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Abstract

Convolutional neural networks (CNNs) have become a paradigm for designing vision based
intelligent systems. These models are controlled by a vast amount of parameters, which
are learned thanks to the availability of annotated datasets. Image data is available in
multiple formats including JPEG that uses Discrete Cosine Transform (DCT) coefficients
to efficiently encode and compress visual information. We first propose to use directly
these DCT coefficients of the JPEG images as input of CNN models, removing the need to
completely decode JPEG format before applying CNNs.

Furthermore, we propose to use DCT basis functions to express convolutional filters in
any layer of a CNN and we show that this provides an advantageous regularization during
the training process. We show that expressing weights within DCT bases can increase
performance and speed up the training. We improve several popular models on standard
benchmarks such as ImageNet classification accuracy by 1%, MS COCO object detection
average precision by 1% and Pascal VOC semantic segmentation IoU score by 1.1%. We
propose to exploit properties of natural images by restricting the set of basis functions used
during the training. Suppressing the low-frequency component on the first layer can make
models insensitive to illumination effects. High-frequency truncation on multiple layers can
in turn add stability and efficiently compress a model without any significant loss in accuracy.
Using the DCT bases provides a prior that reduces overfitting, specially when compression
is applied, and helps with generalization when fewer samples are available.

Lastly, the standard DCT-based compression is modified and extended to be applicable
to any weight tensor used in neural networks. We propose to reshape a tensor into a 2-
dimensional matrix and reorder its rows based on pairwise distances between the columns
in order to make the matrix more coherent. The reordered matrix is transformed via 1-
dimensional DCT and high frequencies are truncated. We further correct the scale and bias
parameters of batch normalization layers to take into account compression of the preceding
layers. Promising results are achieved even without a need for model fine-tuning. The
use of a short fine-tuning of one epoch can lead to models with 3-times fewer parameters
without a loss in accuracy.
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Chapter 1

Introduction

In the beginning of the 21st century, the wide spread of low-cost digital cameras combined
with easy access to the internet triggered a boom in online shared visual media content.
Data in visual form became the major part of web-related services, yet semantic information
contained in images is challenging to analyze. Computer vision incorporates a multitude of
tasks, examples of such are classification [12] and detection [13] of objects in images, or
segmenting [14] parts of images that have the same meaning (belong to the same object
or type of object). Some techniques try to detect entity boundaries [15] or keypoints [16]
that can be used for matching parts of images or for human pose estimation. Numerous
approaches are focused on enhancing quality of images [17] or suppressing image arti-
facts [18]. Current trends in analyzing image data relies on data-driven models that learn
to extract features representing concepts in images and use these concepts to solve a given
problem. The objective of this thesis is to improve the feature extraction effectiveness and
efficiency.

1.1 Image recognition pipeline

A vast majority of techniques used in computer vision problems are data dependent. The
first step to solve a certain task is to collect a dataset that will be used to tune parameters of
a selected model. The dataset can be either created synthetically, or be collected by digital
cameras. In supervised learning setting a machine-learning model needs a supervision. It
comes as a target, which the model is trying to predict. This target has a form of an
image annotation and is usually created by humans. It is often the most costly and tedious
activity, specially for large datasets. To predict the target directly from image pixels is
often a not feasible task due to characteristics of the investigated problems themselves. For
example, the problem of object classification is translation invariant. It would require from
a classifier to learn how to recognize an object when it is located on an arbitrary place in
the picture. Therefore, a common practise is to collect invariant local features from an
image and map them to higher level features that are finally used to train a classifier or
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regressor that predicts the target [19].

1.2 Neural networks

Artificial neural network merges those 3 stages into one model that jointly extracts features
at different levels of hierarchy and performs classification simultaneously. The network is
composed of layers, which sequentially transform the data vector x ∈ Rn. A layer consists
of linear transformation via matrix multiplication by weight matrix W , bias shift by b and
point-wise nonlinear function φ. Output of the layer is another vector y ∈ Rm, often
referred to as hidden representation:

y = φ (W x + b) . (1.1)

Elements of the input and hidden vectors can be interpreted as neurons. Such layer is called
a fully-connected layer because it connects each hidden neuron to all input neurons through
elements of matrix W . A sequence of these layers constitutes a network. Parameters W
and b are learned during the training process. The non-linear function in each layer is
necessary should the network model non-linear input-output relations.

1.2.1 Local learning

A neural network based on fully-connected layers deals only with fixed-size input data.
With increased dimensionality of the data vector x the weight matrix W grows as well.
Linear scaling of input and hidden representation dimensionality simultaneously scales the
weight matrix quadratically and becomes uncontrollable for large images. Another problem
of fully-connected layers is that a certain feature that is detected in one part of an image
might not be detected in another part, as those pixels are processed through different
weights. This counter-intuitive property is addressed through local learning and weight
sharing. The Convolutional Neural Network (CNN) forms weights into filters that extract
local correlations at all pixel locations in the image through convolution. An image x is
shaped into 2-dimensional grid. Discrete convolution of an image with filter w ∈ Rk×l is
defined as follows:

w ∗ x (u, v) =

k/2∑
i=−k/2

l/2∑
j=−l/2

w (i , j) x (u − i , v − j) . (1.2)

If a feature occurs at multiple locations in an image, the filter detects all its occurrences.
Weight sharing decouples size of the weights from the data size and allows the use of
high-resolution images.
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1.3 Bases for image data

A high-dimensional input vector x ∈ Rn×m corresponding to an image is a collection of
coordinates within certain bases. Conceptually, images are defined within standard bases
expressed by a set of orthogonal column unit vectors e ∈ Nn1.3.

ei [u] =

1 if i = u

0 otherwise.
(1.3)

Examples of ei ∈ N3 are:

e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1

 . (1.4)

A pixel coordinate is expressed via row and column coordinates eiejT and constitutes the
standard bases. Image is a collection of pixel intensities xi ,j within those bases 1.5.

x =
n∑

i=1

m∑
j=1

xi ,jeiej
T (1.5)

Filters used to convolve these images are defined in space spanned by the same bases.
Standard bases however do not have smooth transitions that are often characteristic for
signals in natural images. By these we consider images of natural world captured by digital
cameras [20]. More compact image representation can be found in compression formats
such as JPEG [21]. The compression scheme uses orthogonal Discrete Cosine Transform
(DCT, see Section 2.2.2) [22] that maps image patches into complete basis set formed by
cosine functions. These functions oscillate at different frequencies. Natural images typically
have small coefficients at high-frequency bases. Human perception is also insensitive to
details imposed by them [23]. Energy of such image, initially uniformly distributed between
standard bases, becomes concentrated into a few DCT bases.

Roots of the DCT transform can be found in Fourier analysis, see the timeline in Figure 1.1.
The DCT has been first introduced by Ahmed et al. in 1974 and was shown to be comparable
to optimal transforms in multiple applications [22]. On account of its properties it was
integrated in JPEG image encoding [21]. DCT has been used to pre-process inputs for
classification tasks with RBF neural networks [24] or convolutional networks [25].

In Chapter 3 we propose to adjust CNN filter set that processes the input data to be appli-
cable to inputs consisting of DCT patches. By adjusting the striding parameter accordingly
we enforce the first layer parameters to be learned in spectral domain. We have shown that
learning from spectral data is beneficial for shallow models. By reading DCT coefficients
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1822 2021

Fourier transform

DCT, Ahmed et al. (TC) 

1974 2005

DCT & RBF net, Er et al. (TNN) 

JPEG compression 

1992 2018

JPEG-CNN, Geugen et al. (NeurIPS) 

2013

Scattering net, Bruna & Mallat (TPAMI) 

2016

Circular Harmonic-CNN, Worrall et al. (CVPR) 

Gaussian Derivative-CNN, Jacobsen et al. (CVPR) 

2015

DFT-CNN, Rippel et al. (NeurIPS) 

Gabor-CNN, Luan et al. (TIP) 

Figure 1.1: Timeline of landmark related works to this thesis.

directly from JPEG images we can avoid unnecessary inverse DCT operation to fully de-
compress the images. Such approach can also lead to savings in processing memory due
skipping convolutions with high-dimensional feature maps.

1.4 Harmonic networks

DCT has proven to provide a suitable basis for natural signals [21]. Filters in CNNs trained
on natural images tend to be smooth [26] and convolving natural images with such filters
generates features that often preserve some characteristics of natural images. The second
research question investigates benefits of representing all convolutional filters in terms of
DCT bases. To replace convolutional layers we have proposed harmonic blocks that extract
local spectrum of image features through DCT and infer new features by linear combination
of the extracted coefficients.

A well established example of deep convolutional network that uses pre-defined filters is
the Scattering network [27]. Similar to our proposal, Rippel et al. has represented filter
weights in Fourier domain using DFT [28]. In literature, a few recognized works have
focused on learnable filter composition from non-standard bases, among them Gaussian
derivatives [26], or Circular Harmonics [29]. An analogous approach is to modulate a set
of learnable filters by a fixed filter bank, e.g. by Gabor filters [30].

The Chapter 4 describes and analyses our proposed harmonic network. Firstly, represent-
ing convolutional filters within the DCT bases has a regularization effect that makes the
optimization process easier. Secondly, by truncation of parameters responsible for high
frequencies we can efficiently compress spatial filters and decrease parametric complexity
and memory footprint of convolutional networks. We have also demonstrated conversion
of filters in already trained models from standard bases to DCT bases without a loss of
accuracy. This way a compression or further regularization can be applied to any existing
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model.

1.5 Channel dimension compression

Many recent CNN architectures sparsify connections and move vast majority of weights into
resampling layers implemented through 1 × 1 convolution [31]. Compressing only filters
with spatial extent would have negligible effect on the total parameter count. In Chap-
ter 5 we devise an approach to compress weights of all convolutional and fully-connected
layers. A higher dimensional tensor is reshaped to into 2-dimensional matrix. Afterwards,
1-dimensional DCT is performed along one of the dimensions. To transport the energy
into lower frequencies, we introduce coherence by reordering the reshaped tensor along this
dimension. This is an essential part that prevents the high-frequency truncation from dec-
imating the weights. The decompression is done in an online fashion, where inverse DCT,
permutation and reshaping is used to obtain the original weights. Compression rates of up
to 4× are obtained with minimum or no loss of classification accuracy with only a modest
amount of retraining. For severely compressed models, we suggest a data-free scale and
shift parameter correction, based on the proportion of norms of the approximated and the
original weight tensors.

1.6 List of Publications

A portion of this work has been published in following articles:

Matej Ulicny, and Rozenn Dahyot. "On using cnn with dct based image data." In Pro-
ceedings of the 19th Irish Machine Vision and Image Processing conference (IMVIP).
2017.

Matej Ulicny, Vladimir A. Krylov, and Rozenn Dahyot. "Harmonic Networks for Image
Classification." In British Machine Vision Conference (BMVC). 2019.

Matej Ulicny, Vladimir A. Krylov, and Rozenn Dahyot. "Harmonic networks with limited
training samples." In 27th European Signal Processing Conference (EUSIPCO), pp.
1-5. IEEE. 2019.

Matej Ulicny, Vladimir A. Krylov, and Rozenn Dahyot. "Tensor reordering for CNN
compression." In International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2021.

1.7 Outline

In this thesis we want to verify the hypothesis that filters in CNNs can be efficiently repre-
sented in the frequency domain. We will show that such representation helps in designing
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compact CNN models by keeping only the relevant frequencies. Our idea is validated ex-
perimentally both on natural and synthetic images. We design a CNN layers in terms of
DCT bases and evaluate its performance with and without band-pass compression on a set
of image processing tasks.

In the next Chapter, we introduce theoretical background of concepts used in this thesis,
namely artificial neural networks, transformation methods, JPEG compression, and we will
also review the related work.
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Chapter 2

Background

2.1 Artificial Neural Network

Artificial neural network (ANN), also called multilayer perceptron, is a data-driven learning
algorithm inspired by biological nervous system. Its origins are dated to 1943, a study of
mathematical representations of information processing in biological systems by McCulloch
and Pitts [32]. Rosenblatt developed a hypothetical nervous system called perceptron, a
two layered network model that used only addition and subtraction (1958) [33]. The neural
network can be represented by a directed acyclic graph, embodied of several connected
layers (Figure 2.1), each consisting of nodes (or neurons). Such model ordinarily performs
weighted summation of inputs followed by a nonlinear scalar transformation. In contrast
with shallow models, architectures referred to as “deep” perform multiple levels of such
transformations (noted as layers in the computational graph). Weights of the model are
found via optimization. Output of each transformation (layer) composes a new feature set
representing the input. With increasing depth of the model each following layer produces
more abstract features (e.g. from shapes to objects). Neural networks were proved to be
adequate function approximators [34, 35].

2.1.1 Optimization

Quality of a prediction is measured by a loss function, expressing how much the prediction
differs from the expected value [36]. In classification problems, loss is often measured by
Shannon cross-entropy [37] between one-hot class target vector y of length m and posterior
probabilities p predicted by the network as

L = −
m∑
i

yi log pi . (2.1)
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Figure 2.1: A neural network model consisting of input, hidden and output layer, mapping
input x to output y. Inputs of the hidden and the output layers are weighted by weights
wij , ujk and aggregated in individual neurons. Biases bh and by are added to the aggregated
values at each neuron.

For regression problems the error is usually measured by the L2 loss:

L =
m∑
i

(yi − pi)
2 (2.2)

Backpropagation

A model prediction is improved by updating its parameters with respect to the gradients
calculated by backpropagation of errors estimated by a loss function [38]. The gradients
∇wkj

(2.4) are obtained by the chain rule as partial derivatives of the loss function L with
respect to the weights of the layer wkj given input of the node x and activation function
φ.

aj = φ

(
n∑

k=1

wkjxk

)
(2.3)

∇wkj
=

∂L
∂wkj

=
∂L
∂aj

∂aj
∂wkj

(2.4)

Gradient descent

Gradient descent (2.5) is a first order approximation method that optimizes a function by
approaching a local minima by updating parameters w in the direction of the negative
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gradient of the loss function with respect to the model parameters. Updates to the w are
controlled by a scalar step size referred to as the learning rate η, usually in range (0, 1).
In vanilla batch gradient descent, a single parameter update iteration requires gradients
for all input instances to be computed. One step is thus computationally expensive and
the method tends to fall into a local minima. The Stochastic Gradient Descent (SGD)
calculates gradients only for a small randomly sampled subset of the train set to perform
a parameter update. SGD has a slower convergence rate than batch gradient descent, but
a single parameter update is much less computationally expensive and the optimization
procedure tends to avoid poor local minimas. Due to its stochasticity, a wrong choice of
starting observations may cause the algorithm to move further from a good solution, thus
make the converge problematic.

w (t+1) = w (t) − η∇wL(w (t), x, y) (2.5)

A weighted combination of the current parameter update with a fraction of the previous
weight adjustment µ (2.6) is often used to enhance the convergence speed of SGD. More-
over, this technique known in literature as the momentum [39] also prevents the optimization
from converging to a poor local minima.

∆w t+1 = µ∆w (t) + η∇wL(w (t), x, y)

w (t+1) = w (t) −∆w t+1
(2.6)

Nesterov’s Accelerated Gradient (NAG) embodies a reformulation of the momentum method.
It differs from the basic momentum by calculating gradients at the estimated future position
of parameters by updating them by the momentum beforehand (2.7).

∆w t+1 = µ∆w (t) + η∇wL(w (t) − µ∆w (t), x, y)

w (t+1) = w (t) −∆w t+1
(2.7)

Nesterov's momentum has faster theoretical convergence for convex functions [40]. How-
ever, functions approximated by neural networks are rarely convex, thus assumptions under
which the faster convergence rate holds are not met.

Adaptive learning rate methods

With small initial learning rate, optimization of a neural network would take too long or
cease in a pitfall, while too large learning rate causes a divergence. A key to a good
solution is the learning rate decay. By decaying the learning rate over time, a magnitude
of updates to parameters decreases, allowing more refined solution to be found. Adaptive
learning rate methods automatically adjust the learning rate for each parameter separately,
taking its gradient history information into account. Adagrad optimizer [41] performs larger
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updates to infrequent parameters and smaller updates for frequent ones. The learning rate
is scaled by the square root of the sum of squared gradients. The algorithm was shown to
be successful on sparse data, for example when learning word embeddings [42]. However,
accumulated sum of gradients scales learning rate monotonically, which often diminishes
the learning rate too fast. This drawback is fixed by the RMSprop method [43]. Instead of
scaling the learning rate by the sum of squared gradients, an exponentially decaying average
of squared gradients is used (2.8).

s(t+1) = βs(t) + (1− β)∇wL(w (t), x, y)2

w (t+1) = w (t) − η√
s(t+1)

∇wL(w (t), x, y)
(2.8)

The same approach is exploited in Adadelta method [44], but the learning rate parameter
is omitted completely in favor of scaling in terms of running statistics. Literature contains
several modifications of the RMSprop algorithms that came to spotlight, among them are
Adaptive Momentum optimizer (Adam) [45] that adds the momentum term. First and
second moments of gradients replace the weight updates and scale. Instead of `2 norm
based scale estimation, Adamax [45] uses infinity norm and AMSGrad [46] the maximum
of the squared past gradients. Nadam [47] introduces Nesterov-acceleration method into
Adam.

2.1.2 Activation functions

Approximation of nonlinear functions by neural networks is achieved by point-wise activation
functions φ that transform weighted sums of inputs. A common choice for an activation
function is the logistic sigmoid function (2.9) with range (0, 1):

σ(x) =
1

1 + e−x
, (2.9)

or its scaled version, the hyperbolic tangent (2.10), with range in interval (−1, 1):

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
= 2σ(2x)− 1. (2.10)

Both of these functions have saturated regions that can lead to vanishing and exploding
gradients and thus hamper the training process. The Rectified Linear Unit (ReLU) [48]
activation solves this problem and its derivative is fast to compute. ReLU is given by the
equation:

f (x) = max(0, x). (2.11)

In turn, ReLU networks are more sensitive to internal covariate shift in the inputs. Pro-
cessing only negative input values would map everything to 0, producing so called “dead
neuron”. If all the input values are positive, no nonlinearity is applied. It was shown the
deep networks converge faster if the inputs are normalized [49]. Several modifications of
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vanilla ReLU function address this problem. Parametric ReLU (pReLU) [50] prevents dead
neurons by allowing a small gradient for non-active neurons (2.12). Parameter a is used to
scale the negative values. Its value is either fixed as 0.01 for leaky-relu [51] or is learned
during the optimization process.

f (x) = max(0, x) + amin(0, x) (2.12)

Another extension of ReLU is the Exponential Linear Unit (ELU) [52] that combines lin-
ear property of ReLU for positive values and maps negative values via exponential func-
tion:

f (x) =

x if x > 0

α(ex − 1) if x ≤ 0.
(2.13)

In classification scenario the output of the network implements softmax function that con-
verts an arbitrary real value to a posterior probability of a class ck in range (0, 1) for given
instance x :

p(ck |x) =
eak∑m
i=1 e

ai
(2.14)

where m corresponds the number of output nodes (classes) and ak is the activation value
of k-th node. Probabilities of all classes always sum up to 1.

2.1.3 Weight initialization

An essential requirement for the network to converge is a “good” weight initialization. Ini-
tializing weights to zero causes symmetry in the network and generates the same gradient
for each weight. Desired asymmetry is achieved by randomly sampling weights from the
Normal or Uniform distribution with zero mean. However, small weights of a deep model
would diminish activations in deeper layers and causing gradients to vanish, large weights
exponentially increase activations and cause exploding gradients. For stable information
propagation it is desired the variance of activations in preceding layer matches the variance
in current layer. A few studies estimated a suitable variance for initial weight distribu-
tion.

Assuming the input and the weights have zero mean, to match input-output variances for
forward and backward pass, the Xavier initialization [53] proposes to sample the weights
from Normal (2.15) or Uniform (2.16) distribution with variance scaled by the sum of input
nin and output nout nodes.

w ∼ N

[
0,

√
2√

nin + nout

]
(2.15)

w ∼ U

[
−

√
6√

nin + nout
,

√
6√

nin + nout

]
(2.16)

Deep networks however often use ReLU activations that necessarily impose positive mean
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value in the output distribution. To maintain stable variance propagation through a ReLU
network, He initialization [50] is proposed to scale the variance of the weight distribution
based only on the number of input weights nin.

2.1.4 Regularization

Neural network optimization poses numerous pitfalls that make the search for an optimal
solution difficult. Numerous regularization techniques aim to alleviate some of the opti-
mization issues.

Weight regularization

Weight regularization prevents parameters from having large values. Some of the weights
might become much larger than others and prioritize certain features. These factors con-
tribute to overfitting to data, co-adapting to, or memorizing specific inputs, which leads
to poor generalization of unseen observations. Penalization of weights by their `1 norm
promotes feature selection by enforcing sparse solution to the problem, which is less likely
to overfit. This penalty is controlled by a hyperparameter λ (2.17).

L = −
m∑
i

yi log pi + λ
n∑
j

|wj | (2.17)

On the contrary an approach relying on the `2 norm, known as the weight decay (2.18),
enforces small weight values by penalizing outliers and creates a dense solution.

L = −
m∑
i

yi log pi + λ
n∑
j

w 2
j (2.18)

Dropout

During the training the Dropout [54] method simulates ensambling by averaging numerous
thinned models derived from the original model by setting neuron activations to zero on
random. This forces the model to not rely on individual nodes in the decision process.

Batch normalization

As was mentioned in Section 2.1.2, some of the activation functions such as ReLU introduce
internal covariate shift. It was found that a network with normally distributed layer inputs
converges faster and is more stable to input data distribution. The Batch Normalization
(BN) solves this issue by normalizing features across samples in the mini-batch before
applying a nonlinear activation [49]. A value of normalized feature yi is calculated as

yi = γ
xi − µ√
σ2 + ε

+ β (2.19)
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given the running mean µ of the mini-batch features xi and the running variance σ and a
small value of ε for numerical stability. A feature after the normalization has zero mean and
unit variance, and is further scaled and shifted by parameters γ, β learned in the training
process. Normalizing inputs of each layer grants speed-up of the convergence process,
allows usage of larger learning rate due to more stable data distribution, and learning is
more robust towards weight initialization.

2.1.5 Convolutional Neural Network

Feed-forward neural networks with fully-connected layers are not scalable to high dimen-
sional inputs. An alternative formulation of neuron connectivity leads to locally connected
networks. For instance Convolutional Neural Network (CNN) implements local receptive
field and weight sharing to achieve scalability and high performance on image data. In
CNNs, input object is represented as a collection of spatial feature maps at multiple scales
and levels. They vary from low level features found in local neighborhood to higher level
features in form of shapes in global scale. These features are extracted by convolving an
input image with learnable filters. Each filter bank produces a feature map that aggregates
responses of individual filters on their own input channel. Pooling/subsampling layers are
often used to decrease spatial dimensions of features to alleviate computational burden and
to increase the receptive field of convolutional filters. The pooling operation substitutes a
feature map region with the maximum or average of its activations, which grants invariance
to translation and small rotation within the region.

Origins of CNNs are dated back to 80s when multi-layer locally connected networks were
used to solve optical character recognition problems (OCR) [55, 56, 57]. The neural net-
work architectures have been known for several decades, optimizing them was, however, a
challenging task. Immense increase in computational resources and availability of annotated
datasets allowed their expensive optimization. Moreover, several initialization techniques
were proposed that posed a key ingredient for convergence of the training procedures. A
layer-wise unsupervised pre-training was designed to initialize weights to be closer to their
local minima in advance of the training [58]. Techniques described in Section 2.1.3 were
found to be cheap alternatives sufficient for network convergence.

CNN models gained their fame they when became the state of the art technique for
large scale image classification [12]. Neural network architectures underwent several deign
changes, fully-connected layers became absent, the models got deeper [59, 60] and neuron
connections more sparse [61]. CNNs have also been used in countless other tasks in com-
puter vision, among the most popular are object detection [13], semantic segmentation [14]
or image super-resolution [62].
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Shortcut connections

The success of deep networks in object recognition tasks [59, 60] emphasizes the importance
of depth. Optimization of deep networks is known to be hampered by vanishing/exploding
gradients, addressed by numerous approaches using different activation functions [48], ini-
tialization techniques [53] or normalization of activations [49]. Despite all the efforts to
maintain stable gradient flow, very deep networks sometimes tend to converge to a worse
solution than their shallower counterparts. He et al. used term “degradation” problem when
referring to this effect [63]. They claim the effect is not caused by overfitting and is related
to the optimization process.

Inspired by gating units of LSTM cells [64], gated shortcut connections were proposed [65]
to ease the information flow in very deep networks. These so called Highway networks
transform layer input x via three weight matrices and their associated biases b (2.20).

y = φ (Whx + bh) · σ (Wtx + bt) + x · σ (Wcx + bc) (2.20)

MatrixWh parametrizes the nonlinear transform φ of x, which is gated by the logistic sigmoid
transform gate parametrized by Wt . Portion of the input carried forward is selected by the
carry gate defined by Wc . The residual learning framework [63] is built on similar principles.
A transformation of signal x in plain feed-forward network y = F (x,W ) parametrized by
weights W is reformulated in as

y = F (x,W ) + x. (2.21)

The layer is now not learning how to infer y from x, but only how to generate their difference
y− x, provided x and y have the same dimensionality. Note that (2.21) is a special case of
(2.20) where σ (Wtx + bt) and σ (Wcx + bc) are matrices of ones. The residual function F
can consist of multiple transformations, which, together with identity mapping, are referred
to as residual block. A standard residual block designed by He et al. [63] as depicted on
Figure 2.2 is composed of two layers with learned parameters and batch normalization prior
to ReLU activation. A stack of such blocks forms the Residual network.

2.2 Transformation Methods

Many approaches in image analysis rely on an image representation given by different basis
of functions. Transformation method changes the basis in which the signal is represented.
An image can be interpreted as the real part of a complex periodic function. This section
gives a brief overview of common transformation techniques used on image signals.
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F (x) + x
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Figure 2.2: Residual block: the residual function F is composed of learned layers, batch
normalization and relu activation. Constitutes the output y when summed with block input
x.

