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Natural imagematting is theprocess of estimating theopacitymask

between the foreground object and the background in any type

of image. This technique has manifold applications in image and

video processing and editing, as well as compositing, and has been

an active research topic for many years. Due to the ill-posed nature

of the problem, it is difficult to solve and even current state-of-the-

art methods have not yet reached a level of performance that sat-

isfies professional production. Therefore, in this thesis we are aim-

ing to advance theperformance of natural imagemattingmethods

and enhance their usability for professional and casual artists.
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First, we introduce the first generative adversarial network for nat-

ural imagematting. Our novel generator network is trained to pre-

dict visually appealing alphas with the addition of the adversarial

loss fromthediscriminator that is trained to classifywell-composited

images. Further, we improve existing encoder-decoder architec-

tures to better deal with the spatial localization issues inherited in

convolutional neural networksbyusingdilated convolutions to cap-

ture global context information without downscaling featuremaps

and losing spatial information. We present state-of-the-art results

on the alphamatting.com online benchmark for the gradient error

and give comparable results in others. Our method is particularly

well suited for fine structures like hair, which is of great importance

in practical matting applications, e.g. in film/TV production.

Second, we investigate the specific problem of extracting the fore-

ground object from an image using the predicted alpha and en-

hance the usability of our method. Most natural image matting al-

gorithms only predict the alpha matte from the image, which is

not sufficient to create high-quality compositions. Further, it is not

possible to manually interact with these algorithms in any way ex-

cept by directly changing their input or output. We propose a novel

recurrent neural network that can be used as a post-processing

method to recover the foreground and background colors of an im-

age, given an initial alpha estimation. Ourmethod outperforms the

state-of-the-art in color estimation for natural image matting and

shows that the recurrent nature of ourmethodallowsusers to easily

change candidate solutions that lead to superior color estimations.

Finally, we evaluate video matting methods and propose a neural

network for the video matting task. Modern natural image mat-

ting algorithms currently outperform classical video matting algo-
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rithmsdue to their high fidelity in predicted alphas in the individual

frames of the video. However, thesemethods do not consider tem-

poral consistency and therefore often introduce temporal artifacts

such as flickering. We evaluate different approaches to introduce

temporal consistency to these methods to make them suitable for

the video matting task and propose a neural network for the video

matting task and train it in a way that leverages the single image

matting performance ofmodern algorithmswhile also introducing

temporal consistency to reduce flickering.
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Chapter 1

Introduction

This chapter serves as introduction to this thesis. First, the moti-

vation of researching natural image matting is covered. This is fol-

lowed by a problem description, to familiarize the readers with the

issues in solving the problem. Afterwards, the research question

is explicitly stated. Following up, the structure of this thesis is pre-

sented and a brief overview of the contents of each chapter is given.

Finally, a list of publications and contributions is given.
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1.1 Motivation

In natural image matting the goal is to predict the opacity mask

of an object, typically the foreground object, from an image. Nat-

ural images in this case refer to any type of image taken in the

wild andwithout any constraints. Constraints tomake this task eas-

ier could be to assume homogeneous backgrounds, fully centered

foreground objects, foreground objects of only a certain type (e.g.

portraits) and many more. The opacity mask is usually referred to

as the alpha matte and contains values from 0 to 1 for every pixel

of the image, indicating the range from fully transparent or back-

ground pixels to fully opaque ones. This task is related to chroma

keying, where the goal is the same, but the input is constrained.

In chroma keying, the inputs are typically shots from green screen

sceneswhere thebackgroundcontains only amostly homogeneous

single color background. This makes the task much easier, since

the pure background color is known for every pixel in the image,

which decreases the number of unknowns in the matting equa-

tion (See Equation 1.1). Due to the manifold types of backgrounds

in natural images, however, this technique can not be used in nat-

ural image matting. The trade-off here is obvious: with chroma

keying it is relatively easy to extract very high-quality results, but

it only works in certain constrained environments. Natural image

matting does not have these constraints, but also does not produce

the same level of quality than chroma keying at this point in time.

Ultimately, the objective in researching natural imagematting is to

produce results that are good enough for use in themovie industry

or by other professional artists using Photoshop and similar prod-

ucts. Manymovie and television productions nowadays rely heavily

on visual effects (VFX) and computer generated imagery (CGI). This
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has led to working environment that often consist almost entirely

of green screen backgrounds. This is necessary for chroma keying

to work, but can also heavily impair actors and directors since the

physical scene looks nothing like the finished product as can be

seen in Figure 1.1.

Other applications of natural image matting are geared more to-

wards the casual creatives. For example, it can be used to easily

extract portrait images [1, 2, 3] and create new images with a dif-

ferent background. It can also be used in other image processing

tasks to apply various filters and effects only on the foreground or

background, such as blurring the background in video calls.

1.2 Problem description

In natural imagematting, the input is an image that is expected to

contain a foreground object and the image background. Mathe-

matically, every pixel i in the image is assumed to be a linear com-

bination of the foreground and background colors, expressed as:

Ii = αiFi + (1− αi)Bi, αi ∈ [0, 1] (1.1)

where αi is a scalar value that defines the foreground opacity at

pixel i and is referred to as the alpha value. Since neither the fore-

ground, nor thebackgroundRGBvalues are known, this is a severely

ill-posedproblem, consisting of 7 unknownandonly 3 knownequa-

tions. Typically, some additional information in the form of scrib-

bles [5] or a trimap [6] is given as additional information to decrease

the difficulty of the problem. Both additional input methods al-

ready roughly segment the image in foreground, background and

regionswith unknown opacity. Generally they serve as initialization

3



Figure 1.1: Example image for a green screen working environment
from the set The Hobbit: An Unexpected Journey. Top the finished
scene, bottom the physical scene. Image taken from [4].

information and many methods propagate the alpha values from

known image regions to the unknown region. As can be seen in

Figure 1.2, both trimaps and scribbles can be easily created manu-

ally and can massively improve the matting results.

However, even perfect alpha matte predictions are insufficient

when the aim is to create new compositions from the foreground

object. Since the RGB values seen in the input image are always a

4



Figure 1.2: Example for trimap and scribbles. (a) Input image, (b)
Trimap, (c) Scribbles, (d) Alpha matte. Image taken from [7].

Figure 1.3: Example of background colors bleeding through in com-
position. From left to right: Input image, Composition using the
ground-truth alpha with colors taken from the input image, Com-
position using the ground-truth alpha with colors taken from the
method described in chapter 4. As can be seen, if the colors from
the input image are taken for the composition, the green back-
ground from the grass is bleeding through into the new compo-
sition.

blend of the true foreground colors and the background, it is neces-

sary to additionally predict the foreground colors to create faithful

compositions, as can be seen in Figure 1.3. This is a problem that is

often ignored by matting algorithms.

1.3 Research objectives

As has been stated previously, Natural Image Matting is a complex

problem with plentiful applications in the industry, as well as one

of the classical computer vision problems. In the last few years,

many computer vision problems have seen great strides in employ-

ing deep convolutional neural networks (CNNs). As will be detailed

in Section 2.1, this is also the case for natural image matting. How-

5



ever, CNNs need a large amount of training data to generalize well,

which poses a problem especially for natural image matting, since

collecting the ground-truth alpha for a large amount of images is

very difficult. The process of matting an image by hand can be

quite long and even if the alpha is created by an experienced artist,

it is never going to be the true ground-truth, only a (possibly very

good) estimation. Therefore this research thesis aims to find good

neural network architectures to deal with this problem. Further-

more, the goal in many matting applications is to extract the fore-

ground object and composite new images. Naively using the alpha

matte to extract the foreground image for composition will not al-

ways lead to faithful new compositions, due to the color disparity in

the foreground object and the respective backgrounds of the old

and the new image. Further different image characteristics such

as lighting conditions, noise, etc. in the foreground object and the

newbackgroundcanalso lead to compositions thatdonot look real.

The second aim of this thesis is therefore to investigate ways to cre-

ate high-quality compositions. Finally, processing images indepen-

dently in video sequences will often lead to temporal inconsisten-

cies such as flickering. In this thesis we aim to investigate ways to

alleviate this problem for natural image matting methods. The re-

search objectives in this thesis are therefore:

• Can newdeep learning architectures be used to train convolu-

tional neural networks for the problem of natural image mat-

ting despite being trained on only a small set of training im-

ages.

• Can the foreground object in natural images be extracted to

achieve realistic andhigh-quality compositionswith anewback-

ground.

6



• Can temporal consistency be guaranteed when using natural

image matting methods in video sequences, especially con-

sidering the sparsity of video matting data.

These research objectives are covered in chapter 3, 4 and 5 respec-

tively.

1.4 This Dissertation

This dissertation is split into 6 chapters and an appendix. Follow-

ing this introduction chapter, the background and related works

relevant to this work are discussed in chapter 2. This will include a

general introduction into the deep learningmethods that are used

in this and related works, a general overview into image-to-image

translationnetworks, a historical overviewof classical approaches to

solve natural image matting, a more in-depth description of deep

learningmethods for natural imagematting, a report on videomat-

ting methods and finally a thorough description on the available

image and video matting data.

In chapter 3 agenerative adversarial network for natural imagemat-

ting is presented. This method was designed to predict alphamat-

tes that can be used to generate visually compelling compositions.

By leveraging the discriminator and a modified cycle consistency

during the training process, this method outperforms the previous

state-of-the-art in predicting fine structures such as hair in the in-

put image.

As mentioned earlier, a good alpha matte is necessary but insuffi-

cient to extract the foreground object in a way that leads to high-

quality compositions. Also required are the unblended foreground

colors of the object. A post-processing method that can be used

7



in addition to any other matting algorithm is presented in chap-

ter 4. This method sits on top of any matting algorithm and can

be used to faithfully predict the foreground and background colors

of the image. It is designed as a recurrent inference machine and

essentially solves the inverse compositing problem by separating

the foreground and background given the alpha. It also offers ad-

ditional user interaction that can be used to further enhance the

quality of the results.

In chapter 5, we do an evaluation on videomatting. We investigate

ways to enforce temporal consistency in video matting sequences

and propose a method trained on video matting data directly. This

is the last method detailed in this dissertation and a conclusion of

thewhole thesis canbe found in chapter 6. A summaryof themeth-

ods presented is given and potential future work is presented.

Finally, a list of abbreviations can be found in appendix A, followed

by additional results in appendix B.

1.5 Publications/Contributions

Several of the methods presented in this dissertation have been

published as stand-alone research papers. Below, a list of publica-

tions is given:

• Sebastian LutzandKonstantinosAmplianitis andAljosa Smolic:

AlphaGAN: Generative adversarial networks for natural image

matting,

British Machine Vision Conference, 2018 [8].

ThisBMVCpaper corresponds to themethodpresented in chap-

ter 3.

• Sebastian Lutz and Aljosa Smolic:

8



Foreground color prediction through inverse compositing,

Winter Conference on Applications of Computer Vision, 2021

[9].

ThisWACVpaper corresponds to themethodpresented in chap-

ter 4.

Publicly available code for the above contributions can be found

on github: https://github.com/seblutz. All methods in this thesis

were implemented in Python using the Pytorch [10] deep learning

framework.

The author has alsoworkedon several publications that are not part

of this dissertation:

• Rafael Monroy and Sebastian Lutz and Tejo Chalasani:

SalNet360: SaliencyMaps for omni-directional imageswithCNN,

Signal Processing: Image Communication, 2018, ISSN: 0923-

5965 [11].

• Sebastian Lutz and Mark Davey and Aljosa Smolic:

Deep Convolutional Neural Networks for estimating lens dis-

tortion parameters,

Irish Machine Vision and Image Processing Conference, 2019

[12].

• Xu Zheng and Tejo Chalasani and Koustav Ghosal and Sebas-

tian Lutz and Aljosa Smolic:

STaDA: Style Transfer as Data Augmentation,

14th International Conference on Computer Vision Theory and

Applications, 2019 [13].

• Matis Hudon and Sebastian Lutz and Rafael Pagés and Aljosa

Smolic:

AugmentingHand-DrawnArt with Global Illumination Effects
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through Surface Inflation,

The 16th ACM SIGGRAPH European Conference on Visual Me-
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Chapter 2

Background

In this chapter, the background works that serve as basis for the

contributions of this thesis are presented. As with many computer

vision tasks, neural networks have outperformed classical natural

image matting algorithms in both speed and accuracy and now

serve as the state-of-the-art for this problem. A complete review of

deep learning would be outside the scope of this work, but some

of the seminal deep learning papers that serve as basis and inspi-

ration of themethods presented later in this thesis and the current

state-of-the-art in natural image matting are presented in Section

2.1. This section is followed by a brief overview of the classical meth-

ods of natural imagematting in Section 2.2. Amore in-depth review

of the current state-of-the-art will be given in Section 2.3, with a fo-

cus on the design choices of the respective networks. Afterwards,

videomethodswill be discussed in Section 2.4. One of themost im-

portant aspects of any deep learning algorithm is the dataset the

network is trained on. As such, the various existing datasets for nat-

ural imagematting arepresented in Section 2.5. Finally, someof the

various methods indirectly related to the contributions in this the-

sis, but which are not fit to serve as comparisons are mentioned in

Section 2.6 to give a more overarching overview of the field.
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2.1 Deep learning in computer vision

In recent years, deep convolutional neural networks have become

the state-of-the-art in many computer vision problems. The core

concepts of artificial neural networks, what is now known colloqui-

ally as deep learning, are not new. However, only recently has it

beenpossible to efficiently train networks of sufficient capacity due

to the advances in thehardwareused for trainingand thepossibility

togather largedatasets. Ingeneral, neural networks are a collection

of layers that are stacked on top of each other. The input of the net-

work is propagated through each of the layers until the final layer

outputs the result. During training, the predicted result is used to

calculate a loss, describing how far from the ground-truth the pre-

diction is. This loss is then used to update the parameters of the

individual neurons that compose the layers of the network. This is

efficiently done through back-propagation: Using the chain-rule,

the gradient of the loss in respect to the parameters of one layer

can be calculated and propagated from the last layer to the front,

hence the name. Since this can be done almost entirely through

matrix multiplications, it can be very efficiently calculated onmod-

ern GPUs. A full explanation of deep learning would be beyond the

scope of this work, however, a good foundation of all the concepts

necessary can be found in [15].

VeryDeepConvolutionalNetworks for Large-Scale ImageRecog-

nition

One of the seminal architectures in computer vision is the VGG [17]

network. VGG was designed as a classification network and many

of its design choices carry through tomodern architectures. In their

paper, Simonyan et al. showed that the depth of a network is a very
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Figure 2.1: Example ofmax-pooling andunpooling layerswith a ker-
nel size and stride of 2. During max-pooling, the maximum value
within the kernel window is taken and the location stored. During
unpooling, the locations can be used to do a lossy reconstruction of
the original features. Image taken from [16].

important factor for the network to learn good image representa-

tions. They demonstrated that multiple stacks of convolution lay-

ers with a small 3× 3 filter size outperformsmore shallow networks,

with less layers but larger convolution filters without increasing the

number of total parameters in the network. The network architec-

ture is quite simple and consists of 5 blocks of stacked convolutions,

each followed by a 2 × 2 max-pooling layer with stride 2 (see Fig-

ure 2.1) that is used to downsample the intermediate featuremaps.

These 5 blocks are followed by a set of 3 fully-connected layers that

are used to classify the image. Each of the blocks of stacked convo-

lutions consists of 3 × 3 convolution layers with stride and padding

of 1, which keeps the spatial size of the output feature maps the

same as the input. All convolution and fully-connected layers are

followed by ReLU [18] non-linear activation layers. A visualization of

the network architecture can be seen in Figure 2.2.

The design choice of having 5 blocks of convolution layers, each fol-

13



Figure 2.2: Network architecture for VGG-16. Image taken from [19].

lowed by some kind of downsampling has proven extremely popu-

lar and canbe foundeven inmoremodernnetworks such asResnet

[20] and Densenet [21], as has the choice of using only 3 × 3 con-

volutions. It has been shown that as the network becomes more

deep, the features learnt in each convolution layer become more

abstract. The first layer learns local features such as edges, while

the later blocks learn features such as textures andfinally high-level

features such as eyes and mouths [22]. The output of the last con-

volution layer in these kinds of classification networks is therefore a

highly downsampled feature map consisting of highly discrimina-

tive features, which is why these classification networks are often

used as an encoder for other computer vision tasks.

