Increased Salt Intake for Orthostatic Intolerance Syndromes: A Systematic Review and Meta-Analysis
Elaine A. Loughlin, MB, BCh, BAO,a,b Conor S. Judge, MB, BCh, BAO,a,b,c Sarah E. Gorey, MB, BCh, BAO,a,b Maria M. Costello, MB, BCh, BAO,a,b Robert P. Murphy, MB, BCh, BAO,a,b Ruairí F. Waters, MB, BCh, BAO,a,b Diarmuid S. Hughes, MB, BCh, BAO,a,b Rose Ann Kenny, MD,d Martin J. O’Donnell, PhD,a,b Michelle D. Canavan, PhD,a,b
aHRB-Clinical Research Facility, National University of Ireland Galway, Galway, Ireland; bGalway University Hospital, Newcastle Road, Galway, Ireland; cWellcome Trust – HRB, Irish Clinical Academic Training, Dublin, Ireland; dMercer’s Institute for Successful Ageing, St. James’s Hospital, Dublin, Ireland.

ABSTRACT
BACKGROUND: Guidelines recommend increased salt intake as a first-line recommendation in the management of symptomatic orthostatic hypotension and recurrent syncope. There have been no systematic reviews of this intervention. We sought to summarize the evidence for increased salt intake in patients with orthostatic intolerance syndromes.
METHODS: We conducted a systematic review and meta-analysis of studies in PubMed, EMBASE, and CINAHL. Interventional studies that increased salt intake in individuals with orthostatic intolerance syndromes were included. Primary outcome measures included incidence of falls and injuries, and rates of syncope and presyncope. Secondary outcome measures included other orthostatic intolerance symptoms, blood pressure, and heart rate.
RESULTS: A total of 14 studies were eligible, including participants with orthostatic hypotension, syncope, postural orthostatic tachycardia syndrome, and idiopathic orthostatic tachycardia (n = 391). Mean age was 35.6 (± 15) years. All studies were small and short-term (<60 mins-90 days). No study reported on the effect of increased salt intake on falls or injuries. Meta-analysis demonstrated that during head-up tilt, mean time to presyncope with salt intake increased by 1.57 minutes (95% confidence interval [CI], 1.26-1.88), mean systolic blood pressure increased by 12.27 mm Hg (95% CI, 10.86-13.68), and mean heart rate decreased by −3.97 beats per minute (95% CI, −4.08 to −3.86), compared with control. Increased salt increased supine blood pressure by 1.03 mm Hg (95% CI, 0.81 to 1.25). Increased salt intake resulted in an improvement or resolution of symptoms in 62.3% (95% CI, 51.6 to 72.6) of participants in short-term follow-up studies (mean follow-up of 44.3 days, 6 studies; n=91). Methodological quality of studies were low with high statistical heterogeneity in all meta-analyses.
CONCLUSIONS: Our meta-analysis provides low-quality evidence of a short-term improvement in orthostatic intolerance with increased salt intake. There were no clinical trials demonstrating the efficacy and safety of increased salt intake on long-term clinical outcomes. Overall, there is a paucity of clinical trial evidence to support a cornerstone recommendation in the management of orthostatic intolerance syndromes.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/) • The American Journal of Medicine (2020) 133:1471–1478

KEYWORDS: Falls; Orthostatic hypotension; Orthostatic intolerance; Salt; Syncope

Funding: This work was supported by a European Research Council - Horizon 2020 grant. CSJ was supported by the Irish Clinical Academic Training (ICAT) Programme, the Wellcome Trust and the Health Research Board (grant number 203930/B/16/Z), the Health Service Executive, National Doctors Training and Planning, and the Health and Social Care, Research and Development Division, Northern Ireland.

Conflicts of Interest: None.

Authorship: All authors had access to the data and a role in writing this manuscript.

Requests for reprints should be addressed to Elaine Loughlin, MB, BCh, BAO, HRB Clinical Research Facility, NUIG, and Galway University Hospital, Newcastle Road, Galway, Ireland.

