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Abstract

Image Aesthetics refers to the branch of computer vision which is about

the study of aesthetic properties of photographs i.e. the factors which

make an image look pleasing or dull. Such factors extend beyond the

physical properties of an image such as object category or location to

subtler and more nuanced ambiguous concepts such as “candid expres-

sion”, “harsh lighting”, “bad placement” etc. Nevertheless, the problems

in Image Aesthetics have traditionally been modelled as classical com-

puter vision tasks such as classification, regression etc. And, as with most

other problems in computer vision, deep learning based strategies have

proved more effective in this area as well, outperforming the classical ap-

proaches by a wide margin. Nowadays, automated systems for Image

Aesthetics Analysis have widespread applications from professional mul-

timedia content development to casual creatives in social media and ad-

vertising.

In this thesis, we study three different applications in Image Aesthetics

using deep learning: attribute classification, captioning and score predic-

tion. First, we study the capacity of deep neural networks in capturing

the geometric attributes i.e. those which depend on the arrangement of

objects within the image. Based on this, we propose a system that pre-

dicts the dominant aesthetic attributes in a photograph such as The Rule

of Thirds, leading lines etc. Second, we develop an aesthetic image cap-

tioning framework by exploiting in the wild user feedback from the web.
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Given an image, our framework generates critical feedback such as “nice

composition but the foreground is out of focus”. Third, we investigate the

limitations of traditional convolutional neural networks with respect to

global relational reasoning and handling photographs of arbitrary aspect

ratio and resolution. We present a visual attention based graph neural

network that addresses these limitations and advances the state-of-the-

art in aesthetic score prediction.

v



To mymother and sister.

And father, who would have been proud.



Acknowledgments

It was a privilege to work and learn frommy supervisor Prof. Aljosa Smolic

every day. This work wouldn’t be possible without the perfect balance of

freedom and guidance I enjoyed all these years. That he believed in this

work, kept it going during the lows. For the most part, I thank him for

patiently listening to every unrealistic idea, that I ever had but am now

ashamed of.

I thank Gail for taking care of everything else, things probably I am not

even aware of so that I could focus on research. Not a single print was

taken without dropping in and wasting her time for no reason. She pro-

tected and spoiled me, like many others, with that affection.

I am indebted to my past collaborators; Mukta for her insights during the

ideationof thiswork and themotivating longchats; Aakanksha for putting

things in perspective when they didn’t look great. I would also like to

thank other senior members of V-SENSE, who have helped in different

ways, time and again; Emin, Iman, Matis, Richard. I thank my transfer

reviewers, Prof. Rozenn Dahyot and Prof. Mads Haahr for their valuable

feedback. Particularly, I thank everyone in GV2 who participated in the

experiments and helped evaluate and strengthen this work. I am grate-

ful to Science Foundation Ireland, Trinity College Dublin and the people

of Ireland for providing all the resources that made this research possible.

vii



I thank Prof. Giuseppe Valenzise and Prof. John Dingliana, the reviewers

for this thesis, for their time and feedback.

Thanks tomymother and sister, Rina andRituparnaGhosal, andmybrother-

in-law Kanan Datta. Growing up and seeing them go out and teach, is

probably the foremost reason for why I am in academia; Richik and Sayak,

my nephews and stress busters; My cousins Bratati and Sayantan, for be-

ing thepillar of support that they are; My friend Tamal, for knowing exactly

what to say when I needed to hear it; Parijat for sharing the journey and

more; Anupam and Uday Da for introducing me to serious photography

and Bresson; Swadesh, Asif, Teesta, Kaustav, Tanushree and Arnab for the

lovely memories in Dublin.

And, the lads! Ailbhe, Colm, David, Matt, Pierre, Rafa, Seb, Tejo and Yang.

Coming out of the comfort zone to a different culture, I had my share of

fear and nervousness about adapting to the new standards. But thanks

to these guys, standards were rather very poor!! On a serious note, I have

learnt more in the lab while I wasn’t working. The Il Capo, the not-so-

white-board in the 1.02, the shared rejections, the retreats and the nights

that I don’t remember but very proud of! All of it was a pleasure. Thank

you.

Koustav Ghosal

University of Dublin, Trinity College

March 2021

viii



Contents

Abstract iv

Acknowledgments vii

ListofTables xii

ListofFigures xv

Chapter 1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problems in Image Aesthetics . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Question and Contributions . . . . . . . . . . . . . . . . 7

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Background 10

2.1 Evolution of Photography . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Computational Image Aesthetics . . . . . . . . . . . . . . . . . . . 13

2.2.1 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Aesthetic Visual Analysis (AVA) Dataset: Big Data for

Image Aesthetics . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Deep Learning for Image Aesthetics . . . . . . . . . . . . 19

2.2.4 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Deep Learning for Computer Vision . . . . . . . . . . . . . . . . . 22

2.3.1 Big Data and Evolution of Deep Learning . . . . . . . . . 22

2.3.2 Network Architectures . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Vision and Language . . . . . . . . . . . . . . . . . . . . . . . 27

ix



2.3.4 Learning from Noisy Data . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . 29

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3 Geometry Aware Aesthetic Attribute Prediction 31

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Saliency Detector . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Feature Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Style Classification . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Per-class Precision Scores . . . . . . . . . . . . . . . . . . . 41

3.4.3 Effect of data-augmentation . . . . . . . . . . . . . . . . . . 41

3.4.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 4 Aesthetic Image Captioning fromWeakly Labelled Pho-

tographs 52

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Caption Filtering Strategy . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Weakly Supervised CNN . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Visual and Aesthetic Attributes . . . . . . . . . . . . . . . . 60

4.3.2 Latent Dirichlet Allocation (LDA) . . . . . . . . . . . . . . . 62

4.3.3 Relabelling AVA Images . . . . . . . . . . . . . . . . . . . . . 62

4.3.4 Training the CNN . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 The Final Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5 Aspect Ratio and Layout Aware Aesthetic Score Regres-

sion 74

x



5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Feature Graph Construction . . . . . . . . . . . . . . . . . . 79

5.2.2 Score Regression using GNN . . . . . . . . . . . . . . . . . . 81

5.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Dataset and Metric . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Comparison with the State-of-the-Art . . . . . . . . . . . 89

5.3.4 Label Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.5 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 6 Conclusion 97

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 99

Appendix A Abbreviations 103

Appendix B Aesthetic Attributes 104

Bibliography 108

xi



ListofTables

2.1 Number of samples per category for AVA Style . . . . . . . . . . 17

3.1 Style Classification : Comparisonwith the state-of-the-art

: The results are reported in terms of Mean Average Preci-

sion(average of per class precision). We observe that for both

the datasets, our method performs better than the state-of-

the-art . Flickr Style was not used in [1, 2]. . . . . . . . . . . . . . . 40

3.2 PCP for AVA Style Dataset : Sal-RGB outperforms the state-

of-the-art [3] by a significant margin in every category. Our

ownbaselinesDenseNet [4], ResNet [5], RAPID++performequally

well for almost all categories except RoT, for which Sal-RGB

performs much better. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 PCP for Flickr Style dataset : Sal-RGBoutperforms the state-

of-the-art [3] by a significant margin. Our own baselines

DenseNet [4], ResNet [5], RAPID++ perform equally well. The

categories in Flickr are mostly appearance based. Hence, no

significant improvement is achieved by using Sal-RGB over a

regular CNN. Even the geometric composition category con-

tainphotographsof objects having regular geometric shapes

. Hence, it is not location dependent in true sense. . . . . . . . 44

3.4 PCP and MAP for AVA with different augmentation : We

observe that a better validation accuracy ensures a better

test performance. Thedecreasingorder ofmeanaveragepre-

cision is as follows : Trnc > Tw > Trc > Ticc > Tcc . . . . . . . . . . . 46

xii



4.1 (a) Results on AVA-Captions: Both CS and CWS, trained on

AVA-Captions perform significantly better than NS, which is

trained on nosiy data. Also, the performance of CWS and CS

is comparable, which proves the effectiveness of the weakly

supervised approach (b) Generalization results on PCCD:

Models trained on AVA-C perform well on PCCD validation

set, when compared with models trained on PCCD directly.

We argue that this impressive generalizability is achieved by

training on a larger and diverse dataset. . . . . . . . . . . . . . . 66

4.2 We measure inter-rater agreement for the scoring strategy

usingKrippendorff’s alpha. A valuebetween0and 1 indicates

positive agreement and thereforewefind that our strategy is

judged by human subjects quite reliably with α ≥ 5. On the

other hand, correlation between the algorithm and human

judgement regarding a caption ismeasured using PLCC and

SRCC.We notice that the algorithm proposed is fairly consis-

tent with the human judgement in both the metrics. . . . . . 71

4.3 Subjective comparison of baselines: We observe that hu-

man subjects find CS and CWS to be comparable but both

significantly better than NS. This underpins the hypothesis

derived from the quantitative results that filtering improves

the quality of generated captions and the weakly supervised

features are comparable with the ImageNet trained features 72

5.1 Architectural Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Ablation Study: We startwith themost basic single fully con-

nected layer (Avg-Pool-FC) and gradually add the different

componentsnamely, theencoder-decoder, featuregraph,mes-

sage passing and readout. We notice steady improvements

in the performance in all metrics. . . . . . . . . . . . . . . . . . . . 88

5.3 PLCC, SRCC, TAcc: Our approach outperforms the previous

methods for score regression in all the metrics. To the best

of our knowledge, [6] is the most recent work on this topic

and [7] is the state-of-the-art. . . . . . . . . . . . . . . . . . . . . . . 91

xiii



5.4 Accuracy
(
Acc

)
and Balanced Accuracy

(
Acc (B)

)
: We com-

pare our regression-based approach using indirect thresh-

olded accuracy (TAcc) withmethods which pose the problem

as a classification problem and are optimized with a binary

classification loss. Wefind the performance comparable and

better in terms of Acc and Acc (B), respectively. . . . . . . . . . 92

xiv



ListofFigures

1.1 Aesthetic Attribute Prediction: One approach is to predict

the probability of a given set of photographic attributes. The

values indicate how likely each attribute contributes to the

overall aesthetic value of the image. The prediction scores

of a classifier are normalized between [0, 1] using a sigmoid

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Aesthetic Feedback or Captions : The aesthetic captions

provide feedback regarding the aesthetic attributes such as

lines, light etc. On the other hand the physical captions com-

ment about the physical properties. . . . . . . . . . . . . . . . . . 5

1.3 Predicted Score / Ground Truth score . . . . . . . . . . . . . . . . 6

2.1 (a) Boulevard du Temple, a daguerreotype made by Louis

Daguerre in 1838, is generally accepted as the earliest pho-

tograph to include people (b) Étienne-Jules Marey’s multi-

ple exposure photography (c) A 360 panorama using a selfie

stick (c)Re-focusable lightfield imagecapturedbyLytro cam-

era (Source : Wikipedia) . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Example images from the AVA dataset corresponding to

14 different styles: (L-R) Row 1: Complementary Colors,

Duotones, HDR, Image Grain, Light On White, Long Expo-

sure, Macro. Row 2: Motion Blur, Negative Image, Rule of

Thirds, Shallow DOF, Silhouettes, Soft Focus, Vanishing Point 16

2.3 User comments from AVA . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 AlexNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 VGG-Net Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xv



2.6 GoogNet or Inception Architecture . . . . . . . . . . . . . . . . . . 25

2.7 ResNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 DenseNet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Standard convolutions vs graph convolutions . . . . . . . . . . 29

3.1 Output fromournetwork : A screenshot fromourweb-based

application. Predicted attributes are shownwith their proba-

bility values (one-vs-all). This is a shot fromMajidMajidi’s film

’The Colours of Paradise’. We see that rule of thirds (for child’s

position), shallowdepthof field, complementary colours (green

background and reddish foreground), image grain (because

of the poor video quality) are all well identified. . . . . . . . . . 32

3.2 Our Contributions : (a) Input (col 1), saliency maps (col 2) :

Saliency maps are generated using the method proposed in

[8]. The position of the main subjects can be obtained from

the saliency maps. (b) Our double-column CNN architec-

ture: One column accepts the regular RGB features and the

other column accepts saliencymaps. The features fromRGB

channel are computed using a pre-trained Densenet161 [4],

fine-tunedonourdatasets. Theyare fusedusinga fully-connected

layer and finally passed to another final fully-connected layer

for classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Comparison of overall MAP and RoT precision for different

networks: We trained ResNet152 [5] and DenseNet161 [4] on

AVA Style and Fusion results are from [3]. RAPID++ is imple-

mented following the data augmentation as done in [1] but

with Densenet161 architecture. Although theMAP values are

not too different, Sal-RGB outperforms others in finding RoT

by a significant margin. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xvi



3.4 Training and validation accuracy (normalized to [0,1]) for

AVA Style: For each strategy the proposed two-column net-

work was trained for 30 epochs with a learning rate of 0.001

and a batch-size of 16. We observe, that in terms of overfit-

ting (the gap between training and validation curves), the

Trnc and Tw performs best and worst, respectively. The de-

creasing order of overfitting is observed as follows Tw > Ticc >

Tcc > Trc > Trnc. This observation is consistent with [1] where

they observe that warping causes overfitting. In our case,

bothTw andTicc involvewarpingandhenceare themost over-

fitted strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Confusion matrix for AVA Style with our model: For a test

sample, the rowscorrespond to the real class and the columns

correspond to the predicted class. The values are computed

over 2573 test samples of AVA and then normalized. Exam-

ples of false positive images can be found in Figure 3.7 . . . . 48

3.6 Confusion Matrix for our model on Flickr Dataset : Exam-

ples of false positive images can be found in Figure 3.7 . . . . 49

3.7 False positives : Each row corresponds to false positive sam-

ples from a pair of mutually confused classes. Column 1-4

and column 5-8 correspond to the first and second category

in a pair, respectively. Top-Bottom - Long Exposure / Motion

Blur, Shallow DOF / Macro, Shallow DOF / Bokeh, Geometric

Composition / Minimal, Horror / Noir, Pastel / Vintage . . . . . 50

4.1 Aesthetic image captions. We show candidates generated

by three different frameworks discussed in this chapter: (a)

For NS, we use an ImageNet trained CNN and LSTM trained

on noisy comments (b) For CS, we use an ImageNet trained

CNNandLSTM trainedoncompiledAVA-Captionsdataset (c)

For CWS, we use a weakly-supervised CNN and LSTM trained

on AVA-Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Informativeness of captions. . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Some topics / labels discovered fromAVA-CaptionsusingLDA.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Proposed pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xvii



4.5 Diversity: Figures (a) - (c) report diversity of captions follow-

ing [9]. The x-axes correspond to n-gram positions in a sen-

tence. The y-axes correspond to the number of unique n-

grams at each position, for the entire validation set. Figure

(d) plots the overall diversity, as reported in [10]. We observe

that the diversity of the captions increase significantly when

the framework is trained on cleaner ground-truth i.e. AVA-

Captions (CS or CWS) instead of AVA-Original (NS). . . . . . . . 68

4.6 Subjective evaluationof captionfiltering: Thematrix com-

pares our scoring strategy and human judgement for distin-

guishing a good and a bad caption. The rows stand for our

output, and the columns represent what humans thought.

We observe that the proposed caption filtering strategy is

fairly consistent with what humans think about the informa-

tiveness of a caption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 The proposed two stage pipeline . . . . . . . . . . . . . . . . . . 75

5.2 Message Passingwith Self-Attention: A toy scenario for the

update vi −→ v′i, with four neighbours and three attention

heads (red, blue and black). v′i is the concatenation of the

output from the different attention heads (Eq 5.6). Note, that

this step is repeated for every node vi ∈ G and the output is

also a graph with the same structure as the input. . . . . . . . 82

5.3 (a)-(f)Average score distribution of different baselines plotted

with the ground truth distribution. (g)-(h) Baseline predic-

tions on five random images from the test set . . . . . . . . . . 90

5.4 Confusion Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 GAT×3-GATP predictions / Ground truth (GT) scores for im-

ages randomly sampled from AVA: . . . . . . . . . . . . . . . . 96

6.1 Correlated Attributes: Each row displays eight samples from

two categories (four each) which were mutually confused.

Row 1 is horror / noir and Row 2 is minimal / geometry . . . . 99

6.2 Realistic Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1 Colour Wheel : Example of complementary colours are red-

green, yellow-purple combinations. . . . . . . . . . . . . . . . . . 104

xviii



B.2 Rule of Thirds : It is observed that when the main subject is

placed at one of the four points instead of the centre of the

photograph, it is aesthetically more pleasing. . . . . . . . . . . 106

B.3 Somephotographic attributes fromAVA and their descriptions107

xix



Chapter 1

Introduction

In this chapter, we aim to introduce the reader to the field of Image Aes-

thetics and the motivation for studying the problem. A detailed discus-

sion on the general principles of aesthetics in photography from an artis-

tic perspective is beyond the scope of this work. Instead, we follow a top

down approach and try to highlight the aspects relevant for discussing

the technicalities of the applications explored. We discuss the challenges

involved, key research questions explored, primary contributions and a

high-level structure of the thesis.

1



1.1 Motivation

What makes a good photograph?

This is a fundamental question that intrigues anyone into serious photog-

raphy. It is quite common for photographers to take a picturewith an idea

but being unable to convey that to the viewer. The rules of photographic

composition are important in this context. Experienced photographers

are generally aware of those rules. They apply, combine and extend these

rules to guide the viewer to the subject of the photograph. One starts

by learning simple concepts such as keeping the horizon straight, focus-

ing the subject sharply, getting the correct exposure etc. and then with

practice, grasps the more complex rules such as The Rule of Thirds, com-

plimentary colours, vanishing lines etc. [11] 1. The rules of composition are

important not only to the photographers but also to the viewers in order

to appreciate a photograph.

Can an artificial agent be trained to criticize a photograph?

How difficult could this task, which is reasonably challenging for humans,

be for a computer? The computer vision community has tried to imitate

the human visual system for certain tasks such as recognition [12, 13], de-

tection [14, 15], segmentation [16] etc. Moreover, since the last decade

Deep Learning [17] has been quite successful in solving these classical

problems. The data-driven deep features aremore robust than the hand-

crafted features such as HOG [18], SIFT [19] etc. in terms of modelling the

physical properties such as class, colour, shape, position etc. But howwell

do these approachesmap to themore subtle andcomplex aesthetic prop-

erties of a photographic image? Can a computer bemade to understand

the sharpness of focus or the harshness of light? Can we train an artifi-

cial agent to provide feedback to amateur photographers? Or can a com-

puter rate or score a photograph on a given scale? In other words, as put

by Aaron Hertzmann [20], can computers understand or create art (pho-

tography)? In this thesis, we explore these possibilities.

1Please check Appendix B for more on these rules
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Big Data and Deep Learning for Image Aesthetics

As just mentioned, in recent years data-driven solutions have taken over

most problems in computer vision and this applies to Image Aesthetics

as well. In the past, non deep learning or feature-based attempts tried to

identify and encode the aesthetic properties and define a generic model

for Image Aesthetics [21, 22, 23, 24, 25, 26]. In most cases, these features

were extensions of the hand-coded off-the-shelf generic image descrip-

tors such as HOG, SIFT etc. But, because of the ambiguous and overlap-

ping nature of aesthetic properties, the task was quite complex and ill-

posed.

In recent years, deep learning based data-driven approaches have proven

quite effective [7, 1, 2, 27, 28]. This is primarily due to the availability of

the large scale Aesthetic Visual Analysis (AVA) [29] dataset and the rapid

improvements in convolutional neural network (CNN) architectures. It is

not at all surprising that the current state-of-the-art methods in Image

Aesthetics outperform the classical approaches by a wide margin. Nev-

ertheless depending on the task, applying deep learning for Image Aes-

thetics is not straightforward and has its limitations. In the next section,

we introduce the applications studied in this thesis and the associated

problems.

1.2 Problems in Image Aesthetics

Specifically, we look at three different applications in Image Aesthetics:

AttributeClassification, FeedbackorCaptioningandScorePrediction.

Attribute Classification

As discussed in Sec. 1.1, a photographer considers different factors or at-

tributes to judge the aesthetic value of an image. These attributes could

be appearance-based such as exposure, texture, colour balance etc. or ge-

ometry/layout based such as arrangement of subjects, negative space,

The Rule of Thirds etc. A combination of these factors applied correctly

makes a composition look aesthetically pleasing or dull. However, it is

worthmentioning here that no list of such factors can be exhaustive. Eval-
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Figure 1.1: Aesthetic Attribute Prediction: One approach is to predict the

probability of a given set of photographic attributes. The values indicate

how likely each attribute contributes to the overall aesthetic value of the

image. The prediction scores of a classifier are normalized between [0, 1]
using a sigmoid function.

uating a photograph is a complex and subjective task. As in many other

artistic disciplines, contradictory opinions regarding theaesthetic attributes

of a photograph is quite common among critics. This makes the problem

severely ill posed. Instead, we address a simplified version of the problem

and study the contribution of N different aesthetic attribute as shown in

Fig. 1.1.