Fully convolutional networks for semantic segmentation

Such is also the case in theworkof Longet al. [23]. Prior to their pub-

lication, patch classification [24] was a popular way to use CNNs for

segmentation. In these methods, every pixel was independently

classified into one of a set of semantic classes, based on a patch
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around thatpixel as input. Thiswasmainlydue to the fully-connected

layers at the end of classification networks that need a fixed-sized

input to the network. This changed when Long et al. proposed to

concept of fully convolutional networks (FCN) in their paper. They

took someof thewell-performingclassificationnetworks at the time,

AlexNet [18], GoogLeNet [25] and notably VGG [17], and transformed

the fully connected layers of these networks into convolution lay-

ers to output spatial feature maps instead of classification scores

(See Figure 2.3). These feature maps are then upsampled through

transposed convolutions to produce per-pixel labeled outputs of

the same size as the input. This allows the network to be trained

end-to-end with training inputs of arbitrary sizes. They also man-

aged to refine their architectureby introducing someskip-connections

from the 3rd and 4th pooling layer to be able to predict finer details

while retaininghigh-level semantic information. All these contribu-

tionsmake this FCN architecture an important forerunner for deep

learning applied to pixel-wise classification or regression tasks.

The weakness of this architecture, however, is its inherent spatial

invariance because of the max-pooling layers of the network that

discard potentially useful global context information. It is also not

instance-aware i.e. it does not differentiate between two or more

unique objects of the same class. To overcome the first problem,

two different approaches have been proposed. The first approach

uses an encoder-decoder architecture, where the encoder consists

of a classification network like VGG with the fully-connected lay-

ers removed. Additionally, all max-pooling layers retain the indices

of the maximum element that they used to pool the feature maps

(See Figure 2.1). Following the encoder, a decoder is used to upsam-

ple these low-resolution feature maps back to the original image
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Figure 2.3: Starting from a pretrained image classification network,
the fully-connected layers are transformed into convolution layers.
Theoutput featuremapsof the last layer are adapted to thenumber
of semantic classes and an upsampling layer is added. The network
can now be trained fully end-to-end for semantic segmentation.
Image taken from [19].

size by using the stored max-pooling indices to correctly upsam-

ple the feature maps in each stage, followed by some convolution

layers. SegNet [26] is one example of this approach. Often, these

architectures also include skip-connection between feature maps

of the same size such as in the popular U-Net [27] architecture.

The second approach tries to solve the problem of missing global

context with the use of dilated (or atrous) convolutions. Dilated
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Figure 2.4: Normal convolutions are dilated convolutions with a di-
lation rate of 1. With higher dilation rates, the convolution filters
are padded with zeros. Even though the number of weights stay
the same, the receptive field is increased. Image taken from [19].

convolutions are convolution filters that support exponentially ex-

panding receptive fieldswithout losing resolution [28]. They are up-

sampled filters by a factor of r with zeros in between filter weights.

An example of this can be seen in Figure 2.4. Even though the ef-

fective filter size increases, only the non-zero filter values need to

be taken into account, so the number of parameters and the num-

ber of operations per position stay constant. This allows the explicit

control of the spatial resolutionof network feature responses. These

dilated convolutions have been successfully used in several archi-

tectures for semantic segmentation [29, 29, 30, 31] and other image-

to-image translation tasks.

Encoder-DecoderwithAtrous SeparableConvolution for Seman-

tic Image Segmentation

The latest Deeplabv3+ [31] architecture combines both approaches.

As their encoder, they use a modified aligned Xception [33] net-

work, which can be seen in Figure 2.7. Xception uses depthwise

separable convolutions (See Figure 2.5), which are normal convo-

lutions factorized into depthwise convolutions, followed by a point-

wise 1×1 convolution. Thedepthwise convolutions are independent
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Figure 2.5: Depthwise separable convolutions are depthwise con-
volutions followed by a pointwise 1 × 1 convolution. Image taken
from [32].

Figure 2.6: Network architecture for Deeplabv3+. Image taken from
[31].

on each input channel and the pointwise convolution is used to

combine these independent outputs. This drastically reduces the

computation complexity of the layer over normal convolutions. For

Deeplabv3+, the network is modified to be deeper in the middle-

flowof thenetwork, allmax-poolingoperations are replacedby strided

depthwise separable convolutions and additional batch normaliza-

tion [34] and ReLU activations are added after every 3 × 3 depth-

wise convolutions. These modifications allow the network to out-

put featuremaps of arbitrary resolutions by adjusting the strides of
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Figure 2.7: The modifications done by Deeplabv3+ on Xception: (1)
More layers, (2) All max-pooling layers replaced by strided depth-
wise separable convolutions, (3) Extra batch normalization and
ReLU layers added after every 3 × 3 depthwise convolutions. Im-
age taken from [31].

the convolutions. In their best model, they train the network with

output stride = 16 and use output stride = 8 during evaluation by

reducing the stride and doubling the dilation rate in the later con-

volutions.

Following the encoder of the network, the deeplabv3+ architecture

adds an atrous spatial pyramid pooling (ASPP) module. This mod-

ule works by using multiple parallel dilated depthwise separable

convolution layers to extract features at different sampling rates.

These parallel convolutions are then fused to generate a final result

(See Figure 2.8), which encodesmulti-scale contextual information.

Finally, Deeplabv3+ adds a decoder for pixel-wise classification at

full resolution. The decoder first bilinearly upsamples the output of
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Figure 2.8: Atrous spatial pyramid pooling module. In this mod-
ule, parallel dilated convolutionswithdifferent dilation rated are ap-
plied to the input feature map and concatenated together. Image
taken from [29].

the ASPP to output stride = 4 and then concatenates the result with

the low-level features of the encoder at the corresponding spatial

resolution. However, before concatenation, the number of chan-

nels of the low-level features are reduced through a 1 × 1 convolu-

tion. After concatenation, 3 × 3 convolutions are used to refine the

features, followed by another bilinear upsampling to the final out-

put resolution.

Image-to-Image Translation with Conditional Adversarial Net-

works

In semantic segmentation, networks are trainedwith the cross-entropy

loss function. Using only this single loss has been shown to work

very well for this task, but this is not the case for all computer vision

problems. In regression tasks especially, a single loss function or

even a combination of loss functions often lead to networks that do

not converge optimally. Even though the training is entirely data

driven and the network learns features based on the training data,
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the loss functions used to train are designed by hand and are there-

fore susceptible to certain preconception about the data and task

that the person designing the training pipeline may have. In such

cases, generative adversarial networks (GANs) have been shown to

achieve superior results.

In the Pix2Pix architecture by Isola et al. [35], conditional generative

adversarial networks are used as a general purpose solution to im-

age translation problems. The trained networks not only learn the

mappings from one image domain to another, but also (through

the discriminator), the loss function required to train this mapping.

This results in a very robust architecture that can be used in a wide

variety of image-translationproblemswithouthand-engineered loss

functions, as long as a dataset of paired images is available.

GANs learn a mapping from a random noise vector z to an output

image y. Conditional GANs, however, learn a mapping from an ob-

served input image z and a random noise vector z to an output im-

age y. This results in the following objective function:

LcGAN(G,D) = log D(x,y) + log (1−D(x, G(x, z)) (2.1)

where G tries to minimize this objective against D, which tries to

maximize it. Without the noise vector z, the generator can still learn

mappings from x to y, but could only produce deterministic out-

puts. Other conditional GANs have therefore introduced z as an

additional input to G (e.g. [36]). In their Pix2Pix approach, however,

Isola et al. introduce noise only through dropout for several layers

in the generator at training and test time. In addition to the condi-

tional loss in Equation 2.1, they also add L1 loss to the generator so

that G is not only tasked to fool the discriminator D, but also to get

close to the ground-truth.
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Their network architectures are adapted from those ofDCGAN [37].

Because image-to-image translationproblemsmap fromhigh-resolution

images to high-resolution images, they use a U-Net [27] encoder-

decoder structure with skip connections from the encoder to the

decoder to share low-level information (e.g. edges) that can be use-

ful to the generated mapping.

For their discriminator structure, they design a network that they

call PatchGAN, which tries to classify each N × N patch in an im-

age as real or fake. This discriminator is run convolutionally across

the image and all responses are averaged to get a final output ofD.

It is of note, that, because of the conditional GAN architecture, the

discriminator needs to both have y (Or G(x)) and x as input. There-

fore the input image and the mapping are appended into a multi-

channel image before serving as an input for D.

Unpaired Image-to-ImageTranslationUsingCycle-ConsistentAd-

versarial Networks

In their paper, Isola et al. [35] show remarkable results in image-

to-image translation, but they retain the problem of data. For their

approach to work, it needs to be trained on a large enough, paired-

dataset. In a follow-up paper, Zhu et al. from the same research

group introduce their CycleGAN [38] approach. This novel approach

can be used for data where there is no paired training data avail-

able.

Because finding amappingG : x → y using only the adversarial loss

is severely under-constrained, Zhu et al. add the reverse mapping

F : y → xand introducea cycle consistency loss to enforceF (G(x)) ≈

x (See Figure 2.9). The adversarial losses alone can not guarantee

that the learned function canmap an input x to a correct output y,
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Figure 2.9: a) The CycleGANmodel consists of two mapping func-
tionsG and F and their associated discriminatorsDX andDY . b) The
forward cycle-consistency loss. c) The backward cycle-consistency
loss. Image taken from [38].

since a network with large enough capacity can map the same set

of input images to any randompermutation of images in the target

domain. To reduce the space of possible mapping functions, Zhu

et al. argue that the learned functions should be cycle-consistent:

For every image x, the image translation cycle should bring it back

to the original image x → G(x) → F (G(x)) ≈ x and similarly for y.

This defines the cycle-consistency loss:

Lcyc(G,F ) = ‖F (G(x))− x‖1

+ ‖G(F (y))− y‖1

(2.2)

The full objective is then the two adversarial losses for G and F as in

Equation 2.1, added with the cycle-consistency loss in Equation 2.2.

For their discriminator structure, they use the PatchGAN architec-

ture that was introduced in [35], for their generators, they adapt the

architecture from [39], which was designed for style transfer and

super-resolution. The network consists of two strided convolutions

to downscale the image, several residual blocks [20] and two trans-

posed convolutions to upscale the image back to the original res-

olution. They also use instance-normalization [40], similar to the

Johnson et al. [39].
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2.2 Classical natural image matting

Natural image matting is a classical computer vision problem and

has been studied for many years. Generally, one can classify any

mattingalgorithm into 3 categories: sampling-based, affinity-based

and learning-based. Methodsof thefirst twocategorieswill bebriefly

described in this section, while a more in-depth description of the

learning-based methods will be given in Section 2.3. A more com-

prehensiveoverviewonclassical natural imagemattingcanbe found

in the work by Wang et al. [7].

Sampling-based

Sampling-basedmattingalgorithmsconsider foregroundandback-

ground samples in a local region around the unknown pixel and

seek to estimate the alpha based on these samples and the color

distribution of the pixels in the local neighbourhood. Bayesianmat-

ting [6] is one such approach that uses a continuously sliding win-

dow that collects samples that were previously estimated or in the

known regionsof trimap. Themattingproblem isdefined in aBayesian

framework and Chuang et al. use a maximum a posteriori tech-

nique to solve it. This approach has been improved in [41] by rep-

resenting the color distributions with global statistics instead of lo-

calmeans, which reduces the computational costswhile increasing

the components of the Gaussian Mixture Model (GMM) to explain

all the local colors in the image. In [42], Chang et al. do not model

the foreground or background colors and instead build the prob-

abilistic terms of the Bayesian framework on weights that depend

on spatial distances and color differences. Thismakes the approach

more robust to sampling outliers.

Gastal et al. proposed a shared-sampling method [43] to improve
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the sampling efficiency. They show that sharing samples within a

small neighborhood can reduce the computational cost with lit-

tle defect to the matting quality. They use a new objective func-

tion to select good samples based on their spatial and photomet-

ric and characteristics. Other recent Sampling-based methods in-

clude [44], [45] and [46].

Affinity-based

In Affinity-based matting algorithms, the alpha values are propa-

gated from regions of known values based on pixel similarity met-

rics. A closed-form solution for the matting problemwas proposed

in [47]with the assumption that the foregroundof eachpixel canbe

represented by a linear combination of two constant colors within

a local neighbourhood. This local neighbourhood is used to deter-

mine the information flow and to propagate alpha values. This lo-

cal affinity definition is also often used as a post-processing step

as proposed by [43]. Non-local affinity definitions such as KNN-

Matting [48] calculates several neighbourhoods for every unknown

pixel and assigns them to have similar alpha values based on their

distance to each other in feature-space. Similar to this Chen et al.

propose amethod [49] that represents each pixel as a linear combi-

nationof its neighbors in their feature space. Their affinity-definitions

havebeen improvedby [50]. There are also several hybrid approaches

such as [51] that use a Sampling-basedmatting approach as a start-

ing point and refine the results with non-local affinities.
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2.3 Deep learning in natural imagematting

Deep learning has been used very successfully in many computer

vision tasks and has been pushing the performance boundaries of

new algorithms to an unprecedented degree. It is therefore no sur-

prise that these algorithms also perform very well in natural image

matting.

Natural Image Matting Using Deep Convolutional Neural Net-

works

The first of these approaches was DCNNmatting by Cho et al. [52].

In their method, they use a shallow neural network consisting of

6 convolution layers to predict the alpha. Their input is a 5 chan-

nel image: The RGB image (normalized to [0, 1]), the predicted al-

pha from closed-form matting [47] and the predicted alpha from

KNN matting [48]. This means the method does not learn to pre-

dict the alpha in itself, but rather the non-linear combination of

previous mattingmethods within small local patches. CF and KNN

matting are examples of local and non-local affinity-basedmatting

methods and complement each other well. In their paper, Cho et

al. show that their network learns to combined the results of both

methods in a way to outperform both.

Figure 2.10: Network architecture of DCNN matting. Image taken
from [52].

Deep Image Matting

Oneof the disadvantages that Cho et al. facedwhen trainingDCNN
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Figure 2.11: Network architecture of Deep Image Matting. Image
taken from [54].

matting was the scarcity of training data. They were only able to

train their method using the 27 training images available as part

of the alphamatting.com online benchmark [53]. When Xu et al.

[54] released their Deep Image Matting paper, a big part of their

contribution was the matting dataset discussed in detail in Sec-

tion 2.5, which they used to create a training dataset of 49, 300 im-

ages through data augmentation. They were able to use this en-

hanced dataset to train a deep neural network to predict the alpha

from only the RGB image and the trimap as input. Their network

is a simple encoder-decoder network that uses VGG16 as encoder

and a slightly smaller decoder consisting of only a set of unpooling,

convolution and ReLU in each stage. This encoder-decoder directly

predicts the full resolution alpha matte and is followed by a matte

refinement stage, which concatenates the RGB imagewith the ini-

tial alpha prediction and refines the alpha prediction through an

additional set of convolution layers as can be seen in Figure 2.11. To

train their network, they used two loss functions: The alpha predic-

tion loss and the composition loss, which are defined as:

Li
α =

√

(αi
p − αi

g)
2, αi

p, α
i
g ∈ [0, 1].

Li
C =

√

(cip − cig)
2, cip, c

i
g ∈ [0, 1].

(2.3)
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where αi
p is the output prediction at pixel i, αi

g the corresponding

ground-truth, cip is the RGB value at pixel i of a newly composited

imageout of theground-truth foreground, ground-truthbackground

and predicted alpha, and cig the corresponding RGB value compos-

ited from the ground-truth alpha. In their paper, Xu et al. show that

their network massively outperforms previous state-of-the-art and

proves to be far more agnostic to the size of the unknown region in

the input trimap than previous methods.

Figure 2.12: Network architecture of Samplenet. Image taken from
[55].

Learning-Based Sampling for Natural Image Matting

Following Xu et al. and the proposed method in chapter 3, Tang et

al. [55] developed Samplenet. Their core idea involves the intrinsic

linkbetween the foregroundcolor, backgroundcolor and the alpha,

and how information of either of these values can help predicting

the others. To leverage this, their method has 3 stages: first, they

take the input RGB image and the trimap as input and predict the

background colors in the unknown trimap region using a sampling

network SB . This prediction is then concatenated to the original in-

put and serves as input to the second stage, where a second sam-

pling network SF predicts the foreground colors in the unknown
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Figure 2.13: Network architecture of AdaMatting. Image taken from
[57].

region. In the third and final stage, both predictions are concate-

nated to the original input and processed by a matting network

MAT that outputs the final alpha prediction. For their sampling

networks, Tang et al. use the inpainting networks by Yu et al. [56]

and for theirmattingnetwork theyuse the architectureproposed in

Section 3.2.2. However, potentially any inpainting or alpha matting

network could be used in their method. This 3-stage approach out-

performs the previous state-of-the-art andhas the additional bene-

fit of also predicting foreground colors, which canbeused to gener-

ate much more realistic new compositions as discussed in Section

1.2. However, the downside of their approach is that it requires 3 dif-

ferent networks which are used to subsequently process the input.

