 1. left-right (top-bottom) pass; 2. right-left (bottom-top) and
combination pass. Please note that the last combination operation can be efficiently car-
ried out on-the-fly during the same loop of the right-left pass since all required variables
are available after a right-left pass at each exact pixel position. Therefore, only two full
scan passes are needed for the entire procedure and individual scan along one direction
can be conveniently parallelized. In our current implementation, the initial values of all
intermediate variables are all set to zero.

Besides, as edge-aware filters are not strictly interpolating filters, to efficiently perform
a sparse-to-dense conversion, a normalization map G is also introduced. This map
contains nonzero values at sparse sample positions and zero otherwise and is subject to
the same filtering process applied to the sparse data channel. After the desired amount
of iterations K , the element-wise normalization is performed between the filtered data
and the filtered confidence map: FXY = FK ./GK . For the optical flow estimation, this
normalization map is usually implemented as a feature matching confidence map which
indicates the similarity between correspondences estimated by forwarding and backward
flow. This confidence map increases the contribution of reliable correspondences and
usually is normalized between 0.0 and 1.0. Please note that the original data has to
be replaced by the product of the unfiltered data F and the initial confidence map
G as (F · G ) to meet the mathematical requirement before filtering. Visual results
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of the spatial permeability filter are shown in Figure 3.4. We can observe that after
limited number of spatial iterations, the permeability filtering process can propagate
sparse CPM to a dense disparity map and significantly removes outliers with a strong
edge-aware diffusion.

Incremental Angular Filtering. Inspired by the iterative pairwise operation of the
spatial permeability filter, the angular permeability filter is formulated as an infinite
impulse response filter, improving both speed and memory use compared to previous
filters [119, 131]. Given the spatial filtered results FXY

n , angularly-filtered results FXYT
n

are produced within a sliding window which contains two contiguous views.

While the derivation of the angular permeability filter is built on an efficient formulation
similar to the spatial permeability filter, there are two main differences to be noted. First,
the inherent pairwise relationship between two adjacent pixels in the spatial dimension
is replaced by pixel motion relationship, built by a forward mapping operation between
pixels in two adjacent frames. Second, spatial permeability map is changed to a per-
meability combination of color consistency and a flow-gradient magnitude measured in
the angular direction. The photo constancy is a straightforward extension of the spatial
permeability:

π̃photo
t =

1 +

∣∣∣∣∣∣
∥∥∥It − warpFXYT

t−1
(It−1)

∥∥∥
2√

3 · σphoto

∣∣∣∣∣∣
αphoto

−1

(3.22)

which allows angular filtering along motion paths with similar color values between
two adjacent images. To prevent angular filtering from stopping at warping errors and
artefacts resulting from angular color inconsistency, the gradient-magnitude measure is
calculated as:

π̃grad
t =

1 +

∣∣∣∣∣∣
∥∥∥FXY

t − warpFXYT
t−1

(FXYT
t−1 )

∥∥∥
2√

2 · σgrad

∣∣∣∣∣∣
αgrad

−1

(3.23)

where α and σ are control parameters similar to the spatial filter parameters. Divisions
and exponentiations are all element-wise in the two equations above and the final angular
permeability is obtained by multiplying the two terms: π̃T

t = π̃photo
t · π̃grad

t . In our
implementation, targeting optical flow estimation, parameters values are set to σphoto =

0.3, σgrad = 1.0, αphoto,grad = 2. Visual results of angular permeability filter are shown
in Figure 3.5. As we can observe, gradient measure can reveal regions where warping
artefacts are likely to happen.

SABOM descriptor. Additionally, when employing permeability filter, we also improve
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Figure 3.5: Angular permeability filtering results on light field. Photo constancy and
gradient measures for the light field are presented.

the matching process by replacing the SIFT descriptor with the binary SABOM descriptor
recently proposed by Alain et al. [142]. This spatio-angular binarised orientation maps
(SABOM) descriptor extends the binarized octal orientation maps (BOOM) descriptor
proposed by [127] by exploiting the light field gradient over both the spatial and the
angular dimensions, which was shown to significant reduction of processing time while
keeping competitive accuracy performance compared to SIFT [142].

3.2.4 Variational refinement

Thanks to the angular filtering which enforces the consistency between the different dis-
parity map estimates, we can apply a simple one-step variational energy minimization, as
opposed to costly global energy minimization technique, on the spatio-angularly filtered
results FXYT

n . We used the successive over relaxation method [143], also adopted by the
Epicflow [122], in order to obtain the final disparity maps D:

D = arg min
FXYT
i

(Edata(F
XYT
i ) + αEsmooth(F

XYT
i )) (3.24)
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where Edata corresponds to a classical color-constancy data term while Esmooth corre-
sponds to a gradient-constancy function with a local smoothness term weight α =

exp(−κ ∥∇2D∥) [144], where κ = 5.

3.2.5 Disparity based View Synthesis

The disparity maps estimated through our approach can further be used for view synthesis
purpose. We give here a description of the view synthesis method employed to generate
our results, which was briefly mentioned in section 2.3.3, and consists in warping the
closest input views to the target view, and merge them using a bilinear weighted average.
Note that we are able to use this view synthesis approach thanks to the fact that our
disparity estimation method provides a disparity map for each input view of the light
field, which is not the case for most disparity or depth estimation methods, which often
only estimate the geometry for the centre view.

Formally, we denote by Iu the unknown target view to be synthesized at position (su, tu),
Ik , k = 0 ... 3 the 4 closest known views in the input light field at positions (sk , tk), and
Dk the corresponding disparity maps obtained from our approach. Note that the target
view position (su, tu) can be arbitrary, however in our results we use this view synthesis
approach in a light field interpolation application where the target view positions fall
onto the light field grid of views.

First, each known input view Ik is warped to the target view position using a warping
operator W:

Î
k

u = Wsk ,tk−→su ,tu(Ik , {Uk ,Vk}) (3.25)

where {Uk ,Vk} is a 2D warping flow denoted as:

{Uk ,Vk} = {(su − sk)× Dk , (tu − tk)× Dk} (3.26)

The final estimate is then obtained as a weighted average of the 4 initial warped esti-
mates:

Îu =
1∑

k=0,3 wk

∑
k=0,3

wk Î
k

u (3.27)

where the weight are bilinear coefficients such that wk = (1 − |sk − su|) × (1 − |tk −
tu|).
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Figure 3.6: Comparison of optical flow with state-of-the-art methods. Top row consists
of initialization results with different optical flow methods. Bottom row is the results
of these initializations + feature flow filter. (a) SIFT Flow [145] (4.9s); (b) EPPM [146]
(GPU-based,0.7s); (c) EpicFlow [122] (15s); (d) CPM-Flow [123] (5.3s)

3.3 Results and Evaluation

In this section, we analyze the results of the proposed approach. All our experiments
were run on an Intel Core i7-6700k 4.0GHz CPU. We use the feature flow implementation
from [147] and implement our own version of permeability filter. All parameter settings
are retained from the original papers and maintained across all our experiments. Note
that CPM is implemented with SIFT descriptor for feature flow (CPM_FF) and with
SABOM descriptor for permeability filter (CPM_PF).

3.3.1 Evaluation of Disparity Estimation from Light Field

Evaluation of the optical flow initialization.

We evaluate here the performance of the proposed optical flow approach against state-of-
the-art methods. In Figure 3.6, we show the results of several optical flow initializations
in the top row and the results after feature flow filtering in the bottom row. The
volumetric filtering using feature flow along the angular dimension of the light field clearly
improves the accuracy of the optical flow from any initialization method, significantly
improving consistency and continuity of brightness. The proposed method using CPM
as initialization achieves the best performance in terms of the balance between speed
and accuracy. The importance of the volumetric filtering is also illustrated in Figure 3.8,
where we show the final depth map results for several light fields obtained with our
method with and without feature flow. The quality of the depth maps is clearly improved
for all sequences.
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Figure 3.7: Comparison of our methods (red stars) performances against state-of-the-
arts (blue stars), averaged over all HCI light fields. The results show that we achieve
comparable performances to the best state-of-the-art method in terms of the balance
between speed and accuracy.

