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Summary

Optical network disaggregation is a novel technological paradigm enabling the mitigation of lock-
in vendor constraints imposed within legacy systems, by aiming to standardise the control inter-
faces embedded in optical equipment to enable the development and deployment of technology-
agnostic remote control systems. This has been mainly enabled by the Software-Defined Network-
ing (SDN)/Network Function Virtualisation (NFV) paradigms, which have been deployed in recent
years to operate on top of optical network systems. However, due to the complexity of disaggreg-
ating the control from optical networking equipment, the consolidation of fully software-defined
optical networks has been rather slow. A major challenge has been the lack of testing platforms
that enhance the evaluation of optical SDN control procedures. In this thesis, we propose an optical
network emulation system to enhance the development of optical control plane research, and use this
platform to investigate how to build intelligent optical control plane procedures in disaggregated
optical networks.

Firstly, we developed a packet-optical network emulation platform, Mininet-Optical, to enhance
the development, testing and prototyping of disaggregated, software-defined optical control plane
procedures. Our emulation platform is the aggregation of two subsystems: i) an optical network
simulation system, to simulate the physical performance of Optical Line Systems (OLSs); ii) a
packet network emulation system, Mininet, which is a widely used emulation platform in the area
of SDN in the packet-network domain. With our system we are capable of modelling state-of-
the-art transport equipment such as Reconfigurable Add/Drop Multiplexers (ROADMs) composed
of Wavelength-Selective Switches (WSSs) and Variable Optical Attenuators (VOAs), Single Mode
Fibre (SMF) spans, Erbium-Doped Fibre Amplifiers (EDFAs) and Optical Power Monitors (OPMs).
Thus, we can model a wide variety of optical network systems and topologies that may be complex
and expensive to deploy in physical environments. By extending the internal composition of the
Mininet emulator, we are able to abstract the transport equipment in virtual electronic components
(i.e., ROADMs from open virtual switches), allowing us to extend the control plane emulation
enabled in these. We then integrated Mininet-Optical with the well-known SDN Network Operating
Systems (NOS) Ryu and Open Network Operating System (ONOS). Consequently, we were able to
evaluate real control plane procedures (e.g., algorithms and systems) in large-scale scenarios.

Secondly, we evaluated the usage of the Ryu controller for building control plane systems and
built our own system. Then, we integrated the SDN controller to Mininet-Optical to study the
implications of transmission margins on network capacity. And, we evaluated how can these margins
be mitigated by using Quality of Transmission Estimation (QoT-E) algorithms based on analytical
modelling of the OLS. Moreover, we evaluate the use of active monitoring components to assist
the QoT-E algorithms. For this, we propose three QoT-E models considering different types of
monitoring capabilities: i) assuming the monitoring of signal power levels and Amplified Spontaneous
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Emission (ASE) noise; ii) same as i), plus we use the signal power levels to correct the QoT-E
prediction inaccuracies in the Nonlinear Interference (NLI) noise occurring at the optical fibre; iii)
assuming monitoring capabilities of signal power levels, ASE noise, and NLI noise, such as reference
receiver monitors. With these QoT-E models we also evaluated the issues in monitoring placement,
focusing on the advantages of retrieving optical signal data at intermediate locations of an optical
link.

Thirdly, we looked at the enhancement of QoT-E modules with Machine-Learning (ML) and
deep-learning algorithms. We approached this by assessing the ability of ML algorithms to infer
the wavelength-dependent operation of optical network components, with focus on the Wavelength-
Dependent Gain (WDG) of EDFAs. For this, we propose the usage of the channel load as an
input parameter to train the algorithms, in a feature that we label the active wavelength load.
We thus used Mininet-Optical to generate large amounts of data to train and test the algorithms
that we evaluated. We began our investigation with a thorough evaluation of the Support Vector
Machine (SVM) algorithm, and then we also evaluated multiple algorithms, including: K-Nearest
Neighbour (KNN), Linear-Support Vector Machine (L-SVM), Radial Basis Function SVM (RBF-
SVM), Logistic Regression (LR), Decision Tree (DT), Artificial Neural Network (ANN), Naive Bayes
(NB), and Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost, and Bagging. We
assessed these algorithms in terms of time to train them and F1 score.
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1 Introduction

In the past decade, the consolidation of the 5th Generation (5G) of Telecommunication standard
technologies has driven the re-architecture of networking and communication systems. As envisioned
by the Next Generation Mobile Networks (NGMN) Alliance in 2015, three key requirements have
to be enabled in this type of network: enhanced mobile broadband (eMBB), massive machine type
communications (mMTC) and ultra reliable and low latency communication (uRLLC) [4]. This in
turn imposes technical challenges to the operational paradigms followed by contemporary telecom
central offices. Traditionally, the central offices that orchestrate the provisioning of communication
services are physically located at remote locations from the end-users. While this operation is appro-
priate to handle latency independent applications such as telephony or email, it is not suitable for
use cases with strict latency requirements such as autonomous vehicles and a wide-range Internet of
Things (IoT) applications, which fall under the umbrella of 5G technologies. Moreover, by enabling
mMTC, central offices are required to process higher amounts of traffic requests demanding higher
amounts of bandwidth. For instance, the rise of inter-communicated devices (i.e., smartphones and
TVs) and the resurge of machine-to-machine applications such as video surveillance, healthcare mon-
itoring and transportation, has been reflected in global increases of IP traffic, as shown in the global
IP traffic forecast by Cisco [1] in Figure 1.1, which is a pattern that is expected to continue to grow
at a pace of 14.1 zettabytes per year (since 2018). Consequently, in order to be able to provision
high bandwidth and low latency services, telecom operators are trying to move their central offices
closer to the end-users.

Figure 1.1: Cisco VNI Global IP Traffic Forecast, 2017 - 2022 [1].
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However, the current architecture of central offices provides limited support for 5G services and
business models. This is mainly because the legacy equipment that compose them are dedicated
hardware systems developed to provide fixed networking functions, such as Passive Optical Networks
(PONs). Consequently, telecom operators are looking at applying data centre architectural and
operational principles, motivated by the fact that data centres are a cost-effective type of facility to
process and deliver large amounts of data with commodity hardware (i.e., general purpose servers)
[5]. Thus, the re-architected central office placed closer to the end-user is commonly refer to as the
edge data centre. Today, the industry standard model addressing the technical and architectural
challenges in migrating the central office to data centres is the Optical Network Foundation (ONF)
Central Office Re-architected as a Datacenter (CORD) project [5–7], to which many operators have
been subscribing since its foundation in 2017. In fact, in a 2017 survey by IHS Markit [8], 85% of
operator respondents planned to create, or will have already deployed smart central offices (mini
data centres) by 2018, as illustrated in Figure 1.2, and seven out of ten participants were planning
to deploy CORD as their central offices.

Figure 1.2: IHS Operator Survey.

At the backbone of central offices we find legacy optical network technologies such as PONs,
Optical Line Terminals (OLTs), Reconfigurable Add/Drop Multiplexers (ROADMs), micro-electro-
mechanical systems (MEMS) switches and arrayed waveguide grating routers (AWGRs), and broad-
band network gateways (BNG), that run physical networking functions to process traffic requests
and provision services within the optical domain. These systems operate with fixed physical and
operational configurations (i.e., fixed-grid transceivers) that limit the flexibility of optical network-
ing control. Moreover, these systems are commonly designed to inter-operate with technologies
developed by single vendors and manufacturers. In addition, given the operational complexity and
specificity of legacy equipment, the physical upgrade (or “rip and replace”) cycle of these is considered
within a 10-20 year span, which is a challenging constraint that limits telecom operators to keep up
with technological trends that evolve fast. Consequently, legacy optical equipment are not adequate
candidates to be at the backbone of 5G networks, other than to provide support to older services
(i.e., 4G, 4G-LTE), since the type of services envisioned in this type of network require the ability
for optical network equipment to provide customised, flexible and easy-to-upgrade functionality.

To fill in this gap, the disaggregation of optical networking equipment enabled with Software-
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Defined Networking (SDN)/Network Function Virtualisation (NFV) is an area receiving increasing
attention in recent years, especially from operators who want to part from legacy vendor lock-in
restrictions [9–11]. Thoroughly discussed in Chapter 2, optical network disaggregation is a paradigm
that aims to standardise the fixed operational control embedded in optical equipment (i.e., trans-
ceivers, ROADMs, etc.) to enable the deployment of multi-vendor open interfaces that are run in
a centralised controller that has a global view of the full network as well as the individual control
of the equipment, enhancing greater autonomic network performance. The latter, also enables the
development of sophisticated control plane procedures that were not possible with legacy equip-
ment. Moreover, optical network disaggregation tackles the lack of flexibility of legacy systems,
since disaggregated equipment is designed to enable customised operability (i.e., variable band-
width and bandwidth on-demand), as well as the interoperability of devices from different vendors
and manufacturers. Furthermore, disaggregation tackles the upgradability issues of legacy equip-
ment, since the bare-metal infrastructure on which disaggregated systems run is more economic to
replace, complying with data centre rip and replace cycles of 3-5 years. Moreover, the emergence of
programmable (or software-defined) networking equipment is enabling the convergence of Telecom-
munication networks at all layers (i.e., wireless, packet and optical), which is an area of research
that requires further investigation. As a result of the technological advancements for 5G networks
and the new business models that these enable, according to a technological report by Markets
and Markets [12], the global optical networking and communication market size is expected to reach
USD $ 32.8 billion by 2030, at a CAGR of 6.2% from 2020 to 2030. This market was valued at $ 16.9
billion in 2019. In this report the authors considered as key factors the surging demand for high
bandwidth, the heavy deployment internet of things (IoT) applications and machine-to-machine
(M2M) technologies, as well as the rise in mobile data traffic.

Nonetheless, the migration of central offices to data centres, and in particular the transition
from optical legacy systems towards disaggregated optical networking has been rather slow. This
has been mainly because it is technically challenging to disaggregate the control of optical network
equipment and to model their functionality at the control system, while at the same time enabling
the inter-operability of multi-vendor systems with different requirements. The main areas that need
to be addressed are:

• Disaggregated equipment: Firstly, the lack of optical disaggregated equipment has been
a major limitation. In fact, only in recent years few working groups and companies have
released their proposals of disaggregated optical equipment, such as the Voyager and Cassini
open terminals from the Telecom Infra Project (TIP), which are fabricated by ADVA and
Edgecore, respectively [13, 14]. However, as the race for entering the market of optical network
disaggregation is tightening, more companies continue to release products that enable this type
of operation. For instance, in February 2021, Cisco and Fujitsu released the Phoenix [15] and
1FINITY [16] projects, initiatives emerged from the OOPT-TIP [17] consortia, that consists
in their own version of a white-box node and network operating systems.

• Communication protocols and interfaces: Moreover, the lack of interfaces to intercon-
nect this type of device to the SDN controller has been another limitation. Also in recent
years, communication protocols have emerged to support the development of this type of
interface, such as OpenFlow [18] and Yet Another Next Generation (YANG)-based models
OpenROADM [19] and OpenConfig [20], and, more recently, T-API [21] and Transponder
Abstraction Interface (TAI) [22].
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• SDN controllers: Additionally, only few SDN controller frameworks have been actively pro-
moted within the optical networking and communications community: Ryu by Nippon Tele-
graph and Telephone (NTT) [23], OpenDayLight by The Linux Foundation [24] and Open
Network Operating System (ONOS) by the ONF [25]. Although other customised solutions
have been proposed, such as the ABNO controller [26, 27]. However, as more optical dis-
aggregated equipment is becoming available in the market, more hardware demonstrations
showcasing the real performance impact of SDN-controlled optical networks are being eval-
uated. We can conclude that as real control systems for disaggregated optical networks are
coming together, there is a latent interest in multi-layer SDN control strategies and demonstra-
tions, such as the optimisation of controller placement to improve network latency, resiliency,
energy efficiency, load balancing, etc. [28]. For instance, Mayoral et al. [29] have proposed a
partially disaggregated network architecture including multi-layer (L0-L3) and multi-vendor
transport components. They have showcased a use case for multi-layer service provision-
ing in a real testbed. Sambo et al. [30] have proposed a restoration paradigm "delegated
restoration", in a hybrid centralised and distributed SDN environment using YANG-based
NETCONF interfaces for controlling the network devices and defining networking functions.

Evidently, since these technologies have only become commercially available within the past five
years, the evaluation of optical control planes supporting them is an area of research that still
requires further investigation.

A key question regarding the operation of the disaggregated optical control plane is its ability to
add agility to the network while optimising the performance of resources. Due to the strict analog
operation of optical network equipment, it is rather hard to model the physical performance of the
optical layer at the control plane with high levels of accuracy, mainly because of the wavelength-
dependent operation of devices such as ROADMs and Erbium-Doped Fibre Amplifiers (EDFAs).
This complexity thus increases with the heterogeneity of functionality provided by the multi-vendor
environment proposed in disaggregated optical networks. As a consequence, optical networks operate
with transmission margins that allow them to guarantee service provisioning with strict Quality
of Service (QoS) requirements. Unfortunately, the application of such margins can lead to the
underutilisation of optical resources (i.e., optical spectrum) [31] limiting the overall bandwidth
capacity. While practical considerations for designing and deploying near-zero margin networks
have been proposed in recent years [32], operators and vendors have also been actively investigating
the development of estimation tools capable of predicting the performance of individual optical
network components and optical transmissions in technology agnostic scenarios, such as the GNPy
Project [2]. More recently, cognition-assisted (i.e., Machine-Learning (ML)-based) solutions have
been proposed to enhance the prediction of optical network performance [33–37, 37–56].

Furthermore, a major challenge that is faced by optical networking and communications research
is the lack of testing and prototyping platforms that can assist the investigation of control plane
procedures integrated within the disaggregated data and physical planes. This is a significant
limitation because it constraints optical control plane research in the context of 5G networks to
small testbeds that are hard and expensive to scale and consequently to be reproduced. Since the
development of SDN in the electronic domain began earlier than in the optical domain (circa ’06 [57],
though informally some scientist would consider studies from the ’80s as the pioneering time of SDN
[58]), this field benefited from the extra years of experience. Among the strongest advantages in
the electronic domain were the testing and development tools available to enhance the development
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of packet SDN control systems. In particular, the SDN learning and prototyping tool Mininet [59],
which is a packet network emulation system enabling the modelling of SDN scenarios in this domain,
as well as assessing the performance of real control systems by emulating the operation of packet
network components (e.g., links and nodes). Mininet has been widely used since its first appearance
to the community in Lantz et. al. [60], and it was recently awarded the ACM SIGCOMM Test of
Time Paper Award [61]. Because of the success of Mininet in the elctronic domain, we concluded
that the optical networking and communications community would benefit from a similar emulation
environment that would enhance the development of optical SDN control planes.

1.1 Research Questions

At the Optical Network Architectures (ONA) Laboratory, the vision of future 5G networks requires
a multidimensional convergence for providing the overall architectural framework to bring together
all the different technologies within a unifying and coherent network ecosystem [62]. In this thesis,
we focus on the challenges encountered in the optical domain, particularly addressing the issues
concerning the optical control plane in the context of optical disaggregated networks and its ability
to add agility to the network management by exploiting the flexibility enabled in this type of systems.

How can novel optical SDN control systems be tested before deployment in an
operational network?

As we have described above, the development of SDN control systems in the optical domain
is limited due to the lack of equipment readily available supporting end-to-end disagreggation.
Thus, it is highly relevant to have at hand an emulation/simulation platform that would enhance
the development of real physical systems, and that would be robust to future trends in optical
networking and communications research. Accordingly, we first investigated the definitions and
uses of Mininet in the electronic domain, in order to identify similarities of network operation with
the optical domain. We found that higher level networking functions such as routing could be
easily migrated to the optical control plane. However, due to the analog nature of optical network
components, lower level functions concerning the processing of connections would require a set of
assumptions that are not shared with the packet domain.

Thoroughly discussed in Chapter 3, our primary aim is the development of a software system
that enables the simulation of the transmission physics in optical networks, while simultaneously
providing the emulation of disaggregated optical networks control. As we developed our emulation
system and validated the optical networking transmission models, we were capable of addressing
optical SDN open questions regarding the inner composition of disaggregated optical control systems.
For instance, we examined:

What are the implications to network capacity of the use of transmission margins?
How can a Quality of Transmission Estimation (QoT-E) module improve the configur-
ation of these margins? And, how can active monitoring assist QoT-E modules in the
optical control plane?

Our aim is to investigate what is the impact of receiver margins to the network capacity, and how
in the context of optical SDN can a controller improve the management of resources to maximise
network capacity utilisation by implementing a QoT-E module. Having information about the
overall performance of the network could help to improve the management of resources. For instance,

Alan A. Díaz Montiel Ph.D. Thesis



6 CHAPTER 1. INTRODUCTION

optical network systems operate with transmission margins in the order of ± 3-7 dB, limiting the
transmission capacity of the network [63].

Firstly, we considered monitoring procedures that require external equipment from the network
topology to assess the performance of the network and the individual components (i.e., Optical Power
Monitors (OPMs)). In this context, the use of monitoring equipment is thought to be included as a
static element in the network, similar to a switch that once deployed could not change its physical
position. Due to the fact that the costs of using monitoring equipment increase with the number
of devices, understanding the optimal amount of monitoring equipment needed in a given network
is an utmost important research topic [64]. Thus, we investigated how the optimal cooperation of
QoT-E with active monitoring could help tackling the mitigation of margins and improvement of
network capacity, while using a suboptimal amount of active monitoring at the same time. We then
deepened our investigation on the suboptimal amount of active monitoring the could help with these
issues. Our findings on these topics are discussed in Chapter 4.

In parallel to the early stage of the development of QoT-E subsystems in the context of disag-
gregated optical networks, in the Computer Science community, technologies from Artifical Intelli-
gence (AI) such as ML and deep-learning started to gain attention from all scientific fields, due to
the optimised computing performances to solve classification and estimation problems by looking
at raw data [65–69]. Consequently, we examined the potential to use ML algorithms to improve the
performance of QoT-E subsystems. We addressed this problem in the form of:

How can machine-learning algorithms assist QoT-E modules? And, how feasible is
to implement supervised-learning algorithms in the optical control plane?

The uses of QoT-E modules aim to assist networking functions such as dynamic routing and
fault management, as well as to mitigate the use of margins to improve network capacity. As
mentioned above, an approach to enhance QoT-E modules is to use active monitoring equipment to
keep track of the transmission. Unfortunately, this solution does not scale well with an increasing
number of connections and network devices. Consequently, we investigated how a QoT-E could
improve its performance by taking advantage of ML algorithms. Then, following the trends in
exploring the application of cognition to the optical control plane, we investigated the potential
of deep-learning to predict non-modellable optical transmission physics (i.e., wavelength-dependent
operation of network devices).

To begin with, we limited the composition of the raw data available to the ML algorithms
by using only the data that our simulation system could provide. Then, we chose a popular ML
algorithm, Support Vector Machine (SVM), and evaluated the technical requirements to build the
learning model and its implications to the optical control plane. Subsequently, we also evaluated
the performance of multiple machine- and deep-learning algorithms for this task. These studies are
discussed in Chapter 5.

Moreover, researchers continue to investigate to what extent could we benefit from including
cognition-based control systems to operate over disaggregated optical networks, and achieve with
that the development of autonomous control systems, enabling the maximum optimisation of per-
formance of optical communications. However, because disaggregated optical network systems are
currently under development, it is unclear how to determine the real potential of intelligent (cog-
nitive) subsystems assisting the optical SDN control plane [70]. In modern literature, there exist a
vast amount of efforts exploring these technologies, which rely on a number of assumptions and lim-
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itations based on the current operation of quasi-static and partially disaggregated optical networks
[32, 71]. As future trends continue to appear, the development of disaggregated optical networks
and the technologies to enable them will continue to adapt to these. While optical control systems
could benefit from ML algorithms, their performance is entirely dependent on the type of data that
is possible to retrieve from a network system, the frequency in which this data can be retrieved,
the amount and format of this [70]. As a consequence, it is utmost important to understand the
features of monitoring equipment in optical networks, and how do these operate in the context of
disaggregation. Thus, to what extent can control systems benefit from active monitoring.

1.2 Thesis outline

Chapter 2 - Background

In this Chapter we discuss the related work that motivated the research carried out for this thesis.
We begin with a thorough description of optical network disaggregation and enabler technologies
such as SDN/NFV. Additionally, we present the global consortia that has emerged in recent years
to tackle the technical challenges encountered in this area. Subsequently, we discuss the work that
has been disclosed in recent years concerning the disaggregated optical control plane, with special
focus on active monitoring research works.

Then in section 2.2 we discuss the two main optical network optimisation and planning tools
available today, Net2Plan [72] and GNPy [2], emphasising how the need for such tools is so strong
that they have been widely accepted by industry to be deployed in commercial control systems
[2, 25, 73]. Then, we contextualise the need for similar systems that enable the assessment of optical
control plane procedures also.

In section 2.3 we review the state-of-the-art of QoT-E modules developed to assist optical net-
working functions such as dynamic wavelength allocation and fault management. We begin our
discussion with estimation models mainly based on heuristic functions or statistical models, and
then we also include cognition-based estimation models. We conclude this Chapter with a set of
conclusions in section 2.4.

Chapter 3 - Mininet-Optical, an Emulation System

In Chapter 3 we present Mininet-Optical, the first SDN packet-optical network emulation system
enabling optical control plane testing and prototyping. We begin with an architectural overview
of the system and its integration with the Mininet project [59]. Then, we describe the transmis-
sion physics models that describe the physical operation of optical network equipment and optical
transmissions in section 3.3. In section 3.4 we explain the integration of these physical models and
their role in the context of Mininet-Optical. Similarly, in section 3.5 we present the architecture
and algorithm of our emulation system. Since Mininet-Optical is based on its packet network coun-
terpart, Mininet [59], we only explain how we do the integration of the optical network simulation
system with Mininet. In section 3.6, we show the validation assessments of Mininet-Optical against
the GNPy project [2] and the COSMOS testbed [74]. Lastly, we summarise our progress with our
system in section 3.7.
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Chapter 4 - Optical Control Systems

In Chapter 4 we present a set of studies regarding the operational challenges of optical control
systems in a disaggregated context. We introduce the challenges of optical control systems and the
architecture of our control system in sections 4.1 and 4.2, respectively. Then, we present a study
evaluating the impact of the use of margins to optical network capacity in section 4.3. In section
4.4 we present our studies in the use of active monitoring to improve the performance of QoT-E
systems. We summarise our work in section 4.5.

Chapter 5 - Cognitive-Assisted Control

In this Chapter, we present a set of studies with regard to the inclusion of cognition capabilities
to the optical control plane. We introduce the scope and describe the problems that we address
in sections 5.1 and 5.2, respectively. In section 5.3, we present a study evaluating the SVM ML
algorithm in terms of its suitability to handle optical networking data. Due to the promising findings
with SVM, in section 5.4 we deepen our assessment of ML by evaluating several algorithms. We
discuss our conclusions and summarise our work in section 5.5

Chapter 6 - Conclusions and Future Directions

In Chapter 6, we discuss the current limitations of Mininet-Optical and present future directions
in improving the system and facilitating its use for the community. Additionally, we discuss our
view of the current context of disaggregated optical networks and give our view on what challenges
require further investigation.

1.3 Contributions

The main contribution of this thesis is the design of intelligent control planes for highly dynamic
disaggregated optical networks. To facilitate our studies, and due to the lack of optical control
plane prototyping and testing tools, we thus developed the Mininet-Optical packet-optical network
emulation system, which is another key contribution of this work, including:

• Development of optical network simulation system.
• Development of component interfaces to enable SDN control.
• Integration of a simulation environment with emulated network interfaces.
• Validation of our transmission physics models against the GNPy [2] simulation system.
• Validation of our transmission physics against the COSMOS testbed [74].

With this at hand, we have identified the potential of active monitoring to assist QoT-E mon-
itoring, and found that it is possible to trade-off sophisticated monitoring equipment (i.e., capable
of isolating nonlinear interference noise) with simpler monitoring equipment (i.e., capable of monit-
oring signal power only). For this, we have built and integrated a QoT-E algorithm into an optical
SDN controller, and evaluated that by placing monitoring equipment at various locations in an
optical link we can achieve comparable performance to sophisticated monitoring equipment.
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Additionally, we have investigated the requirements to build QoT-E systems assisted with ML
algorithms. For that, we have evaluated multiple ML algorithms and assessed their ability to improve
their estimation performance by feeding active wavelength load information as a parameter to train
these models. Additionally, we have evaluated the training times required to build these models, to
provide a better understanding of their suitability to be deployed in the optical control plane.
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2 Background

2.1 Optical network disaggregation

Today, a typical deployment of an integrated Optical Line System (OLS) can be represented by Fig-
ure 2.1. OLSs are commonly composed of transponders or line terminals to carry on the transmis-
sion and reception of optical signals, Reconfigurable Add/Drop Multiplexers (ROADMs) integrated
with Wavelength-Selective Switches (WSSs) for multiplexing and de-multiplexing the signals, and
Erbium-Doped Fibre Amplifiers (EDFAs) for boost, in-line and pre-amplification purposes. Each
component is developed and controlled within an OLS control system that is provided by a single
vendor or manufacturer. This architecture constraints the flexibility of network operators to acquire
equipment from multiple vendors and limits the operational capabilities of these to the commercial
offer of a single vendor. In recent years, optical network disaggregation has emerged as a networking
paradigm to enable the use of multi-vendor components in optical equipment, and enhance the con-
trol operation of this type of systems. The logical architecture of disaggregated OLSs is represented
in Figure 2.2. Here, the control of each network component can be carried out by controlling mech-
anisms (i.e., component interfaces) provided by different vendors. This in turn leads to multiple
implications to business and operational models.

From a business perspective, optical network disaggregation emerges as an enabler technology to
demonopolise the Telecommunication’s market and to open competition for new network operators
and vendors. In addition, it enables the emergence of novel business models such as providing
services on-demand in a pay-as-you-go model (i.e., bandwidth on-demand), or even operational
changes such as shared-infrastructure between network operators [11]. However, transport networks
have operated for decades in isolated environments between operators, and the only times that
sharing infrastructure has been enabled has been by the acquisition of one company by another, such
as when Nokia bought Alcatel-Lucent in 2016 [75], and even then the control of the heterogeneous
network elements needed to be carried out by different components and technologies. Because of this,
in order to enable this type of novel networking use-cases that become possible in a disaggregated
environment, network operators, vendors and service providers need to come to an agreement on
the operational specifications of disaggregated equipment, and, to some degree, they also need to
agree on the overall architecture of this type of network, from the control and data planes, to the
physical layer composition.