Based on the recent developments of CNNs, we develop a system that

predicts the probability distribution over the set of N aesthetic attributes.

However, CNNs by design are translation invariant i.e. they are limited in

their ability to capture object placement. In other words, they struggle to

understand the significance of the placement of subjects within a pho-

tograph. But such an understanding is crucial for certain ”geometric” at-

tributes such as The Rule of Thirds, which states that placing the subjects

in a certain way makes a photograph more appealing. In Chapter 3, we

propose a visual saliency based double column framework that addresses

this issue and achieves the state-of-the-art results in aesthetic attribute
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i like the composition and

the lines of the building

i like the way you have

captured the light

i like the way the sun

is shining through the

clouds

barricade in front of stairs a multi-storeyed building a line of trees during sun-

set

Figure 1.2: Aesthetic Feedback or Captions : The aesthetic captions

provide feedback regarding the aesthetic attributes such as lines, light

etc. On the other hand the physical captions comment about the physi-

cal properties.

classification.

Feedback/ Captioning

By feedback, we mean a description of the photograph in an informa-

tive and intelligible format. For example, in photography websites such

as Flickr or Dpchallenge, experts provide critical feedback to photogra-

phers based on their evaluation, such as “I like how the lines of the road

lead the eyes to the main subject”. We emphasize on “informative” to fil-

ter out the comments made by non-experts which are less useful for the

photographer such as “nice shot” or “well done”. Unless there is a detailed

explanation of what makes the picture aesthetically pleasing or unpleas-

ant, the feedback is less useful [30]. Therefore as the target task, an agent

should be able to generate informative aesthetic descriptions of the pho-

tograph.

In Chapter 4, we present our study about Aesthetic Image Captioning.

Motivated by the recent developments in traditional image captioning i.e.

textual descriptions of the physical properties of natural scenes (E.g. “A red

car in front of a building”), we develop a pipeline based on a CNN feature

extractor and a long and short term memory (LSTM) network. However,
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the lack of a curated datasetmakes the task quite challenging andwe ex-

ploit noisy “in the wild” comments from the web to build the framework.

Furthermore, we compile a dataset called AVA-Captionswhich consists of

about 230, 000 images with 5 captions each, on an average.

Score Prediction

6.20 / 6.646 6.475 / 7.165 6.13 / 6.296 6.13 / 6.948 6.285 / 6.167

Figure 1.3: Predicted Score / Ground Truth score

Predicting a rating or score of an image on a given scale is the most re-

searched problem in Image Aesthetics. Unlike the attribute classification

problemwhich aims to isolate the dominant aesthetic elements in an im-

age, a score is an overall measure of its aesthetic appeal. In the context

of casual creatives, it is analogous to the popularity of an image on so-

cial media such as the number of likes on Facebook or Instagram. Indus-

trial applications of score prediction include ranking and sorting images

for marketing and advertisement, smarter cameras and editing software

etc.

However, most deep learning-based methods for aesthetic score predic-

tion face two primary challenges—aspect ratio awareness and image lay-

out understanding. The aspect ratio of the photographs gets distorted

while they are resized/cropped to a fixed dimension to facilitate training

batch sampling. On the other hand, the convolutional filters process in-

formation locally and are limited in their ability tomodel the global spatial

layout of a photograph. In Chapter 5, we present a two-stage framework

based on graph neural networks and address both these problems jointly.

First, wepropose a feature-graph representation inwhich the input image

ismodelled as agraph,maintaining its original aspect ratio and resolution.

Second, we propose a graph neural network architecture that takes this
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feature-graph and captures the semantic relationship between different

regions of the input image using visual attention.

1.3 Research Question and Contributions

In this section, we formally present the research question studied in this

dissertation and summarize the key contributions discussed above.

Research Question

Broadly, we investigate — “How efficiently can artificial agents

be trained for Image Aesthetic Analysis?”.

We study this problem in the context of three objectives:

• Aesthetic Attribute Prediction.

• Feedback or Aesthetic Image Captioning.

• Aesthetic Score Prediction.

Contributions

• We study the capacity of convolutional neural networks for un-

derstanding the geometric aesthetic attributes and develop a

visual saliency based framework for attribute classification.

The proposedmethod achieves state-of-the-art results on sev-

eral datasets.

• We present a framework for aesthetic image captioning us-

ing the weakly labelled data from the web. We build our

framework based on a traditional CNN-LSTM pipeline used for

traditional image captioning. We compile a new benchmark

dataset for aesthetic image captioning called AVA-Captions.

• We propose a graph neural network based aesthetic score pre-

dictor which is aspect ratio and layout aware. Our method ad-

vances the state-of-the-art in aesthetic score regression on

the Aesthetic Visual Analysis (AVA) benchmark dataset.
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1.4 Publications

Publications Based on Thesis Work

• Koustav Ghosal, Mukta Prasad, Aljosa Smolic, A Geometry-

Sensitive Approach for Photographic Style Classification ,

IrishMachineVision and ImageProcessingConference, August

2018 (IMVIP), Belfast.[31]

• Koustav Ghosal, Aakanksha Rana, Aljosa Smolic Aesthetic Im-

age Captioning From Weakly-Labelled Photographs The

IEEE International Conference on Computer Vision (ICCV-W),

2019 [32]

• Koustav Ghosal, Aljosa Smolic, Aspect Ratio and Spatial Lay-

out Aware Image Aesthetics Assessment Using Graph At-

tention Network, IEEE Transactions on Image Processing (un-

der review)

Publications Outside the Scope of the Thesis

• Xu Zheng, Tejo Chalasani, Koustav Ghosal, Sebastian Lutz,

Aljosa Smolic STaDA: Style Transfer as Data Augmentation

14th International Conference on Computer Vision Theory and

Applications, 2019. [33]

• Ojasvi Yadav, Koustav Ghosal, Sebastian Lutz, Aljosa Smolic,

Frequency Domain Loss Function for Deep Exposure Cor-

rection of Dark Images, Signal Image and Video Processing

[34]

1.5 Dissertation Structure

This dissertation is divided into six chapters and two appendices. In this

first chapter we discussed themotivation and problems addressed in the

thesis. In Chapter 2, we discuss relatedwork. Weprovide a detailed review

of classical and recent work on Image Aesthetics. We also brieflymention
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research which may not be directly related but has influenced certain as-

pects of our work. In the next three chapters we discuss the three ap-

plications we explored. In Chapter 3, we present our work on aesthetic

attribute classification, in Chapter 4 we discuss aesthetic image caption-

ing and in Chapter 5, we talk about our work in aesthetic score prediction.

Eachof these chapters standon their ownand canbe read independently.

The ordering is based on a rough chronological order followed during this

thesis. In Chapter 6, we conclude this thesis by summarizing the key con-

tributions and future research directions.
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Chapter 2

Background

In this chapter, wediscussprevious research in ImageAesthetics andother

related areas. Owing to the diverse applications explored, the scope of

this dissertation is quite broad and spansmultiple modalities (image and

text). There is a plethora of literature in almost every topic covered. We try

to be exhaustive and inclusive in reviewing the classical and recent de-

velopments in Image Aesthetics. For other related areas, we restrict the

discussion to the papers that are recent and most relevant to the prob-

lems addressed. We refer to several survey papers during the discussion

which may be of interest for further exploration.
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(a) (b) (c) (d)

Figure 2.1: (a) Boulevard du Temple, a daguerreotype made by Louis Da-

guerre in 1838, is generally accepted as the earliest photograph to include

people (b)Étienne-JulesMarey’smultiple exposure photography (c)A 360

panorama using a selfie stick (c) Re-focusable light field image captured

by Lytro camera (Source : Wikipedia)

2.1 Evolution of Photography

Photography: Art or Not?

The acceptance of photography as an art form did not come easily. In its

early years, it was used merely as a tool to preserve practical records of

the world by using techniques such as Louis-Jacques-Mandé Daguerre’s

dagguereotype (Figure 2.1(a)) orWilliamHenryFox Talbot’snegative-positive

process [35, 36]. But as technology improved over the years, it started be-

ing seen as an alternative to contemporary realist paintings. The key pa-

rameter of criticizing a realist painting was its resemblance to reality i.e.

howwell it mimicked the real world. With cameras doing that job reason-

ably well, painting started evolving towards newer styles. Photographic

techniques such as Étienne-JulesMarey’smultiple exposure (Figure 2.1(b))

had a profound impact on the then avant-garde genres of Futurist and

Cubist paintings. With the borders between painting and photography

being crossed from either side, the debate, whether photography should

be recognized as an art form, was inevitable. The formal recognition was

achieved in 1910when the first photographic exhibition “Buffalo Show” by

Alfred Stieglitz was organized at The American ArtMuseum [20, 37].

Missing the Human Element

One of the arguments against photography was the mechanical process

behind its creation. In the beginning, photography was viewed primarily
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as a photo-chemical process used for record-keeping rather than an artis-

tic practice. While there are many different definitions of art, the com-

mon factor is the existence of an artist who creates the artefact. Islamic

forms and geometric patterns from the past are considered art works but

the natural patterns in clouds and rocks are not. It is the presence of the

human element that makes the distinction [38]. Similarly, it is the use of

machines to domost of the job that challengedphotography’s artistic sta-

tus. Nonetheless, it aroused great interest and photographers pushed the

boundaries by introducing new processing techniques and genres [39].

Gradually, photography earned the status of a traditional art form. Today

it is pursued not just as a hobby, but as a powerful medium for creating

social awareness regarding human-rights violations, wildlife preservation,

dangers of war, etc. [40]. At the same time, the new inventions in camera

technology such as light-field, panoramic, 360 cameras, etc. [41, 42] (Figure

2.1 (b) and (c)) are opening new possibilities.

Photography Criticism and Image Aesthetics

One of the main reasons for its rising popularity is the easy access to a

decent camera. With little or no formal training in photography and the

help of an automatic or semi-automatic camera, it is possible to capture

accidental pictures which are aesthetically quite pleasing. Nowadays, al-

most all the good cameras and evenmobile phones comewith advanced

hardware and software that allows the photographer to capture pictures

under harsh conditions such as low light, motion etc. But, for someone

new to photography, there is a need to be criticized and evaluated in or-

der tomake progress [30]. Apart from assisting photography enthusiasts,

criticism plays an important role in advertising and creative industries for

content creation and management.

Research in Image Aesthetics is primarily focused at automating this pro-

cess. An intelligent assistive technology for the camera or smart softwares

for organizing and filtering creative content are some of the many real-

world applications which can be potential spin-offs from this research. In

the next section, we discuss the classical and recent developments in this

area along with some of its industrial applications.
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2.2 Computational Image Aesthetics

We divide this section into four parts. In Section 2.2.1, we talk about the

classical approaches, in Section 2.2.2 we introduce the AVA benchmark, in

Section 2.2.3 we discuss the deep learning based methods and finally in

Section 2.2.4 we discuss some of the recent industrial applications.

2.2.1 Classical Approaches

Earlywork in ImageAesthetics reliedonexplicit-modellingorhand-coding

of popular aesthetic attributes. Many of these approaches tried to jointly

captureglobal properties suchasoverall colourharmony, illuminationand

contrast and local factors such as contrast between objects, blur and clut-

ter. [21, 22, 23, 24, 25, 26, 43, 44, 3, 45, 46, 47, 48]. In this section, we discuss

each of these briefly and in the end, point to a survey for further explo-

ration.

Datta et al. [21] in their pioneering work on Image Aesthetics use images

from Photo.net and hand-code 56D features for modelling nine different

aesthetic properties— exposure, saturation, The Rule of Thirds, familiarity,

size and aspect ratio, region composition, depth of field and shape con-

vexity. They train a support vector machine for aesthetic category classi-

fication and score regression.

Ke et al. [22] identify three sets of high-level perceptual factors which dis-

tinguishhigh-quality professional photographers fromthe low-quality snap-

shots. They factors are simplicity (lack of clutter and salient foreground),

realism (mundane content vs surreal processing) and basic techniques

(blur, contrast etc.). They encode these factors using low level features

such as edge, colour, hue, intensity distributions and frequency compo-

nents and train a Naive Bayes classifier.

In [23], Luo et al. present amethod in which themain subject in an image

or video is focused for feature extraction rather than the entire image. For

images, they define features pertaining to blur, clarity contrast, simplic-

ity of absence of clutter, composition geometry and colour harmony. For

videos, they add subject motion and overall motion stability. Using these

features they train Naive Bayes, SVM and Adaboost classifiers and achieve
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state-of-the-art results for the task.

A similar approach was adopted by Obrador et al. in [24] where they pro-

pose three types of features: simplicity features based on image segmen-

tation,global features or anoverallmeasureof luminance, contrast, colour-

fulness, harmonyandcompositiongeometry and low-level featuresbased

on contrasting regions in the image. They create a dataset of 2100 images

with photographs from theDpchallengewebsite having seven categories

and train classifiers using SVM.

Luo et al. [43] propose a genre specific approach in which they manually

divide photographs into different categories such as animal, plant, archi-

tecture etc. and then extract regional and global features separately for

each category. The idea was motivated by the fact that human beings

treat each genre differently while analyzing the aesthetic appeal. In addi-

tion they also compile the CUHK dataset of 17613 images.

Motivated from how humans analyze a photograph, Dhar et al. [25] pro-

pose three types of high-level describable features based on composition

(image layout and geometric attributes), content (object and scene cate-

gory) and sky illumination (overall measure of illumination). Using these

features, they present an approach for measuring the aesthetic quality

and interestingness of photographs.

Marchesotti et al. [44] suggest an alternative approach to aesthetic as-

sesssment using ‘generic’ bag-of-visual-words and Fisher Vector based

features used in traditional image classification tasks at the time. Their

approach was motivated by the computational cost and lack of general-

izability of the previous hand-crafted features.

Karayev et al. [3] in their experimental work compare several such generic

imagedescriptors for aesthetic attributeprediction. Specifically, they com-

pare LAB colour histogram, GIST, graph-based visual saliency, meta class

binary features and deep features on three different datasets; AVA, Flickr

Style andWikipaintings.

Aydin et al. [45] propose a systemwhich predicts the contribution of some

photographic attributes towards the overall aesthetic quality of a picture.

After estimating the extent of certain compositional attributes, they ag-
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gregate the scores for different attributes to predict the overall aesthetic

score of a photograph by using a novel calibration technique.

Li et al. [46] propose a method to assess the aesthetic value of digital

copies of paintings based on a user study where they ask artists to list

the factors driving a composition such as colour, composition, meaning/-

content, texture/brushstrokes etc. They design global and local features

exploiting colour distribution, brightness, blur, shape of segments, con-

trast between segments etc. and achieve results comparable to human

performance.

A specific application of aesthetic assessment for portrait shots is pre-

sented by Li et al. in [47]. They develop a system with three capabilities:

aesthetic assessment based on colour, lighting, composition and facial

characteristics, a cropping based photo editing algorithm and a retrieval

framework from a large collection of consumer photos.

In [48], Yao et al. present OSCAR, a comprehensive assistive software for

photography enthusiasts. Their systemhelps users in threedifferentways.

It suggests exemplar images from a database in terms of content and

composition, provides a confidence score regarding the colour correct-

ness and finally, an overall aesthetic score.

Survey

In their 2011 tutorial [26], Joshi et al. present a comprehensive survey

of the research and challenges in analyzing the aesthetics and emo-

tions of photographs. They outline the key philosophical and artistic

motivations behind this research, list datasets, survey contemporary

research and point to future research problems.

2.2.2 Aesthetic Visual Analysis (AVA) Dataset: Big Data for Im-

age Aesthetics

One of the challenges for these early methods was the lack of a standard

benchmark for evaluation. Typically, a small set of images were sampled

from photography websites such as Dpchallenge.com or Photo.net and

used for the specific task at hand. In 2012, Murray et al. in their semi-
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Figure 2.2: Example images from the AVA dataset corresponding to 14

different styles: (L-R) Row 1: Complementary Colors, Duotones, HDR,

Image Grain, Light OnWhite, Long Exposure, Macro. Row 2: Motion Blur,

Negative Image, Rule of Thirds, ShallowDOF, Silhouettes, Soft Focus, Van-

ishing Point

nal work ‘AVA: A Large-Scale Database for Aesthetic Visual Analysis‘ [29]

compiled the first large-scale publicly available benchmark for the task.

This was also the same year in which AlexNet [12] won the Imagenet Large

Scale Visual Recognition Challenge (ILSVRC) [49] and the deep learning

wave started to rise. The release of AVA and the subsequent rapid evolu-

tion of deep learning together led to a significant volumeofwork in Image

Aesthetics over the years. We discuss those in detail in the next section.

But first, in this section we discuss the details of the AVA dataset.

AVA is a collectionof ~255, 000 images crawled fromwww.dpchallenge.com.

Dpchallenge is a curated forum for photographers where challenges are

hosted based on certain themes such as ‘bokeh’, ‘complimentary colours’,

‘leading lines’ etc. (Figure 2.2). Participants post pictures and the wider

community rates each photograph during the challenge on a scale of 10

and posts comments during and after the challenge. There are several

types of ’weak’ annotations available with AVA, although some of them

are noisy and non-curated.

Ratings

Theuser ratings for the images areprovidedas a 10-binhistogramof scores.

The final score is obtained as a weighted average of the histogram. There

are two traditional approaches for aesthetic analysis using AVA. One is to

solve a classification problem by thresholding the scores at 5 and gener-

ate ‘good’ and ‘bad’ labels. The other approach is to regress the scores di-

rectly. However, a fundamental problem with these ratings is the uneven
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Index Classes Number of Samples

Train Val Test Total

1 Complementary_Colors 622 138

2 Duotones 843 198

3 HDR 277 40

4 Image_Grain 577 95

5 Light_On_White 794 166

6 Long_Exposure 563 113

7 Macro 1138 221

8 Motion_Blur 415 73

9 Negative_Image 641 127

10 Rule_of_Third 923 189

11 Shallow_DOF 994 190

12 Silhouettes 694 130

13 Soft_Focus 468 100

14 Vanishing_Point 442 98

Total 11269 2516 13785

Table 2.1: Number of samples per category for AVA Style

distribution of scores. Since participants post their best pictures during

a competition, the dataset is biased towards ‘good’ labels with a 7/3 ratio.

As a result an ‘all positive’ classifier trained on AVA could easily achieve

70% overall accuracy. We talk more about this and possible solutions in

Chapter 5. The classification/regression problem based on these ratings

is currently the most widely researched topic in Image Aesthetics.

Tags

Of the 250, 000 photographs in AVA, the authors manually select 72 chal-

lenges, corresponding to 14 different photographic styles as illustrated in

Figure 2.2 andcreate a subset calledAVAStyle containingabout 11, 000/2500

training/test images, respectively. The ground truth annotations are pro-

vided as one-hot encoding of the style tag associated with an image. No-

tably, the training data is single labelled whereas the test data is multi-

labelled. Aswith the ratingdistribution, the tags arenot evenly distributed

and therefore the number of samples in certain categories is quite sparse

(Table 2.1). Aesthetic attribute prediction is a popularly addressed task us-

ing the AVA-Style dataset. All the 255, 000 images are associatedwith a tag
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Image Comments

Photo Quality : Awesome

I love the colors here

I like the trees in thebackgroundand

the softness of the water.

The post processing looks great with

the water, but the top half of the

photo doesn’t work as well.

Its a lovely scene but the PP is just a

bit over the top for me, the sky pulls

me away from the green, a slightly

less enhanced shotwould have been

fine for me. It looks like the lake dis-

trict or somewhere like that.

Figure 2.3: User comments from AVA

but not all of them are a part of the AVA Style dataset.

Comments

Typically, in Dpchallenge, users ranging from casual hobbyists to expert

photographers provide feedback to the images submitted and describe

the factors thatmake aphotograph aesthetically pleasing or dull. In away,

they are similar to the captions available in the well instructed and cu-

rated datasets such as MC-COCO [50]. But the raw comments in AVA are

unconstrained user-comments in the wild with typos, grammatically in-

consistent statements, and also containing a large number of comments

occurring frequently without useful information (Figure 2.3). Neverthe-

less, they contain rich information, which has often been used as auxiliary

data to boost the performance of the primary tasks. In Chapter 4, we dis-

cussmore on the comments and present a framework that exploits these

comments for aesthetic image captioning.

To summarize this section, AVA is the largest benchmark available to train

and evaluate frameworks for Image Aesthetics but it is weakly labelled.

