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Abstract 

Evaluations of convergent and discriminant validity are generally conducted by analyzing 

constructs in isolation or by comparing pairs of latent variables. These approaches ignore the 

broader nomological network that is intrinsic to a measure’s construct validity, and fail to test the 

implications of either perfect correlations (convergence) or imperfect correlations (divergence). 

This paper proposes congruence assessment as a useful approach to simultaneously examining 

the relationships between multiple latent variables within nomological networks. Two measures 

are congruent if they have proportionally equal correlations with other constructs. We present 

measures for quantifying congruence within nomological networks, discuss statistical tests of 

significance, and demonstrate their performance in simulation studies. We reanalyze three 

published studies to contrast findings from congruence assessment versus traditional criteria for 

convergent and discriminant validity. We also discuss methodological and theoretical 

implications of congruence assessment, and suggest future research directions for both 

covariance- and composite-based structural equation modeling. 

 
Keywords: Nomological network, structural equation modeling, discriminant validity, 

convergent validity, congruence  
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Assessing measure congruence in nomological networks 

 

1.  Introduction 

Authors have no control over what parts of their work readers will use, or whether a citation 

implies actual readership. In a retrospective on the famous coefficient alpha (Cronbach, 1951), 

Cronbach opined that many citations to his paper were from people who had not read or even 

looked at it. Many authors who use the term “Cronbach’s alpha” may not realize that, as the 

1951 paper documents, equivalent formulas had previously been presented “numerous times in 

the psychological literature” (Cronbach & Shavelson, 2004, p. 396). An approach for assessing 

discriminant validity commonly attributed to Anderson and Gerbing (1988), which tests whether 

two latent variables correlate significantly less than unity, was previously described in multiple 

papers that they cite. Another criterion for discriminant validity is that the squared correlation 

between latent variables should be greater (not necessarily significantly) than the average 

squared standardized loadings of the variables’ indicators (average variance extracted or AVE) 

(Fornell & Larcker 1981, pp. 45-46). Despite conceptual and empirical limitations (Franke & 

Sarstedt, 2019; Rönkkö & Cho, 2021), this heuristic has become a standard in measure validation 

(Voorhees et al., 2016). Fornell and Larcker (1981, p. 41) also build on Campbell and Fiske 

(1959) to describe an alternative but long-overlooked test of discriminant validity: whether the 

correlations within indicators of two constructs are greater than the correlations of the indicators 

between the constructs. Henseler et al. (2015) combine these sets of correlations in the 

heterotrait-monotrait ratio of correlations, or HTMT. This has become a popular criterion (as 

either a heuristic or test statistic) for assessing discriminant validity in structural equation 

modeling (SEM) (Franke & Sarstedt, 2019; Voorhees et al., 2016). 
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Another influential study also has an important neglected aspect. Cronbach and Meehl 

(1955) focused attention on the concept of construct validity, originally described as congruent 

validity (APA Committee on Test Standards, 1952). A core of their perspective is that 

understanding what traits or qualities a test measures depends on examining a network of 

relationships, rather than considering only bivariate relationships between latent variables: 

“Scientifically speaking, to ‘make clear what something is’ means to set forth the laws in which 

it occurs. We shall refer to the interlocking system of laws which constitute a theory as a 

nomological network” (Cronbach & Meehl, 1955, p. 290, italics in original). Though construct 

validity quickly became a key concept in measurement assessment, researchers generally focus 

on pairwise relationships and only rarely explicitly consider broader nomological networks.  

Campbell and Fiske (1959) show the importance of considering multiple variables 

simultaneously in measure validation, though not explicitly within nomological networks. 

Instead, they emphasize the use of multiple independent measurement procedures, summarized 

in multitrait-multimethod (MTMM) matrices. A “trait is a response tendency which can be 

observed under more than one experimental condition and … can be meaningfully differentiated 

from other traits. The testing of these two propositions must be prior to the testing of other 

propositions to prevent the acceptance of erroneous conclusions…. [MTMM procedures] are 

intended to be as appropriate to the relatively atheoretical efforts typical of the tests and 

measurement field as to more theoretical efforts” (Campbell & Fiske, 1959, p. 100). MTMM 

matrices are used to assess convergent and discriminant validity, with convergence established 

by high correlations between related variables, and divergence by correlations that are not “too 

high” between measures of different theoretical concepts. 

