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Abstract: The Sustained Attention to Response Task (SART) has been used to measure neurocogni-
tive functions in older adults. However, simplified average features of this complex dataset may 
result in loss of primary information and fail to express associations between test performance and 
clinically meaningful outcomes. Here, we describe a new method to visualise individual trial (raw) 
information obtained from the SART test, vis-à-vis age, and groups based on mobility status in a 
large population-based study of ageing in Ireland. A thresholding method, based on the individual 
trial number of mistakes, was employed to better visualise poorer SART performances, and was 
statistically validated with binary logistic regression models to predict mobility and cognitive de-
cline after 4 years. Raw SART data were available for 4864 participants aged 50 years and over at 
baseline. The novel visualisation-derived feature bad performance, indicating the number of SART 
trials with at least 4 mistakes, was the most significant predictor of mobility decline expressed by 
the transition from Timed Up-and-Go (TUG) < 12 to TUG ≥ 12 s (OR = 1.29; 95% CI 1.14–1.46; p < 
0.001), and the only significant predictor of new falls (OR = 1.11; 95% CI 1.03–1.21; p = 0.011), in 
models adjusted for multiple covariates. However, no SART-related variables resulted significant 
for the risk of cognitive decline, expressed by a decrease of ≥ 2 points in the Mini-Mental State Ex-
amination (MMSE) score. This novel multimodal visualisation could help clinicians easily develop 
clinical hypotheses. A threshold approach to the evaluation of SART performance in older adults 
may better identify subjects at higher risk of future mobility decline. 

Keywords: sustained attention to response task; SART; multimodal visualization; threshold; timed 
up-and-go; falls; cognition; repeated measures; mobility decline 
 

1. Introduction 
Computer-based neurocognitive tests are commonly utilised in research [1], and in-

creasingly, in clinical practice, for both the detection and rehabilitation of cognitive disor-
ders in adults [2]. However, the raw outputs from computer-based tests pose methodo-
logical and interpretation challenges, owing to the lack of optimal assays for the precise 
characterisation of latent neurocognitive processes, and shortcomings of many current 
methods to allow direct visualisation of multi-modal data that could help clinicians gen-
erate more meaningful hypotheses and predictions [3,4]. These challenges are only mag-
nified in the case of computer-based repeated-measures neurocognitive data stemming 
from large-scale studies. 

A common approach in many research designs has been to simplify the raw com-
puter outputs into average features, such as mean and standard deviation of response 
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time, as surrogates of overall performance and variability [5]. However, by simplifying 
the data in this fashion, much primary information is lost and, consequently, researchers 
can be left facing unexpected lack of association between results from this approach and 
clinical outcomes of interest (e.g., disease severity categories). In this scenario, researchers 
have suspected that the loss of physiologically important information in the simplified 
data analysis may be responsible for the inability to detect clinically expected associations 
[5]. Indeed, information averaging can result in loss of power and once a simplified pre-
dictor has been created and used in analyses, results should be interpreted considering 
the dimension of the derived variable, not at the level of the individual original variable 
[6]. 

The Sustained Attention to Response Task (SART) is a standard computer-based cog-
nitive test designed to measure the sustained attention, a fundamental executive function 
for completing tasks that require supervision over time [7]. Sustained attention is a result 
of the interaction between two different subsystems: vigilance and arousal (alertness) 
[8,9]. Vigilant attention allows to detect subtle changes in the environment occurring over 
long periods of time [8,10], and relies on a network of cortical areas including the cingulate 
gyrus, prefrontal cortex and inferior parietal lobule, as imaging studies have demon-
strated [11,12]. The maintenance of an adequate level of arousal is necessary to detect tar-
get stimuli [8]. Electrophysiology and functional neuroimaging studies have demon-
strated that arousal is activated through a subcortical network including the thalamus and 
noradrenergic brainstem structures [13,14]. The SART is a continuous performance reac-
tion-time (RT) task designed to promote attention lapses; participants are required to 
monitor visual displays acknowledging responses for frequent neutral signals (GO trials), 
but withholding response when detecting rare targets (NO–GO trials) [5,15]. Commission 
errors (responding to NO–GO trials) or omission errors (failure to respond to GO trials) 
reflect lack of vigilance, while the RT is a measure of alertness. In older adults, SART has 
been shown to be correlated with frailty [16] and falls efficacy [17]. However, due to its 
complex granular intrinsic structure, the optimal way to approach the analysis of SART 
data remains the subject of debate. 

Moreover, recent studies [18,19] have shown a complex network of interactions 
among different physiological systems and, particularly, between the brain and the loco-
motor system. We hypothesised that having information on the cognitive and mobility 
status in the same SART data visualisation would provide clinicians with a more compre-
hensive framework of general physiological status, even in the absence of clear clinical 
evidence of mobility or cognitive disorders, and therefore help formulate hypotheses re-
lated to potential future health risks. 

The Timed Up-and-Go (TUG) is a well-established test to measure mobility and pre-
dict risk of falls in older adults [20,21]. In the framework of longitudinal studies of ageing, 
there is not a unique consensus on the relationship between mobility and cognition. Re-
cent works have shown that baseline quantitative gait parameters are significant predic-
tors of cognitive decline and dementia in older adults [22,23]. However, a previous study 
in community-dwelling older adults who were cognitively intact at baseline demon-
strated the absence of associations between baseline mobility and future cognitive decline, 
where the latter was expressed by traditionally derived SART variables and other cogni-
tive measures [24]. 

On the other direction of the association, recent studies have suggested that older 
participants with poorer choice reaction or stop-signal reaction times may display an ac-
celerated pattern of mobility decline [25] and have a higher risk of incident falls [26]. As 
this type of study had not previously been attempted with SART data, we were therefore 
motivated to investigate potential relationships between SART performance and the risk 
of either a clinically meaningful mobility decline or future falls, utilising novel approaches 
to classify participants based on their baseline SART performance. Moreover, we consid-
ered the Mini-Mental State Examination (MMSE) score as a standard measure of overall 
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cognitive status [27], and in line with previous works, we also investigated the hypothet-
ical association between SART performance and a clinically meaningful decline in MMSE 
score. 

To address the above hypotheses more effectively through the utilisation of the raw 
SART data, we aimed to devise a new method to visualise the full information obtained 
from the SART tests performed by a large sample of older participants in a large popula-
tion-based study, which allowed us to extract features otherwise potentially hidden in 
derived variables. The individual trial (raw) data visualisation allowed ordering by con-
tinuous variables (e.g., age) and also discrete groups of clinical interest (e.g., baseline mo-
bility impairment present versus absent). Furthermore, we formulated a new thresholding 
method based on the individual trial percentage of mistakes to individuate a subset of 
participants considered to have a poor SART performance, tested the correlations of this 
new subdivision with mobility decline measured by TUG and gait speed, risk of future 
falls, and cognitive decline, and compared its predictive power with other traditional 
global SART parameters. 

2. Materials and Methods 
2.1. Dataset 
2.1.1. Design and Setting 

This research was carried out as part of The Irish Longitudinal Study on Ageing 
(TILDA), an ongoing nationally representative prospective cohort study of community-
dwelling adults. TILDA collects information on the health, economic, and social circum-
stances of people aged 50 years and over in Ireland. Participants were randomly recruited 
based on their geographic location. The full design of the study and cohort characteristics 
have been described elsewhere [28,29]. Wave 1 of the study (baseline) took place between 
October 2009 and February 2011 and included (i) a comprehensive health assessment con-
ducted at a dedicated health assessment centre (HAC) and (ii) a computer-assisted per-
sonal interview (CAPI) in participants’ own homes, which involved a collection of de-
tailed data on health, social, and economic factors. Wave 3 of TILDA was conducted be-
tween March 2014 and December 2015 (approximately 4 years after wave 1) and com-
prised the same modes of data collection described above. Ethical approvals for each wave 
were granted from the Health Sciences Research Ethics Committee at Trinity College Dub-
lin, Dublin, Ireland, and all participants provided written informed consent. All research 
was performed in accordance with the Declaration of Helsinki. 

2.1.2. SART Protocol 
The SART is a computerised continuous performance reaction time (RT) task [7]. It 

requires participants to respond to a repeating stream of consecutive digits 1 to 9 (GO 
trials) but withhold responding to the digit 3 (NO–GO trials). 

In the SART test, each digit appears for 300 milliseconds (ms), with an interval of 800 
ms between digits. The cycle of digits 1 to 9 is repeated 23 times, giving a total of 207 trials. 
The test lasts for approximately 4 min. Participants are instructed to press a keyboard key 
as soon as possible (with RT automatically recorded using Presentation version 16.5) for 
each digit presented. RT is null (RT = 0) for the appearance of the digit 3 when no mistakes 
are committed. For a hypothetical perfect task, there are 8 × 23 = 184 non-null values cor-
responding to the RT when the participant is supposed to press the key, and 23 null values 
corresponding to the trials when the participant is not supposed to press the key. In prac-
tice, over the course of the test, many participants lose attention and commit mistakes. 
Two types of mistakes can be detected in the data: commission errors (i.e., responding to 
NO–GO trials), which reflect lapses of sustained attention; and omission errors (i.e., fail-
ure to respond to GO trials), reflecting a break from task engagement, also corresponding 
to lapsing attention [5]. In this work, we considered SART data from wave 1 of TILDA. 
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2.1.3. Mobility Variables 
- TUG: TUG measures the time (seconds) taken for a participant to stand up, walk 3 

metres at normal pace along a line on the floor, turn around, walk back to the chair, 
and sit down [20]. The test is not just a measure of physical ability, in fact it requires 
an individual to process instructions, plan and execute movements, focusing on the 
task and avoiding distractions. This cognitive component makes the test more com-
plex than straight-line walking. Generally, a cut-off of 12 [21,30] or 14 [31,32] seconds 
(s) is clinically used to discriminate participants with significant mobility impair-
ment. The TUG in wave 1 (𝑇𝑇𝑇𝑇𝐺𝐺1) and wave 3 (𝑇𝑇𝑇𝑇𝐺𝐺3) were utilised in this study. Given 
our aim to capture risk of early mobility decline in this relatively healthy community-
based sample, we chose the more restrictive cut-off of 12 s to define clinically signif-
icant mobility impairment in both waves. Specifically, we defined mobility decline 
(TUG decline) for a given participant when 𝑇𝑇𝑇𝑇𝐺𝐺1 was less than 12 s (𝑇𝑇𝑇𝑇𝐺𝐺1 < 12) and 
𝑇𝑇𝑇𝑇𝐺𝐺3 larger or equal than 12 s (𝑇𝑇𝑇𝑇𝐺𝐺3 ≥ 12). 