2.2.1 Fourier Transform

The Fourier transformation decomposes image to its spatial frequency spectrum. In con-
tinuous form, an image is mapped to a sum of sinusoids with different frequencies. Con-
tribution of each sinusoid towards the whole signal is determined by its coefficient. The
Fourier transform in one dimension is expressed as a function F1 : R→ C

F1 (u) =

∫ ∞
−∞

f (x) e−j2π(ux)dx (2.22)

An image can be mapped to Fourier domain in 2 stages, by applying the 1-dimensional trans-
formation along rows and columns subsequently. Alternatively, the 2-dimensional Fourier
transform of an image f is defined as a function F : R→ C

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y) e−j2π(ux+vy)dxdy (2.23)

and its inverse
f (x , y) =

∫ ∞
−∞

∫ ∞
−∞
F (x , y) e j2π(ux+vy)dudv . (2.24)

Applying Euler’s formula the basis can be expressed as a sum of sine and cosine func-
tions:

e−j2π(ux+vy) = cos [2π (ux + vy)]− j sin [2π (ux + vy)]. (2.25)

In practical applications images are represented by discrete 2-dimensional pixel grids. The
discrete Fourier transform is thus

F (u, v) =
1√
nm

n∑
x=0

m∑
y=0

f (x , y)
(

cos
[

2π
(ux
n

+
vy

m

)]
− j sin

[
2π
(ux
n

+
vy

m

)])
(2.26)

The scale 1√
nm

makes the transform unitary. Fourier transform is linear and has several
important properties such as frequency and space shift property, or scale property.
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2.2.2 Cosine Transform

The Fourier cosine transform is defined as Fc : R→ R

Fc (u) =

∫ ∞
−∞

f (x) cos (2πux)dx . (2.27)

For image signals lying on a discrete grid, integration is performed by summing responses
with fixed step size of one pixel. The formulation of this transformation on discrete signals
is often expressed as

FDCT (u) =

√
α (u)

n

n−1∑
x=0

f (x) cos
[
π

n

(
x +

1

2

)
u

]
, where α (u) =

1, u = 0

2, otherwise.
(2.28)

For a signal of length n it is possible to define a transformation matrix C (2.29), columns
of which are formed by the DCT basis functions.

C =

√
2

n



1√
2

cos
(
π
2n

)
cos
(
π
n

)
cos
(

3π
2n

)
· · · cos

(
π(n−1)

2n

)
1√
2

cos
(

3π
2n

)
cos
(

3π
n

)
cos
(

9π
2n

)
· · · cos

(
3π(n−1)

2n

)
1√
2

cos
(

5π
2n

)
cos
(

5π
n

)
cos
(

15π
2n

)
· · · cos

(
5π(n−1)

2n

)
...

...
...

...
...

...
1√
2

cos
(
π(2n−1)

2n

)
cos
(
π(2n−1)

n

)
cos
(
π(6n−3)

2n

)
· · · cos

(
π(2n2−3n+1)

n2

)


(2.29)

An image I ∈ Rn×n can be transformed into DCT domain via C by transforming rows and
columns of the image matrix separately

FDCT = CTIC . (2.30)

Images that do not have their width equal to their height can be simply transformed by
using two transformation matrices of different sizes.

Alternatively, an image I ∈ Rn×m can be transformed with 2-dimensional DCT as

FDCT (u, v) =

√
αu

n

√
αv

m

n−1∑
x=0

m−1∑
y=0

I (x , y) cos

[
π

n

(
x +

1

2

)
u

]
cos

[
π

m

(
y +

1

2

)
v

]
(2.31)

which results in coefficient FDCT (u, v) representing overlap of an input with sinusoids at
frequency u and v in particular dimensions. Basis functions are often normalized by scaling
factors αk = 1 if k = 0, otherwise αk = 2.

The purpose of DCT is to decorrelate signals. Due to its energy compaction properties
on natural images [66] it is widely used for image compression in JPEG image format.

16



A modification of DCT described in Eq. (2.28) is also used in audio encoding formats.
The DCT shows better energy compaction properties on natural images than DFT [67].
Karhunen-loeve transform (KLT) is considered to be optimal in signal decorrelation, however
the signal is transformed via specific basis functions that are not separable and need to be
estimated for every image. It was also shown that normalized KLT eigenvectors estimated
on patches of natural images converge to DCT bases as its correlation coefficient approaches
one [68].

2.2.3 Wavelet Transform

Another type of transformation with orthonormal complete basis, the wavelet transform,
captures signal responses with respect to frequency and position of the original signal. The
advantage over Fourier transform is a sensitivity to frequencies at different scales, useful
for non-stationary data. The basis set is obtained by shifting and scaling a mother wavelet
ψ.

ψuv (x) = 2
u
2ψ (2ux − v) . (2.32)

Coefficient Wψ (u, v) for a particular scale u and position v is determined as

Wψ (u, v) =

∫ ∞
−∞

f (x)
1√
2u
ψ

(
x − v2u

2u

)
dx (2.33)

with possible extension to discrete form as for Fourier or Cosine transforms. The signal can
be synthesized from the wavelet coefficients as

f (x) =

∫ ∞
−∞

∫ ∞
−∞
Wψ (u, v)ψuv (x) dudv . (2.34)

2D Wavelet transformation on images can be performed by successively transforming image
columns and rows at different scales. An example of ψ frequently used for image processing
is the Haar wavelet, the simplest from the wavelet family. Haar wavelet is defined as a step
function

ψ(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2
≤ x < 1

0 otherwise.

(2.35)

One-dimensional discrete Haar transformation of a vector of size n is performed by matrix
multiplication by an orthogonal matrix Hn constructed from shifted and scaled step function.
Constant n is constrained to be a power of 2. An example of H2:

H2 =
1√
2

(
1 1

1 −1

)
(2.36)
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and H4:

H4 =
1

2


1 1 1 1

1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2

 . (2.37)

To transform an image block-wise, slices of columns and rows have to be manipulated.
Conveniently, a filter bank can be constructed to transform the image by convolution.
Rows of Hn can be considered as 1D convolutional filters. H can be represented as a vector
of basis functions (rows):

HN =


hT0
hT1
...

hTn−1

 . (2.38)

A 2D filter bank is constructed as a set U = {Hu,v |u ∈ 〈0..n − 1〉 , v ∈ 〈0..n − 1〉} com-
posed of matrices Huv as products of matrix multiplications between columns of Hn:

Huv = huh
T
v (2.39)

for every u, v < n.

Another example of a wavelet family often used in vision problems is Morlet wavelet. Its
complex bases are defined as

ψ (x) =
1√
πu

e−
x2

u e j2πvx . (2.40)

2.3 Compression Techniques

This section will give an overview of a few compression techniques that will be further
investigated.

2.3.1 JPEG

JPEG coding standard [21] was designed by Joint Photography Experts Group in 1992 and is
still one of the most broadly used formats for storing still images, commonly used in cameras
or web systems. The format grants good compression rates, however the compression
causes information loss. This section will illustrate how this compression works. JPEG
uses YCbCr color scheme, consisting of luma component (Y) representing luminance, and
two chroma components (Cb and Cr) capturing the blue and the red color difference. For
larger compression ratio the color channels (Cb, Cr) are often sub-sampled by factor 2 in
horizontal direction, noted as 4:2:2 scheme, or in both horizontal and vertical directions
known as 4:2:0. For no chroma sub-sampling, 4:4:4 scheme is used. Each image channel
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is split into 8x8 non-overlapping pixel blocks, 128 is subtracted from each pixel value, and
the blocks are transformed by 2-dimensional Discrete Cosine Transform.

Discrete Cosine Transform (DCT) decomposes a finite vector into a sum of a set of
cosine basis functions. The 8× 8 pixel block is transformed via 2-dimensional DCT (2.31)
where m = n = 8. Result of the transform is a mapping of spatial image block to a
set of coefficients in the frequency domain (Fourier space of real numbers). Upper-left
corner of the block contains average intensity of the block (DC coefficient), while the other
coefficients (AC) capture amplitudes at which the particular cosine functions oscillate, with
the highest frequency occurring in the bottom-right corner. The information loss occurs
during the quantization, as a result of point-wise integer division of the coefficients with
the 8 × 8 quantization matrix. The matrix is designed to discard high frequencies and its
content is dependent on the compression rate.

After the quantization, most of the high-frequency coefficients have typically value zero.
From a 2-dimensional matrix they are mapped into 1-dimensional vector, ordering coeffi-
cients in an anti-diagonal order starting from the top-left corner with the DC coefficient
(see ordering on Figure 2.3). The vector length is compressed by run-length encoding, ag-
gregating all zero elements preceding any non-zero element into one number. To complete
the compression process vector values are mapped by Huffman coding.

Figure 2.3: Order in which DC and AC coefficients are mapped into 1-dimensional vector.

Huffman coding constructs a mapping table based on symbol/value frequency of occur-
rence. The most frequent symbols are mapped to the shortest codes and vice versa. The
codes are inferred from the Huffman tree, a binary tree with leaf nodes corresponding to
symbols with their occurrence frequency, and internal nodes containing summed frequen-
cies of their children. The tree is built by merging the least frequent symbols until all the
symbols are included. The final codes are represented via path taken from the root to the
leaf node, assigning binary 0 to every left branch taken and binary 1 to the right ones.
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Figure 2.4: Huffman tree is constructed from leaf nodes that represent symbols to be
encoded with their occurrance frequency, and internal nodes summing the frequencies of
their children. The code for a specific symbol is generated traversing the tree from the
root node using 0 for each left branch taken and 1 for the right branches. (source: https:
//en.wikipedia.org/wiki/Huffman_coding)

An image patch is in its final form composed of quantized DCT coefficients flattened into
1D vector in an anti-diagonal order, representing each non-zero coefficient by 3 values: the
number of zeros preceding the coefficient, the length of the coefficient encoding, and the
Huffman code for the coefficient value. An image is decompressed by performing inverse
operations on the compressed coefficients. The principle of splitting an image into 8 × 8

blocks and transforming them via DCT is also used on MPEG key frames, the only frames
that encode static information in videos.

2.3.2 JPEG 2000

The new standard for JPEG created in year 2000 [69] addresses some of the original JPEG
format drawbacks. The format allows higher compression ratio while maintaining equal
quality. The blocking artefacts caused by tiling are not visible, only ringing artefacts re-
main, manifested as a blur and rings near edges of an image. The file format allows using
any color space, arbitrary bit depth and transparency. Images are transmitted and ren-
dered progressively. JPEG2000 uses arbitrary size tiles and replaces DCT with wavelet
transformation (see Section 2.2.3). The Discrete Wavelet Transform (DWT) is used for
dyadic image decomposition. Approximation and detail coefficients are extracted at differ-
ent scales. Cohen–Daubechies–Feauveau (CDF) 9/7 wavelet is used for lossy compression.
Lossless compression is also possible through CDF 5/3 wavelet that prevents floating point
number rounding errors. The wavelet coefficients are quantized with an integer step value
that is inversely proportional to precision. Different quantization can be applied at different
parts of an image. The last stage of compression uses arithmetic coder similar to the one
used in standard JPEG format. Although JPEG2000 has superior properties to baseline
JPEG format, it is not widely adopted by web systems and browsers.
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2.4 Scattering networks

The idea of feature extraction from images by convolving them with learned filters is in-
spired by preceding feature extraction techniques using fixed or so called "hand-crafted"
convolutional filters. One such example is the Scattering network [27] that uses wavelet fil-
ters to model geometrical variabilities, and can produce representations that are translation
and rotation invariant [70]. Scattering networks were shown [70] to achieve comparable
classification accuracy to CNNs with filters learned in an unsupervised way.

The scattering transform is realized through a bank of dilated and rotated mother wavelet.
Bruna et al. [27] uses morlet wavelet (2.40) to construct multiscale directional filters

ψ2j r (u) = 22jψ

(
2ju

r

)
(2.41)

where j ∈ Z corresponds to scale and r ∈ G to rotation of the filter from a discrete finite
rotation group G in R2. The notation can be simplified as λ = 2j r . U [λ] x = |x ∗ψλ| is
a wavelet transformation and magnitude extraction operator. Output of the network are
coefficients computed at frequencies 2j > 2−J . A sequence of operations is denoted by a
path p = (λ1,λ2, ... ,λm). Higher order coefficients U [p] are computed as

U[p]x = U[λm] ...U[λ2]U[λ1]x = | ||x ∗ψλ1
| ∗ψλ2

| ...ψλm |. (2.42)

The Gaussian filter at scale 2J is used to average the coefficients

φ2J (u) =
1

22J
φ
( u

2J

)
. (2.43)

Aggregation through averaging into coefficients SJ (2.44) gives an invariant representa-
tion.

SJ [p]x = U[p]x ∗ φ2J (2.44)

Scattering networks implemented with different mother wavelets can also be found in the
literature [71].

2.5 CNNs with non-standard bases

Several works have allowed the flexibility of CNN filter banks by restricting its composition
from a finite basis set. A filter W is formed by a linear combination of a basis family ψ
through learned coefficients α:

W =
k−1∑
i=0

αiψi . (2.45)

One such implementation is the structured receptive field block [26], which motivates the
use of Gaussian function derivative family for ψ by scale-space theory [72]. CNN filter W (u)
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is interpreted as a function and can be rewritten through Taylor expansion of maximum
order n

G (.,σ) ∗W (u) =
n∑

m=0

(Gm (.,σ) ∗W ) (a)

m!
(u − a)m (2.46)

with G (.,σ) as the Gaussian kernel and Gm (.,σ) its m-th derivative. This decomposi-
tion was successful at expressing filters with large spatial kernel and achieved good results
with limited samples. Kobayashi [73] has used Gram-Schmidt process to orthogonalize
an incomplete set of Gaussian derivative filters and used it as a basis to learn effective
filters.

Another type of bases used for filter decomposition were the Fourier-Bessel bases:

Wm,q (r ,φ) = cm,qJm (Rm,qr) e imφ. (2.47)

They are defined on unit disc through polar coordinates r ,φ, parametrized by angular m
and radial q frequency. Jm is the Bessel function of the first kind, Rm,q its q-th root and
cm,q is used for normalization [74]. By high frequency basis truncation the authors have
achieved parameter reduction and stable representations that they have demonstrated on a
denoising task [74].

Family of circular harmonics (2.48) has been used to construct a rotation equivariant
CNN [29].

Wm (r ,φ,R , β) = R(r)e i(mφ+β) (2.48)

Its filter of rotation order m is complex valued and defined on polar coordinates r ,φ. The
phase offset β and radial profile R , responsible for orientation and shape of the filter, are
learned during training. For image I rotated by θ the filter satisfies (2.49).

Wm ∗ I (r ,φ− θ) = e imθ [Wm ∗ I (r ,φ)] (2.49)

Recently, the scattering transform has been extended by learnable parameters [75]. For
an input x (c ,u) at channel c and vector of spatial coordinates u, output feature y (f ,u)

is produced by summing af ,λ (c) weighted magnitudes of detail coefficients with the sum
of bf (c) weighted approximation coefficients (2.50), where Λ is a set of all scales and
orientations.

y (f ,u) =
∑
λ∈Λ

n−1∑
c=0

|x (c ,u) ∗ ψλ (u)| af ,λ (c) +
n−1∑
c=0

(
x (c ,u) ∗ φJ (u)

)
bf (c) (2.50)
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Chapter 3

Transforming CNN input with
DCT

3.1 Introduction

In the past decade, convolutional neural networks (CNN) have grown in popularity for
performing image processing tasks. In CNNs, convolutional filters are trained to extract
relevant features and shapes from images to perform classification for instance (c.f. Fig-
ure 3.5). Convolutions by small size filters have already been widely adopted for example
in VGG [59] or ResNet [63]. A small filter covers only a small part of an image and thus
has to be applied numerous times. In early stages of convolutional networks that learn
from large images, the spatial resolution of the feature space is rather large and the neural
network has to perform a vast amount of operations. This work1 harnesses the idea to
exploit broadly used image compression techniques, in particular JPEG compression format
for classification (see Section 3.3). Standard image classification techniques use CNNs on
spatial representation of the data, for example RGB pixel intensities. In contrast images in
JPEG format are mapped to the frequency domain, which applicability for CNNs is explored
in the paper. Section 3.2 firstly introduces the related research works, Section 3.3 gives
detailed explanation of the proposed approach, and we show several experimental results in
Section 3.4 that confirm that Convolutional Neural Networks can be applied efficiently to
image data in the frequency domain.

3.2 Related Work

Several papers have addressed the learning from frequency data. Most of the approaches
can be found in forensics or in object recognition tasks.

1Part of this chapter has been published in [76].
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Forensics

Networks trained on DCT coefficients are frequently used in forensics for detection of
tampered parts in images. These parts are assumed to have different distribution of DCT
coefficients from the rest of the image. A common practice is to classify histograms of
preselected DCT coefficients by 1D convolutional network [77, 78, 79]. Furthermore, this
task has been addressed by a multi-branch 2D CNN [80] trained on feature maps spanned
by the first 20 AC coefficients (corresponding to non-zero frequencies in DCT) extracted
from JPEG images.

Object recognition & classification

A number of studies have investigated the use of spectral image representations given by the
DCT for object recognition. The DCT on small resolution images coupled with coefficient
truncation was used to speed up the training of fully connected sparse autoencoders [81].
DCT features from entire images were used to train Radial Basis Function Network for face
recognition [24]. A significant convergence speedup and case-specific accuracy improvement
have been achieved by applying DCT transform to early stage learned feature maps in
shallow CNNs [82] whereas the later stage convolutional filters were operating on a sparse
spectral feature representation.

In contrast with most of the previous studies, our approach works with frequency information
of the image patches, preserving their global location. Under such setting, approaches that
exploit spatial dependencies of the data can be used, and in particular convolutional neural
networks. CNNs have been successful at processing data that have underlying Euclidean
or a regular grid-like structure (e.g. pixel grid), and the size and structure of input data is
expected to be fixed to be fed into the networks used [83].

A few subsequent works have also explored the use of CNNs on block-based DCT images. A
small-scale CNN was trained on DCT coefficients in Borhanuddin et al. [84]. In Gueguen et
al. [25] it was demonstrated how DCT coefficients can be efficiently used to train CNNs for
classification, where the DCT coefficients are taken directly from the JPEG image format.
DCT coefficients extracted the same way have also been used to train a CNN for object
detection [85] and semantic segmentation [86].

We present next our approach that takes advantage of JPEG compressed image format for
creating CNN compliant input data to feed into CNN based classifiers.

3.3 Method

Our method is motivated by reusing well performing and broadly used JPEG image com-
pression. Firstly we will briefly illustrate how the compression works. JPEG uses YCbCr
color scheme, consisting of luma component (Y), representing luminance, and two chroma
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components, (Cb and Cr), capturing the blue and the red color difference. Color chan-
nels are sometimes subsampled for larger compression ratio. Each image channel is split
into 8x8 pixel patches, 128 is subtracted from each pixel value, and finally the regions are
transformed by 2 dimensional Discrete Cosine Transform (DCT).

Discrete Cosine Transform (DCT): 2-dimensional DCT transform (see Section 2.2.2)
is applied to input image patches. The result of the DCT transform is a mapping of the
patch in frequency domain. Upper-left corner of the patch contains low frequencies while
the high frequencies occur in bottom-right part. If the compression is lossy, the patch
coefficients are quantized by 8x8 matrix to discard information in high frequencies.

The coefficients in transformed and quantized patches are ordered in an antidiagonal order
starting from top-left corner (the lowest frequency). Finally, this one dimensional sequence is
compressed with run-length encoding and converted into Huffman code (entropy encoding).
The compression is described with more detail in Section 2.3.1. Given the non-homogeneous
structure of the Huffman code, its variable length is causing a challenge to fit the data to
a fixed-sized input network such as CNN based architectures. Our experiments are focused
here on using fixed size outputs of the DCT transform as inputs for our classifier as shown
on the Figure 3.1.

Image split into blocks

Image reassembled from 
blocks

Encoded JPEG image

Inverse Discrete 
Cosine Transform

Discrete Cosine 
Transform

Quantization

Dequantization

Entropy 
encoding

Entropy 
decoding

CNN

Figure 3.1: Flowchart showing JPEG (de)compression steps: Red dashed arrows indicate
where CNN classifier can be plugged-in.

Color information is important for reliable estimation of local features in digital images [87].
Selection of an appropriate color space often plays a big role in tasks such as skin segmen-
tation [88, 89]. Most color space transformations are simple linear operations, a CNN of a
sufficient capacity should be able to learn the transformation implicitly. In this chapter we
are focusing on the YCbCr color format that has sparse DCT representation in chromatic
channels and is used in JPEG images that can be directly used in the proposed approach.
We consider an image in YCbCr color space split to patches or windows defined by the win-
dow size t. Windows of an arbitrary size are considered, and since the JPEG compression
splits image into windows of size 8, the compressed data is not used, instead, each window
from the original image data is transformed into DCT space. Alternatively, if t = 8 is
desired, entropy coded JPEG images can be decoded and dequantized to obtain the input.
This process is already performed when extracting RGB information from JPEG images,
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and can avoid additional computational costs of performing the inverse DCT. The output of
the DCT transform is a set of frequency coefficients, each given by a particular DCT basis
function. A set of these coefficients represents a feature space of an image window. The
input filter w ∈ Rkt×kt of the proposed approach is designed to cover k adjacent windows
in each image direction. The filter application on the input image x in block-DCT space
with block size t × t can be expressed via following cross-correlation

w ? x (ut, vt) =
kt−1∑
i=0

kt−1∑
j=0

w (i , j) x (ut + i , vt + j) . (3.1)

defined on window coordinates u, v ∈ N. We will mostly work with 2 window neighborhood
(k = 2) forming a 2t × 2t kernel. The learnable filter weights can be seen as performing
weighted average of DCT coefficients of the input. Spatial location of a weight in the filter
determines which frequency in the feature space it is responsible for. To avoid application
of weights to coefficients with different frequencies, the convolutional filter slides along
the image with a stride of the window size t. Stride is a step size in number of pixels
by which the convolutional filter slides along rows and columns of an image. Figure 3.2
provides graphical illustration with the window size t = 2 and a neighborhood of 2 blocks
(k=2).

stride = t

t

Block-DCT Image Filter Output

.

.

.

Figure 3.2: Filtering block-DCT image with window size t = 2 and filter of size 2t × 2t.
Filter stride equals t. Individual colors represent particular frequencies in considered DCT
spectrum.

For a window size t = 8, a filter of 16× 16 is used. Note that the window does not need
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to have a square size when fed to the CNN, it can have an arbitrary shape composed of
t2 values (e.g. a 1 dimensional vector 1 × t2 as long as relative position of the windows
stays intact). Further CNN layers do not need any modification and are applied directly
on the output of the first layer. The overall proposed approach outline is depicted on the
Figure 3.3.

PredictionsCNN

CNN Predictions

RGB to YCbCr DCT Preprocessing

Preprocessing

Proposed

Baseline

Figure 3.3: Flowchart of the proposed approach compared to the baseline, first converting an
RGB image to YCbCr, then slicing it to windows and transforming each window separately
prior to classification.

Computational Complexity: The computational complexity of the model is not af-
fected by basis change of input data. The only required modification to any existing CNN
architecture is exclusive to the first layer. The complexity of this layer depends on the
number of windows k that the convolutional filter covers. The filter is applied with in-
creased stride and therefore for k ≤ 3 used in our experiments the complexity decreases
compared to typical filters used without stride [90]. Our approach, due to the use of stride
also decreases the spatial resolution of the feature maps that effectively reduces processing
memory requirements.

3.4 Experimental Results

To evaluate the suitability of frequency data representation for training a CNN, experi-
ments are performed on 2 well-known public datasets: CIFAR10 [91] and MNIST [92]. For
experimentation we use the official dataset splits into train and test sets. The proposed
approach as well as the baselines are trained on the training set and are compared by their
classification accuracy achieved on the test set.
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3.4.1 CIFAR10

The CIFAR10 dataset of colored natural images of size 32 × 32 is used to compare low
level features learned from frequency representation in contrast with original raw image
intensity. This experiment is conducted for two values of t: 4 and 8. For each window
size a different shallow network is used, further referred to as CNN-A (t = 4) and CNN-B
(t = 8) with architectural details in Table 3.1. Both of these networks have filters designed
to be compatible with window-based DCT inputs as explained in Section 3.3. Features
learned by convolutional layers are transformed by batch normalization [49] and activated
by ReLU [93]. CNN-A further performs average pooling to downsample the feature space,
while CNN-B uses dropout technique to reduce overfitting [54].

4x4 (CNN-A) 8x8 (CNN-B)
layer name kernel type output size layer name kernel type output size

conv [8x8, 4x4] 7x7, 64 conv [16x16, 8x8] 3x3, 64
avg-pool [3x3, 2x2] 3x3, 64 dropout p=0.25 3x3, 64
softmax 1, 10 softmax 1, 10

Table 3.1: The specification of CNN-A and CNN-B, shallow convolutional networks for
learning low level CIFAR10 features. A kernel definition of [8x8, 4x4] denotes a filter with
spatial size 8 × 8 with stride 4 × 4. Output size of 3 × 3, 64 represents 64 feature maps
with spatial resolution 3× 3. Dropout layer probability is defined by p.

Both shallow architectures (CNN-A, CNN-B) are trained on the original RGB data, YCbCr
data representation and on its DCT transform. Stochastic gradient descent with momentum
is used to train the network on all 50 000 training images, with learning rate starting
at 0.1, reduced by factor 10 after 40 and 60 epochs for a total length of 80 epochs.
During the training we use weight decay λ = 0.0001, and batch size 256. Two input
pre-processing techniques are reported: per feature normalization, noted as mean/std (for
frequency data after performing DCT on non-centered data) and the center/max pre-
processing by subtraction of 128 from the image pixel values and division by the original
maximum value (255 for colors, t ·256 for frequency data after performing DCT on centered
images). Using the whole test set of 10000 images, the highest classification accuracy was
observed for models trained on DCT data with center/max pre-processing. The results
of 20 runs for each setting, depicted in Table 3.2, demonstrate the window based DCT
transform facilitates learning of more discriminative low-level features.

window size 4x4 (CNN-A) 8x8 (CNN-B)
preprocessing mean/std ↑ center/max ↑ mean/std ↑ center/max ↑

RGB 66.82± 0.39 66.96± 0.36 60.36± 0.37 60.20± 0.31
YCbCr 65.57± 0.36 67.07± 0.24 59.60± 0.34 60.25± 0.27
DCT 66.84± 0.23 67.24± 0.26 60.25± 0.28 60.87± 0.26

Table 3.2: Classification scores (mean ± std %) of shallow CNN-A and CNN-B networks
over 20 runs on CIFAR10.
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Empiric results indicate the standard mean/std preprocessing technique for RGB data is
not well suited for data in YCbCr format. We suspect the imbalance between standard
deviations of luma and chroma channels scales down the more important luma channel that
is then not exploited sufficiently by a layer normalized with L2 regularization.