E-mail address: elaine_loughlin@yahoo.ie

0002-9343© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/) https://doi.org/10.1016/j.amjmed.2020.05.028
INTRODUCTION
Orthostatic hypotension is defined as a sustained fall in systolic blood pressure of at least 20 mm Hg or a fall in diastolic blood pressure of at least 10 mm Hg within 3 minutes of standing. Orthostatic hypotension is a common condition affecting 18.4% of community-dwelling older adults and 22.2% of adults in long-term care facilities. However, prevalence varies across studies. It can be a debilitating disorder with an increased risk of falls, major injury, and increased morbidity and mortality. Management of this condition is challenging, with many therapies having adverse side effects, including supine hypertension.

Increased salt intake is a cornerstone recommendation in the management of orthostatic intolerance syndromes across clinical guidelines, including a Class I (Level C) recommendation in the European Society of Cardiology-Treatment of Syncope: Orthostatic Hypotension guidance. However, guidelines vary on the amount of salt recommended (6-10 g/d), none reference clinical trial evidence to support this recommendation, and some include statements regarding the uncertain benefits and risks of long-term treatment with high salt intake (Table 1). Conversely, hypertension and cardiovascular prevention guidelines recommend low salt intake (<5 g/d).

Accordingly, an estimate of the net benefit of increased salt intake in patients with orthostatic hypotension intolerance syndromes is required. To address this gap, we performed a systematic review and meta-analysis to determine the effectiveness and safety of increased salt intake among patients with orthostatic intolerance syndromes.

METHODS
Objectives
We aimed to synthesize the evidence of the efficacy and safety of increased salt intake as a therapeutic intervention in patients with orthostatic intolerance syndromes.

Preparing Our Systematic Review
We adhered to the Cochrane Handbook for Systematic Reviews of Interventions.14 The review protocol was registered with PROSPERO, CRD42019121330.

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Society of Cardiology, 2018: Guidelines for the diagnosis and management of syncope</td>
<td>Orthostatic Hypotension/Orthostatic Intolerance: 2-3 L of fluids and 10 g of sodium chloride per day.</td>
</tr>
<tr>
<td>American Journal of Cardiology, 2017: ACC/AHA/HRS Guideline for the Evaluation and Management of Patients With Syncope</td>
<td>Vasovagal Syncope or Neurogenic Orthostatic Hypotension: 6-9 g (100-150 mmoL) of salt per day (Class IIb recommendation).</td>
</tr>
<tr>
<td>The National Institute for Health and Care Excellence (NICE), 2015: Orthostatic hypotension due to autonomic dysfunction: midodrine</td>
<td>Increased water and salt ingestion (no guidance on amount).</td>
</tr>
<tr>
<td>American Society of Hypertension (ASH) Guidelines, 2013: ASH Position Paper: Evaluation and Treatment of Orthostatic Hypotension</td>
<td>6-10 g of sodium chloride and 1.5-2 L of water per day.</td>
</tr>
<tr>
<td>American Family Physician, 2011: Evaluation and Management of Orthostatic Hypotension</td>
<td>Sodium may be supplemented by adding extra salt to food or taking 0.5- to 1.0-g salt tablets. A 24-h urine sodium level can aid in treatment. Patients with a value <170 mmoL per 24 hours should be placed on 1-2 g of supplemental sodium 3 times per day and be re-evaluated in 1-2 weeks, with the goal of raising urine sodium to between 150 and 200 mEq. At least 8 g (150 mmoL) of sodium chloride per day.</td>
</tr>
</tbody>
</table>

*Table shows the available guidelines on the management of orthostatic intolerance syndromes. The major guidelines are listed in the left-hand column and the specific recommendation on the right.

CLINICAL SIGNIFICANCE
- In patients with orthostatic intolerance syndromes, systematic review and meta-analysis showed that increased salt intake causes a short-term increase in blood pressure and time to presyncope during orthostasis.
- Increased salt intake improved symptoms of orthostatic intolerance in short-term studies.
- There is no report on the effect of long-term increased salt intake on falls or cardiovascular risk. Studies are short-term, small, and of low methodological quality.
Search Strategy and Selection Criteria

We searched PubMed, EMBASE, and CINAHL databases from database inception to January 17, 2019. We also searched the bibliographies of retrieved review articles from PubMed to identify additional relevant papers. Reviewers independently screened titles and abstracts using the Rayyan web software. Following this, full-text articles were assessed for eligibility, and disagreements were resolved by consensus.