From an operational perspective, the main implication faced in optical network disaggregation is
in fact disaggregating the control from the network equipment to relay it to a software-defined control
system. This in turn imposes multiple technical challenges. For instance, this requires an abstraction
of the components’ characterisation (i.e., bare-metal composition), as well as an abstraction of the
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components’ functional capabilities at the control plane. Due to the heterogeneity of optical network
equipment in the market today, it has been challenging for vendors to agree on standard abstraction
models and interfaces that satisfy each company system requirements. As a consequence, several
consortia and working groups have come together in recent years, combining initiatives from both
academia and industry, to tackle the development of optical network disaggregated technologies.
These initiatives and the state of the art of their research outcomes are thoroughly discussed in
section 2.1.2. In addition to these technical challenges, the enablement of both control systems
and devices communicating in a common language needs to be addressed. That is, there is a
need for novel communication protocols to operate on top of disaggregated networks equipment.
Interestingly, disaggregating OLS control opens up a wide range of possibilities to enhance the
control plane by re-architecting its composition and by extending the functionality. For instance,
by opening up the configuration interface of networking equipment and centralising the control of
these, it is possible to build analytical information of the overall network performance that can
assist networking functions such as dynamic resource allocation and fault recovery. In recent years,
the integration of these heterogeneous technologies has been facilitated with the standardisation
efforts in Software-Defined Networking (SDN) and Network Function Virtualisation (NFV), as well
as cloud open-source software and commodity hardware.
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Figure 2.1: Typical deployment of an integrated optical line system today.
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Figure 2.2: Disaggregated deployment of an integrated optical line system.
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2.1.1 Software-defined networking: the paradigm

As illustrated in Figure 2.2, by disaggregating the control from the OLS components it becomes
possible to have several tools enabling the control of these, all aggregated in a centralised control
system. Thus, we can think of the control environment as a separate plane from the network that it
is controlling. This architecture can be better described with the SDN paradigm. SDN as described
by the Optical Network Foundation (ONF) is a network "architecture [that] decouples the network
control and forwarding functions enabling the network control to become directly programmable
and the underlying infrastructure to be abstracted for applications and network services, [which]
is dynamic, manageable, cost-effective, and adaptable, making it ideal for the high-bandwidth,
dynamic nature of today’s applications." [6]. NFV addresses instead the architectures for virtualising
the networking functions that become part of the SDN control plane. A baseline SDN architecture
is shown in Figure 2.3.
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NETWORK NODE
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Hardware Configuration

Hardware Operation

Application Programing Interface

User/Service

Figure 2.3: Logical architecture of the SDN paradigm.

On the left-hand side, top to bottom, we have applications that are run by a centralised network
controller, which are in charge of configuring devices to fulfill the service demands from users (i.e.,
resource provisioning, guaranteeing Quality of Service (QoS), etc.). To do so, the controller connects
to the network nodes by accessing a Network Operating System (NOS) that is embedded within
the nodes. The NOS contains the policies and procedures enabled by a network node. Recently,
several research efforts have been proposed to address the numerous technical challenges that are
encountered at each layer of the SDN architecture [76–78]. In fact, according to the 2020 forecast by
Markets and Markets [79], the global SDN market size is expected to grow from USD 13.7 billion in
2020 to USD 32.7 billion by 2025 at a Compound Annual Growth Rate (CAGR) of 19.0%. According
to this analysis, the major growth drivers are the automation of network infrastructure, which leads
to a significant reduction in Capital Expenses (CapEx) and Operational Expenses (OpEx), the
increasing demand for cloud services, data center re-architecting, and server virtualisation, and
the increasing demand for enterprise mobility to enhance productivity for field-based services. As
a consequence, several companies are investing in research efforts to investigate the development
of SDN-based Telecommunication networks. Today, there are persistent issues within the optical

Alan A. Díaz Montiel Ph.D. Thesis



14 CHAPTER 2. BACKGROUND

domain that are being addressed by multiple global consortia.

2.1.2 Global consortia

Historically, the Internet Engineering Task Force (IETF) [80], International Telecommunication
Union (ITU) [81] and Optical Internetworking Forum (OIF) [82] are the three main organisations
that have had formalised the evolution of transport networks. Thus, the operation of legacy OLS
systems is well defined through standardisation efforts within these bodies. Because optical disag-
gregated networks is vanguard research, only standardisation efforts within the electronic domain
(e.g., packet networks) have become available, since the networking operations of this domain have
evolved faster than within its counterpart optical domain. Because of this, numerous research groups
have been formed around the world to tackle the formalisation efforts in the optical domain. Un-
doubtedly, the two key consortia that are leading the future of optical network communications are
the ONF [6] and the Telecom Infra Project (TIP) [13]. In this section, we discuss the main research
efforts that have emerged from both initiatives during the past decade, commencing with the ONF.

The ONF is a "non-profit operator led consortium driving transformation of network infra-
structure and carrier business models, serving as the umbrella for a number of projects building
solutions by leveraging network disaggregation, white box economics, open source software and
software defined standards to revolutionize the carrier industry" [6]. It was founded in 2011 by
Deutsche Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, and today it counts with the
collaboration of over 150 members distributed along companies, universities and research centres,
as well as re-known open-source groups such as the Linux Foundation [83] and the Open Compute
Project (OCP) [84]. Since its foundation it has been leading SDN developments in the packet, op-
tical and wireless domains. The most impactful projects that have been developed during the past
decade by the ONF are: the OpenFlow communication protocol [18], enabling the SDN control of
packet-switches (although it also supports now transport configuration); the Open Network Oper-
ating System (ONOS) [25], which has become the industry standard for SDN controllers providing
scalability, high availability, high performance and abstractions to create apps and services when
controlling a network; and the Central Office Re-architected as a Datacenter (CORD) [7] platform
that leverages SDN, NFV and Cloud technologies to build agile data centers for the network edge.
Nonetheless, the ONF also counts in its portfolio projects that are being thoroughly supported
within its community: Stratum [85], Trellis [86], next generation SDN (NG-SDN) [87], P4 [88], XOS
[89], Open and Disaggregated Transport Network (ODTN) [73], Open Transport Configuration &
Control (OTCC) [90], Information Modeling [91] and Mininet [59]. Most of the work investigated
within the ONF focuses on next generation data centre networks.

Separately, the Facebook initiative of TIP [13] is another ecosystem of projects and working
groups. In fact, TIP describes itself as a "global community of companies and organizations that
are driving infrastructure solutions to advance global connectivity." Today, it counts with over 450
members, also ranging between academia and industry profiles, and has dozens of working groups
on a wide range of Telecommunication networks topics [92]. Within TIP, the working group that
is in charge of researching next generation optical networking communications is the Open Optical
& Packet Transport (OOPT) group [17], which is an operator driven group that will "allow to re-
imagine how we can innovate and do business" [93]. This working group is divided in 4 sub-groups
that investigate the elements of packet-optical transport networks including OLS, disaggregated
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transponder and chip (DTC), physical layer simulation environment (PSE) and common-APIs.

In addition to ONF and TIP, in the last decade other working groups have formed to address
individual aspects of optical networks disaggregation. For instance, there is the OpenROADM group
[19], which is a Multi-Source Agreement (MSA) that has the goal of defining interoperability spe-
cifications for white-box ROADMs. Their specifications consist of both optical interoperability as
well as Yet Another Next Generation (YANG) data models. Additionally, there is the OpenConfig
group [20], which is "an informal working group of network operators sharing the goal of moving
our networks toward a more dynamic, programmable infrastructure by adopting software-defined
networking principles such as declarative configuration and model-driven management and opera-
tions [20]." Both OpenROADM and OpenConfig are currently being evaluated by different groups
around the globe [14, 94, 95].

While the implementation of SDN and NFV is not novel in the context of electronic networks
(i.e., packet networks), especially in the area of data centre networks, optical networking systems,
which operate with strict analog constraints, have only begun to implement these paradigms for
commercial purposes in the past decade. As we have discussed in section 2.1.1, the main challenge
of enabling SDN in the optical domain concern the communication between the controller and the
devices. However, enabler-technologies such as communication protocols and hardware prototypes
have been around since the ’80s. In 1988 the Consultative Committee on International Telephone
and Telegraph (CCITT) Study Group XVIII released the first recommendation, G.707 [96], to
introduce network node interfaces for the synchronous digital hierarchy (SDH) technologies, and,
consequently, synchronous optical networking (SONET) technologies. This motivated the world-
wide development of pioneering work of SDN in the optical domain. For example, Fujimoto et
al. [58] from Fujitsu Laboratories LTD, Japan, presented the concept of software-defined optical
shuttle nodes with a demonstration of one of the first system controllers operating on top of a
SONET network back in 1988. Since this initial period, the control plane of optical networks has
been re-designed and re-architected extensively, and formalised in the ITU-G series: Transmission
systems and media, digital systems and networks [81], as well as through other standardisation
bodies and initiatives (e.g., IETF [80] and OIF [82]). In particular, the ITU-T Recommendation
G.709 Interfaces for the optical transport network [97], first approved in 2001, has been formalising
the integration of optical network elements, as well as providing reference models for the principles
of operation of these and the interfaces to control them. Since 2009 this ITU-T recommendation
has been revised annually with incremental advancements towards enabling more agile and flexible
Dynamic Wavelength-Division Multiplexing (DWDM) optical networks, which have come to slowly
replace legacy transport technologies relying on SONET/SDH systems.

Naturally, the evolution of optical transport networks has been heavily influenced by the ad-
vancements in network disaggregation of packet-networks, which due to their digital nature have
evolved at a faster pace than analog systems such as optical networks. For instance, also in 2009,
the ONF released the first version of the OpenFlow [18] protocol to enhance the Southbound Inter-
face (SBI) of SDN electronic switches. This communication protocol simplified the disaggregation
of the control of this type of switches to be handled by a system (software) controller, enabling more
sophisticated traffic management and routing procedures at this layer of communication. This also
motivated the emergence of several OpenFlow standardisation activities as well as the development
of network operating systems (or SDN controllers), which have already been surveyed by Kreutz et
al. in [76]. Today, OpenFlow has become the industry standard for disaggregated electronic net-
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works. Due to the tremendous success that OpenFlow achieved within few years, in the early years
of the ’10s it was thought of as the favourite candidate to replace the Generalized Multi-Protocol
Label Switching (GMPLS) protocol [98], which can still be found operating on top of optical trans-
port networks [99]. As a result, in 2014 the ONF released a set of requirements to be considered
to extend OpenFlow to transport networks in [100], but it was not until 2015 that they released
the first official version of OpenFlow supporting these requirements [101]. Also in 2014, the ONF
released the first version of their ONOS project, already integrating OpenFlow and other south-
band communication protocols, i.e., Network Configuration Protocol (NETCONF) [102], which has
since then become the preferred SDN controller also for electronic networks. However, due to the
lack of readily-available programmable (white-box) transport equipment, it is yet unclear whether
OpenFlow will have the same success in the optical domain.

In parallel to the ITU activities of the past decade, several IETF Request for Comments (RFC)
have been proposed to enable SDN support in the optical domain. For instance, in 2009 Zhang et al.
proposed the RFC-7062: Framework for GMPLS and Path Computing Element (PCE) Control of
G.709 Optical Transport Networks [103], providing the guidelines for telecom operators to introduce
control plane capabilities based on GMPLS to optical transport networks. Built on top of RFC-7062
and RFC-4657 [104], in 2012, King and Farrell proposed the RFC-7491: A PCE-based Architecture
for Application-based Network Operations (ABNO) [105], which has served as a template for optical
SDN research since it was first proposed as it allows to implement complex workflows and compute
time consuming optimisation algorithms in the optical control plane [26, 27, 106–108]. This line of
research motivated the assessment and development of other SBI communication protocols such as
NETCONF and YANG-based models like T-API [21], as alternatives to OpenFlow.

2.1.3 Disaggregated optical control plane

Software-defined control

As we have already mentioned, only during the past decade the area of disaggregated optical net-
works has been thoroughly researched. In this section, we review the key research efforts and
initiatives that have resulted from this movement. For instance, Liu et al. [109] have demonstrated
an in-field OpenFlow-based unified control plane for multi-layer multi-granularity optical switching
networks. They have virtualised a layer of control of WSSs that are physically controlled with the
TL1 protocol, so that they can be controlled through an OpenFlow controller. This was the first
demonstration of such a controller that enabled them to quantitatively evaluate the latencies for
end-to-end path creation and restoration through a field trial between Japan, China, and Spain.

Choi et al. [110, 111] have demonstrated the implementation of adaptive transceivers that were
controlled with an SDN controller that enabled OpenFlow. The authors developed an extension to
the OpenFlow protocol to enable the control of the adaptive transceivers. They were capable of
dynamically, with the controller, adapt the modulation format of their optical transmitters. Their
controller was based on the architecture of the PCE architecture [112]. The PCE architecture as
a framework for disagreggated optical networks has been extensively reviewed in: Casellas et al.
[113], Casellas et al. [114], and Muñoz et al. [115].

Sambo et al. [116] have also developed an extension to the OpenFlow protocol in order to
be able to control optical network equipment to set transmission parameters (e.g., code rate) at
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the transmitter and the receiver ends. They have reported the creation of super-channels (i.e.,
flexi-grid) with their SDN controller. In fact, the evaluation of flexi-frid networks (also referred
to as Elastic Optical Networks (EONs)) with OpenFlow-enabled SDN controllers gain significant
attention [117–127].

With the release of the ABNO architecture (RFC-7491 [27, 105]) a boost of optical SDN research
resurged following this design. For instance, Muñoz et al. [128, 129] have demonstrated a transport
network orchestration for end-to-end multi-layer provisioning across heterogeneous SDN/OpenFlow
and GMPLS/PCE control domains. Casellas et al. [130] have proposed a multi-domain and multi-
vendor network SDN control architecture that uses GMPLS to control the network elements of an
optical network. Morover, other international efforts have been done to demonstrate the SDN control
of remote testbeds across the globe. For instance, Vilalta et al. [131, 132] proposed methods for using
NFV to deploy OpenFlow-controlled virtual optical networks (VON). They have interconnected
international optical SDN testbeds from Japan, U.K., Germany and Spain. Also, Li et al. [133]
have demonstrated a customised multi-domain transport SDN control using the OpenFlow protocol
and a customised controller. Yoshida et al. [107] have shown an OpenFlow-based SDN control of
interconnected testbeds physically located in Japan, the U.K. and Spain.

Recently, there have been multiple efforts to evaluate the performance of different communication
protocols to control optical disaggregated equipment. For instance, Oda et al. [134, 135] have
evaluated a control system that through OpenROADM was capable of retrieving live-information
about the optical performance of the network, allowing them to improve the transmission margins.
Also, Kundrat et al. [136] have evaluated the use of YANG-based models to control programmable
ROADMs networks. Similar evaluations of YANG-based models have been analysed by Velasco et
al. [137]. Recently, Campanella et al. [138] have disclosed the aim and architectural details of the
Open and Disaggregated Transport Network (ODTN) project from ONF, which makes use of the
ONOS SDN controller to manage an OLS system with the protocols NETCONF/RESTCONF and
models OpenConfig/TAPI. And, more recently, Sgambelluri et al. [94] have investigated the real
potential of OpenConfig and OpenROADM to be used in real deployments.

Disaggregated optical equipment

As we have briefly commented on Chapter 1, despite the research outcomes in recent years, the
assessment of disaggregated optical networks are limited to testbeds that integrate few network
components that are SDN-enabled. As a result, the optical networking community has been looking
at the well-established white-box solutions proposed by the OCP [84] for data centre networks,
and have come up with novel designs. At the first TIP Summit in November 2016 the OOPT
project announced the industry’s first networking white box, called Voyager, which is a packet-
optical solution combining a switching ASIC with coherent DWDM modules [93]. Also in 2016,
Edgecore Networks released their optical terminal with SDN control capabilities, the packet/optical
Cassini [139]. After these official releases multiple companies started to produce their own versions
of white-box switches, such as the Czech Light ROADM [140] and the Lumentum ROADM Graybox
[141].

Consequently, multiple research efforts have been investigating the performance enabled by
white-box solutions. For instance, Kushwaha et al. [142] have performed a 400 Gb/s carrier-class
SDN white-box design and demonstration, based on protocol-agnostic YANG-based models for the
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optical SDN control. With this tool the authors proposed a bitstream, low-latency, source-routing
based scheme. Velasco et al. [137] have proposed a control architecture and a NETCONF YANG-
based data model, as well as a customised white-box architecture for data centre networks. They
have used a customised CASTOR controller interconnected to ONOS in order to control multi-
vendor international testbeds in Spain and Italy. More recently, white-box studies from academia
have emerged. For instance, Sgambelluri et al. have built a photonic integrated switch matrix
including 1398 circuit elements interconnected in a 3-D stack that is controlled through Open-
ROADM NETCONF/YANG Agent and experimentally validated in an ONOS-based SDN testbed
encompassing OpenConfig-driven 100G pol-mux transponders [95]. Also, Lopez et al. [22, 143] have
recently presented the Transponder Abstraction Interface (TAI) project, which is yet another TIP
initiative to investigate the development of white boxes in the optical domain.

Evidently, the assessment of the control system frameworks and technologies (i.e., network oper-
ating systems and communication protocols) are becoming more present. For instance, Campanella
et al. [144] have disclosed the recent advancements of the ONF-ODTN project, demonstrating
dynamic multi-layer (data and control) provisioning of data connectivity services and advanced
automatic failure recovery. Their experiments continue to exploit the ONOS framework, as well as
the YANG-based models of OpenConfig and OpenROADM. Also, Sgambelluri et al. [94] investig-
ated the optimisation of provisioning and fault management scenarios. Their experiments also use
ONOS, OpenConfig and OpenROADM, as well as enabled telemetry monitoring capabilities.

2.1.4 Active monitoring

Active monitoring has been a capability of the optical control plane that has gained much attention
in recent years, as it can improve the management of lightpath installation, fault management and
dynamic routing. In conventional network deployments today it is common to account for monitoring
of the physical layer with Optical Performance Monitor (OPM) solutions. For example, it is typical
to install OPM nodes at the receiver-end of a point-to-point optical connection, that use coherent
receivers to estimate lightpath Quality of Transmission (QoT) given the characteristics of the optical
link, which can effectively provide performance monitoring (i.e., Bit Error Rate (BER), Generalized
Optical Signal to Noise Ratio (gOSNR)) as well as other power anomaly detection measures through
digital backpropagation [145, 146]. This can be part of a larger research area developing control
methods that combine real-time data collection with Quality of Transmission Estimation (QoT-E)
and lightpath provisioning [147]. This approach involves the use of real-time control plane operations
to gather OPM information and run algorithms for the correction of QoT-E functions.

For instance, Pointurier et al. [148, 149] have proposed through simulations a strategy to select
which lightpaths to monitor in order to compute an accurate estimation of the overall spectrum
performance by means of network kriging solutions that compute the BER of unmonitored channels.
Their monitoring capabilities assumed the extraction of power levels and Amplified Spontaneous
Emission (ASE) noise levels at the end of an optical link. Additionally, they have also evaluated
the impact of placing monitoring nodes at different locations in a network, in order to estimate the
performance of lightpaths across a network. Thus, the placement of monitoring nodes has also been
a topic of interest in recent years.

Angelou et al. [64, 150] have proposed an optimisation algorithm to allocate OPM nodes at
different locations of an optical network with the objective function of minimising the amount of
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equipment required that can help to accurately estimate the QoT of lightpaths that share connection
links. They have reported that for optical networks of different scales, their algorithm can reduce
the amount of OPM equipment by a 1/4 or a 1/3 of the total monitoring (theoretical) capacity.

Sartzetakis et al. [151] have evaluated the monitoring of probing channels only, in order to accur-
ately estimate the performance of active channels. Their algorithm enabled to reduce the amount
of monitoring equipment by 60% when compared against integer linear programming algorithms,
with the objective function of reducing transmission margins. Sambo et al. [152] have performed
a demonstration of a QoT-E module mounted on a real SDN controller, that was used to allocate
optical traffic in a single and multi-domain scenario. They made use of NETCONF agents to retrieve
online data that was later used to improve their QoT-E module. Yan et al. [153] have proposed an
SDN-based monitoring framework to build multi-layer analytical information of the optical link per-
formance. They have extended the OpenFlow protocol to retrieve physical layer information from
the nodes that their OpenDayLight controller managed. Paolucci et al. [127] have demonstrated
a scalable solution based on the subscribe and publish model, to build a SDN controller using the
gRPC protocol to enable on-demand streaming of real-time monitoring parameters. Their optical
control is enabled through YANG-based models. Gifre et al. [154] have proposed a monitoring
and data analytics (MDA) architecture, integrating data analytic capabilities with telemetry. Their
study considers a YANG-based data model that is used to retrieve information from the network
nodes. Seve et al. [155] have developed an SDN control plane developed with ONOS, where they
have integrated monitoring capabilities with coherent receivers at the end of an optical link, and
have been able to identify different types of fibre anomalies (i.e., chromatic dispersion without traffic
interruption).

Evidently, the use-cases enabled by the disaggregation of optical networks enhance the applic-
ability of active monitoring strategies. However, this is an area that requires further investigation.

2.2 Optical network design and modelling

At this point, we can conclude that it is desirable to be able to model optical networks before
deploying them because this allows you to benchmark potential faults, system functionality, etc.
As we have already mentioned, disaggregating optical networks assumes the inter-operability of
heterogeneous networking equipment. As a consequence, the proprietary networking modelling
solutions carried out by network operators in legacy systems are not suitable for modelling network
scenarios including the components from multiple vendors. Thus, it has become of interest to account
for modelling tools that are capable of aggregating the physical performance of disaggregated optical
networks. Today, there are two main initiatives that have been considered by the community: the
Net2Plan Project [72] and the OOPT-GNPy Project [2].

2.2.1 Net2Plan

Net2Plan is a project developed at the Universidad Politécnica de Cartagena (Spain) and it was
first released in 2015 [72]. It is an interactive platform that enables the modelling of IP networks,
Wavelength Division Multiplexing (WDM) networks, and NFV elements, enabling the creation of
nodes, links, traffic unicast and multicast demands, routes, protection segments, multicast trees,
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shared-risk groups, resources and network layers. It was designed to be useful for laboratory sessions
as an educational resource, or for a visual inspection of a network. It is developed as a Java library
as well as a command-line and graphical user interfaces. Net2Plan counts with four main features:
offline network design, traffic matrix generation, online simulation and reporting. This tool has
been used to investigate a variety of interesting research works in the optical domain, including
blocking issues in noncontentionless ROADMs [156], assessing IP vs optical restoration [157], fault
management procedures [158], as well as dynamic operations of IP/MPLS-over-WDM networks
[159]. Net2Plan has also been integrated with the SDN controller OpenDayLight [24, 160].

2.2.2 GNPy

GNPy is a project developed by the 2017 OOPT - Physical Simulation Environment (OOPT-PSE)
working group from the TIP consortium [17]. It is an open source and vendor-neutral library of
applications capable of assessing optical impairments in OLSs. It relies on the estimation of an
optical transmission by evaluating the accumulation of both the ASE noise generated by EDFAs
and the Nonlinear Interference (NLI) noise introduced by nonlinear signal propagation in an optical
fibre. This tool has been validated against physical testbeds in [161] and, more recently, also in
[162]. Today, it is the optical network planning and optimisation tool that has been widely accepted
within the optical networking and communications community, and has been used in a variety of
research works. Barzegar et al. has used it to study soft-failure localization and time-dependent
degradation detection for network diagnosis [163]. Borraccini et al. [164] have used GNPy to assess
open line controlling and modulation format deployment. Also, Triki et al. have integrated GNPy
to an OpenROADM compliant network [55]. This tool has also been integrated with the ONOS
SDN controller from the ONF [165].

2.2.3 Emulation systems: the missing piece

As of today, a major challenge in doing research in the area of disaggregated optical networks is
testing the real-time control plane aspects, as real testbeds, especially in academia, are of limited size,
typically composed of only few ROADM nodes. Indeed, a lack of testing platforms and reference
systems, similar to the recirculating loops used in transmission system development, has limited
this area of research primarily to customised, often not scalable solutions, as we have shown in the
examples presented above. Optical controllers such as ONOS/ODTN [166] could benefit from rapid
and flexible development on reliable emulated environments, in addition to testing on hardware
testbeds, just as Mininet [59] helped the development of OpenFlow and SDN control planes.

As we aim to automate the control of optical networks, network planning and optimisation
tools such as GNPy [2] aim to cover the network management functions of the control system,
and to assist decision-making processes (i.e., lightpath installation). However, they operate as a
closed simulation environment designed for planning and optimisation, leaving the assessment and
development of optical SDN control systems in real-time an open issue. While these systems enable
the assessment of a transmission even upon network deployment, there are no tools enabling the
assessment of the communication mechanisms (i.e., interfaces and protocols). As a consequence,
the development and testing of optical control plane systems requires the physical prototyping
of the devices and their NOS. In the electronic domain, the emergence of the Mininet Project
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enhanced the development, testing and prototyping of electronic software-defined networks and their
control planes [59]. Mininet allows to deploy a virtual electronic network composed of virtual Linux
hosts (servers), virtual Ethernet links and programmable electronic switches. Consequently, at the
ONA Laboratory, in collaboration with the University of Arizona, we have designed and developed
an emulation platform to support the optical networking and communications community in the
assessment of optical control planes, which is one of the key contributions of this thesis, and it is
thoroughly described in Chapter 3.