Disentangled Image Matting

Most natural imagemattingmethods rely on a trimap as additional

input. However, most trimaps are quite coarse and most pixels in

the unknown region are either fully opaque or fully transparent.

Cai et al. [57] argue that this is a major limitation, since networks

have to solve two different problems at the same time: Identifying

true blending pixels inside the trimap region, and estimating ac-

curate alpha values for them. To solve this issue, they propose to

disentangle the problem into two sub-tasks. In the trimap adap-
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Figure 2.14: IndexNet architecture. Image taken from [59].

tion tasks, they estimate the global structure of the image through

the pixel-wise classification into pure foreground, pure background

and semi-transparent regions. In the alpha estimation task, they

use this information to estimate the true opacity of each pixel in the

semi-transparent regions. In their AdaMatting architecture, they

achieve both sub-tasks in a single network. Their architecture can

be seen in Figure 2.13 and consists of a single encoder to produce

shared features and one decoder for each sub-task. Skip connec-

tions are used from the encoder to the decoders, with high-level

features linked to the trimap decoder and low-level features linked

to the alpha decoder. The output of both decoders are concate-

nated together as input of the propagation unit, which consists of

two residual blocks and a convolutional LSTM [58] cell. This recur-

rent network can refine the alpha prediction over several iterations.

Indices Matter: Learning to Index for Deep Image Matting

Lu et al. [59] propose a different approach to improve the quality of

alphapredictions. They observe that using index-guidedunpooling

layers in the decoder of networks such aswith Deep ImageMatting

[54] leads tobetter results thanusingupsamplingoperators suchas
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Figure 2.15: Network architecture of Context-AwareMatting. Image
taken from [60].

bilinear interpolation or transposed convolutions. They introduce

the concept of learning to index, where indices are predicted as a

function of feature maps. They present IndexNet, where pooling

and unpooling indices are self-learned adaptively from data and

which can be plugged into any encoder-decoder network. As seen

in Figure 2.14, IndexNet replaces all downsampling andupsampling

layers in a network. For each stage in the encoder, IndexNet takes

the final feature map as input and predicts a feature map corre-

sponding to indices. In the encoder, this index feature map is acti-

vated by a sigmoid and element-wise multiplicated with the initial

feature map of the encoder. Afterwards, the 2 × 2 patches are av-

erage pooled to half the spatial size of the feature map and multi-

plicated by a constant. In the decoder, the feature map is first up-

sampled using nearest-neighbour interpolation and then element-

wisemultiplicated using the generated index featuremap from In-

dexNet at the corresponding stage of the encoder.

Context-Aware ImageMatting for Simultaneous Foregroundand

Alpha Estimation

In Context-Aware Matting, Hou et al. [60] develop a two encoder,
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Figure 2.16: Architecture of guided contextual attention module.
Image taken from [61].

two-decoder network for the simultaneous prediction of the alpha

matte and the foreground color. As seen in Figure 2.15, thematting

encoder and the context encoder capture both visual features and

more global context information. The output of these encoders is

combined and serves as input for the decoders that predict the al-

pha and the foreground color. Feature maps are shared from the

foreground decoder to thematting decoder to further enhance the

quality of the predicted alphamattes. Additionally, they investigate

more complex loss functions and investigate the impact of using

laplacian and feature loss functions over the loss functions first in-

troduces by Deep Image Matting.

Natural Image Matting via Guided Contextual Attention

Another approach to enhance alpha predictions in neural networks

was proposed by Li et al. [61]. They propose a guided contextual at-
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Figure 2.17: Network architecture of GCA Matting. Image taken
from [61].

tention module, which propagates high-level opacity information

globally basedon the learned low-level affinity. Affinity-basedmeth-

ods work on the idea that local regions with almost identical ap-

pearance should have a similar opacity, which allows them to prop-

agate alpha values from known regions in the trimap to the un-

known region. Based on this, GCAMatting define two different fea-

ture flows in their network. The alpha feature flow is equivalent to a

standard encoder-decoder network structure, where the alpha fea-

tures are generated from the RGB + trimap input and flows accord-

ing to the encoder-decoder structure of the network to output the

final alphamatte. By contrast, the low-level image features aregen-

erated only from the RGB image and analogous to the local color

statistics in conventional affinity-basedmethods. Given the opacity

information from the alpha features and the appearance informa-

tion from the image features, GCA Matting builds an affinity graph

that carries out opacity propagation, which is done in their guided

contextual attention module, which can be seen in Figure 2.16.

To calculate the image features, a small auxiliary network with 3
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convolution layers of stride= 2 is used, which uses only the RGB im-

age as input. For their alpha feature flow, they use a U-net [27] style

encoder-decoder. Their combined network can be seen in Figure

2.17 and adds two guided contextual attention module in the 4th

block of the encoder and the 4th block of the decoder respectively.

A Late Fusion CNN for Digital Matting

One of the disadvantages of all the previousmentionedmatting al-

gorithms is the reliance of a trimap as additional input. Recogniz-

ing this, Zhang et al. [62] developed an algorithm that only needs

the RGB image as input. They use Densenet [21] as encoder and

two decoders, one for the prediction of the foreground and one for

the background respectively. This results in foreground and back-

ground probability maps, that can be blended into the alpha pre-

diction. To calculate the blending weights, they use a small fusion

network consisting of 5 convolutions, which takes the probability

maps as well as features from the original image as input. The full

network architecture can be seen in Figure 2.18. During training,

they use a mix of cross-entropy, L1 loss on the alpha values directly

and L1 loss on the gradients of the alpha values to train the de-

coders. Additionally, they use a weighted L1 loss to train the fusion

network to find good blending weights.
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Figure 2.18: Network architecture of Late Fusion Matting. Image
taken from [62].

Attention-Guided Hierarchical Structure Aggregation for Image

Matting

Building on the approach to disregard trimaps entirely and predict

alphas from the RGB image alone, Qiao et al. [63] propose a new

attention-guided network to predict alphamattes directly from in-

put RGB images. Their idea is to reduce unnecessary or redundant

semantic information and remove structural details in background

regions. To do this, their network consists of 3 parts as can be seen

in Figure 2.19. Thefirst part is their feature extractionmodule, which

consists of a ResNeXt [64] convolutional backbone to extract high-

level semantic information. These advanced featuremaps are then

processed by an ASPP [29]module to capturemulti-scale semantic

features. These features are used by their pyramid features distilla-

tion module, which performs channel-wise attention on the pyra-

midal features from the ASPP to distill adaptive semantic features.

Their appearance cues filtration module takes in low-level features

from their feature extractionmodule, which employs spatial atten-

tion to filter appearance cues located in the background and en-

hance cues located in the foreground. Afterwards, the filtered ap-

pearance cues and distilled pyramidal features are concatenated to
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Figure 2.19: Network architecture of HAttMatting. Image taken
from [63].

generate the final alpha predictions. During training, they model

their network as a GAN, with additional mean-squared-error (MSE)

and structural similarity (SSIM) loss directly on the predicted alpha.

As anadditional contribution, they also release anewmattingdataset

similar to the dataset released as part of Deep Image Matting [54],

which consists of 646 distinct foreground objects.

2.4 Video matting

Most recent natural image matting algorithms focus on individ-

ual images, but naturally many methods have been designed and

adapted for video sequences. Since creating ground-truth data for

video sequences is evenmore cumbersome than for single images,

video data containing alpha mattes are even more scarce. The ex-

isting video matting dataset will be discussed in Section 2.5. Thus,

to the best of our knowledge, there are no learning-based video

matting methods. Furthermore, the learning-based methods for

single images outperform classical methods to such a degree, that

theyoutperformclassical videomattingmethodseven though they

wereonly trainedon single images. Thereforeonly a verybrief overview
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on classical methods for video matting will be given.

As stated in Section 2.2, video matting methods can be classified

into sampling-based and affinity-based methods. However, most

algorithms use optical flow as additional input to generate tempo-

ral consistent videomattes, such as [65, 66, 67]. For sampling-based

methods, it is possible to extend the sampling region to adjacent

frames, such as done in [68]. For affinity-basedmethods, it is possi-

ble to extend the affinitymatrix overmultiple frames such as in [69,

70, 71]. However, all these methods run into computational prob-

lems, either through the extra computation of optical flow or in-

creasingly large sampling sets or affinity matrices that may lead to

intolerable time and memory consumption. Some other methods

[72, 73] divide the image or video sequence into patches and assure

spatial and temporal consistency throughmulti-framegraphmod-

els. Related to these methods is Video SnapCut [74], which aims to

cut out the foreground object in a video by propagating segmen-

tation masks across frames and refining them to alpha mattes.

In general, videomatting can be considered a special case of video-

to-video synthesis. Thismore general problem is an active research

problemandhas seenmany improvements over the last years. Meth-

ods such as [75, 76] can achieve high-quality results on a variety of

tasks. However, these methods need to be trained on datasets of

sufficient size, which makes them unusable for video matting un-

less a large dataset is released. Another possible way to enforce

temporal consistency is to use blind video consistency methods,

which are designed to work as post-processing methods on any

kind of video with individually processed frames to reduce tempo-

ral artifacts such as flickering. The current state-of-the-art in this

field is proposedby Lei et al. [77]. Theirwork leverages aDeepVideo
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Prior by training a convolutional neural network with the assump-

tion that the output of the CNN for corresponding patches in the

video frames should be consistent. In their method they train a U-

Net [27] directly on the test video anddonot need to train on a large

scale dataset. Their network learns to mimic the original function

that transforms the unprocessed video to the processed output us-

ing a perceptional loss function [39], but stops before artifacts are

overfitted. They show in a variety of computer vision task that this

method outperforms the previous state-of-the-art.

2.5 Natural image matting datasets

Natural image matting is a difficult problem not only due to its

under-constrained nature, but also because it is difficult to gen-

erate a large amount of training data. For many computer vision

tasks such as image inpainting or super-resolution, ground-truth

data can be generated automatically. For others, such as classifi-

cation or segmentation, the ground-truth has to be labelled man-

ually. Natural image matting is a problem of the latter case, but it

requires much more expertise to generate ground-truth labels by

hand. Since the whole point of predicting an alpha matte is to pre-

dict the opacity values of even very fine structures, it takes time and

a high attention to detail for the manual creation of ground-truth

alphas.

For many years, the only publicly available dataset was released

as part of the alphamatting.com online benchmark [53]. However,

this dataset only contains 27 training images and 8 test images that

are not publicly available. In 2018, however, Adobe released a new

dataset as part of the Deep Image Matting paper by Xu et al. [54].
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This newdataset contains 493unique foregroundobjects in the train-

ing split and 50 in the test set. All these images come from natural

images with a plain background that have been carefully manu-

ally processed in Photoshop to create a ground-truth alpha matte

and pure foreground colors as can be seen in Figure 2.20. Given the

alpha and the foreground colors, it is possible to select a random

background image from MS COCO [78] and Pascal VOC [79] and

composite a completely new image. This allows for heavy data aug-

mentation, since each foreground object can essentially be used to

compose an unlimited amount of new images. To create the cor-

responding trimaps for each image, the ground-truth alpha can

be randomly dilated. A concern of the composited nature of the

dataset is that a network could learn to differentiate between im-

agecharacteristics of the foregroundandbackground images, such

as different lighting conditions, noise, etc. Another concern is the

unrealistic nature of some of the newly composited images, since

the foreground object is composited onto a new background with-

out any context, as can be seen in Figure 2.21. This can lead to im-

ageswhere the foregroundobject is floating in themiddle of a scene,

which is something that would not normally happen in real im-

ages. However, an advantage of the composited images is that

some backgrounds can have colors that are very close to the colors

of the foreground object and very complex textures, which makes

the dataset quite challenging. In the end, Xu et al. [54] and sub-

sequent publications that use the dataset for training show experi-

mentally that superior results can be achieved by using it for train-

ing. Following Xu et al., Qiao et al. [63] recently released an addi-

tional dataset build the same way that consists of 646 distinct fore-

ground objects.
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Figure 2.20: Dataset creation. (a) Input image with simple back-
ground, (b) The manually extracted alpha matte, (c) The manually
extracted foreground colors, (d-f) New composited using various
background images. Image taken from [54].

Figure 2.21: Examples of non-realistic images introduced in the
Composition-1k test dataset.

2.5.1 Video matting dataset

Similar to the alphamatting.com online benchmark [53], there ex-

ists anonlinebenchmark for videomatting: videomatting.com [80].

This dataset consists of 5 video sequences of moving objects cap-

tured in front of a green-screen and 7 sequences captured using a

stop-motion technique. 3 of these sequences are available as public

trainingdata, containing 150, 285and 150 frames respectively. Trimaps

are provided for each frame and are dilated from the ground-truth

alpha mattes. In the case of the green-screen captures, chroma

keying is used to extract the alphamatte and foreground colors for
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Figure 2.22: Alpha mattes from chroma keying and stop-motion
capture for the same image region. The stop-motion result is sig-
nificantly better at preserving details. Image taken from [80].

the sequences. For the stop-motion captures, a fuzzy toy is placed

in front of a LCDmonitor. The toy is rotated along a predefined tra-

jectory and a digital camera takes a picture after each discrete step.

Afterwards, the toy is removed and all the background is captured.

A comparison of captured alpha mattes using chroma keying and

stop-motion can be seen in Figure 2.22

2.6 Related applications

The natural image matting methods that have been mentioned

so far have all been general methods, i.e. methods that are de-

signed to predict the alpha matte for any foreground object. How-

ever, it is easy to imagine how constraining this assumption could

lead to performance improvements in special cases. The following

methods are all different from the previously mentioned, in that

they either only work in special cases, are designed for constrained

environments (e.g. to work on mobile phones) or need additional

inputs. They are relevant for an overview of the whole field, but

not technically relevant to any of the methods discussed in the fol-

lowing chapters and therefore not much detail about them will be

given.

To serve the interests of casual creatives, it is important for mat-
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ting algorithms to work onmobile devices. This naturally limits the

available computation resources and special care has to be taken to

design the algorithm as efficient as possible. Levinshtein et al. [81]

design a neural network based on Mobilenet [82] for hair matting

on mobile devices, which allows users to automatically recolor hair

in real-time.

Similarly, Zhu et al. [1] proposed an automatic portraitmatting algo-

rithm for mobile phones. They first predict a coarse binary mask of

the portrait in the image, followed by an edge-preserving andmat-

ting adaptive featheringblock. This architecture allows themethod

to run at ∼ 15 FPS on mobile phones.

Following this, Seo et al. [83] proposed a newmethod outperform-

ing Zhu et al. in both computation time and gradient error of the

predicted alphas by using a network architecture build on dilated

convolutions and bottleneck blocks.

Instead of focusing on mobile devices, Shen et al. [2] propose a

method for automatic portrait matting. Their method automati-

cally predicts a trimap fromwhich theypredict thefinal alphamatte.

Liu et al. [84] propose amethod to handle the lack of available train-

ing data for human matting by making use of coarse annotated

data. They train a mask prediction network on the coarse data to

predict coarse semantic masks, followed by a quality unification

network to unify the quality of the previous coarse mask predic-

tions. Afterwards a matting refinement network uses this data to

predict the final alpha matte.

Chen et al. [85] focus their proposed method on transparent ob-

jects. They formulate transparent object matting as a refractive

flow estimation problem and train a network to learn the refractive

flow. They also release a dataset of images containing transparent
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objects.

Shin et al. [86] adapt the network proposed by Xu et al. [54] for the

matting of garments. They replace the refinement network origi-

nally proposed by a recursive convolutional network.

Similar to the methods introduced in 2.3, Sengupta et al. [87] pro-

pose a method to automatically predict the alpha matte from any

kind of image. However, they require an additional image of the

background without the subject in the image as additional input.

They first train their network in a supervised manner, followed by

training another matting network guided by the first network and

by a discriminator that judges the quality of composites. Similar

to [60] they output both the foreground color and the alpha of the

foreground object.

As the final method presented in this section, Zou et al. [88] pro-

pose a cloud detection and removal algorithm as a mixed energy

separationbetween foregroundandbackground images. Theypro-

pose a GAN to achieve weakly supervisedmatting of cloud images.