Eligibility Criteria

Studies were eligible if they included patients with orthostatic hypotension, falls, syncope or presyncope resulting from orthostatic intolerance, or reflex syncope. We also included postural orthostatic tachycardia syndrome and orthostatic tachycardia due to the similarities in treatment with orthostatic hypotension, thereby including a diverse group of orthostatic intolerance syndromes. The intervention of interest was increased salt intake in the form of oral salt supplementation or intravenous saline infusion. Studies required either a placebo or alternative control group (or period) and at least 1 of the following outcome measures: rate of falls or injuries; rate of syncope or presyncope; change in symptoms; change in orthostatic intolerance; change in supine or orthostatic systolic blood pressure; change in supine or orthostatic heart rate; or adverse effects. We included all interventional clinical studies of human participants published in peer-reviewed journals in English.

Data Extraction and Measurements

Data were extracted by reviewers independently in an unblinded fashion, using a predetermined standardized data extraction form. Our primary outcome measures were the effect of salt on falls or injuries and rates of syncope or presyncope. Secondary outcome measures included the effect of increased salt intake on symptoms and other measures of orthostatic intolerance, the effect on physiological parameters including changes in blood pressure and heart rate, and the adverse effects of increased salt intake.

Quality Assessment and Publication Bias

The quality of the evidence and recommendations of the included studies were assessed using the GRADE guidelines and rated as very low, low, moderate, or high-quality.

Data Synthesis and Statistical Analysis

We collected descriptive data for a Characteristics of Studies table. The standardized mean difference (SMD) associated with increased salt intake was calculated for head-up tilt orthostatic tolerance or time to presyncope, seated or supine systolic blood pressure, and seated or supine heart rate. The mean difference following intervention was calculated for head-up tilt/standing systolic blood pressure, and head-up tilt/standing heart rate. The effect of the intervention on symptoms of orthostatic intolerance, and adverse effects were recorded. Weighted pooled treatment effects were calculated using a fixed effects (FE) model. The variability across studies as a result of heterogeneity was estimated with the test for heterogeneity (I² statistic). Statistical analysis was performed using the Metafor package on R Statistical Software (V3.4.3).

RESULTS

Study Selection

Our initial search retrieved 1168 articles. Following review, 14 studies including 391 participants satisfied full eligibility criteria; see the meta-analyses of observational studies in epidemiology (MOOSE) flow diagram (Supplementary Figure S1, available online).

Description of Included Studies

We included 11 single-arm interventional studies, 1 randomized double-blind placebo-controlled trial, 1 randomized crossover trial, and 1 open-label randomized trial. We report characteristics of included studies in Table 2. A variety of methods were used to investigate the effect of increased salt intake on blood pressure. Ten studies used a head-up tilt method, 2 used an active stand method, and 2 assessed seated or supine blood pressure only. The method of carrying out a head-up tilt differed across studies (Supplementary Table S1, available online).

Characteristics of Participants

Eleven studies included adults (n = 302), and 3 included children (n = 89). Mean age was 35.6 (± 15) years (range: 11-65), and 60.1% were female. Participants had a history of syncope or near-syncope (73.6%); orthostatic intolerance, orthostatic hypotension or orthostatic tachycardia (16.9%); postural orthostatic tachycardia syndrome (6.9%); 2.6% were healthy participants. Most studies excluded patients with comorbidities, and some stopped pre-existing medications (n=99) (Supplementary Table S2, available online).

Intervention

Increased salt intake was achieved through oral intake in 11 studies (table salt or slow sodium tablets) (range 1.2-10.5 g) and intravenously in 3 studies, using a saline infusion (6.3-9 g). Three studies included a control group. All other studies compared to a control period before salt intervention. Four studies assessed the immediate effect of increased salt intake (n=84, <60 minutes), 4 studies reported the effect over days (n=118, 3-10 days), and 6 studies evaluated the effect over weeks (n=189, 30-90 days). Mean follow-up was 26.9 days (range 0-90) (Table 2).
Primary Outcomes

Effect of Salt Intake on Falls or Injuries. No study reported on the effect of increased salt intake on the rate of falls or injuries.

Effect of Salt Intake on Orthostatic Tolerance and Time to Presyncope. Five studies reported data that were amenable to meta-analysis. Pooled analysis of these 5 studies (n = 164; syncope [n = 152] and orthostatic hypotension [n = 12]) showed higher salt intake increased orthostatic tolerance or time to presyncope by 1.57 minutes (95% confidence interval [CI], 1.26-1.88) \(I^2 = 97.2\% \) (Figure 1). A pooled analysis looking at individual populations (i.e., syncope vs orthostatic hypotension) was not possible because of low study numbers.

