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ABSTRACT

Tropical islands hold great treasures of Earth's biodiversity, but these fragile ecosystems may be lost
before their diversity is fully catalogued or the evolutionary processes that birthed it are understood. We
ran comparative analyses on the ND2 and ND3 mitochondrial genes of the Sulawesi babbler Pellorneum
celebense, an understorey bird endemic to Sulawesi and its continental islands, along with its
morphology and song. Genetic, acoustic, and morphological data agree on multiple isolated populations,
likely representing independently evolving lineages. The Sulawesi babbler shows signs of rapid specia-
tion, with populations diverging between Central and Southeast Sulawesi, and even on land-bridge
islands which were connected within the last few tens of thousands of years. The genetic divergence
between Sulawesi babbler populations in this time has been around 33% of their divergence from sister
species which have been isolated from Sulawesi for millions of years. This is likely facilitated by the
Sulawesi babbler's understorey lifestyle, which inhibits gene flow and promotes speciation. Similar
patterns of endemism are seen in Sulawesi's mammals and amphibians. This work highlights the un-
documented biodiversity of a threatened hotspot, wrought by complex processes of speciation which
interact with ecology and geology. Subspecific taxonomy has at times been controversial, but we argue
that discrete populations such as these play a key role in evolution. Lying as they do at the heart of the
biodiversity hotspot of Wallacea, these islands can reveal much about the evolution of biodiversity at all
of its levels, from the gene to the ecosystem.
© 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Wiallace (1880) noted that islands vary in their geographical isola-
tion, with important consequences for evolution. Some, which they

The 20th century Biological Species Concept cemented the
importance of isolation in evolutionary biology, with pivotal works
like those of Mayr (1942, 1959) and Dobzhansky (1937, 1940)
showing that populations become species when they are isolated,
first geographically and then reproductively. The role of geographic
isolation in speciation continues to inspire debate, particularly in
the evolutionary marvels that are the world's islands (e.g. Flantua
et al, 2020; Itescu et al., 2020). Early biogeographers such as
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termed oceanic islands, were created by volcanic eruptions or uplift
of coral far out at sea. Oceanic islands are separated from continents
and other large landmasses by deep seas, and thus have never been
connected to them by land. Continental land-bridge islands, on the
other hand, are formed from parts of the continental shelf, and so at
times of reduced sea level they were a continuous part of the
mainland. Though later work has elaborated on this original clas-
sification (Ali, 2017, 2018), much research on island speciation still
focuses on highly isolated oceanic islands such as Hawaii and the
Galdpagos (Whittaker et al., 2017). A smaller, but growing, body of
literature has drawn important evolutionary conclusions from the
faunas of land-bridge islands (e.g. Lister, 1989; Vartanyan et al.,
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1993; Keogh et al., 2005; Itescu et al., 2020), which are numerically
more numerous, ecologically more complex, and zoologically richer
than are oceanic islands (Meiri, 2017). As land-bridge islands have
been isolated only briefly, these studies provide evidence of evo-
lution which has taken place at a rapid rate.

Isolation of an island population results from features of the
species as well as the island, as some organisms are more likely to
maintain gene flow across water barriers than others. Thus, studies
of evolution on land-bridge islands tend to focus on particularly
weak dispersers, such as terrestrial mammals and reptiles (e.g.
Lister, 1989; Vartanyan et al., 1993; Keogh et al., 2005). However,
even among birds and other strongly dispersing animals, certain
ecological and behavioural traits will inhibit gene flow across bar-
riers which the organism should be physically capable of crossing
(Harris & Reed, 2002). Some birds that fly long distances over land
will not cross even narrow bodies of water (Diamond, 1981), and
even the dispersive species that do colonise remote islands can
develop “behavioural flightlessness” in these isolated populations
(Moyle et al., 2009). The habit of foraging in forest understorey
seems to be particularly significant in limiting gene flow and
driving speciation (Burney & Brumfield, 2009; Smith et al., 2014).
This study aims to investigate evolution on the land-bridge islands
surrounding Sulawesi using a bird which is limited to the forest
understorey, the endemic Sulawesi babbler Pellorneum celebense.
This species was first described, as Trichastoma celebense, by
Strickland (1849). The genus Trichastoma (Blyth, 1842) was sub-
sumed into Pellorneum (Swainson, 1831) by Moyle et al. (2012) and
Cai et al. (2019). Our taxonomy follows Gill et al. (2021).

Sulawesi is the largest island of the Wallacea region, one of
Earth's threatened biodiversity hotspots (Myers et al., 2000).
Sulawesi's complex geology has shaped an “anomalous” biogeog-
raphy (Wallace, 1880) and a high level of endemism (Stattersfield
et al., 1998), with the island divided into four distinct peninsulae
or “arms”, here referred to as North, Central, South, and Southeast
Sulawesi (Fig. 1) (the centre of the island, between the arms, also
forms part of Central Sulawesi). Southeast Sulawesi and the islands
of Kabaena, Muna, and Wawonii (or Wowoni) all sit on a small
fragment of continental lithosphere (Hall, 2013), which collided
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with an adjoining microcontinent to form Buton (or Butung) Island
(Satyana & Purwaningsih, 2011). The seas between these five
islands are both shallow and narrow, and they were connected by
land within the last 20,000 years (Nugraha & Hall, 2018).