- Gait speed: gait speed was assessed using a computerised walkway (4.88m GAI-
TRite™ (CIR Systems Inc., Franklin, NJ, USA) pressure sensing mat) [24,33]. Partici-
pants performed two walks at usual pace, starting and finishing 2.5 m before and 
2.0 m after the walkway. The measured gait speed was calculated as an average be-
tween the two walks and did not include the acceleration and deceleration phases. 
Cut-offs between 30 and 120 cm per second (cm/s) are generally used to individuate 
mobility disability (range 30–100 cm/s) [33] and slow usual pace in older adults 
(range 80–120 cm/s) [34–36]. We considered the usual gait speed (UGS) at wave 1 
(𝑇𝑇𝐺𝐺𝑆𝑆1) and at wave 3 (𝑇𝑇𝐺𝐺𝑆𝑆3), and defined UGS decline for a given participant when 
𝑇𝑇𝐺𝐺𝑆𝑆1 was greater or equal than 100 cm/s (𝑇𝑇𝐺𝐺𝑆𝑆1 ≥ 100 cm/s) and 𝑇𝑇𝐺𝐺𝑆𝑆3 smaller than 
100 cm/s (𝑇𝑇𝐺𝐺𝑆𝑆3 < 100 cm/s). 

- Falls: as part of the CAPI, participants were asked whether they had falls in the year 
prior to the interview. We recorded the number of recalled falls in wave 1 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠1) 
and wave 3 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠3), and defined as new fallers those participants who had at least 1 
fall in the year prior to the examination at wave 3 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠3 > 0) and no falls in the year 
prior to the examination at wave 1 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠1 = 0). 

2.1.4. MMSE 
Global cognitive function was assessed using the Mini-Mental State Examination 

(MMSE) test, giving participants a score from 0 (minimum) to 30 (maximum) [27,37,38]. 
We considered the MMSE score in wave 1 (𝑀𝑀𝑀𝑀𝑆𝑆𝐸𝐸1) and wave 3 (𝑀𝑀𝑀𝑀𝑆𝑆𝐸𝐸3) and, in line with 
previous recommendations [39], defined as clinically meaningful cognitive decline a de-
crease of at least 2 points between wave 1 and 3 (𝑀𝑀𝑀𝑀𝑆𝑆𝐸𝐸1 ─ 𝑀𝑀𝑀𝑀𝑆𝑆𝐸𝐸3 ≥ 2). 

2.1.5. Covariates 
Several potentially relevant covariates at wave 1 were considered in this work: (a) 

features extracted from the SART multimodal visualisation (see below), in addition to the 
traditional SART mean and standard deviation (SD) of RTs (across all trials) both meas-
ured in milliseconds (ms); (b) sociodemographic variables: age, sex, and education level 
(categorised as primary/none, secondary or third/higher); (c) variables expressing the psy-
chological status of participants: anxiety, assessed with the anxiety subscale of the Hospi-
tal Anxiety and Depression Scale (HADS-A) [40], which ranges in scores from 0 to 21 
(higher scores indicating more symptoms of anxiety); depression, assessed with the Cen-
tre for Epidemiological Studies Depression (CES-D) scale [41], which ranges in scores 
from 0 to 60 (higher scores indicating worse depressive status); and (d) variables related 
to the physical status of participants: whether or not they were taking any antihyperten-
sive medications (coded using the Anatomical Therapeutic Chemical Classification (ATC) 
[42]: antihypertensive medications (ATC C02), diuretics (ATC C03), β-blockers (ATC C07), 
calcium channel blockers (ATC C08), and renin-angiotensin system agents (ATC C09)), 
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had history of diabetes, self-reported smoking (categorised as never, past, or current) and 
alcohol consumption habits (the answer to the question “Do you have a drinking prob-
lem?” (yes, no, or I don’t know) was recorded), UGS at baseline, and physical activity 
status based on the International Physical Activity Questionnaire (IPAQ) (short form) 
scoring protocol [43] (categorised as low, medium, or high). 

2.2. Multimodal Visualisation 
All analyses and graphical representations were created with MATLAB (R2020b, The 

MathWorks, Inc., Natick, MA, USA). 

2.2.1. Entire Sample 
1. SART RT representation: we considered the number of mistakes (commission and/or 

omission errors) committed within each trial, and the average RT for all correct ac-
tions in that trial. We then represented a spot for each trial and participant, the posi-
tion of which depended on its average RT, and the size on the percentage of errors 
committed in the corresponding trial. Thus, each participant had 23 spots arranged 
on the same vertical line, corresponding to the 23 SART trials. SART performance is 
known to be influenced by age [44]; therefore, we recorded the age of participants 
and ordered the visualisations by increasing age as a continuous variable. The spots 
corresponding to different participants were organised horizontally from youngest 
(left) to oldest (right). For ease of interpretation, ticks were created to indicate a 5-
year age change: the distances on the horizontal axis between two consecutive ticks, 
corresponding to a 5-year range, were not always the same, since most of the cohort 
was between 50 and 65 years old. Of note, trials where the participant did not press 
the key at any time and/or some RT were missing, did not have the corresponding 
computed average RT, and were not plotted in the graph. Bigger spots correspond to 
trials with higher number of mistakes. Moreover, the spots were also colour-coded 
based on the percentage of mistakes, going from light brown (0 mistakes) to black for 
the maximum number of mistakes (8 mistakes in order to have at least 1 RT and as-
sign the position to the spot). Spots with size larger than 2 SD from the mean size 
calculated across all trials and all participants (excluding missing data and trials with 
0 correct actions) were highlighted by white edges in the graph and labelled as “big 
spots”. A complete mathematical explanation of the SART RT representation is given 
in an appendix to this work (Appendix A). 

2. SART mistakes line: to further visualise our dataset, we calculated the sum of mistakes 
made by each participant across all trials, and we represented this value as an addi-
tional line function in the same graph above the previously explained cloud plot. The 
mistakes line function is not linearly related to the size of the spots and indicates a 
global parameter for each participant over the whole task. 

3. MMSE and TUG lines: additionally, the graph was enriched by the presentation of 
participants’ MMSE score and TUG at wave 1. These values were multiplied by a 
factor 3 to be visible at the same graph scale. 

2.2.2. Thresholded Multimodal Visualisation 
To ease the visual detection of “big spots” and highlight poor performances that may 

have been ‘buried’ in the dense cloud plot, a second graph was created containing only 
the “big spots”. All of the above-mentioned notations regarding the coordinates, size and 
colour of the spots still apply. The curves representing the number of mistakes, MMSE 
score, and TUG were now limited to only subjects who had at least one big spot. 

2.2.3.. Application to Categories Stratification and Threshold 
We applied the above-described multimodal visualisation methods to allow addi-

tional categorisation to discern participants with 𝑇𝑇𝑇𝑇𝐺𝐺1 ≥ 12 s. Specifically, SART trials 
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for participants with low TUG were presented with dark blue spots, and the trials for 
participants with high TUG with light blue spots on the right part of the graph, sequen-
tially after the low TUG participants along the horizontal axis. Notably, we ordered par-
ticipants by age within each category. Therefore, we could appreciate in the same graph 
multiple levels of information of the dataset analysed: (1) SART RT characteristics across 
different trials for each participant, and across different participants; (2) distribution of 
the SART RT by age and for different baseline TUG categories; and (3) global parameters 
like number of total mistakes, MMSE score, and TUG represented as continuous curves in 
the top part of the graph (where void spots in the curves were due to missing data for 
some participants). 

2.2.4. Feature Extraction 
We extracted some features directly from the multimodal visualisation: (a) mean RT 

and SD RT, (b) whether or not a participant had bad performances (“big spots”), especially 
in the thresholded visualisation, and (c) based on the size and colour of the spots, it was 
possible to understand how each participant performed in each trial, and if their perfor-
mances were consistent to each other in the whole task in terms of mistakes committed, 
or if the variation of performance between different trials was high. We subsequently cre-
ated a new variable that indicated the number of bad performances for each participant 
(i.e., number of big spots). 

2.3. Statistical Analysis 
We considered the evolution of mobility variables over time. Specifically, we com-

pared the distribution of TUG and UGS values in the same group of participants at wave 
1 and wave 3 using the Wilcoxon test, a nonparametric test used to compare related sam-
ples [45,46]. We then compared the TUG and UGS change between participants who at 
wave 1 did not have any SART bad performances, and those who had at least one bad 
performance. We compared these two subsets of participants using the Mann–Whitney U 
test, a nonparametric test used to compare independent samples [47,48]. All the statistical 
tests were performed in IBM SPSS Statistics version 27 (IBM Corp., Armonk, NY, USA). 
Statistical significance was set at 𝑝𝑝 <  0.05 throughout. 