Secondary Outcomes

Effect of Increased Salt Intake on Symptoms of Orthostatic Intolerance. Among studies reporting on orthostatic intolerance symptoms following increased salt intake (6 studies, 91 participants), 62.3% (95% CI, 51.6 to 72.6), \(I^2 = 97.2\% \), reported improvement (or resolution) in symptoms after a mean follow-up of 44.3 days. No study reported on symptoms beyond 60 days. In the only randomised placebo controlled trial (n=20) reporting on symptoms, symptomatic improvements were reported in 8/10 in the salt supplement group and 3/10 in the placebo group, relative risk (RR) 2.67 (95% CI, 0.98 to 7.22) after 8 weeks. One study used a questionnaire which was reported to be of demonstrated validity and reliability, and I studied used the Fatigue Impact Scale.

Changes in Physiological Parameters. Effect of Increased Salt Intake on Mean Change in Supine Blood Pressure. Pre- and post-intervention seated or supine systolic blood pressure was reported in 6 studies, which were amenable to meta-analysis (n=174; orthostatic hypotension or orthostatic tachycardia [n = 28], syncope [n = 119], postural orthostatic tachycardia syndrome [n = 27]). Increased salt intake was associated with a small increase in seated or supine systolic blood pressure: 1.03 mm Hg (95% CI, 0.81-1.25), \(I^2 = 92.8\% \) (Figure 2).

Effect of Increased Salt Intake on Mean Difference in Mean Change of Head-up Tilt or Standing Systolic Blood Pressure. Mean change in head-up tilt or standing systolic blood pressure before and after increased salt intake was reported for 3 studies (n=45; syncope [n = 12], orthostatic hypotension [n = 33]). Thus, as a result of low trial numbers, this precluded separating based on individual intolerance syndromes. Looking at individual studies, Jacob studied a population with orthostatic intolerance and demonstrated an increase in systolic blood pressure of 11 mm Hg; Pechère-Bertschi studied an orthostatic hypotension population and recorded an increase of 12.8 mm Hg; and Burklow studied a population with unexplained syncope and found a larger increase of 19.3 mm Hg. Pooled analysis across these syndromes demonstrated that following increased salt intake, there was a 12.27 mm Hg increase in the mean change in head-up tilt or standing systolic blood pressure (95% CI, 10.86-13.68), \(I^2 = 74.1\% \) (Figure 3).

Effect of Increased Salt Intake on Mean Change in Seated or Supine Heart Rate. Mean change in seated or supine