The diversity of islands and species found in Sulawesi make it an
ideal place to study evolutionary divergence across islands. As well
as the land-bridge islands described here, there are more isolated
islands, including the Sula group and the Wakatobi (or Tukangbesi)
archipelago, which have never been connected to Sulawesi by land
(Nugraha & Hall, 2018). Descriptions of endemic species from these
more isolated islands indicate that birds readily speciate when
separated by such permanent barriers (Kelly et al., 2014; O'Connell
et al., 2019b; Rheindt et al., 2020). The Sulawesi babbler is found on
all the land-bridge islands of Southeast Sulawesi, making it an ideal
candidate for studies of evolutionary divergence on this shorter
time scale. As the populations on Sulawesi, Buton, Kabaena, Muna,
and Wawonii have been separated for an evolutionarily brief period
of time, any divergence between them is evidence of evolution
occurring at a rapid pace. These islands remain poorly known
ornithologically, with species inventories emerging only recently
(Martin et al., 2012; Martin et al., 2015; Martin et al., 2017;
O'Connell et al.,, 2017; O'Connell et al., 2019a). As pressures on
Indonesia's birds continue to mount (Rentschlar et al., 2018), it
becomes increasingly urgent that we study recently documented
populations such as these, in order to estimate their evolutionary
distinctiveness and consider their conservation.

The Sulawesi babbler belongs to the family Pellorneidae (ground
babblers), which was formed after species were split from the
Timaliidae, Sylviidae, and Cisticolidae on molecular evidence (Cai
et al.,, 2019). Babbler systematics are complex, and scientists' in-
terpretations of them have changed repeatedly over the years
(Cibois et al., 2002; Cibois, 2003; Gelang et al., 2009; Moyle et al.,
2012; Cai et al., 2019). Pellorneid species richness reflects their
biogeographic history (Cai et al., 2020), being highest in the Sino-
Himalayan Mountains (where the group originated) and in the
Sundaland region. Though Wallacea lies immediately to Sunda-
land's east, babblers colonised it more recently and thus their
species richness is lower in this region. Aspects of the natural
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Fig. 1. a) Map of Indonesia with study region outlined. b) Map of Southeast Sulawesi with sampling sites marked with circles. c) Map of Sulawesi with song recording locations
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history and ecology of babblers remain enigmatic (O Marcaigh
et al,, 2020). As the Sulawesi babbler is “smallish [and] relatively
featureless” (Billerman et al., 2020) and tends to skulk in the
understorey, it is of the kind of bird most likely to be overlooked
(Diamond, 1985; Gaston & Blackburn, 1994). Its “mouse-like”
behaviour (Billerman et al., 2020) suggests that, biogeographically,
such understorey birds may have more in common with terrestrial
mammals than more dispersive species.

If we are to understand how populations become species, it is
natural that we must study populations as well as species. Variation
below the species level provides the raw material for natural se-
lection, as populations will begin to diverge before they evolve
physiological barriers to reproduction (Dobzhansky, 1940). There-
fore, targeting the species level and below allows us to study both
current and past speciation (e.g. Brelsford & Irwin, 2009; Everson
et al., 2018). Units of diversity below the species level have been
defined differently through scientific history, as varieties (Linnaeus,
1766), subspecies (Esper, 1781; Mayr, 1963), incipient species
(Dobzhansky & Pavlovsky, 1967), conservation units (Coates et al.,
2018) or Evolutionarily Significant Units (ESUs) (Moritz, 1994).
Though division of subspecific diversity into units has often
generated controversy, it is evident that this diversity is pivotal to
evolution (O'Brien & Mayr, 1991; Phillimore & Owens, 2006).
Indeed, while the species features in the title of evolutionary bio-
logy's founding text (Darwin, 1859), the subtitle refers to subspe-
cific “races”. The Convention on Biological Diversity (1992)
recognises biodiversity at the levels of genes, species, and ecosys-
tems, but conservation at the gene level is hampered by lack of data,
particularly in the biodiverse tropics (Bickford et al., 2007). Around
2% of vertebrate species are endemic to Wallacea (Myers et al.,
2000), making it an urgent conservation priority that we under-
stand Sulawesi's endemism, both above and below the species
level.

The Sulawesi babbler provides one example of a bird species
divided into subspecies based on plumage and other typological
characteristics, where genetic data have been lacking. Current
taxonomy (Gill et al., 2021) assigns all populations from Central and
Southeast Sulawesi, as well as the land-bridge islands, to a single
subspecies P. c. rufofuscum (Stresemann, 1931). The wide range thus
attributed to this subspecies crosses several present-day mountain
ranges and seas. Central and Southeast Sulawesi were separate
islands in the past, leading to differences between their monkeys,
toads (Evans et al., 2003), hoofed mammals (Frantz et al., 2018), and
trees (Trethowan et al., 2020). If flight allowed all birds to transcend
this pattern, we would expect the widely distributed babblers
designated as rufofuscum to present one genetically uniform pop-
ulation, following the current taxonomy. Alternatively, if the
understorey lifestyle of babblers limited their gene flow in a
manner similar to land mammals, we would expect to see diver-
sification between Central and Southeast Sulawesi populations and
potentially across land-bridge islands as well.