In other words, the ground-truth annotations available for AVA were not
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curated and hence unconstrained. As a result AVA closely represents real

world datawith all the standard challenges such as noise, label imbalance

etc. However, it has been subsequently used for diverse image aesthetic

assessment tasks by most recent works, if not all of them.

2.2.3 Deep Learning for Image Aesthetics

As in many other computer vision problems, deep learning based meth-

ods have been extensively explored in the domain of image aesthetic as-

sessment aswell. With the availability of AVA and rapid advances in neural

network architectures, the current state-of-the-art methods outperform

the classical approaches by a wide margin [1, 2, 51, 28, 52, 27, 53, 54, 55, 56,

57, 7, 6, 58].

In [1], Lu et al. propose a double column CNN architecture, where the first

column accepts a cropped patch from the input image and the second

column accepts a warped version of the entire input. Their intuition was

that both local and global information from an image are crucial for aes-

thetic assessment. In subsequent work [2], multiple patches are cropped

from an input and forwarded through the network. The features from

multiple patches are aggregated before the final fully-connected layer for

classification. The authors argue that sending multiple patches from the

same imageencodesmoreglobal context thana single randomcrop.

Kong et al. [51], propose a ranking framework by training a CNN using

Siamese Triplet Loss instead of categorizing images to a coarse binary

label. Additionally, they compile the Aesthetics and Attribute Database

(AADB)whichconsists of 10000 images andground-truthannotations, sim-

ilar to AVA.

Mai et al. in their work [28] propose a network that uses a composition-

preserving inputmechanism. They introduce an aspect-ratio aware adap-

tive pooling strategy that reshapes each image differently and thereby

claims to preserve the aspect-ratio information, a key element in photo-

graphic composition.

In [52], the authors propose a network that predicts the overall aesthetic

score and eight style attributes, jointly. Additionally, they use gradient-
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based feature visualization techniques to understand the correlation of

different attributes with image locations.

Ma et al. [27] followamultiple-patch extraction approach, and thepatches

are selectively extracted based on saliency, pattern-diversity and overlap

between the subjects. Essentially, these techniques attempt to incorpo-

rate global context into the features during a forward pass either bywarp-

ing the whole input and sending it through an additional column or by

providing multiple patches from the input at the same time.

Hii et al. [54] exploit the textual comments in AVA and augment it with

the visual features. The visual features are extracted by appending global

average pooling layers on top of multiple Inception blocks and the text is

encoded using a recurrent neural network. They also present visualiza-

tions of the learnt network activations.

Sheng et al. [55] propose amultiple patch aggregation strategy for binary

label classification. Using three different forms of visual attention, their

network learns to select relevant patches from the input.

Talebi et al. [56] propose a new loss function based on the Earth Mover

Distance and apply it for aesthetic score regression. Using that, they train

several backbone architectures such as Inception, MobileNet etc. and ap-

ply them for aesthetic as well as no-reference Perceptual Quality Assess-

ment.

Liu et al. [57] explore dilated convolutions and graph neural networks for

encodingglobal properties in photographic composition. Features are ex-

tracted using a pre-trainedDenseNet backbone and then are fed through

a few dilated convolution layers before passing to a graph layer for cap-

turing long range dependencies. They also propose a novel loss function

which handles the label imbalance in AVA for binary classification.

Hosu et al. [7] propose multi-level spatially pooled features for aesthetic

score regression. They have a two stage framework. First, features are ex-

tracted using an Inception-Resnet backbone and saved to the disk. Then

these features are trained for score regression using an inception layer fol-

lowed by 3 fully connected layers.
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Xu et al. [6] use spatial attention to focus on certain areas of the image

that contribute towards the overall aesthetic value of an image. Their self-

attention module is configured on top of an Inception backbone to pro-

cess features selectively andfinally a classifier is trainedusingEarthMover

Loss for score regression.

Chen et al. [58] propose an adaptive fractional dilated convolutional net-

work capable of handling inputs of arbitrary aspect ratios. In order to

achieve efficientmini-batching for samples of arbitrary sizes, they present

agrouping strategy that reduces computational overhead, significantly.

Survey

Image Aesthetic Assessment: An Experimental Survey [53] by Deng

et al. is an extensive survey of Image Aesthetics in recent years. It

lists many important papers until 2017, proposes a balanced sam-

pling strategy for handling label imbalance in AVA and provides sev-

eral key insights in this area.

2.2.4 Industrial Applications

Data-driven technologies are being applied for developing or enhancing

diverse commercial applications around Image Aesthetics. For example,

professional editing softwares such as Adobe Photoshop [59] or Snapseed

[60] have automatic filters for aesthetic quality improvement. Several new

features based on machine learning are regularly being added to these

tools suchas subject/object selection, content-awarefilling, sky-replacement

etc. [61]. Understandingwhat works best for a given photograph is central

to automating/enhancing these tools. Casual creative applications in pop-

ular domains such as Instagram [62] or Facebook [63] can also improve

using this technology for similar reasons.

Another sector which has an ample scope for automated Image Aesthet-

ics is Stock Photography. Stock photography agencies act as mediators

between photographers and businesses seeking photographs for adver-

tising or marketing. Several websites such as Shutterstock [64], EyeEm

[65], Everypixel [66] automatically rankand tag the submittedphotographs

catering to the need of their customers. Everypixel even has a neural net-
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work based automated score estimator where users can verify the aes-

thetic appeal of their photos.

2.3 Deep Learning for Computer Vision

In this section, we review the topicswhich are related to our central theme

i.e. deep learning based Image Aesthetics. All these topics are quite active

areas themselves and have a plethora of publications. In the following

sections we discuss papers that directly and indirectly motivated our re-

search. In Section 2.3.1, we briefly highlight the evolution of deep learning

over the years. In Section 2.3.2, we briefly talk about the neural network

architectures which have been used as backbone frameworks in the sub-

sequent chapters. In Section 2.3.3, we discuss multimodal problems in

vision and language and in Section 2.3.4 we discuss deep learning appli-

cationswith nosiy real-world data, both ofwhichhave influencedourwork

in aesthetic image captioning in Chapter 4. In Section 2.3.5, we explore

the recent advances in graph neural networks which is the basis for our

contributions in Chapter 5.

2.3.1 Big Data and Evolution of Deep Learning

Most problems in Computer Vision (or machine learning in general) can

be formulated as function estimation tasks. Given a task andwell defined

source and target domains, the challenge is to learn an efficientmapping

from the source to the target (such as image to labels or image to seg-

mentation masks). Early function estimators such as support vector ma-

chines [67] or Naive Bayes [68] were typically optimized based on hand-

coded image descriptors such as SIFT [19] or GIST [69]. But these features

were based on intuition and assumptions regarding data and thus lim-

ited in their ability to capture the diversity of in the wild real world image

distributions. In other words, these features lacked generalizability and

usually performed well for small curated datasets.

Neural networks started becoming popular as they make no strong as-

sumptions about the data distribution and can be optimized using the

rawdata and labels in anend-to-end fashionusingbackpropagation. Early
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neural networks such asmulti layered perceptrons (MLP) showed promis-

ing results on image classification problems [70]. But, the number of pa-

rameters in MLPs grew exponentially with the input size and hence they

were not suitable to handle high dimensional RGB data. But with the rise

in popularity of social media and smartphones image data became high

resolution, cheap and abundant. This called for a computationally effi-

cient and scalable version of neural networks which could be applied to

image data to develop real world applications.

CNNswere able to handle this efficiently usingfilterswith sharedweights.

A typical filter in aCNN is shared across the entire input and thus thenum-

ber of parameters is independent of the input dimension. Additionally, it

has several other benefits such as translation invariance, hierarchical rep-

resentation etc. [71]. Also mathematically, the working principle of a CNN

could be reduced to a series of matrix operations resulting in fast and

efficient GPU implementations [72, 73]. Over the years, as data became

more abundant, CNNs grew deeper and GPU technology too improved

rapidly to cater for the deep learning community. The result is the com-

plete paradigm shift in artificial intelligence research from model-based

to data-driven approaches. Problems such as MNIST handwritten digit

classification [70], which were considered quite challenging earlier were

solved and became saturated. Many efficient real world applications in

areas such as face and gesture recognition, self driving cars, biomedical

imaging etc. were developed. In the next section, we briefly review some

of the popular CNN architectures which have motivated this work.
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2.3.2 Network Architectures

AlexNet

Figure 2.4: AlexNet Architecture

In 2012, Krizevsky et al. [12] proposed AlexNet (Figure 2.4), which won the

ILSVRC [49] challenge by defeating the first runner up by a significant er-

ror margin of 10.8%. The authors showed that depth was a crucial factor

that affected the efficiency of CNNs. It consists of eight layers - five con-

volutional layers followed by three fully connected layers. They also intro-

ducedmax-pooling and ReLU activations, two of the key concepts widely

used in CNNs.

VGG-Net

Figure 2.5: VGG-Net Architecture

While AlexNet used large receptive fields (11 × 11 filters in the first layer),

Simonyan et al. [13] focused on depth and proposed the VGG-Net (Figure

2.5). VGG-Net uses smaller receptive fields (3× 3) andmore layers. Using a

smaller receptivefieldmade it computationallymore efficient andadding
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more layersmade it learn hierarchical representations. It came as the first

runner up in ILSVRC 2014.

Inception

Figure 2.6: GoogNet or Inception Architecture

Thewinner of ILSVRC 2014was GoogleNet or Inception networks [74]. The

idea behind Inceptionwas to use filters of different sizes (for example 3×3,
5× 5, 7× 7) parallely, and thereby process the input at different resolutions

and finally concatenate them before passing to the next layer. Their net-

work was deeper than AlexNet and had auxiliary classifiers attached to

the intermediate layers in order to boost the main classifier.

ResNet

Figure 2.7: ResNet Architecture

Residual Networks or ResNet by He et al. [5] won the ILSVRC 2015 chal-

lenge. The ideabehindResNetwas to increase thenumber of layers signif-

icantly and add residual connections to avoid vanishing gradients. They

proposed several versions of the network using 18, 50, 101 and 152 layers. In
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ResNet, the input to a certain layer is added to the output of that layer be-

fore passing it to the next layer. The authors also add computationally ef-

ficient bottleneck layers which let them design a very deep network with

less parameters.

DenseNet

Figure 2.8: DenseNet Architecture

Huangetal. [75] proposedDenseNetwhich improvedResNetusingdenser

connectionsbutwith fewerparameters. While inResNet information from

the last layer is passed using element-wise addition, DenseNet combines

information from all the previous layers using concatenation. The reduc-

tion in the number of parameters is achieved by reducing the number of

output channels. While in ResNet, the number of output channels is in-

creased twice or four times the previous layer, in DenseNet the increase is

mostly due to concatenation of channels from the previous layers.
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2.3.3 Vision and Language

Thework presented in Chapter 4 drawsmotivation fromexisting research

in multi-modal problems that combine image and text such as natural

image captioning (NIC). Given an input image , the task is to generate

captions or textual descriptions of the scene. The captions describe the

physical properties of the objects in the scene and the semantic relation-

ship between them such as “a person riding a horse” or “a red car in front

of a white building” etc.

Early captioning methods typically follow a dictionary lookup approach

[76, 77, 78, 79, 80]. Hodosh et al. [76] compiled the Flickr 8K dataset, com-

prising of 8000 images with 5 captions per image, which was extensively

used in laterworks. They reportedbenchmark results usingmultiplemeth-

ods based onminimally supervised features. They also conducted experi-

ments to compare automatic evaluationmetrics andhuman judgements.

Socher et al. [77] propose a systemwhich can retrieve an image based on

a textual query and vice versa. They propose an RNN based encoding for

the textwhich extractsmeaningful components from the text by focusing

on actions and agents in a sentence. Usingmarkov randomfields, Farhadi

et al. [78] define a “meaning space” of triplets <object, action, scene> and

project images and text to this space for comparing similarity. They also

present a new dataset for the task. Ordonez et al. [79] compile the SBU

Captioned Photo Dataset with 1 million images with associated text de-

scriptions. They exploit global descriptors such as GIST and also a struc-

ture aware resized smaller version of the image for a bag of visual words

based retrieval system. Jia et al. [80] propose a crossmodal learning strat-

egy Markov random field and topic modelling techniques.

More recent deep learning based methods prefer a parametric approach

and are generative in the sense that they learn a mapping from visual

to textual modality. Typically in these frameworks, a CNN is followed by

a RNN or LSTM [81, 82, 83, 84, 85, 86, 87, 88, 89], although fully convolu-

tional systems have been proposed by Aneja et al. [9] recently. Xu et al.

in their seminal work [81] Show, Attend and Tell use visual attention to

train a recurrent network for generating image descriptions from visual

features extracted using a CNN. Johnson et al. [82] propose a fully con-
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volutional localization network that jointly localizes and describes salient

regions in the image. Fang et al. [83] propose a three stage pipeline in

which they usemultiple instance learning to train visual object detectors,

generate sentences from the detected word using languagemodels and

finally rank those sentences. Karpathy et al. [84] propose a structured ob-

jective for multimodal embedding space in which visual features from a

CNN are alignedwith language features from a bidirectional RNN. Mao et

al. present a similar approach using a CNN-RNN pipeline [87] and follow

up with subsequent works on novel concept discovery and description

ambiguity[89, 85] and achieve state-of-the-art results on the MS-COCO

captioning benchmark. Anne et al. propose a captioning method which

does not require a paired image-caption dataset. They achieve this by

leveraging largeobject recognitiondatasets andexternal text corpora and

by transferring knowledge between semantically similar concepts. Lever-

aging the developments in ImageCaptioning, Donahue et al. [88] present

a method for video captioning. With the maturation of traditional image

captioning, in recent years, there has been a growing interest towards

newer forms of captioning tasks such as stylized captioning [90], visual

storytelling [91, 92], aesthetic image captioning [10] etc.

2.3.4 Learning from Noisy Data

Data dependency of very deep neural nets and the high cost of human

supervision has led to a natural interest towards exploring the easily avail-

able web-based big data. Our weakly supervised method presented in

Chapter 4 draws motivation from this area as well. Berg et al. [93] build

a visual attribute vocabulary by jointly mining noisy text and image data

from e-commerce images. NEIL [94] gathers information continuously

from the internet and performs simultaneous labelling and knowledge

extraction. In [95], Divvala et al. crawl through a vast number of online

books and train amodel to automatically discover diverse appearance at-

tributes for a given concept. Sun et al. [96] discover discriminative visual

concepts by parallely training text and images from the web and apply

it for retrieval. Vittayakorn et al. [97] use neural activations for automatic

attribute discovery from noisy web data. Yashima et al. [98] use online

e-commerce text to generate product descriptions.
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Figure 2.9: Standard convolutions vs graph convolutions

2.3.5 Graph Neural Networks

Ourworkpresented inChapter 5 is basedonGraphNeuralNetworks (GNN).

GNNs have recently become popular in computer vision due to their abil-

ity to process irregularly structured data and non-local information. We

provide a visual analogy between standard convolutions and their graph

counterpart in Figure 2.9. A formal definition is provided in Chapter 5. Pix-

els of an image can be considered as nodes of a graphwhere the graph i.e.

thewhole image has a fixed adjacency relation to its neighbouring nodes.

In the context of convolution, the adjacency is defined by the size of the

filter’s receptive field. For GNNs this information is provided as an addi-

tional input and therefore each graph can have arbitrary adjacency rela-

tions. During a forward pass, a node is updated with information from its

neighbours using a technique called message passing.

Existing literature can be broadly classified into spectral [99, 100, 101, 102]

and non-spectral approaches [103, 104, 105, 106, 107, 108]. While the spec-

tral methods operate in the Fourier domain, the non-spectral methods

are suited for the spatial domain and have endless applications such as

molecular property prediction [103, 106], 3D shape estimation from point

clouds [104], etc. In a GNN, rich representations are learnt from an in-

put graph by sharing information among neighbouring nodes. Several

solutions have been proposed to handle the arbitrary graphs with a dif-

ferent degree for each node. For example, [107] learns weights for each

degree and [108] samples a fixed-sized neighbourhood and aggregates

them. [105] use self-attention to select nodes based on importance.
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2.4 Summary

We conclude this chapter with a brief summary of the areas presented in

the last few sections and highlighting how that connects with our work

in the next three chapters.

In Section 2.1, we started this survey by looking back at the brief history

of the evolution of photography. We discussed the role criticism plays in

improving this craft and also the complexities involved, owing to the am-

biguous and subjective nature of aesthetics properties. ”Automating the

process of criticism using state-of-the-art methods in deep learning” —

is the key motivation behind this research. In Section 2.2, we looked at

the classical and recent approaches for automated image aesthetic as-

sessment. We also presented the details of the AVA dataset, the biggest

publicly available benchmark for Image Aesthetics. In Section 2.3, we dis-

cuss theother relatedareas— recent advances inneural networkarchitec-

tures, multimodal problems in vision and language, learning from noisy/

weakly supervised data and graph neural network architectures.

In the next three chapters, we choose to study three different applications

in Image Aesthetics and choosing only three from this vast collection was

tough. Our choice was based both on the popular and on the rarely ex-

plored but promising areas. For example the study on aesthetic attributes

in Chapter 3 was motivated from [2, 1, 3]. On the other hand, the study on

aesthetic score regression in Chapter 5 is themost popular topic in Image

Aesthetics [56, 7]. However, the work on captioning in Chapter 4, is a fairly

new area and we are aware of only one previous work [10]. But, we were

intrigued by the large body of work in vision and language and found it

was worth exploring its potential applications in Image Aesthetics.

Needless to say, many other different applications are possible. In fact

(probably a cliche), the list of our unfinished or unsuccessful projects is

much longer than this dissertation itself. We point to some of those di-

rections in Chapter 6 which are left for future explorations. But, in the

following chapters, we look at some of our successful projects.
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Chapter 3

Geometry Aware Aesthetic

Attribute Prediction

Photographs are characterizedbydifferent attributes like theRule of Thirds,

depthof field, vanishing-linesetc. Thepresenceor absenceof oneormore

of these attributes contributes to the overall artistic value of an image.

In this chapter, we analyze the ability of deep learning based methods

to learn such aesthetic attributes. We observe that although a standard

CNN learns the texture and appearance based features reasonablywell, its

understanding of global and geometric features is limited by two factors.

First, the data-augmentation strategies (cropping, warping, etc.) distort

the composition of a photograph and affect the performance. Secondly,

the CNN features, in principle, are translation-invariant and appearance-

dependent. But somegeometric attributes important for aesthetics,e.g. the

Rule of Thirds (RoT), are position-dependent and appearance-invariant.

Therefore, we propose a novel input representation which is geometry-

sensitive, position-cognizant and appearance-invariant. We further intro-

duce a two-columnCNNarchitecture that performs better than the state-

of-the-art in aesthetic attribute prediction. From our results, we observe

that the proposed network learns both the geometric and appearance-

based attributes better than the state-of-the-art .
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Figure 3.1: Output from our network : A screenshot from our web-based

application. Predicted attributes are shown with their probability values

(one-vs-all). This is a shot fromMajidMajidi’s film ’The Colours of Paradise’.

We see that rule of thirds (for child’s position), shallow depth of field, com-

plementary colours (green background and reddish foreground), image

grain (because of the poor video quality) are all well identified.

3.1 Motivation

Understanding the attributes of a photographic composition are crucial

both for capturingandappreciatingapicture. Analyzingobjectively, these

attributes can be broadly categorized into local or appearance-based (fo-

cus, image-grain, etc.) and global or geometry-based (aspect ratio, RoT,

framing, etc.). Wediscuss someof the popular attributes in Appendix B. In

this chapter, weproposea systemwhichmodels the content-oriented (ob-

jective) aesthetic attributes of a photograph. Motivated by the recent de-

velopments in CNNs, our system takes a photograph as an input and pre-

dicts the aesthetic attributes, as illustrated in Figure 3.1. There are sev-

eral applications of automatic photographic style classification. For ex-

ample, post-processing images and videos, tagging, organizing andmin-

ing large collections of photos for artistic, cultural and historical purposes,

scene understanding, building assistive-technologies, content creation,

cinematography, etc.