The low level features show encouraging results, motivating experiments on a deeper net-
work. A network CNN-C, with details in Table 3.3, is trained with both previously mentioned
pre-processing approaches for all 3 previously used data formats. Each layer with trainable
parameters (except for the softmax layer) is batch normalized and activated by ReLU. Ex-
cluding the first layer, all convolutional layers preserve spatial dimensionality of the features.
Due to low resolution of the dataset, window size t is set to 2 to prevent drastic downsam-
pling after the first convolutional layer. The model has more parameters than CNN-A or
CNN-B, thus has higher capacity to overfit. To add extra regularization we apply dropout
after the second and the fourth convolutional layer with probability 0.25 and on the output
of the first fully-connected layer with probability 0.5. We use the same training procedure
as for the shallow network with difference in the learning rate scheduler: the network is
trained for a length of 300 epochs, having initial learning rate 0.1 reduced by factor 5 after
90, 180 and 240 epochs.

layer name kernel type output size
conv1 [4x4, 2x2] 15x15, 64
conv2 [3x3, 1x1] 15x15, 64

dropout1 p = 0.25 15x15, 64
conv3 [3x3, 1x1] 15x15, 64

max-pool1 [3x3, 2x2] 7x7, 64
conv4 [3x3, 1x1] 7x7, 128

max-pool2 [3x3, 2x2] 3x3, 128
dropout2 p = 0.25 3x3, 128
dense1 1, 512
dropout3 p = 0.5 1, 512
softmax 1, 10

Table 3.3: Convolutional network architecture (CNN-C) used on CIFAR10.

The Table 3.4 reports both median and mean accuracy on the test set after 300 training
epochs, both without and with simple augmentation. The images are augmented by random
horizontal flipping and random shifting by multiples of t, at most by 2t, filling missing pixels
by zeros. When augmentation is not used, the network trained on DCT achieves slightly
higher accuracy, however, RGB representation benefits from the augmentation more than
the other representations.

We conduct a visual evaluation of CNN-C network features learned on RGB and DCT
data. Firstly, low level first layer activations of the model (mean/std and center/max pre-
processing for RGB and DCT data respectively) for a sample test image are rendered on
Figure 3.4 that confirm both networks have learned similarly looking features. Furthermore,
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preprocessing augmentation mean/std ↑ center/max ↑
RGB 86.11 (86.22± 0.25) 86.13 (86.21± 0.29)
YCbCr 85.77 (85.47± 0.41) 85.96 (86.13± 0.49)
DCT 86.35 (86.25± 0.42) 86.30 (86.27± 0.19)
RGB X 90.49 (90.49± 0.21) 90.35 (90.30± 0.12)
YCbCr X 89.98 (90.08± 0.31) 90.28 (90.18± 0.27)
DCT X 89.97 (90.07± 0.27) 90.27 (90.28± 0.13)

Table 3.4: Classification accuracy of CNN-C computed as median (mean ± std %) over 5
runs on CIFAR10 dataset.

(a) RGB (b) DCT

Figure 3.4: First layer activations of a median score CNN-C model trained with augmenta-
tion on RGB data (a) and DCT representation (b), created by inferring the sample image
from the Figure 3.3.

discriminative properties of the high level features of CNN-C model trained on DCT are
demonstrated by mapping activations of the fully-connected layer (“dense1” in Table 3.3) to
the 2D space (Figure 3.5) via t-distributed Stochastic Neighbor Embedding (t-SNE) [94].
Class compactness in the 2D projection is visually similar to the projection of features of
the same network trained on RGB data.

A comparison of classification errors made by models trained on RGB and DCT data points
out that both networks are making similar mistakes. Figure 3.6 presents the confusion
matrices for both networks, showing the most common mistake for both models was con-
fusing dog for a cat. The findings further support the claim that both networks learn similar
representations.

3.4.2 MNIST

We perform a similar experiment on MNIST dataset, training a CNN-D network (see Ta-
ble 3.5) similar to the one used on CIFAR10 data. Unlike CIFAR10, MNIST contains only
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(a) RGB (b) DCT

Figure 3.5: A mapping of high-level features of the network trained on standard RGB (a)
and DCT (b) representation of the entire CIFAR10 test set into 2D plane via t-SNE.

Figure 3.6: A confusion matrix of predictions by CNN-C network trained on RGB (left)
and DCT representation (right) of CIFAR10.

one color channel with dimension 28x28, therefore CNN-C is not directly applicable on this
data. MNIST dataset is also less complex and does not require network with that many
layers. With the smaller model size we use dropout only in the deeper layers. Here we
use t = 2 and train the network on the whole 60000 image large train set for 30 epochs
(the entire dataset passes) with stochastic gradient descent with batches of 128 images.
The initial learning rate is 0.1, which is every 10 epochs reduced by factor 10, and we use
momentum of 0.9.

Multiple pre-processing approaches are investigated for the original data representation and
for its DCT transform. These consist of subtraction “-” of a constant value and scaling “/”
that can be applied pre-DCT or post-DCT. Table 3.6 lists average errors over 20 runs on the
whole test set of 10000 images for each pre-processing method. The most successful pre-
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layer name kernel type output size
conv1 [4x4, 2x2] 13x13, 64
conv2 [3x3, 1x1] 13x13, 64

max-pool1 [3x3, 2x2] 6x6, 64
conv3 [3x3, 1x1] 6x6, 128

max-pool2 [2x2, 2x2] 3x3, 128
dropout1 p = 0.25 3x3, 128
dense1 1, 512
dropout2 p = 0.5 1, 512
softmax 1, 10

Table 3.5: Convolutional network architecture (CNN-D) used on MNIST.

preprocessing Orig. error (%) ↓ preprocessing DCT error (%) ↓
/255 0.4455± 0.0499 DCT/512 0.4245± 0.0332

-128/128 0.4415± 0.0273 -128 DCT/256 0.4405± 0.0458
-128/255 0.4355± 0.0213 -128 DCT/512 0.4105± 0.0383
-mean/std 0.4445± 0.0407 DCT-mean/std 0.4320± 0.0499
-mean/128 0.4245± 0.0322 DCT-mean/256 0.4360± 0.0306
-mean/255 0.4425± 0.0360 DCT-mean/512 0.4385± 0.0432

-mean DCT/std 0.4390± 0.0391
-mean DCT/256 0.4460± 0.0434
-mean DCT/512 0.4300± 0.0453

Table 3.6: Classification scores as the mean ± std % over 20 runs on MNIST dataset. The
original data representation is compared to its DCT transform for different pre-processing
techniques: “-” a constant or “mean” value represents subtraction of specified value from
every image pixel, “DCT” stands for performing the discrete cosine transform at the par-
ticular step, and “/” with a constant or “std” refers to scaling the image by the specified
value.

processing technique for original data was the subtraction of mean value and down-scaling
by 128 with error 0.4245%, followed by the method that was reported in previous subsection
on CIFAR10, subtracting 128 from pixels and scaling by 255, achieving 0.4355% error. The
lowest average error of 0.4105% is obtained with DCT representation when subtracting 128
from the original image before performing the DCT and scaling the transformed data with
512 depicted as center/max pre-processing in Section 3.4.1. The difference in error in favor
of the DCT representation is not significant, however, given noticeably well performing
baseline network. There is therefore not much space to observe an improvement.

3.4.3 Implementation details

CNN-{A,B,C,D} are modeled and trained in Keras deep learning framework that uses Ten-
sorFlow backend. Models were trained on NVIDIA GTX770 GPU with 2GB of memory.
The CNN-C network with roughly 750 thousand parameters, ∼21.5 million of multiply-add
operations per image requires about 20 seconds of training per epoch. The full training
takes less than 2 hours regardless of input representation, which is passed to the graphic
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card in form of 32-bit precision floating point tensor. The DCT transform is computed via
provided python implementation in opencv library. Time to transform the whole train set is
platform dependent, on Intel processor with 3.7GHz frequency the transform with window
size 2 applied to nearly 50 million image patches takes around 4 minutes. When using
sizes 4 and 8, substantially less windows are processed leading to roughly 1 minute and 20
seconds long execution time respectively.

3.5 Using JPEG coefficients

Unlike in some related works [81, 95] we also investigate how to use DCT coefficients
that are read directly from the JPEG file. Instead of performing the whole decompression
pipeline, entropy encoded images undergo only entropy decoding process and dequanti-
zation, omitting the inverse DCT transform, a process performed when retrieving RGB
channels from JPEG images. We investigate this approach on ImageNet dataset [96] that
consists of much larger images compared to CIFAR datasets. Efficient algorithms for com-
puting scaled 2D inverse DCT (IDCT) transform of an 8x8 block require at least 417 add
or multiply/add floating point operations [97] to restore an image block. IDCT transform
for an image in the ImageNet dataset with an average resolution 400 × 350 [96] would
require 2.75 MFLOPS. Typical batch-size used for training models on ImageNet consists of
256 images requiring 0.7 GFLOPS to transform the whole batch in order to preprocess the
images, which is often done using a less parallelizable CPU cores. The concept is related
to work of Torfason et al. [98], which shows that compressed images have more abstract
feature representation compared to original images and require less convolutions for clas-
sification. They however, instead of DCT coefficients, use images compressed by another
neural network, a compressive convolutional autoencoder.

3.5.1 Data preparation

The JPEG format allows flexibility of color space and color channel subsampling scheme.
In order for this information to be processed by convolutional filter, encoding of all images
used for training and inference has to be unified with respect to these parameters. To do so,
images encoded in other color space than YCbCr (for example CMYK) are recompressed in
desired color format, using quantization matrices corresponding to 95% image quality. We
enforce 4:4:4 chroma subsampling on all images as the majority of images in the ImageNet
dataset are encoded without color channel subsampling.

3.5.2 Data augmentation

DCT coefficients are extracted directly from the files using the pysteg [99] python package.
Upon reading, the coefficients are dequantized with quantization matrix read from the
image file, hence the images can be compressed with different compression rates. A small
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portion of the images have encoded only the luminance channel (greyscale images). Chroma
channels of such images are filled with zeros. During the JPEG encoding process, the
intensity value 128 is subtracted from all pixel intensities, therefore their DCT coefficients
are expected to be centered around zero. Moreover, sign change of a coefficient affects
the spatial structure of the whole underlying image in contrast with only a fluctuation in
intensity for a single pixel in spatial domain. To normalize the data, each DCT coefficient
is divided by its standard deviation calculated across the whole dataset, separately for each
color channel.

An efficient way to enlarge the number of samples for training, the augmentation, is essential
to prevent large models from overfitting. Training images in large scale databases come
in variable resolutions. A common practice to augment data in ImageNet dataset is to
resize an image to a certain size, extract random crop and reflect it horizontally with
0.5 probability [63]. Apart from geometrical transformations, some pipelines use color
augmentation to build invariance to illumination [12].

We deploy augmentation directly on block-DCT image representation. It consists of random
cropping that preserves entire DCT blocks, and random horizontal mirroring. Mirroring of
a block-DCT image is performed in 2 steps: firstly, absolute position of blocks is flipped
horizontally, secondly the individual blocks are reflected. A content of a DCT block can be
reflected by multiplying its coefficients with matrix M (3.2).

M =



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1


(3.2)

In our experiments, random crops with mirroring were not found to be a sufficient augmenta-
tion. While using it, significant overfitting was still observed even for shallower models (e.g.
18 layers). Therefore we investigate using a scale augmentation to increase variability in the
data. We have adopted scale and aspect ratio augmentation as described in [60] (followed
by random mirroring). Crop area is sampled uniformly from range U (8%, 100%) of the
whole image area. Likewise, aspect ratio is sampled from uniform distribution U (3/4, 4/3).
The only constraint is that both, crop width and height is an integer divisible by 8 (JPEG
block size). Selected crop area is extracted from random position in the image while not
disrupting the DCT blocks. Finally, the crop is resized to desired size.

To resize images with standard interpolation is not possible in DCT domain, hence we have
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considered two custom approaches to resize a block DCT image. The first approach [100]
proposes to resize an image performing n-point inverse DCT and subsequent m-point for-
ward DCT and coefficient scaling, omitting the need for interpolation in pixel space. When
m or n are different from 8, coefficients are either truncated or zero-padded to match de-
sired size. The scale factor is determined by ratio n/m. The limitation of this approach is
that scale factor is limited to a small finite set of integer pairs n,m. An arbitrary scaling
would require, in extreme case, padding every block to match output image resolution for
n and input image resolution for m. Lastly, initial experiments show lower quality of re-
sized images and worse classification results compared to resizing based on interpolation.
We have resorted to the second option, using linear interpolation in spatial domain after
8-point inverse DCT and following 8-point forward DCT. The DCT transform is performed
by convolving an image with a set of 64, 8× 8 filters (one filter per DCT basis), resulting
in image tensor of shape (64c , h/8,w/8), for image of size h × w with c channels. The
original shape of an image is restored by pixel reorganization.

3.5.3 ILSVRC data set

One of the most popular benchmarks for image recognition is provided by the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [101]. The training set is a subset of the
ImageNet database [96] composed of 1.28 million images of real wold objects. Performance
of the competing models is determined by 50k validation and 150k testing images, which
are to be assigned to one of the 1000 possible classes. Images have variable size and are
stored in JPEG format.

Figure 3.7: A sample image from ImageNet dataset.

3.5.4 Experimental Setup on Imagenet

Due to architectural constrains imposed in Section 3.3, the choice of a baseline architecture
is restricted to models that substantially downsample spatial resolution in early stage con-
volutional layers. Popular architectures such as VGG [59] or SqueezeNet [102] rely on high
resolution feature maps, their adaptation for block DCT data would significantly alter their
architecture. A suitable candidate for architecture adaptation is found in ResNet architec-
ture family [63]. It is composed of simple building blocks and shortcut connections. An
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layer name output size ResNet-18/Naive DCT dctResNet-14 dctResNet-18 dctResNet-18-ups
conv1 112×112 7×7, 64, stride 2 none

conv2_x 56×56
3×3 max pool, stride 2 8×8, 64, stride 8[

3×3, 64
3×3, 64

]
×2 none

[
3×3, 64
3×3, 64

]
×2

conv3_x 28×28
[
3×3, 128
3×3, 128

]
×2

8×8, 128, stride 8 [
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×2

[
3×3, 128
3×3, 128

]
×2

conv4_x 14×14
[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×2

[
3×3, 256
3×3, 256

]
×4

[
3×3, 256
3×3, 256

]
×2

conv5_x 7×7
[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×2

[
3×3, 512
3×3, 512

]
×2

1×1 average pool, 1000-d fc, softmax
# of parameters 11.7×106 11.6×106 14.0×106 11.7×106

FLOPs 1.81×109 1.30×109 1.77×109 1.73×109

Table 3.7: Structure of modified ResNet architectures with respect to the baseline.

input image, when processed by ResNet, is downsampled by factor 4 after the first convo-
lution and pooling layer. Generic architecture of ResNet is composed of root convolutional
layer followed by max pooling and a set of residual blocks. There are sets of residual blocks
at 4 spatial feature resolutions. All blocks are designed to have the same computational
cost, but different memory requirements. For standard crop size 224 × 224, the first set
of blocks is processing features of size 56 × 56. However, crop of this size consists only
of 28 × 28 DCT blocks, which would constitute the largest possible feature size. Various
alternations of the ResNet baseline are considered for modeling blockwise DCT data. Each
instance of our architecture is detailed in Table 3.7. The dctResNet-14 skips residual blocks
that operate on the first spatial resolution (56 × 56). dctResNet-18 instead compensates
missing depth of the model by increasing the number of residual blocks at lower spatial
resolution (14 × 14) following the same recipe as Torfason et al. [98]. Training one such
model is time demanding, thus we resort to comparisons with a single instance of particular
model architectures.

3.5.5 Training details

Most of the hyperparameters used in the training procedure follow the original ResNet de-
sign by He et al. [63]. Models are trained by stochastic gradient descent with nesterov
momentum having initial learning rate 0.1. To speed up the training, the learning rate is
decayed 3.75× faster than in the original schedule, by factor 10 after 8, 16 and 24 epochs,
trained for total length of 28 epochs as in Torfason et al. [98]. Gradients are calculated
from batches of 256 image crops of size 224×224, augmented as described in Section 3.5.2.
Models and the training procedure are implemented in PyTorch framework, adopting official
ImageNet example training code [103]. PyTorch framework was chosen for this experimen-
tation due to simple parallelism implementation and the use of dynamic computational
graph that was more memory efficient in our experiments. Training is parallelized on 2
Nvidia Titan X (Pascal) GPUs, by splitting the batch.
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3.5.6 Results

Standard ResNet-18 model naively trained on block-DCT data extracts low-level features
(Figure 3.8) that do not resemble the original image (Figure 3.7). Nevertheless, the model
can find patterns in such representation, but gives poor performance. Adapting the input
layer for block-DCT representation gives better results (see Table 3.8) despite having fewer
layers. However, ignoring blocks at feature size 56× 56 diminishes the performance, com-
pared to the baseline, by almost 3%. This “trimmed” ResNet has only 14 layers and the loss
of model complexity has certainly affected the performance. Activation maps at the output
of the first layer are small and lack detail (Figure 3.9), which may result in overlooking
some of the important features.

Figure 3.8: ResNet-18 first layer activation maps inferred from the sample image in block-
DCT format (left) without any adjustment and features of another model gathered from
the same image in RGB format (right). Both models are trained on images in their
corresponding formats.

Figure 3.9: dctResNet-14 first layer activation maps inferred from the sample image.

The 18-layered model with the missing 2 blocks inserted deeper in the network narrows
the gap but still falls short by over 1% (see Table 3.8) and increases the parameter burden
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(Table 3.7). The dctResNets do not have a maxpooling layer and as a result the receptive
field of the first layer is reduced. Increasing the filter size to 3 DCT blocks (size 24×24) does
not provide any improvement. Another approach how to compensate the missing blocks
and higher feature resolution is to deploy the subpixel convolution [104]. To upsample
the signal 2 times in each spatial dimension, 4-times more filters are trained in the first
layer. The high dimensional feature maps are created by rearranging the lower dimensional
outputs of the filter bank. We let the first layer learn 256 8×8 filters and leave the rest
of the network as in the baseline model. This method does not surpass performance of
dctResNet-18.

model top-1 ↑ top-5 ↑
ResNet-18 65.98 86.74
ResNet-18 Naive DCT 61.76 84.00
dctResNet-14 63.20 84.87
dctResNet-18 64.78 85.88
dctResNet-18 (24×24) 64.43 85.72
dctResNet-18 subpixel 64.48 85.88

Table 3.8: Accuracy of ResNet18 models trained on DCT representation.

Instead of resizing the features we focus on larger crop size. Crops of 448×448 consist of
56×56 DCT blocks, which becomes the feature resolution after the first convolutional layer.
Due to large stride of the first layer, this expansion has almost no impact on computational
complexity of the model. For a fair comparison the baseline network is also adjusted for
larger crop size. In the baseline model we can either increase size of the pooling window or
stride of the convolutional layer. For a good performance, multiple kernel sizes are tested
and the best variant is 9×9 with stride 4. It can be seen in Table 3.9 that accuracy of
this model is still behind the model trained on the DCT representation. The improve-
ment is given by data representation rather than model architecture. Identical architecture
does not perform as well on RGB data (see Table 3.9). Features of the dctResNet at
this crop size contain more details, but the network prefers more high-frequency features
(Figure 3.10).

Table 3.10 extends the comparison by deeper ResNet-50 network. As a baseline model on
448×448 RGB crops, kernel size 9×9 and stride 4 is selected. The deeper model trained
on DCT data did not surpass the RGB counterpart. Using similar problem formulation,
results comparable to the original model were achieved in [25] by increasing the number of
features in replaced blocks. This adjustment, although breaches the performance gap, it
increases the number of parameters and computational complexity (FLOPs).

Color separation

Images with chroma subsampling need particular consideration. Color channels of such
images have lower resolution compared to the luminance channel. Assuming crop size

38



input filter/stride maxpool/stride crop size top-1 ↑ top-5 ↑
RGB 7/2 3/2 224 65.98 86.74
RGB 7/2 6/4 448 66.15 87.04
RGB 7/4 3/2 448 66.07 87.02
RGB 9/4 3/2 448 66.34 87.03
RGB 11/4 3/2 448 66.17 87.08
RGB 14/4 3/2 448 66.12 86.80
RGB 8/8 - 448 65.90 86.92
DCT 8/8 - 448 66.56 87.36

Table 3.9: Accuracy of ResNet-18 models adjusted for 448×448 crops and comparison with
DCT input at this resolution.

Figure 3.10: dctResNet-18-ups first layer activation maps inferred from the sample image
at crop size 448.

224×224, features gathered from subsampled color channels could be at most 14×14. The
most natural way to include this information is to mix it with luminance features further
along the network when their resolution matches. Color can be considered as higher level
information that is not required for shape classification, but may provide valuable semantic
information in further stages. This approach is known from the literature as the late fusion
of shape and color information and has been successfully used in semantic recognition and
object detection tasks [105, 106, 107]. In ILSVRC2012 dataset most images do not use
chroma subsampling. It is still worth investigating whether separating color and intensity
information might prove to be useful or if less transformations are needed for rather crude
color channels. We experiment with dctResNet-50 that has 4 residual blocks with 28×28
features. Some of these blocks are replaced with residual blocks used in separated streams.
The streams are aggregated and the remaining (if any) blocks are applied to the combined
information such that luma features always pass through 4 blocks. Aggregation through
concatenation and summation is tested. In the first case 96 features are used for luma
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layers 18 50
crop size 224 448 224 448
accuracy top-1 ↑ top-5 ↑ top-1 ↑ top-5 ↑ top-1 ↑ top-5 ↑ top-1 ↑ top-5 ↑
RGB 65.98 86.74 66.34 87.03 71.16 90.26 71.90 90.63
DCT 64.78 85.88 66.56 87.36 70.16 89.59 71.63 90.54

Table 3.10: Accuracy of ResNet-18 and ResNet-50 models trained on RGB channels com-
pared to DCT representation at different crop sizes.

channel and 32 for chroma channels. This separation saves at least 37.5% of parameters
and computations. When summation is used no spares can be achieved. The equal number
of channels in both streams would duplicate the parameter and computation requirements.
Results are depicted in Table 3.11.

separation top-1 ↑ top-5 ↑
no separation 70.16 89.59
concat 2-0 70.28 89.60
concat 4-0 69.54 89.19
concat 2-2 70.34 89.67
concat 4-2 70.06 89.67
concat 4-4 70.55 89.69
sum 2-0 70.34 89.63

Table 3.11: Accuracy of ResNet-50 models with separate brightness and color streams. The
models are described as “aggregation a-b” where a is the number of residual blocks used
only for luma features, b for chroma features and aggregation is the way the streams are
combined.

Separating intensity and color channels seems to bring only a mild improvement, neverthe-
less reduces parametric and computational complexity without a loss of accuracy. Using
no residual blocks to learn from chromatic channels at resolution 28×28 gives the worst
performance. The probable reason is that some features in the chromatic channels rely on
detail that is lost in lower resolutions.

3.6 Conclusion

In this chapter we have presented an approach for adopting convolutional networks to learn
from frequency representations, with motivation to deploy this approach to compressed im-
age data. We showed empirically that low level features learned from window based discrete
cosine transform coefficients are comparably or more discriminative than those learned from
standard data representation. High level feature analysis shows deeper networks trained on
data transformed by DCT learn similar representations and make similar mistakes as their
spatial domain counterparts. Furthermore, we have trained convolutional network on DCT
coefficients extracted directly from JPEG files of high resolution images. Benefits of color
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and intensity separation in the classification network are also demonstrated. Performance
of models trained on JPEG coefficients is dependant on the input crop size due to DCT
block size that determines subsampling of the first convolutional layer. We will address this
issue in the following chapter by performing DCT transform with overlaps directly in the
network’s computational graph.
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Chapter 4

DCT based Harmonic Networks

4.1 Introduction

CNNs have been designed to take advantage of implicit characteristics of natural images,
specifically correlation in local neighborhood and feature equivariance. The wide application
of features obtained by convolving images with explicitly defined local filters highlights the
shift from the extraction of global information towards local learning.

Standard CNNs rely on the learned convolutional filters that allow them to be adjusted
flexibly to the data available. In some cases, however, it may be advantageous to revert
to preset filter banks. For instance with limited training data, using a collection of preset
filters can help in avoiding overfitting and in reducing the computational complexity of the
system. An example of such networks with preset (wavelet based) filters is the scattering
network, which achieved outstanding results in handwritten digit recognition and texture
classification [27].

...

* * * * * * * * *

Figure 4.1: Left: Design of the harmonic block. Boxes show operation type, size of the
filter (if applicable) and the number of output channels given the block filter size K , number
of input channels N and output channels M . Batch normalization (BN) block is optional.
Right: Visualization of the harmonic block applied to an input layer.