2. Materials and methods
2.1. Sampling and data collection

We mist netted birds in Southeast Sulawesi (Fig. 1, Table S1) and
the land-bridge islands of Kabaena, Muna, Buton, and Wawonii,
between 1999 and 2017. We used the methods outlined in Redfern
& Clark (2001) to photograph our birds (Fig. S1) and measure a
range of morphological traits including wing length (maximum
chord), bill length (tip of bill to the base), and skull length (from
back of skull to base of bill). Only adult birds measured by a single
recorder (NMM) were used for morphological analyses. This gave a
morphological sample size of 22 for Southeast Sulawesi, 18 for
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Kabaena, 6 for Muna, and 22 for Buton. Birds were also sampled for
genetic analysis by taking a small number of contour feathers from
the flank. Compared to other feather tracts, sampling of contour
feathers minimises the risk of injury to the bird and avoids dis-
rupting its flight ability and any plumage-based visual signals
(McDonald & Griffith, 2011). Genetic sample size was 5 for South-
east Sulawesi, 1 for Central Sulawesi, 8 for Kabaena, 6 for Muna, 5
for Buton, and 1 for Wawonii. We recorded the babbler songs using
a Zoom H2 Handy Recorder, with a Sennheiser Me62 external
microphone and a Telinga V2 parabolic reflector, and downloaded
additional recordings from the website xeno-canto (https://www.
xeno-canto.org/). The combined acoustic sample size from both
sources was 15 for Southeast Sulawesi, 2 for Central Sulawesi, 12 for
North Sulawesi, 2 for Togian, 17 for Kabaena, and 16 for Buton. Our
acoustic sampling thus included three of the four Sulawesi babbler
subspecies recognised by Gill et al. (2021). These are the North
Sulawesi subspecies P. c. celebense (Strickland, 1849), the Togian
subspecies P. c. togianense (Voous, 1952), and P. c. rufofuscum which
supposedly covers all of Central and Southeast Sulawesi and the
land-bridge islands. Previous taxonomic treatments had a subspe-
cies endemic to Southeast Sulawesi, named sordidum by
Stresemann (1938) and renamed improbatum by Deignan (1964) as
there was already a sordidum subspecies in the same genus. How-
ever, White & Bruce (1986) merged improbatum into rufofuscum
based on their similar flank colour, and this move has been retained
by Gill et al. (2021). The fourth subspecies, not covered by our
sampling, is P. c. finschi (Walden, 1876), endemic to South Sulawesi.

2.2. Genetic analyses

It has been demonstrated that divergence in mitochondrial
genes correlates with speciation rate in tropical birds (Harvey et al.,
2017). We used the mitochondrial DNA (mtDNA) genes NADH de-
hydrogenase subunits 2 and 3 (hereafter ND2 and ND3), to inves-
tigate population genetics of babblers. Barcoding approaches with
mtDNA have proved successful in species delimitation (Hebert
et al., 2004; Kerr et al.,, 2007; Hebert et al., 2016). While some
evolutionary histories inferred from mtDNA differ from those
inferred from nuclear DNA (Rubinoff & Holland, 2005; Phillimore
et al,, 2008), and biogeographic patterns inferred from mtDNA
can be obscured by introgression and male-mediated gene flow
(Toews & Brelsford, 2012), ND2 has shown a particularly high level
of concordance with nuclear markers (Campillo et al., 2019), and
studies on young radiations have found ND2 and ND3 to provide
the best phylogenetic resolution (Andersen et al., 2015). This makes
them appropriate to study divergence at the level of populations
and subspecies, as we aimed to do.

DNA was extracted from feathers using a Qiagen DNeasy Blood
and Tissue Kit (Qiagen, California, USA), following the manufac-
turer's instructions, but with the addition of 5 pL of 1M dithio-
threitol (DTT). The DTT was added before the samples were
vortexed prior to incubation, to break down the keratin from the
base of the feather, which encased the genetic material. Polymerase
Chain Reactions (PCRs) were carried out in 20 pl reactions to target
the ND2 and ND3 genes, using a touchdown cycling protocol to
increase yield (Korbie & Mattick, 2008). We amplified the ND3 gene
using the L10755-F and DOC-ND3-R1 primer pair (Chesser, 1999;
O'Connell et al., 2019b), while ND2 was sequenced in two halves
using established and novel internal and external primers
(Table S2). The reactions were screened using 2% electrophoresis
gels stained with GelRed (Biotium), then sequenced by GATC
EuroFins using a Sanger sequencing protocol. These sequences
were aligned using the ClustalW function in BioEdit (Hall, 1999)
and the ND2 and ND3 sequences were concatenated using
Mesquite (Maddison & Maddison, 2018), for a total of 1392bp. We
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used GenBank to obtain the sequences of the sole individual of
P. celebense that had been sequenced previously (ND2 ccession
JN826691, ND3 accession JN826966), and those of its two sister
species: Pellorneum rostratum, described by Blyth (1842) (ND2
JN826692, ND3 JN826967), and Pellorneum bicolor, described by
Lesson (1839) (ND2 JN826690, ND3 JN826965). These sequences of
the three Pellorneum species were published in Moyle et al. (2012),
with the P. celebense material supplied by a bird from Banggai
Province in Central Sulawesi. Our outgroup included other babbler
genera (Cai et al,, 2019) and outgroup taxa used by Moyle et al.
(2012) (a full list with accession numbers is in Table S3). Our new
ND2 and ND3 sequences have been deposited in GenBank under
accession numbers MW387438- MW387487.