2.3.1. Binary Logistic Regression 
Binary logistic regression models were used to predict the binary outcomes that we 

considered to be clinically meaningful. Specifically, we tested whether the new variable 
reporting the number of “bad performances” in SART at wave 1 was a good predictor of 
mobility decline: we assigned 1 to participants with TUG decline as defined in Section 2.1.3, 
and 0 otherwise; correspondingly we assigned 1 to participants with UGS decline as de-
fined in Section 2.1.3, and 0 otherwise. Similarly, we assigned 1 to new fallers, as defined 
in Section 2.1.3, and 0 otherwise. Moreover, we also tested the prediction strength of the 
new variable for cognitive decline, as defined in Section 2.1.4. These 4 dichotomous vari-
ables were set as outcomes in the binary logistic regression models, from which we re-
ported the odds ratio (OR) with corresponding 95% confidence interval (C.I.) and p-value 
for each independent variable in the model. The OR expresses the odds that an outcome 
will occur in the presence of an independent variable, compared to the odds that the out-
come will occur in the absence of that variable, therefore if 𝑂𝑂𝑂𝑂 > 1 the independent var-
iable influences positively the odds of the outcome, if 𝑂𝑂𝑂𝑂 < 1 the independent variable 
influences negatively the odds of the outcome, i.e., it is “protective” against the outcome, 
and if 𝑂𝑂𝑂𝑂 = 1 the independent variable does not influence the outcome [49,50]. For each 
binary outcome, wave 1 covariates were used in four different regression models to incre-
mentally determine the robustness of the predictor, as follows: model 1, with just the pre-
dictor; model 2, which was model 1 additionally adjusted with mean RT and SD RT; 
model 3, which was model 2 with the addition of age, sex, and education level; and model 
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4, which was the fully adjusted regression model, considering also all the other covariates 
mentioned in Section 2.1.5 (anxiety, depression, hypertensives, diabetes, smoking, alco-
hol, and IPAQ). 

2.3.2. Comparison with Two Other Potential Predictors 
In order to test the prediction strength of our new SART feature of interest (i.e., ‘num-

ber of bad performances’) for the four binary outcomes of clinical interest, the same four 
different binary logistic regression models were applied considering the same covariates 
mentioned before but substituting the ‘number of bad performances’ with the global var-
iable ‘number of total mistakes’ in the whole SART task, and the ‘number of mistakes in 
good performances’. The latter was obtained summing up the number of mistakes in per-
formances that did not reach the threshold defined in Section 2.2.1, and therefore did not 
amount to “big spots”. Of note, every time that we applied the binary logistic regression 
model (whether adjusted by covariates or not) we considered only one of these three po-
tential predictors, because we were interested to individuate a variable that had good pre-
dictive power for the outcome and could be used independently from the other predictors. 
Indeed, the presence of different predictors would lead to a mixed effect on the outcome 
probability, and the predictive power would depend on the combination of predictors, 
and not on the individual predictors. Each adjusted model, considering the three different 
predictors separately, had been tested for multi-collinearity (based on Spearman’s corre-
lation). We compared the OR of the three predictors, whilst noting the degree of overlap 
in the 95% C.I.s and the corresponding p-values. 

2.3.3. Sensitivity Analysis 
In order to test the robustness of the new variable bad performances, and to evaluate 

its ability to predict the outcomes in the binary logistic regression models compared to the 
performance of the other two SART-related predictors, we considered a further logistic 
model, model 4a, which was model 4 adjusted with a mobility-related covariate UGS at 
baseline wave 1. In this case, we considered the significance of the three main potential 
predictors, and compared their OR, whilst noting the degree of overlap in the 95% C.I.s. 

3. Results 
In total, 8175 participants over the age of 50 years were included in wave 1 of TILDA, 

of which 5035 attended the health centre assessment. Among those, SART data were avail-
able for 4864 participants (54.6% female, aged 50 to 93 years, with mean 61.7 ± 8.3 years). 
Table 1 presents descriptive statistics for the variables used in this work for the baseline 
wave 1 cohort (𝑁𝑁 = 4864), and the merged cohort for waves 1 and 3 (𝑁𝑁 = 3890). 

Table 1. Descriptive statistics for the whole set of variables considered in this study at wave 1 for the entire dataset (cohort 
1, 𝑁𝑁 = 4864) and the merged dataset (cohort 2, N = 3890). The first part of the table gives minimum and maximum values, 
and mean and SD for each continuous variable. The second part shows ordinal or nominal variables and their frequency 
in percentage. 

Continuous Variable 
Cohort 1 (Wave 1): 
Mean (SD); Range 

Cohort 2 (Merged Wave 1–3):  
Mean (SD); Range 

SART bad performances 
0.3 (1.1); 0.2 (1.0); 

0–21 0–20 

SART: Total mistakes 
11.0 (12.3); 10.3 (11.7); 

0–117 0–117 

SART: Mistakes in good performances 
9.8 (9.6); 9.3 (9.1); 

0–60 0–60 

SART: Mean RT (ms) 
385.3 (96.1); 383.3 (94.4); 
168.9–836.5 168.9–836.5 
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SART: SD RT (ms) 
72.9 (41.6); 71.3 (40.6); 
12.8–364.2 12.8–364.2 

TUG (s) 
8.6 (2.1); 8.5 (1.9); 
4.3–39.3  4.8–28.7 

UGS (cm/s) 
136.0 (20.5); 136.6 (19.7); 
28.7–213.9 43.1–207.5 

Falls 
0.4 (1.7); 0.4 (1.4); 

0–52 0–50 

MMSE 
28.7 (1.8); 28.8 (1.8); 

0–30 0–30 

Age (years) 
61.7 (8.3); 61.5 (8.1); 

50–93 50–90 

Anxiety 
5.4 (3.6); 5.4 (3.5); 

0–20 0–20 

Depression 
5.6 (6.9); 5.4 (6.8); 

0–53 0–53 

Ordinal/Nominal Variable 
Cohort 1 (Wave 1) 

Frequency (%) 
Cohort 2 (Merged Wave 1–3) 

Frequency (%) 
Female 54.6 54.6 
Education level   
- primary/none 21.2 19.5 
- secondary 41.9 41.5 
- third/higher 36.9 38.9 
Antihypertensives 13.3 32.4 
Diabetes 6.2 6.1 
Smoker   
- never 45.9 46.7 
- past 39.3 39.6 
- current 14.9 13.6 
Drinking problem 12.8(9.1 *) 13.2(7.6 *) 
IPAQ   
- low 27.5 26.9 
- medium 35.9 36.0 
- high 35.7 36.2 

* Dummy group of participants who answered “Don’t know” to the question “Do you have a drinking problem?”. 

3.1. Information Provided by the Multimodal Visualisation 
Figure 1 shows the multimodal visualizations based on 𝑁𝑁 = 4864  participants. 

There were in total 1222 “big spots” representing bad performances for 565 different sub-
jects (11.6% of the sample). Among those aged 50–64, 8.2% had bad performances; among 
those aged 65–74, 17.9% had bad performances; and among those aged 75 years and older, 
33.7% had bad performances. In this dataset, the “big spot” (bad performance) threshold, 
as defined in Section 2.2.1, was 4 mistakes out of 9 for each individual trial. The density 
distribution of big spots can be better appreciated in Figure 1b. 
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Figure 1. Multimodal visualisation of SART data, (a) ordered by age and (b) ordered by age with thresholding applied. 

From 𝑁𝑁 = 4864, 4834 had baseline TUG information (data for this variable was miss-
ing for 30 participants, i.e., 0.6% of the entire sample); among these, 237 participants had 
𝑇𝑇𝑇𝑇𝐺𝐺1 ≥ 12 s. Figure 2 shows the multimodal visualisation discriminating participants 
with low 𝑇𝑇𝑇𝑇𝐺𝐺1 from those with high 𝑇𝑇𝑇𝑇𝐺𝐺1. Moreover, within each category, the subjects 
are age-sorted in ascending order. Considering the participants with bad performances, 
we registered that 29.1% of participants with 𝑇𝑇𝑇𝑇𝐺𝐺1 ≥ 12 s had at least 1 SART bad per-
formance, while only 10.8% of participants with 𝑇𝑇𝑇𝑇𝐺𝐺1 < 12  s had SART bad perfor-
mances. 

(a) 

(b) 
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Figure 2. Multimodal visualisation of SART data, (a) ordered by age within baseline TUG categories and (b) ordered by 
age within TUG categories with thresholding applied. Dark blue spots indicate participants with 𝑇𝑇𝑇𝑇𝐺𝐺1 < 12 s, light 
blue spots indicate participants with 𝑇𝑇𝑇𝑇𝐺𝐺1 ≥ 12 s. 

Regarding missing data, in both visualisations there were 83 subjects whose corre-
sponding spots could not be depicted in the graphs. Among those, 20 subjects had 1 or 2 
trials where they did not press the key at all having not even 1 RT in that trial. In the rest, 
there was missing data just for some RT; because of this, it was not possible to calculate 
the average RT for that trial, and the corresponding spot in the graph could not be created. 

  

(a) 

(b) 
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3.2. Longitudinal Analysis 
The merged longitudinal sample examined at both waves 1 and 3 was constituted by 

𝑁𝑁 = 3890 participants (54.6% female, ages 50 to 90 years, with mean 61.5 ± 8.1 years). 
Table 1 shows additional characteristics of this sample. We compared the distributions of 
TUG, UGS and previous falls at waves 1 and 3, and the Wilcoxon rank sum test suggested 
that the distributions of the three variables were significantly different: p < 0.001 for TUG 
and UGS, and p = 0.015 for falls. 