We propose1 instead to replace the standard convolutional operations in CNNs by har-
monic blocks that learn the weighted sums of responses to the Discrete Cosine Transform

1Part of this chapter has been published in [108, 109].
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(DCT) filters, see Figure 4.1. DCT has been successfully used for JPEG encoding to trans-
form image blocks into spectral representations to capture the most information with a
small number of coefficients [21]. Motivated by frequency separation and energy com-
paction properties of DCT, the proposed harmonic networks rely on combining responses
of window-based DCT with a small receptive field. Our method learns how to optimally
combine spectral coefficients at every layer to produce a fixed size representation defined
as a weighted sum of responses to DCT filters. The use of DCT filters allows one to easily
address the task of model compression. While other works that propose convolutional fil-
ters decomposition to particular basis functions [74, 110] have mostly focused on ability to
compress the network, we show furthermore that prior information coming from well chosen
filter basis can not only be used for compression but can also speed up training convergence
and improve performance.

The relevant background is first presented (Section 4.2) and our harmonic network for-
mulation is then explained in Section 4.3. Our proposed harmonic block acts as an el-
ementary unit to encode any neural network. Evaluation of the block is conducted by
assessing effect on the performance and parametric complexity of well established architec-
tures when replacing their convolutional layers with harmonic blocks. The proposed models
are extensively validated against state-of-the-art alternatives solving a representative set
of problems in computer vision that are often addressed by CNNs, image classification
(Section 4.4), object detection and segmentation (Section 4.5.1), and finally boundary de-
tection in images (Section 4.5.5). All our architectures are distinct in our reported results
with the name starting with Harm. The Chapter is concluded with some final remarks (Sec-
tion 4.6). The PyTorch implementations for our harmonic networks are publicly available
at https://github.com/matej-ulicny/harmonic-networks.

4.2 Related work

This section provides an overview of related works combining DCT and CNN with applica-
tion to object classification, works that use other basis functions in CNNs, and will briefly
outline works using DCT for CNN compression.

4.2.1 Wavelets & CNNs

Wavelet pre-processing

As an alternative to DCT, scattering Networks (see Chapter 2.4) are built on complex-
valued wavelets, for instance Morlet [27] or dual-tree wavelet [111]. The scattering network
based on rotation and scale invariant wavelet transform was shown to effectively reduce the
input representation while preserving discriminative information for training CNN on image
classification [112, 113] and object detection task [114] achieving performance comparable
to deeper models. Williams et al. [115] have advocated image pre-processing with wavelet
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transform, but used different CNNs for each frequency subband. Wavelet filters were also
used as a pre-processing method prior to NN-based classifier [116], and to enhance edge
information in images prior to classification [117].

Spectral based CNNs

Other works have used wavelets in CNN computational graphs. Second order coefficients
from Fast Wavelet Transform were used [118] to design a wavelet pooling operator. Similar
approach was taken by Ripperl et al. who designed spectral pooling [28] based on Fast
Fourier Transform of the features and truncation of the high-frequency coefficients. They
also proposed to parameterize filters in the Fourier domain to decrease their redundancy and
speed up the convergence when training the network. In both works, the pooled features
were recovered with Inverse Fast Wavelet or Inverse Discrete Fourier Transform respectively,
thus the CNN still operates in the spatial domain.

To address texture classification, Fujieda et al. [119] proposed a Wavelet Convolutional Net-
work that is trained on responses to Haar wavelets and concatenates higher-order coefficient
maps along with features of the same dimensionality learned from lower-order coefficients.
Similar approach is taken by Lu et al. [120] that learns from both spatial and spectral infor-
mation that is decomposed from first layer features. The higher-order coefficients are also
concatenated along with the lower dimensional feature maps. However, contrary to our
harmonic networks, Wavelet CNNs decompose only the input features and not the features
learned at intermediate stages.

Robustness to object rotations was addressed by modulating learned filters by oriented
Gabor filters [30]. Worrall et al. incorporated complex circular harmonics into CNNs
to learn rotation equivariant representations [29]. Similarly to our harmonic block, the
structured receptive field block [26] learns new filters by combining fixed filters, a set of
Gaussian derivatives with considerably large spatial extent. Additionally, orthogonalized
Gaussian derivative bases of small spatial extend have been used by Kobayashi to express
convolutional filters [73]. DCFNet [74] expresses filters by truncated expansion of Fourier-
Bessel bases, maintaining accuracy of the original model while reducing the number of
parameters.

Following our approach Ehrlich et al. [121] has proposed to model CNN operations in
JPEG transform domain, including approximating the ReLU activation function. Further
extensions include learning the frequency of cosine function that constitutes a part of the
filter bank [122].

4.2.2 Compressing DNNs

Numerous works have focused on compressing the size of neural networks and decreasing
the inference and training time. Speedup and memory saving for inference can be achieved
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by approximating the trained full-rank CNN filters by separable rank-1 filters [123]. It
has been shown [124] that a model complexity can be adjusted during the training time:
increased via introduction of new filters by rotating and applying noise to existing ones, and
reduced by clustering to selectively decrease their redundancy.

Assuming smoothness of learned filters, Frequency-Sensitive Hashed Network (FreshNet)
[125] expresses filters by their DCT representation and groups their parameters to share the
same value within each group. Wang et al. [126] relaxes this constrain to express each weight
by its residual from the cluster center. Weights in this form were quantized and transformed
via Huffman coding (used for JPEG compression) for limiting the storage. Convolution was
performed in the frequency domain to reduce the computational complexity. Han et al. [127]
compressed networks by pruning, clustering and quantizing weights, which are consequently
fine-tuned. These approaches however perform full compression pipeline to minimize storage
footprint, while our focus will be on parameter count.

4.3 Harmonic Networks

A convolutional layer extracts correlation of input patterns with locally applied learned filters.
The idea of convolutions applied to images stems from the observation that pixels in local
neighborhoods of natural images tend to be strongly correlated. In many image analysis
applications, transformation methods are used to decorrelate signals forming an image [66].
In contrast with spatial convolution with learned kernels, this study proposes feature learning
by weighted combinations of responses to predefined filters. The latter extracts harmonics
from lower-level features in a region. The use of well selected predefined filters allows one
to reduce the impact of overfitting and decrease computational complexity. In this work we
focus on the use of DCT as the underlying transformation.

4.3.1 Harmonic blocks

A harmonic block is proposed to replace a conventional convolution operation and relies
on processing the data in two stages (see Figure 4.1). Firstly, the input features undergo
harmonic decomposition by a transformation method. Conceptually, various transformation
methods can be used e.g. wavelets, derivatives of Gaussian, etc. In this study we focus on
window-based DCT. In the second stage, the transformed signals are combined by learned
weights. The fundamental difference from standard convolutional network is that the opti-
mization algorithm is not searching for filters that extract spatial correlation, rather learns
the relative importance of preset feature extractors (DCT filters) at multiple layers.

Harmonic blocks are integrated as a structural element in the existing or new CNN archi-
tectures. We thus design harmonic networks that consist of one or more harmonic blocks
and, optionally, standard convolution and fully-connected layers, as well as any other struc-
tural elements of a neural net. Spectral decomposition of input features into block-DCT
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representation is implemented as a convolution with DCT basis functions. A 2D kernel
with size k × k is constructed for each basis function, comprising a filter bank of depth
k2, which is separately applied to each of the input features. Convolution with the filter
bank isolates coefficients of DCT basis functions to their exclusive feature maps, creating
a new feature map per each input channel and each frequency considered. The number
of operations required to calculate this representation can be reduced by decomposing 2D
DCT filter into two rank-1 filters and applying them as separable convolution to rows and
columns sequentially. We do not implement this separation because computational savings
associated with it are minimal for small filters that are used in vast majority of CNNs.
Separating the convolution would also have a negative impact on training memory. De-
spite the convolution with DCT filters being computationally cheaper compared to dense
convolutions, the spectral decomposition upsamples the intermediate representation by k2

factor, thus notably increasing the corresponding training memory requirements.

Each feature map hl at depth l is computed as a weighted linear combination of DCT
coefficients across all input channels n:

hl =
n−1∑
i=0

k−1∑
u=0

k−1∑
v=0

w l
i ,u,vψu,v ∗ hl−1

i (4.1)

where ψu,v is a u, v frequency selective DCT filter of size k×k , ∗ the convolution operator
and w l

i ,u,v is learned weight for u, v frequency of the i -th feature. The linear combination
of spectral coefficients is implemented via a convolution with 1 × 1 filter that scales and
sums the features, see Figure 4.1. Since the DCT is a linear transformation, backward
pass through the transform layer is performed similarly to a backward pass through a
convolution layer. Harmonic blocks are designed to learn the same number of parameters
as their convolutional counterparts. Such blocks can be considered a special case of depth-
separable convolution with predefined spatial filters.

DCT is distinguished by its energy compaction capabilities which typically results in higher
filter responses in lower frequencies. The undesirable behaviour of relative loss of high
frequency information can be efficiently handled by normalizing spectrum of the input
channels. This can be achieved via batch normalization that adjusts per frequency mean
and variance prior to the weighted combination. The spectrum normalization transforms
Eq. (4.1) into:

hl =
n−1∑
i=0

k−1∑
u=0

k−1∑
v=0

w l
i ,u,v

ψu,v ∗ hl−1
i − µl

i ,u,v

σl
i ,u,v

, (4.2)

with parameters µl
i ,u,v and σl

i ,u,v estimated per input batch.
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4.3.2 Harmonic Network Compression

The JPEG compression encoding relies on stronger quantization of high-frequency DCT
coefficients. This is motivated by the human visual system which often prioritises low
frequency information over high frequencies [23]. We propose to employ similar idea in the
harmonic network architecture. Specifically, we limit the visual spectrum of harmonic blocks
to only several most informative low frequencies, which results in a reduction of number of
parameters and operations required at each block. The coefficients are (partially) ordered
by their relative importance for the visual system in triangular patterns starting at the most
important zero frequency at the top-left corner, see Figure 4.2. We limit the spectrum of
considered frequencies by hyperparameter λ representing the number of levels of coefficients
included perpendicularly to the main diagonal direction starting from zero frequency: DC
only for λ = 1, three coefficients used for λ = 2, and six coefficients used for λ = 3.
Figure 4.2 illustrates filters used at various levels assuming a 3 × 3 receptive field. Thus,

Figure 4.2: 3× 3 DCT filter bank employed in the harmonic networks and its compression.

reformulating convolutional layers as harmonic allows one to take advantage of this natural
approach to model compression, and in doing also introduce additional regularization into
the model. Limiting certain frequencies used for filter representation is however dependent
on the task at hand. Some problems e.g. texture analysis require high-frequency variability
and restricting it can negatively affect the performance. The empirical impact of harmonic
model compression will be investigated in more detail in the experiments below.

4.3.3 Overlapping cosine transform

DCT computed on overlapping windows is also known as Lapped Transform or Modified
DCT (MDCT), related to our harmonic block using strides. The overlapped DCT has a
long history in signal compression and reduces artefacts at window edges [128]. Dedicated
strategies for efficient computations have been proposed [128], including algorithms and
hardware optimisations.

DCT transform is equivalent to the discrete Fourier transform of real valued functions with
even symmetry within twice larger window. DCT lacks imaginary component given by the
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sine transform of real valued odd functions. However, harmonic block allows convolution
with DCT basis with an arbitrary stride, creating redundancy in the representation. Ignoring
the boundary limitations, sine filter basis can be devised by shifting the cosine filters. Given
the equivariant properties of convolution, instead of shifting the filters the same result is
achieved by applying original filters to the shifted input. Considering DCT-II formulation
for 1D signal x with n values, the DCT coefficient at frequency u is:

fu =
n−1∑
a=0

xa cos

[
π

n

(
a +

1

2

)
u

]
(4.3)

a corresponding sine transform is

gu =
n−1∑
a=0

xa sin

[
π

n

(
a +

1

2

)
u

]
(4.4)

which is equivalent to

gu =
n−1∑
a=0

xa cos

[
π

2
+ 2πz − π

n

(
a +

1

2

)
u

]
. (4.5)

The shift given by π/2 + 2πz for any z ∈ Z can be directly converted to a shift in pixels
applied to data X . After simplification, sine transform can be expressed as

gu =
n−1∑
a=0

xa cos

[
π

n

(
a − n(1 + 4z)

2u
+

1

2

)
u

]
(4.6)

which is equivalent to the cosine transform of the image shifted by δ = n (1 + 4z) /2u

defined in (4.7).

fu[δ] =
n−1∑
a=0

x
a+ n(1+4z)

2u
cos

[
π

n

(
a +

1

2

)
u

]
. (4.7)

This value represents the stride to shift the cosine filters to capture correlation with sine
function. A visualization of a concrete example in one dimension can be found on Fig-
ure 4.3.

In other words, by applying DCT with a certain stride it is possible to obtain the feature
representation as rich as that obtained with the full Fourier transform.

The harmonic block can also be easily applied with dilations in form of à-trous convo-
lution [129]. Such convolution is performed with a filter that has spacing between its
components. Motivation for this approach is to enlarge receptive field of filters without
increasing computational cost or decimating signals by stride or pooling. Should dilation
be used in harmonic blocks, spacing is inserted between components of the DCT bases as
in ordinary filters. We validate this type of harmonic block in Section 4.5.4.
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cosine basis

sine basis

shifted
cosine basis stride overlap region

Figure 4.3: Visualization of 1D cosine basis on overlapping image regions. Application of
the basis to image regions is highlighted with red and blue colors. In this example the basis
length n=8 and frequency u=4 constitute that cosine basis shifted by 1 pixel will become
the same function on the region of overlap as the sine basis in the original location. The
area where the bases are identical is highlighted with the green color.

4.3.4 Computational Requirements

Harmonic blocks are designed to learn the same number of parameters as their convolutional
counterparts. Requirements for the DCT transform scale linearly with the number of input
channels and result in a modest increase to the theoretical number of operations. Standard
convolutional layer used in many popular architectures that has n input and m output
channels with a kernel size k × k learns nmk2 parameters and performs nmk2ab operations
if the filter is applied a and b times in particular directions. Harmonic block with k2

transformation filters of size k × k upsamples the representation to nk2 features and then
learns one weight for each upsampled to output feature pair hence nk2m weights. Transform
of an a × b feature set costs nk2k2ab on top of the weighted combination nk2mab that
matches the number of multiply-add operations of k × k convolution. The total number of
operations is thus nk2ab (m + k2). The theoretical number of multiply-add operations over
the standard convolutional layer increases by a factor of k2/m. If we assume a truncated
spectrum (use of λ ≤ k) given by p = λ(λ + 1)/2 filters, the proportion of operations
becomes p/k2 + p/m.

While keeping the number of parameters intact, a harmonic block requires additional mem-
ory during the training and inference to store transformed feature representation. In our
experiments with WRN models (Section 4.4.2), the harmonic network trained with full
DCT spectrum requires almost 3 times more memory than the baseline. This memory
requirement can be reduced by using the DCT spectrum compression.

Despite the comparable theoretical computational requirements, the run time of harmonic
networks is larger compared to the baseline models, at least twice slower (on GPU) in cer-
tain configurations. This effect is due to the design of harmonic block that replaces a single
convolutional layer by a block of 2 sequential convolutions (with individual harmonic filters
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...
* * * * * * * * * * * * * * * *

...

Figure 4.4: Design of the memory efficient harmonic block. Red lines show the learnable
weights that combine DCT bases into effective filters used to convolve the input.

and 1x1 convolution). Most blocks do not need BN between the convolutions and thus rep-
resent a combined linear transformation. The associativity property of convolutions allows
one to reformulate the standard harmonic block defined above so that the DCT transform
and linear combination can be effectively merged into a single linear operation:

hl =
n−1∑
i=0

k−1∑
u=0

k−1∑
v=0

wi ,u,v

(
ψu,v ∗ hl−1

i

)
=

n−1∑
i=0

(
k−1∑
u=0

k−1∑
v=0

wi ,u,vψu,v

)
∗ hl−1

i (4.8)

In other words, equivalent features can be obtained by factorizing filters as a linear combi-
nation of DCT basis functions (see visualization on Figure 4.4). We thus propose a faster
Algorithm 1 that is a more memory efficient alternative to the standard two-stage harmonic
block formulation.

Algorithm 1: Memory efficient harmonic block
Input: hl−1

Define g ∈ Rm×n×k×k ;
for j ∈ {0..m − 1} do

for i ∈ {0..n − 1} do
gl
j ,i ←

∑k−1
u=0

∑k−1
v=0 wj ,i ,u,v ψu,v ;

end
end
hl ← gl ∗ hl−1;
Output: hl

This reformulation is similar to structured receptive field [26] utilizing another basis func-
tions. The Algorithm 1 overhead in terms of multiply-add operations with respect to the
standard convolutional layer is only k2/ab, where the input image size for the block is
a × b. This overhead becomes negligible as the image size increases. The experimental
performance of the algorithm is evaluated in Section 4.4.2.

4.4 Image Classification

The performance of the harmonic networks is assessed in image classification on datasets
of various sizes from small to large. The method is validated on a set of synthetic and
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natural images, on which we also demonstrate several interesting properties of harmonic
blocks. Firstly we focus on a synthetic dataset of toys, the small NORB in Section 4.4.1.
Its controllable lighting conditions and uniform background makes it useful resource for
evaluating lighting invariance properties of harmonic blocks, or model compressibility due
to the lack of high-frequency information. We then focus on a set of small images of
natural scenes, CIFAR-10 and CIFAR-100 in Section 4.4.2. Apart from demonstrating
comparable overall classification accuracy to the baseline model we demonstrate here that
high-frequency truncation can also efficiently compress models trained to classify natural
images. Moreover, the section shows benefits of overlapping the DCT blocks and robustness
of harmonic networks to certain types of noise and shed some light into their convergence
speed. The following subsection (Section 4.4.3) looks at the generalization properties of
harmonic networks when trained on a limited sample set. Subsets of synthetic (MNIST)
and natural (CIFAR-10, STL-10) images are considered in the evaluation. In Section 4.4.4
demonstrates successfulness in the opposite scenario when the amount of data is abundant
(ImageNet-1K) by outperforming the baseline as well as many other high-end models.
The subsection also focuses on reusing existing models by basis conversion. Lastly, we
implement the harmonic block with another sets of basis functions and compare their
performance on two representative datasets of natural images (Section 4.4.5). We consider
a simple two to three-layer CNNs for the NORB, MNIST datasets, and two typologies of
Residual Networks [63, 90] for other datasets as the baselines for substituting the standard
convolution operations with harmonic blocks.

4.4.1 Synthetic images

The small NORB dataset [1] was intended for a task of 3D object recognition from its
shape. It is a synthetic set of 96 × 96 binocular images of 50 toys sorted into 5 classes
(four-legged animals, human figures, airplanes, trucks, and cars), captured under different
lighting and pose conditions (i.e. 18 different angles, 9 elevations and 6 lighting conditions
induced by combining different light sources, see example images in Figure 4.5). Training
and test sets used in our experiments are retained original [1]2.

We show first that harmonic networks outperform standard and state-of-the-art CNNs in
both accuracy and compactness (c.f. Section 4.4.1) and also illustrate how Harmonic
networks can be naturally resilient to unseen illumination changes without resorting to
using data augmentation (Section 4.4.1).

Comparisons CNN vs. Harmonic Nets

Baseline architectures. The baseline CNN network is selected after an extensive hyper-
parameter search. The network (CNN2) consists of 2 convolution layers with 32 5×5
and 64 3×3 filter banks respectively, a fully connected layer with 1024 neurons followed

2https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
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Figure 4.5: Sample images from small NORB showing all 5 instances of each of the 5
categories in training (left) and testing (right) sets [1].

by a softmax classifier. Filters are applied with stride 2 and features are subsampled by
overlapping max-pooling. All hidden layer responses are batch normalized and rectified by
ReLU. We also use a slightly deeper network (CNN3) with an additional convolutional layer
preceding the first pooling. Details of the architectures are summarised in Table 4.1.

Optimisation. The baseline CNNs are trained with stochastic gradient descent for 200
epochs with momentum 0.9. The initial learning rate 0.01 is decreased by factor 10 every
50 epochs. The network is trained with batches of 64 stereo image pairs and each pair is
padded with zeros 5 pixels on each side and a random crop of 96×96 pixels is fed to the
network. The optimization is regularized by dropout (p=0.5) on the fully connected layer
and the weight decay is set to 0.0005.

Table 4.1: Models used in NORB experiments. Convolution and harmonic operations are
denoted as {conv, harm} m, k×k/s with m output features, kernel size k and stride s;
similarly for pooling k×k/s and fully connected layers fc m.

Resolution CNN2 CNN3 Harm-Net 2 Harm-Net 3 Harm-Net 4
96x96 conv 32, 5x5/2 conv 32, 5x5/2 harm 32, 4x4/4 harm 32, 4x4/4 harm 32, 4x4/4
48x48 pool 3x3/2 conv 64, 3x3/2 - - -
24x24 conv 64, 3x3/2 pool 3x3/2 harm 64, 3x3/2 harm 64, 3x3/2 harm 64, 3x3/2
12x12 pool 3x3/2 conv 128, 3x3/2 pool 3x3/2 pool 3x3/2 pool 3x3/2
6x6 fc 1024 pool 3x3/2 fc 1024 harm 128, 3x3/2 harm 128, 3x3/2
3x3 - fc 1024 - fc 1024 harm 1024, 3x3/3
1x1 dropout 0.5 dropout 0.5 dropout 0.5 dropout 0.5 dropout 0.5
1x1 fc 5 fc 5 fc 5 fc 5 fc 5

Harmonic Networks architectures. Several versions of harmonic networks are con-
sidered (Table 4.1), by substituting the first, first two or all three of CNN2 and CNN3
convolution layers by harmonic blocks. Furthermore, the first fully-connected layer can
be transformed to a harmonic block by taking a global DCT transform of the activations
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Figure 4.6: Mean classification error on small NORB test set. Weak generalization of
CNN (green) and harmonic network (blue) is observed during the early stages of training.
Filled areas (best seen in color) show 50% empirical confidence intervals from 20 runs.
Batch normalization of DCT spectrum (first block) significantly speeds up convergence of
harmonic network (red).

(Harm-Net 4). The first harmonic block uses 4×4 DCT filters applied without an overlap,
the further blocks mimic their convolutional counterparts with 3 × 3 kernels and stride 2.
The standard max or average pooling operator is applied between blocks. Using larger input
receptive field realized by the DCT transform did not provide any notable advantage.

Performance evaluation. The baseline CNN architecture shows poor generalization per-
formance in early stages of training. The performance on the test set stabilizes only after
the third decrease of learning rate, see Figure 4.6. Baseline CNN achieved mean error
3.48%±0.50 from 20 trials, while CNN utilizing harmonic blocks without explicit normal-
ization of harmonic responses exhibits similar behavior resulting in better final solution of
2.40%±0.39. Normalizing DCT responses of input channels at the first block with BN
prevents harmonic network from focusing too much on pixel intensity, allows using 10×
higher learning rate, significantly speeds up the convergence, improves performance and
stability.

We observe the average pooling to work well in combination with harmonic blocks. Error
of 1.14%±0.20 is achieved by a hybrid model with one harmonic block followed by 2
standard convolutional layers using overlapping average pooling between them. A variant
with 3 harmonic blocks and the same configuration performs comparably with 1.15%±0.22
error (c.f. Table 4.2). The best result was obtained by the model with 3 harmonic blocks
replacing the convolutional layers and the fully-connected layer transformed into a harmonic
block, misclassifying only 1.10%±0.16 of test samples.

Comparison with state-of-the-art. Table 4.3 shows that these results surpass all pre-
viously reported error rates for this dataset to the best of our knowledge. The capsule
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Table 4.2: Introduction of harmonic blocks into the baseline architectures and the respective
errors on small NORB dataset.

Harmonic layers Architecture Pooling type Error % ↓
CNN2 overlap max 3.48±0.50

1 Harm-Net2* max (no BN) 2.40±0.39
1 Harm-Net2* max 1.63±0.19
1 Harm-Net2* avg 1.67±0.25
1,2 Harm-Net2 max 1.60±0.18
1,2 Harm-Net2 avg 1.56±0.18

CNN3 max 3.43±0.31
CNN3 overlap max 3.89±0.65

1 Harm-Net3* overlap avg (no BN) 2.56±0.39
1 Harm-Net3* overlap max 1.16±0.15
1 Harm-Net3* overlap avg 1.14±0.20
1,2 Harm-Net3* overlap max 1.21±0.17
1,2 Harm-Net3* overlap avg 1.15±0.17
1,2,3 Harm-Net3 overlap max 1.18±0.16
1,2,3 Harm-Net3 overlap avg 1.15±0.22
1,2,3,4 Harm-Net4 overlap avg 1.10±0.16

*These architectures are constructed by taking the upper part from the Harm-Net and the
bottom from CNN baseline with the same number of conv/harm layers.

network [130] claims 1.4% error rate, however estimated under different evaluation proto-
col, where testing images are resized to 48×48 and predictions for multiple crops of size
32×32 are averaged. The best reported result for a CNN [131] 2.53%±0.40 uses wider
CNN architecture and four additional input channels derived from the original input via
contrast-extractive filters.

Table 4.3: Comparison with the state-of-the-art on small NORB dataset, showing the
proposed method outperforms other reported results.

Method Parameters Error % ↓
CNN with input filter [131] 2.7M 2.53 ± 0.40*
Nonlinear SLPP [132] 1.5*
CapsNet [130] multi-crop 310K 1.4*
CapsNet [130] small 68K 2.2*
Harm-Net4 1.28M 1.10 ± 0.16
Harm-Net4, fc M=32, no dropout 131K 1.17 ± 0.20
Harm-Net4, fc M=32, no dropout, λ = 3 88K 1.34 ± 0.21
Harm-Net4, fc M=32, no dropout, λ = 2 45K 1.64 ± 0.22

*scores reported by authors of the corresponding papers.

Harmonic network compression. We further proceed to designing a very compact
version of Harm-Net4 (cf. Table 4.3). To do so, the fully connected layer is reduced to only
32 neurons and the dropout is omitted. The modified network reaches 1.17%±0.20 error

55



Figure 4.7: Images [1] of an object at two elevations captured with each of the six lighting
conditions 0-5 ordered from left to right.

and has 131k parameters. The lack of high-frequency information in the data motivates filter
compression by truncation of high-frequencies. When applying compression with λ = 3 the
network reaches 1.34%±0.21 and requires less than 88k parameters3. By applying λ = 2

the total count is less than 45k parameters. This model uses non-overlapping pooling to
preserve more of limited high-frequency information. Error of 1.64%±0.22 is achieved on
the test set, in contrast with small capsule network [130] with 68k parameters scoring
2.2%.

