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In this Specialty Grand Challenge, we outline our vision of the current challenges in the field of 31 

Network Physiology as applied to aging and frailty. An expected development in this field for the 21st 32 

century is the modelling of the widely used (but still poorly understood) concept of ‘physiological 33 

reserve’ in relation to the wide heterogeneity in health status that exists between older adults of the 34 

same chronological age.  35 

 36 

1 The concepts of frailty, intrinsic capacity and resilience 37 

As populations get older, the association between chronological age and health status becomes 38 

increasingly variable (1). To describe this heterogeneity in health status as we age, the concepts of 39 

biological age (2) or frailty versus fitness spectrum (3) have been proposed. 40 

In older adults, frailty is clinically defined as ‘a condition or syndrome which results from a 41 

multi-system reduction in reserve capacity to the extent that a number of physiological systems are 42 

close to, or past, the threshold of symptomatic clinical failure’ and ‘as a consequence, the frail person 43 

is at increased risk of disability and death from minor external stresses’ (4). On the other side of the 44 

spectrum, ‘intrinsic capacity’ refers to the composite of all the physical and mental capacities of an 45 

individual, with physical resilience being ‘a characteristic at the whole person level which determines 46 

an individual’s ability to resist functional decline or recover physical health following a stressor’ (5). 47 

The concepts of frailty, intrinsic capacity and resilience have been extensively discussed in the aging 48 

literature, and we are not further comparing them here. 49 

While the clinical concepts of frailty and resilience are well established, their application to 50 

practice has been challenging. There is agreement that the measurement of these complex constructs 51 

requires the collection of information across multiple physiological systems. Thus, in the case of frailty 52 

it has been argued that essential reserve capacities include musculoskeletal function, aerobic capacity, 53 

cognitive and neurological function, and nutritional status (4). Intrinsic capacity has also been 54 

conceptualized across locomotive, cognitive, and metabolic systems, and further extended (as in many 55 

frailty measures too) to include the sensory and psychological domains (5). But crucially, for the 56 

demonstration of frailty or resilience in an individual, it is also necessary to know the type and intensity 57 

of the stressor that has impacted on the physiology, model the perturbances that the stressor has caused, 58 

and describe how the dynamic interactions across systems make the individual more or less likely to 59 

recover from the initial stressor. 60 

 61 
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 62 

2 The elusive concept of ‘physiological reserve’  63 

In clinical practice, terms such as ‘physiological reserve’, ‘functional reserve’ or ‘functional 64 

capacity’ are commonly employed to describe patient scenarios where an outcome (positive or 65 

negative) is viewed (often retrospectively) in relation to a ‘stressor’ (e.g. an illness, trauma, invasive 66 

procedure), where the clinician makes an overall ‘black box’ judgement of the ability of the person’s 67 

body to adapt to the stressor. For example, “Ms X must have had a good reserve as she was able to 68 

withstand this [illness/procedure]”. A challenge is that it is often clinically or physiologically very 69 

difficult to model or quantify the complex physiological interactions that occurred in the face of the 70 

given stressor and during its aftermath.  71 

At a single system level, ‘organ reserve’ has been described as the ability of an organ to endure 72 

recurring stressful conditions, and restore the normal homeostatic balance and function in a relatively 73 

short recovery time (6). Although this is a useful clinical concept, there is little evidence from research 74 

studies to support it (6) and remains underdefined at the molecular level (7). In aging, it is often said 75 

that the consequences of the cumulative decline across physiological systems become more evident 76 

under stressful conditions, and some observations suggest that aging is characterized by a gradual 77 

reduction in multi-organ reserve, where more affected people are at greater risk of lengthier or 78 

incomplete recovery (8).  79 

 80 

3 Physiological modeling of frailty and resilience in aging adults: current approaches 81 

Dynamic interactions between physiological systems in the face of stressors remain poorly 82 

empirically studied, mechanistically modeled, or understood. This still renders medical science unable 83 

to reliably forecast recovery of tipping points in health and disease, especially in older adults (9). 84 

However, there have been valuable research efforts aimed at modeling physiological reserve. 85 

For example, the reserve capacity of the heart has been a focus of interest since heart rate 86 

variability static and dynamic multi-scale measures are reduced due to significant decline of 87 

parasympathetic tone with aging (10-12). Cardiac reserve capacity is a major determinant of an 88 

individual’s ability to remain active and cope with daily stresses and illnesses (13). The use of arm 89 

cranking exercises and the calculation of the oxygen uptake efficiency slope from the submaximal 90 

respiratory response can be used for the objective quantification of cardiorespiratory functional reserve 91 

in older people (14). With treadmill testing, subjects undergo symptom limited cardiopulmonary 92 
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exercise tests to measure aerobic exercise capacity and cardiac reserve (15). In pathological situations 93 

such as heart failure, there is low reserve at baseline and hence, fatigue and dyspnea are frequently 94 

experienced following mild activity (16). However, this type of study only provides indirect evidence 95 

of the degree of efficiency of the underlying physiological processes under the influence of stress. 96 