Table 2 Characteristics of Included Studies*

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Sample</th>
<th>Design</th>
<th>Participants</th>
<th>Active</th>
<th>Control</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangru</td>
<td>1995</td>
<td>50</td>
<td>Single-Arm Trial</td>
<td>Syncope</td>
<td>6.3 g NaCl</td>
<td>Before Salt</td>
<td><1 day</td>
</tr>
<tr>
<td>El-Sayed</td>
<td>1996</td>
<td>11</td>
<td>Single-Arm Trial, Open</td>
<td>Syncope</td>
<td>7 g NaCl</td>
<td>Before Salt</td>
<td>56 days</td>
</tr>
<tr>
<td>El-Sayed</td>
<td>1996</td>
<td>20</td>
<td>Randomized, Double-Blind</td>
<td>Syncope</td>
<td>7 g NaCl</td>
<td>Placebo</td>
<td>56 days</td>
</tr>
<tr>
<td>De Lorenzo</td>
<td>1997</td>
<td>22</td>
<td>Single-Arm Trial</td>
<td>Orthostatic Hypotension</td>
<td>1.2 g NaCl</td>
<td>Before Salt</td>
<td>56 days</td>
</tr>
<tr>
<td>Jacob</td>
<td>1997</td>
<td>13</td>
<td>Single-Arm Trial</td>
<td>Orthostatic Hypotension</td>
<td>9 g NaCl</td>
<td>Before Salt</td>
<td><1 day</td>
</tr>
<tr>
<td>Mtinangi</td>
<td>1998</td>
<td>6</td>
<td>Single-Arm Trial</td>
<td>Orthostatic Hypotension</td>
<td>7 g NaCl</td>
<td>Before Salt</td>
<td>3 days</td>
</tr>
<tr>
<td>Mtinangi</td>
<td>1998</td>
<td>6</td>
<td>Single-Arm Trial</td>
<td>Orthostatic Hypotension</td>
<td>7 g NaCl</td>
<td>Before Salt</td>
<td>7 days</td>
</tr>
<tr>
<td>Pechère-Bertschi</td>
<td>1998</td>
<td>20</td>
<td>Single-Arm Trial</td>
<td>Orthostatic Hypotension</td>
<td>6 g NaCl</td>
<td>10 Healthy Patients</td>
<td>8 days</td>
</tr>
<tr>
<td>Burklow</td>
<td>1999</td>
<td>12</td>
<td>Single-Arm Trial</td>
<td>Syncope</td>
<td>9 g NaCl</td>
<td>Before Salt</td>
<td><1 day</td>
</tr>
<tr>
<td>Cooper</td>
<td>2002</td>
<td>98</td>
<td>Single-Arm Trial</td>
<td>Syncope</td>
<td>6.1 g NaCl</td>
<td>Before Salt</td>
<td>90 days</td>
</tr>
<tr>
<td>Claydon</td>
<td>2004</td>
<td>11</td>
<td>Single-Arm Trial</td>
<td>Syncope</td>
<td>6 g NaCl</td>
<td>Before Salt</td>
<td>60 days</td>
</tr>
<tr>
<td>Raj</td>
<td>2006</td>
<td>9</td>
<td>Randomized, Crossover</td>
<td>Orthostatic Hypotension</td>
<td>2 g NaCl</td>
<td>473 mL Distilled Water</td>
<td><1 day</td>
</tr>
<tr>
<td>Bellard</td>
<td>2007</td>
<td>86</td>
<td>Randomized, Open Trial</td>
<td>Syncope</td>
<td>1.5 g NaCl</td>
<td>Control Group</td>
<td>10 days</td>
</tr>
<tr>
<td>Zhang</td>
<td>2012</td>
<td>27</td>
<td>Single-Arm Trial</td>
<td>Postural Orthostatic</td>
<td>10.5 g NaCl for 70 kg</td>
<td>Before Salt</td>
<td>30 days</td>
</tr>
</tbody>
</table>

*Table showing characteristics of included studies. Author name is listed in the first column, followed by year of publication, sample size, study design, participants studied, active arm, control period/group, and length of follow-up.

\(\text{NaCl} = \text{Sodium Chloride.} \)
Figure 1 Forest plot of standardized mean change in head-up tilt orthostatic tolerance/time to presyncope following administration of salt. Forest plot showing the effect of salt intervention during head-up tilt on orthostatic tolerance/time to presyncope, n=164. The squares and bars represent the mean values and 95% confidence intervals of the effect sizes, and the size of the squares reflects the weight of the studies. The combined effect appears as a diamond and the vertical dashed line represents the line of no effect.

Figure 2 Forest plot of standardized mean change in seated or supine systolic blood pressure following administration of salt. Forest plot showing the effect of salt intervention on seated or supine systolic blood pressure, n=174. The squares and bars represent the mean values and 95% confidence intervals of the effect sizes, and the size of the squares reflects the weight of the studies. The combined effect appears as a diamond and the vertical dashed line represents the line of no effect.
heart rate before and after intervention was available for 5 studies, and these were pooled for analysis (n=60; syncope [n = 32] and orthostatic hypotension or orthostatic tachycardia [n = 28]). Mean seated or supine heart rate did not change significantly after salt intervention: -0.08 (95% CI, -0.47 to 0.30), I^2: 67.9%; (Supplementary Figure S2, available online).

Effect of Increased Salt Intake on Mean Difference in the Mean Change in Head-up Tilt or Standing Heart Rate. Mean change in head-up tilt or standing heart rate before and after increased salt intake was reported in 4 studies (n=79; syncope [n = 66] and orthostatic tachycardia [n = 13]). Pooled analysis demonstrated that following increased salt intake, there was a -3.97 beats/min change in the mean change in head-up tilt or standing heart rate (95% CI, -4.08 to -3.86), I^2: 99.7% (Supplementary Figure S3).