Harmonic Networks for illumination changes

Spectral representation of input data has a few interesting properties. Average feature
intensity is captured into DC coefficient, while other (AC) coefficients capture signal struc-
ture. DCT representation has been previously used [24] to build illumination invariant
representation. This gives us a strong motivation to test illumination invariance properties
of harmonic networks and to compare them with standard CNNs.

Objects in the small NORB dataset are normalized and are presented with their shadows
over a uniform background. The six lighting conditions are obtained by various combination
of up to 4 fixed light sources at different positions and distances from the objects (see
examples on Figure 4.7).

Usual approaches to reduce sensitivity to lighting conditions include image standardization
with ZCA whitening [91] or illumination augmentation. Data augmentation is the standard
approach in CNNs for compensating the lack of variability in the available training data.
Brightness and contrast manipulations encourage the network to focus on features that
are independent of the illumination and may as well generate images resembling lighting
conditions in the target domain. Contrary to these methods in our approach we achieve
the same effect by removing the filter corresponding to the DC component from the first
harmonic block. Such network is invariant towards global additive changes in pixel intensity
by definition.

Set-up. The dataset is split into 3 parts based on lighting conditions during the image
capturing: the bright images (conditions 3,5) dark images (conditions 2,4) and images
under standard lighting conditions (0,1) illustrated on Figure 4.7. The models are trained

3In this particular setting, the first harmonic block manipulates 4×4 filters and uses λ4×4 = λ3×3 + 1.
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(with and without data augmentation) only on data from one split and tested on images
from the other two splits that have unseen lighting conditions.

Table 4.4: Mean of classification errors over 10 runs on the test images captured in unseen
illumination conditions using small NORB dataset.

Augmentation None Brightness & contrast
Lighting Condition CNN ↓ Harmonic ↓ CNN ↓ Harmonic ↓
Bright 26.3±2.6 10.2±0.4 17.6±0.7 9.4±0.7
Standard 30.2±1.8 18.0±1.9 22.5±1.1 15.1±1.1
Dark 31.2±1.8 18.9±1.2 20.1±1.3 14.5±1.4

Performance evaluation. Classification errors of the best CNN and harmonic network
architectures on the test images (unseen illumination conditions) are reported in Table 4.4.
Harmonic networks consistently achieve lower error under various unseen lighting condi-
tions in comparison to baseline CNNs, with and without random brightness and contrast
(only for dark images) data augmentation. To take into account the bias caused by better
performance of harmonic networks in general conditions, we have also handpicked pairs of
harmonic and baseline CNNs that perform comparably on validation set composed from test
images with lighting conditions seen during the training. Table 4.5 shows that better per-
formance on unseen conditions is not solely because of a stronger performing model.

Table 4.5: Comparison of generalization to lighting conditions for models with similar
validation errors (seen conditions) on small NORB dataset.

Set Validation Test
Lighting Condition CNN ↓ Harmonic ↓ CNN ↓ Harmonic ↓
Bright 7.80 7.80 17.82 16.40
Standard 7.77 8.23 31.05 26.86
Dark 8.79 9.38 20.21 18.79

4.4.2 Small natural images

The second set of experiments is performed on popular benchmark datasets of small natural
images CIFAR-10 and CIFAR-100. Images have three color channels and resolution of 32x32
pixels. The dataset is split into 50k images for training and 10k for testing. Images have
balanced labeling, 10 classes in CIFAR-10 and 100 in CIFAR-100.

Baseline. For experiments on CIFAR datasets we adopt WRNs [90] with 28 layers and
width multiplier 10 (WRN-28-10) as the main baseline. These improve over the standard
ResNets by using much wider residual blocks instead of extended depth. Our implementa-
tion extends the PyTorch code4 from the author. Model design and training procedure are

4https://github.com/szagoruyko/wide-residual-networks/tree/master/pytorch
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kept unchanged as in the original paper [90]. Harmonic WRNs are constructed by replac-
ing convolutional layers by harmonic blocks with the same receptive field, preserving batch
normalization and ReLU activations in their original positions after every block.

Results. We first investigate whether the WRN results can be improved if trained on
spectral information, i.e. when replacing only the first convolutional layer preceding the
residual blocks in WRN by a harmonic block with the same receptive field (Harm1-WRN).
The network learns more useful features if the RGB spectrum is explicitly normalized by
integrating the BN block as demonstrated in Figure 4.1, surpassing the classification error
of the baseline network on both CIFAR-10 and CIFAR-100 datasets, see Table 4.6. We
then construct a fully harmonic WRN (denoted as Harm-WRN) by replacing all convolu-
tional layers with harmonic blocks, retaining the residual shortcut projections unchanged.
Zagoruyko et al. [90] demonstrated how dropout layers placed inside residual blocks be-
tween convolutional layers can provide extra regularization when trained on spatial data [90].
We have observed a similar effect when training on spectral representations, therefore we
adopt dropout between harmonic blocks. The harmonic network outperforms the baseline
WRN, see Table 4.6. Based on this empirical evidence we always employ BN inside the first
harmonic block.

Table 4.6: Settings and median error rates (%) out of 5 runs achieved by WRNs and their
harmonic modifications on CIFAR datasets. Number of parameters reported for CIFAR-10.

Method Dropout Parameters CIFAR-10 ↓ CIFAR-100 ↓
WRN-28-10 [90] X 36.5M 3.91 18.75
Harm1-WRN-28-10 (no BN) 36.5M 4.10 19.17
Harm1-WRN-28-10 36.5M 3.90 18.80
Harm1-WRN-28-10 X 36.5M 3.64 18.57
Harm-WRN-28-10 X 36.5M 3.86 18.57
Harm-WRN-28-10, λ = 3 X 24.4M 3.84 18.58
Harm-WRN-28-10, λ = 2 X 12.3M 4.25 19.97
Harm-WRN-28-10, progr. λ 15.7M 3.93 19.04
Gabor CNN 3-28 [30] 17.6M 3.88* 20.13*
WRN-28-8 [90] X 23.4M 4.01 19.38
WRN-28-6 [90] X 13.1M 4.09 20.17

*scores reported by [30].

Analysis of fully harmonic WRN weights learned with 3x3 spectrum revealed that the deeper
network layers tend to favour low-frequency information over high frequencies when learn-
ing representations. Relative importance of weights corresponding to different frequencies
shown in Figure 4.8 motivates truncation of high-frequency coefficients for compression pur-
poses. While preserving the input image spectrum intact, we train the harmonic networks
on limited spectrum of hidden features for λ=2 and λ=3 using 3 and 6 DCT filters for each
feature respectively. To assess the loss of accuracy associated with parameter reduction we
train baselines with reduced widths having comparable numbers of parameters: WRN-28-8
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Figure 4.8: Distribution of weights (averaged in each layer) assigned to DCT filters in the
first harmonic block (left-most) and the remaining blocks in the Harm-WRN-28-10 model
trained on CIFAR-10. Vertical lines separate the residual blocks.

Figure 4.9: Decrease of classification error as a function of model size on CIFAR-10 (left)
and CIFAR-100 (right). Parameters of harmonic networks are controlled by the compression
parameter λ, and of the WRN baselines by the width multiplier w.

and WRN-28-6, see Figure 4.9. Fully harmonic WRN-28-10 with λ=3 has comparable error
to the network using the full spectrum and outperforms the larger baseline WRN-28-10,
showing almost no loss in discriminatory information. On the other hand Harm-WRN-28-10
with λ=2 is better on CIFAR-100 and slightly worse on CIFAR-10 compared to the simi-
larly sized WRN-28-6. The performance degradation indicates that some of the truncated
coefficients carry important discriminatory information. Detailed comparison is reported in
Table 4.6.

We further compare the performance of the harmonic version of WRN-28-10 with the Gabor
CNN 3-28 [30] that relies on modulation of the learned filters with oriented Gabor filters.
To operate on a similar model we remove dropouts and reduce complexity by applying
progressive λ: no compression for 32x32 feature sizes, λ=3 for 16x16, and λ=2 for the
rest. With a smaller number of parameters the Harm-WRN-28-10 performs similarly on
CIFAR-10 and outperforms Gabor CNN on CIFAR-100.

Harmonic block implementations. Here we compare the standard harmonic block
implementation with its memory efficient version introduced in Algorithm 1, see Table 4.12.
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The comparison on CIFAR-10 dataset demonstrates that Algorithm 1 provides similar overall
performance but reduces both the runtime and memory requirements nearly three times.
We will therefore use solely this implementation of the harmonic block except for the root
(first) layers, where this implementation is impossible due to the use of BN.

Ablation study. The effect of filter parameterization by DCT basis is investigated by
changing particular layers of WRN-16-4 (without dropout), see Table 4.7. The effect is
measured as a change in standard error over 5 runs. Firstly, the root convolutional layer
of WRN is replaced with harmonic block which adds 0.28 absolute improvement over the
baseline error 24.07%. Normalization on the DCT responses gains another 0.12. Using
the harmonic blocks only in the residual blocks boosts the accuracy of the baseline by
0.85. Replacing the first layer along with the residual blocks does not provide any empirical
benefit. Adding normalization to the root harmonic block gives only a subtle improvement
but decreases the variance by half. These observations correspond to the results obtained
on the NORB dataset, see Table 4.2. We will always be employing BN as part of the root
harmonic block.

Table 4.7: Modifications of the WRN-16-4 baseline on CIFAR-100: mean classification
errors and standard deviations from 5 runs.

Root block Harmonic root BN Residual blocks Error % ↓
24.07 ± 0.24

X 23.79 ± 0.24
X X 23.67 ± 0.12

X 23.22 ± 0.28
X X 23.25 ± 0.25
X X X 23.21 ± 0.11

Harmonic network compression. Section 4.3.2 describes how convolutional filters in
certain layer can be approximated with fewer parameters. So far we have only considered
uniform coefficient truncation by truncating the same frequencies in all the layers or a sim-
ple progressive compression. This scheme omits higher number of frequencies in deeper
layers, but the same subset of coefficients is used in all harmonic blocks applied to feature
maps of particular size. We believe better compression-accuracy trade-off can be achieved
by using more elaborate coefficient selection at each layer. In this experiment we start with
the WRN-28-10 baseline trained without dropout which has been converted to harmonic
WRN-28-10 net (omitting BN in the first harmonic block) by re-expressing each 3×3 filter
as a combination of DCT basis functions. The first harmonic block is kept intact (no com-
pression in DCT representation), while all other blocks are compressed. We compare three
different coefficient selection strategies:

• Uniform selection: at every layer the same λ is used;
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• Progressive selection: the level of compression is selected based on the depth of the
layer λprogr = max(α, min(2k − 1, bt/Depthc)) for α = 1 or 2, constant t, and k is
the size of filter (λ = 2k − 1 corresponds to no compression);

• Adaptive selection: the compression level is selected adaptively for each layer; a basis
filter is excluded if its `1 norm compared to norms of the other frequencies in the same
layer is too low. Specifically, if ‖wi ,j‖1 /

∑k−1
u,v=0 ‖wu,v‖1 < t then the coefficient is

truncated.

The results reported in Figure 4.10 confirm the behavior observed before (see Figure 4.8),
i.e. the high frequencies appear to be more relevant in the early layers of the network
compared to deeper layers. The uniform compression fails to adjust and discards the same
amount of information in all the layers, and is surpassed by other compression strategies. By
using progressive or adaptive coefficient selection a model can be compressed by over 20%
without loss in accuracy. The best progressive method loses less than 1% of accuracy when
compressed by 45% without a need for finetuning. Note that frequencies are discarded per
layer, the selective approach could benefit from more fine-grained compression tailored to
individual filters.

Figure 4.10: Accuracy of compressed harmonic WRN-28-10 on CIFAR100 using different
coefficient truncation strategies.

Overlapping DCT In Section 4.3.3 we have demonstrated that the discrete sine transform
can be inferred from the DCT on overlapping blocks. Here we show experimentally the
benefits of DCT transform with overlapping windows by using overcomplete representation
with strides of 1 pixel or fixing the stride to half of the window size. Effect of striding
is evaluated on a shallow harmonic network composed of only one normalized harmonic
block with 4x4 receptive field, followed by a Rectified Linear Unit (ReLU) activation and
connected to a fully connected layer with softmax classifier. This simple architecture allows
one to clearly see the contribution of striding. The network is trained with SGD using
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learning rate 0.01, Nesterov momentum 0.9, weight decay 0.0005 and batch size 128 for 30
epochs, decaying the learning rate by factor 10 halfway. Since the striding reduces spatial
resolution of the features, to match the model complexity, lower dimensional features are
resized to have the size of features produced with stride 1. As expected, the network
without overlapping windows performs notably worse even when using the full spectrum
(see Figure 4.11a).

In order to compare models with similar numbers of parameters, instead of replicating
features, networks with larger stride employ a higher number of output features: 200 for
non-overlapping, 50 for half-window overlap in contrast to 16 when using stride 1. The
same experiment is performed using 8x8 filters learning 625, 200 and 16 feature maps
respectively. In this setting the network with stride 1 and the one with full window stride
perform comparably on full spectrum as can be seen on Figure 4.11b and Figure 4.11c,
but performance degrades more rapidly for non-overlapping filters as the visual spectrum
shrinks. The best result was obtained when using a half window stride.
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Figure 4.11: Accuracy degradation of models with different strides when truncating number
of DCT coefficients. Stride 1 (green), half window stride (blue) and full window stride (red)
are compared. Reported values are averaged over 5 runs.

Lastly, we compare the effect of window function on performance of DCT filters with
increased stride. The Gaussian window

G (a) =
1

σ k
2

√
2π

e
− 1

2

(
a− k−1

2

σ k
2

)2

(4.9)

is used to scale the k× k filter bases in each direction, where a is a spatial index within the
filter. Hyperparameter σ controls the spread and is independent of the filter size. Examples
of smoothed DCT bases can be seen on Figure 4.12. Figure 4.13 demonstrates that using
compact windows with low σ has negative impact specially when no overlap occurs.

Robustness to noise. Corruption in an input image may lead to faulty prediction. Har-
monic networks with frequency truncation on early layers are more robust to certain types
of noise. The noise is usually concentrated in high-frequency components. By restricting
the filters to only low frequencies, harmonic block becomes less responsive to spikes in the
image intensities. We have investigated how compressed harmonic WRN-28-10 networks
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σ = 0.25 σ = 0.5 σ = 1.0 σ →∞

Figure 4.12: The effect of Gaussian window with various σ (4.9) on DCT bases, visualized
for 8× 8 filters.
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Figure 4.13: Effect of Gaussian window function on filter bases when filters are applied with
increased stride. Values shown are the average of 5 runs.

cope with additive noise while classifying CIFAR-10 images. Figure 4.14 shows a comparison
with the baseline network on various levels of (a) additive white Gaussian and (b) salt &
pepper noise. Compressing only the first layer is in principle similar to low-pass filter prepro-
cessing: it provides a slight improvement, but a much more robust model, especially against
the salt&pepper noise, is achieved when all the layers are compressed. This analysis shows
that harmonic networks with compression perform non-trivial denoising of high-frequency
noise.

We also investigate robustness of harmonic nets to the fast gradient sign adversarial
noise [133]. An image x is corrupted with noise ε sign (∇xL (w, x, y)), having model pa-
rameters w, label y and a loss function L. Magnitude of the noise is controlled by ε. This
noise in turn tends to be correlated in local regions, compressing only the first layer provides
no gain. A mild robustness to this noise is however obtained by compressing all the other
layers, see Figure 4.14. Similar discovery was made by Wang et al. [134] who achieved
increased robustness by smoothing the filters.

Convergence speed. High-frequency components have generally smaller responses in
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Figure 4.14: Robustness of WRN-28-10 to noise: compressed harmonic networks show
better performance than the baseline. Confidence intervals of 2 standard deviations from
tests of 5 model instantiations shown in color.

both forward and backward passes. Lets revise standardly used Stochastic gradient descent
with momentum µ:

∆w = µ∆w +∇wL(w , x, y)

w = w − η∆w .
(4.10)

The learning rate η is constant for all weights and magnitude of the weight update |∆w | de-
pends only on the magnitude of the exponential average of the past gradients∇wL(w , x, y).
We have taken harmonic WRN-16-8 model to study gradient evolution throughout the train-
ing process. Focusing on the last convolutional layer of this model, we have estimated the
sum of gradient magnitudes grouped by the DCT bases (

{
ψu,v ; 0 ≤ u, v ≤ 2

}
) which they

correspond to, and normalized them such that sums of all bases add up to 1. Naturally,
the highest gradient magnitude belongs to the zero frequency ψ0,0. If the parameter w is
representing a high-frequency component (λ > 3), its updates diminish in time compared
to the parameters of lower frequencies as shown on Figure 4.15 left.
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Figure 4.15: Proportion of weight updates between bases in harmonic block using SGD
(left) and Adam (right).
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A different behaviour was observed when using the Adaptive momentum optimizer (Adam):

m = β1m + (1− β1)∇wL(w , x, y)

v = β2v + (1− β2)∇wL(w , x, y)2

w = w − η m√
v + ε

(4.11)

The weight update for a parameter w is given by a ratio of the first m and the second v

moment. While the training is unstable, this ratio is small for high frequency parameters,
see iteration 200 in Figure 4.15 right. As the training starts to converge, this ratio increases.
The updates become close to uniformly spread between parameters of different frequencies.
This distinction does not occur for filters optimized within standard bases. As a result,
during the initial stage of the training, the harmonic network converges faster, and smaller
variance is observed between different models. A comparison of convergence has been
conducted with 6 different learning rates (Figure 4.16).
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Figure 4.16: Convergence speed of harmonic and baseline WRN-16-8 model with Adam
optimizer during the first 20 epochs. The confidence intervals show 2 standard deviations
from 5 trials.

4.4.3 Limited data

Deep neural networks require abundant data to achieve high accuracy. It has been shown [27,
112] that scattering network can, by using geometric priors, learn better discrimination
boundaries when presented with a small subset of training samples. We demonstrate capa-
bilities of harmonic networks when learning from limited subsets of data on three classifi-
cation datasets MNIST, CIFAR-10 and STL-10.
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MNIST

Bruna and Mallat [27] have chosen the dataset of handwritten digits to test their fully hand-
crafted scattering network with respect to classification performance on data subsets. We
compare our harmonic network to the “classical” CNN, learned depth-separable convolution
network and to the fully handcrafted scattering network (as reported by [27]). Table 4.8
shows the harmonic network achieves lower classification error for all sizes of the training
set. The baseline network is composed of 3 convolution layers with 32, 64 and 128 3 × 3

filters, respectively, and with overlapping average pooling between them. Convolutional
layers are followed by a fully connected layer with 512 neurons. Batch normalization and
ReLU are applied after each layer. The harmonic network uses the same configuration,
replacing convolution with harmonic block, while using additional BN in the first block.
Harmonic networks are also compared to the depth-separable convolution network that has
the same structure but has randomly initialized learnable filters instead of DCT filters.
Training is done with SGD for 30 epochs with learning rate 0.1 reduced after every 10
epochs by a factor 10. Weight decay ranges from 0.0005 (for training size 60000) to 0.05
(training size 300). Harmonic networks outperform other networks in all configurations, see
Table 4.8.

Table 4.8: Classification errors in % (median of 21 runs) on subsets of MNIST dataset for
the harmonic network and benchmarks.

Training size Scatter [27] ↓ Conv ↓ Sep. conv ↓ Harm ↓
300 4.7 3.9 4.67 3.71
1000 2.3 1.88 1.91 1.84
2000 1.3 1.39 1.35 1.21
5000 1.03 0.97 1.06 0.86
10000 0.88 0.7 0.76 0.65
20000 0.58 0.59 0.57 0.57
40000 0.53 0.48 0.47 0.45
60000 0.43 0.44 0.46 0.38

CIFAR-10

We replicate the experiment from Oyallon at al. [112] and train harmonic network on
random subsets of CIFAR-10 dataset with sizes 100, 500 and 1000 samples, preserving the
equal number of labels per class. Harmonic WRN 16-8 with dropout rate 0.2 is trained
as in [112]. Harmonic layers relying on combinations of fixed filters provide advantage on
limited data compared to fully learned CNNs and to scattering CNN hybrids5 except for the
smallest training dataset, see Table 4.9.

5The exact subsets used to train the scattering CNN hybrids are not known, we report numerical results
from [112].
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Table 4.9: Average classification accuracy ± standard deviation of 5 runs on subsets of
CIFAR-10.

Method 100 ↑ 500 ↑ 1000 ↑ Full ↑
WRN 16-8 34.4±1.8 52.2±1.8 62.8±0.7 95.6
Scat + WRN [112] 38.9±1.2 54.7±0.6 62.0±1.1 93.1
Harm WRN 16-8 37.7±1.9 58.2±1.4 67.0±0.4 95.6
Harm WRN 16-8 λ = 3 37.9±2.4 58.4±0.9 67.2±0.5 95.6
Harm WRN 16-8 λ = 2 37.2±1.7 57.0±1.0 65.9±0.8 95.3

STL-10

STL-10 [135] is a natural image dataset similar to CIFAR-10. Images are 96×96 and only
5000 training images are labeled. The large set of provided unlabeled images is not utilized
in this experiment. We design harmonic WRN 16-8 model (based on Algorithm 1) for this
task with several necessary modifications. The first layer uses stride 2, and the feature
resolution at the final stage is 12×12. We apply dropout with probability 0.3 inside residual
blocks and train the network on the whole training set with learning rate of 0.1 decayed
by factor 0.2 after 300, 400, 600, 800 epochs, and stop the training after epoch 1000.
The baseline network design and training procedure is similar to [136] that uses additional
cutout regularization and reports 87.26% ± 0.23 accuracy on the test set containing 8000
images when trained on batches of 128 images. The harmonic WRN 16-8 achieves 88.1%
± 0.23 trained with the same settings. Decreasing the batch size to 32 improves our
result to 90.45% surpassing the deeper scattering WRN [112] by nearly 3%. Furthermore,
when only predefined folds of 1000 samples serve as the training data, we obtain the best
accuracy by progressively reducing the number of used frequencies along with the spatial
resolution: full filter bank is applied on features of size 48×48, filters with λ = 3 on 24×24
and finally λ = 2 if features are 12×12. The results of STL-10 experiments are summarised
in Table 4.10.

Table 4.10: Average classification accuracy ± standard deviation of 5 runs on STL-10 for
various sizes of training data (batch size 32).

Method 1000 imgs. ↑ 5000 imgs. ↑
WRN 16-8 73.50 ± 0.87 87.29 ± 0.21
Scat + WRN [112] 76.00 ± 0.60 87.60
Harm WRN 16-8 76.95 ± 0.93 90.45 ± 0.12
Harm WRN 16-8 λ = 3 76.65 ± 0.90 90.39 ± 0.08
Harm WRN 16-8 progressive λ 77.19 ± 1.02 90.28 ± 0.20

4.4.4 Large data

In this section we present results obtained on ImageNet-1K classification task. To deploy
harmonic networks on large-scale datasets a few adjustments are applied to the harmonic
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blocks: Firstly, in the absence of BN inside harmonic block we merge the linear operations
together (feature extraction with DCT bases and their weighted combination, by use of
Algorithm 1). Secondly, we normalize DCT filters by their `1 norm.

Table 4.11: Classification errors on ImageNet validation set using central crops after 100
epochs of training.

Model Parameters Top-1 % ↓ Top-5 % ↓
VGG-16-BN 138.4M 26.33 8.26
Harm-VGG-16-BN 138.4M 25.55 8.01
ResNet-50 (no maxpool) 25.6M 23.81 6.98
Harm1-ResNet-50 25.6M 22.97 6.48
Harm-ResNet-50 25.6M 23.11 6.63
Harm-ResNet-50 (avgpool) 25.6M 23.1 6.53
Harm-ResNet-50, progr. λ 19.7M 23.12 6.61
Harm-ResNet-101 44.5M 21.48 5.75
Benchmarks
ResNet-50 (maxpool) [137] 25.6M 23.85 7.13
ScatResNet-50 [114] 27.8M 25.5 8.0
JPEG-ResNet-50 [25] 28.4M 23.94 6.98
ResNet-101 (maxpool) [137] 44.5M 22.63 6.44

ResNet [63] with 50 layers is adopted as the baseline. Following Gross and Wilber [138]
we apply the stride on 3x3 convolution instead of the first 1x1 convolution in the residual
block when downsampling is realized. As an alternative to maxpooling, we used stride 4
in the first convolution layer to reduce memory consumption; we refer to this modification
as ResNet-50 (no maxpool). The following harmonic modifications refer to this baseline
without the maxpooling. Similarly to the above reported CIFAR experiments we investi-
gate the performance of three harmonic modifications of the baseline: (i) replacing solely
the initial 7x7 convolution layer with harmonic block (with BN) with 7x7 DCT filters, (ii)
replacing all convolution layers with receptive field larger than 1x1 with equally-sized har-
monic blocks, (iii) compressed version of the fully-harmonic network. Each model is trained
with stochastic gradient descent with learning rate 0.1, reduced 10 times every 30 epochs,
reporting the final accuracy at epoch 100. We employ batch size of 256, weight decay
0.0001 and random scale, aspect ratio & horizontal flip augmentation as recommended
in [60], producing 224×224 crops.

Table 4.11 reports error rates on ImageNet validation set using central 224×224 crops from
images resized such that the shorter side is 256. All three harmonic networks have similar
performance and improve over the baseline by 0.6 − 1% in top1 and 0.4 − 0.6% in top5
accuracy. We observe similar progress of the three modifications during the training, see
Figure 4.17. ResNet-50 architecture has only 17 layers with spatial filters (other layers
have 1× 1 filters), which correspond to 11M parameters. We reduce this number by using
progressive λ compression: λ=3 on 14x14 features and λ=2 on the smallest feature maps.

68



Figure 4.17: Training of harmonic networks on ImageNet classification task. Left: com-
parison with the baseline showing validation error (solid line) and training error (dashed).
Right: tlast 40 epochs of training for all the ResNet-50 based models, including scores
reported for the benchmark models.