Figure 3 shows the mean TUG at wave 1 and 3 for two subgroups of participants: one 
where participants only had good performances in SART at wave 1, and another where 
participants had at least one bad performance. From Figure 3, we noticed two elements: 
(i) TUG generally increased from wave 1 to wave 3; and (ii) the increment of TUG between 
the two waves seemed more pronounced in participants who had at least one SART bad 
performance at wave 1. Indeed, the slope of the TUG increment for participants with only 
good performances was m = 0.871, while the slope for participants with at least one SART 
bad performance was m = 1.512. The distributions of values for 𝑇𝑇𝑇𝑇𝐺𝐺3 ─ 𝑇𝑇𝑇𝑇𝐺𝐺1 were statis-
tically significantly different between the two subgroups (Mann–Whitney U test p < 0.001). 

 
Figure 3. TUG at wave 1 and wave 3 for participants who only had good performances in SART at 
wave 1 and those who had at least 1 bad performance. 

Furthermore, significant differences were also found between the distributions of 
values for 𝑇𝑇𝐺𝐺𝑆𝑆1 ─ 𝑇𝑇𝐺𝐺𝑆𝑆3 and the number of previous falls at wave 3 for participants with 
only good SART performances at wave 1 and participants with at least 1 bad performance 
(Mann–Whitney U test p = 0.014 for UGS decrease and p = 0.016 for falls). 

3.3. Number of Bad Performances as Predictor of Mobility Decline 
The three potential SART predictors, bad performances, total mistakes and mistakes in 

good performances, failed the Kolmogorov–Smirnov and Shapiro–Wilk normality tests (𝑝𝑝 <
 0.001, i.e., their distributions were not significantly similar to the normal distribution). 
We also noted that the standardised residuals were not normally distributed. Therefore, 
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we excluded the linear regression model and any other parametric tests and applied bi-
nary logistic regression models for the prediction of the four dichotomous outcomes of 
clinical interest. In every model, the independent variables passed the multi-collinearity 
test (Spearman’s correlation coefficient |𝜌𝜌| ≤  0.422 for all pairs) and satisfied all other 
logistic regression assumptions. 

As Table 2 shows, the binary logistic regression models demonstrated that the num-
ber of bad performances was a significant independent predictor of TUG decline (p < 0.001 
in all four models, OR = 1.287, 95% C.I. = (1.137; 1.456) in the fully adjusted model (model 
4), i.e., for every one-unit increase in bad performances we would expect an increase of 0.287 
in the odds of TUG decline, and OR = 1.305, 95% C.I. = (1.130; 1.508) in model 4a). Table A1 
in Appendix A shows the results of the fully adjusted binary logistic regression model 4 
where the OR, 95% C.I. for OR and p-value for each independent variable in the model 
are reported. Of note, other significant predictors of TUG decline in model 4 were age, 
being on antihypertensives, history of diabetes, and active smoking status. A high level of 
self-reported physical activity was significantly protective against TUG decline, i.e., those 
who were highly physically active were less likely to have a 𝑇𝑇𝑇𝑇𝐺𝐺 ≥ 12 s after 4 years. We 
observe that in model 4a, where UGS at baseline was also considered as a covariate, the 
variable bad performances maintained its statistical significance, while other covariates, 
which were significant predictors in the previous model 4, lost it (Table A2 in Appendix 
A). In this case the only significant predictors were the number of bad performances, age 
and UGS at baseline. Moreover, comparing the OR of bad performances across different 
models applied, we noted that it was stronger in model 1, it decreased in models 2 and 3, 
and it increased again in model 4, and even more in model 4a, having a difference of just 
0.083 compared to model 1. 

Table 2. Comparison of the OR and corresponding 95% C.I. of bad performances, total mistakes, and mistakes in good perfor-
mances for the prediction of TUG decline in the binary logistic regression models. 

TUG decline 
 Bad Performances Total Mistakes Mistakes in Good Performances 
 OR 95% C.I. p OR 95% C.I. p OR 95% C.I. p 

Model 1 1.388 1.256–1.533 <0.001 1.048 1.039–1.056 <0.001 1.060 1.049–1.072 <0.001 
Model 2 1.247 1.127–1.379 <0.001 1.042 1.030–1.053 <0.001 1.054 1.038–1.069 <0.001 
Model 3 1.207 1.081–1.388 <0.001 1.027 1.015–1.040 <0.001 1.029 1.012–1.046 <0.001 
Model 4 1.287 1.137–1.456 <0.001 1.029 1.015–1.043 <0.001 1.026 1.008–1.045 0.005 

Model 4a 1.305 1.130–1.508 <0.001 1.030 1.015–1.047 <0.001 1.027 1.007–1.047 0.008 
Models for each main predictor, i.e., bad performances, total mistakes, or mistakes in good performances: model 1, with just the 
main predictor; model 2, adjusted with mean RT and SD RT; model 3, which was model 2 with the addition of age, sex, 
and education level; model 4, the fully adjusted regression model, considering also the other covariates mentioned in 
Section 2.1.5 (anxiety, depression, hypertensives, diabetes, smoking, alcohol, and IPAQ); and model 4a, which was model 
4 adjusted by UGS at baseline (wave 1). The odds ratio (OR) and corresponding 95% confidence interval (C.I.) give a 
measure of the influence of the predictor on the outcome; the p-value expresses the statistical significance of the predictor 
in the model. 

The variable bad performances was a significant predictor for UGS decline only in 
model 1 (p < 0.001, OR = 1.232, 95% C.I. = (1.102; 1.377)), namely without considering other 
covariates. In models 2, 3, and 4, the number of bad performances was not a significant 
predictor (p > 0.05). Table A3 in Appendix A shows the results of the fully adjusted model 
4 where the OR, 95% C.I. for OR, and p-value for each independent variable in the model 
are reported. In this case the only significant independent predictors were age and being 
on antihypertensive medications. 

Furthermore, we applied the same binary logistic regression models for the predic-
tion of becoming a new faller. As shown in Table 3, in models 1, 2, 4, and 4a the bad per-
formances feature resulted a significant predictor (p < 0.021 in the four models, OR = 1.114, 
95% C.I. = (1.026; 1.211) in the fully adjusted Model 4, and OR = 1.110, 95% C.I. = (1.021; 
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1.207) in model 4a), while in model 3 its p-value was borderline (𝑝𝑝  =  0.057), having the 
absolute value of the difference from the significance threshold 𝛼𝛼  =  0.05 smaller than 
10−2(|𝑝𝑝 − 𝛼𝛼|  <  0.01). Table A4 in Appendix A shows the results of the fully adjusted bi-
nary logistic regression model 4 reporting the OR, 95% C.I. for OR and p-value for each 
independent variable. Of note, the only other significant predictor of becoming a new 
faller was age (p = 0.004, OR = 1.020, 95% C.I. = (1.006; 1.034)). Table A5 in Appendix A 
presents similar results for model 4a: again the only other significant predictor of becom-
ing a new faller was age (p = 0.011, OR = 1.019, 95% C.I. = (1.004; 1.034)). Moreover, we 
noted that the OR of bad performances, although decreased in models 2 and 3, in model 4 it 
assumed the same value of that in model 1, and slightly different in model 4a (overlapping 
95% C.I.). 

Table 3. Comparison of the OR and corresponding 95% C.I. of bad performances, total mistakes, and mistakes in good perfor-
mances for the prediction of new fallers in the binary logistic regression models. 

New Fallers 
 Bad Performances Total Mistakes Mistakes in Good Performances 
 OR 95% C.I. p OR 95% C.I. p OR 95% C.I. p 

Model 1 1.114 1.040–1.194 0.002 1.014 1.007–1.021 <0.001 1.016 1.007–1.026 <0.001 
Model 2 1.090 1.013–1.173 0.021 1.012 1.003–1.022 0.009 1.011 0.998–1.025 0.095 
Model 3 1.076 0.998–1.160 0.057 1.008 0.998–1.018 0.123 1.003 0.990–1.017 0.646 
Model 4 1.114 1.026–1.211 0.011 1.008 0.998–1.019 0.131 0.999 0.984–1.014 0.914 

Model 4a 1.110 1.021–1.207 0.014 1.008 0.997–1.019 0.159 0.999 0.983–1.014 0.855 
Models for each main predictor, i.e., bad performances, total mistakes, or mistakes in good performances: model 1, with just the 
main predictor; model 2, adjusted with mean RT and SD RT; model 3, which was model 2 with the addition of age, sex, 
and education level; model 4, the fully adjusted regression model, considering also all the other covariates mentioned in 
Section 2.1.5 (anxiety, depression, hypertensives, diabetes, smoking, alcohol, and IPAQ); and model 4a, which was model 
4 adjusted by UGS at baseline (wave 1). The odds ratio (OR) and corresponding 95% confidence interval (C.I.) give a 
measure of the influence of the predictor on the outcome; the p-value expresses the statistical significance of the predictor 
in the model. 

3.4. Comparison with Other Potential Predictors 
Table 2 shows a comparison of the OR, reporting also the 95% C.I. and p-value, for 

the three predictors in the five different logistic regression models, as defined in Section 
2.3.1. In each model, all predictors were significantly associated with the outcome TUG 
decline. However, the variable bad performances always had a larger OR than that of other 
predictors, and without overlap of 95% C.I.s, suggesting its larger weight in the prediction 
of this outcome. 

Table A6 in Appendix A shows the results for the prediction of the other variable 
expressing mobility decline, UGS decline, in all four binary logistic regression models for 
each of the three main potential predictors: bad performances, total mistakes and mistakes in 
good performances. In models 3 and 4, none of the three predictors were significantly asso-
ciated with the UGS decline, while bad performances was significant in model 1, and total 
mistakes and mistakes in good performances were significant in models 1 and 2. We note that 
in model 1 bad performances had the highest OR with non-overlapping 95% C.I. compared 
to total mistakes and mistakes in good performances. 