2.7 Conclusion

In this chapter, we introduced the background and related meth-

ods relevant to natural image matting. As with many computer vi-

sion tasks, CNNs have proven to outpace classical methods in per-

formance to a large degree. Therefore, we introduced some of the

seminal deep learningpapers that establish the foundationonwhich

the current state-of-the-art is build upon in addition to the recent

deep learning methods themselves. Aside from a general increase

inperformance,modernmethods contribute additional advantages

suchas speedof computationand increasingly less relianceon trimaps.
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However, most recentmethods still ignore the need of precise fore-

ground color estimation for high-quality composites and focus on

the matting task exclusively. There have also been no recent video

mattingmethods proposed, most likely due to the scarcity of train-

ing data. While the current state-of-the-art in natural image mat-

ting outperforms classical video matting approaches in video se-

quences, the individual processing of frames often introduces tem-

poral inconsistencies that negatively impact video matting perfor-

mance. Aside fromthenatural imagematting task,manynewmeth-

ods have beenproposed in recent years that aim to solvematting in

more constrained cases, such asmatting onmobile devices or por-

trait and garment matting. While research in this field has made

great strides over the recent years, natural image matting meth-

ods can still not compete with time consuming solutions made by

artists using professional image editing software andwe foresee no

decline in research activity in the next few years.
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Chapter 3

Generative adversarial

networks for natural image

matting

The first contribution of this thesis will be presented in this chap-

ter. By the time our method was published, the only published

learning-basednatural imagemattingalgorithmswereDCNNMat-

ting [52] and Deep Image Matting [54], which nevertheless out-

performed all the classical approaches. An overview of both these

networks can be found in Section 2.3. This chapter is organized

as follows. First, a small introduction is given, outlining issues and

weaknesses with the then state-of-the-art. Next, our method is de-

scribed, detailing thedataset anddata augmentation strategyused,

our network structure and training pipeline, as well as all training

details. Afterwards, an evaluation of our method is given, compar-

ing against the then state-of-the-art. Finally, we give a conclusion

discussing the weaknesses and limitations of our method and po-

tential improvements.
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3.1 Motivation

With their Deep Image Matting [54] method, Xu et al. managed to

dramatically outperform theprevious state-of-the-art in natural im-

age matting. Naturally though, no method is perfect and we iden-

tify two potential improvements to be made. First, their network

is kept relatively simple, consisting of VGG16 [17] as encoder and

a smaller decoder without any skip-connections. We believe im-

provements on this structure can lead to better results. Further, the

alpha prediction results from their encoder-decoder lead to overly

smooth results, which Xu et al. try to alleviate through a second re-

finement stage. We believe an updated loss function bymodelling

the problem as a generative adversarial network (GAN) will lead to

sharper alpha predictions.

Our Contribution.Wepropose agenerative adversarial network for

natural imagematting. We improve on the network architecture of

Xu et al. [54] to better deal with the spatial localization issues inher-

ent in CNNs by using dilated convolutions to capture global context

information without downscaling feature maps and losing spatial

information. Furthermore, we improve on the decoder structure of

the network and use it as the generator in our generative adversar-

ial model. The discriminator is trained on images that have been

composited with the ground-truth alpha and the predicted alpha

and therefore learns to recognize images that have been compos-

ited well, which helps the generator learn alpha predictions that

lead to visually appealing compositions.
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3.2 Method

To tackle the problem of image matting, we use a generative ad-

versarial network. The generator of this network is a convolutional

encoder-decodernetwork that is trainedbothwithhelpof theground-

truth alphas as well as the adversarial loss from the discriminator.

We detail our network in more detail in the following sections.

3.2.1 Training dataset

Deep learningapproachesneeda lot of data togeneralizewell. Large

datasets like Imagenet [89] andMSCOCO [78] have helped tremen-

dously in this regard for several computer vision tasks. One of the

problems of natural image matting, however, is that it is signifi-

cantlymoredifficult to collect ground-truthdata than formost other

tasks. The quality of the ground-truth also needs to be very high,

because the methods need to capture very fine differences in the

alpha to provide good results. Thankfully a new matting dataset

[54] consisting of 431 unique foreground objects and their corre-

sponding alpha has recently been published. This dataset has fi-

nally made it possible to train deep networks such as ours. Never-

theless, 431 images is not enough to train on their own, so we en-

hance the dataset in the following way, similar to how Xu et al. [54]

propose in their approach:

For every foreground object, a random background image from

MSCOCO is taken, which allows us to composite a new unique im-

ageout of the foreground, theprovidedground-truth alphaand the

background image. For further data augmentation, we randomly

rotate the foreground and alpha by n degrees, sampled from a nor-

mal distribution with a mean of 0 and standard deviation of 5. We
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thengenerate a trimapbydilating theground-truth alphawith ran-

dom kernel sizes from 2 to 20. Next, we randomly crop a rectangu-

lar part of the foreground, alpha, trimap and background images,

centered on some pixel within the unknown region of the trimap

of a size chosen randomly from 320× 320 to 720× 720, and resize it to

320×320. This allows the network to bemore scale invariant. Finally,

we randomly flip the cropped images to get the final foreground,

alpha, trimap and background images, which will be used to com-

posite a new image as part of the training process.

3.2.2 Network architecture

Xu et al. [54] have recently shown that it is possible to train an

encoder-decoder network with their matting dataset to produce

state-of-the-art results. We build on their approach and trained a

deep generative adversarial network on the same dataset. Our Al-

phaGAN architecture consists of one generator G and one discrim-

inator D. G takes an image composited from the foreground, al-

pha and a random background appended with the trimap as 4th-

channel as input and attempts to predict the correct alpha. D tries

todistinguishbetween real4-channel inputs and fake inputswhere

thefirst 3 channels are composited fromthe foreground, background

and the predicted alpha. The full objective of this network can be

seen in 3.2.3.

Generator

Our generator consists of a an encoder-decoder network similar

to those that have achieved good results in other computer vision

tasks, such as semantic segmentation [31] [90]. For the encoder, we

take the Resnet50 [20] architecture, pretrained on Imagenet [89]
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and convert the convolutions in the 3rd and 4th Resnet blocks to

dilated convolutions with rate 2 and 4 respectively for a final out-

put stride of 8, similar to Chen et al. [30]. Since the training inputs

are fixed to a size of 320 × 320, this leads to a feature map size of

40× 40 in the final feature map of Resnet block 4. Even though the

featuremaps are downsampled less often, the dilated convolutions

can still capture the same global context of the original Resnet50

classificationnetwork, while not losingasmuch spatial information.

After the Resnet block 4, we add the atrous spatial pyramid pooling

(ASPP) module from [30] to resample features at several scales for

accurately and efficiently predicting regions of an arbitrary scale.

We then feed the output of the ASPP to the decoder part of the

network. We also change the first layer of the network slightly to

accommodate our 4-channel input by initializing the extra chan-

nel in the convolution layer with zeros.

The decoder part of the network is kept simple and consists of sev-

eral convolution layers and skip connections from the encoder to

improve the alpha prediction by reusing local information to cap-

ture fine structures in the image [35]. First, the output of the en-

coder is bilinearly upsampled 2 times so that the featuremaps have

the same spatial resolution as those coming from Resnet block 1,

which have an output stride of 4. The final feature map from block

1 is fed into a 1×1 convolution layer to reduce the number of dimen-

sions and then concatenated with the upsampled feature maps

from the encoder. This is followed by three 3 × 3 convolutions that

steadily reduce the number of dimensions to 64. The saved pool-

ing indices from the max-pooling layer in the encoder are used to

upsample these feature maps to an output stride of 2, where they

are concatenated again with the feature maps of the same resolu-
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Figure 3.1: The generator is an encoder-decoder network with skip
connections.

tion from the encoder, followed by some convolution layers. Finally,

the feature maps are upsampled again using fractionally-strided

convolutions, concatenated with the RGB input image and fed to

a final set of convolution layers. All of these layers are followed by

ReLU activation functions and batch-normalization layers [34], ex-

cept the last one, which is followed by the sigmoid activation func-

tion to scale theoutput of thegenerator between0and 1, as needed

for an alpha prediction (See Figure 3.1). A table detailing all layers in

the network can be seen in Table 3.1.

Discriminator

For the discriminator in our network, we use the PatchGAN intro-

duced by Isola et al. [35]. This discriminator attempts to classify

every N × N patch of the input as real or fake. The discriminator is

run convolutionally over the input and all responses are averaged

to calculate the final prediction of the discriminator D.

PatchGANwas designed to capture high-frequency structures and

assumes independence between pixels that cannot be located in

the same N × N patch. This suits the problem of alpha prediction,

since the results of thegenerator trainedonly on thealpha-prediction

loss can be overly smooth, as noted in [54]. The discriminator helps
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to alleviate this problemby forcing the generator to output sharper

results. To help the discriminator focus on the right areas of the in-

put and to guide the generator to predict alphas that would result

in good compositions, the input of D consists of 4 channels. The

first 3 channels consist of the RGB values of a newly composited

image, using the ground-truth foreground, a random background

and the predicted alpha. The 4th channel is the input trimap to

help guide the discriminator to focus on salient regions in the im-

age. We found that for our network N = 70 is sufficient to balance

good results and a low amount of parameters and running time of

D.

Encoder Decoder
layer name output size filter size layer name output filter size
conv1 160× 160 7× 7, 64, stride 2 bilinear 80× 80 bilinear upsampling

conv2_x 80× 80

3× 3max pool, stride 2




1× 1, 64
3× 3, 64
1× 1, 256



× 3
deconv1_x 80× 80

skip from conv2_x, 1× 1, 48




3× 3, 256
3× 3, 128
3× 3, 64





conv3_x 40× 40





1× 1, 128
3× 3, 128
1× 1, 512



× 4 unpooling 160× 160 2× 2 unpool, stride 2

conv4_x 40× 40





1× 1, 256
3× 3, 256 r = 2
1× 1, 1024



× 6 deconv2_x 320× 320

skip from conv1_x, 1× 1, 32




3× 3, 64
3× 3, 64, stride1

2

3× 3, 32





conv5_x 40× 40





1× 1, 512
3× 3, 512 r = 4
1× 1, 2048



× 3 deconv3_x 320× 320
skip from RGB image

[

3× 3, 32
3× 3, 32

]

aspp 40× 40













1× 1, 256
3× 3, r = 6, 256
3× 3, r = 12, 256
3× 3, r = 18, 256

Image Pooling, 256













deconv4_x 320× 320 3× 3, 1

Table 3.1: Architecture of the proposed generator. The encoder con-
sists of the standard Resnet50 architecture with the last two layers
removed and ASPP [30] module added to output 256 40× 40 feature
maps. The decoder is kept small anduses bilinear interpolation, un-
pooling and fractionally-strided convolution to upsample the fea-
ture maps back to 320 × 320. For the max-pooling operation in the
encoder, the maximum indices are saved and used in the unpool-
ing layer. All convolutional layers except the last one are followedby
batch-normalization layers [34] and ReLU activation functions. The
last convolutional layer is followed by a sigmoid activation function
to scale the output between 0 and 1. r is the dilation rate of the con-
volution. The default stride or dilation rate is 1. Skip connections are
added to retain localized information.
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3.2.3 Network objectives

The goal of our networks is to predict the true alpha of an image,

given the trimap. In their paper Xu et al. [54] introduce two loss

functions specifically for the problem of alpha matting, the alpha-

prediction loss Lalpha and the compositional loss Lcomp:

Lalpha =
1

|U|

∑

i∈U

√

(αi
p − αi

g)
2, αi

p, α
i
g ∈ [0, 1].

Lcomp =
1

|U|

∑

i∈U

√

(cip − cig)
2, cip, c

i
g ∈ [0, 1].

(3.1)

where αi
p is the output prediction at pixel i, αi

g the corresponding

ground-truth, cip is the RGB value at pixel i of a newly composited

imageout of theground-truth foreground, ground-truthbackground

and predicted alpha, cig the corresponding RGB value composited

from the ground-truth alpha, and U the unknown region of trimap.

Additionally to these, wealsouse theadversarial loss [91]LGAN , which

is defined as:

LGAN(G,D) = log D(x) + log (1−D(C(G(x))) (3.2)

where x is a real input: an image composited from the ground-

truth alpha and foreground appended with the trimap. C(y) is a

composition function that takes the predicted alpha from G as an

input and uses it to composite a fake image. G tries to generate al-

phas that are close to theground-truth alpha, whileD tries to distin-

guish real from fake composited images. G therefore tries to mini-

mize LGAN against the discriminator D, which tries to maximize it.

The above losses are combined and lead to the full objective of our
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Figure 3.2: Overview over the objective pipeline. Every training it-
eration, a new batch of training images is composited. These train-
ing images are processed by the generator to predict their respec-
tive alpha matte. This predicted alpha is then used to composite a
new batch of images, using the same foreground and background.
These real and fake compositions are used to train the discrimina-
tor, while the generator is trained to fool the discriminator.

network:

LAlphaGAN(G,D) = Lalpha(G) + Lcomp(G) + LGAN(G,D) (3.3)

where we aim to solve argminG maxD LAlphaGAN . An overview over the

objective pipeline is shown in Figure 3.2.

3.3 Results

In this section, we evaluate our approach on two datasets. The first

one is thewell-knownalphamatting.com [53] evaluationbenchmark,

which consists of 28 training images and 8 test images. For each

set, three different sizes of trimaps are provided, namely, ”small”,

”large” and ”user”. The second one is the Composition-1k dataset

[54], which includes 1000 test images composed from 50 unique

foreground objects. We evaluate the quality of our results using the

well known sumof absolute differences (SAD) andmean square er-

ror (MSE) but also the gradient and connectivity errors, whichmea-
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sure the matting quality as perceived by the human eye [53]. To

avoid deviations from the original formulation of the metrics, as

seen in other works ([1], [2]), we make use of the publicly available

evaluation code provided by [54]. We use the default values for the

gradient and connectivity error as proposed by the original authors

of the evaluation metrics [53] throughout all our experiments.

3.3.1 Evaluating the network architecture

The Composition-1k test dataset consists of 1000 images compos-

ited out of 50 unique objects. However, since random background

images are chosenwhen compositing, the resulting images do not

look realistic, in the sense that they show scenes that do not ex-

ist in nature, e.g. a glass in the foreground floating before a wood-

land scene as the background. Furthermore, the foreground and

background images also have different characteristics, like lighting,

noise, etc., that lead to images that cannot be considered natural.

Therefore, we mainly used the Composition-1k dataset to test our

network architecture. Westartedbyusinga similar encoder-decoder

architecture as [54], but replacedVGG16 [17] as encoder forResnet50

[20]. Wealso triedotherResnet architectures, but found thatResnet50

performed best. By including the atrous pyramid pooling module

(ASPP) [30] and using dilated convolutions for an output stride of

8 for the encoder, we further improved our performance. We also

tried a multi-grid approach following [90], but found that this did

not lead to better results. Finally, we added skip connections from

the 1st and 2nd Resnet blocks and the RGB input to get to the fi-

nal model we use for the generator. A comparison of some of the

different network architectures that we tried are shown in Table 3.2.

Additionally, we compare several topmattingmethodswhere there
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ASPP OS=8 OS=16 MG Skip GAN loss MSE
0.049
0.033
0.038
0.039
0.031
0.041

Table 3.2: Comparison of different generator architectures. ASPP:
Atrous spatial pyramid pooling [30], OS: Output stride of the final
featuremap,MG: Multi-Grid for dilated convolutions [90], Skip: Skip
connections from the encoder, GAN loss: Additional adversarial
loss during training.

Method SAD MSE Gradient (×104) Connectivity (×104)
Shared Matting (SM) [43] 117.0 (68.7) 0.067 (0.032) 10.1 (5.1) 5.4 (5.2)
Comprehensive Sampling (CM) [44] 56.5 (53.7) 0.032 (0.030) 3.4 (4.0) 5.7 (5.4)
KNN Matting (KNN) [92] 99.0 (53.6) 0.070 (0.030) 6.2 (4.0) 8.5 (5.4)
DCNNMatting (DCNN) [52] 155.8 (68.8) 0.083 (0.032) 11.5 (5.1) 7.3 (6.0)
Three-layer Graph (TLGM) [93] 106.4 (52.4) 0.066 (0.030) 7.0 (3.9) 5.0 (4.3)
Information-flow Matting (IF) [50] 75.4 (52.4) 0.066 (0.030) 6.3 (3.8) 7.5 (5.3)

Table 3.3: Quantitative results on the Composition-1k dataset. Our
results are shown in parenthesis. We achieve better results than all
the tested methods, with the sole exception marked in bold.

is public code available with our approach on the Composition-1k

dataset [54]. For all methods, the original code from the authors is

used, without anymodifications. It was found that there weremul-

tiple failed cases when directly applied to the entire dataset. We

believe that this is due to the inherently unrealistic nature of the

dataset (see the appendix B.1.1 for examples). To overcome this is-

sue, we only provide comparison for results in which the images

successfully produced a valid matting prediction. In contrast, our

method succeeded in all images in the dataset. Quantitative re-

sults under all metrics are shown in Table 3.3. Our method delivers

noticeably better results than the other approaches. The gradient

error from the comprehensive sampling approach [44] is the only

case where we do not achieve the best result as shown in Table 3.3.