This reduces the number of weights in compressible layers roughly by half, in total by about
23% of the whole network size. The compressed network loses almost no accuracy and
still clearly outperforms the baseline. It should be noted that harmonic networks without
bottleneck residual blocks can be compressed more efficiently. Even with compression, the
proposed Harm-ResNet-50 confidently outperforms the standard ResNet-50 (maxpool), as
well as the more recent ScatResNet-50 [114] and JPEG-ResNet-50 [25], see Table 4.11.
Furthermore, we also observe a substantial improvement of 1.15 in top-1 error % associ-
ated with the introduction of harmonic blocks into a deeper ResNet-101 architecture. Note
that similarly to ResNet-50, the harmonic version is not using pooling and relies on strid-
ing instead to reduce the computational complexity. Finally, Harm-ResNet-50 (avgpool)
demonstrates a largely similar quantitative performance to the Harm-ResNet-50, which em-
ploys striding after the first layer, at the cost of about 10% computational overhead (see
Table 4.12). This experiment further validates the selection of nonpooling-based harmonic
architecture as the main model.

We validate the use of harmonic blocks on an architecture without residual connections as
well. To this end we employ a VGG-16 [139] architecture with BN layers. Harm-VGG-16-BN
obtained by replacing all convolutional layers by harmonic blocks yields an improvement of
approximately 0.8% in top-1 classification error. This demonstrates that the improvement
by harmonic networks is not limited to residual connection-based architectures.

Finally, we evaluate conversion of weights of a pretrained non-harmonic network to those of
its harmonic version. To this end each learned filter in the pretrained baseline (ResNet-50
without maxpooling after 90 epochs of training) is expressed as a combination of DCT
filters. We skip BN inside the first harmonic block since the related parameters are not
available. The direct conversion resulted in the exact same numerical performance due to
the basis properties of DCT. We observe a similar pattern of relative importance of DCT
filters to the one reported in Figure 4.8. We then finetune the converted model for another
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Table 4.12: GPU training memory requirements and speed of harmonic block implemen-
tations on CIFAR-10 and ImageNet. All ImageNet models use harmonic blocks based on
Alg. 1. Values are measured on Nvidia RTX6000 using batch size 128.

Model
GPU Images/s ↑

Error % ↓
memory ↓ train. infer.

CIFAR10
WRN-28-10 [90] 4.6GB 606.4 1876.9 3.89
Harm-WRN-28-10 (2-stage) 14.1GB 211.0 600.4 3.71
Harm-WRN-28-10 (Alg. 1) 4.8GB 573.3 1736.5 3.78
ImageNet
ResNet-50 (no maxpool) 11.2GB 306.2 820.5 23.81
ResNet-50 (maxpool) 12.1GB 292.9 790.1 23.85
HarmResNet-50 11.4GB 296.3 766.5 23.11
HarmResNet-50 (avgpool) 15.9GB 268.9 680.9 23.10
ResNet-101 (maxpool) 17.4GB 174.1 526.7 22.63
HarmResNet-101 16.9GB 174.4 507.9 21.48

Table 4.13: Performance of the converted harmonic networks (error on ImageNet).

Training Epochs Model Top-1 % ↓ Top-5 % ↓
full 90 ResNet-50 (no maxpool) 24.36 7.34
full 90 Harm-ResNet-50 23.58 6.91
finetuned 90+5 ResNet-50 (no maxpool) 24.34 7.30
finetuned 90+5 ResNet-50⇒Harm-ResNet-50 24.15 7.15
finetuned 90+5 ResNet-50⇒Harm-ResNet-50, progr. λ 24.60 7.43

5 epochs with the learning rate of 0.001, which results in the top1 (top5) performance
improvement of 0.21% (0.19%) over the pretrained baseline, see Table 4.13. We also
investigate the conversion to a harmonic network with progressive λ compression. After
casting the pretrained filters into the available number of DCT filters (from full basis at
the early layers to 3 out of 9 filters at the latest layers), the top1 performance degrades by
6.3% due to loss of information. However, if we allow finetuning for as few as 5 epochs the
top1 (top5) accuracy falls 0.24% (0.09%) short of the baseline, while reducing the number
of parameters by 23%. This analysis shows how the harmonic networks can be used to
improve the accuracy and / or compress existing pretrained CNN models.

Comparison with the state-of-the-art techniques. Here we verify the use of DCT-
based harmonic blocks in the more elaborate state-of-the-art models. To this end we
modify ResNeXt architecture [31], which is similar to ResNets and uses wider bottleneck
and grouped convolution to decrease the amount of floating point operations (FLOPs)
and the number of parameters. The model is further boosted using several state-of-the-
art adjustments: (i) identity mapping in blocks that downsample features are extended by
average pooling to prevent information loss; (ii) squeeze and excitation blocks (SE) [140]
are used after every residual connection. The network is further regularized by stochastic
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depth [141] and dropout on the last layer. Training is performed via stochatic gradient
decent with learning rate 0.1 and batch size 256, with the former decayed according to one
cosine annealing cycle [142]. In addition to mirroring and random crops of size 224, images
are augmented with rotations and random erasing [143].

Table 4.14: SE-ResNeXt networks: harmonic vs. baseline errors and comparison with the
state of the art on ImageNet.

Model Param
224×224 320×320 / 331×331

FLOPS Top-1↓ Top-5↓ FLOPS Top-1↓ Top-5↓
ResNeXt-101 (RNX):
RNX (64x4d) [31] 83.6M 15.5B 20.4 5.3 31.5B 19.1 4.4
SE-RNX(32x4d) 49.0M 8.0B 19.74 4.90 16.3B 18.80 4.19
same, reported in [140] 49.0M 8.0B 19.81 4.96 - - -
Harm-SE-RNX(32x4d) 49.0M 8.1B 19.55 4.79 16.5B 18.72 4.23
Harm-SE-RNX(64x4d) 88.2M 15.4B 18.36 4.37 31.4B 17.34 3.71
Benchmarks
PolyNet [144] 92M - - - 34.7B 18.71 4.25
DualPathNet-131 [145] 79.5M 16.0B 19.93 5.12 32.0B 18.55 4.16
EfficientNet-B4 [146] 19.3M - - - 4.2B 17.4 3.7
SENet-154 [140] 115.1M 20.7B 18.68 4.47 42.3B 17.28 3.79
NASNet-A [147] 88.9M - - - 23.8B 17.3 3.8
AmoebaNet-A [148] 86.7M - - - 23.1B 17.2 3.9
PNASNet [149] 86.1M - - - 25.0B 17.1 3.8
EfficientNet-B7* [146] 66M - - - 37B 15.6 2.9

*model trained on 600×600 crops.

Our ResNeXt modification with 101 layers and 32 groups per 4 convolutional filters in
residual blocks (expressing filters in both standard bases and DCT bases) is trained for 120
epochs. Use of DCT bases provides a subtle improvement of 0.2% over the standard bases.
Furthermore, we upscale the network to use 64 groups of filters, replace max-pooling in the
first layer by increased stride and train this network for 170 epochs. From Table 4.14 we
conclude that our model outperforms all other “handcrafted” architectures that do not use
extra training images and performs comparably to the networks of similar complexity found
via neural architecture search. It should be noted that these models were also trained on
larger image crops than our harmonic network, whereby such training typically improves the
accuracy.

4.4.5 Comparison with other bases

So far we have used the harmonic block built upon DCT bases. As it was mentioned
previously, it can conceptually be used with an arbitrary basis function set. We compare
harmonic block implementations on other basis sets where the coefficients in the blocks are
either optimized from random initialization or are expressing already existing filters.
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Training from Random Initialization

In this section we have conducted a comparison of DCT with other basis functions listed in
literature for filter decomposition. The baseline models are the large WRN-28-10 and much
smaller WRN-16-4 trained to classify CIFAR-100 images. The comparison is conducted
with the Fourier-Bessel (FB) bases [74] and the Gaussian derivative (GD) bases [26], for
details see Section 2.5. All the filters are 3× 3, and we compare in scenarios with 9, 6 or 3
basis functions, always maintaining 9 in the first block, which also uses BN throughout the
experiment. Some of the FB and GD filters discretized on 3 × 3 grid are correlated with
filters of different orders. To compose the set of 9 filters we use a subset such that those
higher-order filters that have the smallest correlation with with the lower-order filters are
included.
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Figure 4.18: Comparison of DCT bases with Fourier-Bessel (FB) and Gaussian derivative
(GD) bases on CIFAR-100 classification task.

We train all models from random initialization within the bases listed above. DCT was
found to be equivalent to the other bases on both models with full spectrum, however both
GD and FB bases perform better when truncated. The 3 leading FB bases have significant
correlation with higher frequency DCT bases, using which generally improves the results
(see gram matrix between normalized FB and DCT on Figure 4.19).

It is worth to investigate whether Gaussian window function G:

G (a) =
1

σ
√

2π
e
− 1

2

(
a− k−1

2
σ

)2

(4.12)

can induce correlation with higher frequencies in the 3 lowest frequency bases and thus
improve the classification. DCT bases {ψu,v ; u + v ≤ 1} are modulated by G to create
windowed bases φu,v as follows:

φu,v (a, b) = ψu,v (a, b)G (a)G (b) . (4.13)

We compare various spread levels σ and find that value in range 〈0.5, 0.8〉 even surpasses
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Figure 4.19: Gram matrix between `2 normalized Fourier-Bessel and DCT bases measured
on 3× 3 grid.

the performance of FB bases (Figure 4.20).
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Figure 4.20: Comparison of Fourier-Bessel (FB) bases and DCT bases transformed with
window G with different σ on CIFAR-100 classification task. Only 3 basis functions are
used and the confidence intervals show standard deviations from 5 trials.

Expressing Existing Filters

Here we extend the comparison to evaluate ability of certain basis sets to express filters of
trained popular CNN architectures. The goal of this experiment is to assess the capability
of certain truncated bases to retain necessary information. We compare DCT bases with
the Gaussian Derivative bases (GD), Fourier-Bessel bases (FB) and PCA bases, which are
estimated on a particular CNN layer. GD and FB bases are however not complete orthonor-
mal sets and exact reconstruction would not be possible. Kobayashi [73] has constructed
an orthogonal but incomplete set of Gaussian Derivative filters through Gram-Schmidt pro-
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cess. We construct orthonormal versions of the two sets with QR decomposition. However,
it should be noted that after the orthogonalization process even low-order bases can be
different from the original bases. See the differences for a set of 7 × 7 GD and FB bases
on Figure 4.21. An example of PCA basis set estimated from the first layer of ResNet-50
with 7× 7 filters and the DCT bases are depicted on Figure 4.22.

Gaussian Derivative Fourier-Bessel

Before After Before After

Figure 4.21: Result of othogonalization process on Gaussian Derivative and Fourier-Bessel
basis sets.

PCA DCT

Figure 4.22: PCA bases estimated from the input layer of trained ResNet-50, next to DCT
basis set.

We reconstruct filters {wi ; 0 ≤ i < n} using a basis set {ψu; 0 ≤ u < k} and following
Kobayashi [73], we measure the reconstruction error as the left-out energy ε:

ε = 1−

∑n
i

∥∥∥∑k
u vec (ψu) vec (ψu)T vec (wi)

∥∥∥2

2∑n
i ‖vec (wi)‖2

2

(4.14)

where vec (.) is a vectorization operator. We do the evaluation on filters of different res-
olutions taken from five layers of various CNN models. The 11 × 11 and 5 × 5 filters are
taken from the first and the second layer of AlexNet [12] respectively. We also compare on
3× 3 filters from the first layer of VGG-16 [59] and from last block of ResNet-50 [50]. The
7× 7 filters are also taken from the first layer of ResNet-50.

The reconstruction is evaluated at various truncation levels, see Figure 4.23. The PCA bases
achieve far the lowest reconstruction error due to their ability to adapt to the data. The
FB and GD bases show similar results, leaving the DCT bases behind when reconstructing
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all of the early layers (11× 11, 7× 7, 5× 5 and 3× 3 on VGG-16). DCT however shows
reconstruction tailing the PCA bases by only a small margin when used on the last layer
of ResNet. This layer has far less high-frequency information compared to the early layers,
which might explain the different behaviour. The next stage is a comparison of classification
errors on ImageNet validation set when replacing trained filters by the filters approximated
with a subset of basis functions. The results (Figure 4.23) show almost the opposite
trend, except for the 5× 5 filters, the truncated DCT bases lead to the lowest errors. This
indicates that filter reconstruction error is not directly linked with classification performance.
Gaussian derivative filters of low orders have small support on filter edges, which may deform
the filter pattern and have uneven spread of the reconstruction error.
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Figure 4.23: Reconstruction and classification (ImageNet val. set) results of filter compres-
sion with DCT, Gaussian Derivative (GD), Fourier-Bessel (FB) and PCA bases. Filters are
taken from trained AlexNet (11×11, 5×5), ResNet-50 (7×7, 3×3) and VGG-16 (3×3).

Despite the fact that DCT is efficient at compressing some particular layers, if we extend
this experiment to all 3×3 filters in VGG-16 or ResNet-50, the DCT compression resulted in
inferior results to the other bases, see Figure 4.24. We also show that progressive selection
of bases where deeper layers have fewer bases (dashed lines on Figure 4.24) provides notably
better accuracy/size trade-off.

4.5 Detection and Segmentation

Classification represents only a subset of problems in computer vision. CNNs are often
used for tasks that require more fine-grained predictions or tasks that do not need semantic
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Figure 4.24: Classification results of filter compression with DCT, Gaussian Derivative
(GD), Fourier-Bessel (FB) and PCA bases. All 3× 3 filters are compressed, showing VGG-
16 (left) and ResNet-50 (right). Dashed lines show progressive selection of bases, where
deeper layers have the same or lower number of bases compared to earlier layers.

semantic meaning. A common approach to solve other complex tasks is to transfer the
knowledge learned by classification models. Models trained on ImageNet or another large
dataset are used to initialize models that require a finer prediction, and are consequently
fine-tuned to the task. In this section we aim to demonstrate that representations learned
from features expressed via harmonic bases are versatile and can be transferred to other
related tasks the same way as standard CNNs. We assess here the performance of har-
monic networks in object detection (Section 4.5.1), instance segmentation (Section 4.5.3),
semantic segmentation (Section 4.5.4) and boundary detection tasks (Section 4.5.5).

4.5.1 Object Detection and Segmentation

For detecting objects in images well established single stage RetinaNet [150] and multistage
Faster [13] (for scenarios when detecting only bounding boxes) and Mask R-CNN [151]
(when masks are available as well) frameworks are built upon our harmonic ResNet back-
bones. A set of experiments is conducted on the datasets Pascal VOC [152] (Section 4.5.2)
and MS COCO [153] (Section 4.5.3).

4.5.2 Pascal VOC

We extend PyTorch implementation provided by Chen et al. [154] and train Faster R-CNN
model based on our harmonic ResNets with 50 and 101 layers. The first layer and the set
of residual blocks used on the highest feature resolution are frozen (not updated) during
the training. The region proposal network (RPN) is applied on the feature pyramid [155]
constructed from the network layers. RPN layers as well as regression and classification
heads are randomly initialized and use standard (non-harmonic) convolution/fully connected
layers. Images are resized to set their shortest sides at 600 pixels. The Faster R-CNN is
trained with the learning rate lr = 0.01 and batch size bs = 16 when the backbones have
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50 layers, and lr = 0.0075 and bs = 12 in case of 101 layered configuration. Models are
trained on the union of VOC 2007 training and validation sets with about 5000 images
for 17 epochs, decreasing the learning rate by a multiplicative factor of 0.1 after epoch
15. We train the networks with original and harmonic backbones using the same setting.
Additionally, these models are also trained on the combination of training sets of VOC
2007 and VOC 2012, consisting of about 16 500 images, for 12 epochs with learning rate
dropped at epoch 9. All models are tested on VOC 2007 test set and the official evaluation
metric, the mean average precision (AP), is averaged over 5 runs. The final results are
reported in Table 4.15 for different depths of ResNet backbones, detector architectures
and configurations of the datasets. The specific number of epochs and learning schedule
were selected to reduce the impact of overfitting. In particular, when trained on VOC 2007
the larger ResNet-101 and its harmonic version reported a decrease in test performance of
approximately 0.5 AP if the training progressed to epoch 20.

Table 4.15: Mean average precision of Faster R-CNN models after 5 runs on Pascal VOC07
test set. ResNet-101-based models are trained once.

Backbone
Box AP↑ VOC07 Box AP↑ VOC07+12

17 epochs 12 epochs
ResNet-50 73.8 ± 0.3 79.7 ± 0.3
Harm-ResNet-50 75.0 ± 0.4 80.7 ± 0.2
Harm-ResNet-50-AVG 74.7 ± 0.3 80.7 ± 0.2
ResNet-101 76.1 82.1
Harm-ResNet-101 77.4 82.9

From Table 4.15 we conclude that the models built on our harmonic backbones surpass their
conventional convolution-based counterparts in all configurations as well as on both training
sets. In Figure 4.25 we demonstrate the performance of Faster R-CNN at different stages
of training on VOC 2007 and VOC 2007+2012 datasets. Harmonic ResNet-50 with average
pooling following the root layer yields comparable results, yet has a mildly higher computa-
tional complexity compared to ResNet that uses striding instead of pooling. We observe a
consistent improvement due to the Harmonic architecture: by 1% mAP for ResNet-50 and
0.8% mAP in case of ResNet-101 using the Faster R-CNN architecture.

4.5.3 MS COCO

MS Common Objects in COntext (COCO) dataset poses a greater challenge due to a
higher variety of target classes and generally smaller object sizes. Higher input resolution
is needed for good accuracy. The networks are trained following the standard procedure,
images resized so that their shortest size is 800 pixels. The learning rate is initialized by
linear scaling method lr = 0.02×(bs/16) using the default hyperparameters set up by Chen
et al [154]. Batch size bs = 10 and learning rate lr = 0.0125 are used for shallower models
while deeper models required batches of size bs = 6 with the corresponding learning rate of
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Figure 4.25: Training Faster R-CNN with harmonic network backbone on Pascal VOC
detection task. Mean average precision on VOC 2007 validation set reported with standard
deviation after training on VOC 2007 train (solid) and VOC 2007 + VOC 2012 train
(dashed) sets.

lr = 0.0075. All models are trained with standard 12 (24) epochs schedules with learning
rate decreased by 10 after epochs 8 (16) and 11 (22). Table 4.16 shows that the use
of our harmonic backbones consistently improves both single-stage RetinaNet and multi-
stage Faster and Mask R-CNN detectors by 0.7-1.3 AP with identical training procedures
employed.

The state-of-the-art detectors rely on a cascade of detection heads with progressively in-
creasing IoU thresholds, which refines the bounding boxes and thus improves localization
accuracy [156]. In Table 4.17, we report comparisons achieved with the Cascade R-CNN
architecture, trained using the 20-epoch schedule suggested in [156]. The use of our har-
monic ResNet-101 provides a 1.0 AP improvement for object detection similar to Faster
& Mask R-CNNs, and it also improves instance segmentation average precision by 0.7 AP
(see Table 4.17). Moreover, a similar improvement of 1.1 AP is observed for hybrid task
cascade R-CNN [157] that alters the mask refinement procedure and exploits semantic seg-
mentation information to incorporate additional contextual information. We show several
visual results of this model in Appendix A.

These experiments on object detection and localization demonstrate that the harmonic
versions of the backbones provide a meaningful improvement of about 1.0 AP in terms
of both bounding boxes and masks to the state-of-the-art detection architectures. Our
harmonic networks retain this improvement purely from the classification task through the
transformation to the Feature Pyramid Networks (FPNs). The variety of tested detectors
indicate that harmonic network backbones have a potential to also improve other detection
models and can be transferred to other datasets.
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Table 4.16: Mean average precision for different backbones and detector types on MS
COCO 2017 validation set. All backbones are transformed to FPNs.

Backbone Type
Box AP ↑ Mask AP ↑

12 epochs 24 epochs 12 epochs 24 epochs
ResNet-50 Faster 36.4 37.7* - -
Harm-ResNet-50 Faster 37.2 38.4 - -
Harm-ResNet-50-AVG Faster 37.3 38.2 - -
ResNet-50 Retina 35.6* 36.4* - -
Harm-ResNet-50 Retina 36.3 36.8 - -
Harm-ResNet-50-AVG Retina 36.3 37.1 - -
ResNet-101 Faster 38.5 39.3 - -
Harm-ResNet-101 Faster 39.7 40.3 - -
ResNet-101 Retina 37.7* 38.1* - -
Harm-ResNet-101 Retina 39.0 39.2 - -
ResNet-50 Mask 37.3* 38.5* 34.2* 35.1*
Harm-ResNet-50 Mask 38.1 38.9 34.7 35.5
Harm-ResNet-50-AVG Mask 38.1 38.8 35.0 35.4
ResNet-101 Mask 39.4* 40.3* 35.9* 36.5*
Harm-ResNet-101 Mask 40.7 41.5 36.8 37.3

*scores reported by [154].

4.5.4 Semantic Segmentation

Semantic image segmentation is related to instance segmentation. The difference lies in
classifying each image pixel to its exclusive class, and all entities of the same type share the
same label. We have tested the harmonic network capabilities for semantic segmentation
task on a Pascal VOC 2012 benchmark. Training images are augmented into a set of 10,582
samples [158]. Performance is measured in terms of intersection over union (IoU) on 1449
images large validation set. For segmentation engine DeepLabV3 model [159] is used.
Our code is extending a third party PyTorch implementation6, which reaches comparable
results to those reported in the paper [159]. We have retrained the baseline model with
ResNet-50 and ResNet-101 backbones for 30,000 iterations with batch size 16, learning rate
0.1 and output stride parameter equal to 16. The model also uses atrous spatial pyramid
pooling (ASPP) but no multi-grid [159]. We have replaced the backbone model of the
segmentation network with harmonic ResNets based on orthogonal DCT either converted
from the original backbone models or by harmonic models (from Table 4.11) pre-trained
on ImageNet (90 epochs). The DeepLabV3 models with harmonic backbones pretrained
on ImageNet improve IoU scores by more than 1.1% (Tab 4.18). This experiment also
validates the application of harmonic blocks with dilated convolution. DeepLabV3 with
harmonic backbone improves on average classes “chair” by 9.5%, “sheep” by 3.9%, “boat”
by 3.2%, “cow” and “tvmonitor” both by 2.9%, while lacks at classes “pottedplant” by 3.4%
and “aeroplane” by 0.8%. Some visual examples are depicted on Figure 4.26.

6https://github.com/VainF/DeepLabV3Plus-Pytorch
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Table 4.17: Mean average precision on Cascade R-CNN architecture on MS COCO 2017
validation set. All backbones are transformed to FPNs.

Cascade R-CNN
Type

Box AP ↑ Mask AP ↑
Backbone 20 epochs 20 epochs

ResNet-101 Faster 42.5* -
Harm-ResNet-101 Faster 43.5 -
ResNet-101 Mask 43.3* 37.6*
Harm-ResNet-101 Mask 44.3 38.3
ResNet-101 Hybrid 44.9* 39.4*
Harm-ResNet-101 Hybrid 46.0 40.2

*scores reported by [154].

Table 4.18: Intersection over Union (IoU) of DeeplabV3 architecture semantic segmentation
on Pascal VOC 2012 validation set. IoU is shown as median of 5 trials ± empirical standard
deviation.

DeeplabV3 Backbone IoU ↑
ResNet-50 76.31 ± 0.07
Harm-ResNet-50 converted 76.65 ± 0.07
Harm-ResNet-50 77.40 ± 0.08
Harm-ResNet-50 (avgpool) 77.62 ± 0.37
ResNet-101 [159] 77.21
ResNet-101 78.31 ± 0.07
Harm-ResNet-101 converted 77.92 ± 0.11
Harm-ResNet-101 79.49 ± 0.29

4.5.5 Boundary Detection

In this section we demonstrate the flexibility of DCT bases for a non-classification related
task, namely object contour regression. The challenge here is to distinguish meaningful
edges from edges representing a texture. Data and annotations are provided by the Berkeley
Segmentation Data Set and Benchmarks (BSDS500) [160]. Our model is built on top of
Holistically Nested Edge Detection (HED) [15], which is based on VGG-16 network [139].
Our code originated from a revised third party PyTorch implementation7. This model
learns multi-scale representations, and at each scale a boundary is predicted as a linear
combination of features from the deepest layer at that scale. Predictions generated from
the subsampled features are upsampled with bilinear interpolation to match the ground-truth
resolution. The final prediction is estimated as a weighted average of all the side outputs.
A cross-entropy between each side output and the ground-truth contributes to the loss
function. Following Xie et al. [15], annotations from different annotators are merged based
on majority vote. Images are augmented into 3 scales, 16 rotations and two horizontally
mirrored versions. Training is performed with Adaptive Momentum Optimizer.

7https://github.com/meteorshowers/hed

80

https://github.com/meteorshowers/hed


Original Annotation DeepLabV3 Harm-DeepLabV3

Figure 4.26: Examples of semantic segmentation on Pascal VOC 2012 validation images.
The first 4 rows show where harmonic network is more successful than the baseline, while
the last row displays case where it fails. DeepLabV3 with ResNet-101 backbone is used.

Overlap of the predictions with human annotations is measured as an F-score on a precision-
recall curve. Two metrics are standardly reported on this dataset: the Optimal Dataset
Scale (ODS) using fixed contour threshold, and the Optimal Image Scale (OIS) that is
calculated selecting image-best thresholds. Following [15], edges are thinned with non-
maximum suppression prior to evaluation. Our re-implementation of HED with random
weight initialization scores 0.761 ODS and 0.778 OIS (see HED in Table 4.19). Replacing
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Table 4.19: Boundary detection results measured by ODS and OIS (higher is better). Our
proposed models are denoted as Harm-HED.