We repeated the procedure for the outcome new faller, and the results of the compar-
ison are shown in Table 3. Again, the independent variable bad performances performed 
better than the other two predictors in model 1, having a larger OR and a non-overlapping 
C.I. In model 3, the p-value for bad performances was borderline (|𝑝𝑝 − 0.05| < 0.01), while 
for total mistakes and mistakes in good performances it was statistically insignificant (𝑝𝑝 ≫
0.05). In models 4 and 4a, bad performances emerged as the only variable that was statisti-
cally significant for the prediction of new faller, with OR = 1.114 in model 4, i.e., for every 
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one-unit increase in bad performances we would expect an increase of 0.114 in the odds of 
becoming a new faller, and OR = 1.110 in model 4a. 

Our findings suggested that the independent variable bad performances was more pre-
dictive of mobility decline and risk of new falls than the other two candidate variables 
derived from the SART visualisation, i.e., total mistakes and mistakes in good performances. 

3.5. Absence of Association with Cognitive Decline 
As shown in Table 4, the variable bad performances was not a significant predictor of 

MMSE decline (p-value = 0.187) in the fully adjusted model 4, nor in model 4a. Total mistakes 
and mistakes in good performances were not significant predictors either in the fully adjusted 
models. Table A7 in Appendix A shows the results of the binary logistic regression model 
4 fully adjusted per covariates considering the independent variable bad performances and 
having as outcome MMSE decline. In this case, the only significant predictors were age (p 
< 0.001, OR = 1.044, 95% C.I. = (1.029; 1.059)) and current smoking (p = 0.013, OR = 1.523, 
95% C.I. = (1.092; 2.123)), both positively associated with increased odds of MMSE decline. 
Table A8 in Appendix A presents similar results for model 4a, with the only difference 
that beside age (p < 0.001, OR = 1.041, 95% C.I. = (1.025; 1.057)) and current smoking (p = 
0.020, OR = 1.491, 95% C.I. = (1.066; 2.085)), third or higher education level was significant 
for the outcome, specifically protective against an MMSE decline (p = 0.043, OR = 0.738, 
95% C.I. = (0.549; 0.991). 

Table 4. Comparison of the OR and corresponding 95% C.I. of bad performances, total mistakes, and mistakes in good perfor-
mances for the prediction of MMSE decline in the binary logistic regression models. 

MMSE Decline 
 Bad Performances Total Mistakes Mistakes in Good Performances 
 OR 95% C.I. p OR 95% C.I. p OR 95% C.I. p 

Model 1 1.120 1.037–1.208 0.004 1.019 1.012–1.027 <0.001 1.026 1.016–1.036 <0.001 
Model 2 1.067 0.981–1.159 0.129 1.014 1.004–1.024 0.004 1.019 1.005–1.033 0.006 
Model 3 1.030 0.944–1.124 0.503 1.007 0.997–1.017 0.186 1.009 0.995–1.023 0.219 
Model 4 1.067 0.969–1.174 0.187 1.010 0.999–1.021 0.082 1.011 0.995–1.026 0.178 

Model 4a 1.063 0.965–1.170 0.216 1.010 0.998–1.021 0.090 1.011 0.995–1.027 0.180 
Models for each main predictor, i.e., bad performances, total mistakes, or mistakes in good performances: model 1, with just the 
main predictor; model 2, adjusted with mean RT and SD RT; model 3, which was model 2 with the addition of age, sex, 
and education level; model 4, the fully adjusted regression model, considering also all the other covariates mentioned in 
Section 2.1.5 (anxiety, depression, hypertensives, diabetes, smoking, alcohol, and IPAQ); and model 4a, which was model 
4 adjusted by UGS at baseline (wave 1). The odds ratio (OR) and corresponding 95% confidence interval (C.I.) give a 
measure of the influence of the predictor on the outcome; the p-value expresses the statistical significance of the predictor 
in the model. 

Table 4 shows the comparison between bad performances, total mistakes, and mistakes 
in good performances in the prediction of MMSE decline, reporting OR, and corresponding 
95% C.I and p-value for the five binary logistic regression models employed. Of note, all 
three predictors were significant for MMSE decline in model 1 (i.e., where each of the three 
predictors was the only independent variable in the model), and in this case bad perfor-
mances had the highest OR with non-overlapping 95% C.I. compared to total mistakes and 
mistakes in good performances. 
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4. Discussion 
4.1. Multimodal Visualisation 

In the present study, we devised a new methodology for the multimodal visualisa-
tion of big repeated-measures data with continuous variable ordering and categorical 
stratification, and we exemplified this with the case of raw SART performance data, ac-
companied by MMSE and TUG values, sorted by age, and stratified by baseline TUG per-
formance. 

By using this novel type of visualisation, clinicians could gain a deeper understand-
ing as to how a complex repeated-measures dataset is articulated across different subjects 
and across repeated measures (SART trials in this case). Moreover, using the ordering of 
a continuous variable (age in this case) in the whole dataset (Figure 1) and within each 
category (Figure 2) allows one to compare the performance of different subjects by age 
and to formulate hypotheses that can then be tested with formal statistical analyses. Fur-
thermore, by using the threshold for bad performance (Figures 1b and 2b) one can more 
clearly visualise their distribution across subjects and RTs. This could be the first step in 
the formulation of a new model to assign cognitive scores to different individuals based 
on the co-existence of a wide range of different types of parameters. 

The visualisations helped us quickly appreciate that bad performances were rare in 
younger participants (i.e., in their 50s) and concentrated around lower RTs, while in older 
subjects (i.e., in their 70s and 80s), a wider distribution of bad performances was suggested 
across a wider range of RTs. By using the thresholding visualisation method, we were able 
to gain a more focused insight into the participants who had bad SART performances and 
cross-inspect them with corresponding global parameters of clinical interest such as the 
total number of SART mistakes, MMSE, and TUG values. 

Indeed, the most important characteristic of our visualisation method is the possibil-
ity to rapidly visualise raw data and gain immediate insights as to the possible correla-
tions with different kinds of parameters. This multimodal raw data inspection can help 
visually identify anomalies and outliers in the data, in a way that is diluted and often 
undetected in traditional designs based on average measures. For example, a high peak 
in the total mistakes line can be due to one bad performance or multiple performances 
with just 1 or 2 mistakes, which, in our case would not be labelled as “bad performance” 
since our threshold required 4 mistakes for the definition of a “bad performance”. The 
superimposed MMSE and TUG curves further underscore multi-modality by providing a 
global cognitive and mobility score for each participant. The possibility to look at them 
together with the whole distribution of SART RT values (not just derivative global varia-
bles for SART) can provide a more nuanced understanding of the combined cognitive and 
mobility status of an individual. 

Raw data visualisation can therefore support the generation of multiple novel hy-
potheses involving the relationship between test performance features and other modali-
ties of clinical interest. For example, in our visualisations it was clear that longer TUG 
times corresponded to higher concentrations of bad performances, and even to the biggest 
spots among bad performances, i.e., those with very high number of mistakes (biggest 
light blue spots in Figure 2b). Moreover, we could notice that ‘dips’ in MMSE seemed to 
have a very modest association with SART RT performance [51]. Not only were the lowest 
MMSE scores generally not in correspondence with the high number of total SART mis-
takes, they were not even present among participants with bad performances, as can be 
seen comparing panels (a) and (b) in Figure 2. Therefore, we directed our interest towards 
investigating possible associations between SART bad performances at wave 1 and risk of 
mobility and/or cognitive decline at wave 3 after 4 years. 

4.2. Individual Trial Mistake Threshold in Longitudinal Analysis–Mobility Decline 
The cross-sectional considerations on possible associations among SART perfor-

mance, mobility, and cognitive status, which emerged from the multimodal visualisation, 
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were explored in this study at a longitudinal level. A great advantage of the TILDA study 
is that it allows for the investigation of variation in certain variables over time, thanks to 
data being collected longitudinally across different waves [16,21,25]. 

The longitudinal power of the TILDA study has been used in many recent works 
aiming to understand correlations between different physiological systems and formulate 
hypotheses on the possible prediction of mobility and/or cognitive decline [21,24,25]. 
However, the precise mechanisms governing the longitudinal relationship between cog-
nitive and mobility status are still unclear. 

Gait disorders and mobility impairment are very common in older adults [34,52], and 
are often related to neurological diseases [53,54]. Current literature suggests the presence 
of correlations between cognitive and motor function in older adults [25,55]; specifically, 
it has been shown that gait abnormalities could precede and predict the onset of cognitive 
decline [56,57]. Various standard measures of cognitive status have been used in recent 
studies, usually in the form of derived variables that while giving a simplified insight on 
complex repeated-measures data, could carry the risk of losing relevant primary infor-
mation [5,24]. Recent findings have demonstrated that baseline mobility, expressed by 
gait parameters and TUG were not significant predictors of cognitive decline in commu-
nity-dwelling older adults who were cognitively intact at baseline [24]. However, other 
recent works [22,23] have shown significant associations between baseline quantitative 
gait parameters and risk of cognitive decline and dementia. Investigating the aforemen-
tioned correlations in the opposite direction, recent longitudinal studies [25] suggested 
that longer motor response time in a choice reaction test could be a significant predictor 
of accelerated mobility decline, although this effect was statistically and clinically small. 

Furthermore, recent studies have shown associations between variability in SART 
and risk of falls and falls efficacy [17]. Falls are very common amongst older persons 
[58,59], affecting them not only in the moment of the fall itself, but also later with irre-
versible consequences, especially in people living with higher levels of frailty [60,61]. Con-
sequences may not only be physical, but also psychological, since some fallers often vol-
untarily reduce their movements after falling fearing to fall again, and this eventually 
leads to deconditioning and weakness that in turn increase the risk of further falls [62]. 