Some comparisons of results for this dataset can be seen in Figure

3.3. Additional results are provided in the appendix B.1.1.
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3.3.2 The alphamatting.com dataset

Wesubmittedour results on thealphamatting.combenchmark [53]

achieving state-of-the-art results for the Troll andDoll images, both

for the SAD and MSE evaluation metrics and first place overall on

the gradient evaluation metric. Even though we are not first in

the SAD or MSE, our results are numerically very close to the top-

performing results for the remaining images as shown in Table 3.4.

Overall, we achieve very visually appealing results, as seen in Figure

3.4, further supported by our results in the gradient metric, which

was introduced in [53]. This metric is shown to have a high corre-

lation to the human perception of good alpha mattes. Similar to

[46] we do not report the connectivity measure since it is not ro-

bust [53].

Our best results are for the Troll and Doll images, which is due to

the ability of our approach to correctly predict the alpha values for

very fine structures, like the hair. This is where the adversarial loss

from the discriminator helps, since the discriminator is able to cap-

ture high-frequency structures and can distinguish between overly

smooth predictions and ground-truth compositions during train-

ing, which allows the generator to learn to predict sharper struc-

tures. Our worst results come from the Net image. However, even

though we appear low in the rankings for this image, we believe

that our results still look very close to the top-performingapproaches.

Someexamples of the alphamatting results are shown in Figure 3.4.

3.4 Conclusion

In this paper we proposed a novel generative adversarial network

architecture for the problem of natural image matting. To the best
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Average Rank∗ Troll Doll Donkey Elephant Plant Pineapple Plastic Bag Net
Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Sum of Absolute Differences
DI [54] 4.6 5.6 3.6 4.6 10.7 11.2 11.0 4.8 5.8 5.6 2.8 2.9 2.9 1.1 1.1 2.0 6.0 7.1 8.9 2.7 3.2 3.9 19.2 19.6 18.7 21.8 23.9 24.1
IF [50] 5.4 6.5 4.9 4.8 10.3 11.2 12.5 5.6 7.3 7.3 3.8 4.1 3.0 1.4 2.3 2.0 5.9 7.1 8.6 3.6 5.7 4.6 18.3 19.3 15.8 20.2 22.2 22.3
DCNN [52] 6.8 8.6 4.9 7.0 12.0 14.1 14.5 5.3 6.4 6.8 3.9 4.5 3.4 1.6 2.5 2.2 6.0 6.9 9.1 4.0 6.0 5.3 19.9 19.2 19.1 19.4 20.0 21.2
Ours 7.8 8.6 7.5 7.4 9.6 10.7 10.4 4.7 5.3 5.4 3.1 3.7 3.1 1.1 1.3 2.0 6.4 8.3 9.3 3.6 5.0 4.3 20.8 21.5 20.6 25.7 28.7 26.7
TLGM [93] 11.5 8.1 8.9 17.6 10.7 15.2 13.8 4.9 5.6 8.1 3.9 4.4 3.6 1.0 1.8 3.0 5.9 7.3 12.4 4.2 8.0 8.5 24.2 25.6 24.2 20.5 23.5 22.2

Gradient
Ours 9.3 8.0 6.8 13.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0.3 0.2 0.2 0.4 1.8 2.4 2.7 1.1 1.4 1.5 0.9 1.1 1.0 0.5 0.5 0.6
DCNN [52] 10.9 13.6 10.4 8.8 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.3 0.3 0.4 0.4 1.5 1.5 2.1 1.1 1.3 1.5 1.5 1.4 1.0 0.6 0.6 0.5
DI [54] 11.4 8.1 8.4 17.6 0.4 0.4 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.6 1.3 1.5 2.4 0.8 0.9 1.3 0.7 0.8 1.1 0.4 0.5 0.5
IF [50] 12.5 15.1 10.1 12.1 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.4 0.4 1.7 1.8 2.2 0.9 1.3 1.3 1.5 1.4 0.8 0.5 0.6 0.5
TLGM [93] 14.6 11.6 11.8 20.5 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.4 0.3 0.1 0.3 0.5 1.6 1.7 2.7 1.1 1.9 2.4 1.6 1.6 1.0 0.5 0.6 0.4

Table 3.4: SAD and gradient results for the top fivemethods on the
alphamatting.com dataset. Best results are shown in bold.

Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Figure 3.3: Comparison of results on the Composition-1k testing
dataset.

of our knowledge, this is the first work that uses GANs for this com-

puter vision task. Our generator is trained to predict alpha mat-
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Figure 3.4: Alpha matting predictions for the ”Troll” and ”Doll” im-
ages (our best results) and the ”Net” image (our worst result) taken
from the alphamatting.comdataset. From left to right: a) Input im-
age, b) DCNN [52], c) IF [50], d) DI [54], e) Ours.

tes from input images while the discriminator is trained to distin-

guish good images composited from the ground-truth alpha from

images composited with the predicted alpha. Additionally, we in-

troduce some network enhancements to the generator that have

been shown to give an increase in performance for the task of se-

mantic segmentation. These changes allow us to train the network

to predict alphas that lead to visually appealing compositions, as

our results in the alphamatting.combenchmark show. Ourmethod

ranks first in this benchmark for the gradientmetric, whichwas de-

signed as a perceptual measure. For all the other metrics we show

comparable results to the state-of-the-art and are first in the SAD
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andMSEerrors for the Troll andDoll images. Our results in these im-

ages especially manage to capture the high-frequency hair struc-

tures, which might be attributed to the addition of the adversarial

loss during training. Additionally, we compare with publicly avail-

ablemethodson theComposition-1k test dataset andachieve state-

of-the-art results.
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Chapter 4

Foreground color

prediction through inverse

compositing

In this chapter the second contribution of this thesis is presented.

This chapter is organized as follows. First, a small introduction is

given, outlining issues and weaknesses with the current state-of-

the-art. Next, ourmethod is described, includingournetwork struc-

ture and training pipeline, as well as all training details. Afterwards,

an evaluation of our method is given, comparing against the state-

of-the-art. Finally, we give a conclusion discussing the weaknesses

and limitations of our method and potential improvements.
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4.1 Motivation

In recent years, natural image matting algorithms have achieved a

level of performance thatmake them very suitable to use by casual

creatives for image and video editing or compositing. While not

yet up to the standards of high-quality movie productions, the pre-

dicted alphas from state-of-the-art algorithms are sufficiently ac-

curate to allow the extraction of the foreground object from an im-

age and composition of a new image using a different background.

However, there are still issues when using these algorithms in prac-

tise. First of all, if the predicted alpha is used for extracting the fore-

ground object from an image to composite a new one, the alpha

alone is often not enough to create a high quality composite even

with a perfect alpha prediction. This is due to the mixture of fore-

groundandbackgroundcolors in the transparent regions of theob-

ject. The background color of the original image bleeding through

will be extracted as well and can lead to a disparity of colors in the

new composite in many cases, as seen in Figure 4.1. For high qual-

ity composites, it is therefore necessary to also estimate the fore-

ground color of the object. The second problem with current mat-

ting methods is that they do not allow for much user interaction if

the prediction is not quite satisfactory. Often, the only tuning op-

tion for a user is to refine the input trimap, which may not be good

enough. In high-quality studio environments for example, it is nec-

essary that artists can easily refine predictions to a very high level

without having to resort tomanually touching up the prediction on

a pixel-wise level. In our approach, we aim to solve both of these is-

suesby estimatingnot only the alpha value, but also the foreground

and background colors of the input image and allowingmore user

interaction into the prediction process. Wemodel our network as a
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recurrent inference machine (RIM) [94] that sits atop existing mat-

ting methods and is trained fully end-to-end with reconstruction

and Wasserstein GAN losses [95, 96]. Our contributions are there-

fore:

• A fully automatic algorithm that can be added to any existing

alpha prediction algorithmand that estimates the foreground

and background colors for a given alpha, essentially solving

the inverse compositing problem.

• Due to the recurrent nature of our algorithm, we allow users

to update intermediate predictions to further guide the algo-

rithm,which can lead tomuchbetter predictions throughonly

a minor amount of manual work.

• We show through experiments that our color predictions sub-

stantially surpass the state-of-the-art. Especially our foreground

color prediction leads to faithful new composites.

• Our method is small and lightweight and can process even

high resolution images very fast.

While our network predicts both foreground and background col-

ors, as well as the alpha, it is explicitly not an inpainting method

aiming to remove the foreground object or reconstruct the back-

ground. We strictly focus on foreground color prediction.

4.2 Method

Our method aims to solve the inverse compositing problem by si-

multaneously estimating thealphamatte, aswell as the foreground

and background colors of a given image. Instead of trying to solve
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Figure 4.1: Comparison of the ground truth and our predictions.
To the left: The foreground extracted from the input image using
the ground-truth alpha and composited onto a black background.
To the right: The foreground extracted from our predicted fore-
ground using the predicted alpha and composited onto a black
background. As can be seen, even when using the ground-truth
alpha, the green of the old background shines through in the new
composition. This is not the case in our composition.

either of these problems from scratch, we rely on an initial guess

for the solution of the alpha and leverage the correlation of the

three problems to solve for the foreground and background colors

in the process. As a result of this, ourmethod can be seen as a post-

processing method that can be used on any of the many methods

that aim to predict the alpha matte of an image. Our method es-

timates the foreground and background colors, slightly refines the

alpha, and additionally gives users the ability to easily refine the re-

sults further with easymanual user interaction as described in Sec-

tion 4.3.

To achieve this, we design a recurrent inference machine [94] to

solve the inverse of the forward model given in Equation 1.1. Tradi-

tionally, oneway to achieve thiswouldbe to optimize themaximum

a posteriori (MAP) solution, given a likelihood and prior as has been

done by Bayesian Matting [6] in the past:

argmax
F,B,α

P (F,B, α|I) = L(I|F,B, α) + L(F ) + L(B) + L(α), (4.1)

whereL(·) is the log likelihood L(·) = logP (·), α is the alphamatte and

F, B, I are the foreground, background and observed image colors
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respectively.

In contrast, a RIM as proposed by Putzky et al. [94] is a recurrent

neural network (RNN) that is able to learn the iterative inference

of the problem and implicitly learns the prior and inference pro-

cedure in the model parameters. Each state of the RIM includes

the current solution, a hidden memory state and the gradient of

the likelihood to the problem, which gives information about the

generative process and indicates how good the current solution is.

Given an observation y and a previous solution xt−1, the RIM calcu-

lates the gradient of the log-likelihood ∇L(y|xt−1) as an additional

input to the network and predicts an update step ∆xt such that

xt = xt−1 +∆xt, (4.2)

as can be seen in Figure 4.2. In this paper, the image I is the ob-

servation y and the foreground, background and alpha F,B, α form

the current solution xt.

The log-likelihood in our case ismodeled by the difference between

the color in the observed image and the color that would result

from the composition of the predicted foreground, background,

and alpha [6]:

L(y|x) = L(I|F,B, α) = −
||I − αF − (1− α)B||2

σ2
. (4.3)

This corresponds to aGaussianprobability distribution centeredaround

C̄ = αF + (1−α)B with a standard deviation of σ. From this, the gra-
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Figure 4.2: The Overall system. First, we do an initial alpha predic-
tion using any prediction model. Usually, these need a trimap as
additional input, but this is not required by our approach. Next, we
create initial foreground and background predictions, using either
the trimap or the initial alpha prediction as a mask for the input
image. All three initial predictions get concatenated to form the
7-channel xt. Given the original image y and xt, we calculate the
gradient of the log-likelihood ∇L(y|xt), which we concatenate to xt

to form the input of the RIM. The RIM then calculates and applies
an update step ∆xt+1 for xt to form xt+1. We continue this process
for a maximum of 5 iterations in our experiments.

dient of this log-likelihood is given by:

∇L(y|x) = ∇L(I|F,B, α) =

[

∂L

∂F
,
∂L

∂B
,
∂L

∂α

]T

=















2α(I − αF +B − αB)

(−2 + 2α)(I − αF +B − αB)
∑

R,G,B

(2F + 2B)(I − αF +B − αB)















∗
1

σ2
.

(4.4)

Since
∂L

∂α
is a sum across all three RGB channels, we have to sum

over all three channels. As stated previously, our method serves as

a post-processing for other alpha prediction methods. As such, we

use the output of whichever alpha prediction method we use as a

base as the initial guess for the alpha. For the initial foreground and

background predictions, we use the original input image in all ar-

easwhere the trimapgives known foreground/background regions

respectively and zeros otherwise. If the basemethoddoes not need

to use a trimap, we simply use the regions where the predicted al-

pha is purely foreground or purely background as mask.
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Figure 4.3: Our prediction over t = 1, . . . , 5. While our alpha predic-
tion barely changes from the initial input, both the foreground and
background predictions get consecutively more accurate, as seen
especially in the background prediction.

The RIM then predicts updates for the current solution at every iter-

ation, that consecutively lead to an ideal solution for all predictions.

A loss is calculated for every iteration with the final loss being de-

fined as:

Ltotal =
T
∑

t=1

wtL(xt,xtarget), (4.5)

where T is the total number of iterations, wt is a positive weighting

factor and xtarget is the ground-truth. In this paper we set T = 5 and

wt = 1 for all iterations, which we experimentally found to achieve

the best results. Further details of our loss function are given in

Section 4.2.5. A visualization of the iterative process can be seen in

Figure 4.3.
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4.2.1 Spectral normalization

Spectral normalization [97] has originally been proposed for use in

the discriminator of generative adversarial networks and has been

adaptedwidely [98, 99, 100], especially in image synthesis tasks and

even outside of GANs [101, 98, 61]. Spectral normalization controls

the Lipschitz constant of a function f by constraining the spectral

norm of each layer g : hin → hout. The Lipschitz norm ||g||Lip is de-

fined as equal to sup
h
|||∇g(h)|||, where |||(A)||| is the spectral norm

of matrix A, which is the L2 matrix norm of A.

|||(A)||| := max
h:h 6=0

||Ah||2
||h||2

= max
||h||2≤1

||Ah||2, (4.6)

which is equivalent to the largest singular value to A. For a lin-

ear layer g(h) = Wh the norm is given by ||g||Lip = sup
h
|||∇g(h)||| =

sup
h
|||W ||| = |||W |||. Spectral normalization normalizes the spectral

norm of the weight matrix W so that it satisfies the Lipschitz con-

straint |||W ||| = 1:

W̄SN(W ) := W/|||W |||. (4.7)

To estimate |||W |||, the power iteration method [102, 103] is used,

which is computationally very cheap.

4.2.2 Gated Recurrent Units

Gated recurrent units (GRU) have been proposed by Cho et al. [105]

as an alternative to long short-termmemory units (LSTM) [106] that

are simpler to compute and implement. A graphical depiction of

the unit can be seen in Figure 4.4. Similar to the LSTM, the GRU

consists of several gates through which the input flows. As a recur-

rent unit, the unit activates through several timesteps. The input
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Figure 4.4: Gated Recurrent Unit. Image taken from [104].

at timestep t consists of a feature vector xt and the hidden state

from the previous iteration ht−1. The initial hidden state for t = 0 is

defined as h0 = 0. The reset gate rt for time step t is calculated with:

rt = σ(Wrxt +Urht−1), (4.8)

where σ is the logistic sigmoid function andWr andUr are learned

weight matrices respectively. The update gate zt is similarly com-

puted by:

zt = σ(Wzxt +Uzht−1). (4.9)

The actual activation ht is then computed by:

ht = ztht−1 + (1− zt)ĥt, (4.10)

where

ĥt = φ(Whxt +Uh(rt ⊙ ht−1)), (4.11)

andwhere φ is thehyperbolic tangent functionand⊙ thehadamard

product. Through this formulation, previous hidden states can be
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forgotten if the reset gate is close to 0 and the new hidden state is

forced to reset with the current input only, which allows the unit to

drop unnecessary information. The update gate on the other hand,

decides howmuch information from the previous hidden state car-

ries over to the new one, which allows the unit to remember long-

term information. Since eachof theseunits have independent reset

and update gates, they can capture information at different time

scales. Although GRUs have been developed for machine transla-

tion and worked on input vectors, it is possible to transform these

units to convolutional GRUs by replacing thematrixmultiplications

with convolutions.