We used POPART (Leigh et al., 2015) to draw a TCS Network of
the haplotypes we sequenced (Fig. 2), to help visualise any poten-
tial population structure. The TCS algorithm uses an agglomerative
approach, progressively combining clusters with one or more
connecting edge (Templeton et al., 1992). A complete list of samples
and their corresponding haplotypes is available in the Supple-
mentary Information (Table S3). Only one representative of each
ND2/ND3 haplotype was included in the Maximum Likelihood and
Bayesian analyses. We used MEGA X (Kumar et al, 2018) to
generate pairwise proportion differences (p-distances) between
our concatenated ND2/ND3 haplotypes (Table S4) and to choose a
nucleotide substitution model based on the Bayesian Information
Criterion (BIC). It selected a Hasegawa-Kishino-Yano (HKY) model,
which we used to perform Maximum Likelihood analysis with 1000
bootstraps and a level 5 Subtree-Pruning-Regrafting heuristic. We
carried out Bayesian phylogenetic inference in MrBayes version
3.2.7 (Huelsenbeck & Ronquist, 2001), using a HKY model with
burn in set to 25%. This consisted of two independent Markov chain
Monte Carlo (MCMC) runs, with four chains per run, sampling every
1000 generations. We used TRACER version 1.7.1 (Rambaut et al.,
2018) to assess convergence, accepting once average standard de-
viation in split frequencies (ASDSF) reached 0.01 and Effective
Sample Size (ESS) of model parameters reached 200. These
thresholds had been passed by 2 million generations. We exported
a 50% majority rule consensus tree from MrBayes and merged it
with the Maximum Likelihood tree using the merge_tree function
in the ggtree R package (Yu et al., 2016). This merged tree is shown
in Fig. 3, with the outgroup collapsed and with Bayesian probabil-
ities and ML bootstrap values displayed. A version with all outgroup
taxa displayed is available in Fig. S2.

To check for potential cryptic species within our babblers, we
carried out distance-based molecular species delimitation using
Automatic Barcode Gap Discovery (ABGD) (Puillandre et al., 2012).
This analysis uses pairwise genetic distances to group sequences
into “species” so that genetic distances within these “species” are
smaller than those than between them. It takes a range of prior
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maximum intraspecific divergences, and for each of them it cal-
culates a “barcode gap” which is equal to the minimum threshold
interspecific distance. It then splits the sequences into groups
separated by the barcode gap. The range of prior maximum intra-
specific divergences allows the analysis to be calibrated for
different genes and species. We ran ABGD analysis on the web-
server https://bioinfo.mnhn.fr/abi/public/abgd/ using default set-
tings (Pmin 0.001, Pmax 0.1, Steps 10, relative gap
width = 1.5, Number of bins = 20) and a Kimura-2-Parameter (K2P)
model.

2.3. Phylogeographic analysis

Phylogeographic analyses were carried out in R version 4.0.2 (R
Core Team, 2020) using the package Geneland (Guillot et al,
2005a). This is one of several clustering algorithms useful in
assigning genetic data to groups without prior knowledge (Carstens
et al,, 2013). These algorithms search for the number of genetic
populations that maximises Hardy—Weinberg Equilibrium (HWE)
and Linkage Equilibrium. Because of this basis in HWE, the package
creators advise caution in the interpretation of clustering in non-
recombining DNA, such as mtDNA (The Geneland Development
Group, 2020). Nevertheless, previous studies using the Geneland
package have found clustering of the ND2 gene to agree with that of
nuclear DNA (Trier et al., 2014; Klein et al., 2016). We ran a spatial
MCMC algorithm on the 51 polymorphic sites of our concatenated
babbler sequences for 45,000 iterations with thinning set to 100.
We used Geneland's “haploid” setting as our sequences were of
mtDNA. This model's output was then used to estimate the number
of populations at HWE and assign each individual to a population
(Fig. 4). The Geneland model accomplishes this by dividing the
study area using a Voronoi tessellation and using genetic and
geographic distance to calculate the probability of individuals
originating from the same population (Guillot et al., 2005b). As all
sequenced birds came from Central and Southeast Sulawesi and are
currently grouped as the P. c. rufofuscum subspecies, the current
taxonomy of the species would be supported if this analysis found
only one cluster. By the same token, multiple clusters would indi-
cate more genetic populations than captured by current taxonomy.

2.4. Acoustic analysis

Comparative analysis of bird song has come to play a central role
in species delimitation and integrative taxonomy, as differences in
song have been shown to lead to reproductive isolation and
speciation (Isler et al., 1998; O'Reilly et al., 2018). The Sulawesi
babbler often sings in duet, with the “main song” produced by one
individual (presumed to be the male of a pair) answered with a
distinct vocalisation from the presumed female (Billerman et al.,