Campbell and Fiske (1959, p. 102) emphasize the use of multiple measurement procedures, 
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because for convergent validity, “with only one method, one has no way of distinguishing trait 

variance from unwanted method variance.” However, studies that use a single measurement 

procedure for related sets of items far outnumber those that explicitly consider MTMM 

correlations. Convergent validity is normally treated simply as a question of whether two latent 

variables X and Y correlate as expected, or whether indicators of items load on the expected 

constructs in conformance to a confirmatory factor analysis (CFA) model (e.g., Anderson & 

Gerbing, 1988).  

Researchers have generally considered discriminant validity as a more complex question 

that can be addressed as described by Anderson and Gerbing (1988), Fornell and Larcker (1981), 

Henseler et al. (2015), and other researchers. Except for Campbell and Fiske’s (1959) MTMM 

guidelines, something these procedures have in common is ignoring patterns of similarity and 

dissimilarity across multiple variables simultaneously. This practice can, however, produce 

misleading results. For example, latent variables X, Y, and Z may correlate perfectly, yet Y and 

Z do not correlate at all. This pattern creates a contradiction: If X and Y are the same, and X and 

Z are the same, how can Y be completely different from Z? The correlation patterns in this 

hypothetical example are extreme (and inconsistent with an underlying common-factor model, 

even if the model fits perfectly), but less extreme examples are common. Researchers will 

frequently encounter situations in which two latent variables are highly correlated, yet have 

meaningfully different relationships with other latent variables. For example, X and Y can have a 

very high correlation of r = .9, but if X correlates say r = .5 with Z, then Y’s correlation with Z 

can range from as high as r = .83 to as low as r = .07 (Carlson & Herdman, 2012). This range of 

possible correlations illustrates that the relationship between X and Y can only be interpreted in 

light of their relationships with other variables that form a broader nomological network.  
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Addressing the limitations of conventional pairwise approaches for assessing convergent and 

discriminant validity, we argue theoretically and demonstrate empirically how nomological 

networks can be used to assess to what extent pairs of latent variables both converge and diverge 

as expected—that is, are congruent. To do so, the next section shows how congruence across 

nomological networks can be summarized in terms of overall effect sizes and tested for 

significance. Simulations demonstrate the relative performance of two procedures for testing the 

significance of congruence between variables. Example analyses illustrate the performance of the 

tests with real data. The final section discusses theoretical and methodological implications, and 

suggests future research directions.  

While our descriptions primarily relate to factor-based modeling, as executed in CFA and 

covariance structure analysis (Jöreskog, 1970), the principles underlying congruence also apply 

to composite-based methods such as generalized structured component analysis (Hwang & 

Takane, 2004) and partial least squares (Wold, 1982). In the following we distinguish between 

congruence testing in factor-based versus composite-based methods, where relevant.  

2. Nomological networks and congruence 

Multiple terms in the literature express the concept that two instruments are measures of the 

same construct, including collapsible, collinear, confounded, congruent, equivalent, 

interchangeable, parallel, proxy, and redundant. In conventional language, congruence has the 

usual English meaning based on the underlying Latin concept of agreement and lack of conflict. 

In geometry, congruent describes figures that have the same form. Similarity of factor loadings is 

often described using a congruence coefficient (e.g., Lorenzo-Seva & ten Berge, 2006), as shown 

below for variable correlations (Eq. 2). Raykov et al. (2015) consider congruence in terms of 

whether indicators of different latent variables can be combined as indicators of a general overall 
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construct. Thus, congruence and congruent appear to be useful terms to use in examining 

relationships between latent variables within nomological networks. Importantly, congruence as 

developed here is not simply a novel test of either convergent or discriminant validity. Instead, it 

directly addresses questions of construct validity as described by Cronbach and Meehl (1955). 