4.2.3 Network architecture

Webaseournetwork architectureon thenetworkproposedbyPutzky

et al. [94]. The full input of the network consists of the current solu-

tionxt = [F,B, α]T and thegradient of the log-likelihood∇L(I|F,B, α),

resulting in a full resolution featuremap of 14 channels in total. The

first convolution layer of the network downsamples the input by a

factor of 2 and is followed by a GRU. Following that, a transposed

convolution layer upsamples the resulting feature maps back to

the original resolution, again followed by a GRU. A final convolution

layer serves as output layer and reduces the number of channels

back to 7. With the exception of the last one, all convolution layers

use spectral normalization [97] and a tanh nonlinearity. The num-

ber of featuremaps for the inner two convolutions is 32 respectively

and the number of feature maps for the hidden states of the GRUs

is 128. All convolution kernels are 3 × 3. We choose spectral nor-

malization instead of the popular batch normalization due to the

formers success in generative adversarial networks and the latters
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Figure 4.5: Network architecture. For each iteration, a candidate so-
lution xt serves as input, is concatenated with the gradient ∇L(y|x)
and put through the network to predict an update step, which is
added to xt. Convolutions are normalized through spectral normal-
ization (SN) and use tanh as activation function.

problemswhen applied to recurrent networks. These problems are

due to the nature of batch normalization: It tries to normalize the

input of each layer and learns the characteristics of the input during

training. In a recurrent network, however, the same layer is visited

multiple times and the input characteristics canbedifferent in each

iteration, which canmake the batch normalization layer difficult or

impossible to train. Spectral normalization, on the other hand, nor-

malizes the weights of the layer, side-stepping this issue entirely.

The full network structure can be seen in Figure 4.5.

Ournetworkonly contains 1155680parameters, whicheasily fits even

on mobile devices. However, the network operates on full resolu-

tion feature maps and propagates full resolution hidden states to

the next iteration, which may use a lot of memory. This is not an is-

sue, however, since the receptive field of the network is only 11× 11.

Due to this, even very high resolution images can be processed in

smaller tiles with an overlap between tiles of only 11 pixels.
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4.2.4 Spatial tiling

If a high resolution image is too large towholly fit intoGPUmemory,

it is possible toprocess the imageon theCPU instead. However, this

can be quite slow. Another possibility is to tile the high resolution

image into smaller sub-images and process them one at a time. In

this approach, the receptive field of the network is important. This

can be visualized in Figure 4.6. In a) the image is naively tiled into 4

sub-images that directly border on each other. The receptive field

of size 5× 5 of an example network is shown around the red pixel in

the upper left tile. Due to the naive tiling, the receptive field would

not see the actual input pixels in the 5×2marked region to the right

of the pixel. Instead this area would be filled through some sort of

padding. As the sliding window of the convolution moves across

the image, a 2 pixels wide border on each sub-image would gener-

ate values that do notmatch the values that would have been gen-

erated if the image was processed in full, due to the difference of

actual image pixels and padded input pixels. This pattern of bor-

der artefacts can be seen in 4.6 b). To avoid this, the high reso-

lution image needs to be tiled in such a way, that there exists an

overlap between tiles the size of the receptive field of the image as

seen in 4.6 c). Due to this, the pixels in the border region can be

safely discarded for each sub-image, since each pixel will exist in a

non-border region of one sub-image. Since the amount of overlap

between sub-images corresponds to the size of the receptive field,

larger receptive fields require more sub-images to process, which

in turn slows down the speed of themethod. Since ourmethod has

a receptive field of only 11 × 11, the method needs barely any extra

tiles over the naive tilingmethod to faithfully process thewhole im-

age. Pseudocode of the tiling is presented in algorithm 1.
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Figure 4.6: a) Image naively tiled into 4 sub-images. The 5 × 5 re-
ceptive field around the red pixel is shown by the red lines. The
5 × 2 shaded region in the receptive field is getting padded due to
the tiling and therefore results in a wrong output of the red pixel.
b) The pattern of wrong outputs in this example. c) The first row
of the correct tiling pattern, with 3 tiles per row instead of 2 and a
⌊RF/2⌋∗2 = 4pixel overlapbetween tiles. Thegreenandblue shaded
regions designate the area kept per tile respectively. As can be seen
around the red pixel, all pixels within the receptive field properly ex-
ist in the tile. Since the outer ⌊RF/2⌋ = 2 pixels from the border in
each tile are discarded, no wrong results due to padding can ap-
pear.

4.2.5 Loss Function

Inspired by the success of generative inpainting networks [56, 107],

we use the WGAN-GP loss [95, 96], combined with a L1-based re-

construction loss to train our network.

Following previous methods [8, 55, 61, 54, 57], we define the recon-

struction loss only over theunknown regionof the image. This leads

to the reconstruction loss at iteration t:

L1 =
1

|U|

∑

i∈U

|xi,t − xi,target|, (4.12)

where U is the unknown region of the trimap. Note that we do

not calculate the loss independently for the alpha, foreground and

background predictions. xtarget is defined as the ground-truth fore-

ground, background and alpha concatenated to a 7-channel fea-
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Algorithm 1 Tiling a high-resolution image.
1: function Tiling(y,x,h)
y - observed image, x - candidate solution, h - hidden state
RF - receptive field size, TS - tile size, Net - prediction network

2: if height(x) < TS and width(x) < TS then
3: return Net(y,x,h)
4: else
5: V T =

⌈

height(x)
TS−RF+1

⌉

⊲ Number of vertical tiles

6: HT =
⌈

width(x)
TS−RF+1

⌉

⊲ Number of horizontal tiles
7: TP = LP = ⌊RF/2⌋ ⊲ Top padding and left padding
8: BP = V T ∗ (TS−RF +1)+TP − height(x)⊲ Bottom padding
9: RP = HT ∗ (TS −RF + 1) + LP − width(x) ⊲ Right padding
10: x = xout = Pad(x, LP,RP, TP,BP ) ⊲ Pad x

11: y = Pad(y, LP,RP, TP,BP ) ⊲ Pad y

12: h = hout = Pad(h, LP,RP, TP,BP ) ⊲ Pad h

13: for every tile in V T ×HT do
14: xtile = Extract(x, tile) ⊲ Extract tile from x

15: ytile = Extract(y, tile) ⊲ Extract tile from y

16: htile = Extract(h, tile) ⊲ Extract tile from h

17: xtile,htile = Net(ytile,xtile,htile)
18: xout = Insert(xout,xtile) ⊲ Insert xtile into xout

19: hout = Insert(hout,htile) ⊲ Insert htile into hout

20: end for
21: xout = Depad(xout) ⊲ Remove padding
22: hout = Depad(hout) ⊲ Remove padding
23: return xout,hout

24: end if
25: end function

ture map and xt as the update step predicted by the RIM at itera-

tion t added to the previous prediction: xt = xt−1 +∆xt.

We further add theWGAN-GP loss to train the RIMwith adversarial

gradients and improve prediction accuracy. In generative adversar-

ial networks (GANs), a generator G is trained to output generated

data Pg similar to the real data distribution Pr, whereas a compet-

ing discriminator (or critic in the case ofWGAN) aims to distinguish

data sampled from real and generated data distributions. WGAN

uses theWasserstein-1 distanceW(Pr,Pg) to compare real and gen-

erated data distributions. The WGAN loss is constructed using the
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Kantorovich-Rubinstein duality:

min
G

max
D∈D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)], (4.13)

where D is the set of 1-Lipschitz functions, Pg is the model distribu-

tion generated by the RIM and D is the critic network. To enforce

the 1-Lipschitz constraint, Gulrajani et al. [96] proposed a gradient

penalty term, since a 1-Lipschitz function only has gradients with a

norm of at most 1 everywhere. This gradient penalty term

λ E
x̂∼P

x̂

[(||∇x̂D(x̂)||2 − 1)2] (4.14)

is added to the WGAN loss for random samples x̂ ∼ Px̂. In our

method, we are only interested in predictions of the unknown re-

gion U . Consequently the gradient penalty should only be applied

to pixels inside that region. Thereforewe followYu et al. [56] bymul-

tiplying the gradients with a maskm of the unknown region. From

this, the final WGAN-GP loss at iteration t follows as:

LWGAN = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼P

x̂

[(||∇x̂D(x̂)⊙m||2 − 1)2]. (4.15)

The balancing term λ is set to 10 in our approach. As critic we use

SN-PatchGANwhichhasprovided fast and stable training in inpaint-

ing tasks [107]. Instead of using the whole 7-channel feature map

x as input to the critic, we composite a new image out of the fore-

ground, alpha and a new randomly selected background, similar to

Lutz et al. [8]. We calculateL1 andLWGAN at every iteration t and add

them. Finally, we sum them up for the final loss term in Equation

4.5.
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4.2.6 Training details

Wetrain ournetworkon thepublicly availablemattingdataset pub-

lished by Xu et al. [54]. This dataset contains 431 unique foreground

images and corresponding alphamattes. They further released an-

other 50 unique images that can be composited with predefined

backgrounds to create the Composition-1k testing dataset. To gen-

erate the initial alphapredictionsduring training,weuseGCA-Matting

[61] as abase since they achieve thebest performanceon theComposition-

1k testing set. To produce the initial foreground and background

predictions, we use the given trimap to mask the input image in

their respective known regions. Afterwards, all images are normal-

ized to the range of [−1, 1]. Since the training dataset is small, data

augmentation is essential to properly train a neural network and

we follow the improved data augmentation strategy of Li et al. [61].

This strategy initially selects two random foreground images with

a probability of 0.5 and combines them to create a new foreground

object with corresponding alpha. They follow this by resizing the

image to 640×640with a probability of 0.25 to generate some images

that contain nearly the whole image instead of random patches.

Following this, a random affine transformation is applied to the im-

age, which consists of random rotation, scaling, shearing and flip-

ping. Afterwards, a trimap is generated by random dilation and a

512 × 512 patch is cropped from the image, centered around a ran-

dom pixel in the unknown region of the trimap. Then, the image is

converted to HSV space and random jitter is applied to hue, satu-

ration and value. Finally, a random background image is selected

from MS COCO [78] and the input image is composited. Naturally,

all applicable transformations are applied to the foreground image,

alpha and trimap to keep themmatching.
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We use the Adam optimizer [108] with a fixed learning rate of 10−4

and train for 100000 iterations.

4.3 Manual editing

One of the main objectives of our method is to give users the op-

tional ability to more directly influence the prediction process. Due

to the recurrent nature of ourmethod, this is easily achievable. Dur-

ing any step of the prediction, users can directly manually update

anyoneof the foreground, backgroundor alphapredictions through

image editing software. Since all three predictions are fundamen-

tally linked, changes in one of themcan propagate to the other two.

For example, a user may manually inpaint part of the background

that the network struggles with and which may be easier to adjust

for the user than directly changing either the foreground colors or

the alpha. This change propagates to the foreground prediction

and can lead to a much better foreground in the end. A detailed

example of this can be seen in Figure 4.7. To make sure that the

network recognizes any direct modification of the predictions by

the user, we additionally set the hidden states at the correspond-

ing locations to 0. The whole process is intuitive and can easily be

implemented as part of any image processing software.

4.4 Results

We evaluate our proposed method on the Composition-1k dataset

[54], with regards to the alphamatte prediction, as well as the fore-

groundandbackgroundcolor prediction. TheComposition-1kdataset
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Figure 4.7: Visualization of the manual editing process. Top row
from left to right: Input image, ground-truth composition, pre-
dicted foreground, predicted background. Bottom row from left
to right: Resulting composition, very rough edit to the background,
corresponding editing mask and the composition resulting from
manual edit. As can be seen, the color predictions in this exam-
ple are bad and incorrectly color parts of the backgroundwith fore-
ground colors and vice versa. After the rough manual edit to the
background, the algorithm recovers the correct foreground color.

consists of 50 unique foreground images that have been compos-

ited into new images using 20 predefined backgrounds each, re-

sulting in 1000 testing images in total. To generate our results, we

use several different published methods for alpha prediction and

use them as initial guess for our method. Using these predictions,

we then generate foreground colors, background colors and alphas

over 5 iterations in total, which we experimentally found to lead to

good convergence while keeping computation time low.
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Figure 4.8: Visual comparison on the Composition-1k dataset. From
left to right: Input image, Compositions from Context-Aware [60],
Samplenet [55], Ours, Ground-truth. As can be seen in the high-
lighted regions, Context-Aware predicts comparatively plain colors.
Samplenet predicts good foreground colors, but sometimes intro-
duces patches of wrong color to the foreground. Ourmethod leads
to compositions closest to the ground-truth overall.

4.4.1 Foreground and background color prediction

Due to the composited nature of the Composition-1k dataset, we

have theground-truthbackgroundand foregroundcolors available.

Therefore, we can calculate metrics for prediction on this dataset.

Asmetrics, we choose theMSE and SAD of α×F and (1−α)×B as in-

troduced in [109]. However, due to the nature of the dataset, which

can contain wrong foreground colors in all pixels where the alpha

is 0, we multiply by the ground-truth alpha. This also disentangles

the performance of all evaluated methods from their performance

in predicting the alpha. We further only consider pixels in the un-

known trimap area.
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We compare our results against Closed-formMatting [47], Context-

Aware Matting [60] and Samplenet [55]. Closed-form Matting can

predict the alpha matte by solving a sparse linear system of equa-

tions. As a second step and given an alpha as input, it is possible

to solve this equation for the foreground and background colors in-

stead of the alpha. For fair comparisons, we use the superior alpha

predictions fromGCA-Matting [61] as input. Context-AwareMatting

predicts the foreground and alpha simultaneously through a deep

neural network. By contrast, Samplenet does a full background,

foregroundandalphaprediction sequentially using3networks. Ad-

ditionally, we can use the input image as a baseline comparison.

We use the same initial alpha predictions for our method as in the

evaluation of the alpha prediction, as are shown in Table 4.1.

As can be seen in the table, we achieve the overall best results for

the color prediction by awidemargin, especially in the prediction of

the foreground colors. The background predictions of Samplenet

are marginally better than ours according to the SAD, but it per-

formsworse in foregroundprediction. We can also observe that the

quality of the initial alpha prediction has a large impact on the re-

sulting quality of the foreground and background predictions. The

better the initial alpha prediction is, the better our method per-

forms. However, even alpha predictions from the outdated KNN-

Matting lead to foreground colors that are almost as good as the

colors naively taken from the input image and noticeable better

background colors. We also outperform the Closed-form solution

for the foreground and background colors, even when given the

GCA-Matting alpha prediction as input. Furthermore, the Closed-

form solution is quite slow in comparison tomodern deep learning

methods, which is non-optimal for any interactive application. Vi-
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Foreground Background
Methods SAD MSE (104) SAD MSE (104)
Input Image 58.32 26.49 57.90 26.12
KNN [92] + Ours 59.91 49.25 36.77 15.19
AlphaGAN [8] + Ours 44.27 27.90 40.12 16.93
IF [50] + Ours 37.93 31.98 29.49 15.82
GCA [61] + CF [47] 31.98 23.15 29.40 10.69
Context-Aware [60] 46.93 18.02 - -
SampleNet [55] 42.68 29.26 24.59 7.99
GCA [61] + Ours 28.32 12.10 25.07 5.97

Table 4.1: Quantitative results of the foreground and background
prediction on the Composition-1k dataset. Best results are empha-
sized in bold. Note that not all images could be predicted for KNN
Matting and Information-flow Matting due to trimaps incompati-
ble with these methods.

sual comparisons can be seen in Figure 4.8 and in the appendix

B.2.1.

4.4.2 Color prediction over several iterations

Ourmethod is a recurrentneural network andpredicts update steps

to the previous solution over several iterations to output new solu-

tions. We compare our results for the color predictions in Table 4.2.

As can be seen, our predictions get consecutively better over itera-

tions until they saturate after t = 5.

4.4.3 Manual editing

To show the impact of themanual editing process, we compare the

fully automatic output of our method to results we get whenmak-

ing only small edits during the process. For this, we take 5 of the

images of the Composition-1k dataset where the automatic predic-

tion generates sub-par results and spend less than a minute each

onmanually improving the intermediate alpha predictions. As can

be seen in Table 4.3, even small edits focusing on the foreground
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massively improve the color prediction. Naturally, these edits could

be done on the alpha predictions of other methods as well, how-

ever, only our method interlinks the alpha and color predictions in

a way to propagate the changes from the alpha to the foreground

and background color predictions automatically. In othermethods

the edits to the alpha would have to be replicated for the color pre-

dictions as well, increasing the amount of work. Please refer to the

appendix B.2.2 for the images and edits.

4.4.4 Alpha matte prediction

For the alphamatteprediction, we compare on the commonly used

evaluation metrics [53]. The full results of the evaluation are shown

in Table 4.5. As can be seen from the table, the alpha predictions of

our method barely differ from those of the initial alpha prediction.

We slightly improve on the input alpha prediction, but are unable

to significantly refine them even if the initial alpha predictions are

bad. Some visual results of our alpha predictions using GCA Mat-

ting [61] as input can be seen in Figure 4.8.