2.3 Quality of Transmission Estimation

As we have mentioned in section 2.2, the hardware heterogeneity of the disaggregated network
components is hard to model with network modelling systems for proprietary systems. As a con-
sequence, in recent years, it has been of great interest to the optical networking and communications
community the development of control plane NFV compounds in charge of computing performance
estimations of the physical layer transmissions that traverse disaggregated optical networks, i.e.,
predicting the Optical Signal to Noise Ratio (OSNR) levels of a point-to-point optical link transmis-
sion. The current research approaches could be divided in two classes: 1) estimation models based
on analytical modelling and 2) estimation models based on cognitive techniques (i.e., Machine-
Learning (ML)-assisted). A distinctive feature of cognitive techniques is that they require large
amounts of data points in order to operate at optimal levels. This in turn poses a great limitation,
since the collection of optical data information is a limiting action, as academic research testbeds
tend to be of lower sizes with respect to commercial deployments, usually composed of few nodes and
monitoring capabilities. Also, this type of estimation requires constant updates of the status of the
ground-truth performance that it is trying to model in order to perform with great accuracy. On the
other hand, estimation models based on analytical modelling do not depend on active monitoring
procedures, but require instead great levels of detail of the OLS that it is trying to model, which can
be hard to represent due to the wavelength-dependent operation of optical network equipment, such
as the case of the wavelength-dependent gain of EDFAs. Thus, this type of estimation model tend
to not scale well with a big number of network nodes and transmission channels. Here we discuss
the most relevant research contributions disclosed in recent years with regard to the development
of QoT-E modules to be integrated in the control plane of disaggregated optical networks, with the
intention of highlighting the variety of strategies developed for analytical modelling estimations and
the popularity of ML algorithms for cognitive estimations, such as Support Vector Machine (SVM)
and Artificial Neural Network (ANN). The analytical models from Net2Plan and GNPy are not
included here, since they have been described above in sections 2.2.1 and 2.2.2.

2.3.1 Analytical models

Zami et al. [167] studied the impact of OSNR levels of a signal towards near channels for a given
set of connections. While they did not consider the addition of optical noise in the in-line optical
amplifiers, the interest of a QoT-E was first raised, considering some of the physical impairments
in an optical network system. The idea of a QoT function was later introduced in Morea et al.
[168], which, in combination with a customised routing algorithm, provided simulated performance
studies on the feasibility of including these type of functions into the control plane. By consider-
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ing a non-heterogeneous model of network elements, they evaluated transmission performance for
different wavelengths based mostly on the Chromatic Dispersion (CD) optical impairment. Since
high computational resources are inappropriate for Routing and Wavelength Assignment (RWA)
functions in the control plane, they determined it was necessary to quantify the estimation error
when using the routing tool as a function of the network. Also, Morea et al. [168] proposed the
possibility to combine the QoT-E with monitoring functions, by retrieving information from the
optical nodes at fixed periods of time.

Leplingard et al. [169] proposed to use QoT-E as a function of the CD map, to help derive
appropriate margins on the dimensioning of an optical network. Under these considerations, they
used the estimated results to determine the number of regenerators needed for a given network, as
a function of the applied margins. In this study knowing the CD of the system helped reduce the
errors of the QoT-E.

Subsequently, Leplingard et al. [170] analysed the application of adaptive margins to a QoT-E,
based on the amount of residual CD and non-linear phase experienced by a signal. In this study it was
found that the utilisation of adaptive margins decreases the number of misestimations. Nonetheless,
according to the authors, while the application of margins guarantees safer dimensioning, it is at
the expense of including additional equipment.

Following a more statistical approach, the authors in Morea et al. [171] considered the introduc-
tion of confidence levels for adding margins in both fixed and adaptive manners. They also used the
QoT function to determine the number of regenerators needed at a given transmission. However,
it was concluded that comparing the required regenerators is not enough to assess the advantages
related to a QoT-E.

Sambo et al. [172] have proposed three signaling and multi-layer probe-based schemes that
can estimate QoT, the Multi-layer Probe Scheme (MPS), the Signaling-based Multi-layer Probe
Scheme (S-MPS) and the Signaling-based Conditional Multi-layer Probe Scheme (SC-MPS). Their
simulation results showed that the use of QoT-E procedures in a GMPLS-based network can improve
blocking probability and lightpath setup time. Also, Pinart et al. [173] make use of probing signals
to verify QoT-E, enabling the optimisation of impairment-aware wavelength assignment.

Pointurier et al. [174] have investigated the use of a Q-tool for impairment aware routing and
wavelength assignment. The latter, served as a baseline for the work developed by Sambo et al.
[175], which proposed a lightpath establishment framework based on this estimation tool that was
then implemented as part of a PCE-based demonstration [176].

Azodolmolky et al. [177, 178] have proposed a RWA procedure that aimed to mitigate the
inaccuracies caused to QoT-E, which are attributed to inaccuracies in modelling, as well to a lack
of monitoring capabilities in an OLS. In their evaluations, they were able to allocate 40% more
lightpaths in a 10-channel system, thanks to their lightpath allocation method improved with QoT-
E.

Qin et al. [179, 180] have proposed a hardware accelerated QoT-E procedure used in the
DICONET impairment-aware optical network [181]. The authors have reported a considerable
performance achieved with the hardware acceleration processes.

Zami et al. [182] have proposed a QoT-E-based routing algorithm that considers the accumula-
tion of uncertainties in the physical parameters along a path during the route selection process. They
presented an analysis based on a U.S.-wide core network. In general they showed that the number
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of regenerators deployed in an optical network can be reduced by implementing QoT-E modules,
and, that the receiver margins required to guarantee successful lightpath installation could also be
reduced. This study coincided with the findings of Garcia-Manrubia et al. [183], who also evaluated
the impact on the reduction of network equipment (i.e., regenerators) required to be deployed.

Bottari et al. [184] have proposed an evolutive lightpath assessment to evaluate the QoT of
unestablished lightpaths. Their algorithm mixes quality estimations and in-field measurements of
the transmitted channels. They have also reported a reduction in the amount of regeneration
required to be deployed.

Perellò et al. [185] have performed a demonstration of a QoT-E module mounted on an FPGA
module. Interestingly, their lightpath allocation strategy using the QoT-E system required 1.36
seconds to execute for the high priority traffic.

Today, the evolution of coherent optical transmission has made it possible to easily recover from
CD and Polarization Mode Dispersion (PMD) using digital signal processing at the receiver, so
that accurate QoT-E for these impairments has become redundant. However, Zami et al. [186]
proposed that it is still relevant to consider the OSNR levels and crosstalk attenuation of signals,
as input parameters for QoT functions. In addition, it is mentioned that analysing the performance
of a transmission channel from a bandwidth perspective is important, especially when considering
multiple physical impairments of a system. They proposed that the accumulated uncertainties along
the lightpaths must be also considered, e.g., as the aggregated noise caused by amplification systems.

Sartzetakis et al. [187] proposed an analytical framework for a QoT-E considering spectrum
dependent parameters. While assuming OPM functions capable of reporting the state of the network,
the MATLAB simulations presented in this study demonstrated that they were able to approximate
the prediction of the network behaviour with high-accuracy. Although the analysis presented there
lacks consideration of physical layer models, it provides an insight on how novel statistical techniques
could improve the precision of a QoT function for signal performance in an optical network.

Bouda et al. [188] proposed a prediction tool that is dynamically configurable considering optical
physical impairments as these changed through the network. They included both linear and non-
linear effects, such as Q-factor and non-linear fibre coefficients, for predicting accurate QoT. The
authors were able to reduce the Q-estimation error to 0.6 dB. However, they believe the accuracy
of the parameters in their model could be improved by considering more data variability, e.g., by
changing the launch powers or considering measured OSNR levels.

In Panayiotou et al. [189], a data-driven QoT-E is analysed from a theoretical perspective.
The authors commented on the advantages of approaches based on data analysis, in-gather than
based on Q-factor estimation, overcoming the dependency of the consideration of physical layer
impairments, eliminating the requirement of specific measurement equipment, as well as extensive
processing and storage capabilities. While this approach presented high accuracy (between 92% and
95%) the neural network approach taken in this study presented high computational complexity,
which is typically unsuitable for the management of all-optical networks.

Cantono et al. [190] developed a QoT-E system capable of modelling nonlinear interference
generation with Stimulated Raman Scattering (SRS), showing errors within 0.5 dB on the gOSNR
estimation. This integration of the SRS effect was later added to the GNPy project [162].

Delezoide et al. [191] have demonstrated a QoT-E method that is capable of estimating the filter
penalty to QoT when WSSs are presented in cascade and reported the reduction of margins to up
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to 1.7 dB for optical links with high number of hops, with estimation errors between 0.1 and 3 dB.

Zhang et al. [192] have integrated a novel analytical model of both ASE and NLI noise to a
WDM control plane, enabling real-time updates of the estimations. Their model is based on a single
transmission figure of merit applied to every line span and lightpath in a WDM network. Their
figure of merit consists in the line span OSNR degradation that is first computed by the QoT-E
module analytically from a number of input parameters that are periodically monitored by their
controller.

Zhao et al. [193] have proposed a spectrum allocation scheme using a QoT-E system that
partitions the spectrum to be allocated in sections that prioritise based on the transmission time
of these. Their approach outperforms conventional QoT-E systems when looking at the improved
blocking probability.

Vincent et al. [194] have artificially evaluated a RWA algorithm that focuses on the fact that
wavelength packing can enhance overall traffic whilst giving only slight penalties for latency and the
required transceivers.

Virgillito et al. [195] have proposed an analytical model of NLI noise, which is spectrally disag-
gregated, by separating the single-channel - self-phase modulation (SPM) - from the multi-channel
effects - cross-phase modulation (XPM). They used the GN model to validate their split-step simu-
lations. They have reported that by separating the SPM and XPM occurrences from the analytical
models, it is possible to improve the estimation of NLI noise.

D’Amico et al. [49] have proposed a method to evaluate the equivalent SPM component of NLI
noise of fibre spans, which are independent of the history or configuration of the optical network.

Ferrari et al. [162] have used the GNPy project to build an estimation model that is sensitive
to connector loss uncertainties. They have evaluated their results in a core Microsoft testbed and
have reported errors of up to 1 dB.

Evidently, there are too many considerations to be taken in the modelling of physical effects
encountered in optical networking systems. Fortunately, recent proposals such as the ones presented
in [49, 162, 195] are reporting significantly lower QoT-E inaccuracies with respect to a decade
ago, which can enhance the optimisation of transmission margins and the overall optical control
plane operation. Moreover, the evaluation of ML techniques have emerged to further mitigate the
inaccuracies carried out by analytical modelling and build cognition-assisted QoT-E models.

2.3.2 Cognition-based estimation models

As briefly mentioned in Chapter 1, the re-emergence of cognitive control supported with virtualised
instruments pose design challenges to the implementation of future optical control systems. In
recent years, studies have reviewed the potential of Artifical Intelligence (AI) techniques (i.e., ML),
to support intelligent software-defined optical control systems in enhancing the overall network
capacity [65, 70].

Several studies have addressed this problem from various perspectives. For instance, Barletta et
al. [196] considered the use case of determining whether unestablished lightpaths meet a required
BER threshold. Synthetic data was used for their experiments. They implemented a Random
Forest (RF) classifier with 100 estimators. The features used for training their model were: the
number of links of lightpaths, lightpath length, longest link length, traffic volume, and modulation
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format. Datasets were collected from a single topology, enabling RF to perform with high accuracy
with only 1000 training data samples, although they also trained the model with 90 thousand
samples. The findings were extended in Rottondi et al. [197] where they included a deeper analysis
of the challenges imposed by network components in optical networks to the development of cognitive
control systems.

In a different study, Bouda et al. [188] studied the learning capabilities in a multi-vendor scenario.
They collected and trained synthetic data on-the-fly, representing the case of an online control
system. The learning model used for their studies was based on maximum likelihood principles,
correlated with the monitored data. They used many physical layer parameters (i.e., launch powers,
fibre span losses of certain links, etc.). An emulated 88-channel system was used to generate data
traversing all the spans in their network topology. QoT prediction with 0.6 dB Q-factor accuracy
was achieved. Then, they extended their research in Bouda et al. [146], presenting an analysis of
the network capacity gain due to the implementation of the Q-estimation tool.

Mata et al. [198] have reviewed the potential of SVM to classify lightpaths into high or low
quality categories in impairment-aware Wavelength-Routed Optical Networks (WRONs), in long-
haul communication networks. Their results favor SVM with respect to the high accuracy for
binary classification. A dataset with 11 thousand samples was used to train the learning model.
Nonetheless, they have pointed out the main pitfall of SVM is the extensive time to train the model,
which is indeed a considerable limitation for future control systems. They extended their findings
in Mata et al. [199] by comparing the previously implemented SVM model against RF and Bagging
Trees. This time, the new models outperformed SVM in computational time while maintaining a
classification accuracy of 99.9%. Contrasting the results from Mata et al. [198], Aladin and Tremblay
studied the potential of an SVM model to classify lightpath QoT into good or bad according to BER
thresholds [200]. They also compared the performance of SVM with K-Nearest Neighbours (KNNs)
and SVM in terms of computational time and prediction accuracy. By training the learning models
with more than 25 thousand data samples, their SVM implementation outperformed the other two
candidates in classification accuracy, but with the tradeoff of longer computation time with respect
to KNN and RF. As input features for the learning model they considered: total link length, span
length, channel launch power, modulation format and data rate. In Tremblay et al. [201], they
show a comparative analysis between the three classifiers, where the results favor SVM with 99.15%
accuracy. Similar to Aladin et al. [200], Morais et al. [202] compared an SVM model against
KNN, logistic regression, and an ANN model, also with the aim to predict the QoT of unestablished
lightpaths. They considered 13 different features to train their learning model (i.e., number of hops,
spans, link length, span attenuation, etc.). Around 5 thousand samples were used to carry out
the learning model training. Their results favored ANN because they achieved 99.9% prediction
accuracy with this model. Nonetheless, the other two algorithms performed with an accuracy of
95%. They extended their research work in Morais et al. [203]. This time they concluded that
SVM models, KNN and logistic regression could classify correctly 90% of the lightpaths, and ANN
continued achieving a classification accuracy of 99.9%.

From the literature presented above, it is clear that supervised-learning algorithms are capable
of dealing with optical domain data with outstanding performance. Nonetheless, these studies
mainly used synthetic data, and it is also clear that in order for these to perform best they required
large amounts of data. This is a major complication for optical networks, since state-of-the-art
monitoring equipment cannot extract the amount of data required in a fast manner. This motivated
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the investigation of this type of algorithms when dealing with real data in physical testbeds. In
Meng et al. [204], they used a learning model based on Markov Chain Monte Carlo, achieving a
Q-factor estimation error of 0.5 dB. This was a testbed experiment consisting of the integration of
a QoT-E as a module in the control plane of a software-defined small optical network system.

Liu et al. [205] presented an end-to-end testbed with a QoT-E tool with performance accuracy
above 90%. In this study, the learning model used was ANN. The small testbed demonstrated the
potential of cognition on software-defined elastic optical networks.

In Mo et al. [206], they studied a Deep Neural Network (DNN) to predict the power dynamics of
a 90-channel ROADM system. In their study, a comparison between DNN, ridge regression and RF
is presented, favoring DNN with the lowest maximal error (0.8 dB). They performed online training
with 6720 training samples. The experiments were carried out in a small testbed, analyzing the
effects of power excursions encountered in the amplification process of EDFAs.

Seve et al. [207] have proposed a learning process for reducing uncertainties on network para-
meters and design margins, based on the correlation of input parameters to network components
(i.e., amplifiers and receivers), and using machine-learning techniques to reduce the uncertainties
from these.

Proietti et al. [208–210] have demonstrated a control system assisted with a ML-based QoT-E
in multi-domain elastic optical networks with alien wavelengths, capable of recognising modulation
format, QoT monitoring, and cognitive routing. They have reported an OSNR prediction accuracy
of 95% when using 1200 data points. Then, an experimental demonstration of this was intro-
duced in Liu et al. [205], showing hierarchical machine-learning network management framework
for impairment-aware end-to-end elastic optical RMSA service provisioning across multi autonomous
domains. In this physical demonstration they reported QoT-E deviations below 10%.

Salani et al. [211] have proposed a ML-assisted QoT-E system, that is capable of detecting
lightpaths with unacceptable QoT and improve spectrum allocation. They have reported spectrum
allocation savings of up to 30% when compared to Integer Linear Programming modelling.

Sartzetakis et al. [212] have proposed a QoT-E method based on monitoring the QoT of existing
connections, to learn the actual physical conditions of the network. They then feed this information
to their ML algorithm, reporting good estimation performance with the use of a small dataset.

Curri et al. [213] have proposed a scheme to combine an analytical model with ML models, in
order to improve the overall QoT-E performance. They proposed that the ASE noise estimation
should be carried out by a ML algorithm, whereas the NLI noise modelling can be performed by
analytical models (i.e., GN model), when estimating the gOSNR.

Evidently, ML algorithms have a strong potential to assist QoT-E processes in the optical control
plane. However, as more disaggregated testbeds are coming together, it is necessary to further
evaluate the performance of these in real large-scale deployments.

2.4 Conclusion

We have reviewed that the disaggregation of optical networks is pushing vendors, manufacturers and
network operators to rearchitect the implementation and operation of optical networking systems.
We have also shown that only during the past decade multiple global consortia have emerged to tackle
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the technical and operational challenges encountered in this area of research, and we can conclude
that as of 2021 disaggregated networks are reaching a new level of maturity. For instance, with regard
to the integration of heterogeneous technologies following a SDN architecture, research is focusing
in enabling multi-layer (L0-L3) control as more testbeds are proving the manageability of all-optical
networks in a disaggregated environment to be cost-effective [214]. Also, SDN controllers such as
ONOS are becoming to be operatable in more commercial deployments. Moreover, communication
protocols such as OpenFlow, OpenROADM and OpenConfig continue to be examined as more
disaggregated optical equipment is becoming available in the market.

We can thus conclude that there are some research areas that are of high interest for the following
years. For instance, there is a need for assessing more optical performance monitoring capabilities
in the context of disaggregated optical networks, as it is becoming more cost-effective to collect
physical layer data, other than the power and ASE noise levels, that can be used to build analytical
information useful to enhance networking operations such as dynamic resource provisioning and/or
fault management. In particular, the estimation and monitoring of NLI noise is a topic that is
gaining significant attention [190, 215]. And, while several applications of ML algorithms assisting
networking functions such as QoT-E [66, 216] have been demonstrated, it is still unclear to quantify
the real benefits and uses of these technologies to boost optical SDN control.
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3 Mininet-Optical, an Emulation System

3.1 Introduction

As we have reviewed in Chapter 2, Telecommunication networks in the optical domain are trans-
itioning from closed to disaggregated networking systems [217]. This implies that most (if not all)
of the optical network devices composing this type of networks today, will be controllable by control
systems capable of dynamically reconfiguring their operation by means of software-based processes,
described as Network Function Virtualisation (NFV) [62]. One of the key issues of control plane
design is that hardware testbeds offer ground truth and line rate performance, but they are often
expensive, hard to reconfigure, and limited in size. The development of innovative optical Software-
Defined Networking (SDN) systems such as Open and Disaggregated Transport Network (ODTN)
- Open Network Operating System (ONOS) [166] could benefit greatly from a flexible and scalable
open source software emulator that emulates the physical, data, and control planes for packet-optical
networks. However, research on the development of these systems and their controllers is limited
by a dependence on expensive, small-scale testbeds, and emulation systems that do not currently
model the physical, data plane, and control plane behavior. In packet networks, it is possible to
emulate networking capabilities by virtualising the network card/interface of a computer or device
(i.e., a switch), and make them available to other computers or devices [59]. While it is impossible
to emulate the behaviour of light beams (i.e., it can only be simulated), it is possible to emulate
the control capabilities of the equipment that compose optical networks, since these operations rely
on software systems. At the ONA laboratory, we came up with the idea of integrating optical net-
working models of the physical effects with networking interfaces that emulate the control of optical
networking devices, as well as SDN-controlled optical transmission and switching planes, to develop
the world first packet-optical network emulation system: Mininet-Optical. The development of this
system has been done in collaboration with the Center for Integrated Access Networks (CIAN) at the
University of Arizona and the open-source Mininet project [59]. We first developed the simulation
system for the transmission physics models, and then we integrated it with Mininet [59], a widely
used emulator that supports disaggregated packet network emulation and is often used to develop
and test SDN controllers and that it is being supported and developed by the Optical Network
Foundation (ONF). By integrating optical network modelling with Mininet’s existing emulation of
IP and Ethernet networks, we can provide a complete platform for testing cross-layer operation of
SDN control planes. Thus, Mininet-Optical simulates the physical behavior and impairments of the
analog optical network, emulates the data plane of both packet and optical networks, and exposes
SDN control Application Programming Interfaces (APIs) to SDN controllers (i.e., ONOS).
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3.1.1 Scope and contributions

This Chapter aims to provide a clear understanding of all the components that form Mininet-Optical,
our emulation system for prototyping optical network SDN control planes.

The main contributions of this Chapter are:

• Introduction of the architecture of an optical network simulation system.
• Design and implementation of an algorithm to model physical layer transmissions in the optical

domain.
• Introduction of the architecture of an optical network emulation system, Mininet-Optical.
• Design and implementation of an algorithm to handle the models composing Mininet-Optical.
• Implementation of validation studies of Mininet-Optical against various models and testbeds.

3.2 Mininet-Optical Overview

In Figure 3.1 we show the architectural diagram of Mininet-Optical. At the bottom we show how
the virtual network runs in a single Linux kernel. The middle layer shows how Mininet-Optical is
integrated with Mininet. Mininet has been extended to use our optical transmission simulator as
a built-in API that allows the instantiation of the optical network elements in a virtual network
environment. While Mininet continues to operate as a packet-network emulator, we abstract the
optical domain functionality within the electronic emulated network elements. For instance, Line
Terminals and Reconfigurable Add/Drop Multiplexers (ROADMs) are abstracted from real ovs-
switch instances, for which we have extended the Switch models from Mininet to distinguish between
electronic and optical classes. Optical fiber links between ROADM nodes, together with Erbium-
Doped Fibre Amplifiers (EDFAs) and Variable Optical Attenuators (VOAs) are abstracted from
virtual-Ethernet (v-eth) links. Then, optical network transmissions are abstracted from the emulated
packet transmissions by encapsulating parameters of the optical transmission models in the packet
headers, which are processed at each Switch node model in Mininet. With this design, we can take
advantage of the built-in southbound control plane Mininet interfaces to enable the SDN control of
the emulated network elements. Also in Figure 3.1 the top layer shows the control plane interface for
SDN controllers. To a control plane, Mininet-Optical appears as a Southbound Interface (SBI), so
that commands from the controller are forwarded to the virtual optical elements, and their behavior
reproduced by the physical layer simulation. The same southbound interface is used by the SDN
controller to retrieve Optical Performance Monitor (OPM) information. Currently, we have deployed
a REST server written in Python to enable the SDN control of the emulated devices, matching
requests to individual networking functions with the OpenFlow protocol. However, our design
supports future implementation of standard APIs such as T-API, OpenROADM or OpenConfig for
plug-and-play compatibility with hardware networks.

By enabling the simulation of optical transmission impairments, Mininet-Optical enables the
modeling of optical components behavior, while managing their operation through an SDN con-
trol plane. Elements modeled by Mininet-Optical include: transceivers; colorless ROADMs with
Wavelength-Selective Switches (WSSs), and VOAs for channel power leveling purposes; EDFAs for
boost-, inline- and pre-amplification; and OPM devices. In Mininet-Optical, OPMs can in prin-
ciple provide any information that is simulated by the physical transmission layer. Concretely,
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Figure 3.1: Mininet-Optical - Architecture Diagram.

the enabled monitoring capabilities allow us to collect optical signal power, Amplified Spontaneous
Emission (ASE) and Nonlinear Interference (NLI) noise data of individual channels and study col-
lective effects that can manifest over an optical link. Also, OPMs emulate Optical Signal to Noise
Ratio (OSNR) monitors or reference receivers that can recover estimates of the full Generalized
Optical Signal to Noise Ratio (gOSNR), either of which can be interrogated through a control plane
interface.

3.3 Transmission Physics Simulation

Depicted in the centre-left of Figure 3.1, a simulation subsystem models the optical transmission
physics using analytical models (such as the GN-model for fibre nonlinearities). In our design, each
modelled network component is abstracted as a software-object that take as input the abstracted
representation of optical signals (e.g., optical signal objects), process them according to an algorithm
(i.e., switching), and then relay these to other objects. Optical signal objects are described by their
wavelength, frequency, symbol rate, modulation format, power levels and noise levels, and keep track
of their steady-state processing at each point of a network, which then can be easily monitored by the
OPM components enabled in the system. A key feature from our implementation design is that it
allows for customised configuration of the network elements individually. For example, it is possible
to set wavelength dependent noise figure functions in the EDFAs and to set specific wavelength-
dependent gain functions, to then evaluate its performance in optical transmission systems with
signal power behaviour modeling physical testbed performance. Table 3.1 lists the specific physical
models that are used to simulate the optical transmission for each network element. Due to the
modular design of this system, it is possible to extend and modify the transmission physics models
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to evaluate different performances.

Table 3.1: Transmission Physics Models of Network Elements

Network Component Transmission Physics Model

Component Insertion Losses
ROADM Wavelength-Dependent Attenuation

Channel Power Leveling
Optical Fibre Linear Attenuation

Optical Fibre Dispersion
Optical Fibre Stimulated Raman Scattering [218]

Self-Channel Interference Noise [219]
Cross-Channel Interference Noise [219]

Wavelength-Dependent Gain
EDFA Optical Power Dynamics [220]

Amplified-Spontaneous Emission Noise

3.3.1 Physical models

Transmission physics models such as the component insertion losses of ROADM nodes are the
simplest to model, since these consist in defining an insertion loss per component and use it as
the attenuation value inflicted to the signal power and noise levels. Thus, we do not include the
analytical representation of these. However, the rest of the models listed in Table 3.1 operate as
independent subsystems that compute the multiple physical effects. These models are described as
follows:

Stimulated Raman Scattering

The Stimulated Raman Scattering (SRS) effect is a property of optical fibre that is well understood
today. It consists of the increase or decrease of wavelengths by means of energy exchange. In
Mininet-Optical, we implement the model proposed by Zirngibl in [218]. Zirngibl determined that
to be able to describe the SRS effect with a simple model the following three assumptions must be
met. First, the Raman gain coefficient has a triangular profile. Second, we can neglect the energy
that is lost whenever a short wavelength photon is transformed into a long wavelength photon (i.e.
�i/�k ⇠ 1). Third, we consider uniform loss and negligible noise. Considering these, we can then
describe the Raman coefficient in single-mode fibres (SMFs) with Equation 3.1:

� =
r

2⇥Aeff ⇥B
(3.1)

Where r[m/W ] is the Raman fibre gain, Aeff [µm2] effective core area and the factor of 2 is
due to random polarisation, and B[THz] is the Raman amplification band (commonly 15 THz for
SMF). Consequently, it is possible to describe the Raman gain/loss of each signal (�) with Equation
3.2:

R(�) =
�P0Leff (�max � �min) exp {�P0Leff (�� �min)}

exp {�P0Leff (�max � �min)}� 1
(3.2)
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Where � is the frequency of the signal of interest, P0[mW ] is the total power given by all signals
in the fibre, Leff [km] is the effective length of the fibre. Thus, the variation in frequencies as
established by �max, �min and � is also expressed in [Hz].