Congruence implies that the focal latent or observed variables have the same proportional 

correlations with other variables:  

!!"! = 	$	!#"!                                                                (1) 

for X and Y relative to a network of variables Zi (i > 1), where $ is a nonzero constant (Hunter, 

1973). The special case of $ = 1 has been widely studied (e.g., Anderson & Gerbing, 1988; 

Jöreskog, 1971; Lord, 1957; Raykov, West & Trayner, 2015; Rönkkö & Cho, 2021; van der 

Sluis et al., 2005). However, this case is often unrealistic. Various authors have pointed out that 

common (but not necessarily equal) patterns of correlations with other latent variables are 

necessary for two latent variables to have convergent validity (e.g., Anderson & Gerbing, 1982; 

Hunter, 1973; Messick, 1989). Conversely, differing relationships with other latent variables 

imply a lack of convergence, thereby supporting discriminant validity (e.g., Brooke et al., 1988; 

Schwab, 1980; Zeller & Carmines, 1980). As an example, Kroger (1968) suggests that height 

and weight are correlated but conceptually distinct, and may have differing correlations with 

other variables such as skills in various sports. 

2.1. Measuring congruence 

An effect size for congruence, known as the congruence coefficient rc, is calculated as 

!$ = ∑!!"!!#"!/(∑ !!"!% ∑!#"!%).'                                           (2) 

where the summations are over X, Y, and Zi, including rXY and the reliabilities rXX and rYY on the 

diagonal. If the reliabilities are unknown, 1 or other plausible values can be used (Hunter, 1973). 
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This formula dates as far back as Burt (1937), and has been revived or rediscovered by other 

authors in succeeding decades (e.g., Anderson & Gerbing, 1982; Hunter, 1973; Steenbergen, 

2000; Tryon, 1958). Alternative labels for Eq. 2 include the proportionality or similarity 

coefficient, cosine correlation, cosine distance, and cosine similarity; when applied to comparing 

factor loadings, it is often called Tucker’s phi. Tryon (1958) omits rXY and the reliabilities from 

the calculation and calls the square of the resulting value the index of proportionality.  

Multiple resources facilitate rc calculations, including straightforward spreadsheets and SAS 

PROC DISTANCE (see Appendix 1). R and Matlab offer built-in functions, and websites give 

online calculators (e.g., https://scistatcalc.blogspot.com/2015/11/cosine-similarity-

calculator.html#). Because Eq. 2 can be expressed in terms of scalar products and vector norms 

(e.g., Steenbergen, 2000), it can also be calculated using matrix algebra procedures. Regression 

software that allows for suppression of the intercept gives rc as the standardized effect of X on Y 

or vice versa, or as the (correctly signed) square root of the variance explained. 

The congruence coefficient rc equals the cosine of the angle between two vectors X and Y. 

Cosines are not very intuitive as effect sizes, especially as rc approaches 1. The actual angle, 

given by the inverse or arc cosine of rc, is a more interpretable indicator of similarity:  

      ) = *+,()(!$)                                                           (3) 

To convert from cosines to angles, using the absolute value of rc and taking the angles in 

degrees rather than radians provides a 90-degree range of possible values (0 ≤ θ ≤ 90). rc = 1 (θ = 

0) implies complete congruence, but useful standards for small, medium, and large effects are 

less obvious. One approach is to “put into the diagonal whatever [reliability] value seems 

appropriate and ask if the similarity is ‘high’” (Hunter, 1973, p. 60). Anderson and Gerbing 

(1982, p. 458) suggest that a cutoff of rc = .80 (θ = 37) “is not meant to be interpreted as a rigid 
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value, but may serve as a useful guideline for model construction.” They do not give a rationale 

for this value, but other authors have accepted it as “the conventional cutoff” (Steenbergen, 

2000, p. 273). However, as shown next, simulations indicate that observed values of rc and θ 

strongly depend on the number of Z-variables in the nomological network.  

2.2. Congruence values in random correlation matrices 

To explore the distribution of rc and θ, we conduct a simulation experiment. The approach of 

the simulation experiment is to identify at which thresholds, for varying sizes (complexity) of 

nomological network, a value for rc or θ could be said to be significantly different from that of a 

random correlation matrix.  