Adverse Effects of Increased Salt Intake. The safety and adverse effects of increased salt intake were reported in 6 studies, n=72. Of those, 4 reported no adverse events with increased salt intake (n=32). 21,22,27 1 reported poor tolerance in 2 of 30 patients, 26 and 1 reported that most patients experienced nausea with salt capsules (n=10). 22 Supine hypertension as a potential adverse effect of salt supplementation is reported on above. No study addressed the long-term cardiovascular risk or other safety outcomes of increased salt intake.

Quality of Evidence/Publication Bias
The quality of the evidence was reported as “very low”/”low.” The small participant numbers and poor methodological quality contributed to this assessment. Only 3 trials were randomized. There was no blinding of outcome assessment. There was substantial or considerable heterogeneity among studies as demonstrated by the I^2. Publication bias could not be assessed because there were less than 10 studies available in each of the outcome measures.

DISCUSSION
Our systematic review supports a short-term pressor effect of increased salt intake in the management of orthostatic intolerance syndromes. Pooled analyses indicate orthostatic tolerance or time to presyncope and systolic blood pressure were increased during orthostatic stress over a follow-up of 3-90 days. Symptom burden was also improved in small, short-term trials (longest follow-up of 8 weeks), but most studies did not include a control group. Increased salt intake resulted in a small increase in short-term seated or supine systolic blood pressure, and a reduction in orthostatic heart rate. We believe this reduction in heart rate represents the pressor effect of increased salt, which results in a lesser drop in orthostatic blood pressure and, thus, resulting in less of a rebound tachycardia. These observations may suggest a preferential effect of salt intake on orthostatic blood pressure, compared to supine blood pressure, potentially related to the effect of salt on increasing both circulating intravascular volume and increasing baroreceptor
sensitivity and peripheral vascular resistance. We could not determine the longer-term efficacy and safety, or the long-term cardiovascular risk of increased salt intake because of the absence of long-term trials.

Included studies were small with short-term follow up, were of low and very low quality, and considerable clinical and statistical heterogeneity was observed. Pooled analyses were possible on only a small number of relevant outcomes from a small number of studies. Additionally, subgroup analysis by individual orthostatic intolerance syndromes was not possible. There were large differences in study design, particularly in the methods of carrying out an orthostatic challenge, which limits the validity of combining studies.

There are limitations to the external validity of these findings, given that participants were young with few comorbidities and had few existing medications. It is especially difficult to ascertain whether they can be applied to an older, comorbid population. As many older adults with orthostatic hypotension would also be recommended low-salt diets (especially those with co-existing hypertension or heart failure), there is clinical uncertainty about the risk-to-benefit ratio of long-term high-salt diets.

This work highlights the paucity of high-quality data supporting a cornerstone recommendation in the management of orthostatic intolerance syndromes. Our systematic review reports an absence of evidence, rather than evidence of absence, of the long-term clinical benefit of increased salt intake in orthostatic intolerance syndromes (e.g. on incidence of recurrent falls). Our review provides evidence for short-term improvements in orthostatic intolerance symptoms, but meta-analysis included small numbers of participants (n=91) and only one small trial was placebo controlled (n=20), which reported improvement/resolution of symptoms in 30% of those receiving placebo. We do not suggest that current guidelines change, but, rather, should prompt more rigorous long-term evaluation of increased salt intake on clinical outcomes (e.g. falls, syncope) in relevant patient populations. Clinical trials are also required to determine the optimal amount of salt intake in patients with orthostatic intolerance syndromes (i.e. dose-finding studies), and whether regimens should vary by population. The need for high-quality randomized controlled trials of dietary intervention is being increasingly recognised, especially when modifying an essential nutrient or electrolyte. There are ongoing large clinical trials of sodium reduction in populations with heart failure and for secondary stroke prevention. There is also controversy about the optimal salt intake in general populations. While the WHO recommend low salt intake (<5g/day of salt) in the entire adult population, based largely on clinical trials of blood pressure, prospective cohort studies report a J-shaped association of salt intake and cardiovascular events/mortality with the lowest risk at a moderate intake range (~7.5-12.5g/day of salt). Findings from prospective cohort studies, and the absence of definitive randomised controlled trials, has resulted in calls to undertake large clinical trials comparing low salt intake to moderate intake in general populations.