In our study, we aimed to introduce not only a visualisation that would shed light 
on the whole information contained in a complex dataset like SART, but also individuate 
a subset of participants containing key information to predict mobility decline and risk of 
falls in older adults. We considered the outliers for 2 SD from the mean of the distribution 
of the number of mistakes committed across the different SART trials and across all par-
ticipants. Such outliers’ trials were labelled as “bad performances” if the participant com-
mitted at least four mistakes out of nine possible correct actions. The new thresholding 
method individuated a new variable expressing the number of bad performances for each 
participant. We noted that only 565 participants had at least 1 bad performance, compared 
to the whole cohort at wave 1 of 4864 participants. Therefore, the subset defined by the 
threshold was only the 11.6% of the entire dataset, and we hypothesised that the defined 
subset could contain valuable information to predict the risk of mobility decline. 

We considered the temporal evolution of mobility status, expressed by TUG, UGS, 
and history of falls at waves 1 and 3, and found that not only the distributions of 
TUG/UGS/falls at the two waves were statistically significantly different from each other, 
but significant differences were also found for longitudinal TUG increment 
(𝑇𝑇𝑇𝑇𝐺𝐺3 ─ 𝑇𝑇𝑇𝑇𝐺𝐺1) and longitudinal UGS decrease (𝑇𝑇𝐺𝐺𝑆𝑆1─𝑇𝑇𝐺𝐺𝑆𝑆3) between the subgroup of 
participants with only good SART performances at wave 1 and participants with at least 
one SART bad performance. Further investigating this, we found that our new SART var-
iable bad performances was a significant predictor of TUG decline in the employed binary 
logistic regression models, being associated with an increase per unit of around 30% in 
the odds of having TUG decline in the fully adjusted models. Moreover, and consistently 
with previous literature on cardiovascular burden and mobility limitations in older adults 
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[63], we noted that in model 4, advancing age, the presence of antihypertensives and dia-
betes, and current smoking status were significant positive predictors of TUG decline, 
bringing an increase in the probability for the outcome of about 14%, 94%, 68%, and 79%, 
respectively. Moreover, in keeping with the literature [64] and clinical expectation, a sig-
nificant negative predictor of TUG decline was a high level of self-reported physical activ-
ity, which decreased by 32% the probability of TUG decline. However, considering also 
UGS at baseline as a covariate in model 4a we noted that some independent variables lost 
significance in the prediction of TUG decline; the only significant positive predictors were 
bad performances, advancing age, and antihypertensive medication use, which determined 
an increase of 30%, 10%, and 67%, respectively, on the probability of the outcome, while 
higher UGS at wave 1 was protective against TUG decline, leading to a decrease of 6% in 
the probability. We note that the difference of results between models 4 and 4a were prob-
ably due to the high correlation between 𝑇𝑇𝐺𝐺𝑆𝑆1 and 𝑇𝑇𝑇𝑇𝐺𝐺1, and between 𝑇𝑇𝐺𝐺𝑆𝑆3 and 𝑇𝑇𝑇𝑇𝐺𝐺3 
(Spearman’s correlation coefficient |ρ| ≥ 0.700 at the significance level of 0.01). There-
fore, it was highly probable that UGS at baseline would influence the probability of having 
a TUG decline after 4 years. Nevertheless, we note that even considering a variable 
strongly associated with the outcome, bad performances did not lose its significance, 
demonstrating it to be a robust predictor of TUG decline. 

Our findings suggested that participants with SART bad performances and with a 
normal TUG at wave 1 (𝑇𝑇𝑇𝑇𝐺𝐺1 < 12 s) had a 30% greater probability to have a TUG at 
wave 3 indicating a mobility impairment (i.e., 𝑇𝑇𝑇𝑇𝐺𝐺3 ≥ 12 s). Moreover, comparing the 
contribution of bad performances in the five models employed, we noticed that (i) even add-
ing covariates, it remained a significant predictor, suggesting its robustness in the predic-
tion of the outcome, and (ii) although its OR decreased in models 2 and 3 compared to 
model 1, it increased again in model 4, and even more in model 4a. The latter observation 
suggests that in models 2 and 3, other covariates significantly influenced the probability 
of the outcome, however these variables were not robust for the model, since the presence 
of further covariates in model 4 and 4a made their presence not significant for the model. 
In this case, bad performances remained significant and regained part of the prediction 
power temporarily lost in model 3. Furthermore, considering model 4a, where a variable 
(UGS) highly correlated to the outcome was used as a covariate, bad performances not only 
did not lose significance, but also its prediction power increased further, taking part of the 
weight from less robust independent variables, which were significant predictors in 
model 4. 

Equivalently, we employed the first four logistic regression models for the prediction 
of UGS decline. In this case, bad performances was a significant predictor only in model 1, 
but was not significant in the fully adjusted model. To explain the difference in the results 
between TUG decline and UGS decline, we need to understand how these two mobility 
measures were taken. To measure UGS, participants were required to simply walk in a 
straight line. This task, then, does not require any major cognitive involvement, since 
walking is an action that is normally executed automatically in independent adults. Dif-
ferently, TUG task requires participants to stand up, walk in a straight line, come back, 
and sit again. Thus, this test is more cognitively involved than straight-line walking, as 
the individual needs to process and remember instructions, plan and execute movements, 
focus on the task, and avoid distractions [20]. SART bad performances could capture cogni-
tive processes that are similar to those required for completion of the TUG, and this could 
be a possible explanation as to why bad performances independently predicted future mo-
bility decline in our analyses. 

Similarly, we considered SART bad performances as one of the independent variables 
in binary logistic regression models for the prediction of becoming a new faller at wave 3. 
We found that our new variable was a significant positive predictor in the fully adjusted 
models. In fact, the presence of SART bad performances in participants who did not have 
any falls at wave 1 contributed to an 11% additional probability of falls at wave 3, com-
pared to those who did not have any SART bad performances at wave 1, i.e., who never 
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hit the threshold of 4 mistakes in one trial. We noted that among all the other covariates 
used in the model, only age was a significant predictor of becoming a new faller at wave 
3, although with a low positive contribution of only 2% to the odds of the outcome. Even 
in this case, comparing the bad performances contribution in the five models employed, we 
observed a phenomenon similar to that for the prediction of TUG decline. Indeed, we could 
notice a decrease in its prediction power in models 2 and 3 with additional loss of signifi-
cance in model 3 due to the presence of significant predictors among the added covariates. 
However, in model 4 and 4a it reacquired significance and predictive weight, suggesting 
the non-robustness of previously significant covariates. 

4.2.1.Comparison with Traditional SART Measures as Predictors 
Traditional SART variables measure global features, such as the total number of mis-

takes (omission and/or commission errors) in the whole task, and the mean RT and SD RT 
across the whole task [5,17,20,24,44]. However, using global parameters, which average a 
large complex dataset, such as the SART, important information residing in individual 
trials in the set of repeated measures may be lost. Indeed, no significant associations be-
tween SART global parameters and mobility status had been previously found [17,24]; 
and even when correlations involving reaction time measures had been found, the statis-
tical effect was quite small [25]. 

In the present study, we aimed to define a new variable, which, being more selective, 
could discriminate the participants with greater risk of mobility decline. We demonstrated 
that our variable bad performances was a significant predictor of risk of TUG decline and 
becoming a new faller. Furthermore, we compared its predictive power with other poten-
tial predictors: the global parameter total mistakes and mistakes in good performances, ob-
tained by summing up all the mistakes in SART good performances, i.e., where the max-
imum number of mistakes per trial was less than 4. We noted that the variables bad perfor-
mances and mistakes in good performances were almost complementary, because mistakes in 
good performances considers all the mistakes that are not reaching the threshold for the 
definition of a bad performance. 

In the literature, there is not a uniform consensus on the method to follow in order to 
compare the importance of different predictors in binary logistic regression [21,65,66]. We 
compared the models with the different potential predictors for TUG decline, UGS decline, 
and new fallers considering the OR with non-overlapping 95% C.I. when the independent 
variable was significant for the prediction of the outcome. 

In the fully adjusted models for the prediction of TUG decline, we found that, alt-
hough all three variables considered were significant as predictors, the new variable bad 
performances had a higher OR compared to total mistakes and mistakes in good performances, 
where the difference between ORs considering the C.I. was equal or greater than 0.092 in 
model 4, and 0.083 in model 4a. Specifically, while the effect of the variable bad perfor-
mances per unit was around 30% on the probability of the outcome, total mistakes, and mis-
takes in good performances had an effect per unit of only 3% on the probability of the out-
come, namely 1 magnitude less than bad performances. 

Regarding the prediction of UGS decline, no SART-related variables were significant 
as predictors for the outcome in the fully adjusted model. Bad performances, total mistakes, 
and mistakes in good performances were all significant in model 1, where bad performances 
assumed the highest OR, and total mistakes and mistakes in good performances were also sig-
nificant in model 2, but they all lost their significance in models adjusted for covariates. 
This result may be due to the fact that, while UGS is a simpler measure of physical mobil-
ity, the TUG task is more cognitively involved and, thus, logistic regression models were 
able to detect the correlation with SART variables. 

Moreover, we found that bad performances significantly predicted new falls, i.e., falls 
at wave 3 for participants who did not have any falls at wave 1, while total mistakes and 
mistakes in good performances were not significant predictors. Namely, our findings sug-
gested that for participants who did not report any falls at wave 1, the number of mistakes 
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in SART task was not a risk of falls at wave 3, as long as they did not hit the threshold of 
4 mistakes in a single trial. 

Furthermore, comparing the three predictors’ performance across the five models 
employed, we noticed that in the prediction of both TUG decline and risk of becoming a 
new faller, the predictors’ total mistakes and mistakes in good performances did not manifest 
the same phenomenon observed for bad performances. Namely, the presence of covariates 
in models 2 and 3 was associated with a decrease in prediction power, expressed by the 
OR, of total mistakes and mistakes in good performances for both outcomes, with additional 
loss of significance in model 3 for total mistakes and models 2 and 3 for mistakes in good 
performances in the prediction of new fallers. Differently from the models involving bad per-
formances, in this case in model 4 and 4a the predictors did not reacquire prediction power 
nor significance for the prediction of new fallers, suggesting that they were not robust and 
strong enough in the prediction, and possibly other covariates revealed to be significant 
in the model. 