Evaluation of the depth estimation on HCI dataset.

We evaluate here the accuracy and efficiency of our proposed method against state-
of-the-art light field depth map estimation methods [65, 69, 72, 73, 76, 77, 78] using
the HCI 4D light field dataset [3] 1. Note that since this benchmark expects a depth
map and not a disparity map for its evaluation, the disparity maps D obtained from our
approach are converted to depth maps using equation 2.9. The accuracy of the depth
estimation is evaluated using the Mean Square Error (MSE) * 100 and the computational
complexity using the running time in seconds. The results are summed up in the graph
of Figure 3.7, showing the average performances over the HCI dataset. Our method
achieves comparable performance with the best method of the state-of-the-art in terms
of the balance between accuracy and speed.

In addition to these objective metrics, we show the depth maps obtained from several

1http://hci-lightfield.iwr.uni-heidelberg.de/
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Figure 3.8: Depth map comparison on HCI dataset.
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light fields in Figure 3.8 and compare against state-of-the-art methods. The final com-
parison shows better performance for edge preservation of objects (see Cotton column)
and also smoother results for noisy scenes (see Backgammon and Dino columns). How-
ever, we notice that the proposed local filtering method, which allows considerable speed
up, sometimes produces less smooth results than a global solution (see the background
of Dino and Boxes column). The feature flow filter also heavily depends on the quality
of the optical flow initialization. If the optical flow method is unable to provide accu-
rate correspondences, it can not be corrected by the filter (see for example the Boxes
column).

3.3.2 Evaluation of Disparity-based View Synthesis for Light

Field

We assess here the use of our disparity map estimation in a light field interpolation sce-
nario, using the disparity-based view synthesis (DVS) method described in section 3.2.5.
For this purpose, we sub-sample existing light fields with a factor α = 2 or 4, in order to
have a ground truth reference for the interpolated views, as shown in Figure 3.9.

Here we evaluate the disparity-based light field view synthesis against a baseline angular
bilinear interpolation, however note that more comparisons against state-of-the-art view
synthesis and light field view synthesis methods are provided in the next chapters. The
numerical results on Lytro, HCI and Stanford datasets are presented in the Table 3.1, 3.2
and 3.3, respectively. We use the objective metrics PSNR and SSIM in our evaluation
to measure pixel and structural quality. Note that we report the metric values averaged
over all interpolated views.

(a) α = 2 (b) α = 4

Figure 3.9: Two interpolation scales of the disparity based view synthesis.
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(a) Lytro (-0.5, 2.0, 2.5)
(b) HCI (-13.7, 7.6, 21.3)

(c) Stanford (-26.7, 9.9,
36.6)

Figure 3.10: Disparity range (dmin, dmax , drange) of Lytro, HCI and Stanford datasets
(α = 4).

We evaluate the disparity range of three used light field datasets, in which dmin and
dmax stands for the minimal and maximum disparity (pixel) over all input views and
disparity range (drange) stands for the range of disparity (pixel) between dmin and dmax .
Figure 3.10 illustrates the disparity range among each of the sampled test light fields.
Even with larger sampling factor (α = 4), the disparity of the test light fields from the
Lytro dataset is only ∼ 2 pixels, which is much smaller than test light fields from the
HCI dataset (∼ 21 pixels) and the Stanford dataset (∼ 36 pixels). With such limited
disparity, the bilinear interpolation is sufficient to obtain numerically good results on the
Lytro dataset.

Meanwhile, depth based method may cause error due to potential mismatched cor-
respondences, which makes results worse than the results from bilinear interpolation
without disparity information involved on the Lytro dataset. However, the advantage of
the disparity-based view synthesis appeared on the sparser HCI and Stanford datasets,
with a ∼ 6dB gain in PSNR in average for the HCI dataset and ∼ 3dB when α = 2

to ∼ 4dB gain in PSNR α = 4 in average for the Stanford dataset. The visual re-
sults for α = 4 are presented in Figure 3.11 and confirm the numerical results. We
selected four representative light fields: Herbs and Bicycle are from the HCI dataset
containing complex indoor scene, while ChezEdgar is from Lytro with small disparity,
and LegoKnights is the most challenging image from Stanford with larger disparity and
textureless surfaces.

While little difference can be observed between the ground truth, bilinear, and disparity-
based view synthesis on the Lytro ChezEdgar light field, the disparity-based view synthe-
sis provides obviously better visual results than the bilinear interpolation for the HCI and
Stanford datasets. However, artifacts can still be observed in the disparity-based view
synthesis results, especially on more challenging scenes such as the Stanford LegoKnights
light field, which motivates our following work presented in the next chapters.
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Figure 3.11: Comparison of our results against state-of-the-arts on HCI dataset. The
disparity based light field view synthesis uses our estimated disparity with CPM_PF
method.
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Table 3.1: Numerical results on the real-world Lytro datasets [1, 2]

α = 2
PSNR(dB) SSIM

average Bee_2 Bikes ChezEdgar Desktop average Bee_2 Bikes ChezEdgar Desktop

Bilinear 37.33 35.49 37.98 38.03 37.82 0.9870 0.9705 0.9932 0.9925 0.9918
DVS 36.40 35.31 37.60 37.44 35.25 0.9866 0.9702 0.9930 0.9920 0.9912

α = 4
PSNR(dB) SSIM

average Bee_2 Bikes ChezEdgar Desktop average Bee_2 Bikes ChezEdgar Desktop

Bilinear 32.60 30.29 32.50 34.12 33.10 0.9753 0.9010 0.9721 0.9835 0.9758
DVS 32.25 30.18 32.53 34.02 32.27 0.9594 0.8998 0.9745 0.9842 0.9793

Table 3.2: Numerical results on the synthetic HCI dataset [3]

α = 2
PSNR(dB) SSIM

average bedroom bicycle herbs origami average bedroom bicycle herbs origami

Bilinear 31.45 33.37 30.71 28.76 32.97 0.9397 0.9672 0.9649 0.8586 0.9682
DVS 37.67 41.08 34.80 35.82 38.98 0.9931 0.9945 0.9929 0.9880 0.9972

α = 4
PSNR(dB) SSIM

average bedroom bicycle herbs origami average bedroom bicycle herbs origami

Bilinear 28.04 30.09 26.82 26.69 28.55 0.8733 0.9069 0.8909 0.7760 0.9194
DVS 34.94 39.44 31.81 33.15 35.37 0.9855 0.9931 0.9824 0.9732 0.9933
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Table 3.3: Numerical results on the real-world Stanford Gantry datasets [4]

α = 2
PSNR(dB) SSIM

average LegoKnights TheStanfordBunny average LegoKnights TheStanfordBunny

Bilinear 32.57 26.17 38.98 0.9141 0.8463 0.9819
DVS 35.67 30.64 40.70 0.9765 0.9642 0.9888

α = 4
PSNR(dB) SSIM

average LegoKnights TheStanfordBunny average LegoKnights TheStanfordBunny

Bilinear 28.60 22.85 34.35 0.8441 0.7398 0.9484
DVS 32.87 27.51 38.23 0.9586 0.9303 0.9869
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3.4 Conclusion

In this chapter, we introduced a novel optical flow-based method to estimate depth
maps from light fields. We showed that by extracting a 3D volume consisting of a
sequence of views from the 4D light field and applying a temporally consistent optical
flow on this spatio-angular volume, we were able to obtain high-quality disparity maps
and subsequent rendered views with reduced complexity. Comparison with state-of-the-
art depth estimation methods on the HCI benchmark showed that we are competitive
with the best methods in terms of the balance between accuracy and speed. The
results of disparity based view synthesis also demonstrate the success except for the
large baseline light fields.
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4 A Study of Efficient Light Field
Subsampling and Reconstruction
Strategies

In this chapter, we investigate subsampling and reconstruction strategies for light fields.
The two plane representation of light fields is adopted in this work to perform sub-
sampling and reconstruction, as shown in Figure 4.1. Limited angular resolution is one
of the main obstacles for practical applications of light fields. Although numerous ap-
proaches have been proposed to enhance angular resolution, view selection strategies
have not been well explored in this area. More background details are described in sec-
tion 2.3. This chapter looks at the view selection strategies from a subsampling and
reconstruction viewpoint. First, different subsampling strategies are studied with a fixed
sampling ratio, such as row-wise sampling, column-wise sampling, or their combinations.
Second, several strategies are explored to reconstruct intermediate views from four reg-
ularly sampled input views. The influence of the angular density of the input is also
evaluated. We evaluate these strategies on both real-world and synthetic datasets, and
optimal selection strategies are devised from our results. These can be applied in future
light field research such as compression, angular super-resolution, and design of camera
systems.