Gaussian Noise Model of Non-Linear Interference in Coherent Optical Transmission Systems

The nonlinear interference noise due to Self-Channel Interference (SCI) and Cross-Channel Inter-
ference (XCS) is the most complex of the models in our simulation system. This is due to the
fact that its randomised physics nature is hard to model in a closed-form formula. However, in the
past decade these phenomena have been investigated in detail, and it has been demonstrated by
Poggiolini et al. [221] that by assuming a Gaussian (normal) behaviour of this type of noise, an
accurate approximation with a closed-form formula can be given by Equation 3.3:

GĒNLI
(fch,i) ⇡

16

27
�2L2

eff

NchX

n=1

G2
ch,nGch,i · (2� �ni) n,i (3.3)

In this Equation, the factor 16
27 is attributed to dual-polarisation fibre effects and it can be ob-

tained from the full derivation of this closed-form expression [221]. The fibre non-linearity coefficient
is given by �[1/(Wkm)], Leff [km] is the effective length, and the factors determined by G (GĒNLI

,
Gch,n, Gch,i) correspond to the Power Spectral Density (PSD) of the channels. � accounts for SCI
or XCS, since it takes the value of 1 when n = i and 0 otherwise. Last, the  coefficient is described
by Equations 3.4 and 3.5, which compute the XCS (3.4) and SCI (3.5), respectively. For a full
derivation of this model we refer to Poggiolini et al. [221].

 n,i ⇡ Ns
asinh(⇡2[2↵]�1|�2|[fch,n�fch,i+Bch,n/2]Bch,i)

4⇡(2↵)�1|�2| �

�Ns
asinh(⇡2[2↵]�1|�2|[fch,n�fch,i�Bch,n/2]Bch,i)
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(3.4)

 i,i ⇡ Ns

asinh
⇣

⇡2

2 |�2| [2↵]�1B2
ch,i

⌘

2⇡ |�2| [2↵]�1
(3.5)

EDFA System Gain

The wavelength-dependent characteristics of network components in optical network transmission
systems result in wavelength-dependent impairments on the transmitted optical signals. In par-
ticular, the Wavelength-Dependent Gain (WDG) when EDFAs operate in Automatic Gain Con-
trol (AGC) mode can lead to unequal channel power compensation, often referred to as channel
power divergence. This effect is commonly mitigated by vendors through Gain Flattening Fil-
ter (GFF). However, the GFF solves the problem only in part, as there is a residual WDG due to
component-specific behaviour, amplifier operation point changes, nonlinear gain effects, which can
be of the order of ±0.5-1.0 dB [220], resulting in power divergence that can accumulate between
nodes and reduce the Quality of Transmission (QoT) [222]. To compensate for the WDG effect, it
is common practice to deploy VOAs at system level (i.e., at the ROADM). For Mininet-Optical, we
model this WDG operation in EDFA by representing the WDG as a function of channel wavelength,
that we refer to as f(�). To model these, we consider WDG functions that have been retrieved from
physical systems. Thus, we can simply model the EDFA system gain with Equation 3.6:
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Gsys = Gt ⇥ f(�) (3.6)

Where Gsys is the EDFA system gain (mean gain), Gt is the target gain (configuration gain)
and f(�) refers to the ripple function of the amplifier.

EDFA Amplified Spontaneous Emission Noise

In addition to amplification, EDFAs also add noise to the optical signals. This type of noise is
known as ASE noise, and it is due to photons that are emitted independently (i.e., without being
stimulated) by the incoming signal, and it has been studied thoroughly over the past decades. In
our system, we use a simplified model. The model is described as follows:

PASE = PASE ⇥Gsys +NFh�f (Gsys � 1)B (3.7)

Where PASE is the aggregated noise at a given point, Gsys is the gain of the EDFA in mW, NF

is the noise figure, h is the Planck’s constant, f is the centre frequency of the optical signal and B

is the bandwidth for which the amplifier has been configured.

EDFA Power Excursions

The power excursions that occur in EDFAs are because the AGC algorithms tend to neglect the gain
ripple and tilt of these systems. For an AGC–EDFA, the ratio of the total output power to the total
input power needs to be maintained to guarantee operational QoT. By neglecting the ASE noise
gain ripple and tilt, we can use Equations 3.8–3.10 to approximate the effect of power excursions,
as explained by Mo et al. [220]:

Po,k =

0

@
NX

j=1

Pi,j/
NX

j=1

GjPi,j

1
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�Po,k(dB) = 10⇥ log10

✓
P 0
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Po,k

◆
= 10⇥ log10(�G) (3.10)

Where GT is the target gain setting for the AGC EDFA, Gj is the WDG for channel j. Pi,j and
Po,j are the input power and output power for channel j. N and N 0 are the number of channels
input to the EDFA before and after wavelength reconfiguration. Pi,k and Po,k are the input power
and output power for channel k before wavelength configuration, and P 0

o,k output power for channel
k after wavelength reconfiguration.
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3.3.2 Operational features

Channel Power Leveling

Our ROADM nodes are composed of WSSs for providing direction to the signals that are traversing,
and VOAs at each output port of the WSSs to provide means of variable attenuation to the optical
signal. In the operational design, we have considered a control circuit at the ROADM nodes that
adjusts the optical spectrum to ideal operational power levels, enabling all channels in the spectrum
to have approximately equal power levels. This process consists in attenuating all channels traversing
a ROADM node by a fixed value (i.e., 3 dB), additional to the component insertion loss attributed
to the WSSs (i.e., 7 dB). Both values are customisable. After the signals are muxed into the
output ports, we consider the inclusion of a boost EDFA to compensate for the ROADM losses. We
monitor the output ports of the boost amplifier, to feed power level data to the control circuit in
the ROADM nodes, in order to calculate the individual channel attenuation to mitigate with the
VOAs, and consequently compensate for these. This control circuit exits when it detects that the
spectrum has been flattened, which occurs approximately after 1 circuit loop. The computation of
the leveling factors for individual channels are described in Equations 3.11 and 3.12.

�P = P 0
out/P

0
in (3.11)

P 0
in = Pout ⇥�P (3.12)

Where �P [mW ] is the variation in power level given by the difference between the output power
at the EDFA (P 0

out) and the input power at the EDFA (P 0
in). Then, we correct the output power at

the ROADM (Pout), by applying this correction factor to it (Equation 3.12).

3.4 Simulation system

At the ONA laboratory, we have developed the Optical Network Simulation System (ONSS) system,
including the validation of physics transmission models, as well as the integration to the other
subsystems (i.e., emulation). The simulation system is the backbone of Mininet-Optical. As we
have explained above, it contains the models that describe optical network elements such as optical
fibre spans, transceivers, colorless ROADMs with WSSs and VOAs for switching and channel power
leveling purposes, EDFAs for boost-, inline- and pre-amplification, and OPM devices. Also, it
contains the models that describe the physical impairments to optical signals associated to each of
the network elements in an optical transmission, such as the nonlinear effects from optical fibre.
This simulation system is developed as an independent piece of software, entirely written in Python,
and can also be used as a stand-alone system for offline simulations. Additionally, and for the
purposes of disaggregated optical control plane prototyping, it can be used as a library of APIs,
providing access to the descriptive models of the network elements, enabling active reconfiguration.
This feature is key to the development of disaggregated optical networking scenarios, since it allows
the reconfiguration of devices on-the-fly. This latter concept will be further explained in section
3.3.2, together with a detailed description of the mathematical models of the physical effects of
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the optical network elements. In this section, we present the architecture design of the simulation
system including each individual network component.

3.4.1 Architecture

The architecture diagram of the ONSS is illustrated in Figure 3.2. The ONSS (parent entity in
green) is the virtual environment that orchestrates the definition and execution of optical networking
scenarios. It comprises the model definitions for optical network elements and their associated
physical effects. For that, it relies on a steady-state propagation subsystem enabling a dynamic
interaction with the simulation system. Also, it provides the interfaces to remotely interact with
the network components. The latter is provided in the form of Python APIs that can be called as
third-party software when using the ONSS. The key component of the ONSS is the Optical Network
System (ONS), which can be understood as a single entity within the ONSS. The ONS acts as a
wrapper for the definitions that compose a network scenario, containing the information about the
network components, the network topology and the state of the network. However, the elements
that compose the ONS are not constrained to fixed and direct management from this entity, but are
detached as independent components as each element is an independent object.

ONS**

Node Link

Network
Configuration

Network
Topology

ONSS*

Network
Element

Configuration

Associations

Physics Transmission Simulation

Parent Entity

Child Entity

One-Time Configuration

Multiple Configuration

* ONSS: Optical Network Simulation System
** ONS: Optical Network System

KEYSteady-state propagation

Python API

Figure 3.2: Optical Network Simulation System - Architecture Diagram.

These components are divided into two main types. Firstly there are the nodes, which can be
defined as elements of the network that can be programmable by the ONSS or by an external source
(i.e., remote controller). Secondly, there are the links, which are static elements comprising the
connections between nodes and define the topology. Upon transmission (steady-state propagation),
the transmission physics simulation models are triggered for each component and aggregate as a
pipeline according to the flow of the transmission.
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3.4.2 Simulation process

The algorithm of the simulation system follows a simple process. It is embedded in the steady-state
propagation subsystem, already presented in Figure 3.2. Its simplicity is enabled by the modular
design of the components and the interactions between them. Then, it is possible to describe the
algorithm as follows:

1. The first thing that is needed is to declare the components in the optical network model. That
is, instantiating the line terminals with their transceivers for transmission and reception, the
ROADMs with their WSS–VOA, as well as the monitoring capabilities enabled within these
nodes.

2. Once the main nodes are created, it is possible to inter-connect them with optical links to
build the network topology. Optical links are declared in two steps: i) instantiation of the
link between two elements, and ii) decorating the link object with elements such as optical
fibre spans and EDFAs.

The next algorithm models the signal transmissions. Due to the modular design of our system,
managing optical transmissions is a rather logical process that only requires the inclusion of an
external model from the network, which is the optical signal. Within the ONSS, optical signals are
instantiated as regular objects that carry physical properties such as the central frequency or the
channel spacing and symbol rate for which they have been encoded. The algorithm used for the
transmissions operates as follows:

1. The first step in this process is to instantiate the signals that are going to be transmitted
(i.e., wavelength, launch power levels, signal encodings, etc.).

2. Once the optical signals are declared, the next step consists in configuring the devices to
transmit and mux/demux the signals. Intuitively, the first device that must be configured is
the terminal and the transceivers that would be used for launching the signals. Subsequently,
it is necessary to configure the ROADM nodes to create switch-tables with the information
of the expected input and output signals at a given node. However, it is possible to declare
routing functions within the ROADMs at any point. Furthermore, it is possible to reconfigure
the EDFAs to set the mean system gain to the desired one at the various locations these are
placed.

3. After all the devices have been configured, it is then possible to ‘turn on’ the transmitters,
enabling the signals to traverse the network.

4. Traversing the network consists in each network component processing the signals (i.e., at-
tenuating or amplifying) as they are relayed to each of them, to then pass them to the
next element according to their configuration. Intuitively, if the network elements are not
configured properly, the transmission will be unsuccessful. However, these errors are easily
detectable with the monitoring interfaces provided in the system, and due to the simplicity
of the reconfiguration processes they are easily solvable.

The main advantage of using the simulation system is in the ease of network deployment and
reconfiguration of elements. When trying to test simple features or executing quick transmission
runs, the fastness of these processes alleviate the time consuming tasks when dealing with physical
testbeds. However, our tool is not intended to be a replacement for these types of testbeds, since
validation against hardware systems must always be addressed. In section 3.6, we discuss the
limitations of the system, and show how we validated its performance against a hardware testbed.
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3.5 Emulation system

The simulation system provides the means to evaluate transmission physics performance at the op-
tical layer following a defined set of assumptions. However, it is incomplete to assess data plane
management, control plane procedures, and system interconnection outside of the simulation en-
vironment (i.e., interoperability with third-party systems). Because of this, we merged the control
APIs from the ONSS to comply with that of Mininet. With this extension, we were able to develop
the first packet-optical network emulation system, providing network planning and optimisation
capabilities at the optical layer, simultaneously enabling the development of control plane proced-
ures in a wide range of scenarios such as optical link failure or optical device failure. In addition,
it enables the development of control plane procedures for hybrid optical-electronic networks. The
architecture diagram of the emulation system is illustrated in Figure 3.3. Noticeably, the parent en-
tity from Figure 3.2 (ONSS) has been replaced by the Optical Network Emulation System (ONES),
which in our system is equivalent to the Mininet environment.
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Figure 3.3: Mininet-Optical, an Emulation System - Architecture Diagram.

3.5.1 Architecture

The intent of including the ONES as a separate system is to present the operation as seen from
the emulation environment. This is because within Mininet-Optical, the management of the control
plane interfaces is a task enabled by the system itself, which is further explained in Chapter 4. Similar
to the ONSS, the ONES is the parent entity in charge of describing, configuring and deploying the
virtual optical network. The main difference is there is a way to use both optical and electronic
devices. Additionally, there is a different way of establishing connections among devices, as well
as launching optical transmissions. Mainly, there is a higher level of detail that is included, which
enables the management of real electronic data, i.e., bit transmission sensitivity.
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3.5.2 Emulation process

The key element of the emulation is the dataplane block depicted in Figure 3.3. Mininet has been
extended to use the ONSS as a built-in library of APIs that enables the instantiation of the optical
network elements within the virtual (emulated) environment. While Mininet continues to operate
as a packet-network emulator, we abstract the optical domain functionality within the electronic
network elements. For instance, Line Terminals and ROADMs are abstracted from real ovs-switch
instances, enclosing information of the optical domain within packet headers. As the electronic
packets are relayed across the network, Mininet extracts the optical information from the packet
headers and processes them with the simulator. Once processed, the packet headers get updated
and relayed to the next node as instructed by the switching rules in the optical and electronic
domains. A REST server is deployed to enable the SDN control of the devices in the optical domain,
matching requests to individual networking functions. However, as we have mentioned above, our
design supports future implementation of standard APIs such as OpenROADM or OpenConfig for
plug-and-play compatibility with hardware networks.

The algorithm of Mininet-Optical in emulation mode is almost identical to that of the simulation
system. While the network deployment is performed similarly (i.e., declaration of network topo-
logy), configuring the devices is no longer performed by the same subsystem (e.g., ONS), but it is
implemented with an external control system, completely independent of the underlying simulation
system, as depicted at the top of Figure 3.4. This is described as follows:

• Mininet orchestrates the communication interfaces of the devices that it emulates via Open-
Flow protocol, so that the elements that are being declared from the control system are
abstracted within Mininet and the ONSS. An example of the installation of flow-rules to the
virtual (packet) switches to be reflected in the optical (simulation) system is depicted in Fig-
ure 3.4. Currently, we use basic OpenFlow commands (e.g., add-flow) to configure the virtual
electronic switches. As our dataplane processes the packet headers, the relevant information
(i.e., ports and channels) is relayed to the simulation system.

• Upon transmission, optical signal objects are no longer just relayed among the virtual elements
of the simulation system, but are capsuled within the real electronic packets that are passed
between the electronic switches. Every time a packet arrives to an electronic switch, the
switch decouples the optical signal object from the packet header, then passes the relevant
optical transmission parameters to the underlying transmission physics simulation, in a similar
sequence of events as for the installation of flow rules.

• At the physical layer simulation, the signals are processed according to the abstracted network
representation. For instance, the physical effects attributed to ROADMs, optical fibre links,
EDFAs, are computed at this point, and the steady-state of each abstracted optical signal gets
updated.

• Lastly, these signals are relayed back to the Mininet dataplane environment to capsule the
appropriate parameters in the packet headers, and continue the electronic transmission (i.e.,
packet switching). At this point, we update the packet headers with OpenFlow commands
such as flow_mod, which are processes embedded in our extension to Mininet.
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Figure 3.4: Installation of flow rules in Mininet-Optical.

3.6 Validation and demonstration

3.6.1 Evaluation of analytical models

We begin with a performance validation of our system against the OOPT-GNPy Project [2]. For
this assessment, we have modeled a linear topology, following the topological composition of Figure
3.5, with 5 ROADM nodes connected by SMF-28 optical fiber links of 240 km, made up of 3 x 80
km spans. Boost EDFAs at each ROADM output compensate the 17 dB mean ROADM loss, and
inline EDFAs compensate the 17.6 dB fiber span loss. We also apply channel equalisation at each
ROADM, by setting the VOAs appropriately. The total end-to-end distance is 960 km. Virtual
OPM devices are applied at the EDFA outputs depending on the monitoring strategy described
below. For the purposes of these studies, we consider OPM devices capable of separately measuring
signal power, ASE noise and NLI noise levels.
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Figure 3.5: Linear topology composition example.
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Then, we evaluated multiple transmissions at different power levels, [-8, 8] dBm at a 2 dBm
power step, with 90 C-band channels and monitored the centred channel at the end of the link. In
Figures 3.6a and 3.6b we show the OSNR and gOSNR performance, respectively. We can see that
both OSNR and gOSNR modelling of Mininet-Optical perform closely to the OOPT-GNPy Project
in the light-blue and red curves, respectively, when we do not include other physical effects such as
the SRS [218]. Mininet-Optical performed with an OSNR mean absolute error (MAE) of 0.13 dB
and a gOSNR MAE of 0.16 dB when comparing the centred channel at the different power levels.
The dark blue curves show the impact of including SRS on the same 90 channel transmission, when
monitoring at the first channel in the transmission (solid), the centred channel (dotted) and the last
channel (dashed). As we have explained above, the SRS effect produces an exchange of energy from
the lowest frequency channels to the highest. Thus, in Figure 3.6a we can observe that as the highest
frequency channel (channel 90) gains energy, its OSNR levels increase. The opposite behaviour is
seen at the lowest frequency channel (channel 1). In Figure 3.6b we can observe that the gOSNR
levels of channel 90 increase when the power levels acquire more energy and when the ASE noise
dominates the gOSNR (e.g., power levels < 0 dBm). Accordingly, the gOSNR levels of channel 90
drop rapidly as the power levels increase. The inverse effect is seen at the lowest frequency channel.

(a) (b)

Figure 3.6: (a) OSNR and (b) gOSNR performance comparison between the OOPT-GNPy Project
[2] and Mininet-Optical (red and lightblue curves, respectively), and Mininet-Optical with SRS mod-
elling (darkblue curves) for the first, centre, and last channels in a 90 C-band channel transmission.

Evaluation of the optical fibre SRS effect

In general terms, the SRS effect results in the passing of energy from the lowest wavelengths to the
highest wavelengths in the optical spectrum, as the signals composing the spectrum interact with an
optical fibre medium. Here, we evaluate the performance of the model described by Zirngibl [218],
integrated with the other models, by looking at transmissions considering multiple channel loadings
(as this is an effect that varies with the channel load), using the same topology described for the
previous example. This time, we sequentially transmitted the number of wavelength channels 8, 16,
32 and 64 at 0 dBm launch power. The impact on different signals is depicted in Figure 3.7.

First, in Figure 3.7a, we observe the performance of the last wavelength channel for the different
loadings. As expected, the higher number of channels (sequentially) allocated in a transmission,
the higher the exchange of energy from lower wavelengths to higher wavelengths [218]. We can see
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that as the number of transmitted channels increase, the excitation perceived (energy acquired)
at the last channel in the transmission, which is also the channel with the highest frequency, is
increasing. Additionally, we can also see the evolution of SRS as it accumulates in an inter-node
link, which in Figure 3.7a is given by the interval from one OPM node location to the next one. For
example, we can see a cumulative pattern from OPM locations 1-4, and the location 5 the power
levels are flattened down to 0 dBm. The latter, is because at location 5 we are looking at the
boost amplifier compensating for the first ROADM node in our linear topology, which performs the
channel equalisation process.

(a) �’s: 191.7, 192.1, 192.9, 194.5 [THz]. (b) �’s: 191.45, 191.65, 192.05, 192.85 [THz].

(c) �: 191.35 [THz]. (d) �: 191.35 - 194.5 [THz].

Figure 3.7: Evolution of the power levels due to the SRS effect at different monitoring locations.

Next, we also look at the centred channel for the different channel loadings, and show this in
Figure 3.7b. By looking at the vertical axis it is noticeable that the effect of SRS is significantly
smaller. This is because these channels do not suffer from drastic energy perturbations, as their
energy levels remain balanced by the channels at each end of the spectrum. However, it is also
noticeable that a pattern occurs in decreasing the power levels in a cumulative form as the signals
traverse the linear topology. This is because we monitor the shortest frequency closest to the centre
of the transmitted spectrum (i.e., when transmitting 8 channels, we monitor channel 4 instead of
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channel 5). Thus, the patterns observed in Figure 3.7b confirm that the exchange of energy always
goes from shortest to highest frequency/wavelength. These perturbations are again compensated at
each ROADM node with the VOA nodes.

We also look at the first channel for all transmissions (e.g., frequency 191.35 THz). The per-
formance of this channel is shown in Figure 3.7c. The interesting feature of these three figures (3.7a,
3.7b, 3.7c) is that, as reported in Zirngibl [218], the exchange of energy is a rather symmetrical
phenomenon. Thus, comparing Figures 3.7a and 3.7c, we can see that the impact of the first and
the last channel in a transmission is inversely proportional. This symmetry is much better depicted
in Figure 3.7d, where we show the exchange of energy across the full transmitted spectrum. It also
becomes evident that by increasing the number of channels in a transmission, the higher the impact
on the edge-channels due the SRS effect.

Evaluation of the optical fibre NLI noise

We now look at the evolution of the NLI noise with a similar approach to the one used for the
assessment of the SRS effect. This is depicted in Figure 3.8b. The contribution of the NLI noise
perceived at an optical signal is dependent on its power level intensity. Because the NLI noise is
the result of the combination of SCI and XCS, the impact on a given signal is also dependent on
the performance of the neighbouring signals. We have already shown in Figure 3.6b that our model
matches that of the OOPT-GNPy project when we do not consider the SRS effect or the wavelength-
dependent operation of the network components. Thus, this time we consider the presence of the
SRS and the NLI noise at the same time. Consequently, the power levels of the transmitted channels
would also experience an energy exchange due to this effect.

(a) �: 191.35 [THz]. (b) �’s: 191.35 - 194.5 [THz].

Figure 3.8: (a) Evolution of the NLI noise levels considering the XCS and SCI nonlinear effects as
a function of the monitoring locations. (b) Spectral NLI evolution at the receiver end for different
channel loading strategies.

As described in Equations 3.3, 3.4 and 3.5, in addition to the dependence of channel-power levels,
the occurrence of NLI noise is dependent on the length of a fibre span. Consequently, and because
in our linear topology all the spans are of equal length, the contribution of the NLI noise at each
stage is the same. The only exceptions are the ROADM nodes where no NLI noise is generated.
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It is important to remark that the NLI noise, as the ASE noise, accumulates as it occurs at the
producing elements of the network aggregate (i.e., cumulative optical fibre links). As such, neither
type of noise can be eliminated as it appears, but they can be controlled by processing the signal
power levels, for example, by means of channel equalisation.

Also, the main assumption of the GN model described by Poggiolini et al. [219, 221] (Equation
3.3) is that the occurrence of noise follows a Gaussian (normal) behaviour. To illustrate this effect,
we show the occurrence of NLI noise as a function of the transmitted spectrum when looking at
the receiver end of our linear topology. As we can observe, this type of noise becomes higher as the
number of transmitted channels increases, and becomes more prominent at the centred sections of
the transmitted spectrum, due to the Gaussianity assumptions.

Evaluation of the ROADM channel equalisation

The effect of the ROADM channel equalisation process is described by Equations 3.11 and 3.12.
Here we look at the same transmission setups from the past two examples, only this time we look at
the minimum and maximum OSNR levels from the transmitted signals. To remark the effect of this
model, we first show the minimum OSNR levels without and with the equalisation process, as shown
in Figures 3.9a and 3.9b, respectively. Because of the flattening impact onto the spectrum due to this
process, we see a similar power evolution of the signals when considering the equalisation (Figure
3.9b), leading to an improvement of the OSNR at the receiver end (OPM location 16). The results
from the analysis of the maximum OSNR are presented in Figures 3.10a and 3.10b. Because of the
SRS effect, we see the contrasting behaviour between Figures 3.9a and 3.10a, where the different
number of channels affects directly the OSNR of these cases. Another important point is the similar
performance achieved in Figures 3.9b and 3.10b. Consistently, the minimum OSNR remains close
to the maximum performance when the equalisation is performed at the ROADM nodes.

(a) (b)

Figure 3.9: Minimum OSNR (a) without and (b) with equalisation at every ROADM.
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(a) (b)

Figure 3.10: Maximum OSNR (a) without and (b) with equalisation at every ROADM.

Evaluation of the EDFA-WDG model

The last model that we present is the one related to the EDFA–WDG effect. This is shown in
Figures 3.11a–3.12b. To do that, we configured all EDFAs in the network with individual WDG
as depicted in Figure 3.5. With that, we enable uneven EDFA system gain amplification, resulting
in higher power divergences. Intuitively, as the WDG effects are produced in cascade, their impact
aggregates, resulting in a spectrum behaviour that resembles the WDG f(�) functions.

(a) Performance of power levels. (b) Performance of ASE noise. (c) Performance of NLI noise.

Figure 3.11: Performance evaluation of the EDFA-WDG: (a) Power levels, (b) ASE noise and (c)
NLI noise.

Because this is an effect occurring at the EDFAs, the impact of the WDG functions are perceived
similarly in the power and ASE noise levels, as seen in Figures 3.11a and 3.11b. For this evaluation,
we only consider one WDG function for all EDFAs. As a consequence, the resemblance to this
function of the channel metrics (i.e., power and noise levels) is rather sharp. However, in a real
testbed all EDFAs would operate with different ripple effects, leading to an accumulation of uneven
amplification gains that can significantly decrease the performance of the transmitted channels. As
we have explained in previous sections, the NLI noise is dependent on the power. Thus, the effect
of the WDG functions is perceived differently when observing this phenomenon. This is depicted in
Figure 3.11c. While the pattern form by these curves resemble that from Figures 3.11b and 3.11a,
it is noticeable that at the edges of the transmitted spectrum the NLI noise levels tend to vary less
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(a) Performance of OSNR levels. (b) Performance of gOSNR levels.