4.4.5 User study

To further evaluate the quality of our work, we conduct a user study

comparing the foregroundcolor predictionof ourmethodwithSam-

plenet [55] andContext-AwareMatting [60]. Following theapproach

of [60], we take all 31 images of the real-world image dataset from

Xu et al. [54] and use the predicted alpha and foreground colors to

composite a new imagewith a plain background. To ensure any dif-

ferences between matting results are only due to the color predic-

tions, we use the predicted alpha from Samplenet as initial guess
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for our method in the comparisons with Samplenet and similar for

our comparisons with Context-Aware Matting.

We recruited 20 participants for our user study for each of the com-

parisons. Each participant was presented with a short training ses-

sion where the results of two methods was shown and the differ-

ences explained. This was done to help people with no prior mat-

ting experience spot the subtle differences in results.

Each participant conducted 31 trials corresponding to all the im-

ages of the real world dataset. In each trial the original image was

shown at the top with the composited results of the methods at

the bottom. The results were shown one at a time and the par-

ticipant could use buttons or the arrow keys to switch the bottom

image between the result images. By being able to rapidly switch

between images, it is possible to recognize even subtle differences

in the foreground colors. The participantswere asked to choose the

result which they found more accurate and realistic.

We calculated the preference rate of the participants of our results

and show the mean preference rate and standard deviation in Ta-

ble 4.4. As canbe seen, themajority of participants preferred our re-

sults to those of Samplenet. However, when comparing to Context-

AwareMatting, the results shownopreferenceof oneover theother.

Some examples of our study can be seen in the appendix B.2.3. As

can be seen, the color differences between our results and Context-

Aware Matting are very minor, which explains the responses. How-

ever, ourmethod still significantly outperformsContext-AwareMat-

ting numerically in the Composition-1k dataset and offers the op-

tion to further improve the results interactively.
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Foreground Background
Iteration SAD MSE (104) SAD MSE (104)
1 42.06 16.34 35.17 10.67
2 31.18 12.87 27.57 7.20
3 29.18 12.24 25.83 6.33
4 28.41 12.05 25.24 6.05
5 28.32 12.10 25.07 5.97

Table 4.2: Our results for foreground and background color predic-
tion over iterations using the GCA alpha prediction as initial input.
Best results are emphasized in bold. We do not see improvements
after 5 iterations.

Foreground Background
SAD MSE (104) SAD MSE (104)

Pre-edit 161.50 143.26 60.39 17.25
Post-edit 81.32 22.748 60.21 17.15

Table 4.3: Our results for foreground and background color predic-
tion for selected examples before and after manual editing.

4.4.6 Limitations

The goal of this work is to introduce a lightweight method that can

be used with any alpha prediction network to estimate the fore-

ground and background colors that lead to compelling new com-

posites. However, we do not refine the input alpha to a significant

amount due to the small capacity of our network. In future work, it

may be desirable to explore an updated network architecture that

is able to further refine inadequate initial alpha predictions.

Further, as opposed to Samplenet, our method does not predict

good background colors in areaswhere the background can not, or

only barely, be seen in the image. This has no impact on new com-

positions and we do not claim to fully inpaint the background after

the foreground has been removed. However, certain applications

may find a fully inpainted background desirable, which we can not

provide.
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Ours vs Mean preference rate Std
Context-Aware [60] 48.87% 0.15
Samplenet [55] 64.84% 0.19

Table 4.4: Results of the user study on the real world dataset [54].
Given the pairwise choice between foreground objects extracted
using ourmethod and the state of the art, our results were about as
often chosen as Context-AwareMatting [60] and significantlymore
often than Samplenet Matting [55].

Methods MSE SAD Grad Conn
KNN [92] 0.078 112.60 67.68 113.47
KNN [92] + Ours 0.078 112.81 67.75 113.52
IF [50] 0.066 75.41 63.39 75.48
IF [50] + Ours 0.066 75.47 63.38 75.48
AlphaGAN [8] 0.031 68.71 50.97 70.42
AlphaGAN [8] + Ours 0.031 68.72 50.97 70.40
Deep Image Matting [54] 0.014 50.4 31.0 50.8
IndexNet [59] 0.013 45.8 25.9 43.7
VDRN [110] 0.011 45.3 30.0 45.6
AdaMatting [57] 0.010 41.7 16.8 –
SampleNet [55] 0.010 46.79 22.50 45.64
SampleNet [55] + Ours 0.010 46.82 22.51 45.66
GCA [61] 0.009 35.28 16.92 32.53
GCA [61] + Ours 0.009 35.31 16.91 32.53

Table 4.5: Quantitative results of the alpha prediction on the
Composition-1k dataset. Best results are emphasized in bold.
Note that not all image could be predicted for KNN Matting and
Information-flow Matting due to trimaps incompatible with these
methods.

4.5 Conclusion

In this chapter, we propose a novel method to estimate foreground

andbackgroundcolorsgivenan initial alphaprediction. Ourmethod

is lightweight and can easily be used on top of any other alpha pre-

dictionmethod. We show that even initial alphapredictions that do

not satisfy high-quality standards generate color predictions that

are quantitatively better than the colors directly taken from the in-

put image. We show through quantitative and qualitative evalu-

ation that our method substantially outperforms the state-of-the-
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art in foreground and background color estimation. Further, the

recurrent nature of our method allows users to manually edit parts

of the candidate solutions with ease, which can propagate further

and lead to better final predictions. We show that very rough ed-

its to the background candidate solution can lead to a significantly

better final foreground solution through minimal effort.
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Chapter 5

Video matting

In this chapter the third contributionof this thesis is presented. First,

an introductionmotivating theproject is given. Afterwardsourmethod

is explained in detail and some concepts related to this chapter are

introduced. Following this, evaluations on the video matting task

are done. Finally, a conclusion is given, discussing the limitations of

current methods.
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5.1 Motivation

In recent years, natural image matting algorithms have reached

an astonishing performance, mainly due to leveraging neural net-

works. This was possible due to the release of a publicly available

matting dataset that while small, was of sufficient size to train neu-

ral networks for thenatural imagematting task in a supervisedman-

ner. In fact, the current state-of-the-art in natural image matting

outperforms the classical approaches to such a degree, that they

reach a higher performance than classical video matting methods

onvideos, even though theyare trainedonly on single images. How-

ever, this does not mean that they perform flawlessly. Temporal in-

consistencies suchas flickeringarenaturally prevalent in approaches

that were never designed to handle such issues. However, prop-

erly labeled video sequences for videomatting are scarce and seem

insufficient to properly train networks for this task. Nevertheless,

video matting is an important problem and in this chapter we in-

vestigate ways to add temporal consistency to natural image mat-

tingmethods. In addition to evaluations on existingmethods to ap-

ply temporal consistency, we design a neural network for the video

matting task and train it in a way that leverages the single image

matting performance ofmodern algorithmswhile also introducing

temporal consistency to reduce flickering. While our method does

not achieve higher performance than the state-of-the-art on the

videomatting.com benchmark, it does show much promise in re-

ducing temporal artifacts as we will show through visual examples

in Section 5.3.
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5.2 Method

Ourmethod uses 3D convolutions to enforce temporal consistency

across frames in a video sequence. Due to the scarcity of available

video matting data, we designed our approach to enhance exist-

ing natural image matting algorithms instead of designing a new

network from the ground up.

5.2.1 Data augmentation

To train our network, we use the publicly available video matting

dataset from videomatting.com [80]. As has been described in Sec-

tion 2.5.1, the training set contains 3 sequences, containing 150, 285

and 150 frames respectivelywithbothground-truthalphas and fore-

ground colors available. To train our network, wemake use of heavy

data augmentation. Following the augmentation strategies of pre-

vious natural imagemattingpapers [55, 61], each frame in a training

sequence is augmented as follows: First, a random affine transfor-

mation consisting of random rotation, scaling, shearing and flip-

ping is applied. Afterwards, a trimap is generated by random di-

lation and a 256 × 256 patch is cropped from the image, centered

around a random pixel in the unknown region of the trimap. Then,

the image is converted to HSV space and random jitter is applied

to hue, saturation and value. Naturally all random parameters are

consistent for each frame in a training sequence to generate coher-

ent training inputs. Finally each frame is composited onto a new

background to generate unique sequences. With a probability of

0.5, a random image fromMSCOCO [78] is selected to serve as back-

ground for the whole sequence. Otherwise, consecutive frames

froma randomvideo of theDAVIS dataset [111] are selected to simu-
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late training sequences with moving background and foreground.

During training we chose a sequence length of 10 to give the net-

work enough temporal context to learn.

5.2.2 Channel-separated convolutions

In traditional convolutions all input channels are connected to all

output channels. This allows for themost amount of channel inter-

actions within the convolutions, but also the most amount of pa-

rameters and floating-point operations. To reduce the number of

parameters and operations, it is possible to group the convolution

filters into subsets, where each filter is only connected to the chan-

nels in its group. An extreme version of this are depthwise convolu-

tions, where each channel is in its own group. This version has the

least amount of parameters and operations, but also no channel in-

teractions (See Figure 5.1 respectively). Networks such as Xception

[33] and Mobilenet [82] are some of the earliest networks that have

used depthwise convolutions in the past. Since depthwise convo-

lutions have no channel interaction at all, 1 × 1 pointwise convolu-

tions are often used in addition directly afterwards to reintroduce

interaction. This combination is called depthwise-separable con-

volutions. In 3D convolutions, the convolution kernel encompasses

the spatiotemporal dimensions and the same concept of grouping

the convolution filters applies here. Instead of calling convolutions

with maximal groups depthwise-separated convolutions, however,

Tran et al. [112] introduce the term channel-separated to avoid con-

fusion, since the term depth could apply to both the channel and

temporal dimensions.
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Figure 5.1: Convolutions can be grouped, which each group having
only access to their corresponding channels. a) Traditional convolu-
tion with one group. All input channels are connected to all output
channels. b) Group convolutionwith 2 groups. c) Depthwise convo-
lution with each channel in its own group. Image taken from [112].

5.2.3 Network architecture

The baseline for our method is GCA-Matting [61]. GCA-Matting is a

relatively small network that has reached very good performance

for natural image matting. It is an encoder-decoder network with

skip-connections and additional guided contextual attentionmod-

ules. However, aswith other natural imagemattingmethods, video

matting is not directly considered and the method therefore suf-

fers from temporal inconsistencies. To alleviate this problem, we

enhance the network by adding 3D convolutions between the en-

coder and decoder of the network. These 3D convolutions operate

over several frames of the input sequence simultaneously and can

therefore learn to spot and remove temporal inconsistencies. We

construct our network in 3 variations:

• v1: This baseline version adds 2 3D convolutions after the fi-

nal stage of the encoder. Both convolutions are followed by

3D batch normalization [34] and ReLU activation functions re-

spectively. Both convolutions have a kernel size of 3 × 3 × 3

and add a total of 14158848 parameters to the network. This

is a massive amount, especially considering that the baseline

GCA-Matting network only has 25269144 parameters in total.
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• v2: To reduce the number of parameters added from the 3D

convolutions and enhance the performance, we update the

network from v1 in two ways. First, we change the sequence

of two 3D convolutions into a residual block as in [113]. Second,

we change the default 3D convolutions to channel-separated

convolutions [112]. This versiononly adds 29696newparameters

to the network.

• v3: In thefinal versionof ournetwork, weaddchannel-separated

convolutions to all connections between the encoder and the

decoder of GCA-Matting. In each case, the 3D convolutions are

contained within a residual block, as in v2. This version adds

59392 new parameters to the network.

Since the aim is to leverage theperformanceofGCA-Mattingon sin-

gle images, we do not change any details of either the encoder or

decoder. Thismeanswe canuse theweights of the network trained

on the dataset released by Xu et al. [54] without any modifications.

In all three variants of our network, the receptive field over the tem-

poral dimension is 5. Therefore, the network needs to process at

least 5 frames of a video sequence at a time during evaluation.

5.2.4 Training pipeline

In our networks, the only parts containing 3D convolutions can be

found in the connections between the encoder and the decoder.

Thedesired input shapeof tensors for 3Dconvolutions is [B,C, T,H,W ],

for the batch, channel, temporal, height and width dimensions re-

spectively. Since we kept the encoder and decoder of the network

deliberately unchanged fromwhen itwas trained on single images,

theseparts of thenetworkonly accept inputs in the shapeof [B,C,H,W ].
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Naturally, this means we need to reshape the input tensors appro-

priately between parts of the network. For the encoder and de-

coder, all frames are processed individually and the temporal di-

mension is shuffled into the batch dimension. For the temporal

part of the network, we shuffle the temporal dimension back out

of the batch dimension.

During training, we use a combination of two loss functions. The

first is the reconstruction loss over the unknown region of the video

sequence and is defined as:

L1 =
1

T

T
∑

t

1

|Ut|

∑

i∈Ut

|αi,t − α̂i,t|, (5.1)

where T denotes the number of frames in the sequence, Ut is the

unknown region of the trimap for frame t and αi,t and α̂i,t are the

predicted and ground-truth alpha values at pixel i and frame t re-

spectively.

The second loss function is the dtSSD loss used by Shahrian et al.

[114] and defined as:

LdtSSD =
1

T

T
∑

t

√

∑

i

(
dαi,t

dt
−

dα̂i,t

dt
)2. (5.2)

We combine these losses using a weighting factor w, such that the

final loss in our network is defined as:

L = L1 + w ∗ LdtSSD. (5.3)

In our experiments we used w = 100 to balance both terms.

We use the weights of a GCA-Matting network trained on single

images to initialize theweights of the encoder and decoder respec-

tively and train thenetwork for 50000 iterationson theavailable video
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matting data using the data augmentation described in 5.2.1. We

use the Adamoptimizer [108] with default parameters and an initial

learning rate of 4× 10−4, which is reduced during training by cosine

decay [115].

During evaluation, at least 5 frames of the input sequence need to

be processed at once due to the receptive field of the 3D convo-

lutions. Unfortunately, for larger resolution video sequences, these

might not fit onto GPU memory. For our network, however, it is

possible to process every frame individually in the encoder, then

process 5 at a time in the temporal part and finally process them

individually again in the decoder, therefore reducing the amount

of needed space on the GPU by storing parts of the output briefly

in main memory and sacrificing a bit of speed.

5.3 Results

In this section, we evaluate the state-of-the-art on the video mat-

ting task. Since methods designed for natural image matting of

individual images are currently outperforming previous videomat-

ting methods without any additional processing, we compare dif-

ferent methods to add temporal consistency as a post-processing

step to thesemethods, aswell as abaselinemethodandourmethod

proposed in Section 5.2.

5.3.1 Comparisons

The methods we compare against are as follows:

Baseline: As baseline comparison, we use GCA-Matting [61] with-

out any additional processing.

OFD: Ke et al. [3] proposed a one frame delay processing step that
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can be used for any matting algorithm. They recognize that tem-

poral inconsistency in matting algorithms, usually appears in the

form of flickering. To alleviate this, they use the preceding and fol-

lowing frames in a sequence to remove inconsistencies in the cur-

rent frame. A pixel is designated as flickering if it meets the two

following conditions C:

1. |αi,t−1 − αi,t+1| ≤ ǫ

2. |αi,t − αi,t−1| > ǫ and |αi,t − αi,t+1| > ǫ

These conditions state that if a pixel has close alpha values in t − 1

and t + 1, but is very different between t and t − 1 and t and t + 1 a

flicker appears. In this case the value of αi,t is replaced:

αi,t =















(αi,t−1 + αi,t+1)/2 if C,

αi,t otherwise.
(5.4)

In this comparison, we use the OFD step on each of the outputs of

the baseline method.

Blind video consistency: Lei et al. [77] propose a blind video con-

sistency method that can be applied to any computer vision task

and which presents the current state-of-the-art in blind video con-

sistency (See Section 2.4). We apply this method on each of the

processed outputs from the baseline method to remove temporal

artifacts.

5.3.2 Quantitative results on videomatting.com

The videomatting.combenchmark [80] provides 10 video sequences

(With 3 variants of trimaps each) that canbe submitted online. After

submission quantitative metrics will be calculated using the hid-
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den ground-truth alphas. These metrics are described in detail in

their paper, but we will briefly state their formulation:

• SSDA = 1
T

∑T

t

√
∑

i(αi,t − α̂i,t)2,

• dtSSD = 1
T

∑T

t

√

∑

i(
dαi,t

dt
−

dα̂i,t

dt
)2,

• MESSDdt = 1
T

∑T

t

∑

i |(αi,t − α̂i,t)
2 − (αi+vi,t+1 − α̂i+vi,t+1)

2|,

with T denoting the total number of frames in the sequence, αi,t

and α̂i,t the predicted and ground-truth alpha values at pixel i on

frame t and vi the motion vector at pixel i.