In conclusion, our meta-analysis provides low-quality evidence of a short-term improvement in orthostatic intolerance with increased salt intake. There were no clinical trials demonstrating the efficacy and safety of increased salt intake on long-term clinical outcomes. Our findings highlight the need for robust randomized controlled trials, particularly in older adults with symptomatic orthostatic intolerance syndromes.

References

32. Ioannidis John. We need more randomized trials in nutrition—preferably large, long-term, and with negative results. *Am J Clin Nutr.* 2016.

SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.amjmed.2020.05.028.
Supplementary Figure S1 Meta-analyses of observational studies in epidemiology (MOOSE) flow diagram of articles selected for systematic review and meta-analysis. MOOSE flow diagram showing the article selection process. The boxes detail the number of studies available at each stage of review. The arrows direct the flow of study selection. The right-hand side of the diagram illustrates the number of studies excluded, and reasons for exclusion. MOOSE was used due to the observational nature of most clinical studies included (i.e. interrupted time-series).
<table>
<thead>
<tr>
<th>Study</th>
<th>Procedure Used</th>
<th>Method of BP and HR Measurement</th>
<th>BP/HR</th>
<th>Salt Intake Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangru, 1995</td>
<td>Tilt Table</td>
<td>Baseline supine measurements. Tilted to 80°, measurements for 30 min until symptomatic.</td>
<td>BP (Dinamap) at 1-min intervals</td>
<td>N/A: IV NaCl</td>
</tr>
<tr>
<td>El-Sayed, 1996</td>
<td>Tilt Table</td>
<td>Supine for 20 min, tilted to 60° for 20 min, then lower body pressure at −20 mm Hg and −40 mm Hg for 10 min.</td>
<td>BP: sphygmomanometer. HR: ECG</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>De Lorenzo, 1996</td>
<td>Tilt Table</td>
<td>Fasted for 4 h. After 10 min supine, the patient was tilted to 70° for 40 min.</td>
<td>BP: automatic sphygmomanometer every 1 min; HR: telemetry</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>Jacob, 1997</td>
<td>Active Stand</td>
<td>BP and HR measured after 10 min supine and after 3 min standing.</td>
<td>Nil further details</td>
<td>N/A: IV NaCl</td>
</tr>
<tr>
<td>Mtinangi, 1998</td>
<td>Tilt Table</td>
<td>Supine for 20 mins, tilted to 60° for 20 mins, and then lower body pressure at −20 mm Hg and −40 mm Hg for 10 min each.</td>
<td>BP: automatic sphygmomanometer. HR: ECG</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>Pechère-Bertschi, 1998</td>
<td>Active Stand</td>
<td>BP/HR measured at 0, 3, 5, 10, 15, 25, and 30 min, repeated at 30 min standing. The differences between 3 min values/lowest standing BP was recorded.</td>
<td>BP: sphygmomanometer</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>Burklow, 1999</td>
<td>Tilt Table</td>
<td>Fasted for 6-8 h. ECG/BP data were collected supine. 30 min later, tilted to 80° for 30 min, ECG/BP repeated.</td>
<td>BP: Radial arterial line</td>
<td>N/A: IV NaCl</td>
</tr>
<tr>
<td>Cooper, 2002</td>
<td>Tilt Table</td>
<td>Supine on a tilt-table for 20 min. Tilted to 60° for 20 min. Then lower body suction of −20 mm Hg and −40 mm Hg was applied for 10 min each.</td>
<td>Nil further details</td>
<td>Self-administered: no diary kept.24-h urine was taken in a subset</td>
</tr>
<tr>
<td>Claydon, 2004</td>
<td>Tilt Table</td>
<td>Supine for 20 min. Tilted to 60° for 20 min. Then lower body negative pressure of −20 mm Hg and −40 mm Hg was applied for 10 min each.</td>
<td>BP: Continuous photoplethysmography device; HR: ECG</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>Raj, 2006</td>
<td>Seated/Supine</td>
<td>BP measured seated/supine only.</td>
<td>BP/HR: automated vital signs (Dinamap)</td>
<td>Observed ingestion of saline water</td>
</tr>
<tr>
<td>Bellard, 2007</td>
<td>Tilt Table</td>
<td>HR/BP were measured supine for 30 min, tilted to 70° for 45 min.</td>
<td>Nil further details</td>
<td>Self-administered: no diary kept</td>
</tr>
<tr>
<td>Zhang, 2012</td>
<td>Seated Supine</td>
<td>Seated BP measured before and after salt intake.</td>
<td>Nil further details</td>
<td>Self-administered: no diary kept</td>
</tr>
</tbody>
</table>

*Table demonstrating method of carrying out an orthostatic challenge. Author and year of publication are listed in the first column, followed by method of assessing orthostatic intolerance, procedure used, method of measuring blood pressure and heart rate and whether this was intermittent or continuous, and method of recording salt intake.