Figure 3.12: Performance evaluation of the EDFA-WDG: (a) OSNR and (b) gOSNR.

between the channels found at these edge sections. This is due to the Gaussian assumptions of the
GN model. The latter, can also be seen when comparing the performance of the OSNR and the
gOSNR levels, shown in Figures 3.12a and 3.12b, respectively. As expected, a minor divergence
between the gOSNR and the OSNR is noticeable.

3.6.2 Validation against physical testbed

We used the COSMOS testbed to validate the transmission physics models from Mininet-Optical.
COSMOS is the Cloud Enhanced Open Software Defined Mobile Wireless Testbed for City-Scale
Deployment in Manhattan, it is a "city-scale programmable testbed for experimentation with ad-
vanced wireless" [74]. This testbed, currently being developed and deployed in upper Manhattan,
includes software-defined radio (SDR) nodes along with edge and cloud compute nodes, connected
via a flexible, disaggregated, optical x-haul (front/back/cross-haul) network. The optical x-haul
testbed [223] for COSMOS consists of ROADMs, optical terminals and transceivers, fibre spools,
and optical amplifiers, connected to a programmable optical patch panel, all under SDN control.
We had access to this testbed through the CIAN centre from the University of Arizona, which has
been our main academic partner in the development of Mininet-Optical. As described by Yu et al.
[224], the optical networking architecture of COSMOS can be customised to develop isolated exper-
iments. Thus, we have deployed a ring topology as illustrated in Figure 3.13, composed of Cassini
white-boxes with transponders for transmission and reception, ROADMs composed of two WSSs
for mux and demux processes, EDFAs compensating for 22 and 25 km fibre spans. Additionally, we
used optical channel monitors at the input and output interfaces of the ROADM nodes, that were
capable of checking the power levels of individual channels. With this data it was then possible to
estimate the ASE noise attributed to each EDFA, by means of interrupting transmitted channels
and checking their performance.

COSMOS supports the transmission fully-transparent and flexi-grid channels for 10 Gbps and 100
Gbps transmissions. For our evaluation, we have considered four channels that we have labeled CH-
25, CH-35, CH-45 and CH-55, that correspond to the frequencies 192.55, 193.05, 193.55 and 194.05
THz, respectively. These channels were configured with a modulation format of Quadrature Phase
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Figure 3.13: COSMOS testbed topology.

Shift Keying (QPSK). The transmitting transponders from the Cassini white-box were configured
with a launch power level of -0.5 dBm. To launch our transmission, we configured the ROADM
nodes to create the path ROADM-1, ROADM-2, ROADM-6, ROADM-4, ROADM-5, ROADM-3,
and back to ROADM-1. It took approximately 1 min to collect the power levels of each channel.

Accordingly, we modelled the same network topology in Mininet-Optical and tried to replicate
the scenario described above. However, the migration of the physical testbed to Mininet-Optical
was not a straightforward process. This was mainly due to the wavelength-dependent operation of
the multiple components in the network, which we could not monitor accurately. For instance, the
occurrence of ASE noise in the physical testbed, which we could accurately monitor, differed from
our simplified models due to the intrinsic wavelength-dependent operation of the EDFAs. Thus,
in order to effectively replicate the performance of each EDFA, we would have had to monitor the
individual performance of each EDFA under all possible channel combinations, which is an extremely
time consuming and expensive task. However, we were able to collect EDFA-WDG ripples for fully-
loaded systems, that we included in the models of the EDFAs. Moreover, we had no means to
monitor the occurrence of the NLI noise as an isolated parameter, since the monitoring nodes
enabled in our testbed were only capable of monitoring the power levels. In addition to the physical
limitations imposed by the individual components, we had to develop the extra attenuation elements
in Mininet-Optical, in order to comply with the network protection measurements enabled in the
physical testbed, which are depicted in Figure 3.13 as the 10 dB attenuation red blocks. We present
the validation of the Mininet-Optical simulation compared to the COSMOS testbed in Figures 3.14
and 3.15.

In Figure 3.14, we show the performance of channels CH-25, CH-35, CH-45 and CH-55 at the
input interfaces of the ROADMs. It is noticeable that, with the exception of CH-35 (Figure 3.12b),
the rest of the channels behave rather similar to the COSMOS testbed. Although, the behaviour
experienced by CH-35 mimics that from the physical system. As a consequence, we attribute this
divergence to the wavelength-dependent operation of the network components that impact CH-35
differently than the other channels. Also, we can notice that Mininet-Optical is capable of modelling
the power level fluctuations due to the aggregation of fibre spans, EDFAs and attenuators, even in
cases where performance would not be obvious, as it is the hop from ROADM6 to ROADM4 in the
circular network. We calculated the power MAE of Mininet-Optical for the seven input monitoring
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(a) Mux in port at channel 25 (b) Mux in port at channel 35

(c) Mux in port at channel 45 (d) Mux in port at channel 55

Figure 3.14: Mininet-Optical vs. COSMOS testbed at the input ports of the ROADMs.

locations with 0.31 dBm, 1.62 dBm, 0.49 dBm, 0.25 dBm for CH-25, CH-35, CH-45 and CH-55,
respectively. In Figure 3.15, we show the performance of channels CH-25, CH-35, CH-45 and CH-55
at the output interfaces of the ROADMs.

Interestingly, this time the performance of CH-35 present smaller divergences with respect to
those at the input interfaces. When signals are processed by a ROADM node, they perceive a
rather linear attenuation effect due to the mean insertion loss produced by the components of
the ROADM. However, this attenuation takes place at the WSSs that compose the ROADMs,
which can also produce wavelength-dependent attenuation effects. Thus, we attribute the seemed
improvement of Mininet-Optical when evaluating CH-35 at the output interfaces of the ROADMs to
be a result of the wavelength-dependent operation of this particular network component. Thus, we
can conclude that the wavelength-dependent operation of the ROADMs is an effect that needs to be
controlled, otherwise it could lead to a detrimental management of optical channels when performing
the mux/demux operations (optical switching). We calculated the power MAE of Mininet-Optical
for the seven output monitoring locations with 0.50 dBm, 1.59 dBm, 1.04 dBm, 0.67 dBm for CH-25,
CH-35, CH-45 and CH-55, respectively.

This preliminary validation study was limited to four channels and one set of EDFA-WDG.
Consequently, we want to collect further data for more channels and combinations of these, to
continue to assess the performance of Mininet-Optical. Nonetheless, our results demonstrate that
our model is capable of performing closely with respect to the physical testbed, with MAE below
0.5 dBm for the input monitoring locations, with the exception of CH-35.
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(a) Mux out port at channel 25 (b) Mux out port at channel 35

(c) Mux out port at channel 45 (d) Mux out port at channel 55

Figure 3.15: Mininet-Optical vs. COSMOS testbed at the output ports of the ROADMs.

3.6.3 Demonstration

We have showcased the integration of Mininet-Optical with the ODTN-ONOS [25] controller at the
40th edition of the Optical Networking and Communication Conference & Exhibition (OFC), 2020,
that took place in San Diego, CA, USA. We have performed a live demonstration of the ability
to model and prototype OPM, impairment-aware wavelength provisioning, and failure recovery
in a software-defined, emulated packet-optical network environment. This work was also done in
collaboration with the University of Arizona.

We have demonstrated several new and important capabilities for open source optical network
emulation, including:

• End-to-end, interactive emulation of an SDN-controlled packet-optical network.
• An emulated optical switching and transmission layer, including a model of the transmission

physics.
• Discrete emulated optical components such as transceivers, amplifiers, optical fiber spans, and

ROADMs.
• SDN control and monitoring interfaces for emulated optical network devices.
• Scalability to topologies with dozens of optical nodes.
• Compatibility with the Mininet emulator for packet networks.
• Connecting an emulated packet-optical network to a widely used, open source SDN controller

(ONOS) that is deployed in the commercial Internet.
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We have modelled a mesh topology with 6 points-of-presence (POPs) and 8 bidirectional links,
as illustrated in Figure 3.16. The POP node architecture results from the aggregation of the emu-
lated packet-network elements (e.g., virtual hosts and routers) with the abstracted optical-network
elements (e.g., line terminals and ROADMs). Similarly, the links between nodes are built from the
aggregation of the virtual Ethernet links and the abstracted optical link composition, including fibre
spans and EDFAs. For this demonstration, we have assigned different WDG functions to all the
EDFAs modelled in the links between POPs. Consequently, we were able to demonstrate the impact
on QoT imposed by this physical effect. Moreover, these POP nodes emulate the control interfaces
from Mininet with the extensions to build Mininet-Optical as explained in section 3.2. For this
demonstration, we have integrated our customised RESTful/OpenFlow APIs to support the SBI of
the ONOS controller, and we have also integrated our APIs for enabling the monitoring capabilities
of Mininet-Optical. For the latter, we have enabled monitoring interfaces at each POP node, which
can be queried by the controller.

Figure 3.16: Emulated demonstration network.

In Figure 3.17 we show the ONOS GUI interface when connected to our Mininet-Optical topo-
logy. On the right-hand side of this figure, we can see that from virtual Ethernet links (top) we
are abstracting the optical network topology (bottom), and as such ONOS is capable of detecting a
virtual optical network composition. We then list the ROADM nodes and the established links on
the left of the figure, demonstrating that ONOS is indeed managing optical devices (e.g., ROADMs),
instead of the electronic switches that are deployed. We also show how ONOS is capable of monit-
oring the OSNR and gOSNR information of some channels that we have launched in the network,
for a use case that we describe below.

Our use case consisted in a live fault recovery procedure handled by ONOS when controlling
Mininet-Optical. For this, we considered six channel groups (CGs) of 5 channels each as depicted in
Figure 3.18a. We have configured the modelled ROADM nodes to establish the traffic represented
by the different colours in this figure. CG-1 (dark blue) traverses POP1, POP2, POP4, POP5; CG-2
(green) traverses POP1, POP2, POP4, POP6; CG-3 (black) traverses POP3, POP2, POP4; CG-4
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Figure 3.17: ONOS CLI and GUI showing monitoring and visualization of optical and packet layers
in the Mininet-Optical network.

(yellow) traverses POP2, POP4, POP6; CG-5 (magenta) traverses POP1, POP3, POP5, POP6;
and, CG-6 (cyan) traverses POP4, POP5. The purpose of this traffic was to model common links
between CGs, enabling us to study the impact on QoT performance due to channel interference. For
example, in Figure 3.18b we show the OSNR and gOSNR monitored values at the input interface
at POP4 when traffic is coming from POP2. Thus, we can see that CGs 1, 2, 3 and 4 are being
detected by ONOS.

For our use case, we artificially configure the system gain of an EDFA in the link between POP1
and POP2 (also through ONOS), in order to degrade the performance of the CGs that traverse this
node, CG-1 and CG-2. Consequently, at a subsequent stage, in this case also the input monitoring
interface from POP4, we can detect that the performance of these channels has been degraded and
that this has also affected the performance of the channels that share the common link (CG-3 and
CG-4), as illustrated in Figures 3.19a and 3.19a.

Consequently, the ONOS reconfiguration procedure that we have opted to demonstrate consisted
in re-routing CG-1 and CG-2 to traverse the path POP1, POP3, POP5, POP6, instead, as illustrated
in Figure 3.20a. Then, in Figure 3.20b we show the monitored gOSNR of these channels when
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(a)

(b)

Figure 3.18: (a) Traffic setup and optical link composition. (b) Controller monitors OSNR (solid)
and gOSNR (open) of all channels entering POP-4 (via POP-2) during the initial transmission.

(a) (b)

Figure 3.19: Faulty EDFA degrades CG-1 and CG-2; controller observes low monitored gOSNR for
signals entering POP-4 (via POP-2).

(a) (b)

Figure 3.20: Controller re-routes CG-1 and CG-2, resulting in high monitored gOSNR for signals
entering POP-5 (via POP-3).
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checking the input interface of POP5 when traffic is comming from POP3, and demonstrate that
the gOSNR performance of the channels has been recovered, that the behaviour of these has changed
due to the wavelength-dependent operation of the devices encountered in the new path, and that
the new path is shared with CG-6.

3.7 Summary

In this Chapter, we have introduced Mininet-Optical, the first packet-optical network emulation sys-
tem supporting both physics transmission simulation and optical disaggregated control emulation,
enabling real-time disaggregated control testing and prototyping of the optical network elements.
We have presented all the subsystems that compose Mininet-Optical, as well as a detailed description
of the transmission physics models used to simulate optical transmissions, and how these are integ-
rated. We have also provided the algorithms required for the subsystems to interact with each other
and enable the modelling of almost any networking scenario. This is allowed by the customisation of
the network topologies and the individual configuration of the optical network components within
the system. Additionally, Mininet-Optical allows for the configuration of wavelength-dependent
operation of the network components, aiming to represent the behaviour of realistic amplified sys-
tems. Then, we have also presented a detailed explanation of the emulation system developed with
Mininet, as well as the algorithm required for this to interoperate with the simulation system.

Furthermore, we presented evaluation studies of the transmission physics models that compose
Mininet-Optical, demonstrating the aggregated nature of our algorithms. We have shown that our
system performs accordingly to well-known models such as the SRS from Zirngibl [218] and the
GN-model from Poggiolini et al. [221], by comparing our tool against the OOPT-GNPy project,
showing comparable performance with OSNR MAE of 0.13 dB and a gOSNR MAE of 0.16. Then,
we have provided a validation study against the COSMOS testbed. For that, we replicated an
experiment performed in a hardware testbed in Mininet-Optical. We have shown that our system
assimilates with high accuracy the behaviour of the physical testbed, with the only errors attributed
to the wavelength-dependent operation of the network components found in the network, which are
device dependent. In Figure 3.15, we show the performance of channels CH-25, CH-35, CH-45 and
CH-55 at the output interfaces of the ROADMs. We computed the power MAE for CH-25, CH-35,
CH-45 and CH-55 with values 0.31 dBm, 1.62 dBm, 0.49 dBm, 0.25 dBm, respectively. And, we also
calculated the power MAE of Mininet-Optical for the seven output monitoring locations for CH-25,
CH-35, CH-45 and CH-55, respectively with values 0.50 dBm, 1.59 dBm, 1.04 dBm, 0.67 dBm.
Because our analysis was limited to four channels, we plan to extend our analysis to more channels
and scenarios. Additionally, we plan to further inspect this operational effect from all the devices
(i.e., extract the WDG functions from some EDFAs), so that we can include these in the models
of Mininet-Optical, in order to have a better representation of the COSMOS testbed, enabling a
tighter integration between the two systems. This last step will allow us to develop control plane
procedures with Mininet-Optical that could be directly migrated to operate on top of the physical
testbed.

Last, we have also presented the integration of Mininet-Optical with the ODTN-ONOS controller.
For this, we have shown a use-case for fault recovery procedures, based on active monitoring of the
optical links with the OPM capabilities enabled in our emulator, and the SDN control with ONOS
of the ROADM nodes to dynamically allocate and remove traffic from a virtual network.
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4 Optical Control Systems

4.1 Introduction

The development and implementation of optical control systems is transitioning from quasi-static
to fully-dynamic autonomous systems [62]. It is mainly due to the lack of communication protocols
and standards that the development of this type of systems remains an open issue. In addition, the
composition of optical networks and the standard methods to operate them consider limitations that
must be addressed to complete this transition. For instance, we have reviewed in Chapter 2 that
due to the unpredictable wavelength-dependent operation of optical network components, receiver
margins must be introduced to launch optical transmissions within a safe range of operation, ranging
in the ± 3-7 dB [63]. The latter, imposes constraints to the network capacity that require further
investigation to understand the real impact in performance and costs.

In Ghobadi et al. [225] and Filer et al. [31], the authors studied the benefits of applying elastic
modulation gains in the Microsoft’s optical backbone network in the US. They found that a capacity
gain of at least 70% is achievable via elastic modulation. Also, they demonstrated how different
wavelengths performed differently across the network, looking at multiple segments of it. From the
latter, the authors concluded that different wavelengths might benefit from different modulation
formats even while sharing paths.

To solve the problem of unknown optical path performance, Optical Performance Monitor (OPM)
equipment is commonly used. Unfortunately, these devices are not easily deployed and are usually
included in the network at times and points of interest only. The latter, is mainly due to the high
costs of these (ranging in the tens of thousands of US dollars). On top of that, the processes to
operate OPM equipment requires having human-in-the-loop interventions that are costly (engineer-
ing costs) and time consuming, requiring several hours and days, including the interpretation of
observation points. Also, state-of-the-art OPM devices have limitations, as it is the case for the
number of channels they can observe simultaneously; and, the accuracy of the measured points.
For instance, it is possible to measure optical signal power intensity (dBm) and use this metric to
estimate the accumulated noise due to amplification, but points of error will remain because of the
artificial computation. As a result, it has become a necessity to improve monitoring equipment, as
well as the methods to operate these. In recent years, estimation methods have been evaluated to
assist monitoring equipment in order to tackle the unpredictable operation of network components
[146, 184–188, 188, 189, 196–198, 198, 199]. We further discuss these models in Chapter 5.

In this Chapter, we investigate the implications of receiver margins into the overall network
capacity. Additionally, we delve into the implementation of Quality of Transmission Estimation
(QoT-E) processes to assist the mitigation of margins, and also evaluate the implications of margins
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to the QoT-E functions. For that, we review the composition of optical control systems. Initially,
it is necessary to understand the role of the control system in the networking environment: we
must determine what are the main processes required to control and how these are developed and
implemented. With that at hand, it is then possible to understand how all the network elements
interact with each other. In the current state-of-the-art, the main challenges emerge from the
management and deployment of monitoring equipment and the investigation of the benefits that
these would bring into the network operation [133]. In an attempt to fill in this gap, we investigate
the implementation of QoT-E methods into the management of optical network traffic, and the
benefits that they add specifically to optimising the installation of optical paths.

First, we show these effects over a simulated optical network based on the Telefonica Spanish
national topology, emphasising the reduction in capacity due to the incomplete knowledge the net-
work controller has on the exact wavelength gain and system gain variation of Erbium-Doped Fibre
Amplifier (EDFA) due to Automatic Gain Control (AGC). We consider this to be of high relevance,
as it allows for further experimentation on the use of sparse OPM to provide data that can be
used to improve the QoT-E from the control plane of a Software-Defined Networking (SDN)-based
system. The simulation used is based on a predecessor tool to the Mininet-Optical system intro-
duced in Chapter 3 [226], also based on the Mininet [59] framework. This provided the advantage
of testing SDN control planes that can be then utilised on experimental Reconfigurable Add/Drop
Multiplex (ROADM) networks. In order to link SDN controller and the extended Mininet emulation
environment, we developed an optical agent capable of emulating the control operation of ROADM
systems. We used the Ryu framework from Nippon Telegraph and Telephone (NTT) to develop our
control system for this study, enabling the control of all network devices.

Also, we present the use of the Mininet-Optical system, to evaluate a SDN-controlled QoT-E
system based on the deployment of monitoring nodes at periodic locations in an optical transmission
system. The controller used in this case was a customised control system written in Python, sup-
porting the required APIs to communicate with Mininet-Optical. This SDN controller running on
the emulated system achieves a reduction in the QoT-E absolute errors based on active monitoring
of the OPM devices. We run our experiments over a linear topology. Our results show improvements
of over 3 dB for short distances, and between 0.8 dB and 2 dB for links of approximately 2,000 km.

Lastly, we present another scenario for the use of active monitoring procedures with Mininet-
Optical. This time, we have modelled the Cost239 topology and also analysed the placement of
OPM nodes at different locations of an optical link. Only this time we have used the physical
layer monitored information to enhance the performance of our QoT-E system. Our results show
that by taking advantage of OSNR monitors, it is possible to improve the QoT-E performance at
intermediate locations of an optical link.

4.1.1 Scope and contributions

This work addresses the analysis and design of the QoT-E module of an optical control system.
Additionally, we investigate the development process, as well as its implementation and assessment.
In this Chapter, we address heuristic models assisted with the monitoring capabilities of the con-
troller (i.e., active monitoring). In Chapter 5, we investigate cognition-based solutions to assist this
module.

The main contributions of this Chapter are:
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• Implementation of an optical SDN control system with the Ryu framework from NTT to
interact with the Mininet emulator and to a customised optical agent via the OpenFlow
protocol.

• Performance analysis of the impact on network provisioning capacity due to the usage of
receiver-margins in coherent transmission systems in the optical domain, circumstances of
origin and directions towards the mitigation of these.

• Implementation of a customised optical SDN control system entirely written in Python to
interact with Mininet-Optical via customised RESTful APIs.

• We present a demonstration of the ability to test control plane operations on large-scale
networks with Mininet-Optical.

• We present a QoT-E strategy based on active monitoring of lightpaths in an optical SDN
environment that mitigates estimation inaccuracies produced by wavelength dependent power
dynamics.

• We analyse the error that OSNR vs generalized-OSNR (gOSNR) monitoring produce in es-
timating QoT for different numbers of OPMs deployed in an optical link.

• We demonstrate how real-time OSNR monitoring information can be used to improve the
QoT-E and monitoring functions, even when only OSNR types of OPM are available.

4.2 Control system

In this Section, the architectural design and model composition of the proposed control system and
its implementation is described. Initially, a Ryu-based controller is described, which is used for
the implementation of a study addressing the investigation of network capacity constraints due to
receiver margin utilisation. In addition, a customised Python-based controller is introduced, which
is used for the studies on the advantages of active monitoring in the context of optical disaggregated
networks. Finally, we expand on the Open Network Operating System (ONOS) controller presented
in Chapter 3, which is the current system considered to operate with Mininet-Optical.

4.2.1 Architecture

The architecture diagram of the control system is presented in Figure 4.1, highlighted in blue. The
internal composition of a control system is dependant on the requirements of a system. Because
of that, multiple frameworks such as ONOS from the Open Networking Foundation [25], Ryu from
the NTT [23] and OpenDayLight from the Linux Foundation[24] are extensible, meaning that they
provide control applications for basic functions such as traffic installation and overall traffic manage-
ment, and also enable network engineers to develop customised modules for control (i.e., virtualised
networking functions). For the purposes of our research, the ideal SDN controller is composed of
the modules presented in Figure 4.1. The detailed consideration of these, as well as the key role the
play in the control system is described below.

Alan A. Díaz Montiel Ph.D. Thesis



58 CHAPTER 4. OPTICAL CONTROL SYSTEMS

NBI

SBI

PCE

RWA

OPM

QoT-EDBM

UI

Physics 
transmission
simulation

Steady-state 
optical traffic 
propagation

Optical network abstraction 
(ROADMs, Transceivers, fibre spans, EDFAs, 

OPMs) 

Python API

Networking 
(netns, Open vSwitch, veth, tc)

Mininet-Optical

Optical Network Simulation System

SDN 
Controller

Linux
Kernel

Emulated optical dataplane 
(ROADMs, Transceivers, fibre 

spans, EDFAs, OPMs)

CLI

Packet SDN 
API 

(OpenFlow)

Emulated packet network
(Switches, Ethernet links, 

Hosts)

Mininet

Optical SDN API

Figure 4.1: Optical Control System - Architecture Diagram.

4.2.2 Components

User Interface

The User Interface (UI) is commonly presented as a command-line interface providing customised
configuration and troubleshooting of the controller by a network engineer, in a similar fashion of
that of a network management system. The key role of the UI is to enable active engineering to
intervene in the live operation of the network. It can be presented as a functional module of the
controller or as an external (third-party software) module. This only becomes available when the
network is live. In the controllers that we have developed, the UI was developed in three different
ways. First, for the Ryu-based controller, this consisted in a software program that we attached to
the Ryu framework, capable of performing basic querying commands for the purposes of lightpath
provisioning, restoration and optical performance monitoring. Second, for the customised Python-
based controller, we omitted the inclusion of a UI, evaluating the potential of a fully software-defined
optical control plane. Last, for the ONOS controller, we used the command-line interface provided
by this project, which is a sophisticated UI enabling the management of the traffic, querying of all
the devices in the network, as well as the manipulation of the traffic and devices.

Database Management

The Database Management (DBM) system is a decentralised entity that monitors the state of all
modules within the controller. The key role of this module is to record the state of the components
of the network. This is to be able to build analytical data of the performance of the network
and assist in decision-making processes at a control and management level (i.e., dynamic routing).
For instance, it is designed to keep track of the processing of traffic requests, system calls and
lightpath allocation. However, due to the fast response requirements for optical network systems,



4.2. CONTROL SYSTEM 59

mainstream DBM systems relying in technologies such as SQL or Oracle are not feasible tools. As a
result, the development of DBM technologies for disaggregated optical networks is left to customised
methods, often relying in the creation of memory-exhaustive log-files. For the three controllers used
in our studies, our DBM system operated to write log-files on the configuration of the network (i.e.,
topology composition) and the active traffic at the observation times, storing individual information
on the transmitted channels including: power intensity, Amplified Spontaneous Emission (ASE) and
Nonlinear Interference (NLI) noise levels, as well as estimated Optical Signal to Noise Ratio (OSNR)
and Generalized Optical Signal to Noise Ratio (gOSNR) levels.

Path Computing Element

In our design, the Path Computing Element (PCE) is not to be confused with the IETF RFC [104].
Upon traffic request, our PCE determines the path(s) a signal or group of signals must follow, thus
it acts as a high-level routing algorithm. The key role of this module is to compute end-to-end paths
following specific requirements. For example, the PCE can be designed to compute shortest-paths
with the least connection hops (i.e., number of traversed nodes). Intuitively, this is an algorithmic-
problem that can be implemented in a variety of ways. In our studies, we have (for the most
part) relied on shortest-path computations based on the Dijkstra and breadth-first search (BFS)
algorithms.

Routing and Wavelength Assignment

Assisted by the PCE, the Routing and Wavelength Assignment (RWA) function is in charge of
determining the optical spectrum resources that will be allocated for fulfilling a traffic request. It
is not unusual to find PCE and RWA used interchangeably in the literature. However, a main
distinction of the RWA module is the management of optical network resources, and specifically the
wavelength allocation. While the PCE has a higher-level view of the network on which operates, the
RWA operates closer to the transmitters and receivers (e.g., transceivers). We have found through
our research that the RWA module is the key element that could benefit from the inclusion of
cognition in optical control systems, as we explain in Chapter 5. For the purposes of our research,
this module has been implemented with the PCE module mentioned above, with the extension to
keep track of the wavelengths (channels) that have been assigned at different times of operation.