Method Layers/Chan. Params ODS ↑ OIS ↑
Random initialization
HED 13 / 64 14 626k 0.761 0.778
Harm-HED 13 / 64 14 626k 0.770 0.789
HED 10 / 7 113k 0.738 0.756
Harm-HED 10 / 7 113k 0.743 0.763
Harm-HED λ=2 10 / 7 38k 0.740 0.758
Harm-HED progr.λ 10 / 10 118k 0.751 0.770
H-Net [29] 10 / - 116k 0.726* 0.742*
DynResNet [161] - - 0.732* 0.751*
Pretrained
HED 13 / 64 14 626k 0.777 0.796
Harm-HED 13 / 64 14 626k 0.782 0.803
HED [15] 13 / 64 14 626k 0.790* 0.808*

*scores reported by authors of the corresponding papers.

all the filters with harmonic blocks based on Alg. 1 improves both metrics: ODS to 0.770,
and OIS to 0.789 (see Harm-HED in Table 4.19). The qualitative comparison presented in
Figure 4.27 demonstrates how the harmonic version of HED handles better the suppression
of texture-related edges, preserving the relevant object boundaries. Initialization with a
pretrained model typically plays an important role in this task. The quantitative compar-
ison is repeated after initializing weights using the VGG-16 weights learned on ImageNet.
Harmonic HED was initialized by the same set of weights using the network conversion to
DCT bases. This initialization provided a minor gain in performance, still falling behind
the results reported by [15], see scores in Table 4.19. Interestingly, our Harmonic HED still
reaches better performance even when both models are initialized the same way.

Moreover, comparisons with two recent works based on steerable filters for boundary de-
tection are included. First, locally adaptive filtering for boundary detection was employed
using a shallow residual network with dynamic steerable blocks [161]. These blocks lever-
age steering properties of Gaussian derivative bases which linearize certain transformations.
Second, Worrall at al. [29] have modified HED architecture with complex circular harmonic
bases to detect boundaries via representations equivariant to rotations. Both of these im-
plementations use notably smaller models. To match these we downscale our Harmonic
HED architectures by limiting the number of channels and network depth similarly to [29].
Using DCT bases slightly improves the small baseline model that already performs reason-
ably well, see Table 4.19. Note, that different hyperparameters have been used to train
these harmonic nets. The equivariant harmonic network [29] has complex bases that require
complex convolution and learning parameters for imaginary components as well. Increasing
the number of channels (from 7 to 10) in our Harmonic HED while using progressive com-
pression leads to a model with comparable number of parameters yet better performance
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Original Annotation HED Harm-HED

Figure 4.27: Qualitative results of harmonic HED model trained from randomly initialized
weights. Our approach (Harm-HED) is better at suppressing texture-imposed edges.

due to more rich feature space. We observe that our ‘static’ approach based on DCT bases
without explicitly built-in invariance can detect boundaries well compared to the benchmark
methods.

From the consistent improvement of harmonic networks over the beseline models on a
variety of tasks we can expect that the proposed method can be successfully applied to
other related tasks as well.

4.6 Conclusion

We have presented a novel approach to explicitly incorporate spectral information from
DCT into CNN models. We have empirically evaluated the use of our harmonic blocks
with the well-established state-of-the-art CNN architectures, and shown that our approach
improves results (e.g. accuracy & complexity) for a range of applications including image
classification, segmentation and boundary detection. We also ascertain that harmonic
networks can be efficiently set-up by converting the pretrained CNN baselines. The use
of DCT allows one to order the harmonic block parameters by their significance from the
most relevant low frequency to less important high frequencies. This enables efficient model
compression by parameter truncation with only minor degradation in model performance.
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This has been shown to be particularly useful for tasks with limited training samples.
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Chapter 5

Compressing along the Channel
Dimension

5.1 Introduction

A wide variety of methods have been proposed in the recent years to perform structured (re-
moving entire blocks of filters) and unstructured (suppressing individual weights) pruning of
CNNs. Such studies are central to addressing the design of memory- and computationally-
efficient implementations of the state-of-the-art CNNs. It has been pointed out in multiple
works [2, 3, 162] that standard CNN architectures are typically highly over-parameterized
such that pruning of some 5-20% of parameters may often result in networks performing
better than the original architectures. This impact can be associated with better op-
timization and regularization. Iterative pruning [4, 163, 164] and access to substantial
fine-tuning [5, 6, 165] or even re-training from scratch [7, 163] allows many techniques to
arrive at the (nearly) original levels of performance at the cost of additional 30% to 300%
of the original amount of training. This is achieved after dropping between 30 and 70%
of the weight parameters in general-purpose architectures like VGG [59] and ResNets [63],
and 5-20% on architectures designed to run on devices with limited resources, like Mo-
bileNets [61].

In Chapter 4 we have introduced frequency-based structured pruning of local layers trained
on certain domains such as natural images. This chapter proposes unstructured pruning
that is independent of the data distribution.

The vast majority of the existing pruning methods pursue the reduction of computational
complexity related to training or deployment of CNNs as the main goal and consider the
decrease of parameter count (and hence memory footprint) of the pruned architectures as
secondary [2, 162]. Contrary to these approaches in this Chapter we focus specifically on the
parameter footprint aspect and consider scenarios when very limited or no retraining may be
available to obtain better performing compressed models. The motivation for such goal is
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two-fold. Firstly, we consider the storage implications (and overheads related to compressing
the original models) for models both in trained architecture repositories, i.e. model zoos,
and mobile devices. Secondly, by reducing the trainable parameter count in the models we
expect to retain the general modeling capacity and increase the degree of regularization
for optimizing the compressed architecture thus reducing the impact of over-fitting. Unlike
most of the state-of-the-art methods we propose a non-iterative technique and resort to a
strictly limited amount of fine-tuning to compensate for the impact of pruning: we let all
our compressed networks train for a single epoch post-compression.

For the general state-of-the-art review on CNN pruning we refer the readers to more compre-
hensive recent overviews conducted in [162, 166]. Several recent studies [8, 166] have also
investigated full-cycle compression including on top of CNN-specific elements the general
instruments like quantization and Huffman coding thus achieving the reduction of memory
footprint of 10-50 times for AlexNet, VGG16, ResNet-50. In our work we do not investi-
gate specifically the memory footprint but rather the parameter count, assuming that the
stronger parameter reduction generally leads to better compressibility. Note however that
both quantization and Huffman coding may be used to produce memory efficient represen-
tation for our results.

Several works have explored links between Convolutional Neural Networks (CNNs) and
wavelet decomposition [27, 112], for details see Section 2.4. Compact filters were designed
by their interpretation in terms of specific bases that we have reviewed in Section 2.5. In
Chapter 4 we have achieved efficient CNN compression by casting spatial filters into DCT
bases. In this chapter we aim to reduce redundancies due to correlation between filters in
the same network layer, and to this end we use spectral representation where we perform the
weights compression. We demonstrate that DCT can be used to compress more efficiently if
deployed along the channel dimensions (Section 5.2) compared to the more common spatial
filter compression. Our approach relies on channel reordering to maximise the representation
capacity of DCT encoding such that efficient compression can be achieved by suppressing
high frequencies, see Figure 5.1. The proposed scheme requires a decompression step,
which is encoded via CNN operations at run-time. In case when the resources are limited or
no training data is available we propose a correction for the batch normalisation parameters
to adjust to the pruned CNN without any fine-tuning (Section 5.7). Frequency based
pruning [167] has been previously used to compress convolutional filters based on their
spatial correlation, however did not attempt to compress layers with 1 × 1 kernels or fully
connected layers. The approach is dynamic and prunes DCT coefficients based on their
magnitude. Our static approach is truncating coefficients only by their frequency and does
not require extensive fine-tuning.

The implementation of the proposed compression technique is assessed in terms of ac-
curacy vs. number of parameters, against a panel of state-of-the-art pruning approaches
including [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. We present strong results with our novel CNN
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compression approach when applied to ResNet-50 [63] and MobileNet-V2 [61] architectures
for the task of image classification on ImageNet ILSVRC-2012 dataset [101] (Section 5.3).
This selection of these two state-of-the-art architectures on a large challenging dataset pro-
vides a suitable validation for the proposed compression technique. We achieve the original
ResNet-50 performance with 32% of the original parameter footprint (with 6% of train-
able parameters) with just one epoch of post-compression fine-tuning. Furthermore, our
compressed models without any fine-tuning achieve lower but competitive results on the
par with some recent compression methods involving ample fine-tuning. For MobileNet-
V2 architecture we achieve almost 50% parameter reduction with just 0.3% drop in top-1
accuracy.

5.2 Tensor compression via DCT

The vast majority of parameters representing the convolutional neural network are con-
centrated in convolutional filters or weight matrices of the fully connected layers. A set
of filters representing a convolutional layer is typically expressed as a 4-dimensional tensor
w ∈ Rm×n×k×k and is used to convolve each of the n input feature maps with its own filter
of size k × k , spanning m output feature maps:

yj =
n−1∑
i=0

xi ∗wj ,i . (5.1)

Many of the layers in recent architectures are so called resampling layers, whose filters have
1 × 1 spatial extent (k = 1), i.e., they merely reweight existing features. Fully-connected
layers can also be treated as a special case of a convolutional layer with k = 1 that
resample features consisting of a single scalar. Our aim is to compress the weights of a
layer by deploying one-dimensional DCT transform. The columns of the transform matrix
C ∈ Rn×n represent the DCT basis functions, with elements C (a, u):

C (a, u) =

√
α (u)

n
cos
[
π

n

(
a +

1

2

)
u

]
, where α (u) =

1, u = 0

2, otherwise.
(5.2)

Given a weight tensor w ∈ Rm×n×1×1, the output channel j (j = 0, ...,m− 1) is calculated
from the input using a weight vector wj ∈ Rn. In wj each element represents the weight of
an input channel. The DCT matrix C is orthogonal, and therefore wj = CCTwj . The weight
vector zj in the DCT domain zj = CTwj has also n coefficients. We apply compression
to each vector wj by retaining its t < n lowest frequencies. The number of DCT basis
functions t =

⌊
n
r

⌋
used to transform the weights is controlled by a hyperparameter r that

represents the fraction of the complete basis set used after compression and is referred
to as compression rate in the following. The reduced transformation matrix Ct ∈ Rn×t

will produce reduced coefficient representation ztj = CT
t wj . The tensor zt is representing
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Figure 5.1: Tensor reordering and DCT compression.

our compressed layer in DCT domain, which is then used at runtime to reconstruct an
approximation w̃ of the original weight tensor w via w̃j = Ctztj = CtC

T
t wj .

It is well-known that concise Fourier and DCT representations are achieved on smooth
signals, whereby discontinuities require a substantial number of additional coefficients in
the representation. Similarly, compression based on frequency truncation assumes smooth
transitions between neighboring elements. Unlike parameters at neighboring spatial loca-
tions [26], the weights corresponding to neighboring channels of a CNN are not expected
to be correlated. From equation (5.1) it is clear however that the exact channel position
does not matter as long as the filter responses are summed. For this reason, to apply DCT
to such channels, we boost coherence between the input channels by reordering them. Our
expectation is that the more similar the neighboring samples are, the fewer basis functions
are required to encode the signal accurately.

Considering a 2D weight matrix w ∈ Rm×n, the 1D DCT transform is to be applied m

times for every row-vector wj ,·, j ∈ {0..m − 1} of size n. To boost the smoothness of
w, we deploy the ordering procedure outlined in Algorithm 2. Specifically, we reorder the
weight matrix w along the second dimension of size n. The new sequence starts with the
column-vector w·,i , i ∈ {0..n − 1} with the largest magnitude. Each following vector is
chosen to have the smallest distance D to its predecessor.

Algorithm 2: Weight matrix reordering
Input: w ∈ Rm×n (weight matrix)
s ∈ Nn;
s0 ← arg maxi∈{0..n−1} ‖w·,i‖2;
p← {0..n − 1} \ {s0};
for j ∈ {1..n − 1} do

sj ← arg mini∈p D
(
w·,sj−1

,w·,i
)
;

p← p\ {sj};
end
Output: s (ordering)

88



In case of output dimension m = 1 this procedure establishes the standard ordering from
the largest to the smallest. The purpose of the proposed ordering is to boost smoothness
between columns of the reordered tensor. This heuristic is based on an assumption that
monotonic sequence has high correlation with the low frequency bases of the DCT. A more
informed heuristics can be devised based on ordering the sequence to mimic one or a few
of the basis functions or by considering order in individual rows. The smoothness is low
for large values of the first dimension m, corresponding to the size of vectors being sorted.
The natural approach to decrease m is to reshape w to w′ ∈ Rg×mn/g such that the first
dimension is g < m - the number of groups we reshape the layer into. The reshaping oper-
ation is defined as Rm×n→g×mn/gw and can be formally described as inverse vectorization
vec−1

g ,mn/g◦vec w. This transformation allows higher smoothness of transitions inside the
reordered w for lower values of g . Algorithm 3 describes the compression procedure with
reshaping, applied to arbitrary square kernel of size k . Figure 5.1 shows that reordering the
weight tensor requires storing the ordering (index vector) to reverse this manipulation. The
size of this vector is mn/g , thus small values of g span long index vector s. This means that
attaining higher levels of smoothness requires storing more additional information.

Algorithm 3: Weight matrix compression
Input: w ∈ Rm×n×k×k (weight matrix)
w′ ← Rm×n×k×k→g×mnk2/gw; (reshape)
s← Alg. 2 (w′);
w′ ← w′·,s; (ordering)
zt ∈ Rg×t ;
for j ∈ {0..g − 1} do

ztj ← CT
t w′j ;

end
Output: zt , s (DCT weights, ordering)

To perform inference and training it is essential to decompress the weight tensor into w̃ by
applying the inverse DCT (iDCT) to the stored coefficients, reordering the vectors to their
original position and reshaping the weight tensor to its original shape, see Algorithm 4.
The procedure consists of differentiable operations and allows gradient backpropagation.
Reordering, permutation and the inverse DCT transformation generate some additional
overhead on top of convolutions, and this overhead is usually not required for the structured
pruning. Small values of g increase complexity of the iDCT, but we employ fft algorithm
having complexity O

(
mnk2 log mnk2

g

)
that has only a subtle impact on the total number

of operations. It is also important to note that the post-compression parameter footprint
created by our approach consists of trainable parameters and order parameters s. The latter
are not changing throughout the fine-tuning phase. The fraction of trainable parameters
can be between 15% (low g) to 90% (high g) of the total.
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Algorithm 4: Weight matrix decompression
Input: zt ∈ Rg×t (DCT weights)

s ∈ Nmnk2/g (ordering)
w′ ∈ Rg×mnk2/g ;
for j ∈ {0..g − 1} do

w′j ← Ct ztj ; (inverse DCT)
end
w′ ← w′·,s−1 ; (inverse ordering)
w̃← Rg×mnk2/g→m×n×k×kw

′; (reshape)
Output: w̃ (decompressed weights)

5.3 Implementation

To evaluate the proposed compression scheme outlined in Algorithm 3 we perform exper-
iments with recent ResNet-50 and MobileNet-V2 models trained on ImageNet-1k dataset
for the task of image classification. We investigate the application of compression to spatial
k×k and 1×1 layers with the two core compression strategies: uniform, whereby the same
compression rate r and number of groups g are used for all layers, and progressive, that
adjusts r and g according to the size of the layer.

We have used PyTorch framework to implement the compressed models and the online layer
decompression outlined in Algorithm 4. The pretrained models used in our experiments
come from Torchvision model repository [137]. The empirical runtime overhead (due to
compression) during training is measured to be 37% for ResNet-50 and 17% for MobileNet-
V2.

Ablation studies and performance analysis for the designed compression are investigated
separately for 1× 1 layers (Section 5.4) and spatial layers (Section 5.5). In Section 5.6 we
present the full network compression strategy and outline the batch normalization correction
in Section 5.7.

5.4 Compressing resampling layers

We start by investigating the compression capacity of the resampling 1 × 1 layers. Firstly
we validate the hypothesis that sorted vectors are approximated more efficiently. A subset
consisting of the first 9 input and 9 output channels (81 scalar values) is dissected from
weights in the first 1× 1 layer of ResNet-50. Vectorization of this sequence in the default
order is visualized in Figure 5.2 (left). Instead of trying to reconstruct it in this form we
rather attempt to approximate its sorted version (Figure 5.2 right).

Figure 5.3 clearly shows that decent reconstruction of the sorted sample sequence can be
achieved by using as few as 2 basis functions, while to get comparable results on the original
sequence at least half of the basis functions are needed. The common magnitude pruning
(`1 prune) in space spanned by the standard bases require many more parameters for a
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Figure 5.2: Vectorized subset of weights of the first 1 × 1 layer of pre-trained ResNet-50
in the default order (left) and after reordering (right). The subset consists of the first 9
input and the first 9 output channels (out of 64).

good reconstruction.
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Figure 5.3: An approximation (blue) of the vectorized subset of ResNet-50 1 × 1 layer
weights (red). Subsets of basis functions are used to represent weights in the DCT space
without (top) and with (middle) reordering, and are compared to standard bases magnitude
`1 pruning (bottom).

It is worth to investigate whether DCT is a good choice for a transformation method on
ordered signals. We conduct a comparison with a few popular transformation methods,
these include Discrete Fourier Transform (DFT)

CDFT (a, u) =

√
1

n
e

−2πjau
n =

√
1

n

[
cos
(

2πau

n

)
− j · sin

(
2πau

n

)]
, (5.3)

Discrete Sine Transform (DST)

CDST (a, u) =

√
α (u)

n
sin
[
π

n

(
a +

1

2

)
(u + 1)

]
, where α (u) =

1, u = n − 1

2, otherwise.
(5.4)
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and a basis set constructed from the Gaussian function

g (a) =
1

σ
√

2π
e−

1
2 ( a−µ

σ )
2

(5.5)

by collecting higher-order derivatives (GD). Gaussian derivatives are not orthogonal, we
orthogonalize the transformation matrix by QR factorization. Shape of this basis depends
on parameter σ. For illustration the first 6 frequencies/orders are plotted in Figure 5.4.
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Figure 5.4: The first 6 basis function with the lowest frequency/derivation order of DCT,
DST, DFT (real and imaginary part) and Gaussian derivative (GD) bases.

To compare DCT bases with the other mentioned bases we reconstruct the sorted weights
by 2, 4, 8, 16, 32 and 64 basis functions. The implementation of DFT uses only the first
half of the frequencies, keeping their symmetric versions aside. Since the DFT bases are
complex-valued, multiple coefficient selection strategies can be devised. We have tested
three: ”real“ that firstly selects all real-valued coefficients and continues with imaginary part,
”imag“ prioritizes imaginary component (ignoring the zero frequency) and ”complex“ selects
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both according to their frequency. We have observed (Figure 5.5) that for a good result
the imaginary component is more important than the real component. The reconstruction
quality seems to be dependent on shape of the basis function representing the frequency
1, which gives the best results if is monotonic, hence resembles shape of the sorted vector.
DCT fulfills this criteria and shows the most accurate reconstructions (see Figure 5.5).
Comparable results are achieved by Gaussian derivative bases with large σ. As the sigma
increases, shape of the basis functions more resembles DCT bases, which in turn can be
calculated using efficient algorithms.
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Figure 5.5: Approximation of the vectorized subset of ResNet-50 1× 1 layer weights. The
reconstructed signal is depicted with (blue) color and original signal with (red). Reconstruc-
tions are done with DCT, DST, DFT (prioritizing real, imaginary, or complex numbers) and
Gaussian derivatives (GD) with various values of σ.
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Various measures can be used to assess quality of compression. We employ the following
two metrics: reconstruction error as normalized summed squared error nSSE (5.6), and
accuracy loss (overall network performance) on validation set.

nSSE (w, w̃) =
‖vec (w)− vec (w̃) ‖2

2

‖vec (w) ‖2
2

, (5.6)

5.4.1 Reconstruction error

We experiment with one of the 1 × 1 layers of trained ResNet-50. The nSSE measured
for the baseline compression without reordering the weights shows linear degradation as
the fraction of used DCT coefficients decreases (Figure 5.6a), signifying that the energy is
not concentrated in lower frequencies as in many natural signals. The reordering procedure
results in achieving lower nSSE given the same coefficient budget. Reshaping the tensor
and decreasing the number of vectors g , which are transformed by DCT, further improves
the result. We have experimented with `1 and `2 norms for selection of the initial point
for reordering, to find that both worked comparably, thus we have adopted the `2. For the
distance D that drives the reordering procedure we have considered Euclidean, Manhattan
and Cosine distance. Manhattan distance shows slightly inferior results to the Euclidean.
Cosine distance proved to be the best for large dimensional vectors g ≥ 32, while for smaller
values of g a better nSSE is obtained using Euclidean distance.
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Figure 5.6: Analysis of compression on 1× 1 layers. (a) Reconstruction error of a decom-
pressed 256(output)× 1024(input)× 1× 1 weight tensor as a function of a total number
of DCT coefficients used. The (solid) lines represent reordering according to Euclidean
distance and (dashed) according to Cosine distance. (b) ResNet-50 top-1 accuracy on Im-
ageNet validation set with compressed (dotted) and fine-tuned (solid) 1 × 1 layers. The
grey line denotes the model before any compression. (Exponential y-scale.) We observe
that lower values of g consistently produce better results.
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5.4.2 Overall accuracy

The ordering operation employed in our compression requires the order vector s to be stored.
Since small values of g require storing very long order vectors (and thus effectively reducing
the compression ratio), we study only g ≥ 4. We investigate several compression rates r :
1.3×, 1.5×, 2×, 3×, 4×, 8×, 16× and 32× to uniformly reduce the number of coefficients
in all layers in ResNet-50 with 1×1 kernels, using Euclidean distance to drive the reordering.
The quality of compression is measured in terms of classification accuracy. It should be
noted that these compression rates r do not take into account the storage associated with
the index vector s, but results in tables and figures are reporting the number of parameters
including s, unless stated otherwise. Figure 5.6b shows how the classification accuracy
evolves when the proposed compression rate increases; the horizontal axis reports the total
number of parameters in the model. This figure further confirms the reconstruction error
analysis observation: smaller values of g produce more accurate compressed models. The
model without weight reordering loses all of its performance even after a mild compression,
while model that uses half of the DCT coefficients with g = 4 is only 1% short of the
original model performance.

We establish that a minor amount of fine-tuning enables us to approach the original level
of accuracy (achieved by the non-compressed ResNet-50) even after substantial weight
compression in the DCT domain. The fine-tuning is performed for one epoch only on
central crops of the resized training images without using any augmentation. The learning
rate is set to 0.001×batch_size/256. As can be seen in Figure 5.6b, one epoch is sufficient
even for the 32× DCT compression with g = 4 to recover performance just 1% below
that of the original, while the model without any reordering similarly compressed drops the
accuracy by more than 17%. Similarly to reconstruction error results (Figure 5.6a), the
Cosine distance is more suitable for the large values of g > 16, see Figure 5.7. Since the
Euclidean distance provides better results for lower values of g and is cheaper to calculate,
we use it in all the following experiments.

5.5 Compressing layers with spatial kernels

We now employ the same compression procedure to layers with spatial extent, k > 1, by
reshaping the 4-dimensional weight tensor into a 2-dimensional matrix. We complement the
experiment in Section 5.4 by compressing only all the layers with spatial kernels k = 3. Fine-
tuning can recover original ResNet-50 performance without any loss even when coefficients
in these layers are reduced 32× if g=4 or 8× when g=8, see Figure 5.8a. Compressing
these layers provides a notably better accuracy-size trade-off. This effect can be explained
by the fact that filters in these layers are expected to be more correlated than 1× 1 layers
to start with. It is worth mentioning the number of spatial layers undergoing compression
in ResNet-50 is lower compared to layers with k = 1.
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Figure 5.7: Comparison of Cosine (dashed) and Euclidean (solid) distance for compression
of 1 × 1 layers. The curves show ResNet-50 top-1 accuracy on ImageNet validation set
where 1×1 layers are (a) compressed, (b) compressed and fine-tuned (Exponential y-scale).
The Cosine distance works better for g > 16.

16 18 20 22 24 26
# parameters ×106

0.0

60.0

66.0

70.0

73.0

75.0

76.0
76.6

to
p1

 a
cc

ur
ac

y 
(%

)

no reor.
g=m
g=16
g=8
g=4
orig. ft.

(a) Channel dimension

16 18 20 22 24 26
# parameters ×106

0.0

60.0

66.0

70.0

73.0

75.0

76.0
76.6

to
p1

 a
cc

ur
ac

y 
(%

)

f=9
f=8
f=6
f=3
f=9,8,6,3
orig. ft.
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Figure 5.8: We report ResNet-50 top-1 performance of compressed (dotted) and fine-tuned
(solid) models on ImageNet validation set. The compression is applied along (a) channel
and (b) spatial dimension for various levels of g . For spatial compression g = f . The green
curve in (b) only compresses filters separately via 2D-DCT. (Exponential y-scale.)

5.5.1 Selecting dimension for computing DCT

The compression scheme depicted in Alg. 3 executes DCT along the second dimension that
initially corresponds to the number of input channels. It is also meaningful to investigate
applying compression to the dimension corresponding to output channels. Tensor reshaping
produces a matrix with internal ordering dependant on the original position of dimensions in
the weight tensor. By denoting transposition as T and reshape operations as R, we consider
the following reshaping procedures:

(i) R: Rm×n×k×k→g×mnk2/gw,

(ii) TR: Rn×m×k×k→g×mnk2/gw
T0,1 ,
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(iii) RT:
(
Rm×n×k×k→mnk2/g×gw

)T
(iv) TRT:

(
Rn×m×k×k→mnk2/g×gw

T0,1
)T .