Recent studies have utilized spectral power profiles of muscle activity and their evolution with 97 

accumulation of fatigue and extreme physical stress during squat exercise performed until exhaustion, 98 

and identified reduction in direct measures of reserve capacity for different muscle groups and muscle 99 

fibers within muscle groups in older subjects (17). 100 

Another area of interest is syncope, which is a transient loss of consciousness due to cerebral 101 

hypoperfusion, characterized by a rapid onset, short duration, and spontaneous complete recovery (18). 102 

Inherently, syncope occurs when the hemodynamic equilibrium is perturbed by an internal or external 103 

stressor, and this failure involves the simultaneous interaction of multiple physiological systems. In the 104 

syncope clinic and in research, the head-up tilt test (TT) has been used for decades to study heart rate 105 

and blood pressure adaptation to positional changes and other stressors. As a form of physiological 106 

‘stress test’, TT has helped improve the care of syncopal patients (19), but more research is needed to 107 

understand why some people are more susceptible to syncope than others. The physiological challenge 108 

of ‘standing up’ (i.e. active stand) is also of interest and work has shown that the pattern of early 109 

recovery may be indicative of the overall health state in older individuals (20). Similarly, incomplete 110 

blood pressure recovery within one minute after active standing was associated with increased risk of 111 

mortality in geriatric falls clinic patients (21), and with faster cognitive decline and increased mortality 112 

in patients with Alzheimer’s dementia (22). Utilizing non-invasive hemodynamic monitoring 113 

technologies, such as beat-to-beat haemodynamic recording and near-infrared spectroscopy (23, 24), 114 

research has shown a relationship between orthostatic intolerance and the cardiovascular response to 115 

physiological stressors from the analysis of heart rate and blood pressure, evaluated in terms of refined 116 

composite multiscale fuzzy entropy, measured on different scales (25). Research has also demonstrated 117 

an association between a measure of physical frailty and the entropy of different neurocardiovascular 118 

measures during active stand testing (26). 119 

Physiological challenges have also been used to better understand the function and reserve of the 120 

nervous system, both in health and disease. For example, visual event-related potential measures and 121 

neurocognitive response times have been employed to differentiate healthy versus diseased states and 122 

also to identify better cognitive performance in patients affected by neurological disease (e.g. multiple 123 

sclerosis) (27). ‘Stress-testing’ approaches have also been proposed in multiple sclerosis cohorts for 124 
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more objective recognition of disease progression; for example, by employing a multiscale entropy-125 

derived outcome measure of posture during an eyes-open/eyes-closed task, which explores the dynamic 126 

integration of sensory and postural systems and may assist in the evaluation of pharmaceutical and 127 

rehabilitation interventions (28). 128 

In the field of brain health, the concept of ‘cognitive reserve’ refers to the capacity of the brain 129 

to buffer age-related changes or even neurodegenerative pathology, thereby minimizing clinical 130 

manifestations (e.g. cognitive failures) that would be otherwise more apparent during cognitively 131 

demanding tasks (i.e. ‘brain stressors’) (29). For instance, cognitive tests have been demonstrated to 132 

predict outcome in older patients with heart failure (30). It has been hypothesized that this reserve 133 

capacity may not only derive from an individual’s ‘anatomic’ neural profile (e.g. cell count, synaptic 134 

connections, brain volume), but also in the effective physiological recruitment of neural networks and 135 

cognitive processes that are also supported by non-neural systems. The concepts of brain reserve 136 

capacity and cognitive reserve have attracted much scientific interest, but there is still scarce literature 137 

evidencing their complex physiological underpinnings (31).  138 

 139 

The need for a Network Physiology approach to the study of frailty and resilience 140 

In many studies of human physiology, it has become apparent that the functioning of different 141 

systems is dynamically interconnected. In one study, enhanced psychomotor speed was associated with 142 

higher cardiorespiratory fitness (32). There is considerable interest as to how the neural regulation of 143 

muscle contraction and control is fundamental to understanding sarcopenia, which is a common age-144 

related disease characterized by low skeletal muscle mass and function (33). In patients living with 145 

advanced cancer, nightmares and poor sleep were associated with worse physical and psychological 146 

health (34). Moreover, certain physiological signs used routinely in clinical practice are the product of 147 

the simultaneous interaction of multiple physiological systems; one example is mobility as an 148 

integrative measure; another example is orthostatic hypotension (low blood pressure on standing), 149 

which may not be an independently acting mechanism in the prediction of adverse clinical outcomes, 150 

but rather an intermediate variable in the causal pathway of many different factors (35, 36). Thus, 151 

impaired orthostatic homeostasis, in the absence of definitive neurodegenerative disorder (e.g. 152 