Optical Performance Monitoring Interface

The OPM interface module is a software system that actively retrieves state-data from the signals
being transmitted at a given time. The key role of this module, as part of a control system, is to
provide querying procedures to be accessed by the other modules in the system. For the purposes
of our studies, we investigate the potential interaction between the OPM and the QoT-E (discussed
below), to assist the RWA module. A thorough discussion on the OPM has been presented in
Chapter 2, and its usage and implementation continues to be in the backbone of this thesis. The
monitoring capabilities of our system allow us to collect optical signal power, ASE and NLI data of
individual channels and study collective effects that can manifest over an optical link. Also, OPMs
emulate optical OSNR monitors or reference receivers that can recover estimates of the full gOSNR.
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Quality of Transmission Estimation

The QoT-E module is the main subsystem introducing cognition to the controller. It collaborates
with the OPM, PCE and RWA processes to help optimise the usage of resources. Its key role is
to learn from the network components and their performance upon operation to provide reference
models on the future operation of these. This is the main element of study within this thesis. As
such, we also have implemented offline QoT-E modules as part of all the controllers used in our
studies.

North-Bound Interface

The Northbound Interface (NBI) enables the interaction between a controller and third-party sys-
tems (e.g., services and applications) running over the network. This type of interface is commonly
deployed with simple REST-API tools. The NBI is not to be confused with the UI, since the user
does not have direct access to the NBI and its operation. The NBI is a set of Application Pro-
gramming Interfaces (APIs) that enable the orchestration of the controller’s decisions to fulfill the
requirements of all services and applications.

South-Bound Interface

The Southbound Interface (SBI) enables the interaction between the controller and the network
elements that it manages. We have reviewed in Chapter 2 that popular protocols enabling this type
of communication in the optical domain are Network Configuration Protocol (NETCONF)/Yet An-
other Next Generation (YANG) and OpenFlow, and more recently, OpenConfig and OpenROADM.
This is an area that requires further investigation to consolidate the standardisation of protocols.
As disaggregated optical networks continue to evolve, the usage of different tools to build SDN
architectures is also changing.

4.3 QoT Estimator in SDN-Controlled ROADM Networks

4.3.1 Implications of the use of margins

Dynamic add, drop and routing of wavelength channels can generate optical power dynamics which
may result in signal quality degradation. This becomes even more complex in mesh networks, hence,
the research community has been recently working on solutions for controlling dynamic optical
switching, both in proprietary [227] and open systems [19]. One of the key elements for enabling
dynamic switching in ROADM networks is the presence of OPM functions [217], so that the control
plane can operate on a feedback loop that takes into account the state of the active optical channels.
Recent studies have shown the beneficial impacts of OPM at intermediate nodes, enabling dynamic
management decisions to reconfigure and optimise network channels [228]. While SDN approaches
introduce a high level of flexibility for managing network resources, there is a lack of standardised
interfaces for optical networking devices (i.e., optical switches), not to mention the absence of open
interfaces in the OPM equipment, which leads to high-cost, complex solutions for monitoring in
real-time the state of a network. Real-time analysis is crucial for dynamic lightpath provisioning



4.3. QOT ESTIMATOR IN SDN-CONTROLLED ROADM NETWORKS 61

and network adaptation, overcoming the suboptimal solution of over-provisioning network resources
for system-specific purposes [229]. Furthermore, the additional information provided by the OPM
mechanism could not only assist reconfiguration and optimisation of the network performance, but
also enable a better use of resources upon service setup (i.e., OSNR estimations, based on distance
vs. modulation formats) [217]. However, on-site signal monitoring is still difficult to achieve, mainly
because of the high Capital Expenses (CapEx) and Operational Expenses (OpEx) it generates.

In modern optical networks, the most common monitoring technique consists in splitting a
portion of an optical signal to check its intensity and quality without obstructing the transmission.
The key data provided by this process is the intensity of the power of the signal, measured in decibel-
milliwatts (dBm). In standard metro-haul optical networks, the usage of EDFAs to compensate for
the insertion loss of optical fibres is preferred. As we have seen in previous Chapters, the ASE
noise attributed to an EDFA is one of the main components negatively affecting the Quality of
Transmission (QoT) of optical paths. Because of that, it is of high interest to be able to monitor
this type of noise in an accurate and fast manner. To date, through the implementation of tasks that
are not too expensive nor too complex, it is possible to accurately compute the contribution of ASE
noise into the signal power intensity, by actively monitoring the latter only. These two monitoring
processes can be performed simultaneously, enabling the extraction of the QoT by means of OSNR,
which is the first of two widely accepted metrics of measurement. The second common metric
of QoT is the Bit Error Rate (BER), which can only be computed at the dataplane, requiring
optical-electrical encodings. While the OSNR given by the signal power intensity and the ASE
noise power is an acceptable measurement of QoT, in practice, it is only used to adjust transmission
margins but not to eliminate the usage of these. That is because of the occurrence of a third
type of noise, the NLI, that contributes to the degradation of QoT but cannot be observed with
mainstream monitoring techniques. This type of noise is generated by the interaction of optical
paths among themselves and by the interaction of an optical path and the optical fibre medium.
The former is known as the Cross-Channel Interference (XCS) and the latter as the Self-Channel
Interference (SCI). In the current state-of-the-art, the widely used models of these phenomena are
those proposed by Poggiolini et al. [219, 221]. Nonetheless, modelling these physical effects is not
sufficient to fully assist optical networking functions. Thus, the thrive for OPM devices capable of
observing the NLI noise remains latent.

To overcome the limitations imposed by OPM techniques, as it is the application of monitoring
processes after the installation of network resources (i.e., wavelength allocation), multiple studies
have proposed the inclusion of estimation functions for predicting the communication performance
of an optical network [31, 167–171, 186, 225, 230, 231]. While these approaches have given an
insight into the physical impairments, this remains an area that could highly benefit from the use
of modern technologies (i.e., Machine-Learning (ML) techniques) to improve the reliability of these
functions for resource allocation and switching operations. Since it is possible that an estimation is
not accurate, margins can be set in order to reduce potential failures. In this Section, we analyse
the performance achieved by applying fixed margins to a QoT-E, which considers OSNR signal
degradation, in order to achieve pre-allocation of lightpaths and dynamic switching.

While SDN is playing a major role in the control and management of electronic switching re-
sources, its operation in the optical layer is still left to proprietary implementations. Here, we also
present a SDN control plane with OPM management capabilities based on the OpenFlow v1.5 re-
commendations, as an extension to the flow-rule capabilities of this protocol. Additionally, we have
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built a SDN-compatible ROADM network simulator to estimate the loss of performance due to the
lack of information about the network. The latter was developed using open-source resources such
as the Mininet framework [59], and software-switches [232].

4.3.2 System setup

As mentioned above, we used a predecessor system to Mininet-Optical to address our first studies.
The architecture of our system is depicted in Figure 4.2. The two bottom layers illustrate the
execution of our tests in a single computer, as we extend the Mininet emulator. The latter is
shown in the green area of the figure, where we can see the instantiating of the virtual network as
isolated TAP interfaces, that are then abstracted by our optical agent (yellow area). The optical
agent acts as an OpenFlow translator for the SDN controller SBI, which enables the connection to
the control interfaces of the ovs-switch instances. Consequently, the optical agent is the enabler
for disaggregation in our systems. Moreover, the optical agent abstracts optical nodes from the
packet virtual switches. An example of an optical node architecture is shown in Figure 4.3: each
of the ROADM components (Wavelength-Selective Switch (WSS) and EDFA) were emulated using
separate virtual switches. With this design it is possible to also abstract the ports of the nodes,
which indicate the direction of the traffic. The SDN controller is in charge of handling the traffic.
To fully automate the allocation of traffic, we deploy a Mininet application as a REST server that
the SDN controller uses to launch packets from individual Linux virtual hosts. Thus, the SDN
controller has full control of the network elements that are being emulated, and upon traffic request,
can configure the required elements for testing.

Figure 4.2: System architecture.
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Figure 4.3: Logical representation of the ROADM node.

The network topology we considered is the Telefonica national Spanish telecommunication net-
work model also used by Ruiz et al. in [3]. It consists of 21 nodes and 34 inter-city links, with varied
distances. For the purposes of analysing large-scale ROADM networks, we incremented the distances
in the given Spanish network shown in Figure 4.4 in order to operate on point-to-point connections
ranging from 500 km to 4000 km. We have reproduced the topology on the Mininet emulator,
developing an abstracted representation of an optical node through the use of OpenFlow software
virtual switches from the Centro de Pesquisa e Desenvolvimento em Telecomunicações (CPqD), the
CPqD/ofsoftswitch v1.3 user-space software switch [232].
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Figure 4.4: Telefonica, national Spanish network (link distances reported in km) [3].

Each output port has a post-amplification EDFA, which compensates for the losses of the WSS
in the system. In our abstracted optical network, at each link we installed an additional EDFA for
each fibre span of 100 km, and an additional one at the end of a link to operate pre-amplification.
In our model, a colourless implementation was achieved by adopting WSS elements for both add
and drop ports. The physical transmission and impairments parameters used in our simulations are
given in Table 4.1.
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Table 4.1: Parameters used for the physical transmission and impairments.

Physical component Physical impairment
Launch Power -2 dBm

Fibre Attenuation 0.2 dB/km
WSS Loss 9 dB

EDFA Noise Figure 6
EDFA Gain 20 dB

4.3.3 Model description

To simulate the optical performance of a signal traversing the nodes, we encapsulate optical transmis-
sion parameters (e.g., signal power and noise) in customised Ethernet packets to allow the exchange
of this information across the virtual switches. Following the SDN paradigm, we are able to monitor
the exchanged packets via the OpenFlow protocol calls to the devices. Figure 4.5 depicts the dif-
ferent layers of communication between the entities considered in our model. At the bottom, there
is the data plane, which is represented by the virtual network. In between the data and control
plane we implemented an optical agent, which is the entity that simulates the optical behaviour of
each network element. The optical agent has bidirectional Transport Control Protocol (TCP) con-
nections to both the controller and the data plane. The SDN controller is in charge of the network
control and management operations (e.g., path computation, connection control) that could operate
over a real ROADM network with support for OpenFlow version 1.5. The agent implementation
in our model is used to handle the customised Ethernet packets traversing the network, in order to
generate data structures for representing the optical performance, as it uses the values stored in the
packet header to keep track of the signal power and noise at each port.

REQUEST APP

RYU CONTROLLER

OPTICAL AGENT

DATA PLANE

E2E REQUEST GENERATOR

RESTFUL NBI/E-WBI
OpenFlow SBI

PCE
RWA

RESTFUL NBI/E-WBI
OpenFlow SBI

PHYSICAL LAYER 
SIMULATION

MININET
CPqD/ofsoftswitch v1.3

Bidirectional link for emulation purposes

Figure 4.5: Layered architecture of optical SDN system.

The optical agent utilises Equations 4.1 and 4.2 for computing the signal power and noise values
at a given port of a path:

Po(Pi, Gt,�) = Pi ⇥Gt ⇥ f(�) (4.1)

No(Ni, Gt,�) = Ni ⇥ (Gt ⇥ f(�)) + h(
c

�
)⇥ ((Gt ⇥ f(�))� 1)⇥NF ⇥B (4.2)
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OSNR =
Po

No
(4.3)

In Equation 4.1, Po is the output power out of a given node, Pi the input power, Gt the target
gain, and � the wavelength. We determine the input power as the launched power of the system;
target gain is a computed gain per EDFA to maintain the signal power, and f(�) is the ripple
function that represents the detailed gain transfer function of the EDFA. In typical systems, a
passive Gain Flattening Filter (GFF) is manufactured and applied to the amplifiers to compensate
for the EDFA gain wavelength dependence. However, this is optimised for a specific operating
point and is not tuned to each individual device, which brings in a certain degree of variability. In
addition, the gain characteristics of the device will also vary over time. In order to reproduce this
effect, since the optical power control stability problem regards the performance of each amplifier
[233–235], we randomly allocated a different gain function to the different EDFAs of the system.
This becomes indeed the main unknown variable in the system that affects the performance of the
QoT-E. In Figure 4.6, we present the gain functions that are considered for this study. Through
hands-on monitoring at the Center for Integrated Access Networks (CIAN) testbed at the University
of Arizona, we determined that the signal fluctuation imposed by amplification systems resembles a
slowly varying sine function. Then, we shifted these monitored functions to left and right in order
to add variability to the signal performance, and maintain the EDFA gain constant.

Figure 4.6: EDFAs wavelength-dependent gain modelling.

In Equation 4.2, No is the output noise, Ni the input noise and Gt the target gain. We determined
the input noise to be the generated noise after each phase, being 0 - or none - at the beginning of
a single transmission. The system gain is the average gain of the EDFAs that compose a link. We
represent this by adding the ripple variation f(�) to the individual target gains Gt. Then, h is the
Planck constant, c is the speed-of-light in an optical fibre, NF is the noise figure of the amplifiers,
and B is the bandwidth of a channel in Hertz.

One of the novelties of our study is that we operate the simulations by computing the signal
degradation at each node as the packets are traversing the network. Because of the model described
in Equations 4.1 and 4.2, the computation of both output power and noise at each node is dependent
of the randomisation of ripple behaviour constraint at each optical amplifier.
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In the control plane, we implemented a customised controller based on the Ryu framework pro-
posed by NTT labs [23]. Apart from extending the OpenFlow Protocol descriptions to handle
optical parameters and interact with our customised Mininet-based simulation system, we included
networking functions such as path computation, routing and re-routing, as well as OPM capabilities
[133]. These are triggered by external applications to enable point-to-point connectivity, or by mon-
itored data retrieved from the nodes. The NBI of our control plane is developed with RESTful API
solutions, allowing for high-level requests from external applications. In addition to the generic net-
working functions at the control plane, we included an estimation module that performs a prediction
of signal degradation given a point-to-point connection. The estimation function implemented in
our controller uses the same tools presented in Equations 4.1 and 4.2. However, assuming it has no
detailed knowledge of the exact gain transfer function of each amplifier, it does not assume any such
variation (e.g., it assumes a flat unitary ripple function). This calculation is triggered whenever there
is a point-to-point request, and determines the feasibility of a lightpath to be installed according to
the OSNR levels, which are computed using 4.3.

4.3.4 Experiments and results

The traffic generated for this study consisted of 2,000 end-to-end lightpaths of length between 500
and 4,000 km, across the network topology considered in Figure 4.4. The experiments were carried
out over two different segments of the C-band, shown in Figure 4.6, in order to take into account
the effect of different gain transfer functions.

Similar to Ghobadi et al. [225], we analysed the feasibility of all the paths in the monitored
traffic to be transmitted at different modulation formats, considering the OSNR signal levels of
each transmission channel. For the OSNR thresholds, we have assumed those values above BER
pre-Forward Error Correction (FEC) reported in literature, specifically from Ghobadi et al. [225],
which are based on a symbol rate of 32 Gbaud. The modulation formats are Quadrature Phase Shift
Keying (QPSK), 8 Quadrature Amplitude Modulation (8QAM), and 16 Quadrature Amplitude
Modulation (16QAM), with OSNR thresholds, respectively, of: 10 dB, 14 dB, and 17 dB. Carrying
out an OSNR analysis of each path, we determined in our model that 36.9% of the traffic could
be modulated using 16QAM, 50% at 8QAM, and the remaining 13.1% at QPSK for the first band
(1534.8 to 1542 nm). For the second band (1546.8 to 1554 nm), 26.6% of the traffic could be
modulated at 16QAM, 70% at 8QAM, and 3.4% at QPSK, when we apply no margins. This
constitutes the maximum capacity that the selected paths could carry in the network, if the SDN
controller had perfect knowledge on the QoT (in this case the OSNR levels) associated with all
paths.

The QoT estimator implemented in our controller predicts the OSNR levels of a given signal
traversing a path. Because the estimation does not consider the optical power fluctuation caused
by the amplifiers (only the noise figure is considered), the only option available to improve the
likelihood of succeeding in creating a new path is to apply a margin to all the paths. Intuitively,
adopting a more conservative margin also reduces the network capacity, as it reduces the number
of paths generated.

We have thus analysed the performance achieved when applying different margins to the pre-
diction of the OSNR levels, in order to verify the maximum capacity achievable. The margins are
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applied to the following formula, which is used to determine whether the results of estimation plus
margin is above the required OSNR threshold:

OSNRest +M > OSNRth (4.4)

In Equation 4.4, OSNRest is the estimate OSNR from the controller (which does not know
the specific amplifiers Wavelength-Dependent Gain (WDG)), M is the margin applied to the path,
and OSNRth the actual required OSNR threshold for setting up the working path. We considered
margins from -6 dB (i.e., a conservative approach) to 6 dB (i.e., with an aggressive approach). The
results are reported in Figure 4.7. Interestingly, even when margins are omitted (i.e., 0 dB) we do
not achieve 100% capacity. This is due to the physical effects modelled in the network, which cause
some lightpaths to fail.

Figure 4.7: Network capacity vs. OSNR margins applied by the control plane.

The maximum capacity of the system is the maximum capacity calculated by our simulation
using all the possible paths. This would also be the capacity achieved by the SDN controller if it
had exact knowledge of the OSNR levels for every path. The curves show that when implementing a
conservative margin, that is, under-estimating the OSNR levels (in the negative region), the QoT-E
progressively rejects the allocation of paths, and the overall capacity decreases accordingly. When
the QoT-E adopts a more aggressive strategy, that is, over-estimating the OSNR levels (in the
positive region), the capacity also decreases progressively, as a higher number of paths does not
meet the minimum OSNR threshold for the selected modulation and thus cannot transport data.
For the higher values of margin, the QoT-E will assume that all paths can operate at 16QAM, and
the achieved capacity settles at the value of 46% and 32%, respectively for the first and second bands
of operation, which are related to the percentage of paths that can support the 16QAM modulation,
as already mentioned at the beginning of this section. It is imperative to notice that both under-
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estimation and over-estimation at the control plane cause discrepancies in the performance of the
network because of the misuse of network resources. While constant under-estimation would lead to
the non-installation of paths, an over-estimation can lead to the installation of non-feasible paths,
hence, installing non-usable resources.

According to our study, the optimal point of the OSNR margin adopted by the controller seem
to be around the 0 dB value, for both bands examined. Which directly complies with the need
to mitigate the usage of margins. However, even at the optimum, since such margins are adopted
equally across all paths, the loss of capacity with respect to the maximum capacity is still of the
order of 5%-17%. In Figure 4.8, we show the success rate of two analysis: (i) the ratio of number of
paths attempted to be installed, with respect to the total number of paths with OSNR levels above
BER pre-FEC threshold.

Figure 4.8: Comparison of two analysis: Percentage of feasible paths that are provisioned for both
bands vs. Margins (dB) (red and blue curves), and provisioned paths above required OSNR threshold
for both bands vs. Margins (dB) (green and black curves).

A more conservative approach would restrict significantly the attempts of installation, whereas
a more aggressive prediction would fall into highly optimistic computations, attempting to install
100% of the paths; (ii) we analysed the success rate of the established paths. In other words, how
the application of different margins to the QoT-E affects the accuracy of feasible lightpaths. Our
results suggest that a conservative approach would increase the accuracy of the prediction of feasible
paths, but at the expense of restricting network capacity. Contrasted with Figure 4.7, it is noted
that when over-estimating the feasibility of lightpaths, the maximum percentage of feasible paths is
36%, allowing for 46% of the network capacity for the first band. Similarly, this analysis determines
that for the second band, only 26% of the paths can be successfully allocated, enabling for 32% of
the network capacity. Additionally, our results depict maximum provisioning-feasibility when the
margins are reduced by 2 and 4 dB. This is due to the effect of the EDFA–WDG functions, which
may cause a higher gain at times, explaining the feasibility of lightpaths even when the estimations
are low.
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4.4 gOSNR-Based QoT Estimation with Active Monitoring

4.4.1 Implications for the use of active-monitoring

As we have been discussing, optical network disaggregation is an area receiving increasing attention,
especially from operators, who want to part from legacy vendor lock-in restrictions. In parallel,
the use of open interfaces, supported by SDN, has boosted research on control plane algorithms,
especially in support of dynamic provisioning. In this regard, one of the main open challenges is
that the use of heterogeneous components in disaggregated optical networks increase uncertainty on
system performance, which in turn leads to the requirement of larger power and OSNR margins,
which adversely affect network efficiency and complicates fault diagnosis.

As we have discussed in Chapters 2 and 3, while analytical models of fiber propagation behaviour
are widely available [236], active components can introduce considerable unpredictability into the
system. In particular, the WDG of EDFAs can lead to unequal channel power compensation, often
referred to as channel power divergence, which are caused by the AGC procedures in EDFAs that
reconfigure the mean system gain. Thus, depending on the specific device and working condition,
WDG as high as ±0.5-1.0 dB have been measured [220]. This effect generates a power divergence
whose uncertainty accumulates in systems with several amplifiers and ROADMs. This has driven
the research community to investigate methods to improve accuracy of QoT-E.

In this regard, much progress has been made on the development of accurate analytical signal
performance models [190] and, more recently, cognition-based estimators using artificial intelligence
algorithms [36, 237]. The main drawback of such approaches is that they require large amounts of
data for optical link characterisation, which can be complex and expensive to acquire. An alternative
to data-expensive ML models is the use of coherent receivers to estimate lightpath QoT given the
characteristics of the optical link, which can effectively provide gOSNR monitoring as well as other
power anomaly detection measures through digital backpropagation [145, 146]. This can be part
of a larger research area developing control methods that combine real-time data collection with
QoT-E and provisioning [147]. This approach involves the use of real-time control plane operations
to gather OPM information and run algorithms for the correction of QoT-E functions. Here, we
address two key questions for the control and prediction of QoT in disaggregated optical systems,
which can be used both for fault management as well as lightpath QoT-E for dynamic wavelength
routing. Firstly, we analyze the error that OSNR vs gOSNR monitoring produce in estimating QoT
for different numbers of OPMs deployed in an optical link. Secondly, we show how real-time OSNR
monitoring information can be used to improve the QoT-E and monitoring functions, even when
only OSNR types of OPM are available. For this, we introduce an OSNR monitoring-based channel
modelling solution. It should be noted that we do not focus on specific device performance, instead
we study monitoring strategies at the network scale and how they can be used effectively to monitor
and estimate QoT across the network given uncertainties inherent in the systems.

In particular, we addressed the complication of OSNR monitoring considering that the gOSNR
is inversely related to the gOSNR for high transmission power, as shown in Figure 4.9. Thus, for
a channel whose power is higher than originally estimated, OSNR monitoring alone would indicate
that the QoT is higher than the QoT-E. However, since the nonlinear interference increases with
absolute power, at high transmission power (e.g. due to gain ripple power divergence), the presence
of nonlinear interference renders the actual QoT lower than its OSNR-based value would indicate.
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Figure 4.9: Difference between OSNR and gOSNR for increasing power levels, leading to QoT-E
inaccuracy.

This is particularly important for monitoring scenarios in which the noise figure of an amplifier
can be expected to be relatively constant, but the channel powers will vary based on the loading
scenario, which is the main focus of this work.

Thus, we investigated a QoT-E strategy based on active monitoring of lightpaths in an optical
SDN environment deployed within Mininet-Optical. Using the Gaussian Noise (GN) model to de-
termine the nonlinear transmission effects [219] along with WDG in the EDFAs and fiber Stimulated
Raman Scattering (SRS) [218], we assess the benefits of SDN-based active monitoring to mitigate
QoT-E inaccuracies due to wavelength dependent power dynamics in an optical transmission.

4.4.2 Experiments and results: study 1

Our assessment runs over a linear topology, shown in Figure 4.10, of 15 ROADM nodes linearly
connected by fiber links of 480 km, made up of 6 x 80 km spans, totaling 6,720 km. To model the
WDG behavior, we measured the WDG of 2 real EDFAs [220]. The resulting WDG curves were then
randomly assigned to each EDFA, as depicted in Figure 4.10. We also apply channel equalization at
each ROADM, by setting the VOAs appropriately. OPM devices are located at the EDFA outputs,
and interrogated depending on the monitoring strategy described below.
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Figure 4.10: Linear topology emulated with Mininet-Optical.
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For the transmission system, 3 different C-band traffic loads were considered, corresponding
to 10%, 30% and 90% of the system capacity (i.e., 9, 27 and 81 signals, respectively, for a 90-
channel transmission system). Two different channel allocation strategies were examined: sequential
and random, to account for wavelength loading and configuration dependencies. All channels are
transmitted with -2 dBm launch power. To create the optical paths, the SDN controller connects
to the control interfaces of the ROADM nodes and installs switching rules into each ROADM.
Both the SDN controller and Mininet-Optical were running on an Ubuntu 18.04 virtual machine
on an Intel(R) Core(TM) i7-4770HQ CPU @ 2.20GHz processor and 12 GB RAM. For comparison
purposes, we adopt a baseline QoT-E model, where the control plane carries out gOSNR estimation
by using the same models adopted by the physical layer simulator (i.e., GN model and SRS), but
without any knowledge of EDFA-WDG functions or channel power adjustments and without any
OPM interrogation. This process was executed for 150 transmission tests for each traffic load and
for each channel allocation strategy. The simulation of each individual test required from a few
seconds up to 120 seconds to process (depending on the load scenario).

In order to assess the maximum deviation of the controller’s QoT-E model from the actual QoT in
Mininet-Optical (representing the ground truth), we computed the gOSNR absolute error. Because
of the random assignment of WDG functions to the EDFAs, each test case can be considered to
be a different optical network system with the same physical topology. The highest absolute error
at the output of each amplifier for all tests is shown in Figures 4.11a and 4.11b, respectively, for
the sequential and random channel allocation strategies. Here the solid curves represent the error
of the baseline QoT-E model described above. As expected, the higher the number of wavelengths
used, the worse the baseline QoT-E model performs, due to accumulated nonlinearities and power
divergence. These results illustrate an important source of error in QoT-E models, which contributes
to the use of larger QoT margins in real systems.

(a) (b)

Figure 4.11: Maximum absolute error of gOSNR computations from the QoT-E model with no-
monitoring-based corrections (NM-curves) and with monitoring-based corrections (M-markers) at
the end of each inter-node link (every 7 amplifiers) for: (a) sequential channel allocation strategy;
(b) random channel allocation strategy.