The traditional approach of using CNNs for natural image classification
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is to forward a transformed version of the input through a series of con-

volutional, pooling and fully connected layers and obtain a classification

score. The transformation is applied to create a uniform sized input for

the network (crop, warp, etc.) or to increase variance of the input distri-

bution (flip, change contrast, etc.) for better generalization on the test

data [12]. Clearly, such traditional transformations fail to preserve the aes-

thetic attributes of photographs. For example, a random fixed-sized crop

cannot capture the arrangement of subjects within the picture. On the

other hand, although warping the input photograph to a fixed size pre-

serves the global context of the subjects better than crop, it has three pri-

mary disadvantages. (i) Firstly, photographs possess different aspect ra-

tioswhich is important for their geometric andaesthetic attributes. Warp-

ing every photograph to a fixed size, irrespective of their aspect ratios, dis-

torts these properties. (ii) Secondly, warping interpolates the RGB planes

which results in the loss of appearance-based attributes like depth of field

or image-grain. (iii) Thirdly, for a small dataset, warping reduces the vari-

ation in the input data and causes overfitting. In [1], the authors mention

that even a small CNN with three convolution layers overfit on AVA Style

dataset [29] when warping is used as the augmentation strategy.

This calls for a representationwhichpreservesboth theappearance-based

and geometry-based properties of a photograph and which generalizes

well over test data. Multiple solutions to these problems have been pro-

posed. In [1], Lu et al. propose a double column CNN architecture, where

the first column accepts a cropped patch and the second column ac-

cepts a warped version of the entire input. In subsequent work [2], mul-

tiple patches are cropped from an input and forwarded through the net-

work. The features from multiple patches are aggregated before the fi-

nal fully-connected layer for classification. The authors argue that send-

ing multiple patches from the same image encodes more global context

than a single random crop. More recently, Ma et al. [27] follow a similar

multiple-patch extraction approach, but the patches are selectively ex-

tracted based on saliency, pattern-diversity and overlap between the sub-

jects. Essentially, these techniques attempt to incorporate global context

into the features during a forward pass either by warping the whole in-

put and sending it through an additional column or by providingmultiple
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patches from the input at the same time.

Although these traditional double column or multi-patch strategies im-

prove theoverall performance,weargue that thesenetworks cannotprop-

erly learn the geometry of a photograph. It is because CNNs, in prin-

ciple, are designed to be translation invariant [109, 110]. While they can

learn how the subjects look like, they cannot capture whether the sub-

jects are rightly positioned. Since the convolutional filters corresponding

to a feature map share weights, they become translation-invariant and

appearance-dependent. In other words, they are activated for an object

irrespective of its location in the image. As a result, they fail to understand

photographic attributes like RoT. One option to tackle this could be train-

ing a fully-connected network on the full images, but they have toomany

parameters and are hard to train.

(a) (b)

Figure 3.2: Our Contributions : (a) Input (col 1), saliency maps (col 2) :

Saliency maps are generated using the method proposed in [8]. The po-

sition of the main subjects can be obtained from the saliency maps. (b)

Our double-column CNN architecture: One column accepts the regular

RGB features and the other column accepts saliency maps. The features

from RGB channel are computed using a pre-trained Densenet161 [4],

fine-tuned on our datasets. They are fused using a fully-connected layer

and finally passed to another final fully-connected layer for classification.
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In this context, we present two contributions in this chapter. The first one

is introducing a saliency-based representations (see Figure 3.2(a)) which

we call Sal-RGB features. The position or relative geometry of the dif-

ferent subjects in the image are obtained from the saliency maps and

then fused with the appearance features coming from a traditional CNN

and finally passed to a classifier to identify the overall style of compo-

sition of the photograph. By definition, saliency maps are appearance-

invariant. On the other hand, by avoiding convolution and fusing them

directly with the CNN features we achieve location-cognizance. In Sec-

tion 3.4, we show that our approachperformsbetter than the state-of-the-

art in photographic style classification especially for those styleswhich are

geometry-sensitive.

The second contribution is a comparative analysis of the traditional ap-

proaches for aesthetic categorization of images. Motivated both from

the state-of-the-art and recent breakthroughs in deep learning, we imple-

ment multiple baselines, by trying different architectures and data aug-

mentation strategies and try to understand and identify the factors that

are crucial for encoding the local andglobal aspects of photographic com-

position.

Summary of contributions and outline

1. We propose a double-column convolutional neural network

which fuses appearance and positional information and

thereby addresses the limitations of a traditional CNN in han-

dling geometric aesthetic attributes.

2. We thoroughly study the effects of different network architec-

tures and augmentation strategies for the task of aesthetic at-

tribute prediction.

The rest of the chapter is organized as follows. In Section 3.2, we describe

the double column CNN architecture we adopt. In Section 3.3, we pro-

vide a detailed description of the datasets used. In Section 3.4, we provide

details of the experiments conducted and analyze the results.
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3.2 Network

In this section, we describe our architecture, as illustrated in Figure 3.2(b).

Our architecture consists of threemain blocks— the saliency detector [8],

the double-column feature-extractor [4] and the classifier.

3.2.1 Saliency Detector

We compute the saliency maps using the method proposed in [8]. Mo-

tivated from recent attention based models [81, 111] that processes some

regions of the input more attentively than others, the authors propose

a CNN-LSTM framework for saliency detection. LSTMs are applied to se-

quential inputs where output from previous states are combined with in-

puts to the next state using dot products. In this work, the authors mod-

ify the standard LSTM such that they accept a sequence of spatial data

(patches extracted from different locations in the image) and combine

them using convolutions instead of dot products. Additionally, they intro-

duce a center-prior component, that handles the tendency of humans to

fix attention at the center region of an image. Some outputs from the

system can be found in Figure 3.2(a), second column.

3.2.2 Feature Extractor

The feature extractor consists of two parallel and independent columns

one for the saliency map and the other for raw RGB input.

Saliency Column : The saliency column consists of twomax-pooling lay-

ers that downsample the input from 224×224 to 56×56 as shown in 3.2(b).

Instead of max-pooling, we tried strided convolutions as they are known

to capture low level details better than pooling [112, 113]. But pooling gave

better results in our casewhich perhaps indicates that the salient position

was more important than the level of detail captured.

RGB Column : We choose the DenseNet161 [4] network for its supe-

rior performance in the ImageNet challenge. Very deep networks suf-

fer from the vanishing-gradient problem i.e. gradual loss of information
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as the input passes through several intermediate layers. Recent works

like [75, 5, 114] address this problem by explicitly passing information be-

tween layers or by dropping random layers while training. The DenseNet

is different fromthe traditional CNNs in themanner inwhicheach layer re-

ceives input from the previous layers. The lth layer in DenseNet receives as

input, the concatenated output from all previous l−1 layers. We provided

additional details about the architecture in Chapter 2. We replace the last

fully-connected layer from DenseNet with our classifier described in Sec-

tion 3.2.3 and use the remaining as a feature extractor. Since we have less

training images, we fine-tune [115] a model pre-trained on ImageNet on

our dataset instead of training from scratch. This works since the lower

level features like edges and corners are generic image features and can

be used for aesthetic tasks too.

3.2.3 Classifier

Feature-maps fromthe twocolumnsare concatenatedand fused together

using a fully-connected layer. A second and final fully-connected layer is

used as a classifier. During training, we use the standard cross-entropy

loss functionand thegradient is back-propagated to the twocolumns.

3.2.4 Data Augmentation

As mentioned in Section 3.1, the training of a CNN is affected by how we

provide the input data. It has been pointed out in [1] that while warping

results in overfitting during training, cropping results in the loss of global

context. We try five different data-augmentation techniques for the RGB

column, to find the correlation of the input transformations and the dif-

ferent style attributes.

• Centre Crop (Tcc) : Here, a patch of size (s ∗ s ∗ 3) is extracted from
the center of the image. This popular strategy is common in object-

detection where the object of interest is centrally-localized.

• Randomcrop of fixed size (Trc) : Patches of size (s∗s∗3) are extracted
from the image at random locations. Although it suffers from data

loss, it is effective in scenarios where the object of interest is not cen-
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trally localized.

• Warping (Tw) : The input is anisotropically resized to a fixed dimen-

sion of (s ∗ s ∗ 3). This transformation can squish objects along x or y.
However it preserves global information better than a random crop.

• Isotropic centre crop (Ticc) : In this case, the input is isotropically

resized by warping its lower dimension to s. Then, a centre crop of

(s ∗ s ∗ 3) is applied. This preserves the geometric properties of the
image at the cost of some global information.

• Random crops of random sizes (Trnc) : A crop of random size and

random aspect ratio is made from the input. Then, it is resized to (s ∗
s∗3). We demonstrate in Section 3.4, that this strategy addresses the
limitations of the previous strategies and performs best. We show a

sample crop using this strategy in Figure 3.2(b).

In [1], the authors use Trc for a single-column network and both Trc and Tw

for a double column network. In [2], the authors use Trc.

It is to be noted here that we did not try appearance-based augmentation

techniques like changing contrasts or colours since that would alter the

style of the photograph.

3.3 Datasets

Weuse two standarddatasets for evaluation—AVAStyle andFlickr Style.

We already discussed AVA [29] in detail in Chapter 2. For our experiments

we use AVA Style, which is a subset of AVA containing about 14, 000 images

with 14 aesthetic attributes. While training images in the subset are anno-

tated with a single label, the test images have multiple labels associated

with them making them unsuitable for popular evaluation frameworks

used for single-label multi-class classifiers.

Flickr Style [3] is a collection of 80, 000 images of 20 visual styles. The styles

spanacrossmultiple concepts suchasoptical techniques (Macro, Bokeh,etc.),

atmosphere (Hazy, Sunny, etc.), mood (Serene, Melancholy, etc.), composi-

tion styles (Minimal, Geometric,etc.), colour (Pastel, Bright,etc.) andgenre (Noir,
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Romantic, etc.). Flickr Style is a more complex dataset than AVA not only

because it has more classes, but because some of the classes like Horror,

Romantic and Serene are subjective concepts and difficult to encode ob-

jectively.

3.4 Experiments

We investigate two different aspects of the problem. First, in Section 3.4.1

we report the overall performance of our features using mean average

precision (MAP). Second, in Section 3.4.2 we observe the per-class preci-

sion (PCP) scores to understand how our features affect individual pho-

tographic attributes. In Section 3.4.3, we analyze the effects of different

data augmentation strategies described in Section 3.2.4. Finally, in Sec-

tion 3.4.4, we discuss the limitations of our approach by analysing themis-

classifications.

For comparison, we use MAP reported in [3, 1, 2]. PCP is compared only

with [3] since the implementations were unavailable for [1, 2].

Additionally, we implement the following twobenchmarks to evaluate our

approach.

• DenseNet161, ResNet152 : These areoff-the-shelf implementations [4,

5] finetuned on our dataset and takes only RGB representation as in-

put. These were chosen since they achieve the least error rates for

ImageNet classification.

• RAPID++ : Following [1], we implemented a two-column network.

Each column takes as input random crops and the whole image as

local andglobal representations, respectively. But, weusedDenseNet161

architecture for the two columnswhereas in the originalwork the au-

thors use a shallower architecture with only three layers. We choose

this as a benchmark in order to observe how their algorithm per-

forms with a deeper architecture.

We train style classifiers on the AVA Style and Flickr Style datasets. The

train-test partitions are followed from the original papers [29, 3]. For AVA,

We use 11270 images for training and validation and 2573 images for test-

ing. For Flickr Style we use 64000 images for training and 16000 images for
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testing. The experiments are carried out on 2 NVidia Titan-XP GPUs. Each

model was trained for 30 epochs with a learning rate of 0.0001. Training a

model takes about 180 and 480 minutes for AVA and Flickr Style, respec-

tively, with a batch-size of 16.

For testing, we follow the approach adopted by [1, 2]. 50 patches are ex-

tracted from the test-image and each patch is passed through the net-

work. The results are averaged to achieve the final scores. Please note

that this strategy does not affect the results for augmentation strategies

like Tw , Ticc and Tcc. However, the results significantly improve for Trc and

Trnc. The augmentation strategy is kept identical during training and test-

ing.

3.4.1 Style Classification

Table 3.1: Style Classification : Comparison with the state-of-the-art :

The results are reported in terms of Mean Average Precision(average of

per class precision). We observe that for both the datasets, our method

performsbetter than the state-of-the-art . Flickr Stylewas not used in [1, 2].

Network Augmentation AVA Flickr Style

Fusion [3] Tcc 58.10 36.80

RAPID [1] Trc, Tw 56.81 -

Multi-Patch [2] Trc 64.07 -

DenseNet161 [4] Trnc 71.68 43.83

ResNet152 [5] Trnc 70.57 43.65

RAPID++ Trc, Tw 70.48 41.93

Sal-RGB Trnc 71.82 43.45

The scores are reported in terms of Mean Average Precision (MAP). MAP

refers to the average of per-class precision. The results are reported in Ta-

ble 3.1. We observe that our method outperforms the state-of-the-art [3,

1, 2] significantly. But, our own baselines perform more or less equally

well. We deduce that for the improvement of MAP, the maximum im-

pact is made by a more sophisticated CNN, followed by the location spe-

cific saliency. Both ResNet [5] andDenseNet [4] are residual networks and

learn complex representations due to their very deep architectures. Such

representations are crucial for learningphotographic attributes, whichhave
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many overlapping properties (less inter-class variance).

From these results, one might argue that the improvement can be at-

tributed largely to a better CNN, and so what does Sal-RGB bring to the

representation ? We address this issue in Section 3.4.2.

3.4.2 Per-class Precision Scores

In [3], the authors report per-class precision (PCP) scores on AVA Style

and Flickr Style. We compare our algorithmwith those results in Table 3.2

and 3.3. We observe that our method outperforms [3] in almost all cate-

gories on both datasets. For the AVA Style dataset, a significant improve-

ment is observed in the appearance-based categories like complemen-

tary colours, duotones, image grain, etc. Yet again, our own baselines

DenseNet, ResNet and RAPID++ perform equally well in most categories

except for RoT. For this category, Sal-RGB outperforms all others by a sig-

nificant margin. This is an important result, since unlike others, RoT is a

purely geometric attribute and important for Image Aesthetics and pho-

tography. A significant improvement in this category is a confirmation of

our claim that the proposed approach efficiently encodes the geometry

of a photograph. We highlight these observations in Figure 3.3.

3.4.3 Effect of data-augmentation

In this section, weobserve theeffects of differentdata-augmentation strate-

gies described in Section 3.2.4. We plot the training performance in Fig-

ure 3.4 and show the test results in Table 3.4. We find Trnc to be the best

strategy for the task. Tw , althoughpreserves global informationmore than

Trc, results in overfitting. The results are consistent with the observations

in [1]. We tried the same experiments on Flickr and the results were simi-

lar.

3.4.4 Limitations

We tried to understand the limitations of our approach by plotting the

confusion matrix for the different attributes of AVA and Flickr.
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Figure 3.3: Comparison of overall MAP and RoT precision for different

networks:We trainedResNet152 [5] andDenseNet161 [4] onAVAStyle and

Fusion results are from [3]. RAPID++ is implemented following the data

augmentation as done in [1] but with Densenet161 architecture. Although

the MAP values are not too different, Sal-RGB outperforms others in find-

ing RoT by a significant margin.
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Table 3.2: PCP for AVA Style Dataset : Sal-RGB outperforms the state-of-

the-art [3] by a significant margin in every category. Our own baselines

DenseNet [4], ResNet [5], RAPID++ perform equally well for almost all cat-

egories except RoT, for which Sal-RGB performs much better.

Styles Karayev

(state-of-

the-art )

[3]

Densenet

161 [4]

ResNet

152 [5]

RAPID

++

Sal-

RGB

Complementary_Colors 46.9 62.33 62.15 61.49 61.41

Duotones 67.6 86.58 84.82 84.77 87.58

HDR 66.9 74.95 70.08 71.51 72.86

Image_Grain 64.7 81.55 79.48 83.15 82.20

Light_On_White 90.8 84.69 83.41 85.64 82.99

Long_Exposure 45.3 64.16 65.38 63.94 61.94

Macro 47.8 64.89 65.52 64.90 66.58

Motion_Blur 47.8 63.93 62.12 61.21 61.98

Negative_Image 59.5 87.40 86.11 82.01 87.71

Rule_of_Thirds 35.2 33.16 34.27 34.02 41.68

Shallow_DOF 62.4 82.08 82.42 82.95 82.39

Silhouettes 79.1 93.73 92.49 91.14 93.05

Soft_Focus 31.2 49.89 44.91 44.57 46.41

Vanishing_Point 68.4 74.16 74.80 75.45 76.76
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Table 3.3: PCP for Flickr Style dataset : Sal-RGB outperforms the state-

of-the-art [3] by a significant margin. Our own baselines DenseNet [4],

ResNet [5], RAPID++ perform equally well. The categories in Flickr are

mostly appearancebased. Hence, no significant improvement is achieved

by using Sal-RGB over a regular CNN. Even the geometric composi-

tion category contain photographs of objects having regular geometric

shapes . Hence, it is not location dependent in true sense.

Styles Karayev

(state-

of-the-

art )

[3]

Densenet

161 [4]

ResNet

152 [5]

RAPID

++

Sal-

RGB

Bokeh 28.80 30.24 31.34 29.39 29.78

Bright 25.10 22.97 23.12 22.69 23.33

Depth_of_Field 16.90 18.24 17.28 16.19 17.91

Detailed 33.70 37.96 38.27 38.50 38.09

Ethereal 40.80 50.31 50.88 48.15 50.03

Geometric_Composition 41.10 47.56 47.57 45.47 47.83

Hazy 48.70 61.59 60.01 57.68 60.92

HDR 49.30 65.44 65.24 61.03 64.92

Horror 40.00 64.24 64.17 58.40 64.16

Long_Exposure 51.50 65.36 64.76 61.40 63.62

Macro 61.70 67.44 70.26 69.60 68.18

Melancholy 16.80 19.82 20.33 18.50 19.71

Minimal 51.20 45.78 46.22 46.18 45.34

Noir 49.40 58.40 57.27 54.69 57.86

Pastel 25.80 34.15 34.05 30.71 34.17

Romantic 22.70 30.13 25.15 25.76 28.62

Serene 28.10 30.41 30.04 30.04 29.80

Sunny 50.00 59.99 60.56 58.57 58.58

Texture 26.50 28.98 30.52 29.72 29.65

Vintage 28.20 37.60 36.02 35.97 36.55
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Figure 3.4: Training and validation accuracy (normalized to [0,1]) for

AVA Style: For each strategy the proposed two-column network was

trained for 30 epochs with a learning rate of 0.001 and a batch-size of 16.
We observe, that in terms of overfitting (the gap between training and

validation curves), the Trnc and Tw performs best and worst, respectively.

The decreasing order of overfitting is observed as follows Tw > Ticc > Tcc >
Trc > Trnc. This observation is consistent with [1] where they observe that

warping causes overfitting. In our case, both Tw and Ticc involve warping

and hence are the most overfitted strategies.
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Class T_CC T_W T_RC T_ICC T_RNC Fusion

[3]

Complementary Colors 54.50 60.15 58.91 60.07 62.34 46.90

Duotones 82.32 84.48 85.64 84.33 84.91 67.60

HDR 55.05 61.95 70.54 61.67 72.12 66.90

Image_Grain 79.28 76.73 85.12 78.81 84.03 64.70

Light_On_White 77.73 86.04 85.76 84.10 86.59 90.80

Long_Exposure 53.96 62.65 58.90 59.23 61.87 45.30

Macro 62.06 63.21 68.54 63.48 67.29 47.80

Motion_Blur 54.84 57.56 64.19 58.53 63.69 47.80

Negative_Image 74.15 77.78 87.57 79.54 86.85 59.50

Rule_of_Third 39.02 41.06 36.30 42.02 39.39 35.20

Shallow_DOF 75.39 81.34 81.40 80.85 82.43 62.40

Silhouettes 88.34 90.87 92.21 92.06 93.48 79.10

Soft_Focus 36.60 34.94 46.08 35.77 48.18 31.20

Vanishing_Point 63.46 72.70 66.78 70.67 74.68 68.40

MAP 64.05 67.96 70.57 67.94 71.99 58.11

Table 3.4: PCP and MAP for AVA with different augmentation : We

observe that a better validation accuracy ensures a better test perfor-

mance. The decreasing order of mean average precision is as follows :

Trnc > Tw > Trc > Ticc > Tcc
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Confusions for AVA : The confusionmatrix for AVA is plotted in Figure 3.5.

Analysing the matrix, we observe the following

• The strongest classes are Light onWhite, Silhouettes, VanishingPoints.

The weakest are Motion Blur and Soft Focus.

• Long Exposure andMotion Blur get confusedwith each other, which

makes sense, since both attributes are captured using a slow shutter

speed and mostly at night. (Figure. 3.7, row 1)

• Shallow DOF, Soft Focus and Macro are mutually confused classes,

which is justified as all of them involve blur. (Figure. 3.7, row 2)

• The poorly performing classes have a high false-positive rate. We

blame this on two factors. First, some classes such as Motion Blur

and Soft-Focus have less samples as compared to others. Secondly,

we observe that there is some ambiguity in the annotation of the

training data of AVA. They are associated with a single label. But

usually, most of the good photographs are captured with an inter-

play betweenmultiple attributes. For example amacro image could

very well conform to RoT or depth of field. Thus a single annotation

incorporates undesired penalties to the loss during training the net-

work and creates confusions during prediction.