4.1 Related Work

4.1.1 View Selection Strategies for Light Field View Synthe-

sis

Having multiple sub-aperture images that are captured with similar angles, light fields
offer some advantages compared to traditional single images. To find the optimal view
selection strategy for practical applications, we should make use of the inherent similar-
ity among multiple angular views. However, most previous methods only focus on one
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Figure 4.1: Subsampling and reconstruction of a two-plane representation light field.

fixed strategy, such as horizontal & vertical subsampling [108, 111, 115], corners sub-
sampling [80, 101, 103, 105], crosshair subsampling [86, 148] or learned view selection
subsampling [90]. To the best of our knowledge, there is no comprehensive scientific
investigation comparing different view selection strategies.

Depth based light field view synthesis methods usually start with four input views and
focus on generating novel intermediate views on the row, column and central middle
positions [80, 101, 103, 105]. Besides, epipolar plane image based methods usually
choose the horizontal & vertical strategy and avoid the issues of depth estimation [108,
111, 115]. It is reasonable that epipolar plane image based method rely on this type
of strategy as constructing an epipolar plane image requires at least three views along
one angular dimension. Besides the view synthesis, view selection is important for
other vision tasks on light fields, such as depth estimation and spatial super-resolution.
Crosshair strategy is chosen by recent studies as their view selection strategy, as it
provides comprehensive epipolar geometry along different angular directions [86, 148].
More recently, learning-based view selection is proposed by Tsai et al. to refine depth
estimation on the light field [90]. This method involves all views and determines the
importance of each view via an attention-based selection system. The redundancy among
sub-aperture views can be reduced by such a system.
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4.1.2 Video Frame Interpolation for Light Field View Synthe-

sis

Existing video frame interpolation methods can benefit the light field angular super-
resolution problem, as they have a similar configuration. Liu et al. employ an end-
to-end fully-convolutional deep network, Deep Voxel Flow, to guide the video frame
interpolation with realistic results [149]. Niklaus et al. proposed to estimate motion and
color interpolation within one stage using an adaptive 2D kernel which is estimated from
a trained convolutional neural network [150]. However, 2D kernel estimation requires
huge memory to store information for all pixels and this shortcoming is addressed by
replacing the 2D kernel with two separable 1D convolutional kernels [151]. This work
was further improved in [152] by using a so-called context map obtained from the
layer response of an existing network, combined with a synthesis network based on the
GridNet architecture. To generate multiple frames at different time locations instead
of only the middle frame, Jiang et al. proposed an indirect video interpolation method
which predicts optical flow first and then warps pixels to obtain the target frames [153].
More recently, a depth-aware video frame interpolation method has been proposed [154]
which combines the strength of previous methods by estimating the flow, the context,
and the kernel altogether, and in addition, the depth. Each component is estimated
using a CNN, and the final frame is synthesized with a CNN using all components as
input. Video interpolation has also been applied to light field view synthesis in [155],
using fully supervised fine-tuning with conventional loss functions on a small light field
dataset.

4.2 Study of Efficient Subsampling and Recon-

struction Strategies

In this section, we investigate different strategies for light field subsampling and recon-
struction. Firstly, a benchmark light field view interpolation method has to be selected
from state-of-the-art approaches to evaluate all strategies. Next, given a fixed sampling
ratio, three light field subsampling strategies are studied to reconstruct full-size light
fields from each sampled light field (Figure 4.2). Finally, six different reconstruction
strategies are explored to generate a dense light field from inputs of varying sparsity
(Figures 4.3 & 4.4).

4.2.1 Benchmark Method Selection

As our goal is to investigate sampling and reconstruction strategies for light fields, we
first select a benchmark method to be applied in our experiments. The benchmark

59



(a) row-wise (b) column-wise (c) checkerboard

Figure 4.2: Three basic subsampling strategies. The squares are sampled views, the
circles are reconstructed views and the dashed squares are unused views. Blue circles in
(c) are reconstructed by row-wise or column-wise from two adjacent views to complete
the light field.

has to be flexible to work in different configurations but should also provide the best
possible interpolation quality. We therefore evaluate SepConv [102], Shearlet [115] and
LFEPICNN [156] in an initial study. LFEPICNN is a representative learning-based light
field view synthesis method, and Shearlet is an efficient non-learning based reconstruction
method in the Fourier domain. SepConv [102] was initially designed for video frame
interpolation and employed a neural network-based kernel estimator to interpolate views
between adjacent input views. As such it is very flexible and can also be used in various
ways of light field view interpolation.

These state-of-the-art methods are evaluated by using the same input pattern shown in
Figure 4.2a resulting from row-wise sampling, in which sampled input views are repre-
sented as green squares and reconstructed output views are represented as red circles.
According to Table 4.1, SepConv numerically outperforms all other methods significantly.
Shearlet achieves better performance than linear interpolation. LFEPICNN scores well
on PSNR, while Shearlet performs better in terms of average SSIM. However, both these
two methods require an epipolar plane image as input. Thus SepConv is not only the
best performing approach but also the only one that can easily be adapted to different
configurations, as it only needs a pair of RGB images as input. We therefore continue
to use SepConv in our further experiments.

Since SepConv was originally trained for video frame interpolation, we additionally fine-
tuned the pre-trained model on our light field training dataset in order to further improve
the performance. Table 4.2 shows improvements we can achieve by fine-tuning and
retraining the initial network. For some of our experiments detailed below, we have to
retrain SepConv appropriately in order to work with more than 2 input views, e.g. left,
right, top and bottom neighbors.
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Table 4.1: Comparison between state-of-the-art light field interpolation methods

row-wise PSNR/SSIM

Mean HCI Stanford

Bilinear 32.37/0.9464 31.82/0.9501 33.47/0.9390
Shearlet [115] 34.92/0.9592 35.78/0.9750 33.21/0.9277

LFEPICNN [156] 37.39/0.9451 37.51/0.9420 37.15/0.9515
SepConv [102] 38.94/0.9910 39.38/0.9945 38.07/0.9839

Table 4.2: Comparison of pretrained, fine-tuned and retrained SepConv for row-wise
interpolation

row-wise pretrained Fine-tuned Retrained

PSNR(dB) 38.08 39.74 39.41
SSIM 0.9893 0.9925 0.9923

(a) 2D H-V (b) 2D V-H (c) 4D omni

(d) 4D diagonal (e) 2D left diag (f) 2D right diag

Figure 4.3: Six reconstruction strategies to interpolate 3x3 views from 4 input corner
views (green), dashed square views are not used for interpolation, different colors of
circles identify output views from different stages

4.2.2 Study of Basic Light Field Subsampling Strategies

In this set of experiments, we compare basic subsampling strategies as illustrated in
Figure 4.2, with the goal to identify the most efficient basic subsampling strategy among
row-wise, column-wise and checkerboard. To evaluate these strategies, the sampled light
fields are reconstructed using view interpolation. After reconstruction, the quality of the
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(a) level 1 (b) level 2 (c) level 3

Figure 4.4: Three levels of angular density for light field reconstruction. The IRs of
these levels are 30.9%, 11.1% and 4.9% respectively.

syntesized views can be compared to the corresponding ground truth. All these strategies
have the same ratio of sampled views to total views, which is an important measure of
the sparsity and defined as the InputRatio (IR) in equation (4.1):

IR =
NInputViews

NInputViews + NOutputViews
(4.1)

where the numbers of input views and output views of the interpolation method are
NInputViews and NOutputViews , respectively. The total number of views of the completed
light field can be represented as the sum of NInputViews and NOutputViews . The three basic
subsampling strategies, as shown in Figure 4.2 all have IR ≈ 55%.