Next, we include the use of OPMs, so that the control plane can assess and correct the QoT-E
across the link. This monitoring-based QoT-E method replaces the QoT-E estimated values with
monitored values at a number of OPM locations, restarting the estimation process from that point.
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The error of this OPM-based method is reported in the figures by the colored empty markers. As
a first analysis, OPM nodes were deployed at the end of each inter-node link (every 7-EDFAs). In
the figures, at each OPM monitoring point (i.e., every multiple of 7 in the x-axis) the QoT-E error
goes to 0. From there, the error starts increasing again, until the next OPM node is reached, at
which point the error of the QoT-E model is reset again. It is noticeable that by comparing the
unmonitored curves with the monitored data points in Figure 4.11a and Figure 4.11b, retrieving
monitoring information can reduce the QoT-E error substantially. At the monitoring point, the
error is reduced between 1.5 and 3 dB at short distances and 1 to 2 dB at 2,000km. In addition,
after the first 7 amplifiers we have an improvement of at least 0.8 dB and 1.2 dB in the worst case
(i.e., just before the monitoring), for the lower loads and higher load, respectively.

We repeated the experiment interrogating OPMs every second inter-node link, i.e. every 14
amplifiers, respectively (using only 8 OPM nodes in our long-haul end-to-end link). Here we found
that despite the substantial reduction in number of OPMs, after the first 14 amplifiers, we have an
improvement of at least 0.6 dB and 0.8 dB in the worst case, for the lower loads and higher loads,
respectively, also after approximately 2000 km. These results are shown in Figures 4.12a and 4.12b.

(a) (b)

Figure 4.12: Maximum absolute error of gOSNR computations from the QoT-E model with no-
monitoring-based corrections (NM-curves) and with monitoring-based corrections (M-markers) at
the end of every second inter-node link (every 14 amplifiers) for: (a) sequential channel allocation
strategy; (b) random channel allocation strategy.

These results show that an optical system that includes OPM can mitigate the inaccuracies of
the baseline QoT-E model, by providing intermediate gOSNR information to an SDN controller. In
this study we implemented and tested a real controller that uses the information provided by OPMs,
assessing its realistic behaviour over a platform that enables emulation of optical components.

4.4.3 Experiments and results: study 2

In this study, we look at how OPM monitoring at intermediate nodes in a link can help to improve the
estimation of gOSNR levels of individual channels along a path. We use the estimated power (PE),
ASE noise (ASEE) and NLI noise (NLIE) to compute the estimated gOSNR with gOSNRE =

PE/(ASEE +NLIE). We test three different types of gOSNR estimation models:



4.4. GOSNR-BASED QOT ESTIMATION WITH ACTIVE MONITORING 73

• Model 1: updates the ASE noise levels from the baseline model estimate based on the
expected noise levels given by the OSNR monitoring, where it is available.

• Model 2: uses this OSNR monitoring information together with channel monitoring inform-
ation to build a model for the optical power levels between monitoring points and gOSNR
estimates based on these values.

• Model 3: uses reference receiver monitors that directly measure gOSNR, which is used to set
the QoT values to perform subsequent estimations along the path.

More specifically, in model 1 we replace the PE and ASEE values in the QoT-E procedure by
the monitored power PM and ASE noise ASEM . These updated performance metrics are then
used to compute the QoT-E at the subsequent locations in the optical link. Note that such OSNR
monitoring is sensitive to uncertainties in the amplifier noise figures, which would be reflected in the
ASE noise power measurement. We then propose model 2, where in addition to the operations in
model 1, we also compute the difference between PE and PM to produce a NLIE correction factor,
pcorr, for the gOSNR estimation formula. This measured power difference is then assumed to be
uniformly distributed among each span between monitoring locations (i.e. assuming a linear ramp).
Thus, at every OPM location i, for every channel ch, we compute p_corrchi = |Pmchi/Pechi |3 for
the nonlinear noise and ramping it for each span between monitoring locations. Then we apply this
correction factor to NLIE , resulting in a corrected NLI noise (NLIC), which is used to compute an
updated gOSNRE . Last, model 3 replaces all estimated metrics by direct gOSNR measurements,
effectively resetting the QoT-E to a new starting value at that node for use in subsequent estimation
along the path, which is the procedure evaluated in the previous study. Naturally, model 3 provides
the most accurate results and requires more expensive reference receivers. Thus, it is important to
understand the relative merits of different monitoring strategies to balance against their potential
costs.

With Mininet-Optical we model the Cost239 European Network topology with 11 nodes and
26 links. For this analysis, we focus on the London to Copenhagen link, measuring 1000 km,
composed of 20x50km fibre spans. We assume that all spans are optically compensated by EDFAs
with target gains of 11 dB. Then, our optical SDN controller configures the transponders to set the
wavelength channels and launch power. Also, the controller must configure the ROADM nodes to
switch lightpaths appropriately. We include a boost amplifier after every ROADM, compensating
for an overall insertion loss of 17 dB. We also include channel power equalisation procedures at the
ROADM nodes and at every 6th span in the links, carried out through VOAs in the ROADMs or
equivalent channel gain equalisers.

Our first goal is to analyse the performance of the three models described above to assist gOSNR
estimation. For this, we configured a 15-channel transmission configuration to traverse the link. The
15-channel set was randomly allocated in the C-band channels (191.6 - 195.6 THz), with channel
spacing of 50GHz and launch power of 0 dBm per channel. In Figure 4.13a we show the performance
of the three models when OPMs are co-located with channel leveling locations (every 6th span), in
addition to each intermediate location between these. Thus, we consider 8 OPM nodes out of 21
possible locations (evenly-spaced across the link). In the figure, the green solid curve represents the
maximum error produced by the baseline QoT-E model (when we do not monitor at any location).
This maximum QoT error is computed considering the estimations for all 15 channels, predicted at
each potential monitoring location. The light-blue curves correspond to the performance of model
1 described above, the red curves to model 2, and the dark-blue curves to model 3. We can see
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that simply correcting data points with OSNR information (model 1) reduces the error compared
to the unmonitored scenario. However, peak errors are still similar. Here we consider peak errors as
the main indicator of estimator performance, as these will affect most the required system margins.
The key finding is that our proposed model 2 (red curve) is able to lower the peak error by over
0.5 dB, using the exact same amount of OSNR information. Indeed it is capable of reducing peak
errors considerably.

(a) (b)

(c)

Figure 4.13: (a) Comparison of different QoT-E correction models with 8 OPMs. (b) Comparison
of model 1 with 16 OPMs, model 2 with 12 and model 3 with 6. (c) Comparison of the impact of
increasing the number of OPM locations for the three models.

Figure 4.13b focuses on the trade-off between the model used and the number of OPM locations.
Here we can see that even with a higher number of OPM locations (16 out of 21 locations), simply
correcting OSNR data points (model 1) is not effective in reducing the peak estimation error, which
remains similar to the unmonitored curve at location 11. Our proposed model 2 can instead reduce
the peak error by 0.7 dB, even using a smaller number of OPMs (12 are considered here). Comparing
the red and dark blue curve, we can also notice that we can trade simple OSNR monitors with more
complex gOSNR solutions, if we increase their number. When coupled with our proposed model
2, using 12 ONSR monitors provides comparable peak error (0.1 dB lower) than using 6 gOSNR
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monitors. The comparison between the three models as a function of the number of OPM locations,
is finally reported in Figure 4.13c, which reports the peak error for each scenario. We can observe
that model 2 outperforms model 1 by up to 1 dB. In addition, for increasing number of OPM
locations, the discrepancy with model 3 is reduced to less than 0.5 dB.

4.5 Summary

In this Chapter, we have analysed the internal composition of optical control systems in the context
of disaggregated optical networks. In particular, we have presented a customised architecture of an
optical control plane, including the modules: UI, DBM, PCE/RWA, OPM, QoT-E, NBI and SBI.
We have also demonstrated the integration of these modules within customised SDN controllers,
which we have enabling dynamic lightpath provisioning on top of emulated optical network systems
modelled with Mininet-Optical. For the latter, we have presented a series of studies addressing the
impact of receiver margins in the network capacity provisioning, the impact of active monitoring
and its potential to assist QoT-E modules.

First, we presented a study on the network under-utilisation issue brought by the absence of
detailed knowledge on the behaviour of EDFA gain functions across wavelengths and over time. We
used the Ryu SDN controller framework to build a customised control system that operated over
an extended-Mininet emulation of the Telefonica Spanish national network. With this network, we
have investigated the impact on margin utilisation imposed by the differences in QoT-E processes
in network capacity between an optimal situation, where the gain function of the cascaded EDFAs
is known in advance, and the real situation, where the controller only uses a flat gain function. By
comparing the outcome of the ground-truth model (physical layer simulation) with the prediction
of the controller, we could calculate how the use of different margin values for the OSNR affect
network capacity. We showed that an aggressive margin strategy, that would tend to over-estimate
the available OSNR, reduces the performance, as it favors the adoption of higher modulation rates,
leading to situations where the paths created could not operate below the BER threshold. On the
other hand, a too conservative strategy that tends to under-estimate the OSNR, would lead to a
situation where the controller operates over lower modulation rates, and in some cases declines the
creation of wavelength paths, which would instead have worked correctly, according to the Mininet
simulation. According to our study, the optimal point of the OSNR margin adopted by the controller
seem to be around the 0 dB value, for both bands examined. However, even at the optimum, since
such margins are adopted equally across all paths, the loss of capacity with respect to the maximum
capacity is still of the order of 5%-17%.

Moreover, we have investigated the uses of active optical performance monitoring to enhance
QoT-E processes. We have shown that it is possible to trade the use of complex (and more expens-
ive) monitoring equipment (i.e., coherent receivers capable of estimating full gOSNR) with OSNR
monitors that make use of the individual channel power data to adjust the estimation of NLI noise.
Furthermore, we have studied the impact of EDFA-WDG functions on the SDN controller QoT-E
model, and assessed the estimation accuracy variation with distance from actively monitoring the
performance of optical signals at distributed locations along an end-to-end long-haul link, enabling
the evaluation of QoT-E also at intermediate locations of the optical link. Our approach enable
testing the correctness of control plane operations, so that it can be deployed on a real network,
where improvement of QoT-E can reduce margins, thus improving the overall network efficiency.
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Furthermore, we plan to emulate the use of sparse OPM in the network to gain knowledge on the
wavelength and time-varying behaviour of other EDFAs, and feeding the data to machine-learning
based techniques to improve the per-path estimation of the OSNR, thus increasing the network
utilisation.



5 Cognitive-Assisted Control

5.1 Introduction

As discussed in Chapter 4, non-disaggregated and disaggregated optical control systems face multiple
challenges that constrain the capacity of optical network resources. These can be tackled with
cognitive-assisted (i.e., Machine-Learning (ML)) control planes capable of dealing with uncertainty
in the optical domain [70]. For example, a control system can potentially learn from the interactions
of channels in a transmission in order to predict the behaviour of unestablished optical paths [65]
in order to allocate those that meet a required Quality of Transmission (QoT). The end goal is to
maximise the usage of optical networks resources without exceeding costs.

As a result, the development of cognitive-assisted control systems is of major interest to everyone
involved in the optical networks research area, from infrastructure providers to network engineers. In
this Chapter, we address a series of studies considering the inclusion of “cognition” into control plane
functions such as routing and wavelength-assignment, wavelength-switching, and real-time device
configuration, by means of the centralisation and softwareisation of the control and all network
management functions following the Software-Defined Networking (SDN) paradigm. First, we need
to define the current limitations of control systems in terms of active monitoring and data collection
availability. There is a common trade-off when deploying monitoring equipment in optical networks
which is that larger and more accurate data availability requires highly complex and expensive
resources (see Chapters 2 and 4). To mitigate this, there is a current interest of compensating for
the defective quality of the data that cheaper monitoring equipment can provide. The nature of the
defective data in this type of monitoring equipment is due to the limitations in monitoring sensitivity
of the materials. The aim is to use this data to help predict the behaviour of optical paths before their
installation. Thus, optimising the use of resources. This has been commonly addressed by means
of Quality of Transmission Estimation (QoT-E) procedures [146, 196, 201], which are considered
to be implemented as modules of control planes capable of assisting networking functions such as
wavelength-switching. We have shown in Chapter 4 that these QoT-E modules can be implemented
in an online and offline manner when using data from monitoring equipment after a transmission
has taken place. However, data processing tasks could benefit from cognitive algorithms [65, 70].

In this Chapter, we present a performance analysis on supervised-learning algorithms as QoT-E
modules. We begin with the analysis of the Support Vector Machine (SVM) algorithm, and how
optical domain data can become readily available for it. We explain how the algorithm could be a
potential candidate only if the data collection processes can ever become faster. Then, we perform
an analysis of other supervised-learning algorithms by looking at their time complexity and accuracy
when handling optical networks data. We show how a basic correlation among certain algorithms is
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formed and how there continues to be a trade-off of time complexity (i.e., how long it takes to train
and build learning models) vs. computing resources (i.e., what CPU/GPU and RAM is required).
Finally, we present a series of conclusions and forthcoming work.

5.1.1 Scope and contributions

The scope of this Chapter is limited to the study of supervised-learning algorithms, which provide
relatively fast estimation and prediction models with low degrees of complexity, making them ideal
candidates to operate within real-time optical networking scenarios. Although unsupervised-learning
algorithms have also been reviewed in recent years [238], the unstructured nature of the data com-
monly used for this type of algorithm does not align well with the composition of optical networks.
This is mainly because optical networks are closed-systems, where all the elements and their func-
tionalities are correlated. We intend to solely investigate the feasibility of their application into
the optical domain, meaning that the mathematical optimisation of these is beyond the scope of
this thesis. The focus is instead on analysing the optical network data requirements for this type
of algorithms to achieve optimal performance. That is, understanding the data that can be col-
lected from optical networks in a static manner (i.e., device-configuration specifications) and in a
dynamic manner (i.e., active device monitoring). Our focus is on the latter, addressing the multiple
possibilities of the information that could be generated by actively monitoring optical networks
components.

As reviewed in Chapter 4, the quality of the monitored data is entirely dependant on the level of
sophistication of the monitoring devices, which at the same time determines their costs. Because of
that, it is important to understand how the management of these type of resources can be optimised
to minimise costs and improve overall performance. In order to build a strategy to optimise the
management of monitoring resources, we want to first understand the nature of the parameters that
we want to observe and the methods to obtain it. Thus, within this area of research, we analyse
how optical signals can be observed and what type of data can be extracted. Then, we use this
knowledge to process the monitored data to create information that we can subsequently feed to
the supervised-learning algorithms that would enable the prediction of the QoT of lightpaths that
have not been installed.

The main contributions of this Chapter are:

• Analysis of the different types of data that is available in optical access networks, the processes
required to retrieve these and the nature of the processing tasks.

• Performance analysis of the SVM algorithm when handling offline optical networking data,
including static and dynamic parameters, such as the number of nodes in a network and the
number of channels in a transmission.

• Proposal of using channel allocation and channel loading information to build a relevant feature
to assist the training process of supervised-learning algorithms.

• Proposal of an algorithm for data generation with the Mininet-Optical system and an evalu-
ation of its usage with ML algorithms.

• Evaluation of the offline usage of supervised-learning algorithms to predict optical signal beha-
viour considering uncertain networking scenarios due to the wavelength-dependent operation
of optical network components.
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5.2 Problem definition

Heuristic models assisted with optimal Optical Performance Monitor (OPM) placement can signific-
antly mitigate the utilisation of optical transmission margins by 1-3 dB, which enables an optimisa-
tion of the management of network capacity [225, 239]. Unfortunately, the available number of such
devices is typically limited due to the increase in costs that these devices contribute, which is in the
tens of thousands for individual devices (see Chapters 2 and 4). In addition, state-of-the-art OPM
devices do not support the performance speed foreseen for disaggregated control systems, which will
require sub-millisecond operation rates for basic networking functions (i.e., wavelength switching).
The latter also imposes a limitation for the development of cognitive-assisted control systems, since
the algorithms considered to be embedded in the optical control plane require fast and vast data
availability.

5.2.1 Cognitive-Assisted Control

In the context of software-defined optical networks, the composition of the optical control systems
vary according to the specific needs of each network and the components that have enabled disag-
gregation. As such, inputs to the control system arrive from different sources at different times. For
instance, traffic requests can arrive through the Northbound Interface (NBI) at the same time that
alarms are triggered at its Southbound Interface (SBI). Despite the parallel occurrence of events,
the control system must be capable of handling them in the fastest possible time. As a result,
the inclusion of cognition to assist networking functions at the control plane must comply with
the sub-millisecond operations time required for common networking functions such as wavelength
switching. However, ML algorithms can operate at different time rates to build their models, entirely
dependent on the size of the data used for these processes. Once the models are built, classification
and estimation tasks can be performed fast. Hence, it is necessary to understand what type of
optical networks data can ML algorithms handle at the fastest rates with the best performance.

5.2.2 Data Composition

The key element determining optimal performance of ML algorithms is data. In an optical network,
data becomes available from different sources, at different times and is of different composition. For
instance, we can categorise data in the optical domain in two classes: static and dynamic. On one
hand, static data refers to elements of the network that do not change over time, as it is the number
of nodes in a path, the length of a path, etc. On the other hand, dynamic data appears when
traffic is launched into the network. Examples of this type of data are the channels launched in a
given transmission, the adjusted gain of the Erbium-Doped Fibre Amplifiers (EDFAs) in long links,
the fluctuating power levels of the channels, etc. Furthermore, in optical network systems some
data remains ever hidden to the control plane. This is due to the complex randomised physical
behaviour of the network components that cannot be inferred and can only be observed at specific
times and under specific configurations. An example of these would be the Wavelength-Dependent
Gain (WDG) of the EDFAs, which has been the main feature of interest throughout this thesis.
Intuitively, the heterogeneity of the sources and nature of the data within optical network systems
imposes several engineering challenges. In this Chapter, the main challenge that we tackle is that
of feature extraction.
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5.2.3 System setup

We have discussed that in-field optical data generation is a complex and time consuming task.
Furthermore, the variation of the topology configuration and the system setup parameters may
be limited to the available equipment at the time. Despite the use of synthetic data cannot give a
definite answer on how a ML algorithm will perform once applied in the field, it enables low cost, fast
analysis and understanding of the algorithms, allowing comparisons of their potentials. Afterwards,
real data is necessary for validating these tools.

For the studies presented in this Chapter, Mininet-Optical was used to generate multiple end-
to-end linear topologies as depicted in Figure 5.1, considering multiple combinations of the para-
meters listed in Table 5.1. These linear topologies are composed of optically-amplified links and
Reconfigurable Add/Drop Multiplex (ROADM) nodes, equipped with Wavelength-Selective Switches
(WSSs) and Automatic Gain Control (AGC)-EDFAs for pre-/post-signal amplification. Addition-
ally, end-to-end transmission is enabled for up to 90 wavelength channels in the C-band (1529.6 nm
- 1565.2 nm).

Figure 5.1: Linear topology with varying configurations as per features in Table 5.1.

Table 5.1: Topology configuration parameters.

Feature Value

Number of ROADMs 2 to 8
Number of fiber spans 2 to 6
Length of fiber span 80 to 150 km

Launch channel power -10 to 4 dBm
EDFA Preamp gain Fiber compensation adjustment dB

For all system setups, a WSS insertion loss of 9 dB is assumed and compensated by in-line
(post-amp) EDFA. The ROADM nodes are interconnected by links composed of several spans. For
each linear topology, spans are set to the same length. EDFA in-line amplifiers are configured to
compensate for the span loss. For example, as depicted in Figure 5.1, Mininet-Optical can be used
to generate a 3-ROADM network linearly connected with links of 2-spans of 80 km with in-line
EDFA system gain set to 17.6 dB. In the case of the booster EDFAs the system gain is set to a
fixed value of 9 dB, since they are deployed to compensate for the mean ROADM insertion loss.
Finally, upon transmission, a launch power level for all signals is selected. The latter will be further
explained in the subsequent sections.

Additionally, we assumed that Gain Flattening Filters (GFFs) are used at line amp sites for
EDFA gain equalisation. However, similarly to the studies presented in Chapter 4, we are cap-
able of modelling residual WDG-EDFA, causing undesirable power excursions during wavelength
switching (add-drop). Therefore, WDG curves are randomly assigned to each EDFA in all topology
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configurations, considering different gain settings. An example is shown in Figure 5.2, where a
booster EDFA is assigned a curve with an amplitude range of -/+ 1.5 dB, and a preamp EDFA is
assigned a curve with an amplitude range of -/+ 0.4 dB. All subsequent line amplifiers would have
similar characteristics, with WDG functions varying in spectral shape and amplitude, as described
in Chapter 4. Gain curves were experimentally retrieved from a physical testbed, and then syn-
thetically assigned to the EDFAs as we have presented in previous Chapters. Moreover, the power
excursions which result from the interaction of WDG and AGC were modeled following the work in
Junio et al. [240], considering the switching functions (add-drop) and the wavelength channel load
and the channel configuration (i.e. which channels are active).

We have shown that the detection of the feasible modulation format to transmit an unestablished
lightpath would enhance the overall network capacity. Because of that, we use OPM nodes to
monitor the QoT of the transmitted channels for all tests. The deployment of OPM nodes was
considered at the receiver end of all topologies, allowing us to retrieve the power and Amplified
Spontaneous Emission (ASE) noise levels for each received wavelength channel. With this data, we
were able to compute the Optical Signal to Noise Ratio (OSNR) following the well-known formula
OSNR = P

PASE
.

Figure 5.2: Different EDFA wavelength-dependent gain functions. Post-amp EDFA is assigned a
curve with an amplitude range of -/+ 1.5 dB, and a preamp EDFA is assigned a curve with an
amplitude range of -/+ 0.4 dB.

5.2.4 Feature extraction and data generation

Feature extraction refers to a process in ML that consists in analysing all the data available in
the population of interest (i.e., optical networks) and creating subsets from the combination of the
different data points, in order to generate relevant features that would improve the learning process
of the supervised-learning algorithms. We focus first on the role of static data sources (i.e., number
of nodes in a network) and study under which scenarios its usage becomes relevant. Additionally,
we consider the generation of features by combining dynamic features (i.e., number of channels in a
transmission).
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As mentioned above, we use Mininet-Optical to model the WDG of EDFAs to generate data
that accounts for the power excursions induced by this phenomenon. In contrast to the topological
parameters encountered in Table 5.2, these physical effects cannot be labeled and fed into the SVM
learning model even though they significantly affect the transmission performance. That is because
the wavelength-dependent operation of the optical network components always remains unknown
to the control plane. To overcome this learning impairment, we propose to analyse the interaction
of channels under different topological configurations, so the model can indirectly learn from their
performance.

Our approach consists in extending the system parameters used to train the ML models, to not
only consider network topological settings (i.e., number of nodes, number of links, etc.) as it is the
common case, but to also include the number of active channels and their position in the spectrum
before installing a new channel. This allow us to collect relevant data with regard to the WDG of
EDFAs. For the latter, we introduce the concept of a 1x10 data-array, which represents 10 segments
of the transmission spectrum (i.e., the C-band in our study). In a 90 channel WDM network, each
slot (bin) of the 1x10 data-array would correspond to a number of active channels in the range 1-10,
as shown in Figure 5.3.

Figure 5.3: Segmented spectrum of EDFA wavelength-dependent gain.

The interaction of lightpaths across transmissions is highly variable. This results in different ef-
fects on individual wavelength channels with respect to the number of active channels and their posi-
tion in the spectral band. We focus on the performance of a newly established lightpath into a system
with a given Wavelength Load (WL). That is, setting up a new lightpath when there are N active
wavelength channels. For instance, in a 90 C-band channels, for the training data sets we only con-
sider WL-scenarios for n active channels: {n|n 2 {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70}}.
Subsequently, we register the labeled OSNR levels of the (n+1)-channel to be installed. On the
opposite, for the testing data set we consider WL-scenarios where n can take any value so that
{n|n 2 {1� 90}}. Hence, the classifiers would attempt to predict the OSNR levels of the (n+1)-
channel, which it may have not been trained for before.

The input labeled data used to train our models consisted in: the wavelength (measure in nm)
of the monitored channel, the topology configuration settings depicted in Table 5.1, and the 1x10
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segmented spectrum data-array described above, accounting for 16 parameters in total. The data
generation process with Mininet-Optical consist in the following steps:

• Set a linear WDM network topology and configuration settings by randomly selecting a com-
bination of values from Table 5.1.

• Randomly select n-channels to add to the network as per WL case, and add them to the
network.

• Randomly select another (n+1)-channel and add it to the network.
• For the (n+1)-channel, monitor power and noise levels, compute the OSNR levels, and generate

a register (labeled sample).

Following these steps we can study the effects of the various topological and network configura-
tion settings perceived on the transmitted channels. Also, because the deployed networks may be
significantly different from one another, the generated data used to train the ML classifiers enable
the performance analysis of such estimation tools in generic use cases. In our case, we attempt for
the classifiers to learn about the physical effects resulting of the interaction of the channels (i.e.,
power excursions) and the correlation that exists between the number of channels active in the
system, their position in the signal spectrum, and the transmission performance.

5.3 On the use of Support Vector Machines

The SVM algorithm is a ML algorithm suitable for classification and regression problems. Because
it is based on grouping sets of data based on similarity of features, it is mostly used for classification
[241]. In the optical domain, the application of this algorithm has been studied by Tremblay et al.
[201], Bouda et al. [146], Mata et al. [198] and Morais et al. [202]. While all these studies share a
common verdict on the performance of SVM and its suitability for handling optical networks data,
they mostly used static data to assess their experiments without deepening in feature extraction.
Thus, we further inquired the applicability of this algorithm in the optical domain when handling
dynamic data and by combining data points to create relevant features. In this section, we present a
study that includes the active WL as a feature for a QoT-E module using the SVM as the estimation
model. The study assesses the algorithm in a multi-class classification use case, requiring it to predict
the OSNR of unestablished lightpaths. Our implementation of SVM achieved a 96.2% classification
accuracy.