We consider nine nomological networks of varying complexity: X, Y, and two to ten 

variables Zi (i.e., max(i) = I = 2,...,10) and k being the total number of variables (i.e., k = 

4,…,12). For each network, we generated 10,000 random correlation matrices (i.e., square 

positive semidefinite matrices with 1s on the diagonal and values from -1 to +1 elsewhere, rather 

than random samples from a specified population correlation matrix). In each replication, the 

first two columns serve as the X and Y variables of interest, providing a total of 90,000 rc and θ 

values. The box plots in Fig. 1 summarize the distributions of the absolute values of the 

coefficients (which would otherwise range from -1 to +1 with means and medians near 0) and 

corresponding angles θ. Each shaded box gives the interquartile range of the estimates (bottom 

25th to top 25th percentiles). The horizontal line within each box is the distribution median, and 

the diamond figures show the means. The lengths of the lines extending from the boxes are 1.5 

times the interquartile range, or less if constrained by the range of the data. Circles depict outliers 

beyond these extremes. Line graphs quantify high degrees of congruence at the 90th, 95th, and 

99th percentiles of rc, and the 1st, 5th, and 10th percentiles of θ. 
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Fig. 1. Congruence values in random correlation matrices 

Notes: Box plots show the distribution of the absolute value of rc (top panel) and its corresponding θ (bottom panel) 
for 10,000 random correlation matrices for k = 4 to 12 variables (X, Y, and 2 to 10 Zi variables). After taking 
absolute values, the possible range of rc is 0 to 1 and of θ is 0 to 90. Each box spans the 25th to 75th percentiles; 
horizontal lines and diamonds are the median and mean of the distribution respectively. For rc, lines connecting the 
distributions, from lowest to highest, are the 90th, 95th, and 99th percentiles; for θ, the lines are the 1st, 5th, and 10th 
percentiles. 
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The leftmost boxes in Fig. 1 are based on just four random variables, the smallest 

nomological network for which rc can be meaningfully calculated (representing X, Y, Z1, and 

Z2). The mean and median rc (upper panel) in this case are approximately .60. The 75th percentile 

is about .85, and the 90th, 95th, and 99th percentiles range from .95 to 1. Average percentiles 

decrease with each increment in k, but observed values often remain high. For example, rc = .80 

is the 90th percentile with k = 8 and the 95th percentile with k=10. Therefore, a .80 cutoff could 

be a reasonable criterion for larger nomological networks, but it would give many false positive 

signals of congruence for smaller numbers of variables. 

The θ distributions (lower panel) in Fig. 1 are similar to rc except for the conceptual reversal 

of the vertical axis (e.g., as mentioned above, rc = 1 implies θ = 0). The extreme values are 

clearly greater than zero as k increases, and the gaps between the 10th, 5th, and 1st percentiles are 

larger for θ than for rc. Therefore, θ is less likely than rc to falsely signal a very high degree of 

congruence. 

These results are based on simulated variables in random correlation matrices. Measure 

validation more commonly examines relationships between latent variables with multiple 

indicators and with differing degrees of latent correlations, sample sizes, and measure reliability. 

The next section presents conceptual and applied approaches for assessing congruence with 

latent variables, then summarizes empirical findings for congruence effect sizes in a more 

complex simulation design. 

3. Testing for congruence: Concepts and simulations 

3.1. Conceptual view of congruence testing 

The Anderson-Gerbing criterion for discriminant validity applies procedures for testing 
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whether two observed or latent variables correlate perfectly when accounting for measure 

reliability. However, in terms of perfect correlation in nomological networks, these procedures 

do not actually test the underlying model (Rönkkö & Cho, 2021; van der Sluis et al., 2005). If the 

disattenuated correlation fXY = 1, then fXZi should equal fYZi for each Zi. This pattern implies 

that $ = 1 as shown in Eq. (1), which Hunter (1973) calls exact equivalence. Comparing two 

models, one with fXZi and fYZi free to vary and another where they are constrained to be equal 

(along with other constraints, such as fX and fY having unit variances) is straightforward; the 

chi-square difference between the model fits tests the significance of the constraints. Allowing 

for proportional rather than equal correlations ($ ≠ 1), which Hunter (1973) calls weak 

equivalence, requires another approach. 