We applied our fine-tuned SepConv, as explained in Section 4.2.1 to interpolate the
necessary views for row-wise and column-wise strategies from neighbouring views. For
the checkerboard pattern, we had to modify the original SepConv network in order to
accept 4 views as input, top, bottom, left and right. The outer views depicted as blue
circles in Figure 4.2c were synthesized by row-wise or column-wise interpolation from 2
neighbouring views.

4.2.3 Study of Sparse Light Field Reconstruction Strategies

In this set of experiments, we compare different reconstruction strategies for sparse light
fields. Taking a 3x3 matrix of views as an example, six progressive reconstruction strate-
gies can be applied as presented in Figure 4.3. Using four corner images as input, we
can reconstruct the side images using the same row-wise and column-wise interpolation
as before. Thus, the question becomes, which is the best way to reconstruct the central
view. Three of these strategies, including 2D horizontal-vertical (2D H-V), 2D vertical-
horizontal (2D V-H) and 4D omni, are two-stage cases involving generating side views
as intermediate stage. The other three, including 4D diagonal, 2D left diagonal and 2D
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Figure 4.5: Stages to complete a quarter of the full light field for an input angular
density of level 2 with IR = 11.1% (see Fig. 4.4)

right diagonal, require only one stage to generate the central view.

To further study the influence of the angular density of the input views, we investigate
three levels of density, as shown in Figure 4.4. The distance between two input views
is 1 view in level 1, and there are 3 views and 7 views distance in level 2 and 3,
respectively. To compare fully reconstructed light fields, we reconstruct all missing views
using appropriate strategies as follows. Level 1 is completed by row-wise and column-
wise interpolation of the side views, using the 2D H-V method unless otherwise specified.
The choice of 2D H-V as the default method is justified by its better performance
demonstrated in Section 4.3. For level 2 and 3, we recursively fill using lower-level
methods to complete the full-scale light field. The reconstruction of a quarter of the
light field is shown in Figure 4.5, which is applied iteratively to each quarter one by
one.
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4.3 Results and Evaluation

In this section, we summarize the results of our experiments, which were performed on
an Intel Core i7-6700k 4.0GHz CPU, while neural network refining was performed on
Nvidia Titan Xp GPUs.

The performance of strategies is evaluated on both real-world and synthetic light field
datasets to validate their robustness. We used 27 real-world light fields captured by
Lytro Illum cameras provided by EPFL [1] and INRIA [2], and 11 light fields from the
Stanford dataset taken by a camera gantry [4]. As for the synthetic light field dataset,
all 28 light fields from the HCI benchmark [3] were used. 10 light fields in total were
selected from these datasets as the test set and the rest as the training set. Additionally,
160 light fields from light field intrinsic [157] were added for retraining of SepConv to
avoid the overfitting. All views were cropped to equal 512x512 resolution to accelerate
the computation. In this study, we use the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) on RGB images to evaluate the algorithms numerically.

Table 4.3: Evaluation of three basic subsampling strategies from Figure 4.2

row-wise column-wise checkerboard

PSNR SSIM PSNR SSIM PSNR SSIM

HCI 40.49 0.9956 40.33 0.9958 39.24 0.9935
Lytro 39.32 0.9932 39.07 0.9925 38.67 0.9921

Stanford 40.22 0.9936 39.37 0.9924 39.47 0.9928

Mean 39.74 0.9925 39.20 0.9915 39.33 0.9918

Table 4.4: Evaluation of six reconstruction strategies from Figure 4.3

PSNR SSIM

2D H-V 37.42 0.9884
2D V-H 37.21 0.9881

2D left diagonal 35.77 0.9846
2D right diagonal 35.86 0.9842

4D omni 36.51 0.9863
4D diagonal 36.86 0.9838

The results of the evaluation of basic subsampling strategies are shown in Table 4.3.
Row-wise interpolation achieves the best scores on most light fields over all datasets. The
difference to column-wise is most prominent for the Stanford data which was captured
by a gantry, resulting in unequal vertical displacement. For the checkerboard pattern,
the retraining of SepConv to accept 4 views may be the reason for its worse performance,
as this way it could not benefit from the pre-trained model of SepConv.
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Table 4.5: Comparison between level 1 & 2 & 3 from Figure 4.4 using 2D H-V

2D H-V Level 1 Level 2 Level 3
PSNR(dB) 37.34 35.12 31.79

SSIM 0.9886 0.9825 0.9613

The results of sparse light field reconstruction strategies are shown in Table 4.4. Again,
4D strategies use a retrained model while others use a fine-tuned model. The central
view is used to evaluate these results as it is the only one that gets always reconstructed
using any of the six strategies when filling a 3x3 block of views. 2D H-V performs
best, as it accumulates less error than other strategies with 2 stages (row-wise first
gives the best reference for stage 2), while it has a smaller distance between input views
compared to direct diagonal strategies. Visual results of reconstruction strategies are
shown in Figure 4.6. Occlusion artefacts around the tip of the sword can be observed
in diagonal strategies.

Finally, the effect of different levels of angular density is studied in Table 4.5. Since
2D H-V is the optimal strategy according to the previous conclusion, it is utilized to
complete the full-scale light fields recursively, as explained before. All synthesized views
are averaged in this evaluation (different from only central views in Table 4.4). From
Table 4.5 we get the expected decrease of interpolation quality with sparsity.

These insights about sparsity vs quality and the best subsampling and reconstruction
strategies can be beneficial for the design of light field coding approaches (the maximum
quality that can be achieved when omitting views) or camera systems (maximum camera
distance for a desired quality and density).

4.4 Conclusion

In this chapter, we presented a comprehensive study comparing different strategies for
efficient light field subsampling and reconstruction. For this purpose, we selected an
existing view synthesis method among the best performing state-of-the-art techniques.
Using this benchmark method, we first evaluate the best subsampling approach among
a row-wise, a column-wise, and a checkerboard pattern with a fixed interpolation ratio,
which concludes that the row-wise approach offers the best performances. Second, we
investigate corner-based central view generation and compare the performance of six
possible reconstruction strategies. In addition, we evaluate a multi-stage approach to
reconstruct dense light fields from subsampled input with different levels of angular
density. We found that using a row-wise followed by a col-wise reconstruction yields the
best performance. We hope these findings will help inspire researches related to light-
field subsampling and reconstruction, such as compression and camera array design.

65



(a) full size GT (b) 2D H-V (c) 2D V-H (d) 4D omni

(e) GT (f) 4D diagonal (g) left diag (h) right diag

Figure 4.6: Visual results of six reconstruction strategies from Figure 4.3

Further, a more explicit analysis regarding the relation of the disparity range to the
strategy selection could be performed.
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5 Self-supervised Light Field Re-
construction with Cycle Consis-
tency

In this chapter, we propose a self-supervised light field view synthesis framework with
cycle consistency. High angular resolution is advantageous for practical applications of
light fields. In order to enhance the angular resolution of light fields, view synthesis
methods can be utilized to generate dense intermediate views from sparse light field
input. Most successful view synthesis methods are learning-based approaches which re-
quire a large amount of training data paired with ground truth. However, collecting such
large datasets for light fields is challenging compared to natural images or videos. More
background details are described in section 2.3. The proposed method aims to transfer
prior knowledge learned from high-quality natural video datasets to the light field view
synthesis task, which reduces the need for labelled light field data. A cycle consistency
constraint is used to build bidirectional mapping enforcing the generated views to be
consistent with the input views. Derived from this key concept, two-loss functions, cycle
loss and reconstruction loss, are used to fine-tune the pre-trained model of a state-of-the-
art video interpolation method. The proposed method is evaluated on various datasets
to validate its robustness, and results show it not only achieves competitive performance
compared to supervised fine-tuning but also outperforms state-of-the-art light field view
synthesis methods, especially when generating multiple intermediate views. Besides, our
generic light field view synthesis framework can be adapted to any pre-trained model for
advanced video interpolation.