The target shape always remains the same w′ ∈ Rg×mnk2/g . TR, RT and TRT proce-
dures require slight adjustments to the reconstruction procedure. The experimental analysis
demonstrates (Table 5.1) that the use of R procedure often delivers best performance for
both 1× 1 and 3× 3 layers with g = 4 and g = 8.

g reshape type
1×1 3×3

1.3× 2× 4× 8× 1.3× 2× 4× 8×

no reorder

R 0.4 0.1 0.1 0.1 72.8 1.0 0.3 0.2
TR 0.1 0.1 0.1 0.1 72.5 1.1 0.4 0.3
RT - - - - 46.6 0.4 0.2 0.2
TRT - - - - 38.9 0.8 0.5 0.3

m | n

R 53.1 0.4 0.1 0.1 74.9 68.2 5.3 0.3
TR 39.0 0.3 0.1 0.1 74.2 66.9 8.2 0.5
RT - - - - 70.4 34.7 0.6 0.3
TRT - - - - 71.8 53.0 0.9 0.3

16

R 72.3 57.4 0.6 0.1 75.4 73.6 59.5 3.2
TR 69.3 35.0 0.5 0.1 75.6 74.2 64.6 19.8
RT 70.9 40.6 0.9 0.2 75.1 72.6 57.6 6.6
TRT 71.5 46.3 0.8 0.1 75.5 73.6 53.7 9.5

8

R 74.4 71.3 45.9 0.7 75.9 75.2 72.2 62.3
TR 72.1 58.7 16.4 0.2 75.8 75.0 71.9 58.9
RT 74.2 69.9 40.1 0.4 75.9 75.1 71.9 52.4
TRT 74.7 65.9 35.7 1.5 75.9 75.1 70.8 59.0

4

R 75.7 75.1 71.4 59.3 76.0 75.8 75.5 73.2
TR 75.3 73.4 67.9 55.7 76.0 75.8 75.3 74.3
RT 75.3 72.8 64.8 33.2 76.0 75.8 75.4 72.9
TRT 75.2 74.0 71.0 48.5 76.0 75.7 74.9 73.1

Table 5.1: Comparison of the four reshaping strategies in terms of ResNet-50 accuracy on
ImageNet validation set post-compression (without fine-tuning) of all 1 × 1 or all 3 × 3
layers. Results depict several compression rates r and grouping factors g . In case of 1× 1
layers g = m is used for R and g = n for TR, while for all 3 × 3 layers in ResNet-50 it
holds that m = n.

5.5.2 Combining spatial and channel compression

A common approach to compress convolutional filters with spatial extent is to decompose
each filter separately into 2-dimensional basis functions such as 2D DCT [109]. This
approach however ignores the channel dimension, hence here we extend it to see whether
the representation of weight tensors via separable 3-dimensional DCT bases can improve
compression-accuracy trade-off. The compression consists of 2 stages. Firstly, each k × k

filter is expressed with f ≤ k2 2D DCT basis functions with the lowest frequency. Secondly,

97



the tensor is reshaped by RT procedure with g = f that ensures the channel and spatial
dimensions are transformed individually, prior to pruning.

We compress uniformly every layer of ResNet-50 with k = 3 to retain f ∈ {9, 8, 6, 3} spatial
frequencies: f = 9 corresponds to full data with no compression of 3×3 filters (only casting
to DCT domain), and f = 3 to the strongest degree of spectral pruning (by retaining 3 DCT
coefficients out of 9). We then employ the same compression rates for channel-dimension
as in previous experiments. Figure 5.8b demonstrates the achieved performances and the
corresponding model sizes with and without channel dimension compression. The uniform
spatial compression gives poor results compared to the channel dimension compression
proposed in Alg. 3. The combination of the two approaches improves these results but is
still inferior to relying solely on Alg. 3.

5.6 Full network compression

Finally we proceed with compressing all the convolutional layers at once. Compressing one
layer at a time gives us an insight that compressing shallower layers increases classification
error more than compressing deeper layers by the same ratio (cf. Figure 5.9). These ‘hard-
to-compress’ layers have also substantially fewer parameters and compressing them with
high ratios brings almost no change in model size but leads to a substantial drop in network
performance. It is expected that after sorting, larger weight matrices produce less sparse
sequence with regular structure that can be approximated with proportionally fewer basis
functions. We tackle the performance/size trade-off by deriving compression parameters
from the size of the layer. We omit the first layer that has only under 10k parameters and
treat the output layer as a 1×1 convolutional layer. We consider 2 strategies: “progressive-
r” that adjusts compression ratio r (fixed g throughout the network), and “progressive-g”
that optimizes g (fixed r). For the first strategy, a user provided hyperparameter r ′ is used
as a ratio increase rl1 = 1 + r ′ for a reference layer l1 that we chose to be the smallest
compressed layer. Let pli = mlinlik

2
li
be the number of parameters of the weight tensor of

layer li . The compression ratio rli for any layer li is then

rli = 1 + r ′
√
pli√
pl1

. (5.7)

The proportion of square roots of parameter counts scales linearly with the number of
channels. The second strategy determines gli as the closest exponent of 2 that is lower or
equal to the weight size proportion

gli = max

(
2, 2

⌊
log2

√
pli√
pl1

⌋)
. (5.8)
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Figure 5.9: Top-1 classification error increase induced by compressing a particular layer of
ResNet-50 with g = 16, r = 4×. Vertical grey lines indicate borders of residual blocks,
black ones show where feature resolution is decreased. Red curve illustrates parametric
complexity of a particular layer. Deeper layers with more parameters exhibit lower errors.
(Logarithmic error-scale.)

ResNet-50 [63, 137] MobileNet-V2 [61, 137]

metric Orig.
g = 4 g = 8

Orig.
g = 4

r ′=1/8 r ′=1/4 r ′=1 r ′=1/2 r ′=1 r ′=1* r ′=1/4 r ′=1/2 r ′=1 r ′=2 r ′=4
#params 25.6M 15.4M 12.0M 8.2M 6.5M 5.0M 5.0M 3.5M 2.8M 2.2M 1.8M 1.5M 1.3M
#trainable 25.6M 8.9M 5.5M 1.7M 3.2M 1.7M 1.7M 3.5M 1.7M 1.2M 0.8M 0.4M 0.2M
top1 % ↑ 76.15 76.69 76.53 76.16 75.21 73.02 74.77 71.87 71.80 71.70 71.51 70.94 69.64
top5 % ↑ 92.87 93.27 93.20 92.96 92.36 91.37 92.27 90.29 90.47 90.38 90.34 89.89 89.18

Table 5.2: Our progressive-r compressed ResNet-50 and MobileNet-V2 results on ImageNet
after one epoch of fine-tuning post-compression (*model is fine-tuned 20 epochs).

5.6.1 ResNet-50 architecture

We have tested the compression strategy on ResNet-50 model with g ∈ {4, 8, 16} and
r ∈ {2, 4, 8, 16, 32} for uniform compression (the same r in every layer) as well as for
progressive-g compression and hyperparameter r ′ ∈ {0.125, 0.25, 0.5, 1, 2} for progressive-r
compression, see Figure 5.10. The performance of the progressive-r compression exceeds
that of the uniform for all values of g . One epoch fine-tuning of a model uniformly com-
pressed with g = 4, r = 8× can recover the original model performance and consists
of 38% of the original model’s size. Comparable accuracy is obtained with progressive-r
strategy (r ′ = 1) with a model that has only 32% the original amount of parameters. The
drawback of this strategy is the large vector of indices used to reorder the weights that sets
a lower bound to the maximal possible compression. Progressive-g strategy addresses this
issue by shrinking this vector for large layers and thus allows for higher compression rates
without excessively corrupting the early layers. Table 5.2 summarises the best numerical
results obtained with our compression strategy. If we extend the fine-tuning time to 20
epochs (decreasing learning rate by 10 at epoch 15), a severely pruned model can improve
its performance by at least another percentage point, see Table 5.2. Comparisons with
several state-of-the-art techniques, presented in Figure 5.10, demonstrate high efficiency of
the proposed spectral domain pruning approach. Note that the models outperforming the
proposed approach for stronger levels of compression [7, 164], see Figure 5.10, involve very
substantial amount of fine-tuning of 50-300 epochs.
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(b) MobileNet-V2 compression on Imagenet

Figure 5.10: Top-1 accuracy vs. parameter count on ImageNet validation set after one
epoch of fine-tuning for (a) ResNet-50 and (b) MobileNet-V2 architectures: progressive-r
compression strategy (solid) clearly outperforms uniform (dashed). The model without fine-
tuning (dotted) outperforms some of the related works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The
red dot in (a) shows performance after 20 epoch fine-tuning. Grey vertical and horizontal
bars correspond to the original model size and accuracy. (Exponential y-scale.)

Comparison with magnitude pruning. We now compare the proposed spectral domain
pruning to the standard magnitude-based pruning using `1-norm. Alg. 3 can be simply
adjusted to perform pruning of tensors in standard bases, bypassing the DCT transform.
The elements of size g are sorted according to their `1 norm, keeping only a relevant
fraction of those with the largest norm. Table 5.3 clearly demonstrates the superiority of
DCT domain-compression for preserving network performance. Minor fine-tuning of one
epoch is only 2% worse than original model at 32× DCT compression of all 1 × 1 and
3× 3 layers, while the model pruned based on `1 norm cannot recover any of the original
performance.

reorder
compress compress & fine-tune

2× 4× 8× 16× 32× 2× 4× 8× 16× 32×
`1 reorder 16.2 0.1 0.1 0.1 0.1 74.4 68.2 54.1 22.5 7.0
Alg. 2 reorder + DCT 74.8 70.4 49.5 14.4 0.2 76.6 76.5 76.1 75.6 74.0

Table 5.3: Top-1 classification accuracy on ImageNet validation set of ResNet-50 com-
pressed with g = 4. Combination of reordering and DCT transform improves over
magnitude-based pruning (`1).

5.6.2 MobileNet-V2 architecture

We now investigate the capability of our method to compress models with compact design.
MobileNet-V2 model [61] sparsifies the weights by using depth-separable convolutions. A
vast portion of its weights thus resides in its resampling layers (1×1 convolutions) and the
output layer. We focus only on these layers, leaving the first layer and the following 7 blocks
intact. The fine-tuning is done with batch size 64 and learning-rate 0.0001. The progressive
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compression approach enabled us to compress the network into 42% of its original size within
1% accuracy drop (see Figure 5.10b). Note that up until 50% parameter compression the
top-5 accuracy remains above the original level (Table 5.2).

5.7 Post-compression batch normalization correction

In some situations data might not be available to fine-tune the compressed model, or
fine-tuning might be prohibitively expensive. In such scenarios, a simple scale correction
mechanism can come in handy. Replacing the tensor w by its approximation w̃ alters
output of the convolution (5.1) proportionally to the approximation error magnitude. These
differences can however be partially diminished by rescaling and shifting the approximated
weight tensor to correct its mean and magnitude. For this purpose we reuse parameters
that carry out normalization of activations during the training. The batch normalization
operation that follows every convolutional layer in many modern architectures is formalized
as

x̃i = γ
xi − µ√
σ2 + ε

+ β (5.9)

with statistical parameters mean µ =
∑n−1

i=0 xi/n and variance σ2 =
∑n−1

i=0 (xi − µ)2/n

estimated during training over a batch with n samples. The scale γ and bias β parameters
are updated via back-propagation. For deterministic results during the inference stage the
running statistical estimates of µ and σ2 are used instead. Serving only as an extra affine
function, these parameters can be incorporated into weight and bias parameters of the
preceding layer. The weight tensor w and bias b can be transformed to w′ and b′ that
incorporate the estimated scaling of batch normalization layer as follows:

w′ =
γw√
σ2 + ε

, b′ = b + β − γµ√
σ2 + ε

. (5.10)

Similarly, to implement the scale correction, we replace γ by a new scale γ̃ = ργ controlled
by parameter ρ. Value of ρ is selected such that norm of the merged convolutional and
batch normalization layer w′ equals the norm of the merged reconstructed layer w̃′, i.e.
‖w′‖2 = ‖w̃′‖2. Using equation (5.10) and the definition of γ̃ we establish that

γ ‖w‖2√
σ2 + ε

=
ργ ‖w̃‖2√
σ2 + ε

=⇒ ρ =
‖w‖2

‖w̃‖2

. (5.11)

Introduction of the new scale entails a change in the bias parameter. Specifically, when the
bias correction term δ is introduced, the new bias is expressed as β̃ = β + δ. Comparing
bias of the original and approximated layer provides the following relationship:

β − γ µ√
σ2 + ε

= β + δ − ργ µ√
σ2 + ε

=⇒ δ = γµ
ρ− 1√
σ2 + ε

. (5.12)
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Weight approximation might also shift the weight tensor mean µw =
∑n−1

i=0

∑k−1
u=0

∑k−1
v=0 wi ,u,v

that as the result shifts the activations of the layer’s output. Comparing bias of the original
and approximated layer when propagating the difference between µw and the mean of the
reconstructed weight tensor µw̃ establishes a relationship:

γ
µw − µ√
σ2 + ε

+β = ργ
µw̃ − µ√
σ2 + ε

+β + δ =⇒ δ = γ
µw − µ− ρ (µw̃ − µ)√

σ2 + ε
, (5.13)

that gives us an estimate (5.13) for δ that combines both weight and bias correction.

Results. We have tested this approach on several compressed versions of ResNet-50 using
the progressive strategy. The results in Table 5.4 show that this cost-free method improves
the severely compressed models. However, this approach can be applied only to layers
followed by Batch Normalization.

scale fix
g = 8 g = 4

r ′=1/8 r ′=1/4 r ′=1/2 r ′=1 r ′=1/8 r ′=1/4 r ′=1/2 r ′=1 r ′=2
# parameters 12.2M 8.8M 6.5M 5.0M 15.4M 12.0M 9.7M 8.2M 7.4M
no correction 72.28 66.22 35.77 0.84 75.40 74.65 73.42 68.81 49.16
correction Eq. (5.12) 73.08 69.19 54.05 14.78 74.85 73.99 72.60 68.53 51.84
correction Eq. (5.13) 73.19 69.39 54.84 15.68 74.93 74.16 72.86 68.92 52.52

Table 5.4: Effects of Batch Normalization parameter correction on ImageNet top-1 clas-
sification accuracy for ResNet-50 models compressed using progressive-r strategy without
fine-tuning.

5.8 Conclusion

We have proposed a novel DCT-based compression approach for effectively reducing the
CNN parameter footprint. Considering the very limited fine-tuning that we used in this
work, our method demonstrates state-of-the-art performance as applied to ResNet-50 [63]
and MobileNet-V2 [61] architectures for the task of image classification on ImageNet (Fig-
ure 5.10). Our model also has the capability to produce strongly performing compressed
networks with zero-retraining. In the future we envisage investigating how to reduce the
number of computations in addition to limiting the number of parameters based on spectral
representations.
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Chapter 6

Conclusion

Convolutional neural networks have become a core part of many solutions used to address
numerous computer vision problems. The trends are pushing their deployment into many
challenging areas such as medical image recognition or autonomous driving. Such domains
need reliable, transparent and fast models. CNNs are however often large, computationally
intensive and not interpretable. In this thesis we have tackled some of these issues by using
knowledge integrated in image compression techniques.

6.1 Summary of contributions

In Chapter 3 we have explored applicability of image representation consisting of blocks
created by the Discrete Cosine Transform (DCT) for CNN training. Data in this form is
represented via set of coefficients corresponding to magnitudes of cosine functions with dif-
ferent frequencies. We have adjusted filters of the input layer to process the non-overlapping
blocks and thus learn the weights in the DCT domain. We have found that a single layer
model can this way learn more discriminative features than from spatial image data. The
deeper models trained on block-DCT data representation retain comparable performances.
We have also managed to train a CNN model, with the necessary adjustments, on DCT
coefficients calculated by JPEG compression algorithm. Our pipeline did not need to fully
decompress images, only the decoded coefficient were necessary. It can be useful for fast
inference on large images or as a way for improving accuracy of shallow CNN models. The
drawback of this approach is the fixed size of DCT blocks which drastically limits the size of
feature maps extracted from small resolution images. The blocks are also non-overlapping,
hence some features at block boundaries may be overlooked.

We address both of these issues in Chapter 4 by designing “harmonic blocks”. We propose
to directly integrate DCT in the CNN computational graph, to factorize the convolutional
filters. By doing so it can be used with blocks of arbitrary size and stride. Flexible striding
allows convolution with the DCT filters without decimating the signals. In some cases the
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optimization could be eased by normalizing the DCT spectrum with batch normalization.
Normalizing DCT coefficients can however be harmful for image restoration tasks that
require only a subtle change to the input distribution. With filter factorization into DCT
bases we have improved classification accuracy on CIFAR10/100 and ImageNet datasets.
By transferring the knowledge from classification task we could construct object detectors
and segmentation networks with harmonic backbones that improve detection metrics on
MS COCO and Pascal VOC benchmarks. We have shown the harmonic network to be also
suitable for boundary estimation tasks by improving over the standard CNN baseline.

Properties of natural signals gave us an insight how DCT representation can be used to
enforce certain properties on CNNs. By removing zero-frequency component from the rep-
resentation we have made CNNs insensitive to illumination changes and surpassed standard
CNN models when validating on unseen lighting conditions. CNN filters trained on natural
images have been observed to be smooth. By suppressing high-frequency components we
have elegantly compressed the number of parameters in convolutional networks without
sacrificing performance. We have also shown that models compressed this way can be
more robust to certain types of high-frequency noise. The compression makes harmonic
networks less over-fitted to data, which also helps the generalization when only limited
amount of samples is available for training. Unlike most of other works that make use of
filter decomposition we use a complete basis set and can decompose existing CNNs into
DCT bases that allow exact reconstruction. This facilitates building harmonic networks for
fine-tuning or compression of existing models without a need for pre-training. Encouraging
results on image data motivates further research with extrapolating harmonic networks to
1D convolutional networks used on audio inputs or to 3 dimensions when processing voxel
representations or spatio-temporal data.

The compression via spectrum truncation in harmonic blocks can only be applied to indi-
vidual filters, and is limited solely to layers that have filters with spatial extent. In many
modern CNN architectures a majority of weights are however concentrated in layers with
1× 1 filters and thus cannot be compressed via harmonic block compression. Therefore we
have devised another approach to compress any weight tensor used in CNNs. Each weight
tensor undergoing compression is firstly reshaped into two dimensional matrix. Columns of
this matrix are considered to be separate vectors that are ordered based on their distances,
starting from vector with the largest magnitude. This step is crucial as it compacts the
energy of each row into a few coefficients as the 1D DCT transform is applied. Following
truncation of a large portion of high-frequency coefficients has almost no effect on the
total energy. The decompression consists of performing the inverse DCT, inverting the
weight matrix reordering, and reshaping the matrix to the original shape. Furthermore, we
have proposed to fix scale and shift parameters of batch normalization layers that follow
compressed layers based on the compression artefacts.

We have successfully applied the proposed compression to layers of ResNet-50 and MobileNet-
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V3 and obtained well performing models even without fine-tuning the weights. Fine-tuning
of the reduced set of weights can lead to models with only a small portion of trainable
parameters and three times smaller total size with respect to the original model, yet main-
taining its performance. Success of this approach can be boosted by minimizing length
of the column-vectors. For reconstruction of the weights, however, exact ordering of the
vectors in the original tensor has to be stored. Reshaping the matrix such that columns are
shorter will increase length of the rows and thus of the index vector necessary to reverse
the ordering. In future work this issue can be solved by iterative compression of the weight
matrix by shrinking column length at every iteration. This compression scheme can also be
applied to other models apart from 2D CNNs, for instance convolutional networks of other
dimensions or in recurrent networks, which are more sensitive to compression as they are
used repeatedly during the inference.

6.2 Insights and future work

This thesis has been challenging the paradigm of representing convolutional filters via stan-
dard bases. Instead, we have proposed filter factorization with the DCT basis set. Our
experimental evaluation has shown that use of pre-defined filters in CNNs can lead to effi-
cient and versatile models. We suggest to use the filter decomposition in the early layers,
together with spectrum normalization for classification-related tasks, in order to improve
models’ performance. Deeper layers can be almost always efficiently compressed through
spectrum truncation. We have mostly used the decomposition to either improve the perfor-
mance or the model size. There are many avenues how filter decomposition into pre-defined
bases can be exploited in order to encode more knowledge into CNNs. Using factorized
filters can have interesting effect on generative learning where layers’ level of detail can
be hardcoded by bandpassing the filter bank. Our approach opens more possibilities to
combine well known computer vision techniques with learnable algorithms. Certain layers
can be regularized to encode only a particular information. Fixed bases can be used to
model equivariance to certain geometrical transformations. CNNs with fixed bases can also
lead to development of models more robust to various input deformations. Lastly, filter
decomposition is a way to build up their comprehension and thus enhance interpretability
of the whole model.
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Appendix A

Detection results

In this Appendix chapter we provide qualitative results for the object detection and in-
stance segmentation task presented in Section 4.5.3. We focus on segmentation results of
the state-of-the-art object detection model, the hybrid task cascade (HTC) R-CNN with
ResNet-101 backbone network. On Figure A.1 we display several images with false-positive
detections given by the baseline HTC model. Several objects, or part of objects are classified
to incorrect classes. For some of these objects the HTC with harmonic backbone has either
made the correct prediction or has ignored them. The Figure A.2 in turn shows images
with false negative detections. A few of the instances the HTC has missed are correctly
detected by the harmonic HTC.
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Ground truth HTC Harm-HTC

Figure A.1: Instance segmentation on MS COCO validation images. The figure shows
ground truth bounding boxes and predictions of the hybrid task cascade (HTC) R-CNN
model based on standard and harmonic ResNet-101 backbone. Images depict some of the
false positives of HTC that are correctly classified by the model with harmonic backbone.
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Ground truth HTC Harm-HTC

Figure A.2: Instance segmentation on MS COCO validation images, showing ground truth
bounding boxes and predictions of the HTC model based on standard and harmonic ResNet-
101. Depicted some of the false negatives of HTC that are detected by the harmonic HTC.
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Appendix B

Model list

In this chapter we provide a list of neural network models used in this thesis in alphabetical
order. Each model description contains reference to a diagram of its architecture or a
reference where the model has been first introduced.

AlexNet First CNN trained on ImageNet, Krizhevsky et al. [12]

CNN2 A 2 convolutional layer CNN designed for small NORB dataset, for details
see diagram on Figure B.3a

CNN3 A 3 convolutional layer CNN designed for small NORB dataset, for details
see diagram on Figure B.4a

CNN-A A small CNN designed for 4×4 DCT-block input from CIFAR dataset, for
details see diagram on Figure B.1a

CNN-B A small CNN designed for 8×8 DCT-block input from CIFAR dataset, for
details see diagram on Figure B.1b

CNN-C A CNN designed for 2×2 DCT-block input from CIFAR dataset, for details
see diagram on Figure B.2a

CNN-D A CNN designed for 2×2 DCT-block input from MNIST dataset, for
details see diagram on Figure B.2b

Cascade R-CNN Region-based CNN with cascaded head for object detection, Cat and Vas-
concelos [156]

DeepLab Deep CNN for semantic segmentation with atrous convolution, Chen et
al. [159]

Faster R-CNN Region-based CNN for object detection, Ren et al. [13]

Harm-Net2 A 2 harmonic layer network designed for small NORB dataset, for details
see diagram on Figure B.3b
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Harm-Net3 A 3 harmonic layer network designed for small NORB dataset, for details
see diagram on Figure B.4b

HED Holistically-nested edge detection, Xie and Tu [15]

HTC Hybrid task cascade for instance segmentation, Chen et al. [157]

Mask R-CNN Region-based CNN with mask prediction head for instance segmentation,
He at al. [151]

MobileNet Efficient CNN for mobile vision applications, Sandler et al. [61]

ResNet Residual network, He at al. [63]

ResNeXt (RNX) Aggregated residual transformations network, Xie et al. [31]

SE-RNX Aggregated residual transformations network with squeeze and excitation
blocks, Hu et al. [140]

VGG Very deep convolutional network, Simonyan and Zisserman [59]

WRN Wide residual Network, Zagoruyko and Komodakis [90]

Input (3×32×32)

8×8 Conv, 64, stride 4

3×3 Avg Pool, stride 2

Fully Connected, 10

(a) CNN-A

Input (3×32×32)

16×16 Conv, 64, stride 8

Dropout 0.25

Fully Connected, 10

(b) CNN-B

Figure B.1: Detailed architecture diagrams of CNN-A and CNN-B. Convolution layers are
followed by batch normalization and ReLU activation.
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Input (3×32×32)

4×4 Conv, 64, stride 2

3×3 Conv, 64

Dropout 0.25

3×3 Conv, 64

3×3 Max Pool, stride 2

3×3 Conv, 128

3×3 Max Pool, stride 2

Dropout 0.25

Fully Connected, 512

Dropout 0.5

Fully Connected, 10

(a) CNN-C

Input (1×28×28)

4×4 Conv, 64, stride 2

3×3 Conv, 64

3×3 Max Pool, stride 2

3×3 Conv, 128

3×3 Max Pool, stride 2

Dropout 0.25

Fully Connected, 512

Dropout 0.5

Fully Connected, 10

(b) CNN-D

Figure B.2: Detailed architecture diagrams of CNN-C and CNN-D. Convolution and fully
connected layers (except for the output layer) are followed by batch normalization and ReLU
activation.
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Input (2×96×96)

5×5 Conv, 32, stride 2

3×3 Max Pool, stride 2

3×3 Conv, 64, stride 2

3×3 Max Pool, stride 2

Fully Connected, 1024

Dropout 0.5

Fully Connected, 5

(a) CNN2

Input (2×96×96)

4×4 Harm, 32, stride 4

3×3 Harm, 64, stride 2

3×3 Max Pool, stride 2

Fully Connected, 1024

Dropout 0.5

Fully Connected, 5

(b) Harm-Net2

Figure B.3: Detailed architecture of CNN2 and Harm-Net2. Convolution, harmonic and
fully connected layers (except for the output layer) are followed by batch normalization and
ReLU.

Input (2×96×96)

5×5 Conv, 32, stride 2

3×3 Conv, 64, stride 2

3×3 Max Pool, stride 2

3×3 Conv, 128, stride 2

3×3 Max Pool, stride 2

Fully Connected, 1024

Dropout 0.5

Fully Connected, 5

(a) CNN3

Input (2×96×96)

4×4 Harm, 32, stride 4

3×3 Harm, 64, stride 2

3×3 Max Pool, stride 2

3×3 Harm, 128, stride 2

Fully Connected, 1024

Dropout 0.5

Fully Connected, 5

(b) Harm-Net3

Figure B.4: Detailed architecture of CNN3 and Harm-Net3. Convolution, harmonic and
fully connected layers (except for the output layer) are followed by batch normalization and
ReLU.
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