Confusions for Flickr The confusion matrix for Flickr Style can be found

in in Figure 3.6.

• The strongest classes are Long Exposure, HDR, Macro and Sunny.

The weakest are Bright, DoF, Melancholy, Romantic and Serene.

• Melancholy, Romantic and Serene are subjective emotional proper-

ties. It can be argued that they need a lot of supervision to be effec-

tively captured by a CNN.

• The Bright category of the dataset is diverse and hence is not prop-

erly learnt. It has many false positives. Hence the poor performance.

• There is a major mutual confusion between DoF and Bokeh, which

makes sense, as both involve blur. (Figure. 3.7, row 3)

• Geometric Composition andMinimal composition aremutually con-
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Figure 3.5: Confusion matrix for AVA Style with our model: For a test

sample, the rows correspond to the real class and the columns correspond

to the predicted class. The values are computed over 2573 test samples of

AVA and then normalized. Examples of false positive images can be found

in Figure 3.7
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Figure 3.6: Confusion Matrix for our model on Flickr Dataset : Examples

of false positive images can be found in Figure 3.7
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Figure 3.7: False positives : Each row corresponds to false positive sam-

ples from a pair ofmutually confused classes. Column 1-4 and column 5-8

correspond to the first and second category in a pair, respectively. Top-

Bottom - Long Exposure /Motion Blur, ShallowDOF /Macro, ShallowDOF

/ Bokeh, Geometric Composition / Minimal, Horror / Noir, Pastel / Vintage

fused. It makes sense, because both of them often involve lines and

patterns. (Figure. 3.7, row 4)

• Horror andNoir aremutually confused sinceboth containphotographs

having dark apperances. (Figure. 3.7, row 5)

• Pastel and Vintage are mutually confused. Both the categories have

a washed out/soothing appearance, so the confusions make sense.

(Figure. 3.7, row 6)

3.5 Conclusion

In this work, we utilized the power of very deep neural networks and ad-

vanced the state-of-the-art in aesthetic attribute prediction. We intro-
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duced a novel input representation which can be used with any state-

of-the-art CNN architecture. Our method efficiently captures the geom-

etry of a photograph, while preserving its local properties. We believe this

representation can be applied to other domains where the relative po-

sitions of the objects are important (eg. scene classification). We con-

ducted multiple experiments to understand the advantages and limita-

tions of our approach and compared itwith the state-of-the-art . There are

manypotential applications of anautomatic style andaesthetic quality es-

timator in the domain of digital photography such as interactive cameras,

automated photo correction etc. Our system can be directly extended

to video-processing for predicting shot-styles. For example, Figure 3.1 il-

lustrates the aesthetic analysis of a shot taken from Majid Majidi’s movie

Colours of Paradise.

As futurework, there aremanypossibledirections. Generalizing themodel

to more style attributes could be one. Extending the system to the do-

main of video and 360 images would also be possible. A thorough math-

ematical analysis of seemingly intangible and subjective concepts in art

and subsequently fixing ambiguities in the data-annotation could be an-

other. We hope that this area will become more active in the future with

its challenging and interesting set of problems.
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Chapter 4

Aesthetic Image Captioning

fromWeakly Labelled

Photographs

Aesthetic image captioning (AIC) refers to the multi-modal task of gen-

erating critical textual feedbacks for photographs. While in natural im-

age captioning (NIC), deep models are trained in an end-to-end man-

ner using large curated datasets such as MS-COCO, no such large-scale,

clean dataset exists for AIC. Towards this goal in this chapter, we propose

an automatic cleaning strategy to create a benchmarking AIC dataset,

by exploiting the images and noisy comments easily available from pho-

tography websites. We propose a probabilistic caption-filtering method

for cleaning the noisy web-data, and compile a large-scale, clean dataset

‘AVA-Captions’, (∼ 230, 000 images with∼ 5 captions per image). Addition-

ally, by exploiting the latent associations between aesthetic attributes, we

propose a strategy for training a CNN based visual feature extractor, typ-

ically the first component of an AIC framework. The strategy is weakly

supervised and can be effectively used to learn rich aesthetic representa-

tions, without requiring expensive ground-truth annotations. We finally

showcase a thorough analysis of the proposed contributions using auto-

matic metrics and subjective evaluations.
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4.1 Motivation

Availability of large curated datasets such asMS-COCO [50] (100K images),

Flickr30K [116] (30K images) orConceptual Captions [117] (3M images)made

it possible to train deep learning models for complex, multi-modal tasks

such as natural image captioning (NIC) [81] where the goal is to factually

describe the image content. Similarly, several other captioning variants

such as visual question answering [118], visual storytelling [91], stylized cap-

tioning [90] have also been explored. Recently, the PCCD dataset (∼ 4200

images) [10] opened up a new area of research of describing images aes-

thetically. Aesthetic image captioning (AIC) has potential applications in

the creative industries such as developing smarter cameras or web-based

applications, ranking, retrieval of images and videos etc. However in [10],

only six well-known photographic/aesthetic attributes such as composi-

tion, color, lighting, etc. have been used to generate aesthetic captions

with a small curated dataset. Hence, curating a large-scale dataset to

facilitate a more comprehensive and generalized understanding of aes-

thetic attributes remains an open problem.

Large-scale datasets have always been pivotal for research advancements

in variousfields [49, 50, 116, 119]. However,manually curating suchadataset

for AIC is not only time consuming, but also difficult due to its subjective

nature. Moreover, a lack of unanimously agreed ‘standard’ aesthetic at-

tributes makes this problem even more challenging as compared to its

NIC counterpart, wheredeepmodels are trainedwithknownattributes/la-

bels [50].

In this chapter, we make two contributions. Firstly, we propose an auto-

matic cleaning strategy to generate a large scale dataset by utilizing the

noisy comments or aesthetic feedback provided by users for images on

the web. Secondly, for a CNN-based visual feature extractor as is typical in

NIC pipelines, we propose a weakly-supervised training strategy. By au-

tomatically discovering certain ‘meaningful and complex aesthetic con-

cepts’, beyond the classical concepts such as composition, color, lighting,

etc., our strategy canbeadopted in scenarioswherefindingcleanground-

truth annotations is difficult (as in the case of many commercial applica-

tions). We elaborate these contributions in the rest of this section.
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Training

Strategy

(a) Noisy

Data &

Super-

vised

CNN

(NS)

i like the an-

gle and the

composition

i like the col-

ors and the

composition

i like the

composi-

tion and the

lighting

i like the

composition

and the bw

(b) Clean

Data &

Super-

vised

CNN

(CS)

i like the

idea , but

i think it

would have

been better

if the door

was in focus

.

i like the

colors and

the water

. the water

is a little

distracting .

i like the

way the

light hits the

face and the

background

.

i like this

shot . i like

the way the

lines lead

the eye into

the photo .

(c) Clean

Data &

Weakly

Super-

vised

CNN

(CWS)

i like the

composition

, but i think

it would

have been

better if you

could have

gotten a

little more of

the building

i like the

composi-

tion and

the colors .

the water is

a little too

bright .

this is a

great shot . i

love the way

the light

is coming

from the left

.

i like the

composition

and the bw

conversion .

Figure 4.1: Aesthetic image captions. We show candidates generated by

three different frameworks discussed in this chapter: (a) For NS, we use

an ImageNet trained CNN and LSTM trained on noisy comments (b) For

CS, we use an ImageNet trained CNN and LSTM trained on compiled AVA-

Captions dataset (c) For CWS, we use a weakly-supervised CNN and LSTM

trained on AVA-Captions
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To generate a clean aesthetic captioning dataset, we collected the raw

user comments from the Aesthetic Visual Analysis (AVA) dataset [29]. AVA

is a widely used dataset for aesthetic image analysis tasks such as aes-

thetic ratingprediction [1, 27], photographic style classification [3, 31]. How-

ever, AVA was not created for AIC. In this chapter, we refer to the original

AVA with raw user comments as AVA raw-caption. It contains ∼ 250, 000

photographs from dpchallenge.com and the corresponding user com-

ments or feedback for each photograph ( 3 billion in total). Typically, in

Dpchallenge, users ranging from casual hobbyists to expert photogra-

phers provide feedback to the images submitted and describe the factors

thatmake a photograph aesthetically pleasing or dull. Even though these

captions contain crucial aesthetic-based information from images, they

cannot be directly used for the task of AIC. Unlike the well instructed and

curateddatasets [50], AVA raw-captions areunconstraineduser-comments

in the wild with typos, grammatically inconsistent statements, and also

containing a large number of comments occurring frequently without

useful information. Previous work in AIC [10] acknowledges the difficulty

of dealing with the highly noisy captions available in AVA.

In this work, we propose to clean the raw captions fromAVA by proposing

aprobabilistic n-grambasedfiltering strategy. Basedonword-composition

and frequency of occurrence of n-grams, we propose to assign an infor-

mativeness score to eachcomment, where commentswith a little or vague

informationarediscarded. Our resultingcleandataset,AVA-Captions con-

tains ∼ 230, 000 images and ∼ 1.5M captions with an average of ∼ 5 com-

ments per image and can be used to train the LSTMnetwork in the image

captioning pipeline in the traditional way. Our subjective study verifies

that the proposed automatic strategy is consistent with human judge-

ment regarding the informativeness of a caption. Our quantitative exper-

iments and subjective studies also suggest that models trained on AVA-

Captions aremore diverse and accurate than those trained on the original

noisy AVA-Comments. It is important to note that our strategy to choose

the large-scale AVA raw-caption is motivated from the widely used im-

age analysis benchmarking dataset, MS-COCO, which is now used as an

unified benchmark for diverse tasks such as object detection, segmenta-

tion, captioning, etc. We hope that our cleaned dataset will serve as a new
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benchmarking dataset for various creative studies and aesthetics-based

applications such as aesthetics based image enhancement, smarter pho-

tography cameras, etc.

Our second contribution in this work is a weakly supervised approach for

training a CNN, as an alternative to the standard practice. The standard

approach for most image captioning pipelines is to train a CNN on large

annotated datasets e.g. ImageNet [49], where rich and discriminative vi-

sual features are extracted corresponding to the physical properties of ob-

jects such as cars, dogs etc. These features are provided as input to an

LSTM for generating captions. Although trained for classification, these

ImageNet-based features havebeen shown to translatewell to other tasks

such as segmentation [120], style-transfer [121], NIC. In fact, due to the un-

availability of large-scale, task-specific CNN annotations, these ImageNet

features have been used for other variants of NIC such as aesthetic cap-

tioning [10], stylized captioning [90], product descriptions [98], etc.

However, for many commercial/practical applications, availability of such

datasets or models is unclear due to copyright restrictions [122, 123, 124].

On the other hand, collecting task-specificmanual annotations for a CNN

is expensive and time intensive. Thus the question remains open if we

can achieve better or at least comparable performance by utilizing eas-

ily available weak annotations from the web (as found in AVA) and use

them for training the visual feature extractor in AIC. To this end,motivated

from weakly supervised learning methods [125, 126], we propose a strat-

egy which exploits the large pool of unstructured raw-comments from

AVA and discovers latent structures corresponding to meaningful photo-

graphic concepts using Latent Dirichlet Allocation (LDA) [127]. We experi-

mentally observe that the weakly-supervised approach is effective and its

performance is comparable to the standard ImageNet trained supervised

features. In essence, our contributions in this chapter are as follows:
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Contributions

1. We propose a caption filtering strategy and compile AVA-

Captions, a large-scale and clean dataset for aesthetic image

captioning (Sec 4.2).

2. We propose a weakly-supervised approach for training the

CNN of a standard CNN-LSTM framework (Sec 4.3)

3. We showcase the analysis of the AIC pipeline based on the

standard automated metrics (such as BLEU, CIDEr, SPICE etc.

[128, 129, 130]), diversity of captions and subjective evaluations

which are publicly available for further explorations (Section

4.5).

4.2 Caption Filtering Strategy

Image Comments Scores

Photo Quality : Awesome 9.62

I love the colors here 1.85

I like the trees in the back-

ground and the softness of

thewater.

28.41

The post processing looks

greatwith thewater, but the

top half of the photo doesn’t

work as well.

47.44

Figure 4.2: Informativeness of captions.

In AVA raw-caption, we observe two main types of undesirable captions.

First, there are captions which suffer from generic noise frequently ob-

served inmost text corpora, especially those compiled from social media.

They include typing errors, non-English comments, colloquial acronyms,

exclamatory words (such as “woooow”), extra punctuation (such as “!!!!”),

etc. Such noise can be handled using standard natural language process-

ing techniques [131].

Second, we refer to the safe comments, which carry a little or no useful in-
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formation about the photograph. For example, in Figure 4.2, comments

such as “Photo Quality : Awesome” or “I love the colors here” provide a

valid but less informative description of the photograph . It is important

to filter these comments, otherwise the network ends up learning these

less-informative, safe captions by ignoring the more informative and dis-

criminative ones such as “The post processing looks great with the water,

but the top half of the photo doesn’t work as well.” [10].

To this end, we propose a probabilistic strategy for caption filtering based

on the informativeness of a caption. Informativeness is measured by the

presence of certain n-grams. The approach draws motivation from two

techniques frequently used in vision-language problems—word compo-

sition and term-frequency - inverse document frequency (TF-IDF).

Word Composition: Bigrams of the “descriptor-object” form often con-

vey more information than the unigrams of the objects alone. For exam-

ple, “post processing” or “top half” convey more information than “pro-

cessing” or “half”. On the other hand, the descriptors alone may not al-

ways be sufficient to describe a complete concept and its meaning is of-

ten closely tied to the object [132]. For example, “sharp“ could be used in

two entirely different contexts such as “sharp contrast” and “sharp eyes”.

This pattern is also observed in the 200 bigrams (or ugly and beautiful at-

tributes) discovered from AVA by Marchesotti et al. [29] such as “nice col-

ors”, “beautiful scene”, “too small”, “distracting background”, etc. Similar

n-gram modelling is found in natural language processing as adjective-

noun [77, 133, 134] or verb-object [135, 136] compositions.

TF-IDF: The other motivation is based on the intuition that the key infor-

mation in a comment is stored in certain n-grams which occur less fre-

quently in the comment corpus such as “softness”, “post processing”, “top

half” etc. A sentence composed of frequently occurring n-grams such as

“colors” or “awesome” is less likely to contain useful information. The in-

tuition follows from the motivation of commonly used TF-IDF metric in

document classification, which states that more frequent words of a vo-

cabulary are less discriminative for document classification [137]. Such hy-

pothesis also forms abasis in theCIDEr evaluationmetric [129]widely used

for tasks such as image captioning, machine translation, etc.
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Proposed “Informativeness” Score: Based on these two criteria, we start

by constructing two vocabularies as follows: for unigrams we choose only

thenouns and for bigramsweselect “descriptor-object” patterns i.e. where

the first term is a noun, adjective or adverb and the second term is a noun

or an adjective. Each n-gram ω is assigned a corpus probability P as:

P (ω) =
Cω∑D
i=1Ci

(4.1)

where the denominator sums the frequency of each n-gram ω such that∑D
i=1 P (ωi) = 1, where D is the vocabulary size, and Cω is the corpus fre-

quency of n-gram ω. Corpus frequency of an n-gram refers to the num-

ber of times it occurs in the comments from all the images combined.

This formulation assigns high probabilities formore frequentwords in the

comment corpus.

Then, we represent a comment as the union of its unigrams and bigrams

i.e., S = (Su ∪ Sb) , where Su = (u1u2 . . . uN ) and Sb = (b1b2 . . . bM ) are the

sequences of unigramsandbigrams, respectively. A comment is assigned

an informativeness score ρ as follows:

ρs = −
1

2
[log

N∏
i

P (ui) + log

M∏
j

P (bj)] (4.2)

where P (u) and P (b) are the probabilities of a unigram or bigram given by

Equation 4.1. Equation 4.2 is the average of the negative log probabilities

of Su and Sb.

Essentially, the score of a comment is modelled as the joint probability of

n-grams in it, following the simplest Markov assumption i.e. all n-grams

are independent [138]. If the n-grams in a sentence have higher corpus

probabilities then the corresponding score ρ is low due to the negative

logarithm, and vice-versa.

Note that the score is the negative logarithm of the product of probabil-

ities and longer captions tend to receive higher scores. However, our ap-

proach does not always favour long comments, but does so only if they

consist of “meanigful” n-gramsconforming to the “descriptor-object” com-
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position. In other words, randomly long sentences without useful infor-

mation are discarded. On the other hand, long and informative com-

ments are kept. This is also desirable as longer comments in AVA tend

to be richer in information as expert users are specifically asked to pro-

vide detailed assessment which is referred to as critique club effect in

[139].

We label a comment as informative or less-informative by thresholding

(experimentally kept 20) the score ρ. Some sample scores are provided in

Figure 4.2. The proposed strategy discards about 1.5M (55%) comments

from the entire corpus. Subsequently, we remove the images which are

left with no informative comments. Finally, we are left with 240, 060 images

and 1, 318, 359 comments, with an average of 5.58 comments per image.

We call this cleaner subset as AVA-Captions The proposed approach is

evaluated by human subjects and the results are discussed in Figure 4.6

and Section 4.5.3.

4.3 Weakly Supervised CNN

Although the comments in AVA-Captions are cleaner than the raw com-

ments, they cannot be directly used for training the CNN i.e. the visual

feature extractor. As discussed in Sec 4.1, the standard approach followed

in NIC and its variants is to use an ImageNet trained model for the task.

In this section, we propose an alternative weakly supervised strategy for

training the CNN from scratch by exploiting the latent aesthetic informa-

tion within the AVA-Captions. Our approach is motivated from two differ-

ent areas: visual attribute learning and text document clustering.

4.3.1 Visual and Aesthetic Attributes

Visual Attribute Learning is an active and well-studied problem in com-

puter vision. Instead of high-level object/scene annotations, models are

trained for low-level attributes such as “smiling face”, “open mouth”, “full

sleeve” etc. and the features are used for tasks such as image-ranking

[140], pose-estimation [141], fashion retrieval [142], zero-shot learning [143],

etc. Similarly, our goal is to identify aesthetic attributes and train a CNN. A
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Topics Images

“Cute-Expression”, “Face”, “Ear”

“Landscape”,“Sky”, “Cloud”

“Action Shot”, “Sport”, “Great Action”

“Black and white”, “Tone”, “Contrast”

“Motion Blur”, “Movement”, “Shutter

Speed”

Figure 4.3: Some topics / labels discovered fromAVA-Captions using LDA.

straightforward approach is to use the n-grams from comments (Sec 4.2)

and use them as aesthetic attributes. However, there are two problems

with this approach: Firstly, the set of n-grams is huge (∼ 25K) and thus

training the CNN directly using them as labels is not scalable. Secondly,

several n-grams such as “grayscale”, “black and white”, “bw” refer to the

same concept and carry redundant information.

Therefore, weapply a clusteringof semantically similar n-gramsand thereby

grouping the images which share similar n-grams in their corresponding

comments. For example, portraits are more likely to contain attributes

such as “cute expression”, “face” etc. and landscape shots are more likely

to share attributes such as “tilted horizon”, “sky”, “overexposed clouds” etc.

Essentially, the intuition behind our approach is to discover clusters of

photographic attributes or topics fromthecomment corpus anduse them

as labels for training the CNN. In text document analysis, it is a common

practice to achieve such grouping of topics from a text corpus using a

technique called Latent Dirichlet Allocation [127].
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4.3.2 Latent Dirichlet Allocation (LDA)

LDA is an unsupervised generative probabilistic model, widely used for

topic modelling in text corpora. It represents text documents as a proba-

bilisticmixture of topics, andeach topic as aprobabilisticmixture ofwords.

The words which co-occur frequently in the corpus are grouped together

by LDA to form a topic. For example, by running LDA on a large corpus of

news articles, it is possible to discover topics such as “sports”, “government

policies”, “terrorism” etc [144].

Formally stated, given a set of documents Di = {D1, D2...DN}, and a vo-
cabulary of words ωi = {ω1, ω2...ωM}, the task is to infer K latent topics
Ti = {T1,T2, . . . TK}, where each topic can be represented as a collection
of words (term-topicmatrix) and each document can be represented as a

collection of topics (document-topic matrix). The term-topic matrix rep-

resents the probabilities of each word associated with a topic and the

document-topic matrix refers to the distribution of a document over the

K latent topics. The inference is achieved using a variational Bayes ap-

proximation [127] or Gibb’s sampling [145]. A more detailed explanation

can be found in [127].