5.1 Related Work

5.1.1 Cycle Consistency

The key element of our proposed method is the introduction of the cycle consistency
to the light field angular dimension. The cycle consistency constraint aims to regular-
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ize structured predictions between two or more different domains. More recently, this
constraint has become a commonly used technique in computer vision area and has
been explored on numerous tasks, including image co-segmentation [158, 159], image
matching [160, 161, 162], image captioning [163], depth estimation [164], structure
from motion [165, 166] and image translation [167]. Beyond the vision area, cycle con-
sistency is also applied in an inverse translation method for the language translation
task [168].

The cyclic generation procedure of our work is inspired by the success of cyclic image
generation for video interpolation [169, 170]. Cycle consistency constraint is employed
as a loss function computing the Euclidean distance between cyclic generated results and
original inputs. Different from unidirectional mapping built by conventional cost mea-
surement functions, cycle consistency loss establishes a bidirectional mapping between
two spaces. Besides, past researches also demonstrate the strength of cycle consistency
to adapt a pre-trained model to a new target domain, i.e. video interpolation to light
field angular reconstruction. For instance, Gao and Koch extend pre-trained video in-
terpolation model to the light field reconstruction by proposing a parallax-interpolation
adaptive separable convolution [155]. Similar to our work, Gao et al. [171] also utilize
cycle consistency to the light field reconstruction task. They process light field as the
sparsely regularized epipolar plane image in the shearlet domain, while our work stays in
sub-aperture space that can be adapted to unaligned views, such as unstructured light
field captured by single-lens cameras.

5.1.2 Self-supervised Learning

Although strongly supervised learning demonstrates successfully applications on various
visual benchmarks [172, 173], such success requires numerous annotated data, which is
not always available as data collection and manual labelling could be expensive. As a sub-
class of the typical unsupervised learning methods, self-supervised learning aims to solve
this problem by learning the representation from the unlabelled data. In other words,
the learning process can be understood as it is guided by the surrogate "pretext" tasks,
i.e. automated generated labels, high-level representation or input data directly, that
can be modelled from only unsupervised data. So far, self-supervised methods produce
a superior performance on a broad range of challenging tasks [174, 175, 176].

For instance, Doersch et al. introduce a typical self-supervised framework by exploring
the use of relative positioning of cropped patches as the spatial context [177]. The
key hypothesis of this work is that the high-level representation of context is properly
modelled while solving this spatial relationship problem as a "pretext" task. Therefore,
those learned representation embedded in the networks can benefit other downstream
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tasks such as object detection and data mining. Follow-up researches generalize this
framework by estimating the permutation of multiple patches sampled and permuted
from images [178, 179]. Besides, Zhai et al. aim to properly model a special type
of dataset containing a small amount of labelled data along with a huge amount of
unlabelled data [180]. To address this problem, they propose a new learning technique
by bridging semi-supervised learning with self-supervised learning, as a small amount of
labelled data would benefit self-supervised representation learning. Adapting similar self-
supervised structure to the video interpolation work, Reda et al. introduce the pseudo
supervision to avoid the use of the intermediate frame as the ground truth [170]. For
a comprehensive review of previous self-supervised learning, we refer the reader to read
these papers [181, 182].

Light field data acquisition is still a tedious process and even largest light field dataset,
which only has ∼ 3300 light field images [100], is relatively small compared to commonly
available single image and video datasets, such as ImageNet(∼ 14 million images) [183],
COCO(> 1 million images) [184] and Aff-Wild(∼ 1 million images) [185]. Without suf-
ficient support of ground truth supervision, light field reconstruction becomes a suitable
problem to be addressed with the self-supervised learning technique. Furthermore, self-
supervised learning can be motivated by the cycle consistency on the light field angular
domain, which is trained solely on the sparse light fields. Moreover, we also consider
transferring the prior knowledge from video interpolation task to light field reconstruc-
tion task, while only requiring a limited amount of light field data as fine-tuning datasets.
The closest work utilizing cycle consistency to enable the self-supervised training is pro-
posed in the shearlet domain [171], while our work concentrates on the sub-aperture
domain.

5.2 Light Field View Synthesis using Cycle Con-

sistency

5.2.1 Problem Formulation

In this work, a 4D light field L is parameterized using the two parallel planes represen-
tation as depicted in Figure 5.1, indexed by x , y over the spatial dimensions and s,
t are the angular dimensions. We denote by Is,t the view extracted from a light field
L at the angular position s, t. Given a sparsely-sampled light field LS with resolution
(H ×W × n× n), the goal is to reconstruct a more densely-sampled light field LD with
the same spatial resolution and a higher angular resolution (H ×W × N × N), where
N = α(n − 1) + 1 and α is the up-sampling factor in the angular domain. Unless men-
tioned specifically, α = 2 is used as default to explain our method. By fixing one angular
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Figure 5.1: Dense light field reconstruction. We aim to reconstruct a dense light field
LD with angular resolution (N ,N) from a sparse light field LS with angular resolution
(n, n). The spatial resolution (H ,W ) of each view remains unchanged.

dimension, a set of views can be extracted along the remaining angular dimension of the
light field. Such a view set can be considered as a consecutive frame sequence, which
can be captured by a virtual camera moving along the corresponded angular direction.
Thus, the dense light field reconstruction problem can be treated as a video interpolation
process along the fixed angular dimension. Many CNN-based methods have been shown
to be successful for video interpolation tasks. However, directly adopting a pre-trained
network from an existing video interpolation method to the light field domain may fail
since the distribution of these two kinds of data may differ. On the other hand, retraining
a CNN from scratch can be laborious and the limited size of light field datasets may not
allow reaching competitive performance. Thus, to maximally leverage the advantage of
the cutting-edge video interpolation methods and to avoid its troublesome retraining,
we introduce a self-supervised fine-tuning approach using cycle consistency to apply the
pre-trained model of a video interpolation method to the light field domain.

5.2.2 Proposed Framework with Self-Supervised Learning

Given a sparse light field LS with angular resolution (n, n), our proposed approach aims
to build a learning-based model that takes this light field as input and accurately recon-
structs a high-quality dense light field LD with angular resolution (N ,N) without the
support of paired ground truth. As shown in Figure 5.2, we consider triplets of views
extracted from LS along a fixed angular dimension, either horizontally {ISs−2,t , I

S
s,t , I

S
s+2,t}

or vertically {ISs,t−2, I
S
s,t , I

S
s,t+2}. Note that triplets have to be used due to our proposed

cycle loss described below. A dense light field LD is obtained by first performing horizon-
tal interpolation on all rows, and then performing vertical interpolation on all columns.
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Figure 5.2: An overview of our proposed view interpolation approach. Horizontal and
vertical interpolation are cascaded to reconstruct LD from LS using view triplets from
the corresponding angular dimensions.

The view interpolation is achieved by two CNNs which share the same architecture but
are trained separately along the horizontal and vertical dimensions.

Let us consider the horizontal interpolation case in order to explain the framework
more in detail. Given an input triplet {ISs−2,t , I

S
s,t , I

S
s+2,t}, two intermediate views can be

generated from pairwise adjacent views:

Î
D

s−1,t = M(ISs−2,t , I
S
s,t)

Î
D

s+1,t = M(ISs,t , I
S
s+2,t)

(5.1)

where M is a pre-trained video interpolation method.

Inspired by the recent success of the application of the cycle consistency for video
interpolation [169, 170], we propose to fine-tune our baseline interpolator M in a self-
supervised manner by applying the cycle consistency constraint to the light field angular
domain, as shown in Figure 5.3a. By applying the interpolator M on the two intermediate
views generated from the input triplet as defined in equation 5.1, we can obtain an
estimate of the center view of the input triplet ISs,t which we denote as the cycle-
reconstructed view Ĩ

S

s,t :

Ĩ
S

s,t = M
(̂
I
D

s−1,t , Î
D

s+1,t

)
= M

(
M(ISs−2,t , I

S
s,t), M(ISs,t , I

S
s+2,t)

) (5.2)

We can thus define the cycle-loss as the ℓ1-norm distance between the cycle-reconstructed
view Î

S

s,t and the input view ISs,t :

Lc = ||̃ISs,t − ISs,t ||1 (5.3)
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(a) Cycle loss (b) Reconstruction loss

Figure 5.3: Illustration of the cycle loss and reconstruction loss on a vertical input
triplet. Both losses do not require any knowledge of the ground truth intermediate views
(represented by dashed square) and can therefore be used for self-supervised training.