Pellorneum celebense
Kabaena

22 mutations

Fig. 2. Haplotype Network of concatenated babbler ND2/ND3 sequences. Each coloured circle represents a haplotype, sized to represent the number of corresponding samples and
coloured to represent our proposed delineation of populations. Each bar across the interconnecting lines represents one mutation. The small, unfilled white nodes represent

hypothetical ancestral states.
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Fig. 3. Consensus phylogenetic tree of babbler haplotypes, incorporating both Bayesian and Maximum Likelihood (ML) analyses. Nodes are labelled with Bayesian probabilities
(above, in blue) and ML bootstrap supports (below, in red). The tree shows the outgroup taxa collapsed into one tip, a full list of the outgroup taxa used in the analyses can be found

in Table S3 while Fig. S2 shows them included in the tree.
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2020). We analysed the main, “male” song, and not the answering
song of the presumed female, as there were more uninterrupted
song bursts available and male song is more likely to be relevant to
speciation, as mate choice by females based on male song may
reinforce reproductive isolation if song diverges between pop-
ulations (Catchpole, 1987). We used Raven Pro version 1.6 (Center
for Conservation Bioacoustics, 2019) to create spectrograms from
the babbler recordings and measured these using on-screen cursors
to collect data. Our acoustic dataset consisted of standard spectral
and temporal song traits: peak frequency, duration, minimum fre-
quency, maximum frequency, bandwidth, number of notes, and
pace (Tobias et al., 2010; O'Connell et al., 2019b). To aid in visual-
isation, contrast and brightness were set to an equal value and the
“Jet” colormap was selected; all other settings were left at their
defaults (Ng et al., 2016). To account for intra-individual variation,
intra-individual means were calculated from a minimum of two
independent bursts of song (average of 8.1 songs, range 2—26) (Ng
et al,, 2016). These means served as our sample points (Supple-
mentary File 2).

To give an impression of whether babbler populations could be
distinguished by song, we used the “random forest” algorithm in
WEKA version 3.8.4 (Frank et al., 2016). This allowed us to look for
clusters independently in our different datasets. As Geneland and
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our haplotype network and phylogenetic tree had suggested
certain patterns of genetic clustering in the purported rufofuscum
subspecies, we were able to test whether this was reflected by song
differences while also extending the comparison to two other
recognised babbler subspecies (celebense from North Sulawesi and
togianense from Togian).

A random forest is a supervised classification algorithm which
uses a series of decision trees to partition the dataset. A random
subset of input variables are used to create bootstrapped subsets of
training data to combine into a final model, splitting the data in a
way that is unbiased and robust (Breiman, 2001). Random forests
have been used to diagnose samples by their origin in other fields,
such as geology (Dornan et al., 2020) and botany (Finch et al., 2017),
and are increasingly used in similar fashion in species delimitation
and population genetics (Derkarabetian et al., 2019; Smith &
Carstens, 2020). Diagnosability is key to defining taxa, and is
emphasised in particular by the Phylogenetic Species Concept
(Cracraft, 1983; Archer et al., 2017). We used the “training set”
setting for WEKA's random forest. A subset of the babbler data was
used to train the algorithm, by dividing these training examples by
subspecies and additional divisions suggested by the genetic and
phylogeographic analyses. In keeping with the current taxonomy,
we labelled birds from North Sulawesi as celebense, those from
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Togian togianense, and those from Central Sulawesi rufofuscum.
Based on genetic divisions we grouped together the birds from
Southeast Sulawesi and Buton as the “southeast group” and gave
separate labels to those from Kabaena. We did not have songs from
Wawonii or Muna (Table 1). The algorithm then attempted to
classify the rest of the data based on differences in the training set.
For comparison, we also ran Random Forest analyses which tried to
group the birds by island, i.e. with Buton, Southeast Sulawesi, and
Muna treated separately.

To confirm the pattern suggested by the Random Forest analysis,
we used R to carry out a multivariate ANOVA (or MANOVA) on the
acoustic data to see if differences between songs of populations
were statistically significant. This MANOVA tested the difference
between the North Sulawesi, Togian, Central Sulawesi, “southeast
group” (Southeast Sulawesi and Buton) and Kabaena populations in
peak frequency, duration, minimum frequency, high frequency,
bandwidth, number of notes, and pace. We visualised the acoustic
data using box plots (Fig. 5).

2.5. Morphological analyses

Only adult birds measured by NMM were included in morpho-
metric analyses, and male and female babblers were analysed
separately as males are considerably larger (O Marcaigh et al,,
2020). The morphometric analyses thus included only birds from
the Kabaena (n = 18) and “southeast group” (n = 50) populations,
where the southeast group comprised Southeast Sulawesi, Muna,
and Buton. We selected wing length, bill length, and skull length for
the morphological analyses as they are independent variables that
correspond to different aspects of the birds’ ecology (O Marcaigh
et al, 2020). As with the acoustic data, we first carried out a
random forest classification to see if these populations could be
distinguished based on these three traits, then a MANOVA to test
whether the differences were statistically significant. We con-
structed box plots to visualise the morphological data (Fig. 6).

2.6. Tobias scoring

We subjected our putative babbler populations to the quanti-
tative scoring criteria outlined by Tobias et al. (2010), where pop-
ulations with a “score” of 7 or more are seen as deserving of species
status. This score is a combination of differences in morphology,
vocalisations, plumage, ecology or behaviour, and geography. The
geography category awards points for situations of sympatry and
hybrid zones, and so does not apply to island populations. We had
no data on ecology or behaviour, and our photographs of live birds
in the field (Fig. S1) could not demonstrate plumage differences due
to varying light conditions, so we were unable to score those areas.
Therefore we calculated a partial Tobias score for the Kabaena
population on acoustics and morphology, using the “effsize”
package in R (Torchiano, 2020) to calculate Cohen's d. Effect sizes
are more suitable than p-values for informing taxonomic judge-
ments as they are less correlated with sample size (Tobias et al.,
2010). We used male morphology for our Tobias score because
the acoustic score was based on the male song. We also made
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similar comparisons with female morphology and the effect sizes
were such that the score would have been the same.