4.3.3 Relabelling AVA Images

We regard all the comments corresponding to a given image as a doc-

ument. The vocabulary is constructed by combining the unigrams and

bigrams extracted from the AVA-Captions as described in Section 4.2. In

our case: N = 230, 698 and M = 25, 000, and K is experimentally fixed to

200. By running LDAwith these parameters on AVA-Captions, we discover

200 latent topics, composed of n-grams which co-occur frequently. The

method is based on the assumption that the visual aesthetic attributes

in the image are correlated with the corresponding comments and im-

ages possessing similar aesthetic properties are described using similar

words.

Even after the caption cleaning procedure, we observe that n-grams such

as “nice composition” or “great shot” still occurmore frequently than oth-

ers. But, they occur mostly as independent clauses in bigger comments

such as “I like the way how the lines lead the eyes to the subject. Nice
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shot!”. In order to avoid inferring topics consisting of these less discrim-

inative words, we consider only those n-grams in the vocabulary which

occur in less than 10% comments.

In Figure 4.3, we select 5 topics thus inferred and some of the correspond-

ing imageswhose captions belong to these topics. It canbeobserved that

the images and the words corresponding to each topic are fairly consis-

tent and suitable to be used as labels for training the CNN.

4.3.4 Training the CNN

Given an image and its corresponding captions, we estimate the topic dis-

tributionDT of the comments. TheCNN is trainedusingDT as theground-

truth label. We adopt the ResNet101 [5] architecture and replace the last

fully connected layerwithK outputs, and train the frameworkusing cross-

entropy loss [146] as shown in Figure 4.4a.

4.4 The Final Framework

We adopt the NeuralTalk2 [147] framework as our basis. Note, that our ap-

proach is generic and can be usedwith any CNN-LSTM framework for im-

age captioning. In [147], visual features are extracted using an ImageNet

trainedResNet101 [5] which are passed as input to an LSTM for training the

languagemodel using the ground-truth captions. For our framework, we

use two alternatives for visual features (a) ImageNet trained (b) weakly

supervised (Sec 4.3). The LSTM architecture is kept unchanged except

hyper-parameters such as vocabulary size, maximum allowed length of a

caption etc. The language model is trained using the clean and informa-

tive comments from the AVA-Captions dataset (See Figure 4.4b).

4.5 Experiments

The experiments are designed to evaluate the two primary contributions:

First, the caption cleaning strategy and second, the weakly-supervised

training of the CNN. Specifically, we investigate: (a) the effect of caption

filtering and the weakly supervised approach on the quality of captions
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(a) Weakly-supervised training of the CNN: Images and comments are

provided as input. The image is fed to the CNN and the comment is fed

to the inferred topic model. The topic model predicts a distribution over

the topics which is used as a label for computing the loss for the CNN.

(b) Training the LSTM: Visual features extracted using the CNN and the

comment is fed as an input to the LSTM which predicts a candidate cap-

tion.

Figure 4.4: Proposed pipeline
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generated in terms of accuracy (Sec 4.5.3) and diversity (Sec 4.5.3), (b)

the generalizability of the captions learnt fromAVA, when tested on other

image-caption datasets (Sec 4.5.3), (c) subjective or human opinion about

the performance of the proposed framework (Sec 4.5.3).

4.5.1 Datasets

AVA-Captions: The compiled AVA-Captions dataset is discussed in detail

in Section 4.2. We use 230, 698 images and 1, 318, 359 comments for train-

ing; and 9, 362 images for validation.

AVA raw-caption: The original AVA dataset provided byMurray et al. [29]

and the rawunfiltered comments areused to train the framework in order

to observe the effects of caption filtering.

Photo Critique CaptioningDataset (PCCD): This datasetwas introduced

by [10] and is based on www.gurushots.com. Professional photographers

provide comments for the uploaded photos on seven aspects: general

impression, composition and perspective, color and lighting, subject of

photo, depth of field, focus and use of camera, exposure and speed. In

order to verify whether the proposed framework can generate aesthetic

captions for imagesbeyond theAVAdatasetwe trained itwithAVA-Captions

and tested it with PCCD. For a fair comparison, we use the same validation

set provided in the original paper.

4.5.2 Baselines

We compare three implementations: (a) Noisy - Supervised (NS): Neu-

ralTalk2 [147] framework trainedonAVA-Original. It has an ImageNet trained

CNN, followed by LSTM trained on raw, unfiltered AVA comments. Neu-

ralTalk2 is also used as a baseline for AIC in [10]. (b) Clean - Supervised

(CS): The LSTM of the NeuralTalk2 is trained on AVA-Captions i.e. filtered

comments. The CNN is same as NS i.e. Imagenet trained. (c) Clean

and weakly-supervised (CWS): NeuralTalk2 framework, where the CNN

is trained with weak-supervision using LDA and the language model is

trained on AVA-Captions.
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Method B1 B2 B3 B4 M R C S S-1

NS 0.379 0.219 0.122 0.061 0.079 0.233 0.038 0.044 0.135

CS 0.500 0.280 0.149 0.073 0.105 0.253 0.060 0.062 0.144

CWS 0.535 0.282 0.150 0.074 0.107 0.254 0.059 0.061 0.144

(a) Accuracy

Method Train Val S-1 Precision Recall

CNN-LSTM-WD PCCD PCCD 0.136 0.181 0.156

AO PCCD PCCD 0.127 0.201 0.121

AF PCCD PCCD 0.150 0.212 0.157

CS AVA-C PCCD 0.144 0.166 0.166

CWS AVA-C PCCD 0.142 0.162 0.161

(b) Generalizability

Table 4.1: (a)Results onAVA-Captions: BothCS andCWS, trainedonAVA-

Captions perform significantly better than NS, which is trained on nosiy

data. Also, the performance of CWS and CS is comparable, which proves

the effectiveness of the weakly supervised approach (b) Generalization

results on PCCD:Models trained on AVA-C perform well on PCCD valida-

tion set, when comparedwithmodels trained onPCCDdirectly. We argue

that this impressive generalizability is achieved by training on a larger and

diverse dataset.

4.5.3 Results and Analysis

Accuracy

Most of the existing standards for evaluating image captioning such as

BLEU (B) [128], METEOR (M) [148], ROGUE (R) [149], CIDEr (C) [129] etc. are

mainlymore accurate extensions of the brute-forcemethod [150] i.e. com-

paring the n-gram overlap between candidate and reference captions.

Recently introducedmetric SPICE (S) [130] insteadcompares scenegraphs

computed from the candidate and reference captions. It has been shown

that SPICEcaptures semantic similarity better and is closer tohuman judge-

ment more than the rest. Traditionally, SPICE is computed between the

candidate and all the reference captions. A variant of SPICE (which we re-

fer to as S-1) is used in [10] where the authors compute SPICE between the

candidate and each of the reference captions and choose the best. In this

66



thesis, we report both S and S-1.

From Table 4.1(a), we observe that both CS and CWS outperform NS sig-

nificantly over all metrics. Clearly, training the framework with cleaner

captions results in more accurate outputs. On the other hand, the perfor-

mance of CWS and CS is comparable. We argue that this indicates that

the proposed weakly-supervised training strategy is capable of training

the CNN as efficiently as a purely supervised approach and extractmean-

ingful aesthetic features. Additionally as mentioned in Sec 4.1, the pro-

posed CWS approach has an advantage that it does not require expensive

human annotations to train. Thus, it is possible to scale to deeper archi-

tectures, and thus learnmore complex representations simplyby crawling

the vast, freely-available and weakly-labelled data from the web.

Diversity

ImageCaptioning pipelines often suffer frommonotonicity of captions i.e.

similar captions are generated for the validation images. This is attributed

to the fact that the commonly used cross-entropy loss function trains the

LSTM by reducing the entropy of the output word distribution and thus

giving a peaky posterior probability distribution [9]. As mentioned earlier

in Section 4.1, this is more pronounced in AIC due to the vast presence of

the easy comments in the web. Diversity of the captions is usually mea-

sured by overlap between the candidate and the reference captions. We

evaluate diversity following two state-of-the-art approaches [10, 9]. In [10],

the authors define that two captions are different if the ratio of common

words between them is smaller than a threshold (3% used in the paper).

In [9], from the set of all the candidate captions, the authors compute the

number of unique n-grams (1, 2, 4) at each position starting from the be-

ginning up to position 13.

We plot diversity using [10] in Figure 4.5d. We compute using the alter-

native approach of [9] in Figure 4.5(a-c) but up to 25 positions since on

an average the AVA captions are longer than the COCO captions. From

both, we notice that diversity of NS is significantly lesser than CS or CWS.

We observe that NS ends up generating a large number of “safe” captions

such as “I like the composition and colours” or “nice shot” etc. We argue,
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(a) 1-gram (b) 2-gram

(c) 4-gram (d) Overall

Figure 4.5: Diversity: Figures (a) - (c) report diversity of captions following

[9]. The x-axes correspond to n-gram positions in a sentence. The y-axes
correspond to the number of unique n-grams at each position, for the

entire validation set. Figure (d) plots the overall diversity, as reported in

[10]. We observe that the diversity of the captions increase significantly

when the framework is trained on cleaner ground-truth i.e. AVA-Captions

(CS or CWS) instead of AVA-Original (NS).
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that our caption filtering strategy reduces the number of useless captions

from the data and thus the network learnsmore accurate and informative

components.

Generalizability

Wewanted to test whether the knowledge gained by training on a large-

scale but weakly annotated dataset is generic i.e. transferable to other im-

age distributions. To do so, we train our frameworks on AVA-Captions and

compare themwith the models from [10], trained on PCCD. Everything is

tested on the PCCD validation set. The models used by [10] are: (a) CNN-

LSTM-WD is the NeuralTalk2 framework trained on PCCD. (b) Aspect ori-

ented (AO) and (c) Aspect fusion (AF) are supervised methods, trained on

PCCD. Note, that all the models are based on the NeuralTalk2 framework

[147] and hence comparable in terms of architecture.

In Table 4.1(b), we observe that both CS and CWS outperform CNN-LSTM-

WD and AO in S-1 scores. AF is still the best strategy for the PCCD dataset.

Please note, both AO and AF are supervised strategies and require well

defined “aspects” for training the network. Hence, as also pointed out in

[10], it is not possible to train these frameworks on AVA as such aspect-

level annotations are unavailable. However, we observe that both CS and

proposed CWS, trained on AVA-Captions score reasonably well on PCCD.

They are also generic strategies which can be easilymapped to other cap-

tioning tasks with weak supervision. We argue that the observed gener-

alization capacity is due to training with a large and diverse dataset.

Subjective (Human) Evaluation

Human judgement is still the touchstone for evaluating image caption-

ing, and all the previouslymentionedmetrics are evaluated based on how

well they correlate with the same. Therefore, we perform quality assess-

ment of the generated captions by a subjective study. Our experimental

procedure is similar to Chang et al. [10]. We found 15 participants with

varying degree of expertise in photography (4 experts and 11 non-experts)

to evaluate our framework. In order to familiarize theparticipantswith the

grading process, a brief training with 20 trials was provided beforehand.
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(a) Experts (b) Non Experts

Figure 4.6: Subjective evaluation of caption filtering: The matrix com-

pares our scoring strategy and human judgement for distinguishing a

good and a bad caption. The rows stand for our output, and the columns

represent what humans thought. We observe that the proposed caption

filtering strategy is fairly consistent with what humans think about the

informativeness of a caption.

The subjective evaluationwas intended to assess: (a) whether the caption

scoring strategy (Equation 4.2) is consistent with human judgement re-

garding the same (b) the effect of cleaning on the quality of generated

captions.

(a) Consistency of Scoring Strategy: We chose 25 random images from

the validation set, and from each image, we selected 2 accepted and 2

discarded captions. During the experiment, the subject was shown an

image and a caption, and was asked to give a score on a continuous scale

between 0 and 100. As an initial training, the subjects were presentedwith

an equal number of accepted and discarded captions based on the pro-

posed scoring strategy. Theywere notmade aware of underlyingworking

principle of the formula they were supposed to judge but were provided

with a general understanding of what was meant by “informativeness” of

a caption.

In Figure 4.6a and 4.6b, we plot our predictions and human judgement in

a confusionmatrix. We find that our strategy is fairly consistent withwhat

humans think as a good or a bad caption. Interestingly, with the experts,
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Category κα PLCC SRCC

Expert 0.50 0.48 0.52

Non-Expert 0.55 0.55 0.61

Table 4.2: We measure inter-rater agreement for the scoring strategy us-

ingKrippendorff’s alpha. A valuebetween0and 1 indicates positive agree-

ment and thereforewefind that our strategy is judgedbyhuman subjects

quite reliably with α ≥ 5. On the other hand, correlation between the al-
gorithm and human judgement regarding a caption is measured using

PLCC and SRCC. We notice that the algorithm proposed is fairly consis-

tent with the human judgement in both the metrics.

our strategy produces more false positives for bad captions. This is prob-

ably due to the fact that our strategy scores long captions higher, which

may not always be the case and is a limitation. Note, that since our strat-

egy was to make a binary choice between accepting or discarding a cap-

tion, we threshold theuser input to createbinary labels as accepted (good)

or discarded (bad) and then compare using a confusion matrix.

In Table 4.2, we report the inter-rater agreement between the scores pro-

vided by different subjects using Krippendorff’s alpha. It gives a measure

of howwell the different subjects agree on the comment quality. We also

report Spearman and Pearson correlation coefficients between the user

input and the algorithm. This gives a measure of how well the proposed

strategy correlates with human judgement.

(b) Effect of Caption Filtering: Similarly, 25 random images were chosen

from the validation set. Each image had 3 captions, the candidates gen-

erated by NS, CS and CWS frameworks. During each trial, the subject was

shown an image and one of the captions and asked to rate it into one of

the categories - Good, Common and Bad. These discrete categories fol-

low from [10] and the participants were asked to rate a caption based on

whether it conveyed enough information about a photograph. Note, that

similar to the previous experiment, the subjects were not told about the

working principle of the underlying algorithms but only given a general

description of a good, common or bad caption. We observe in Table 4.3

the percentage of good, common and bad captions generated by each

method.
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Experts Non-Experts

Method Good

(3)

Com

(2)

Bad

(1)

Avg Good

(3)

Com

(2)

Bad

(1)

Avg

NS 0 80 20 1.80 0 84 16 1.84

CS 8 84 8 2.0 28 68 4 2.24

CWS 4 80 16 1.88 20 72 8 2.12

Table 4.3: Subjective comparison of baselines: We observe that human

subjects find CS and CWS to be comparable but both significantly bet-

ter than NS. This underpins the hypothesis derived from the quantitative

results that filtering improves the quality of generated captions and the

weakly supervised features are comparable with the ImageNet trained

features

We observe that humans did not find any caption from NS to be good.

Most of them were common or bad. This is due to its high tendency to

generate the short, safe and common captions. Humans find CS to be

performing slightly better than CWS which can probably be attributed

to the lack of supervision during training the CNN. But as mentioned in

Section 4.1, semi-supervised training is effective in practical scenarios due

the easy availability of data and itmight beworth investigatingwhether it

is possible to improve its performanceusingmoredata andmore complex

representations. Additional qualitative results are provided in Figure 4.1.

4.6 Conclusion

In this work, we studied aesthetic image captioning which is a variant of

natural image captioning. The task is challenging not only due to its in-

herent subjective nature but also due to the absence of a suitable dataset.

To this end, we propose a strategy to clean theweakly annotated data eas-

ily available from the web and compile AVA-Captions, the first large-scale

dataset for aesthetic image captioning. Also, we propose a new weakly-

supervised approach to train the CNN.We validated the proposed frame-

work thoroughly, using automatic metrics and subjective studies.

As future work, it could be interesting to explore alternatives for utilizing

72



the weak-labels and exploring other weakly-supervised strategies for ex-

tracting rich aesthetic attributes from AVA. It could also be interesting to

extend this generic approach to other forms of captioning such as visual

storytelling [91] or stylized captioning [90] by utilizing the easily available

and weakly labelled data from the web.
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Chapter 5

Aspect Ratio and Layout

Aware Aesthetic Score

Regression

Aspect ratio and spatial layout are two of the principal factors influencing

the aesthetic value of a photograph. However, incorporating these into

the traditional convolution-based frameworks for the task of Image Aes-

thetics assessment is problematic. The aspect ratio of the photographs

gets distorted while they are resized/cropped to a fixed dimension to fa-

cilitate training batch sampling. On the other hand, the convolutional fil-

ters process information locally and are limited in their ability tomodel the

global spatial layout of a photograph. In this work, we present a two-stage

frameworkbasedongraphneural networks andaddress both theseprob-

lems jointly. First, wepropose a feature-graph representation inwhich the

input image is modelled as a graph, maintaining its original aspect ratio

and resolution. Second, we propose a graph neural network architecture

that takes this feature-graph and captures the semantic relationship be-

tween different regions of the input image using visual attention. Our ex-

periments show that the proposed framework advances the state-of-the-

art results in aesthetic score regression on the Aesthetic Visual Analysis

(AVA) benchmark.
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(a) Feature Graph Construction: In the first stage of the proposed

pipeline, features (D ×W ×H) are extracted from the input image using

a CNN, pre-trained on ImageNet. Instead of pooling to a fixed dimension,

we split the features alongD and construct a graph having a set of (W×H)
nodes, V ∈ RD . A certain node in the feature graph corresponds to a cer-

tainneighbourhood in the input image (colour coded) and thus this repre-

sentation preserves the spatial layout of the input. On the other hand, the

structure and size of the graph captures the aspect ratio and resolution

of the original image (e.g. for an input size 3× 200× 168, the downsampled
feature size is D × 4× 3 and therefore the graph has 12 nodes).

(b) Score regression using Graph Attention Network: In the second

stage, the high-dimensional input graph is first encoded to a compact

representation and then passed to the GNN which performs global rela-

tional reasoning using three message passing and a pooling layer. The

output is passed to a decoder whichmaps the features to the score. More

details on the architecture are provided in Table.5.1.

Figure 5.1: The proposed two stage pipeline

5.1 Motivation

Image Aesthetics Assessment (IAA) refers to the task of predicting a score

or rating of an image based on its aesthetic value. In photography, the

aesthetic value of an image is influenced by several independent and cor-

related factors. For example, apart from the content, a photograph may

look pleasing or dull for the photographer’s choice of colour balance, ex-

posure levels, sharpness, content layout, crop etc. In the past, non deep

learning or feature-based attempts tried to identify and encode these fac-

tors and define a genericmodel for Image Aesthetics [21, 22, 23, 24, 25, 26].
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Because of the ambiguous and overlapping nature of aesthetic proper-

ties, the task was quite complex and ill-posed. But in recent years, deep

learning based data-driven approaches have proven quite effective [7, 1, 2,

27, 28]. Due to the availability of the large scale Aesthetic Visual Analysis

(AVA) [29] dataset and the rapid improvements in CNN architectures, the

current state-of-the-art methods outperform the classical approaches by

a wide margin. However, most deep learning-based methods face two

primary challenges — aspect ratio awareness and image layout under-

standing.

Aspect ratio i.e. the ratio of the height and width of the photograph plays

a crucial role in Image Aesthetics. For example a portrait shot or selfie

may look better in a 1 : 1 ratio but a 16 : 9 frame may be better suited

for a wide landscape or architectural shot. But in a standard CNN set up,

the inputs have to be scaled or cropped to a uniform size in order to facil-

itate mini-batch sampling. This pre-processing step results in distortion

or loss of information and subsequently introduces an undesirable bias in

the learned features. Lu et al. [2] proposed a solutionby samplingmultiple

crops from the input and aggregating them and thereby roughly approx-

imating the entire image. Several other multi-crop based strategies have

followed [55, 151]. The problem with these multi-crop approaches is com-

putational cost and also their sensitivity towards the crop sampling and

aggregation strategy. A different approach is to use a dynamic receptive

field for the input and use an adaptive or average pooling layer at a later

stage in the network [28, 7]. While this approach allows to use an arbitrary

sized input in its original resolution, the pooling operators nevertheless

map it to a fixed size at the feature-level and thus discard the aspect ra-

tio.

The second challenge i.e. image layout understanding refers to capturing

the spatial relations of the important visual elements of aphotograph. The

placement of the different objects within a frame is a key factor in photo-

graphic composition and there are several principles such as symmetry,

The Rule of Thirds, framing etc. that photographers exploit to add aes-

thetic value to their images. Standard CNNs by design, have local recep-

tive fields to achieve translation-invariance and are limited in their abil-

ity to perform global relational reasoning [152]. Towards this Lu et al. [1]

76



proposed a two column local-global approach in which the local column

processed crops and the global columnprocessed awarped version of the

entire image. But it lacked aspect ratio understanding as discussed be-

fore. Ma et al. [27] used an object detector to detect salient regions in the

image and then fused the coordinates with the main network. But apart

from computational overhead due to the subnet, the number of objects

for every image was experimentally set to five, which is not true for all im-

ages.