While ℓ1-norm based losses are able to minimize the overall error between the estimated
images and the corresponding original images, they are known to generate over-smooth
results. To tackle this problem, we also introduce in our framework a perceptual loss
Lp, defined as the ℓ2-norm between high-level convolutional features extracted from the
cycle-reconstructed view and the input view:

Lp = ||Ψ(̃I
S

s,t)−Ψ(ISs,t)||2 (5.4)

where Ψ extracts the convolutional features from images using a VGG-16 network [106],
which then is applied to train our base CNN network (SepConv [151], see below).

Furthermore, to stabilize the training process, we introduce a reconstruction loss of Lr ,
as shown in Figure 5.3b. In this case, the two non-adjacent views from the input triplet
ISs−2,t and ISs+2,t are used to generate the center view of the input triplet:

Î
S

s,t = M
(
ISs−2,t , I

S
s+2,t

)
(5.5)

This reconstructed view can be used to define the reconstruction loss Lr as its ℓ1-norm
distance to the input view:

Lr = ||̂ISs,t − ISs,t ||1 (5.6)

Note that all losses introduced in our framework as defined in equations 5.3, 5.4, and
5.6, do not rely on any knowledge of the ground truth dense light field LD but only
the given sparse input light field LS , thus allowing to perform self-supervised training or
fine-tuning of the learning-based interpolator M.
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Figure 5.4: Demonstration of the two-step strategy to generate multiple intermediate
views from a set of sparse views, denoted as green squares, when α = 4. The first step is
to synthesize middle views, denoted as red and blue circles, between each pairwise input
views. The second step uses original and synthetic views to reconstruct the remaining
missing views, denoted as yellow and grey circles, along one angular dimension.

Multi-step Light Field Generation While our framework naturally performs angular
up-sampling with a factor α = 2, denser light fields can be obtained by iteratively
applying the proposed approach, as illustrated in Figure 5.4 for α = 4. Any upsampling
factor which is a power of two is in fact supported, i.e. α = 2x , (x ∈ Z & x > 1).

5.2.3 Implementation Details

In this work, we select the adaptive separable convolution (SepConv) [151] as our base-
line interpolator M due to its balance between ease of use and performance accuracy,
but note that any learning-based video interpolation method [152, 153, 154] can be used
within our framework. The network of SepConv employs an encoder-decoder architec-
ture, each part contains convolution blocks and skip connections, to extract features
and then performs four 1D kernel estimations individually to obtain the final results.
We use the implementation available online based on PyTorch 12 and use the default
configurations from the original SepConv paper. We fine-tune the pre-trained model by
minimizing the objective function:

argmin
M

(λcLc + λrLr + λpLp) (5.7)

1github.com/sniklaus/sepconv-slomo
2github.com/HyeongminLEE/pytorch-sepconv
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where Lc , Lr and Lp are defined in equations (5.3), (5.6) and (5.4). For all experiments,
we set the parameters as λc = 1, λr = 1, and λp = 0.06. The Adam optimizer is applied
for optimization with a batch size of 8. We start with the learning rate of 0.001 and a
scheduler is applied to decay the rate according to the learning progress. As in the original
SepConv work, we firstly crop training data to 150×150 patches, then randomly crop to
128 × 128. In addition, we perform pre-processing to eliminate patches containing too
small disparity. An Intel Core i7-6700k 4.0GHz CPU was used for all our experiments,
and the neural network training was run on a single Nvidia Titan Xp GPU with 12 GB
memory.

5.3 Results and Evaluation

In this section, we first conduct an ablation study, especially evaluating the efficiency of
the proposed framework compared to supervised fine-tuning. For this purpose, we use
a variety of real-world and synthetic dense light field datasets which we sub-sample to
create our test sparse datasets with sampling ratios α = 2 and α = 4.

We then compare the proposed framework to two representative light field view synthesis
methods, a shearlet-based method [115] and a learning-based method (LFEPICNN) [109],
along with bilinear interpolation and disparity based view synthesis proposed in Chap-
ter 3.

For all our evaluations, the peak signal-to-noise ratio (PSNR) and the structural simi-
larity (SSIM) are computed over RGB images to evaluate the numerical performance of
the different methods. For each light field, unless emphasized specifically, the average
numerical results are computed over all synthesized views. All evaluations are performed
on the same machine to ensure the fairness of the comparison.

5.3.1 Ablation Study

For this study, we used dense light fields from real-world and synthetic datasets. For the
real-world dataset, we selected 27 real-world Lytro light fields captured by EPFL [1] and
INRIA [2] using Lytro Illum cameras, and 11 light fields from the Stanford dataset taken
by a camera gantry [4]. The Lytro Illum light fields are processed with the pipeline of
Matysiak et al. [186]. For the synthetic light field dataset, all 28 light fields from the
HCI benchmark [3] were used, as well as 160 light fields from the dataset of [157].

For testing, 10 light fields are used: 2 from EPFL, 2 from INRIA, 2 from Stanford, and
4 from HCI. All remaining light fields are used for training.

Test sparse light fields are sub-sampled from the original light fields with ratios α = 2 and

74



α = 4. More precisely, 9× 9 views are extracted from input light fields and considered
as dense ground truth, and 5× 5 and 3× 3 views are then sub-sampled to create sparse
light fields.

We conduct the ablation experiments by comparing to several variants of the proposed
framework. First, we use the pre-trained model of SepConv as the baseline. Since
the dense light field ground truth is available, we fine-tuned the SepConv model using
supervised training. We also evaluate the influence of the cycle loss by training our
framework using only the reconstruction loss. We also assess the performance of our
framework when vertical interpolation is performed before horizontal interpolation, as
opposed applying horizontal interpolation first as shown in Figure 5.2.

The numerical results are computed and averaged over all test light fields, and the
comparison is presented in Table 5.1. As we can observe, our proposed method can
outperform the pre-trained model even without the support of the ground-truth, and
achieve competing performance compared to fully supervised fine-tuning. It is also clear
that the use of the cycle loss improves the performance of our framework. In addition, we
can see that the cascading order of horizontal/vertical or vertical/horizontal interpolation
has a non-negligible impact on the final performance.

Table 5.1: Quantitative results of the ablation study.

α = 2 α = 4

PSNR(dB) SSIM PSNR(dB) SSIM

SepConv Pretrained 37.23 0.9880 34.66 0.9793
SepConv Supervised Fine-tuning 38.40 0.9921 35.81 0.9831

Ours without Cycle Loss 38.01 0.9883 35.25 0.9801
Ours with V-H CNN 38.14 0.9889 35.67 0.9817

Ours Full Model 38.30 0.9902 35.72 0.9830

5.3.2 Comparison to Light Field View Synthesis Methods

We compare our proposed framework against two existing light field view synthesis meth-
ods: shearlet-based reconstruction(Shearlet) [115], and LFEPICNN [109]. Moreover, we
also compared it to the pre-trained SepConv model and the disparity-based view syn-
thesis (DVS) results from our previous approach described in Chapter 3. We used the
implementations of Shearlet and LFEPICNN methods provided by original authors, and
carefully selected their parameters to maximize their performance.

Synthetic and real-world Datasets. We first perform evaluation on the synthetic
HCI, real-world Lytro and Stanford datasets, as each dataset corresponds to a different
disparity range discussed in 3.3.2. The quantitative of which is shown in Table 5.3,
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Table 5.2, and Table 5.4. Please note the each PSNR/SSIM score is average among
all synthetic sub-aperture views for each light field.