Our results suggest that when SART mistakes reach threshold status, the number of 
times that this happens should be taken seriously as potentially heralding mobility decline 
and/or falls; however, mistakes below threshold level were less predictive and this could 
be used to reassure participants that ‘one swallow does not make a spring’ when it comes 
to interpreting the clinical significance of a participant making sub-threshold mistakes 
during the SART task. This still agrees with the principle that clinicians who administer 
tests of neurocognitive performance (such as the SART) should be reluctant to attribute 
poor test performance to anxiety that occurs during the testing process [67], but at the 
same time argues in favour of not placing undue emphasis on the clinical significance of 
mistakes that occur below a proven threshold. Interestingly, anxiety was not a significant 
covariate in any of the fully adjusted logistic regression models, which further dilutes the 
potential mechanistic role of anxiety in the prediction of the four clinical outcomes under 
study. Another interesting insight from our analyses is that once the focus was on the new 
visualisation features and additional covariates, mean SART RT and SD of RT had no in-
dependent effect on the prediction of any of the outcomes. Since RT variables have been 
the main focus of previous research on SART-related health outcomes, we would support 
the need to revisit those studies fort the potential effects of thresholded error features as 
reported herein. 

4.3. Individual Trial Mistake Threshold in Longitudinal Analysis–Cognitive Decline 
SART and MMSE are two standard tests used to evaluate cognitive functions: the 

first specifically measures the sustained attention, the ability to be vigilant over time, and 
the second gives a more global score on the cognitive status [27]. Cross-sectional studies 
have suggested only modest associations between SART performance, considering tradi-
tional measures, and MMSE score [51,68]. In our study, we investigated the predictive 
ability of our new variable SART bad performances and other independent variables total 
mistakes and mistakes in good performances for cognitive decline, expressed by a decline on 
MMSE score of at least 2 points after 4 years. We found that all three variables considered 
were not significant predictors of MMSE decline in the fully adjusted models. We note that, 
similarly to previous works [24], a decline in MMSE score was very hard to detect at wave 
3 in our sample for different reasons: (i) the participants attending the TILDA health as-
sessment centre (where the SART test was administered) were relatively high-functioning 
community-dwelling adults with good cognitive and physical health [69]; (ii) the MMSE 
test performed at each wave has always the same structure, and therefore participants can 
show learning effects potentially resulting in even higher MMSE scores over time and 
absence of general decline [70,71]. To overcome this potential limitation, future work 
could investigate these correlations over a longer time period, or with different global 
cognitive tests. 
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4.4. Strengths and Limitations of the Study 
One of the main strengths of our study is the large dataset and comprehensive health 

assessment; indeed, TILDA is one of the most detailed population-based longitudinal 
studies of ageing, and the comprehensive measures and tests taken at different waves 
constitute the main strength for longitudinal analyses involving various physiological sys-
tems. Specifically, the complex SART dataset offers the possibility of investigating re-
peated measures for a large sample of individuals. As discussed above, the multimodal 
visualisation carried out in the present study allows to easily observe the large sample 
organised by age, stratified by categories of interest, and allow visual associations with 
other measures included in the health assessment. The new threshold feature based on 
SART single trials, is not only easy to determine by clinicians, but also offers a meaningful 
measure to identify subjects at risk of mobility decline over a 4-year period. As done with 
other types of data [72], this novel visualisation methodology could form the basis of a 
web-based platform able to facilitate each of the mentioned processes by integrating the 
different phases into an intuitive system with a graphical user interface that hides the 
complexity underlying each of the data modalities used, and presents the results in a flex-
ible and visual way, avoiding any manual handling of data during the process. 

Our study also has potential limitations, for example in the individuation of outliers 
in the distribution of single trial mistakes across all participants. Many studies [73,74] pre-
fer to remove outliers present in a distribution, because this is not considered to be a good 
representation of the sample population. However, our analyses demonstrated that, alt-
hough the subset of participants individuated by the new threshold was relatively small 
compared to the entire sample, it could serve for the prediction of mobility decline with a 
good statistical power, and even better than traditional global parameters usually used to 
characterize the mistakes in SART performances. Another limitation is that the analytical 
wave 1 sample was only based in TILDA participants who attended the health assessment 
centre and, as such, findings cannot be considered as necessarily representative of the en-
tire Irish community-dwelling population. In this regard, given the “healthy participant 
effect” associated with attendance to the health assessment centre [69], together with the 
4-year attrition effect, it is possible that our findings may have somehow underestimated 
the ability of the new SART features to predict mobility decline, new falls, and even cog-
nitive decline. It would be therefore important to attempt to replicate this study in frailer 
cohorts in the future. 

5. Conclusions 
In conclusion, the multimodal visualisation carried out in the present study allowed 

us (i) to appreciate the richness present in the complex raw SART data, which can be oth-
erwise lost using derivative variables; (ii) to rapidly visually inspect a large amount of 
data; and (iii) inspect the dataset together with different health variables of clinical interest 
in order to generate hypotheses. In this representation, we were able to look at the entire 
dataset and compare the participants’ performances (between each other) by age; we were 
also able to correlate the single performance in each trial with global parameters such as 
number of total mistakes, MMSE and TUG, aiming to have a comprehensive visual over-
view of the cognitive and physical status of each subject. Based on the visualisation, a 
newly defined mistakes threshold for individual SART trials was statistically validated. 
The determined subset presented higher risk of future mobility decline, as measured by 
TUG decline, and falls with a larger statistical effect than other candidate measures, and 
could therefore be used to identify early signs of health disorders and prioritise individu-
alised clinical interventions to lower the risks. A threshold approach to the evaluation of 
SART performance in older adults may better identify subjects at higher risk of future 
mobility decline and/or falls. 
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Appendix A 
SART RT Representation 

An arithmetic average 𝑂𝑂𝑇𝑇����ν was computed for each trial ν, where ν = 1, …, 23, and 
considering non-null values only (i.e., excluding null values corresponding to the appear-
ance of digit 3 on the screen). Therefore, we only considered the times when the partici-
pant correctly pressed the key, according to 

𝑂𝑂𝑇𝑇����ν = 1
𝑀𝑀𝜈𝜈
∑ 𝑂𝑂𝑇𝑇𝑖𝑖𝜈𝜈
𝑀𝑀𝜈𝜈
𝑖𝑖=1 , (A1) 

where 𝑀𝑀ν ∈ {1, … ,9} is the number of times that the participant correctly pressed the key 
in the trial ν, or correctly did not press the key. 

SART performance is known to be influenced by age [44], and therefore we recorded 
the age of participants and ordered the visualisations by increasing age as a continuous 
variable. 

The 𝑂𝑂𝑇𝑇����ν∀𝜈𝜈 ∈ {1, … ,23} are plotted in a cloud plot (Figure 1) where the coordinates 
of each spot were given by the participant index in the age-sorted ascending order (x-
coordinate) and by the 𝑂𝑂𝑇𝑇����ν for each trial ν, having then a total of 23 spots for each partic-
ipant at the same point on the x-axis. The x-axis did not linearly follow the age variable, 
but it presented the age-sorted participants sequentially and equally spaced. For ease of 
interpretation, ticks were created to indicate a 5-year age change. Trials where the partic-
ipant did not press the key at any time and/or some RT were missing did not have the 
computed average 𝑂𝑂𝑇𝑇����ν and were, thus, not plotted in the graph. The size of each spot 
𝑠𝑠ν ∀ ν ∈ {1, … ,23} for each participant was given by 

𝑠𝑠𝜈𝜈 =  𝑟𝑟𝜈𝜈−1,  𝑟𝑟𝜈𝜈 = 𝑀𝑀𝜈𝜈
9

, (A2) 

where 𝑟𝑟𝜈𝜈 is the ratio of the number of times that the key was correctly pressed (or not 
pressed) over the maximum possible number of correct pressing actions in the trial ν, i.e., 
9. Therefore, bigger spots correspond to trials with higher number of mistakes. Moreover, 
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the spots are colour-coded based on their size, i.e., the number of mistakes in the corre-
sponding trial, going from light brown (0 mistakes) to black for the maximum number of 
mistakes (8 mistakes since in the case of 9 mistakes it is not possible to compute the mean 
RT and then assign a y-coordinate to the spot). Spots with size larger than 2 SD from the 
mean size �̅�𝑠 calculated across all the trials and all the participants (excluding missing data 
and trials with 0 correct actions), namely when the number of correct actions for the trial 
ν for the i-th participant was 

𝑀𝑀𝜈𝜈,𝑖𝑖 =
9

�̅�𝑠 + 2𝑆𝑆𝑆𝑆
 (A3) 

were highlighted by white edges in the graph and labelled as “big spots”. The size 𝑠𝑠ν,𝑖𝑖 of 
each spot was scaled by a factor of 4 for clearer representation in the graph. 

Table A1. Results for the fully adjusted per covariates binary logistic regression model 4 considering bad performances as 
potential predictor and having TUG decline as outcome. 