3. Results
3.1. Genetics and phylogeography

Genetic analysis provided evidence of population structure
within the ostensible P. c¢. rufofuscum subspecies of Central and
Southeast Sulawesi. Southeast Sulawesi shared concatenated ND2-
ND3 haplotypes with Muna and Buton, but not with Wawonii,
Kabaena, or Central Sulawesi (Fig. 2). For that reason, in further
analyses we grouped Southeast Sulawesi, Buton, and Muna as the
“southeast group”, separate to Central Sulawesi. The Central Sula-
wesi haplotype (HapRUO1) was between 1.7% and 1.9% different
from the southeast group haplotypes, while it was 2.4% different
from the Wawonii haplotype (hapWAO1) and 1.9—2.2% different
from the Kabaena haplotypes (Table S4). Babblers from Kabaena
and the southeast group are distinct, monophyletic clusters on the
phylogenetic tree (Fig. 3), each diverging from a common ancestor.

The Geneland MCMC analysis found best support for a 4-cluster
model (Fig. 4), followed by a 3-cluster model. This indicates that
there is more population structure in these babbler populations
than is recognised by the current taxonomy, where all of these birds
are considered to belong to one subspecies (P. c. rufofuscum).
Furthermore, its proposed populations line up with the divisions
suggested by the phylogenetic tree, with the Kabaena, Wawonii,
southeast group, and Central Sulawesi clusters all apparent
(Fig. 4c).

The ABGD analysis found the most support for three species in
Pellorneum (P. rostratum, P. bicolor, and P. celebense), with five
different barcode gaps between 0.8% and 6% difference in concat-
enated ND2-ND3 producing this grouping. At the lowest prior
intraspecific divergences, however, the analysis calculated the
barcode gap distance to be 0.1% and with this it created six groups:
P. rostratum, P. bicolor, P. celebense from Central Sulawesi,
P. celebense from Wawonii, P. celebense from Kabaena, and
P. celebense from the southeast group.

3.2. Acoustic results

The Random Forest analysis on the seven acoustic traits had a
100% success rate in classifying birds according to our population
divisions of Togian, North Sulawesi, Central Sulawesi, the “south-
east group” (Southeast Sulawesi and Buton), and Kabaena. The
Kappa statistic, F-Measure and ROC Area for each division was
equal to 1, indicating an optimal classifying model. MANOVA on the
seven traits agreed, finding a statistically significant difference
between the same population divisions (p < 0.001). The full output
from this MANOVA is in the Supplementary Information (Table S5).
The Random Forest acoustic analysis which treated each island
individually was much less successful, as it classified 31 birds
incorrectly (48%). The Kappa statistic was 0.37, indicating a sub-
optimal model.

Table 1

Number of individual babblers from each area available for each analysis. Mainland Sulawesi areas are bolded, offshore islands are italicised.
n Southeast Sulawesi Central Sulawesi North Sulawesi Togian Kabaena Muna Buton Wawonii
DNA 5 1 0 0 8 6 5 1
Morphology 22 0 0 0 18 6 22 0
Song 15 2 12 2 17 0 16 0
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Boxplots of Sulawesi Babbler Acoustic Data
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Fig. 5. Box plots of acoustic traits of Sulawesi babblers from Central Sulawesi, Kabaena, North Sulawesi, the Southeast Group (including mainland Southeast Sulawesi and Buton),

and Togian.

Boxplots of Sulawesi Babbler Morphological Data
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3.3. Morphological results

Once juvenile birds were excluded from the morphological
dataset, this left only the southeast group and the Kabaena popu-
lation. Even so, the Random Forest analysis categorised each
dataset with 100% accuracy and with Kappa statistics, F-Measures
and ROC Areas equal to 1. The MANOVA on male babblers from the
southeast group and from Kabaena found that they were statisti-
cally significantly different in wing length, bill length and skull
length (p < 0.05), as did the MANOVA on female babblers from the
same two populations, using the same traits (p < 0.05). The full
output from these MANOVAs are in the Supplementary Information
(male babblers in Table S6, females in Table S7). When treating each
island separately, the accuracy of morphological Random Forest
analysis on males declined to 35%, while accuracy on females was
reduced to 40%.

3.4. Tobias scoring

We applied the Tobias species delimitation system (Tobias et al.,
2010) to our division between the Kabaena population and the
southeast group (consisting of Southeast Sulawesi, Muna, and
Buton), because this division had been supported by all of our
previous analyses. This system allows use of one spectral acoustic
character and one temporal in distinguishing between bird pop-
ulations. Peak frequency was the most divergent spectral character
between Kabaena and the southeast group, with a Cohen's d of 0.36.
Pace was the most divergent temporal character, with a Cohen's d of
1.77. These constitute “minor” differences under the Tobias system,
scoring 1 point each.

Two morphological traits may be included in calculating a
Tobias score: that showing the largest increase, and that showing
the largest decrease. When comparing birds from Kabaena to those
from the southeast group, these were wing length (Cohen's d of
1.28) and bill length (Cohen's d of —0.25). The system ranks these
effect sizes as “minor” and awards 1 point for each of them. Added
together, these give a Tobias score of 4 for the Kabaena population
when compared to babblers from Southeast Sulawesi, Buton, and
Muna.