Parkinson’s disease, pure autonomic failure) may be a marker of a multi-level and multi-organ 153 

disruption. The fact that measures of general physical function can be associated over time with the 154 

development and worsening of multimorbidity (37) suggests that the dynamic ‘total body’ functioning 155 
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can be reflective of the health state of many individual organs and systems. Indeed, research has shown 156 

that the more integrative a measure is, the more informative it is for estimating mortality risk. Work 157 

through various studies focusing on deficit accumulation has shown that aging and frailty reflect how 158 

damage propagates through a complex network of interconnected elements (38-41). 159 

In younger or non-disabled cohorts, an integrative physiology approach may offer opportunities 160 

for the early detection of disease. For example, in people living with HIV, subtle abnormalities in easily 161 

obtainable biomarkers may indicate preclinical structural and functional changes in the renal, brain, 162 

cardiovascular, and skeletal systems (42). In neuroscience, electroencephalographic measurement of 163 

task-related oscillation changes can capture cognitive and motor network pathophysiology in the 164 

absence of task performance decline, which may facilitate development of more sensitive early 165 

neurodegenerative disease biomarkers (43). 166 

In older or more disabled cohorts, more clinically obvious physiological instability is often 167 

simultaneously present in multiple systems. For example, cardiovascular and postural instability often 168 

co-exist in people living with dementia (44). Orthostatic hypotension, cognitive impairment and 169 

higher-level gait disorder constitute what some geriatricians term the ‘Bermuda triangle’ of falls in 170 

older patients (45), where falls can be seen as signs of complex system failure (46). Further to the 171 

‘static’ frailty measurement tools that are currently available in clinical practice and research, the 172 

development of mathematical models that can quantify alterations in the dynamics of physiological 173 

systems and their interactions may help better characterize and understand the concepts of frailty and 174 

resilience in older people (47). And since reserve is conceptually defined in relation to a stressor, it is 175 

important not to forget stressors in the design of frailty and resilience studies. For example, in one 176 

study the addition of a cognitive task to the ‘timed up and go’ test enhanced the identification of falls 177 

risk in people living with Parkinson’s disease (48).  178 

The incorporation of stressors in integrative physiology studies may not only aid the more 179 

accurate identification of frailty but also be helpful in rehabilitation approaches to improve resilience. 180 

For example, in one study, exercise intervention proved to be safe and effective to reverse the 181 

functional decline associated with acute hospitalization in very old patients (49). In a cardiac 182 

rehabilitation setting, another study showed that although higher frailty levels were associated with 183 

cardiac rehabilitation drop-out, finishing the program was related to improving frailty levels, especially 184 

in patients who were the frailest (50). There is also interest in the possible role of exercise in improving 185 

brain health. In animal models, research has shown that exercise induces an anti-inflammatory 186 

environment in peripheral organs and also increases expression of anti-inflammatory molecules within 187 
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the brain, which supports the hypothesis that exercise can reduce or slow the cellular and cognitive 188 

impairments associated with neurodegeneration by modulating neuroinflammation (51). In humans, 189 

research has shown that acute high-intensity aerobic exercise affects brain-derived neurotrophic factor 190 

in mild cognitive impairment (52), but more studies are required to understand the complex dynamic 191 

interactions between physical and cognitive functions in aging. One example of this complexity is that 192 

exercise may affect vascular health (e.g. endothelial function, blood pressure reduction), which in turn 193 

could reduce the risk of neurodegenerative disease (53). 194 

In aging and frailty, measuring and quantifying dynamic networks of diverse systems with 195 

different types of interactions remains a challenge. However, the new field of Network Physiology 196 

provides a promising system-wide integrative framework to probe interactions among diverse systems 197 

(54, 55). This may, for example, show topological transitions associated with reorganization of 198 

physiological interactions that evidence network flexibility in response to stressors or perturbations 199 

(56-62), or generate dynamic measures of systemic resilience across various organ systems (9). We 200 

believe that the integration of relative failures of multiple body systems undergoing stresses may allow, 201 

in the future, compilation of a robust and objective physiological frailty and/or resilience indicator that 202 

is widely applicable in clinical practice. We encourage submissions that will help advance this exciting 203 

science. 204 

 205 
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