The shearlet-based reconstruction is almost always outperformed by all other four meth-
ods including ours. While shearlet-based reconstruction and LFEPICNN are designed
specifically for light fields and DVS mainly relies on the performance of the disparity es-
timator, they are only competitive on the Lytro dataset which has a very narrow disparity
range. Thus except for the Lytro dataset with α = 2, our proposed framework consis-
tently outperforms other light field view synthesis methods. Thanks to the application
of cycle consistency, our method also outperforms the pre-trained SepConv method. In
addition, it can be observed that our method is more robust when using sparser input
datasets such as when using a sub-sampling ratio α = 4 over all datasets.

We present visual comparisons for the ChezEdgar light field from the Lytro dataset and
LegoKnights from the Stanford dataset as examples of real-world scenes in Figure 5.5.
LegoKnights is a challenging case as it has wider disparity than other test light fields
and large texture-less regions. Shearlet [115], LFEPICNN [109] and DVS methods all
fail to produce plausible results and significant artefacts can be observed on challenging
areas, such as the tip of the sword and bricks on the background wall. In comparison,
our proposed approach generates results closer to the ground-truth. It demonstrates
that our method is more robust to different real-world scenes and is able to produce
more photo-realistic results for large disparity view synthesis.

A visual comparison of synthetic scenes is presented in Figure 5.6 using the Herbs and
Bicycle light fields from the HCI dataset [3]. As we can observe, Shearlet [115] fails
to reconstruct sharp details in texture-less regions, such as the door in Bicycle. The
results of LFEPICNN [109] are blurry in occluded regions, such as the leaves in Herbs
and the metal bin in Bicycle. To conclude, our method produces promising quantitative
and qualitative results on the synthetic HCI dataset and shows robustness to occlusions
and texture-less surfaces.
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Table 5.2: Numerical results on the real-world Lytro datasets [1, 2]

α = 2
PSNR(dB) SSIM

average Bee_2 Bikes ChezEdgar Desktop average Bee_2 Bikes ChezEdgar Desktop

Shearlet 33.11 32.34 34.32 32.82 32.95 0.9667 0.9467 0.9702 0.9755 0.9744
LFEPICNN 35.35 35.23 36.34 34.40 35.45 0.9864 0.9760 0.9928 0.9877 0.9892
SepConv 35.30 32.51 35.71 36.80 36.17 0.9836 0.9602 0.9942 0.9900 0.9901
Bilinear 37.33 35.49 37.98 38.03 37.82 0.9870 0.9705 0.9932 0.9925 0.9918
DVS 36.40 35.31 37.60 37.44 35.25 0.9866 0.9702 0.9930 0.9920 0.9912

CycleLF 36.76 34.96 37.26 37.53 37.28 0.9876 0.9727 0.9949 0.9917 0.9911

α = 4
PSNR(dB) SSIM

average Bee_2 Bikes ChezEdgar Desktop average Bee_2 Bikes ChezEdgar Desktop

Shearlet 29.99 27.89 30.42 30.58 31.09 0.9361 0.8423 0.9592 0.9738 0.9690
LFEPICNN 32.06 31.45 32.85 31.69 32.25 0.9640 0.9264 0.9804 0.9761 0.9732
SepConv 32.46 30.58 32.90 33.62 32.72 0.9712 0.9370 0.9859 0.9822 0.9797
Bilinear 32.60 30.29 32.50 34.12 33.10 0.9753 0.9010 0.9721 0.9835 0.9758
DVS 32.25 30.18 32.53 34.02 32.27 0.9594 0.8998 0.9745 0.9842 0.9793

CycleLF 33.62 32.61 33.93 34.20 33.73 0.9767 0.9535 0.9874 0.9845 0.9813
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Table 5.3: Numerical results on the synthetic HCI dataset [3]

α = 2
PSNR(dB) SSIM

average bedroom bicycle herbs origami average bedroom bicycle herbs origami

Shearlet 34.82 38.10 34.23 30.09 36.86 0.9734 0.9677 0.9864 0.9440 0.9955
LFEPICNN 34.25 36.98 32.65 31.92 35.47 0.9692 0.9856 0.9834 0.9264 0.9814
SepConv 38.89 41.22 36.16 37.06 41.11 0.9943 0.9946 0.9941 0.9911 0.9976
Bilinear 31.45 33.37 30.71 28.76 32.97 0.9397 0.9672 0.9649 0.8586 0.9682
DVS 37.67 41.08 34.80 35.82 38.98 0.9931 0.9945 0.9929 0.9880 0.9972

CycleLF 39.87 41.77 37.15 38.51 42.06 0.9953 0.9949 0.9948 0.9937 0.9980

α = 4
PSNR(dB) SSIM

average bedroom bicycle herbs origami average bedroom bicycle herbs origami

Shearlet 29.88 31.20 28.88 27.34 32.13 0.8911 0.9246 0.9038 0.8083 0.9274
LFEPICNN 30.42 32.83 29.42 28.43 31.01 0.9172 0.9449 0.9472 0.8257 0.9508
SepConv 36.24 39.43 33.39 34.12 38.01 0.9888 0.9923 0.9875 0.9785 0.9958
Bilinear 28.04 30.09 26.82 26.69 28.55 0.8733 0.9069 0.8909 0.7760 0.9194
DVS 34.94 39.44 31.81 33.15 35.37 0.9855 0.9931 0.9824 0.9732 0.9933

CycleLF 37.44 39.77 34.73 35.68 39.58 0.9913 0.9932 0.9884 0.9866 0.9970
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Table 5.4: Numerical results on the real-world Stanford Gantry datasets [4]

α = 2
PSNR(dB) SSIM

average LegoKnights TheStanfordBunny average LegoKnights TheStanfordBunny

Shearlet 31.46 24.79 38.13 0.8906 0.7990 0.9822
LFEPICNN 34.68 29.38 39.97 0.9407 0.8967 0.9846
SepConv 37.80 34.22 41.38 0.9843 0.9797 0.9889
Bilinear 32.57 26.17 38.98 0.9141 0.8463 0.9819
DVS 35.67 30.64 40.70 0.9765 0.9642 0.9888

CycleLF 38.23 34.72 41.73 0.9853 0.9816 0.9890

α = 4
PSNR(dB) SSIM

average LegoKnights TheStanfordBunny average LegoKnights TheStanfordBunny

Shearlet 29.04 22.59 35.49 0.8484 0.7201 0.9768
LFEPICNN 30.46 24.81 36.11 0.8762 0.8010 0.9514
SepConv 35.92 31.31 40.53 0.9767 0.9651 0.9883
Bilinear 28.60 22.85 34.35 0.8441 0.7398 0.9484
DVS 32.87 27.51 38.23 0.9586 0.9303 0.9869

CycleLF 36.47 31.92 41.02 0.9791 0.9696 0.9885
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Figure 5.5: Visual comparison on the INRIA ChezEdgar and Stanford Lego Knights light
fields. (a) Ground-truth. (b) Shearlet [115]. (c) LFEPICNN [109]. (d) Bilinear. (d)
DVS. (e) CycleLF.

Figure 5.6: Visual comparison on the synthetic HCI dataset [3]. (a) Ground-truth. (b)
Shearlet [115]. (c) LFEPICNN [109]. (d) Bilinear. (d) DVS. (e) CycleLF.