In this work, we address both these problems jointly, using graph neural

networks (GNN) [100]. GNNs have two key advantages over CNNs. First,

they are designed to work for arbitrary sized graphs. Secondly, they are

able to capture both local and non-local dependencies between nodes

efficiently, using a technique called neural message passing [103]. Based

on this, we propose a strategy in which arbitrary sized images are rep-

resented as arbitrary graphs and then we develop a framework leverag-

ing the power of GNNs and address the two problems discussed above.

Specifically, there are two distinct stages in our pipeline — (a) Feature

Graph Construction (Figure 5.1a) (b) Score Regression Using GNN (Fig-

ure 5.1b). (a) First, an ImageNet-trainedCNN-based feature extractor com-

putes features from an input image in its original aspect ratio and res-

olution. The features across different layers are concatenated along the

depth dimension thereby capturing both the high and low level details

from the image. Next, a feature graph is constructed from the concate-

nated maps such that the aspect ratio and the spatial relations of the in-

put image are encoded in the structure of the graph. For example, as can

be seen in Fig 5.1a, for an input with feature dimensions (D × 4 × 3), the

resulting feature graph is a set of 12 nodes, V ∈ RD . The position of a node

vi corresponds to a certain region in the image. (b) In the next stage, a

mini-batch of graphs is sampled from the disk and fed to a GNN based

framework for aesthetic score regression. The architecture consists of an

encoder, an attention based graph-convolution block and a decoder. The

encodermaps the high dimensional sparse graph to a compact represen-

tation. The encoded feature-graph is fed to the graph convolution layers

which performs spatial reasoning usingmessage passing and pooling. Fi-

nally, it is passed to a decoder for predicting the scores.
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Apart frommaintaining the aspect-ratio and layout information, the pro-

posed feature-graph representationhasother advantages. Aesthetic qual-

ity is influenced by factors such as high frequency components (texture,

sharpness etc.) and the low frequency elements (patterns, shapes etc.).

On one hand, while cropping the image preserves the original high fre-

quencies, a part of the low frequency information such as patterns and

shapes is lost. On the other hand, resizing the entire input does a bet-

ter job at preserving the ‘global’ components but distorts and blurs the

image [1]. We avoid this typical ‘catch-22’ situation by extracting features

from the entire input in its original resolution. Moreover, by concatenat-

ing features from the different layers of the CNN we are able to encode

diverse information across the frequency spectrum [7]. We do not pool or

resize the CNN features to a fixed dimension at any stage of the pipeline

and thus the feature graph representation encodes rich visual informa-

tion, aspect ratio and layout, simultaneously.

On their part, GNNs too have several benefits. They can be trained effi-

ciently with mini-batches of arbitrarily sized graphs i.e. each element in

the batch can have a different structure. Traditional convolutional frame-

works followed by fully connected layers (CNN-FC) require the samples

of a batch to have the same dimensions and thus lack this advantage.

Additionally, graph convolutions are capable of capturing long range de-

pendencies unlike the traditional CNNs which have local receptive fields.

Thus, the proposedGNNblock efficiently utilizes unique properties stored

in each feature-graph and learns robust features for the target task. In

this work, instead of using the traditionalmessage passing [100] for graph

convolutions, we base our framework on a variant that usesmulti-headed

self-attention [105], where nodes are combined selectively based on the

image layout and content. We discuss more about this in Sec.5.2.

Essentially, we utilize the rich representational power of CNNs for mod-

ellingappearancewhile exploitingGNNs for abetter semantic understand-

ing. We evaluate our idea on the AVA dataset, which is the largest publicly

available widely used benchmark for Image Aesthetics and advance the

state-of-the-art results for aesthetics score regression. The summary of

our contributions is as follows:
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Contributions

1. We propose a novel graph-based, aspect-ratio aware represen-

tation for CNN features extracted from images in their original

resolution.

2. We propose a GNN based framework using visual attention

which is both aspect ratio preserving and layout aware.

3. We advance the state-of-the-art results for aesthetics score re-

gression on the AVA dataset.

This chapter is organized as follows. In Sec. 5.2 we discuss our contribu-

tions in detail, in Sec. 5.3 we discuss the evaluation metrics and baselines

used and report our results.

5.2 Pipeline

In this section we present the details of the proposed pipeline. First we

elaborate on our two main contributions. In Sec.5.2.1, we discuss the pro-

posed feature-graph construction and in Sec.5.2.2, we present the theory

and architectural details of our GNN block and in Sec.5.2.3 we state the

training procedure.

5.2.1 Feature Graph Construction

The first stage of our pipeline can be roughly divided into two sub-stages:

feature extraction and graph construction.

Feature Extraction: We chose Inception-Resnet [74] architecture as the

backbone network for extracting robust visual features. The choice ismo-

tivated from previous works [56, 7] which have demonstrated that Incep-

tion networks performbetter for regression as compared to other popular

choices such as ResNet [5] or DenseNet [153]. Following [7], we use pre-

trained ImageNet [49] weights directly and did not notice any significant

difference from fine-tuning the backbone on AVA dataset. This is prob-

ably due to the fact that although they are tuned for object recognition,

these weights capture generic visual properties as also observed in sev-

eral other tasks such as segmentation [120], style-transfer [121], captioning
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[32] etc.

Generally, in an Inception block [154], input feature maps are handled by

different filter sizes (e.g. 1 × 1, 3 × 3, 5 × 5), in parallel and then concate-

nated before passing it to the next layer. The multiple receptive fields let

the network process the input at different scales. Inception-Resnet con-

sists of 43 such blocks with residual connections. We collect the feature

maps after each inception block, resize them to match the spatial reso-

lution of the final layer feature maps and concatenate. For example as

shown in Fig 5.1a, with an input of size 200× 168, the last layer features are

downsampled to a size of 4× 3 and feature maps from all the previous 43

inception blocks are resized accordingly and concatenated resulting in a

feature size of 16928 × 4 × 3. As discussed in Sec 5.1, extractingmulti-level

features helps in capturing a wider range of image frequencies and has

been tried before for Image Aesthetics in [7, 54, 3].

Graph Construction: Once themulti-level features are extracted from an

input, constructing the feature-graph G(V,E) is straightforward, where

V,E represents the set of nodes and edges, respectively. The feature map

F (I) ∈ RD×W×H is split along D i.e. the depth dimension into a set of node

vectors V ∈ RD as shown in Figure 5.1a. Note, that for Inception-Resnet,

D = 16928 and ‖V ‖ = W ∗ H e.g. 12 for Fig 5.1a. We construct a com-

plete graph i.e. each node is connected with an undirected edge to ev-

ery other node without self loops and therefore ‖E‖ =(W∗H) C2. Stating

formally,

G(V,E)←
L⊕
i=1

T [fi(I)] (5.1)

where,
⊕
denotes concatenation, L stands for the number of layers in the

feature extractor, fi(I) ∈ Rdi×wi×hi represents feature at layer i and T is a
resize operation.

The proposed feature-graph representation has three important proper-

ties. First, unlike the traditional CNN-FC pipelines, we avoid pooling the

features from all images to a fixed size. Due to this, the number of nodes

in the graph is a function ofW andH and hence proportional to the input

resolution and aspect ratio, which is unique to each image. Second, the
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spatial layout of the input is preserved as shown in Fig 5.1a, where a certain

region of the input (coloured boxes) corresponds to a specific node in the

graph. Third, by constructing a complete graph, we ensure that the long

rangedependencies of the input are capturedbygraphconvolution layers

in the next stage. The problemwith CNN-FC frameworks while capturing

long range or ‘global’ dependencies has recently gained significant atten-

tion and is an active area of research [152, 155, 156]. The issue is particularly

important in the case of Image Aesthetics as photographic composition

often involves ‘globally’ aligning subjectswithin the frame in a certainway

such as The Rule of Thirds.

The feature-graphs are constructed separately for all the images of AVA

dataset and stored in the disk as HDF5 files in 16-bit floating point numpy

arrays. While training the GNN block in the next stage, the feature graphs

are loaded as mini-batches directly from the disk.

5.2.2 Score Regression using GNN

In this section, we discuss the second stage of our pipeline where the in-

put is a feature-graph and the output is the aesthetic score distribution as

illustrated in Fig 5.1b. Graph-regression tasks such as ours can broadly be

divided into two stages [103] — (a)Message Passing: Each node updates

itself by exchanging information within its neighbourhood and the out-

put, which is also a graph with the same structure, encodes the complex

correlations between the different nodes. (b) Readout: The nodes of the

encoded graph are combined using a function, which maps an arbitrary

number of tensors to a fixed-sized vector, which is generally mapped to

the desired output using a fully connected network. In the following sec-

tions, we describe the details of these two stages in our framework.

Message Passing with Self-Attention

Givenan inputgraphG(V,E), the traditionalmessagepassing [100] inGNNs

is formally stated as follows:

v′i =
∑
j∈Ni

Wvj (5.2)
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Figure 5.2: Message Passing with Self-Attention: A toy scenario for the

update vi −→ v′i, with four neighbours and three attention heads (red, blue
and black). v′i is the concatenation of the output from the different atten-

tion heads (Eq 5.6). Note, that this step is repeated for every node vi ∈ G
and the output is also a graph with the same structure as the input.
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where, Ni is the neighbourhood of node vi, v
′
i is the updated node andW

is a shared learnable weightmatrix. It is similar to traditional convolutions

except there, Ni is a fixed grid and its size is equal to the receptive field of

the filter. Eq 5.2, can be formalized as a GPU trainable matrix operation

V ′ = WAV , where A is the adjacency matrix that stores the neighbour-
hood information. A problemwith the traditionalmessage passing is that

while updating a node, it assigns equal weights to its neighbours. This is

undesirable for Image Aesthetics since certain areas of the image may

drive the composition more than the rest (such as the eyes in a portrait)

and it is important that this relationship is efficiently encoded.

To this end, Veličković et al. [105] extended the traditional message pass-

ing algorithmusing self-attention [157] andproposedgraph attentionnet-

works (GAT). Eq 5.2, for GAT is modified to:

v′i =
∑
j∈Ni

αijWvj (5.3)

where the attention coefficient αij captures the effect of vj on vi. The form

of attention used in this work follows [105] which can be formally stated

as:

αij =

exp

(
g(vi, vj)

)
∑

k∈N exp

(
g(vi, vk)

) (5.4)

Eq5.4, is a soft-maxover g(vi, vj), where g is a neural networkof the form:

g(vi, vj) = LeakyReLU

(
g(Uvi ⊕ Uvj)

)
(5.5)

where U is a shared linear transformation, typically another neural net-
work, applied to each node. In practice to increase stability during train-

ing, instead of a single αij , multiple attention heads are concatenated to-

gether and the final formofmessage passing (modified fromEq 5.3) used
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is:

v′i =

K⊕
k=1

∑
j∈Ni

αk
ijWkvj

 (5.6)

where K is the number of attention heads.

Fig. 5.2 illustrates Eq. 5.6 using a simple scenariowith four neighbours and

three attention heads. Unlike in Eq 5.2 where a node treats all its neigh-

bours equally, in Eq. 5.6, neighbours are attended selectively based on

the weight αij , which is in fact a function of vi and vj . Essentially, mod-

elling the input as feature graph preserves its aspect-ratio and resolution

whereas using self-attention lets us encode the global correlations of the

input effectively. Note, that the output of this layer which is passed to the

next block, is an encoded feature-graph with the same structure as the

input.

Readout with Soft-Attention

Our readout function is based on the soft-attention based global pooling

layer [158] (GATP), which takes the arbitrarily-structured encoded graph

andgenerates afixed-sizedembedding. It is formally statedas follows:

Gpool =
‖G‖∑
n=1

softmax

(
hgate(vn)

)
� vn (5.7)

where hgate is a neural network that generates the attentionmask and Gpool
is the pooled graph. We extend this to amulti-headed approach, as in the

previous section as follows:

Gpool =
1

K

K∑
k=1

‖G‖∑
n=1

softmax

(
hkgate(vn)

)
� vn (5.8)

whereK different attention heads hkgate are learnt. Note, that unlike Eq.5.6,

the output from the K attention heads are averaged instead of concate-

nation.

84



Block Module

Encoder

Linear (16928,2048)

ReLU()

BatchNorm(2048)

Message Passing

Dropout (0.8)

GAT
(
U = Linear (2048, 64),

K = 16
)

×3
ReLU()

GraphSizeNorm()

Readout GATP
(
hgate= (2048,1), K = 16

)

Decoder

Dropout(0.8)

Linear (2048,1024)

ReLU()

BatchNorm(1024)

Linear (1024,10)

Table 5.1: Architectural Details

Architecture

The final architecture used for the task as illustrated in Fig. 5.1b consists

of an encoder, the message passing layer, readout layer and a decoder.

The architectural details are presented in Table 5.1. The encoder is a fully-

connected layer followed by ReLU activation and batch-norm. The en-

coder maps the high-dimensional feature-graph to a more compact la-

tent representation which is fed to the graph layers. The message pass-

ing layer in the graph block consists of three graph attention layers [105]

with the shared linear transformation U = Linear (2048,64) and 16 atten-

tion heads. Each layer is preceded by a dropout regularizer and followed

by a ReLU activation and GraphSizeNorm layer [159]. The GraphSizeNorm

Layer normalizes the node features by thegraph size i.e. Gnorm = G
‖G‖ . This is

followedby the readout or pooling layerwith 16 attention heads and a fully

connected encoder hgate = Linear (2048,1). Finally, a decoder takes the out-

put of the pooling layer andmaps it to the score distribution. It consists of

two fully connected layers with a ReLU activation, batch-norm, preceded

by a dropout. We implemented the entire framework using PyTorch [160]

and PyTorch-Geometric [161].
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5.2.3 Training

We train the network using the traditional mean-squared-error loss be-

tween the normalized histogram of scores (1 × 10) and the network out-

put. The choice of the loss function is motivated from [7]. We tried other

commonly used distribution-matching loss function such as Earth Mover

Distance [56], but did not notice any significant improvement in perfor-

mance. We use the ADAM optimizer [162] with default PyTorch parame-

ters. The starting learning rate is set to 1e-4 which is reduced every epoch

by a factor (1− e
E )λ, where e and E are the current and the total number of

epochs, respectively. λ and E is experimentally determined as 2.5 and 30,

respectively. We followed an augmentation strategy similar to [7] to add

regularization. Four corner crops eachcovering85%of the imageandwith

the original aspect ratio were extracted and flipped giving eight different

representations. During training, one random augmentation was chosen

and during inference the scores were averaged. Using a batch size of 64

on a Nvidia RTX 2080-Ti 11 GB GPU, training a model until convergence

takes about 9 hours.

5.3 Experiments

5.3.1 Dataset and Metric

We evaluate our approach using the AVA dataset, which is a collection of

230, 000 train and 20, 000 test images. The images were uploaded by pho-

tographers for competitions hosted on www.dpchallenge.com and rated

by the community on a scale of 10. The ground-truth annotations for AVA

are provided as a 10-bin histogram of scores. The final score is obtained

as a weighted average of the histogram. With these scores, there are two

traditional tracks for evaluation.

One is to pose the problem as a classification task by labelling the images

as “good” or “bad” based on a cut off score and subsequently measure

classification accuracy. But this approach is problematic for several rea-

sons [53, 56, 7]: First, the choice of the threshold (typically set to 5) is quite

arbitrary as the average rating for AVA dataset is 5.5 and the performance

has been found to be highly sensitive to slight variations of this thresh-
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old. Second, AVA is highly unbalanced with 7 : 3 ratio for good and bad

samples. A biased model predicting good and bad samples with 100%

and 50% (i.e. random) precision, respectively, could achieve an accuracy of

85%, significantly higher than any state-of-the-art method. A balanced

or weighted accuracy score is thus a better measure for AVA, which un-

fortunately is reported by only a handful of previous methods. Third, a

0/1 labelling scheme fails to capture the relative aesthetic ranks of pho-

tographs, a feature desirable inmany real world applications formultime-

dia content creation.

The second and more robust evaluation strategy is adopted by methods

which pose the problem as a regression task and predict the scores di-

rectly andmeasure thePearson (PLCC) andSpearman (SRCC) RankCorre-

lation Coefficients between the predicted and ground-truth scores. They

arewidely applied for ImageQualityAssessment (IQA) andarebetter suited

for capturing the entire range of scores while avoiding arbitrary thresh-

olds and label imbalance. Hence, we chose to optimize our framework for

the score regression task and used PLCC and SRCC for the ablation study

and comparison with the current state-of-the-art [56, 7, 6]. Nevertheless,

an indirect measure of accuracy and balanced accuracy (TAcc and TAcc(B))

was computed by thresholding the output at 5 and our framework was

also compared with the classification-based approaches [29, 2, 163, 53, 28,

27, 57] for a holistic understanding of the performance.

5.3.2 Ablation study

Here, we investigate theeffects of thedifferent components of ourpipeline.

Specifically, we study the effects of the encoder-decoder and the benefits

of usingattention in thegraph layers over the conventionalmessagepass-

ing and readout layers. For that, we define the following baselines:

(a) Avg-Pool-FC: This is the most basic network where the Inc-ResNet

features are averagepooledand trainedusinga single fully-connected

(FC) layer (16928× 1).

(b) Avg-Pool-ED: TheFC layer fromAvg-Pool-FC is replacedby theencoder-

decoder blocks from Table 5.1.
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Method PLCC (µ/σ) SRCC (µ/σ) TAcc TAcc(B)

Avg-Pool-FC 0.712/ 0.13 0.710/ 0.13 80.21 70.63

Avg-Pool-ED 0.744/ 0.31 0.741/ 0.30 81.17 72.50

GCN-GMP 0.759/ 0.32 0.757/ 0.31 81.77 73.38

GAT×1-GMP 0.761/ 0.33 0.759/ 0.32 81.82 74.46

GAT×1-GATP 0.762/ 0.33 0.760/ 0.31 81.83 74.58

GAT×3-GATP 0.764/ 0.35 0.762/ 0.34 82.15 76.32

Table 5.2: Ablation Study: We start with the most basic single fully con-

nected layer (Avg-Pool-FC) and gradually add the different components

namely, the encoder-decoder, feature graph, message passing and read-

out. We notice steady improvements in the performance in all metrics.

(c) GCN-GMP: Instead of average pooling, the feature-graph represen-

tation is introduced. We use the traditional message passing [100]

without attention and globalmean pooling or averaging for readout.

The encoder-decoder is identical as the previous baseline.

(d) GAT×1-GMP: We replace the traditional message passing of GCN-

GMP with Eq.5.6 (1 layer).

(e) GAT×1-GATP: The readout function from GAT×1-GMP is replaced by

Eq.5.8.

(f) GAT×3-GATP: We add 2 more layers of message passing to GAT×1-

GATP. This is our final framework with all the different components

discussed in Sec.5.2.

In Tab.5.2, we compare the performance of these different baselines in

terms of PLCC and SRCC scores between the mean score (µ) and stan-

dard deviation of the score distribution (σ). While a good correlation be-

tween the mean scores is important and obvious, the standard deviation

measures howwell the true and predicted distributions are aligned.This is

crucial especially for the borderline images, which depend on a finer and

nuanced judgment. We notice that Avg-Pool-FC has the lowest scores,

which is expected as it preserves neither the aspect ratio nor the layout.

Avg-Pool-EDperforms slightly better, probablybecause theencoder-decoder

layersprovideadditional non-linearity. Theperformance improves inGCN-
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GMP,where theproposed feature-graph representation is introduced. Note,

that even this simple graph baseline performs better than MLSP (Pool-

3FC)[7], the current state-of-the-art for score regression (in Tab. 5.3).The su-

periority of GCN-GMPover thepooling-based strategies underpins thehy-

pothesis that aspect-ratio and layout information is crucial for IAA which

is otherwise lost due to pooling or resizing. On the other hand in GAT×1-

GMP, attention based message passing utilizes this information more ef-

ficiently by focusing on important regions. The performance improves

more inGAT×1-GATPby replacing the readoutblockwith the soft-attention

based pooling. Finally, we add two more layers to the message passing

block and this completes the proposed framework GAT×3-GATP.