4. Discussion

Wallace (1887) set the priorities of biogeographers for centuries
when he wrote that “The continental islands, still attached as they
are to the base of the mainland, are to all intents and purposes a
portion of the continent, as well in structure as in the forms of
animal and vegetable life which they afford. It is in the oceanic
islands that we should meet with limited and peculiar types.”
Oceanic islands continue to receive the most attention in speciation
studies today (Tobias et al., 2020). While continental land-bridge
islands indeed harbour fewer endemic species, their populations
may yet represent unique components of the species, important for
both current biodiversity and future evolution. The fact that land-
bridge islands are numerous and tend to be richer in species
makes their populations more interesting still (Meiri, 2017; Tobias
et al.,, 2020). It is apparent that babblers on the land-bridge islands
of Kabaena and Wawonii have diverged from mainland populations
in the brief time since these landmasses became physically
disconnected. Previous work has shown that babblers on the land-
bridge islands of Sulawesi exhibit stronger sexual dimorphism than
those on the mainland (O Marcaigh et al., 2020). This study adds
that babblers on Kabaena are distinct in acoustics, morphology, and
mtDNA, and that the Wawonii population is strongly divergent in
mtDNA. Combined with the division we found between Southeast
Sulawesi and Central Sulawesi, this indicates that the subspecies

321

Zoologischer Anzeiger 293 (2021) 314—325

Pellorneum celebense rufofuscum is actually comprised of four
independently evolving lineages.

The babblers of Southeast Sulawesi were formerly recognised as
a distinct subspecies, P. c. improbatum, originally described by
Stresemann (1938) from a type specimen from Lalolai in Southeast
Sulawesi (latitude —4.05, longitude 121.88). Though this taxon was
abolished by White & Bruce (1986) and Gill et al. (2021), our ana-
lyses have reaffirmed that the babblers of the southeast group
(Southeast Sulawesi, Buton, and Muna), do in fact represent an
evolutionarily distinct population. The Southeast population has
diverged from Central Sulawesi both acoustically and morpholog-
ically, mirroring the patterns of endemism seen in trees, monkeys,
toads, and hoofed mammals (Evans et al., 2003; Frantz et al., 2018;
Trethowan et al., 2020). This supports the hypothesis that these
understorey birds are as disinclined to disperse as are non-volant
organisms, with corresponding impacts on evolutionary trajec-
tories. This is in keeping with findings from other understorey
babbler species, which have also diverged genetically in areas that
were recently connected by land bridges (Cros et al., 2020).

The distances involved would appear to be too short to fully
explain the divergence seen. Kabaena is the most distant of the
land-bridge islands at around 18 km from the Sulawesi mainland
(Robinson-Dean et al., 2002), still a relatively short distance in
terms of speciation. Wawonii is only 7 km from Sulawesi, compa-
rable to Buton which is 6 km from the mainland at its closest point.
Muna is separated from Buton by only 0.6 km. Habitats on Kabaena
and Wawonii may be isolated by geology more than distance, as
both islands are dominated by a distinct ultramafic geology that
produces soils poor in nutrients and rich in phytotoxic minerals
(Galey et al., 2017). Such soils present distinct selection pressures
for organisms and are noted for very high levels of plant endemism
(Anacker, 2014), which would in turn present a distinct evolu-
tionary environment for animals including babblers. Populations of
other taxa on Kabaena and Wawonii have been noted for their
distinctness from neighbouring islands, showing the potential for
evolutionary and ecological divergence despite the short time scale.
Tweedley et al. (2013) observed a pronounced difference between
the composition of the freshwater fish faunas of Kabaena and
Buton. Trethowan et al. (2020) found the tree communities of
Wawonii to comprise different species than those of Central
Sulawesi.

Within birds, the patterns of evolutionary divergence in the
region can be linked to life history. Zosterops white-eyes (Vigors &
Horsfield, 1826) are famous for their dispersal abilities, though
more isolated populations are known to develop behavioural
flightlessness (Moyle et al., 2009). Zosterops populations on
Kabaena and Wawonii show no sign of divergence (O'Connell et al.,
2019b). The olive-backed sunbird Cinnyris jugularis (Linnaeus, 1766)
and grey-sided flowerpecker Dicaeum celebicum (Miiller, 1843)
both inhabit marginal habitats such as forest edges, scrubland and
mangroves (Billerman et al., 2020), a trait that makes a bird more
likely to cross habitat gaps and open spaces (Burney & Brumfield,
2009). They too share populations across Kabaena and Sulawesi
(Kelly, 2014; Kelly et al., 2014; O'Connell et al., 2019c). The red-
backed thrush Geokichla erythronota (Sclater, 1859) presents a
notable contrast to these species, having diverged strongly enough
on Kabaena to produce an endemic subspecies G. e. kabaena
(Robinson-Dean et al., 2002). Like the Sulawesi babbler, the rusty-
backed thrush is a bird of the forest understorey, and the two
species have even been observed foraging together (Billerman
et al.,, 2020).

Evolutionary divergence within the babblers of Sulawesi and its
land-bridge islands can be compared to that between more
geographically isolated lineages. This study found Moyle et al.’s
(2012) P. rostratum sequence from Borneo to be 7% different from
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all Pellorneum celebense haplotypes. Borneo and Sulawesi have
been separated for the duration of their existence by the Makassar
Strait, part of the permanent barrier of deep water known to bio-
geographers as Wallace's Line (Wallace, 1880; Tweedley et al.,
2013). This 7% difference in concatenated ND2-ND3 is thus the
result of millions of years of evolution, while the populations of
Sulawesi and its land-bridge islands have developed a p-distance
around 1/3 of this in only 12,000 years or so (Table S4). This illus-
trates the remarkable speed with which speciation can act on
dispersal-limited species, as well as the impact of genetic drift on
these relatively small island populations.