We compare the 3 variants of ourmethod described in Section 5.2.3

to themethods described in Section 5.3.1. All submissions to video-

matting.com need to be RGBA images and we use the foreground

predictionmethodpresented in chapter 4 topredict the foreground

RGB colors from all comparisons. Due to this, we can compare

against OFD twice. In OFD1 we apply the step directly on the alpha

predictions of the baseline before foreground color predictions. In

OFD2, we apply the step on the RGBA images after the foreground

colors have been calculated. We also applied the blind video con-

sistency method to the baseline. However, the method completely

fails for some of the sequences and therefore, we could not submit

those results to the benchmark.

The results on the benchmark for themedium trimap can be seen

in Table 5.1. The results for the narrow and wide trimaps mirror

those shown in the table. Visual results can be seen in Figures 5.2,

5.3 and 5.4. As can be seen, none of themethods perform better on

average than thebaselinemethod, which also outperforms thepre-

vious state-of-the-art on the benchmark. In some sequences, the

one frame delay trick slightly outperforms the baseline, but only to
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Rank City Rain Concert Flowers Snow Slava Vitaliy Artem Juneau Woods
SSDA

Baseline 2.01 21.803 18.651 15.803 42.851 10.331 17.071 26.201 23.141 40.874 46.554
OFD1 2.72 21.682 43.222 15.501 43.542 12.412 17.343 35.692 23.373 47.205 50.905

OFD2 3.13 21.621 51.283 15.602 43.763 12.453 17.332 35.863 23.362 47.246 50.966

v2 4.04 104.155 58.184 112.126 219.344 37.765 21.444 46.724 55.996 23.741 28.211
v3 4.45 99.634 58.195 109.135 223.265 37.054 21.865 65.846 44.024 25.873 30.343

v1 4.86 110.026 63.376 100.484 231.136 40.436 24.956 59.565 52.825 24.442 28.902

dtSSD
Baseline 2.0 14.133 21.641 11.653 29.301 10.411 14.551 28.771 16.901 38.954 36.634
OFD1 3.1 12.932 61.062 10.312 31.272 14.162 15.073 45.914 17.313 51.745 46.886

OFD2 3.3 12.901 73.175 10.301 31.303 14.233 15.052 46.105 17.302 51.756 46.845

v2 3.9 25.965 71.533 25.136 65.425 27.395 15.915 41.342 24.316 24.141 25.091

v3 4.0 22.924 72.144 23.575 60.334 26.614 15.434 46.526 20.994 25.363 25.202

v1 4.7 28.406 78.586 23.164 66.596 28.606 16.406 44.793 23.115 24.782 25.693

MESSDdt
Baseline 2.0 0.333 0.321 0.253 1.231 0.101 0.211 0.481 0.351 1.384 1.734
OFD1 2.5 0.301 2.942 0.201 1.282 0.172 0.222 1.413 0.362 2.085 2.305

OFD2 3.6 0.302 4.314 0.212 1.283 0.173 0.223 1.444 0.363 2.086 2.306

v3 4.0 1.844 4.283 2.835 9.694 0.534 0.254 1.796 0.794 0.613 0.773
v2 4.2 2.165 4.345 2.966 10.786 0.545 0.265 1.182 1.136 0.541 0.721
v1 4.7 2.336 5.036 2.624 10.495 0.616 0.326 1.745 1.075 0.552 0.752

Table 5.1: SSDA, dtSSD and MESSDdt results on the videomat-
ting.com benchmark formedium trimaps. Best results are shown
in bold, ranking in superscript.

a slight degree. In most sequences, OFD reduces the performance

of the baseline. Our proposed video matting method can also not

compete with the baseline on average. This is mostly due to the

fact that fine details in the alphamatte are often lost as can be seen

most prominently in the City sequence shown in Figure 5.2. How-

ever, our method shows great promise in the Juneau (see Figure

5.4) and Woods sequences, where it vastly outperforms the base-

line. In comparison to our method, the baseline shows parts of the

background in the alpha, which can be seen in the hair on the right.

Our method completely avoids this issue. We attribute this perfor-

mancemostly to the lack of available training data and the training

methodology. Clearly, in this case the network overfit on the avail-

able video data and lost too much of the trained knowledge from

the baseline. We show in Section 5.3.4, how an updated training

schedule can lead to better results with less details lost.

The results on the videomatting.com also show that v2 and v3 of

ournetwork implementation consistently outperformv1, even though
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these variants contain several orders ofmagnitude less parameters.

Clearly, using channel-separated convolutions is beneficial in the

video matting task.

Figure 5.2: Visual comparisonon the videomatting.combenchmark
on frames 5 to 12of theCity sequenceusingmedium trimaps. From
left to right: Input frame, baseline, OFD1 and v3 results.
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Figure 5.3: Visual comparisonon the videomatting.combenchmark
on frames 5 to 12 of the Slava sequence using medium trimaps.
From left to right: Input frame, baseline, OFD1 and v3 results.

98

http://videomatting.com/


Figure 5.4: Visual comparison on the videomatting.com bench-
mark on frames 5 to 12 of the Juneau sequence using medium
trimaps. From left to right: Input frame, baseline, OFD1 and v3 re-
sults.

5.3.3 Blind video consistency

As statedpreviously, theblind video consistencymethod sometimes

fails completely on some test cases and could not be submitted

for quantitative results. However, even on the sequences where it
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works, the results are worse than the baseline as can be seen in

Figure 5.5. In the City sequence, the results the blind video consis-

tency method are overly smooth and the method does not retain

any of the sharp alphas in the hair of the foreground object. In the

Juneau sequence, the method fails to remove parts of the back-

ground showing in the alpha as can be seen in the hair on the left

and additionally introduces grid-like artifacts in the top-left of the

hair.
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Figure 5.5: Visual comparison of the blind video consistency
method [77] proposed by Lei et al. on frames 5 to 12 of the City and
Juneau sequences.

5.3.4 Updated training schedule

As can be seen on the results of the videomatting.com benchmark

and especially in Figure 5.2, our network tends to loose a lot of the

finer details of the alphamatte compared to the baseline. To allevi-

ate this problem, we update our training schedule to train on both
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the video matting data and also on the matting dataset released

by Xu et al. [54]. Every training iteration, a new batch is randomly

sampled from either the video data with a sequence length of 10,

or from the single image dataset with a sequence length of 1 and

a 10 times larger batch size. Due to this, the network is less likely

to overfit on the video data and able to keep more of the finer de-

tails in the alphamatte. A comparison of this is shown in Figure 5.6

on the City and Juneau sequences. As can be seen, the updated

training schedule leads to more details in the City sequence and

simultaneously keeps the great performance our method already

showed on the Juneau sequence. Clearly, it is beneficial to imple-

ment the training in a way to learn from both video sequences and

single images.
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Figure 5.6: Visual comparison between the original and updated
training schedule on frames 5 to 12 of the City and Juneau se-
quences.

5.4 Conclusion

In this chapter, we evaluatemethods to introduce temporal consis-

tency in videomattingmethods. Due to the power of convolutional

neural networks in computer vision tasks, deep neural networks

103



trained on single images for the natural image matting task out-

perform classical approaches, even those that have been explicitly

designed for the video matting task. Even so, these new CNNs suf-

fer from temporal artifacts that can decrease the perceptual qual-

ity of the results to a large degree. We investigate several state-

of-the-art approaches to introduce temporal consistency as a post-

processing step in videomatting results, aswell as a neural network

trained on the video matting task. We show that blind video con-

sistency methods are not suitable for video matting and degrade

the results or fail completely. Other filtering approaches to remove

flickering also tend to decrease the matting quality. On average,

ourmethoddoesnot outperform thebaselinemethod, but it shows

very promising results in several of the test sequences and we be-

lieve further work in this direction can lead to better results than

the state-of-the-art.
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Chapter 6

Conclusions and Outlook

Natural imagematting is still an ongoing research problemand im-

portant for many practical applications for high-quality and casual

creatives. In this thesis, methods were proposed to further develop

the state-of-the-art in natural image and video matting, as well as

the related problem of foreground color prediction. This chapter

serves as summary and conclusion of this thesis and is organized

as follows: First, all contributions made in this thesis are revisited

and summarized as a whole. Afterwards a look forward is given,

with potential further research outlined.
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6.1 Conclusion

Natural image matting is a very difficult problem to solve. Even

small differences between predicted alphamattes can have a large

impact on the perceived quality of the alpha. This is especially true

in high-frequency regions such as hair, where the alpha is expected

to showsharpedges andoverly smoothpredictions canhavea large

negative impact on the quality. In chapter 3, we present a novel

deep convolutional neural network and training pipeline to rectify

this issue. Wemodel ourmethod as the first generative adversarial

network for natural image matting, which helps train the network

predict alphas that lead towellmade compositions and visually ap-

pealing results. We beat the then state-of-the-art in the perceptu-

ally motivated gradientmetric for natural imagematting on the al-

phamatting.com benchmark and show qualitatively that our alpha

predictions work especially well in high-frequency regions.

For high-quality compositions, however, predicting excellent alpha

mattes is often not good enough if the goal is to create new com-

positions out of the foreground object. This is due to the fact that

the colors in the original RGB image in the transparent regions are

always a mix between the true foreground and background colors.

To create faithful compositions, it is therefore necessary to also pre-

dict the true foreground colors alongside the alphamatte. In chap-

ter 4, we present a novel algorithm to predict the foreground colors

of an object. Given an initial alpha prediction, we create a recur-

rent inferencemachine to essentially solve the inverse composition

problem and divide the input RGB image into alpha, foreground

and background. We show quantitatively and qualitatively that our

method outperforms the state-of-the-art in foreground color pre-
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diction. Furthermore, our method is well suited to predict colors

even from very large resolution images that may not fit onto GPU

memory in their entirety. Finally, our method also allows user in-

teraction, by allowing the direct alteration of candidate solutions,

which can propagate these changes forwards.

For artists and casual creatives, video is just as important amedium

as single images. Naturally, natural imagematting is therefore also

often applied to video sequences. Modernneural networkmethods

trained for single imageshave shown todrastically outperformclas-

sical approaches and even classical videomattingmethods. Due to

the fact that they have been designed for single images only, how-

ever, these approaches lack temporal consistency across a video

sequence. In chapter 5, we evaluate several approaches to adding

temporal consistency to single imagenatural imagemattingmeth-

ods. Wealsopresent thefirst deep convolutional neural network for

videomatting. We introduceaway to leverageanetwork trainedon

single images for video matting by adding 3D convolutions within

the network. While our approachdoes not outperform the state-of-

the-art, we show promising results in some of the test sequences

and believe that our method can serve as groundwork for further

research in this area.

These three chapters correspond to and answer the research objec-

tives stated in 1.3. The success of our proposed method in chapter

3 and the manifold successive methods answer the first research

objective of this thesis. Ourmethod proposed in chapter 4 answers

the secondquestion and showshowhigh-quality compositions can

be created. We investigate the third question in chapter 5 and lay
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thegroundwork for a convolutional neural network to solve the video

matting task.

6.2 Future Work

Many of the recent state-of-the-art in natural image matting have

experimented on using a variety of different loss functions. How-

ever, it seems that in general the L1-loss is sufficient to properly train

networks for good alpha predictions. In chapter 3, we introduce

the first generative adversarial network for natural image matting.

However, therehavebeenmanyadvancesusingGANs inother com-

puter vision tasks in recent years and it would be interesting to in-

vestigate new GAN techniques and improved training pipelines for

the natural image matting task.

In chapter 4, we introduce a recurrent inference machine for fore-

ground color prediction. The recurrent nature of the algorithm al-

lows for somemanual editionof candidate solutions that is notgiven

in traditional networks. Nevertheless, there are certainly improve-

ments to bemade regarding the user interaction to allow artists to

achieve the ultra high-quality results that they are used to through

chroma keying. Finding a way to iteratively improve alpha matting

and foreground color estimation results without relying on chang-

ing the results on a pixel by pixel basis and to potentially propagate

edits through subsequent frames in a video sequence would go a

long way to make natural image matting suitable for high-quality

studio environments.

The biggest problem for videomatting is the lack of a large dataset.
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The available dataset only contains 3 video sequences available for

training, which is not good enough to fully train a network for the

video matting task. One way to go forward in this would be to cre-

ate a new, larger, video matting dataset that contains enough se-

quences. A different solutionwould be to find away to re-frame the

training as a weakly supervised training and make use of other ex-

isting video sequences such as semantic video segmentation. Nev-

ertheless, there are certainly ways to improve the performance of

video matting and the task would benefit from future research.

6.3 Perspectives

In this dissertation we explore deep learning techniques for natural

imagematting. We have proposed several newmethods to predict

high-quality alpha mattes, as well as foreground and background

colors. Combined, these methods can be used to extract the fore-

ground object from images and composite realistic looking new

images on new backgrounds. This is not the limit of their use cases,

however, and several image processing tasks can benefit from the

proposed methods as well. Many video conference software allow

for the blurring of the background for example. However, this is

often done through semantic segmentation and often introduces

artifacts around the border of the person. Natural image matting

methods such as the ones proposed in this work could be used to

generatemuch higher quality results. Instead of blurring the back-

ground, many other effects could also be applied, such as recolor-

ing of the background. For this to properly work, however, the fore-

ground and background colors of the image are necessary, which
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can be achieved through the method proposed in this work. Nat-

urally, hand in hand with any technological advancement comes

the danger of misusing it. So called deep fakes are images that

have been automatically altered, most often by replacing the face

of the subject of the image. One can imagine several ways in which

technology such as this can be misused by propagating misinfor-

mation or slander. The methods in this work are designed to help

artists, professional or otherwise, manipulate images. The easier

such methods are to use and the better their results look, the eas-

ier it is to misuse them as well. While this is not a problem that can

be solved by scientists, it is maybe something to keep in mind.
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Appendix A

Abbreviations

Short Term Expanded Term

ASPP Atrous Spatial Pyramid Pooling

CGI Computer Generated Imagery

CNN Convolutional Neural Network

FCN Fully Convolutional Network

FLOPs Floating-point Operations Per second

FPS Frames Per Second

GAN Generative Adversarial Network

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MSE Mean Squared Error

RGB Red Green Blue

SAD Sum of Absolute Differences

SSIM Structural Similarity

VFX Visual Effects
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Appendix B

Additional results

This appendix serves to showcase additional results for chapter 3

and 4.

B.1 Additional results for chapter 3

This section contains some additional results for chapter 3.

B.1.1 Additional comparison results on theComposition-

1k test dataset

We show further comparisons on the Composition-1k test dataset

in Figure B.1 and B.2.
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Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Figure B.1: Comparison results on the Composition-1k test dataset.
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Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Image Trimap SM [43] KNN [48] CM [44]

DCNN [52] TLGM [93] IF [50] Ours GT

Figure B.2: Comparison results on the Composition-1k test dataset.
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B.2 Additional results for chapter 4

This section contains some additional results for chapter 4.

B.2.1 Additional comparison results on theComposition-

1k test dataset

Weshow further comparisonsof ourmethod toContext-AwareMat-

ting [60] and Samplenet [55] in Figures B.3 and B.4

Figure B.3: Visual comparison on theComposition-1k dataset. From
left to right: Input image, Compositions from Context-Aware Mat-
ting [60], Samplenet [55], Ours, Ground-truth.
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FigureB.4: Visual comparison on theComposition-1k dataset. From
left to right: Input image, Compositions from Context-Aware Mat-
ting [60], Samplenet [55], Ours, Ground-truth.
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B.2.2 Visualization of the manual editing

Weshow the automatic predictions, themanual edits done and the

refined results in Figure B.5.

Figure B.5: Visualization of themanual editing process. From left to
right: Input image, predicted alpha, composition from automati-
cally predicted alpha and foreground, editing mask for the alpha,
composition from the updated alpha and newly predicted fore-
ground.
As can be seen, the faulty automatic alpha predictions lead to un-
appealing compositions. However, a small amount of manual edit-
ing is sufficient to recover foreground color predictions that lead,
alongside the new alpha, to much better compositions.
Please note that the amount of manual editing was deliberately
kept low.
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B.2.3 User study results

We show some example images from the user studywe conducted

in Figure B.6.

Figure B.6: Example images from the user study. From left to right:
Input image, Context-Aware Matting [60], our result with the alpha
prediction from Context-Aware as input, Samplenet [55], our result
with the alpha prediction from Samplenet as input.
As can be seen in the comparisonwith Samplenet, the color predic-
tions from Samplenet are somewhat smoothed out on the edges,
which can lead to more unappealing compositions. For the com-
parison with Context-Aware Matting, the differences in color pre-
dictions are more difficult to spot.
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