TUG Decline 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.287 1.137–1.456 <0.001 
SART mean RT 1.001 0.999–1.002 0.340 
SART SD RT 1.003 1.000–1.006 0.080 
Age 1.136 1.115–1.159 <0.001 
Females 1.171 0.863–1.590 0.311 
Education level    
- primary/none [ref]   
- secondary 0.930 0.646–1.337 0.695 
- third/higher 0.985 0.682–1.423 0.936 
Anxiety 1.030 0.983–1.081 0.217 
Depression 1.014 0.990–1.038 0.249 
Antihypertensives 1.942 1.451–2.600 <0.001 
Diabetes 1.678 1.051–2.680 0.030 
Smoker    
- never [ref]   
- past 1.012 0.743–1.380 0.938 
- current 1.790 1.147–2.795 0.010 
Drinking problem    
- “No” [ref]   
- “Don’t know” 0.676 0.197–2.313 0.532 
- “Yes” 0.989 0.626–1.564 0.964 
IPAQ    
- low [ref]   
- medium 0.802 0.572–1.125 0.201 
- high 0.684 0.474–0.986 0.042 

Table A2. Results for the fully adjusted per covariates binary logistic regression model 4a considering bad performances as 
potential predictor and having TUG decline as outcome. 

TUG Decline 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.305 1.130–1.508 <0.001 
SART mean RT 1.000 0.999–1.002 0.791 
SART SD RT 1.003 1.000–1.007 0.074 
Age 1.102 1.080–1.125 <0.001 
Females 0.891 0.646–1.231 0.485 
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Education level    
- primary/none [ref]   
- secondary 1.075 0.732–1.579 0.711 
- third/higher 1.246 0.843–1.841 0.270 
Anxiety 1.023 0.973–1.075 0.382 
Depression 1.007 0.982–1.033 0.570 
Antihypertensives 1.672 1.230–2.273 0.001 
Diabetes 1.348 0.818–2.220 0.241 
Smoker    
- never [ref]   
- past 0.951 0.685–1.319 0.762 
- current 1.581 0.989–2.529 0.056 
Drinking problem    
- “No” [ref]   
- “Don’t know” 0.660 0.178–2.443 0.534 
- “Yes” 0.907 0.562–1.463 0.689 
UGS at baseline 0.938 0.928–0.948 <0.001 
IPAQ    
- low [ref]   
- medium 0.959 0.671–1.370 0.819 
- high 0.815 0.554–1.199 0.299 

Table A3. Results for the fully adjusted per covariates binary logistic regression model 4 considering bad performances as 
potential predictor and having UGS decline as outcome. 

UGS Decline 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.057 0.903–1.237 0.492 
SART mean RT 1.001 0.999–1.003 0.301 
SART SD RT 1.003 0.998–1.008 0.241 
Age 1.093 1.064–1.122 <0.001 
Females 1.178 0.752–1.845 0.474 
Education level    
- primary/none [ref]   
- secondary 1.088 0.633–1.870 0.761 
- third/higher 1.078 0.615–1.890 0.792 
Anxiety 0.999 0.932–1.072 0.986 
Depression 1.032 0.999–1.066 0.061 
Antihypertensives 1.767 1.138–2.745 0.011 
Diabetes 1.558 0.794–3.057 0.198 
Smoker    
- never [ref]   
- past 0.905 0.573–1.427 0.666 
- current 1.351 0.694–2.628 0.376 
Drinking problem    
- “No” [ref]   
- “Don’t know” 1.849 0.537–6.371 0.330 
- “Yes” 1.093 0.563–2.121 0.793 
IPAQ    
- low [ref]   
- medium 0.855 0.530–1.379 0.520 
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- high 0.657 0.382–1.130 0.129 

Table A4. Results for the fully adjusted per covariates binary logistic regression model 4 considering bad performances as 
potential predictor and having New faller as outcome. 

New Fallers 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.114 1.026–1.211 0.011 
SART mean RT 0.999 0.998–1.001 0.298 
SART SD RT 1.001 0.999–1.004 0.319 
Age 1.020 1.006–1.034 0.004 
Females 1.237 0.997–1.536 0.053 
Education level    
- primary/none [ref]   
- secondary 1.033 0.779–1.370 0.821 
- third/higher 1.065 0.799–1.420 0.667 
Anxiety 1.002 0.969–1.036 0.917 
Depression 1.014 0.998–1.031 0.092 
Antihypertensives 1.184 0.947–1.481 0.139 
Diabetes 1.111 0.741–1.668 0.610 
Smoker    
- never [ref]   
- past 1.200 0.579–2.489 0.624 
- current 1.042 0.769–1.412 0.792 
Drinking problem    
- “No” [ref]   
- “Don’t know” 0.971 0.755–1.248 0.816 
- “Yes” 0.905 0.697–1.176 0.457 
IPAQ    
- low [ref]   
- medium 1.002 0.969–1.036 0.917 
- high 1.014 0.998–1.031 0.092 

Table A5. Results for the fully adjusted per covariates binary logistic regression model 4a considering bad performances as 
potential predictor and having New faller as outcome. 

New Fallers 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.110 1.021–1.207 0.014 
SART mean RT 0.999 0.998–1.001 0.278 
SART SD RT 1.002 0.999–1.004 0.264 
Age 1.019 1.004–1.034 0.011 
Females 1.232 0.990–1.534 0.061 
Education level    
- primary/none [ref]   
- secondary 1.020 0.768–1.354 0.892 
- third/higher 1.043 0.781–1.393 0.775 
Anxiety 1.004 0.971–1.038 0.826 
Depression 1.014 0.998–1.031 0.089 
Antihypertensives 1.174 0.935–1.474 0.166 
Diabetes 1.113 0.736–1.682 0.613 
Smoker    
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- never [ref]   
- past 1.148 0.920–1.434 0.222 
- current 1.071 0.768–1.493 0.688 
Drinking problem    
- “No” [ref]   
- “Don’t know” 1.206 0.581–2.501 0.615 
- “Yes” 1.033 0.760–1.403 0.837 
UGS at baseline 0.999 0.994–1.005 0.851 
IPAQ    
- low [ref]   
- medium 0.960 0.745–1.237 0.751 
- high 0.892 0.685–1.163 0.399 

Table A6. Comparison of the OR and corresponding 95% C.I. of bad performances, total mistakes and mistakes in good perfor-
mances for the prediction of UGS decline in the binary logistic regression models. 

UGS Decline 
 Bad Performances Total Mistakes Mistakes in Good Performances 
 OR 95% C.I. p OR 95% C.I. p OR 95% C.I. p 

Model 1 1.232 1.102–1.377 <0.001 1.036 1.024–1.047 <0.001 1.049 1.033–1.066 <0.001 
Model 2 1.126 0.993–1.277 0.064 1.025 1.010–1.041 0.002 1.036 1.014–1.060 0.001 
Model 3 1.058 0.917–1.222 0.438 1.010 0.993–1.028 0.242 1.016 0.992–1.040 0.205 
Model 4 1.057 0.903–1.237 0.492 1.013 0.994–1.033 0.180 1.022 0.995–1.049 0.105 

Models for each main predictor, i.e., bad performances, total mistakes, or mistakes in good performances: model 1, with just the 
predictor; model 2, adjusted with mean RT and SD RT; model 3, which was model 2 with the addition of age, sex, and 
education level; model 4, the fully adjusted regression model, considering also the other covariates mentioned in Section 
2.1.5 (anxiety, depression, hypertensives, diabetes, smoking, alcohol, and IPAQ). The odds ratio (OR) and corresponding 
95% confidence interval (C.I.) give a measure of the influence of the predictor on the outcome; the p-value expresses the 
statistical significance of the predictor in the model. 

Table A7. Results for the fully adjusted per covariates binary logistic regression model 4 considering bad performances as 
potential predictor and having MMSE decline as outcome. 

MMSE Decline 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.067 0.969–1.174 0.187 
SART mean RT 1.000 0.999–1.002 0.495 
SART SD RT 1.001 0.999–1.004 0.334 
Age 1.044 1.029–1.059 <0.001 
Females 0.819 0.651–1.031 0.090 
Education level    
- primary/none [ref]   
- secondary 0.797 0.600–1.058 0.117 
- third/higher 0.747 0.557–1.001 0.051 
Anxiety 1.012 0.976–1.049 0.512 
Depression 1.011 0.993–1.029 0.239 
Antihypertensives 1.104 0.870–1.402 0.416 
Diabetes 0.759 0.473–1.217 0.252 
Smoker    
- never [ref]   
- past 1.075 0.844–1.368 0.558 
- current 1.523 1.092–2.123 0.013 
Drinking problem    
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- “No” [ref]   
- “Don’t know” 0.717 0.280–1.832 0.487 
- “Yes” 0.925 0.661–1.293 0.647 
IPAQ    
- low [ref]   
- medium 1.143 0.863–1.514 0.350 
- high 1.192 0.895–1.588 0.230 

Table A8. Results for the fully adjusted per covariates binary logistic regression model 4a considering bad performances as 
potential predictor and having MMSE decline as outcome. 

MMSE Decline 
Independent Variable OR 95% C.I. p-Value 
Bad performances 1.063 0.965–1.170 0.216 
SART mean RT 1.000 0.999–1.002 0.559 
SART SD RT 1.001 0.998–1.004 0.375 
Age 1.041 1.025–1.057 <0.001 
Females 0.816 0.647–1.029 0.086 
Education level    
- primary/none [ref]   
- secondary 0.792 0.596–1.053 0.108 
- third/higher 0.738 0.549–0.991 0.043 
Anxiety 1.012 0.976–1.049 0.535 
Depression 1.011 0.993–1.029 0.233 
Antihypertensives 1.093 0.858–1.392 0.471 
Diabetes 0.738 0.455–1.197 0.218 
Smoker    
- never [ref]   
- past 1.070 0.840–1.363 0.584 
- current 1.491 1.066–2.085 0.020 
Drinking problem    
- “No” [ref]   
- “Don’t know” 0.714 0.279–1.825 0.482 
- “Yes” 0.911 0.650–1.278 0.590 
UGS at baseline 0.998 0.991–1.004 0.436 
IPAQ    
- low [ref]   
- medium 1.125 0.848–1.494 0.414 
- high 1.203 0.902–1.606 0.209 
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