Fig. 2 illustrates why measures of the same construct have model-implied proportional 

correlations with other measures. Fig. 2 (upper panel) shows a CFA model with four latent 

variables: ξ1, ξ2, ξi (representing constructs ξ3, …, ξk-1), and ξk. For simplicity, only three 

indicators are shown for just two constructs, ξ1 and ξk. With standardized latent variables and 

indicators, the products of the loadings (l) equal the correlations between the indicators of a 

given construct; for example, for ξ1, l11 * l21 = rx11x21 and l11 * l31 = rx11x31. Given these 

relationships, the ratio between the loadings l21 and l31 is the same as the ratio between the 

correlations rx11x21 and rx11x31. Similar results hold for the correlation between the indicators of 

two different constructs, which is a function of their loadings and the correlation between the 

constructs (f, not labeled in Fig. 2 but represented by the curved double-headed arrows); for 

example, for ξ1 and ξk, l11 * fξ1ξk * l1ξ  = rx11x1ξ. The model-implied proportional relationships 

give internal consistency within constructs and external consistency between constructs. To the 
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extent that the observed correlations do not match the model-implied proportional correlations, 

the model does not fit the data and therefore does not indicate congruence. 

 

 

 

 

Fig. 2. CFA model 

Notes: The upper panel is a confirmatory factor analysis with four latent variables. The lower panel shows two 
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lower-order indicators of one higher-order construct, plus two other latent variables. In each panel, three observed 
indicators are shown for just two of the latent variables. 

 

The CFA model implies proportional relationships between indicators, but not between 

constructs. Using two latent constructs as indicators of a higher-order construct, illustrated in 

Fig. 2 (lower panel) by ξ1, ξ2, and ξc, does impose proportional but not necessarily equal 

relationships between the lower-order latent variables ξ1 and ξ2 and the other latent variables, ξi 

and ξk in the figure. The approaches discussed by van der Sluis et al. (2005) and Rönkkö and 

Cho (2021) for testing perfect correlations between latent variables correspond to setting g11 = $ 

= 1 in the loadings of ξ1 and ξ2 on ξc, if ξ1 and ξ2 are standardized to unit variances. Equal fit 

within sampling error for the models in Fig. 2 supports the proportionality constraints and 

implies congruence between ξ1 and ξ2.  

Fig. 2 shows reflective models with latent variables having multiple indicators, but the 

concepts illustrated also apply to assessing the congruence of individual measures (or in 

analyzing published results that show correlations between latent variables). In these 

applications, ξc in Fig. 2 (lower panel) would be the only latent variable. The higher-order model 

fit would directly test for congruence because the correlation model underlying Fig. 2 (upper 

panel) would be saturated and fit perfectly. Therefore, like HTMT (Henseler et al., 2015), 

congruence analysis can be applied to observed correlations without depending on a reflective 

model of underlying latent variables. 

3.2. Procedures for congruence testing 

Fig. 2 is a graphical illustration of model-implied congruence, but in practice it is not a very 

useful test procedure. If the indicators of the higher-order construct are actually not close to 
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congruent, the model estimates will often fail to converge and produce usable results.1 

Fortunately, more robust test procedures exist, as in the Mplus software. One is to use MODEL 

CONSTRAINT statements to create new variables representing ratios of the latent-variable 

correlations. For example, if X and Y are the test variables and Zi are the other constructs in the 

nomological network, then the latent correlations in the model specification could be labeled, 

say, XZ1, XZ2, … YZi (see Appendix 1 for example code). Then new variables could be 

calculated as RATIO1 = XZ1 / YZ1, etc. Finally, MODEL TEST statements would produce a 

simultaneous test of equality across the ratios (i.e., whether they all equal the ratio shown as $ in 

Eq. 1). The program output gives the test result as a Wald statistic with I – 1 (equals k – 3) 

degrees of freedom.  

Another approach in Mplus is to create a new variable, say rho, then use it in model 

constraint statements (e.g., XZ1 = RHO*YZ1, XZ2 = RHO*YZ2, etc. Again, see Appendix 1 for 

example code). Then comparing chi-square values of model fit for the constrained and 

unconstrained models tests for significance. Though conceptually this is exactly what the higher-

order factor specification in Fig. 2 (lower panel) imposes on the estimates, in practice the ratio-

constrained model is far more likely to converge. Both procedures, the Wald test (called WALD) 

and model comparisons (called DIFF), are used in the following simulations. 

Unfortunately, the WALD and DIFF tests cannot be readily transferred to composite-based 

SEM methods. In Appendix 2, we discuss details and suggest an alternative approach. 