5.3.1 Overview

Because of the irregular nature of nonlinearities encountered in optical networks, controlling the
physical effects introduced by these phenomena is rather challenging. As explained above, cognitive
control will play an important role in learning from the power dynamics in optical transmission
systems to mitigate the undesired performance impact in the QoT. Proposals of cognitive control in
the optical domain have been surveyed by Mata et al. [65] and Musumesci et al. [70]. Conceptual
analyses have demonstrated the favorable potential of statistical tools to predict, estimate and
classify the QoT of lightpaths in optical transmission systems [196–203]. Small in-field experimental
studies have also exhibited positive cognition capabilities implemented in software-defined optical
control systems [205, 206, 228, 240]. In general, a common trade-off exists between learning model
accuracy, amount of required data, algorithm complexity, and computational time.
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To date, work done with learning models consisted mainly in offline training approaches, whereas
only few live demonstrations of cognitive control systems have been performed [205, 206, 228, 240].
This is mainly due to the technical limitations imposed by networking components to generate
large collections of optical data in a fast and dynamic manner. Also, the fact that mainstream
monitoring tools are usually allocated only at strategic (low number of) points in a network, limits
the perspective of analysis towards the interaction of multiple transmissions.

In addition, given the implementation dependent performance of the optical network elements
(i.e., routers, amplifiers), learning models tend not to be robust enough to assist all control systems,
but would only perform reasonably well for those systems they were trained for. As a result, we
consider relevant the analysis of multiple network features and their role in enhancing QoT-E. In
particular, here we focus on the power dynamics of amplified transmission systems. We present
an analysis of the power excursion phenomenon due to the presence of AGC EDFA in Wavelength
Division Multiplexing (WDM) networks equipped with ROADMs. AGC operates by maintaining a
constant gain averaged across all wavelength channels in a link.

As a use case, we aim to determine the most suitable modulation format to transmit a wavelength
channel upon lightpath provisioning. In this Chapter, we present an insight of the capabilities of
SVM classifiers to perform multi-class optical parameter-based prediction of QoT. Our SVM model
was deployed with the Scikit-learn Machine Learning Python Application Programming Interface
(API) [242], and was trained to predict the OSNR levels of a wavelength channel upon installation.

5.3.2 Classifier Description

For our experiments, we used the toolkit developed by Pedregosa et al. [242], which consists in
an open-source API for ML models in Python. We have implemented the SVM classifier for the
multi-class scenario that can be described as:

min
w,b,⇣

1

2
wTw + C

nX

i=1

⇣i

subject to yi(w
T�(xi) + b) � 1� ⇣i,

⇣i � 0, i = 1, ..., n

(5.1)

For the given training vectors xi 2 Rp, i = 1, ..., n in two classes, and a set of labeled training
patterns y 2 {1,�1}n.

Then, the dual of this formulation is described as:

min
↵

1

2
↵TM↵� eT↵

subject to yT↵ = 0

0  ↵i  C, i = 1, ..., n

(5.2)

where e is a vector of all ones, M is an n-by-n positive semi-definite matrix, Mij ⌘ yiyjK(xi, xj),
where K(xi, xj) = �(xi)T�(xj) is the kernel function.

Last, the decision function is described as:
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sgn(
nX

i=1

yi↵iK(xi, x) + ⇢) (5.3)

where ⇢ is an independent parameter. The main regularisation parameter of this implementation
of SVM is C, which controls the cost of misclassification on the training data. Additionally, the
performance is tightly dependent on the kernel function and the kernel coefficient �. Because it is
hard to select an appropriate set of parameters and avoid over-/under-fitting the classifier model,
the SVM-API [242] extends a feature for an exhaustive search over specified parameter values for
an estimator. This allows for multiple parameters to be trained in parallel (i.e., multiple values of
C), to use those that best fit to the final model, enabling higher SVM classification accuracy.

5.3.3 Experiments and results

We follow up on the use case where we explore the potential of a QoT-E to determine the feasible
modulation format to be used for unestablished lightpaths. In Ghobadi et al. [225], such flexibility
of performance has proven to improve the usage of network capacity and its resources. Four QoT
classes are considered in that study: OSNR � 17 dB, � 14 dB, � 10 dB, corresponding to the feasible
modulation formats of 16 Quadrature Amplitude Modulation (16QAM), 8 Quadrature Amplitude
Modulation (8QAM) and Quadrature Phase Shift Keying (QPSK), respectively. For OSNR < 10
dB we assume the path is below the Bit Error Rate (BER) threshold. We established the minimum
OSNR threshold to 10 dB, hence, below this value we consider that no lightpath is feasible and label
it as the “none" class.

Considering the feature extraction and data generation processes presented in section 5.2.4, we
have generated 30,588 training samples, for which we balanced the distribution of the training set
among the four QoT classes to avoid learning bias. For the test samples, we followed a similar
approach, only that this time we considered random WL scenarios (i.e., N is allowed to take any
number between 1 and 90). In this way, we were able to analyse the potential of the multi-class
SVM classifier to predict OSNR-QoT levels of any WL, without having trained the system for all
cases. This gives an insight of the significance of active wavelength channels in a system to predict
the QoT of unestablished lightpaths. We generated 7,380 test samples. The total data set adds up
to 37,968 samples, which have been separated for training and test data with an 80-20% ratio.

The SVM implementation with the Python Scikit-learn API allows for an exhaustive search
over specified parameter values for an estimator, allowing for multiple parameters to be trained in
parallel, so the model can pick those that give the higher performance accuracy. We have trained
the model with the values: � = 0.001, 0.0001, 1e � 05, C = 10, 100, 1000, and two kernel functions:
Radial Basis Function (RBF) and a polynomial function. Then, we have also used a 5-fold cross-
validation for the splitting strategy. For details of the code implementation, refer to the Scikit-learn
documentation [242].

The multi-class SVM classifier is assessed for the four QoT classes; the receiver operating char-
acteristic (ROC) curve and confusion matrix are shown in Figure 5.4 and 5.5, respectively. ROC
depicts two metrics of assessment, i) contrasting the true positive rate (TPR) against the false
positive rate (FPR) of the attempts to predict any of the four QoT classes, and ii) the area un-
der the curve (AUC), which uses the value of 1 as the highest possible classification performance.
Our results demonstrate an exceptional performance for the case of QoT classes corresponding to

Alan A. Díaz Montiel Ph.D. Thesis



86 CHAPTER 5. COGNITIVE-ASSISTED CONTROL

Figure 5.4: Receiver operating characteristic.

Figure 5.5: Confusion Matrix.

16QAM and below OSNR threshold, whereas a lesser performance is achieved for 8QAM and QPSK.
Separately, the confusion matrix depicts the percentage of accurately classified OSNR levels for the
four classes, 16QAM, 8QAM, QPSK, and below OSNR threshold (none), respectively. The overall
accuracy obtained with this tool for the multi-class classification use case was 96.2%. It is important
to note that these results consider generalised prediction capabilities, given that the network system
topologies used to train and test the learning model were different.

Although the classification accuracy demonstrated exceptional performance, a significant pitfall
of this implementation of the multi-class SVM classifier is the computational time required to train
the model, given its complexity O(n3). Because we enabled the exhaustive parameter search function
in our implementation, the training process was even longer, taking about 10 minutes in a Linux
x86_64 server with 15-core Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20 GHz processors. However,
we are keen in continuing exploring SVM in the future, given that this time the classifier was used in
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the multi-class classification use case, for system setups with widely varied topological configuration
settings. Hence, we still consider relevant the study of the multiple relevant features in an optical
network concerning the power dynamics, to decrease the computational time required for SVM.

5.4 On the use of other supervised-learning algorithms

This time, we analyse the performance of various classification algorithms when considering both
topological features (e.g., number of nodes, fibre distance, amplifier span, etc.) and also the WL,
similarly to what we did in the previous section. With regard to the comparison of the ML models,
two crucial metrics are considered: the accuracy at classifying different classes of traffic (based
on OSNR levels), and the computational time required to train (build) the models, together with
the size of the data samples. For the execution of the experiments, we also used the Scikit-learn:
Machine Learning in Python tool [242].

5.4.1 Classification algorithms and optimisation techniques

This section describes the classification algorithms analysed in this study, where only supervised
learning-based algorithms were used. We have reviewed 11 algorithms, which we have split in two
classes: normal and ensemble-based. The normal class is composed by K-Nearest Neighbour (KNN),
Linear-Support Vector Machine (L-SVM), Radial Basis Function SVM (RBF-SVM), Logistic Regres-
sion (LR), Decision Tree (DT), Artificial Neural Network (ANN), Naive Bayes (NB), and Linear
Discriminant Analysis (LDA). The ensemble-based class is composed by Random Forest (RF),
AdaBoost, and Bagging. We briefly describe the main components of each algorithm and their
functionality, for details of the models we redirect to the documentation.

Furthermore, we wish to understand the scalability performance of the ML classifiers. For this
we used six sets of independent data samples of different size, following the data generation process
described in section 5.2.4. In total, we generated 294,343 data samples, which we split as 22.7 K,
42.3 K, 45 K, 51 K, 57.7 K, 75.6 K, for the six sets, respectively. Also, we balanced the input data
in order to mitigate misperformance of the classifiers.

Normal Classifiers

Normal classifiers consist in a group of well-known algorithms that are vastly used in the area of ML.
These act as individual processes, as opposed to optimisation strategies (ensemble algorithms) which
will be explained later in this section. The implementation of normal classifiers varies according to
the specific application needs. However, it is possible to generalise their individual performance and
compare them by looking at their time complexity. Following, we list the classifiers as:

K-Nearest Neighbours

This algorithm attempts to classify values in multiple classes by clustering the data and comparing
individual values to their K number of immediate neighbours.

Time complexity: O(kn2), for k -nearest-neighbours.
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Linear-Support Vector Machine

This algorithm attempts to learn from the input data by categorising and building different classes
(hyperplanes), which are subsequently used for future classification. It relies on regularisation para-
meters C and gamma to avoid misclassification and correlation of individual points, respectively. It
also transforms the problem with linear algebra - kernel functions.

Time complexity: O(nfeaturesn2
samples), with linear kernel function.

Radial Basis Function SVM

Same as before.

Time complexity: O(nfeaturesn2
samples), with radial basis kernel function.

Logistic Regression

This algorithm utilises a logistic function to build a model of dependent variables, more commonly
used for binary scenarios. However, by applying optimisation algorithms it is possible to use lo-
gistic regression for classifying multiple classes. Our implementation considers the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimisation algorithm.

Time complexity: O(n2), with L-BGFS.

Decision Tree

This algorithm consists in identifying relations between the input parameters and their output values
building comparison points (tree branches), to subsequently perform as a binary tree.

Time complexity: O(nfeaturesnsampleslog(nsamples)).

Artificial Neural Networks

This algorithm is based on a multi-layer perceptron, which learns correlations between inputs and
outputs and generates ‘weights’ for future inputs that are used for minimising the error of classific-
ation.

Time complexity: O(nmhkoi), for n training samples, m features, h neurons per layer, k hidden
layers, o output neurons, and i number of iterations.

Naive Bayes

This algorithm considers the assumption of conditional independence between the multiple fea-
tures given the values of the various classes. Our implementation of this algorithm considered the
likelihood of the sample features to be Gaussian.

Time complexity: O(nK), for K number of classes.
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Linear Discriminant Analysis

This algorithm operates by finding linear correlations of the input features.

Time complexity: O(n2
featuresnsamples).

Ensemble Classifiers

These types of classifiers are the result of the combination of various classifiers altogether. These
can be understood as optimisation techniques for algorithms that do not perform well for given use
cases, such as overfitting the data or performing weakly due to the lack of data. For the purposes of
this study, we reviewed the ensemble classifiers of Random Forests, Boosting and Bagging. The time
complexity of these methods is directly related to the classifiers being considered for the ensemble
composition.

Random Forest

This ensemble learning method for classification consists in the combination of multiple decision
trees at training time, and operates the classification of various classes by selecting the classifica-
tion/prediction mode among the decision trees.

Ada Boost

This algorithm, adaptive boosting (AdaBoost), operates by combining multiple “weak" classifiers in
order to create a much stronger/accurate tool.

Bagging

This algorithm, bootstrap aggregation (bagging), operates by bootstrapping (random sampling with
replacement) multiple models in parallel, and come up with hypothesis of more accurate classifica-
tions, making a decision based on the most accurate hypothesis.

5.4.2 Experiments and results

In order to speed up the execution time, our experiments were run on a Linux x86_64 server with 10
Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20 GHz processors. For instance, it enables the declaration
of multiple parameters for training the models. Additionally, it enables a dynamic search of the best
possible parameters to train specific models for given use cases with the GridSearchCV function.
Thus, after a wide search of such parameters for our use case, we found those that enhanced a mean
tolerable prediction accuracy among the various classifiers, which are depicted in Table 5.2.

The visual representation of the results of the normal classifiers are presented in Figures 5.6a
and 5.6b, showing the training computational time and the F1-score against the multiple sample
sizes, respectively. We can demonstrate the trade-off between high classification accuracy and high
training computational time, which is a well-known feature among these type of classifiers.
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Table 5.2: Parameters used for training the algorithms.

Algorithm Model Parameters
K-Nearest Neighbours K:1

Linear SVM kernel:linear, gamma:100, C:0.0001
RBF SVM kernel:rbf, gamma:100, C:0.0001

Logistic Regression solver:lbfgs, multiclass:multinomial, random_state:1
Decision Tree max depth:5

Artificial Neural Network alpha:1, max iter:10000
Naive Bayes default

Random Forest max depth:5, estimators no.:10, max features:1
AdaBoost estimators no.:10
Bagging estimators no.:100, max samples:0.8, max features:0.8

(a) (b)

Figure 5.6: (a) Training time of each classifier. (b) F1-score of each classifier.

However, the novelty of this analysis focuses on the ability for these statistical tools to learn
from our selected optical domain features (i.e., active WL) and the topological configurations (i.e.,
number of nodes and fiber spans) together. Taken these under consideration, the comparison shows
that some algorithms perform better than the others, in some cases achieving up to 90% F1-score.
While in the literature we can find similar results achieving higher prediction accuracy [203], [201],
[196], our analysis considers EDFA power excursions and nonlinearities (i.e., Stimulated Raman
Scattering (SRS)) that introduce power dynamics that are harder to predict. Thus, we believe the
results can be further improved in the future by better depicting the physical layer parameters for
training the algorithms.

In addition, there are two main patterns we can identify in Figure 5.6a. i) Contrary to an
expected passive incremental accuracy performance as the volume of the sample size increases, our
results show a decreased performance in the classifiers that can achieve the highest accuracy after
45,000 samples, and an increased/convergent performance in the classifiers that achieve a higher
accuracy up to 70%. ii) In the figure, we can also perceive a group-like behaviour among some of
the classifiers. Neglecting the RBF-SVM model (due to its deficient performance), we can see two
groups, one consisting of the classifiers KNN, L-SVM, DT and NB; and the second with LR, ANN
and LDA. While the F1-score achieved by the former does not go higher than 70% in our experiments,
the latter group show an F1-score performance of almost 90%. By our last sample data (75.6K), all
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(a) (b)

Figure 5.7: (a) Training time of each ensemble classifier. (b) F1-score of each ensemble classifier.

of the classifiers seem to begin convergence. Intrinsically, each of these are mathematically-defined
in different forms, however, we require further exploration that could justify a correlation with the
manipulation of the input data to each of them and their performance when attempting to predict
unestablished lightpaths as in our use case.

The performance of the ensemble classifiers are depicted in Figure 5.7a and 5.7b. As for the
normal classifiers, we can also see a trade-off between training computational time and the classi-
fication performance. While the results from the AdaBoost and the Bagging models were expected,
the low performance of the Random Forest algorithm was not such. However, these results claim to
be implementation-dependent, and due to the reasonable performance of the Decision Tree classifier
in the previous analysis, we would further explore the implementation of Random Forest. We have
summarised these results in Table 5.4.

KNN L-SVM RBF-SVM LR
*SS F1-S (%) TT F1-S (%) TT F1-S (%) TT F1-S (%) TT

22,723 0.34 2.09s 0.41 36.03s 0.16 56.05s 0.38 3.24s
42,320 0.64 4.24s 0.6 1.44m 0.25 2.32m 0.76 9.1s
44,952 0.66 4.45s 0.66 1.66m 0.25 2.82m 0.85 6.31s
50,984 0.62 5.14s 0.59 1.96m 0.25 3.33m 0.75 11.49s
57,740 0.66 5.72s 0.61 2.20m 0.29 3.99m 0.73 8.26s
75,624 0.65 8.6s 0.63 3.95m 0.29 7.87m 0.72 13.27s

DT ANN NB LDA
*SS F1-S (%) TT F1-S (%) TT F1-S (%) TT F1-S (%) TT

22,723 0.46 0.27s 0.39 1.55m 0.45 0.23s 0.39 0.37s
42,320 0.59 0.44s 0.79 2.17m 0.54 0.37s 0.75 0.60s
44,952 0.6 0.48s 0.87 1.97m 0.6 0.42s 0.81 0.61s
50,984 0.57 0.55s 0.77 2.62m 0.52 0.40s 0.73 0.69s
57,740 0.58 0.90s 0.74 2.16m 0.58 0.41s 0.7 0.69s
75,624 0.59 1.04s 0.74 2.92m 0.58 0.61s 0.69 0.86s

Table 5.3: Results of the F1-score and training computation time for each classifier against the
sample sizes. *Note: SS: sample size; F1-S: F1-score; TT: training time.
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5.5 Summary

We have analysed the feasibility of supervised-learning algorithms to assist QoT-E modules as part of
optical control systems. We presented a study focusing on the SVM algorithm where we addressed
its definition, weaknesses and strengths, as well as a performance analysis of its capabilities for
handling static and dynamic optical domain data. In addition, we presented another study where
we analysed the performance of multiple supervised-learning algorithms handling the same data as
with the previous study. In that work, we presented each algorithm with their implementation time
complexity and examples of configurations.

In the work related to the usage of the SVM algorithm. We have studied the potential of deploy-
ing QoT-E tools with a multi-class SVM classifier to assist the routing and wavelength assignment
module of future optical control systems, in order to improve the management of network resources.
Our experiments demonstrated high performance accuracy when using information of the active
wavelength channels in a network to train the classifier. Concretely, our algorithm performed with
an overall accuracy of 96.2% for the multi-class classification use case. Interestingly, the assessment
considered dynamic data in the form of the active WL, and we combined different features to create
significant inputs to the classifier. We have also given an insight to the potential of this type of
learning model to be trained and tested for systems consisting in different topological configurations,
overcoming the limitations of system dependent models. Nonetheless, our system still required a
number of data samples above 30 thousand, which poses implementation challenges in a physical
testbed. Because of that, our future work will concentrate in reducing the number of data samples
by analysing the potential of other optical network features, which would enhance the reduction of
data samples.

In the work related to the performance analysis of multiple ML algorithms, we assessed each
algorithm to compute the prediction of OSNR levels of newly established lightpaths in optical
networks with different configuration settings and dimensions. We have found that a group of the
investigated algorithms was capable of performing with an F1-score of almost 90%. This group was
conformed by the Logistic Regression (LR), ANN and LDA. However, we have also identified a group
conformed by the KNN, L-SVM, DT and NB, which did not achieve an acceptable performance,
with an overall accuracy not higher than 70%.

Our results suggest that the implementation of such algorithms to complement the decision-
making processes of control systems is promising, but requires further analysis of the physical layer
features in the optical domain. This is mainly due to the incapacity for the learning models reviewed
to handle the unexpected behaviours and nonlinearities encountered in optical network systems.
Finer tuning of the performance parameters is also required.

Furthermore, we have found an interesting behavioural correlation between some of the classifiers
that we will further explore in the future. Also, while in our implementation none of the classifiers
achieved a F1-score performance above 90%, we believe that through finer tuning and with the im-
plementation of more complex techniques, such as deep-/reinforcement-/transfer-learning, we could
achieve better performance and find a better suitability for the metro-access transport networks
scenario.



6 Conclusions and Future Directions

6.1 General conclusions

In this thesis, we have introduced a novel software system, Mininet-Optical, that enhances the
development, testing and prototyping of control plane procedures (e.g., algorithms and systems) in
optical disaggregated networks. We have explained the software architecture of the system and the
algorithms that enable the simulation of Optical Line Systems (OLSs) performance. For the latter,
we have described the mathematical models that describe the multiple physical effects occurring in
an optical transmission, complying with state-of-the-art OLS equipment, and, we have shown the
validation procedures against both analytical models and testbeds, showing that Mininet-Optical
performs comparably to those systems. Mininet-Optical is the first tool that enables real optical
control plane assessment in a virtual environment. As a consequence, we expect that the system
will play an important role in the next years of the evolution of disaggregated optical networks.
Throughout this thesis, we have used Mininet-Optical to model the network systems that we used
to assess our optical control plane research.

We focused primarily on the study and development of intelligent Quality of Transmission Es-
timation (QoT-E) systems as integrated systems of the optical control plane. Thus, we have demon-
strated the effectiveness of different techniques to develop these tools. Firstly, we developed a QoT-E
system based on well-known analytical models of the physical effects occurring in optical networks,
and studied the impact on QoT-E for lightpath installation due to the component-dependent per-
formance (e.g., wavelength-dependent gain of EDFAs). We have shown that lightpath provisioning
procedures assisted with QoT-E can help reduce the application of OSNR margins. In addition,
we have shown that the inaccurate estimation of these transmission margins can constrain the net-
work capacity utilisation. In particular, we have shown that when we follow a conservative margin
strategy (pessimistic strategy), the installation of lightpaths get compromised, reducing lightpath
utilisation. On the other hand, an aggressive margin strategy (optimistic strategy) can result in
the over-provisioning of resources that are not suitable for transmission, resulting in a misuse of
network resources. In our studies, we have found that even at the optimum with QoT-E-assisted
control planes, the loss of capacity due to the use of transmission margins, with respect to the
maximum capacity, could still be of the order of 5 - 17%.

Moreover, we have also demonstrated the performance of three Generalized Optical Signal to
Noise Ratio (gOSNR) QoT-E strategies relying on active monitoring to optimise prediction accuracy,
integrated within a real optical control system evaluated with Mininet-Optical. The first strategy
relied on using Optical Signal to Noise Ratio (OSNR) monitors to examine the power and Amplified
Spontaneous Emission (ASE) noise levels to adjust the QoT-E estimations; the second strategy relied
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on OSNR monitors also, but this time we made use of the power level monitored data to compute
a more accurate approximation of the Nonlinear Interference (NLI) noise; and the third strategy
relied on reference receivers capable of recovering gOSNR estimates. Then, we have examined the
impact of placing the different monitoring nodes at different locations of an optical link. In fact,
we have shown that by placing either type of OPM node at periodic locations of an optical link we
can reduce QoT-E errors by 0.3 - 2.0 dB. However, we have concluded that OSNR monitors provide
limited information for correct estimation of QoT.

In addition to our analytical modelling-based QoT-E systems, we have also shown performance
evaluations of Machine-Learning (ML) algorithms to predict Quality of Transmission (QoT). We
have used Mininet-Optical to generate large amounts of synthetic data that was used to train and
test multiple algorithms. First, we have shown that combining basic physical layer information,
such as the number of nodes in a link, with the wavelength or frequency description of the active
channels in a point-to-point connection, it is possible to achieve gOSNR estimation accuracy of
96.2% with a Support Vector Machine (SVM) algorithm. Then, we have also shown a performance
evaluation of other ML algorithms when handling physical layer information of optical networks,
and presented an analysis of the suitability of these to be implemented in optical control planes. We
evaluated the algorithms: K-NN, L-SVM, RBF-SVM, Logistic Regression, Decision Trees, Artificial
Neural Network (ANN), Naive Bayes, Linear Discriminant Analysis, Random Forest, Ada-Boost
and Bagging techniques. In our studies, we have found that as these algorithms require large
amounts of data, their development and deployment is constrained to testbeds capable of collecting
the data. Although, if it is possible to collect large amounts of data from an OLS, these systems
can outperform analytical models. Moreover, we have concluded that due to the fast times of model
development, algorithms like Decision Trees, Naive Bayes, Logistic Regression and K-NN could be
of use if implemented appropriately.

We conclude that the optical control plane can indeed take advantage of analytical and cognition-
based modelling systems of the physical layer, in order to improve the management of network
resources through better fault management solutions and dynamic lightpath provisioning. Addi-
tionally, the inclusion of monitoring capabilities at intermediate locations of an optical link is being
proven to enhance the performance of QoT-E systems, thus it should be of interest the development
of monitoring systems within disaggregated optical components. Nonetheless, there are still many
open challenges and discussions.

6.1.1 Continuation of studies

Mininet-Optical is becoming an open-source project that continues to grow. Accordingly, we will
continue to develop features that enhance the development, testing and prototyping of optical con-
trol plane procedures. For instance, we will develop compatible Southbound Interface (SBI) in-
terfaces with state-of-the-art models such as OpenROADM, T-API and NETCONF. In addition,
we want to study the integration of other virtualised networking functions in our control plane,
such as multi-layer (e.g., electronic and optical) dynamic switching. From an internal system (soft-
ware) composition, we will enable the modularisation of optical network components, to enable
performance tests of different internal node compositions (i.e., defining multiple ROADM models).
Consequently, Mininet-Optical could be used as a sandbox to create virtual twins of real testbeds,
enhancing the evaluation of control plane tests. Moreover, we want to further integrate our system
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with popular SDN controller frameworks such as Open Network Operating System (ONOS). And
lastly, we also want to continue to validate Mininet-Optical against additional hardware systems.

Furthermore, we will continue to investigate the development of QoT-E systems assisted with
both active monitoring capabilities and ML algorithms. For the former, we want to better under-
stand the real economical implications for enabling active monitoring of optical transmissions in the
context of disaggregated optical networks, and also further investigate what information is more
relevant to monitor in order to improve QoT-E performance. For the latter, we want to investigate
sophisticated ML methods such as transfer and reinforcement learning to combine Mininet-Optical
data with physical data, to enhance our QoT-E algorithms.

6.2 Future directions

Moving forward, it is necessary to continue to validate and develop communication protocols en-
abling SBI connections between the optical Software-Defined Networking (SDN) control plane and
white-box optical equipment. That is, further validation of the models OpenFlow, OpenROADM,
OpenConfig, T-API, Transponder Abstraction Interface (TAI). Moreover, while ONOS has been
widely accepted as the standard Network Operating System (NOS) system due to its closeness to
the Optical Network Foundation (ONF), the integration of optical disaggregated equipment with
other systems such as OpenDayLight will need to be further evaluated.

Also, the development of cognition-assisted QoT-E systems is an area of research that requires
further investigation looking at the integration of these within the optical control plane. This also
needs to be evaluated in the context of central offices re-architected as a data centre, considering
the convergence of networking layers.
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