As we added more layers, we noticed overfitting and to handle that, we

introduced dropout regularization before each new block. We also no-

ticed that the performance was quite sensitive to the parameters of the

normalization layers (both graph and batch normalization). The number

of attention heads and the encoded graph size also mattered. All these

hyper-parameters were determined experimentally and we urge the re-

viewers to check the supplementary material or the code for more de-

tails. In Figure 5.3, we plot the score distribution of the different baselines,

averaged over all the test samples and plot them with the ground-truth

distribution. A significant difference is observed between the best (f) and

worst (a), withmarginal improvements between the rest in between. This

is consistent with the quantitative results in Table 5.2.

5.3.3 Comparison with the State-of-the-Art

In Table 5.3, we compare our approachwith the previous score-regression

benchmarks and report PLCC, SRCC and TAcc. We chose three different

baselines from NIMA [56]. The baselines use different feature-extractors.

We chose two different architectures proposed in MLSP [7]. We also se-

lect [6], which is to the best of our knowledge, the most recent work on

regression-based IAA. We notice that our method outperforms the rest

in terms of all the metrics. It can also be observed that both [7] and our

method outperform [56, 6] by a large margin. This is probably due to

the fact that both methods extract features at their original resolution

whereas the others use some mode of cropping or warping to achieve a

89



(a) Avg − Pool − FC (b) Avg − Pool − ED (c) GCN −GMP

(d) GAT×1 −GMP (e) GAT×1 −GATP (f) GAT×3 −GATP

(g) GAT×3 −GATP predictions on five random images from the test set

(h) Avg − Pool − FC predictions on five random images from the test set

Figure 5.3: (a)-(f)Average score distribution of different baselines plotted

with theground truthdistribution. (g)-(h) Baselinepredictions onfive ran-

dom images from the test set
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Method PLCC SRCC TAcc %

NIMA (Mob Net) [56] 0.518 0.510 80.36

NIMA (VGG 16) [56] 0.610 0.592 80.60

NIMA (Inc V2) [56] 0.636 0.612 81.51

Attn-based Spatial [6] 0.710 0.707 80.48

MLSP (Single-3FC) [7] 0.745 0.743 81.37

MLSP (Pool-3FC) [7] 0.757 0.756 81.72

GAT×3-GATP 0.764 0.762 82.15

Table 5.3: PLCC, SRCC, TAcc: Our approach outperforms the previous

methods for score regression in all the metrics. To the best of our knowl-

edge, [6] is the most recent work on this topic and [7] is the state-of-the-

art.

uniform input size. Our results underpin the claim that seeing the image

in their original resolution benefits, which is also pointed out by [7]. On the

other hand, we perform better than [7]. Since we use the same Inception-

Resnet based feature extractor, we argue that the improvement is primar-

ily due to the aspect-ratio aware representation and abetter layout under-

standing by virtue of using graph networks.

In Table 5.4, wecomparewithpreviousmethodswhichapproach this prob-

lem differently i.e. as a classification task. Of the baselines selected, AVA

[29], MNA-CNN-Scene [28], A-Lamp [27]1, MPada [55] and RGNet [57] re-

port traditional accuracy only but DMA-Net-ImgFu [2], New Rapid [163]

and DAN-2 [53] report both traditional and balanced accuracy. DAN-2

uses two different sampling strategies to handle the label imbalance in

AVA and we selected both. We observe that the proposed approach per-

forms better than all the baselines except [55, 57] in terms of traditional

accuracy. But, note that ours is TAcc, indirectly computed from the scores

whereas their networks are optimized for binary classification loss directly.

As pointed out in [7], it is not ideal to judge the performance of a network

optimized for regression using accuracy. For example, in Table 5.3, the

three different NIMA baselines differ by a large margin in terms of cor-

relation scores but only slightly in terms of TAcc. This is probably due to

the fact that a better correlation score essentially means a better under-

1Wecomparedwith the sameA-LAMPbaseline as [7] that uses no auxiliary information.
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Method Acc % Acc (B) %

AVA [139] 67.0 -

DMA-Net-ImgFu [2] 75.4 62.80

New RAPID [163] 75.42 61.77

DAN-2 (Balanced Sampling) [53] 75.96 73.51

MNA-CNN-Scene [28] 77.4 -

DAN-2 (Regular Sampling) [53] 78.72 69.45

A-Lamp [27] 81.70 -

MPada [55] 83.03 -

RGNet [57] 83.59 -

GAT×3-GATP 82.15 76.32

Table 5.4: Accuracy
(
Acc

)
andBalancedAccuracy

(
Acc (B)

)
:Wecompare

our regression-based approach using indirect thresholded accuracy (TAcc)

with methods which pose the problem as a classification problem and

are optimized with a binary classification loss. We find the performance

comparable and better in terms of Acc and Acc (B), respectively.

standing of the score distribution and aesthetic ordering of images. As

the correlation scores improve, the network probably learns more com-

plex and nuanced aspects which distinguish different images, especially

the ambiguous ones i.e. ones with similar scores. Such improvements are

not reflected in the overall accuracy as the ordering of images does not

matter when they belong to the same class.

Moreover aspointedout earlier, due to the label imbalance, accuracy alone

may not reflect the true performance of a network. A network which per-

forms poorly for the smaller category may well achieve very high overall

numbers. A balanced or weighted accuracy is a better measure in this

scenario. We observe that our approach performs better than the other

baselines which report balanced accuracy. Our approach is in fact better

thanDAN-2 [53]whichnot only trains for classificationbut uses abalanced

sampling strategy to handle the label imbalance explicitly.

5.3.4 Label Imbalance

We plot the confusion matrices of three different baselines to investigate

the label imbalance problem in AVA in Fig 5.4. (a) is the Avg-Pool-FC net-
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work, trainedwith binary cross entropy loss for 0/1 classification. Note, the

numbers are trueprecision computed frompredicted labels (b) is the con-

fusion matrix of Avg-Pool-FC trained for regression using MSE loss. Here,

per class precision is computed from TAcc (c) is the confusionmatrix of the

proposed GAT×3-GATP framework, trained using MSE loss for regression.

Wenotice a considerable bias in (a) towards label 1 i.e. good images. This is

due to the 7 : 3 label distribution in AVA. This bias is reduced significantly

when the same network is trained for regression using MSE loss. This is

probably because the network learns relative aesthetic ranks of images

and subsequently more nuanced aspects of aesthetics. Such rank infor-

mation is especially important for the borderline images i.e. score close

to 5, most of which get miss-classified as 1 in the case of binary classifi-

cation. However in (c), we notice a significant improvement in the per-

formance of the ’bad’ or sparse category. Clearly, the graph networks and

the feature graph representation performsmuchbetter for the borderline

images.

5.3.5 Qualitative Results

The images are displayed in their original aspect ratio in Figure 5.5. Row 1

shows imageswithGT≥ 6 i.e. highly rated. The images are sharp, colourful
and well exposed. We observe, that all the predictions are also ≥ 6. This
is indicative of the fact that the proposed network captures the appear-

ance based characteristics quite well. Row 2 consists of poorly rated im-

ages where GT ≤ 4. These images have trivial apperance problems such
as dull colours (first), blown out exposure (second and fifth), bad focus

(third) Likewise, the network predictions are consistent with ground truth

scores. Row 3 displays the images with average rating with 4 ≤ GT ≤ 6.
These are quite challenging to handle. Many of these images such as the

second and third one from left, are pleasing due to the inherent story or

moment. Apart from appearance, the essence of the image can be un-

derstood from a host of other factors such as subject placement, motion

capture, framing etc. We notice that the predicted scores are consistent

with theGThere aswell. Weargue that this is due to the efficient handling

of aspect ratio and layout.

In summary, the proposed idea performs better than the previous state-

93



(a) Avg-Pool-FC + BCE (b) Avg-Pool-FC + MSE

(c) GAT×3-GATP + MSE

Figure 5.4: Confusion Matrices
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of-the-art for aesthetic score regression in terms of PLCC, SRCC, TAcc [7]

and TAcc(B) [53]. Our experiments suggest that the improvement is largely

due to the rich information stored in the feature graph and its efficient

utilization by the GAT×3-GATP framework.

5.4 Conclusion

In this work, we address two central challenges in deep-learning based

ImageAesthetics assessment: aspect ratio and spatial layout understand-

ing. We do that jointly, by combining the complementary representa-

tional powers of CNNs and GNNs, enhanced by visual attention. Our ex-

periments verify that the proposed approach advances the state-of-the-

art for the score regression task, significantly. In the future, there can be

several possible improvements. For example, given the complexity of the

task, it may be interesting to exploremore advanced graph architectures.

The frameworkmay also benefit fromexploringmore options for theCNN

backbone with better global-relational reasoning abilities. We hope that

the method and results in this work will be useful for future research in

Image Aesthetics and other related areas.
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GT ≥ 6

6.20 / 6.646 6.475 / 7.165 6.13 / 6.296 6.13 / 6.948 6.285 / 6.167

GT ≤ 4

3.86 / 3.64 3.675 / 3.498 3.847 / 1.995 3.935 / 3.72 3.725 / 3.702

4 ≤ GT ≤ 6

5.56 / 5.62 5.54 / 5.07 5.57 / 5.27 5.50 / 5.35 5.50 / 5.911

Figure 5.5: GAT×3-GATP predictions / Ground truth (GT) scores for im-

ages randomly sampled from AVA:
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Chapter 6

Conclusion

This brings us to the end of the dissertation. We studied different aspects

of Image Aesthetics assessment and proposed deep learning based so-

lutions which were validated by experimental studies. In this chapter we

conclude the thesis by summarizing the contributions followed by revisit-

ing the research question and discussing some of the potential research

directions.

97



6.1 Summary

In Chapter 1, we discussed the factors that make the task of analyzing Im-

age Aesthetics quite difficult even for humans— its subjective nature and

the fact that it requires reasonable background knowledge in photogra-

phy. In this context, we explored deep learning algorithms and studied

the complexities of automating this process. Drawing motivation from

the recent advances of deep learning for standard computer vision tasks,

we proposed solutions to some of the problems associated with Image

Aesthetics assessment.

In Chapter 2, we reviewed the classical and recent advances of Image Aes-

thetics assessment. We discussed AVA dataset, the largest and widely

used benchmark for the task and the factors that make it challenging to

work with. We also briefly highlighted the state-of-the-art CNN architec-

tures and other related areas that motivated this research.

In Chapter 3, we analyzed the ability of deep learning based methods to

learn aesthetic attributes like the Rule of Thirds, depth of field, vanishing-

lines etc. We addressed the limitations of standard CNNs in understand-

ing global layout owing to their translation invariance property. We intro-

duced a novel input representation which is geometry sensitive, position

cognizant and appearance invariant; and a two-column CNN architec-

ture that performs better than the state-of-the-art in aesthetic attribute

prediction.

In Chapter 4, we studied aesthetic image captioning. We proposed an

automatic cleaning strategy of noisy web data to create a dataset ‘AVA-

Captions’, ( ∼ 230, 000 images with ∼ 5 captions per image). Additionally,

by exploiting the latent associations between aesthetic attributes, we pro-

posed a strategy for training the CNN based visual feature extractor.

In Chapter 5, we explored graph neural networks for aesthetic score re-

gression. We showed that the aspect ratio and global layout of a photo-

graphic image can be efficiently captured using a visual attention based

graphneural network. Our experiments showed that theproposed frame-

work advanced the state-of-the-art results in aesthetic score regression

on the Aesthetic Visual Analysis (AVA) benchmark by a significant mar-
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GT = Horror, Pred = Noir GT = Noir, Pred = Horror

GT = Minimal, Pred = Geometry GT = Geometry, Pred = Minimal

Figure 6.1: Correlated Attributes: Each row displays eight samples from

two categories (four each) which were mutually confused. Row 1 is horror

/ noir and Row 2 is minimal / geometry

gin.

6.2 Outlook and Future Work

Research Question Revisited

Broadly, we tried to investigate — “How efficiently can artificial

agents be trained for Image Aesthetic Analysis?”.

In this context, we studied three different applications:

• Aesthetic Attribute Prediction.

• Feedback or Aesthetic Image Captioning.

• Aesthetic Score Prediction.

Howdowe feel about the overall performance of deep learning for the

applications explored?

Our keyfindings and results indeed lookpromising. For example, inChap-

ter 3 we found that our network learnt the correlation between exposure

settings and the overall emotion conveyed in a photograph (Figure 6.1,

Row 1). Without direct supervision, it learnt that ”horror” is probably re-

lated to dark exposures and high contrast, which is true. Similarly in row 2,

we see confusions betweenminimal and geometry. But are these wrong

inferences? The pictures having ground truth label as ”minimal” could
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i like the composition , but i think it

would have been better if you could

havegotten a littlemore of the build-

ing

this is a great shot . i love theway the

light is coming from the left.

Figure 6.2: Realistic Comments

very well be tagged as ”geometric” because the two attributes are quite

overlapping. We found that neural networks learn far more than they are

explicitly trained for and they develop a “generic” understanding of aes-

thetic attributes. Similarly, inChapter 4, wenoticed that in somecases, the

network learnt several interesting factors and generated sensible quality

feedback almost as good as a real human critic. For example, in Figure 6.2

the network understands that the left image is “tightly” cropped and the

composition would benefit from adding some more context around the

door. For the right image, it predicts the position of the light source and

indeed lighting is the key element in that composition. We believe the

fact that the network learns such subtle aspects of composition without

any explicit guidance is remarkable.

How does it compare with a human critic?

For certain genres such as scenery or low light photography, which are

“naturally” quite appealing we observed that the network does a decent

job, both in terms of identifying the attributes and predicting the overall

aesthetic value. Especially, when the salient attributes are based purely

on appearance such as colour, contrast, sharpness etc., the network does

reasonably well. However, when the key factors driving a composition are

somewhat abstract such as ”the decisive moment” or ”a slice of life”, the

networks struggle. This is not unexpected, as these factors transcend the

actual content of the images and refer to subjective feelings or larger so-
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ciopolitical contexts. We as human beings gather such knowledge con-

tinuously from domains quite independent of photography and then as

photographers apply it to capture or analyze a photograph. This is diffi-

cult for a machine, if not impossible using the standard principles of su-

pervised learning.

Where does it go from here?

On one hand, in comparison to the traditional problems of vision such as

object detection, segmentation, action recognition etc., Image Aesthet-

ics is a less explored domain. While there exists previous research in cate-

gorization/ score-regression and attribute prediction, our work on textual

feedback is one of its first. The complexities involved in the tasks which

were discussed in the previous chapters warrant further exploration.

On the other hand in deep learning, novel architectures are being pro-

posed and newer challenges are being addressed on a regular basis. It

became popular only about a decade ago and has taken over many areas

such as computer vision, natural language processing, speech signal pro-

cessing, etc. Nevertheless, as the amount of data continues to grow with

the growth of internet applications in every sphere of our personal lives

and broader scientific explorations, the scope of research in deep learn-

ing will continue to expand and diversify.

Immediate Goals: An important next step could be to curate a clean and

multipurpose benchmark for Image Aesthetics. We discussed the prob-

lems of the AVA dataset in Section 2.2.2. The new dataset should ide-

ally have clean and evenly distributed ground truth annotations, raw files,

multi-labelled samples and enough data to train deep architectures. It

could also be interesting to try out the latest architectural developments

in deep learning such as non-local convolutional blocks [152], transformers

[164] and more advanced graph-based networks. There exists a reason-

able volume of research in natural scene parsing using semantic graphs

[165]. Image aesthetics could potentially benefit from those approaches

as well. The quality of textual feedback could be improved in terms of

quality and diversity using the recent reward-guided strategies [166] for

image captioning. Another track could be exploring generative models
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for aesthetic quality enhancement, guided by aesthetic feedback.

Long-term Goals: In our opinion, the most critical and less explored as-

pect of Image Aesthetics is a well defined evaluation framework. As dis-

cussed in Chapter 5, the binary categorization of photographs is a very

coarsemeasure of quality. Unfortunately, due to the lack of a well defined

metric this has become the standard over the years. Moreover, metrics

such as accuracy, precision scoresmeasure the overall performancequan-

titatively, but do not correlate well with the subtleties of human judge-

ments [56]. Another area could be to explore aesthetics driven generative

models for image/video editing. For example, a system capable of gener-

ating aesthetically pleasing scene templates based on screenplays could

benefit the animation industry. Image aesthetics could also help improv-

ing the quality of emerging multimedia content using virtual and aug-

mented reality. Last but not the least, it could be interesting to explore

evolutionary and continuous learning strategies by distilling knowledge

fromdiversedomains to complement theabstract andever-changingno-

tion of “aesthetics”.

This researchwas a small step towards understanding a complex problem

and we hope it proves somewhat useful for future explorations.
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Appendix A

Abbreviations

Short Term Expanded Term

AVA Aesthetic Visual Analysis

AIC Aesthetic Image Captioning

CNN Convolutional Neural Network

GCN Graph Convolutional Network

GNN Graph Neural Network

LDA Latent Dirichlet Allocation

GAN Generative Adversarial Network

GPU Graphics Processing Unit

LSTM Long Short-Term Memory

MAP Mean Average Precision

MSE Mean Squared Error

NIC Natural Image Captioning

PCP Per Class Precision

PCCD Photo Critique Captioning Dataset

PLCC Pearson Correlation Coefficient

RNN Recurrent Neural Network

RGB Red Green Blue

RoT Rule of Thirds

SRCC Spearman Correlation Coefficient
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Appendix B

Aesthetic Attributes

1. Complementary Colours : This refers to the colours on the opposite

side of the colour wheel. (See Figure B.1). In a photograph, it is often

desirable to have elements complementing each other in terms of

colour

Figure B.1: Colour Wheel : Example of complementary colours are red-

green, yellow-purple combinations.

2. Duotones : It refers to images having two-tonal ranges. Usually, one

dark colour is used as the base and two or more are used as sec-

ondary colours for the highlights and shadows. Duotones are differ-
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ent from grayscale images.

3. HDR : A photograph which has a high dynamic range comes un-

der this category. In other words, it refers to a nicely exposed pho-

tograph, in which the difference between the brightest and darkest

regions is high. It is crucial in HDR that there is some detail in both

the highlights and shadows.

4. Image Grain : It refers to the presence of noise in the picture. In the

past, pictures used to be grainy because of the limited capabilty of

the camera sensor. Nowadays, oftennoise is intentionally introduced

in an image to give it a retro appearance.

5. Light on White : This category refers to light-coloured objects cap-

tured in a white background. This style is typically used in close-up

shots to direct the viewer to the main foreground object with least

background interference.

6. Long Exposure : These kind of pictures are captured by keeping the

shutter opened for a longer duration to allow more light to come

in. It is a technique often used to perform light-painting or astro-

photography.

7. Macro : This refers to the shots of tiny objects using a very narrow

depth-of-field. It is very common while photographing food, flowers

or insects.

8. Motion Blur : This is used in scenarios to capture motion in a pic-

ture. With a moderately low shutter speed a high movement is usu-

ally blurred. It might not be desirable in some scenarios but photog-

raphers use it to incorporate a sense of motion.

9. Negative Image : It is just an inverted representation of the lumi-

nance of the image. The whites are black and the blacks are white. It

is anartistic effect, oftenused to create surreal effects tophotographs.

10. Rule of Thirds (RoT) : This rule is concerned with the alignment of

the main subjects within a photograph. It states that if an image

is aligned with a 3 × 3 grid, then it is more aesthetically pleasing to

put the subjects in certain locations. See Figure B.2. Thus in portrait
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photogra[phy , the eyes are usually aligned along that line. Inmacro,

it is the object in focus, which is positioned at one of those points.

Thus, RoT is a purely geometry based property which can be com-

binedwith any other photographic property for a good composition.

Figure B.2: Rule of Thirds : It is observed that when the main subject is

placed at one of the four points instead of the centre of the photograph,

it is aesthetically more pleasing.

11. Shallow Depth of Field : This style is close to macro style of photog-

raphy but the objects are not necesssarily small. It involves a wide

aperture, resulting in a very shallow depth of field. As a result, the

main subjects are in focus, whereas, the background is blurred.

12. Silhouettes : These photographs are usually capturedwith the cam-

era facing the light source. As a consequence, the the objects which

are between the camera and the light are dark, as in a solar eclipse.

This creates a nice shadow or outline of the object without any other

details inside. This style is often used to take landscape shots

13. Soft Focus : It is a technique which is applied by using lenses that

cause spherical aberration. In other words it blurs the objects in the

imagewhile retaining the strong edges. It is often used to soften the

rough areas in the photograph. For example one uses this technique

in portrait photography to smoothen the skin to wash away bruises

or dark spots..

14. Vanishing Point : Also termed as leading-lines, it involves the use of
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FigureB.3: Somephotographic attributes fromAVAand their descriptions

natural lines in the scene (for example railway tracks, horizon, etc.),

to lead the viewer towards themain subject. It is a widely used com-

positional attribute, especially applied in landscape photography.
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