3.3. Simulation design 

 

1 The same is true of the equality constraints discussed by van der Sluis et al. (2005), which perhaps helps 
account for why their approach is not more widely used in assessing discriminant validity than the simpler 
alternative popularized by Anderson and Gerbing (1988). 
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The simulation results in Fig. 1 give effect sizes rc and θ for random correlation matrices. In 

the following, we examine the performance and relative usefulness of the WALD and DIFF tests 

under conditions of variable congruence (null hypothesis) and incongruence (alternative 

hypothesis). We incorporate situations commonly encountered in empirical research by 

systematically varying factors such as sample size, number of latent variables, and correlations 

between the pairs of focal variables (fXY). We also examine whether differing reliabilities (rXX 

and rYY) affect congruence inferences, as has been found in testing discriminant validity (Franke 

& Sarstedt, 2019; McDonald, 1999). 

Each latent variable is measured by three indicators. All Y and Zi indicators have population 

correlations of .5, giving loadings of .707 and reliabilities of a = CR = .75. All Z-construct 

correlations are f = .3. The five manipulated factors are: 

• k: 5 or 7 total variables (such that I = 3 or 5 latent variables Zi). 

• n: 100, 250, and 500. 

• fXY: .707 (giving a minimum 50% X-Y shared variance across conditions), .80, and .90. 

• Congruent/Incongruent: XZi and YZi correlations range from relatively small, .1, to relatively 

large, .5. Correlations are equal or proportional in the congruent conditions, and the other two 

are somewhat higher (.3 versus .1) or lower (.3 versus .5) in the incongruent conditions: 

o Congruent: fXZi = fYZi = .1, .3, and .5 for i = 1 to 3, and .1, .2, .3, .4, and .5 for i = 1 to 

5, respectively (giving population rc values ranging from .985 to 1.000 and θ values 

from 1.1 to 9.9, depending on fXY and CR). 

o Incongruent: fXZi = .3 for all Zi when k = 5, and .3, .2, .3, .4, and .3 for Zi = 1 to 5 

when k = 7 (giving population rc values ranging from .967 to .973 and θ values from 
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11.0 to 14.8, depending on fXY and CR). fYZi values are the same as in the congruent 

condition. 

• Equal/Unequal X reliabilities: Without changing congruence or incongruence, the higher 

X-indicator correlations in the unequal-reliability condition increase X’s reliability relative to 

Y, and therefore fXZi, by (.85 / .75).5 = 1.065 = 6.5% (Nunnally, 1978, p. 239). 

o Equal: X-indicator correlations = .5 (l = .707 and reliability = a = CR = .75). 

o Unequal: X-indicator correlations = .654 (l = .809 and reliability = a = CR = .85). 

• Analysis methods: The WALD and DIFF tests described above are different approaches to 

imposing proportionality between the XZi and YZi correlations with d.f. = 2 or 4 for both 

tests, depending on whether k = 5 or 7 (I = 3 or 5). 

o WALD: Creates new variables equal to the XZi / YZi ratios and tests them for 

equality. d.f. = I - 1 because only two or four comparisons are needed to test equality 

of all three or five ratios. The latent correlations in the CFA model are unconstrained 

and unaffected by the new ratio variables; lack of fit is due entirely to random 

sampling in the measurement model. 

o DIFF: Compares the CFA fit in the WALD analysis with that of a constrained model 

(on the same simulation data) with XZi = RHO*YZi, with RHO calculated to 

maximize model fit. d.f. = I - 1 because I correlations and one RHO value (3 + 1 = 4 

or 5 + 1 = 6) are estimated in the constrained condition rather than I XZ plus I YZ 

correlations (3 + 3 = 6 or 5 + 5 = 10) distinct correlations in the unconstrained CFA. 

The specifications of measurement models, constructs, and construct correlations are typical 

of other simulation designs in applied research (e.g., Paxton et al., 2001). We used Mplus 
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capabilities for Monte Carlo designs to generate 1000 samples for each of the 72 experimental 

conditions (3 x f, 3 x n, 2 x I, 2 x congruence/incongruence, and 2 x reliability; the WALD and 

DIFF tests apply to the same data rather than distinct samples). Mplus saved the output for the 

total of 72,000 experimental replications in separate files, which we merged for further analyses 

using SAS software. 