Our work highlights the importance of units below the species
level to the evolutionary potential of the Sulawesi babble. This joins
a long-standing debate in evolutionary biology, where approaches
to species and subspecies often generate controversy. Earlier nat-
uralists named many subspecies based on typological traits and
came in for some contemporary criticism (Wilson & Brown, 1953).
While modern methods overturned many of their designations,
they reaffirmed others: Hartert (1903), for example, named two
endemic species from the Wakatobi islands which were later
demoted to subspecies (White & Bruce, 1986), before being
confirmed as reproductively isolated species a century later (Kelly
et al, 2014; O'Connell et al., 2019b). The higher levels of the
Linnaean hierarchy were prioritised early in the molecular age, but
a broad consensus persisted that the subspecies concept is useful in
naming distinct populations with geographical boundaries be-
tween them, using multiple lines of evidence (Wiens et al., 1982).
Phillimore & Owens (2006) found that island subspecies are the
most likely to reflect evolution accurately and suggested that sub-
species can aid conservation in the tropics. We have sought to
follow these recommendations by analysing geographically
delimited populations on tropical islands using multiple lines of
evidence.

Modern ornithologists delimit species with an integrative
approach based on comparison to recognised species and ulti-
mately derived from the Biological Species Concept (Tobias et al.,
2010). This integrative approach is particularly important when
genetic data are absent or, as here, based on relatively low genetic
sample sizes. Based on two of the five scoring criteria, the Kabaena
population attains a Tobias score of 4, three points short of species
status. Despite the lack of data on plumage, ecology, and behaviour,
this partial score was more than half of that required to identify a
distinct species, strongly suggesting that the Kabaena birds and the
southeast group represent separate populations. The Wawonii
population cannot be scored as it lacks acoustic and morphological
data. Note that this system does not incorporate genetic data. We
thus propose the distinct babbler populations as subspecies and not
as independent species. Our ABGD analysis supports this conclu-
sion, as it separated these four P. celebense populations from one
another using a small barcode gap of 0.1% difference in concate-
nated ND2-ND3, appropriate for splits between subspecies. When
the barcode gap was between 0.8% and 6%, similar to that
betweenND2 sequences of other bird species (e.g. Pellegrino et al.,
2017; O'Connell et al., 2019b), ABGD grouped P. celebense together
as a single species. Fuller Tobias assessments, incorporating
plumage, ecology, and behaviour, might lead to other conclusions.

We thus recommend that the subspecies Pellorneum celebense
improbatum be reinstated for babblers from Southeast Sulawesi,
Buton, and Muna, as these are genetically and acoustically diver-
gent from the P. ¢. rufofuscum population of Central Sulawesi. We
propose that babblers from Kabaena be named as a new subspecies
for their genetic, acoustic, and morphological divergence from
Southeast Sulawesi, Buton, and Muna. This would require collection
of a voucher specimen from Kabaena, as historical collectors did not
visit the island (White & Bruce, 1986) and as a result very few
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species have ever been collected there, in fact the island was almost
unknown ornithologically until recently (O'Connell et al., 2017).
Lack of museum material should not delay conservation (O'Connell
et al,, 2020). We therefore suggest the provisional name of P. c.
kabaena for the Kabaena babblers and recommend that they be
subjected to formal description. The Wawonii population shows
strong divergence in mtDNA, but as this is based on one sample and
lacks acoustic or morphological data, we recommend that it be
studied in more detail before a taxonomic judgement is made.

Separate to any taxonomic revision, characterising the diver-
gence of populations on Wallacean islands is key to our under-
standing of how speciation creates the biodiversity of this global
hotspot. The concept of the Evolutionarily Significant Unit, or ESU,
aims to sidestep taxonomic debate by targeting conservation at
lineages that are evolving independently, regardless of how these
are assigned to taxa (Ryder, 1986; Moritz, 1994; Coates et al., 2018;
Neal et al., 2018). We believe that four independent ESUs are pre-
sent in the populations currently assigned to this one babbler
subspecies, one each from Central Sulawesi, Southeast Sulawesi,
Kabaena, and Wawonii.

These populations of the supposed rufofuscum subspecies have
undergone divergent evolution, despite being physically capable of
maintaining gene flow between the land-bridge islands and the
mainland. As Mayr (1969) noted, “Most tropical birds are highly
sedentary and respect water barriers to a high degree”. This also
applies to the division between Central Sulawesi and Southeast
Sulawesi, which were separated by water barriers for much of their
geological history. Taxonomists should be wary of lumping the taxa
of these two “areas of endemism” (Evans et al., 2003) together. Just
as our understanding of a species and its evolution is improved by
analysing its constituent populations, there is an urgent need to
consider which areas within the threatened biodiversity hotspots
are most important in generating this biodiversity through speci-
ation. Sometimes these areas are imperilled by the very traits that
make them evolutionarily significant: the ultramafic nickel de-
posits of Kabaena and Wawonii also make them attractive to large-
scale mining (Morse, 2019b, a). Time is therefore running out to
build a full picture of the biodiversity of these islands and their
evolutionary dynamics.
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