BP = blood pressure; ECG = electrocardiogram; HR = heart rate; HUT = head-up tilt; IV = intravenous; N/A = not applicable; NaCl = sodium chloride.
Table S2 Characteristics of Participants: Medications and Comorbidities

<table>
<thead>
<tr>
<th>Characteristics of Participants</th>
<th>Medications</th>
<th>Comorbidity Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangru, 1995</td>
<td>Not listed</td>
<td>Wolff Parkinson-White (n = 1)</td>
</tr>
<tr>
<td>El-Sayed, 1996</td>
<td>No medications</td>
<td>Not listed</td>
</tr>
<tr>
<td>El-Sayed, 1996</td>
<td>No medications</td>
<td>Not listed</td>
</tr>
<tr>
<td>De Lorenzo, 1998</td>
<td>No medications</td>
<td>Not listed</td>
</tr>
<tr>
<td>Jacob, 1997</td>
<td>All medications discontinued for 2 weeks</td>
<td>Patients with systemic illnesses affecting the autonomic nervous system were excluded</td>
</tr>
<tr>
<td>Mtinangi, 1998</td>
<td>Not listed</td>
<td>Not listed</td>
</tr>
<tr>
<td>Mtinangi, 1998</td>
<td>Not listed</td>
<td>Not listed</td>
</tr>
<tr>
<td>Pechère-Bertschi, 1998</td>
<td>No medications</td>
<td>Patients suffering from secondary hypotension, venous insufficiency, and secondary dysautonomia were excluded</td>
</tr>
<tr>
<td>Burklow, 1999</td>
<td>Not listed</td>
<td>Mild aortic valvular Insufficiency (n = 1), mild mitral regurgitation (n = 2)</td>
</tr>
<tr>
<td>Cooper, 2002</td>
<td>No medications</td>
<td>Excluded if a history of cardiovascular disease or neurological disorder</td>
</tr>
<tr>
<td>Claydon, 2004</td>
<td>No medications</td>
<td>No other medical disorder</td>
</tr>
<tr>
<td>Raj, 2006</td>
<td>Not listed</td>
<td>Not listed</td>
</tr>
<tr>
<td>Bellard, 2007</td>
<td>Antihypertensives were stopped for 2 days</td>
<td>Excluded if “evidence of disease”</td>
</tr>
<tr>
<td>Zhang, 2012</td>
<td>On no medications affecting autonomic tone</td>
<td>No history of chronic debilitating disorder</td>
</tr>
</tbody>
</table>

*Characteristics of Participants: Medications and Comorbidities. Table further categorizing participants. Author and year of publication are listed in the first column, followed by concurrent medications, and comorbidities in the right-hand side column.

Supplementary Figure S2 Forest plot of standardized mean change in seated or supine heart rate following administration of salt. Forest plot showing the effect of salt intervention on seated or supine heart rate, n=60. The squares and bars represent the mean values and 95% confidence intervals of the effect sizes, and the size of the squares reflects the weight of the studies. The combined effects appear as diamonds and the vertical dashed line represents the line of no effect.
Supplementary Figure S3 Forest plot of mean difference in head-up tilt/standing heart rate following administration of salt. Forest plot showing the effect of salt intervention during head up tilt on heart rate, n=79. The squares and bars represent the mean values and 95% confidence intervals of the effect sizes, while the size of the squares reflects the weight of the studies. The combined effects appear as diamonds and the vertical dashed line represents the line of no effect.

PubMed Search
(((orthostatic intoleran*[Title/Abstract]) OR orthostatic hypotensi*[Title/Abstract]) OR postural hypotension>Title/Abstract)) OR fall*[Title/Abstract]) OR syncop*[Title/Abstract]
AND
Search (salt>Title/Abstract]) OR sodium chloride>Title/Abstract]
Filters: Humans; English