Wide Baseline Datasets. To investigate the performance of our view synthesis
method on light field scenes with large disparity range, we evaluate our method on
three wide baseline datasets: HDCA [5], MPI [6] and CIVIT [7]. We also compare our
method to a more recent light field view synthesis method CycleST [171]. The High
Density Camera Array (HDCA) dataset [5] is originally composed of size 101(99)×21×
3976 × 2652 × 3. We followed the same data preprocessing as [171, 187] to unify the
resolution as 97× 21× 1280× 720 and avoid the black border observed in the original
images. When the sampling factor α is set as 16, the resulting input number of views is
7. Note that we only perform horizontal view synthesis for every row of light field input
views. We also select two light fields from the MPI light field archive [6] and five light
fields from the Centre for Immersive Visual Technologies (CIVIT) dataset [7]. Both of
them are horizontal-parallax light fields. We keep the same experiment setting as the
HDCA dataset, in that the top 97 views are used as ground truth to be reconstructed
from input 7 views along with sampling ratio α = 16. The numerical results for HDCA,
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Table 5.5: Numerical results on the HDCA dataset [5]

α = 16
Disparity(pix) PSNR(dB) SSIM

dmin dmax drange CycleST CycleLF CycleST CycleLF

average 31.15 19.85 0.9391 0.6939

Set Books and charts Scene 25.0 44.0 19.0 34.43 18.97 0.9818 0.8378

Set Lego City Scene 27.0 49.0 22.0 27.27 16.18 0.8871 0.4361

Set Lightfield Production Scene 28.0 55.0 27.0 30.44 18.22 0.9332 0.5126

Set Plants Scene 25.0 55.0 30.0 32.01 19.04 0.9522 0.6999

Set Table in the garden Scene 25.0 54.0 29.0 32.74 23.21 0.9551 0.8526

Set TableTop I Scene 25.0 54.0 29.0 36.24 23.51 0.9767 0.8245

Set TableTop II Scene 26.0 43.0 17.0 27.47 16.50 0.9107 0.5373

Set TableTop III Scene 28.0 49.0 21.0 28.00 16.66 0.9218 0.5514

Set Workshop Scene 28.0 55.0 27.0 32.39 20.04 0.9473 0.5858

Table 5.6: Numerical results on the MPI dataset [6]

α = 16
Disparity(pix) PSNR(dB) SSIM

dmin dmax drange CycleST CycleLF CycleST CycleLF

average 32.10 35.87 0.9782 0.9899

Bikes -14.0 9.5 23.5 30.64 33.64 0.9695 0.9857

Workshop -6.5 16.5 23.0 33.55 38.09 0.9869 0.9940

MPI and CIVIT dataset are shown in Table 5.5, Table 5.6 and Table 5.7, respectively.
As we can observe, our method CycleLF performs worse remove on the HDCA as this
dataset has wider disparity range (25 ∼ 55 pixels). However, CycleLF shows the ad-
vantage of video interpolation based methods on the MPI and CIVIT datasets as they
has more narrow disparity range (< 16.5 pixels). Please note this experiment did not
use any light field from these three datasets in the retraining step, however it is reason-
able to expect improvement if the re-training dataset would include such light fields, in
particular wide baseline light field from the HDCA dataset.

5.4 Conclusion

In this chapter, we proposed a novel self-supervised framework to reconstruct dense light
fields by synthesizing novel intermediate light field views. To adopt small-sized light field
datasets, we introduced the cycle consistency mechanism to fine-tune a pre-trained video
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Table 5.7: Numerical results on the CIVIT dataset [7]

α = 16
Disparity(pix) PSNR(dB) SSIM

dmin dmax drange CycleST CycleLF CycleST CycleLF

average 35.91 38.25 0.9767 0.9836

Castle -2.0 12.0 14.0 34.79 36.54 0.9606 0.9659

Dragon -9.0 7.0 16.0 39.52 40.95 0.9875 0.9880

Flowers -6.5 7.5 14.0 34.19 37.66 0.9841 0.9909

Holiday -8.0 6.0 14.0 30.78 34.04 0.9628 0.9800

interpolation method in a self-supervised fashion. In this context, this method does not
require paired ground-truth and is able to use for any low angular resolution light field
input. The proposed method outperforms other approaches on various light fields, in
particular, given handling wide disparity inputs. In addition, our method can be adapted
to any video interpolation approach, and let any 2D video interpolation into applying
to light field data. For future work, we may focus on adopting the proposed method to
more challenging scenarios, such as very sparse light fields captured by camera arrays.
This may require additional priors to handle the sparsity.
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6 Conclusions and Outlook

Light field reconstruction is crucial for practical applications and still poses many chal-
lenges as an open research problem. In this work we investigate efficient and accurate
light field reconstruction from various perspectives, including depth based rendering,
deep learning based view synthesis and view selection strategies. In this chapter, we
first summarize the main results and contributions, then we also outline potential future
research.

6.1 Conclusions

One possible solution to reconstruct dense light fields is a cascade of geometry estima-
tion in the spatio-angular domain and the forward warping of input views to generate
novel views. To accomplish the reconstruction, extracting accurate depth using com-
prehensive high-dimensional information captured by the light field becomes the core
component. In Chapter 3, we adapt optical flow based disparity estimation to the an-
gular dimension of the light field. Our framework combines sparse initialization with
edge-aware filtering, which preserves local geometric details and shows a reduced com-
putational expense compared to global optimization. Inherent consistency is reinforced
by employing edge-aware filtering in the angular domain. This approach demonstrates
efficiency and accuracy compared to state-of-the-art depth estimation methods from
light fields. Furthermore, compared to deep learning based methods, it doesn’t require
huge amounts of data as prior knowledge.

Light fields provide abundant high dimensional information, which causes significant
computation complexity to process all views. View selection strategies plays a crucial role
in determining the most important views and maximizing the performance of light field
processing. However, even though light field reconstruction has been extensively studied
in many previous works, existing approaches don’t pay enough attention on carefully
selecting views from a 4D light field. In Chapter 4, we highlight the importance of view
selection strategies by comparing the influence of different strategies on the performance
of light field processing. The evaluation of this study is performed using one selected
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benchmark method, which is utilized to compare three strategies for subsampling and
six for reconstruction following the same principle. Our experimental results reveal the
advantages of specific strategies which would be beneficial for further applications.

While application of deep learning in image processing is booming, it is promising to
utilize the approximation capability of data-driven methods to reconstruct high dimen-
sional information of a light field. However, compared to the size of general single
image datasets, light field datasets are generally small sized due to the high expense
of corresponding acquisition. In Chapter 5, we adapt the concept of cycle consistency
to enable the training in a self-supervised fashion, which reduces the need for train-
ing data compared to conventional learning methods. We also adapt a state-of-the-art
video interpolation approach to the angular domain, which is capable of transferring
a comprehensive model extracted from large-scale video datasets to the light field do-
main. Experiments demonstrate the success in visually producing promising results and
numerically outperforming state-of-the-art methods on both synthetic and real-world
datasets.

6.2 Future Work

This thesis introduces several novel ideas about generalized reconstruction of light fields.
In this final section, we will outline some interesting directions for refinement or appli-
cation that could be worth to investigate further.

In Chapter 3, we incorporate an optical flow based method to estimate geometry in-
formation from light fields. This shows success in depth estimation and view synthesis
for light fields. It mainly is dependent to the estimation on pixel intensity and it would
be interesting to involve perceptual information as prior knowledge, such as contextual
awareness [152]. Such an improved depth estimator would be beneficial for the consec-
utive rendering application. Moreover, the depth estimation step can be integrated to a
CNN and more high level features can be extracted by various deep learning techniques.
This could be helpful for handling scenes for instance with lighting changes or large
displacements, which is challenging for conventional methods.

In Chapter 3 and Chapter 5, we demonstrate light field view synthesis solutions along
one angular dimension. Our method demonstrates advantages among state-of-the-art
methods, however, there still is space for improvement. For future attention, exploiting
inherent consistency of the 4D structure of light fields may be meaningful to unleash
the potential power hidden in light fields. For example, one potential direction could be
to utilize 3D/4D convolutions or novel loss functions to extract and utilize features in
higher dimensions.
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Currently, we focus on light fields with limited range of disparity, which are usually
captured by acquisition systems with narrow baseline between two adjacent lenses. There
are still many other issues while light fields are employed in practical applications, such as
very sparse light fields [28], unstructured light fields [107] and more. Large displacement
could be the main issue in these two mentioned cases, and we believe one potential
solution for this problem would be maintaining the identification of pixels or objects
along the angular dimension, which could be implemented with deep learning techniques
such as recognition, tracking or attention mechanisms.

In Chapter 4, we present the significant influence of the view selection strategy on
light field view processing. We utilize the simplest evaluation to select the optimal view
selection strategy. We believe there are more advanced techniques that can be employed
to analyse the "redundancy" of light field views. One attempt would be integrating
attention mechanisms to determine views that contribute most [90] and optimizing the
different strategies utilizing views from specific locations regarding different tasks.
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