4. Simulation results 

Some (306 or 0.4% of the total) of the replications did not provide usable results, primarily 

in conditions with I = 3 or n = 100 or both, but the effective sample size is almost or exactly 

1,000 replications for each combination of design factors. Therefore, power to detect all but the 

smallest effects is very high. However, other than the congruence manipulation, most effects of 

the simulation factors are small to nearly zero. 

4.1. GLM and effect sizes for simulation manipulations 

Using PROC GLM (general linear model) in SAS gives main effects and interactions for 

four outcome variables: the congruence coefficient rc and the corresponding angle θ, plus the chi-

square values from the WALD and DIFF tests. Table 1 shows selected results, with the 

semipartial omega-squared (ω2) as the effect size indicator. Very similar relative magnitudes of 

effects are found across other effects that PROC GLM reports, such as noncentrality parameters 

and partial eta-squares. 
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Table 1. Effect sizes of the GLM on Congruence Coefficients rc and Theta, WALD Test results, and DIFF Test results  

 Congruence Coefficient Theta WALD Test DIFF Test 
Effects df F Value Pr > 

F 
Semipartial 
Omega-
Square 

F Value Pr > 
F 

Semipartial 
Omega-
Square 

F Value Pr > 
F 

Semipartial 
Omega-
Square 

F Value Pr > 
F 

Semipartial 
Omega-
Square 

Congruent 1 40,698.90 0.00 0.314 71,476.00 0.00 0.421 50,243.20 0.00 0.236 171,665.00 0.00 0.420 
Z 1 12.25  0.00 0.000 105.59 0.00 0.001 17,531.40 0.00 0.082 4,177.02 0.00 0.010 
Congruent*Z 1 142.31 0.00 0.001 326.08 0.00 0.002 3,074.01 0.00 0.014 452.94 0.00 0.001 
Equal 1 1,048.51 0.00 0.008 1,716.28 0.00 0.010 474.67 0.00 0.002 4,124.57 0.00 0.010 
Congruent*Equal 1 1.96 0.16 0.000 79.08 0.00 0.001 357.65 0.00 0.002 4,094.68 0.00 0.010 
Z*Equal 1 0.17 0.68 0.000 0.14 0.71 0.000 44.85 0.00 0.000 0.47 0.49 0.000 
Congruent*Z*Equal 1 0.32 0.57 0.000 0.02 0.88 0.000 50.53 0.00 0.000 0.89 0.34 0.000 
n 2 5,687.51 0.00 0.088 7,594.13 0.00 0.090 17,698.4 0.00 0.166 33,612.5 0.00 0.165 
Congruent*n 2 0.92 0.40 0.000 697.68 0.00 0.008 12,722.4 0.00 0.119 34,340.3 0.00 0.168 
n*Z 2 65.17 0.00 0.001 84.97 0.00 0.001 1,370.87 0.00 0.013 35.35 0.00 0.000 
Congruent*n*Z 2 0.04 0.96 0.000 0.03 0.97 0.000 856.36 0.00 0.008 48.1 0.00 0.000 
n*Equal 2 99.42 0.00 0.002 59.49 0.00 0.001 109.70 0.00 0.001 855.08 0.00 0.004 
Congruent*n*Equal 2 2.82 0.06 0.000 2.13 0.12 0.000 113.38 0.00 0.001 861.76 0.00 0.004 
n*Z*Equal 2 0.50 0.60 0.000 0.68 0.51 0.000 18.83 0.00 0.000 0.65 0.52 0.000 
Congruent*N*Z*Equal 2 0.08 0.92 0.000 0.07 0.93 0.000 17.41 0.00 0.000 2.18 0.11 0.000 
Phi 2 1,084.13 0.00 0.017 1,819.88 0.00 0.021 515.41 0.00 0.005 1,910.90 0.00 0.009 
Congruent*Phi 2 134.51 0.00 0.002 261.74 0.00 0.003 657.18 0.00 0.006 1,954.11 0.00 0.010 
Z*Phi 2 4.37 0.01 0.000 18.96 0.00 0.000 19.42 0.00 0.000 12.44 0.00 0.000 
Congruent*Z*Phi 2 4.64 0.01 0.000 10.04 0.00 0.000 28.24 0.00 0.000 14.60 0.00 0.000 
Equal*Phi 2 537.56 0.00 0.008 1,019.72 0.00 0.012 18.57 0.00 0.000 143.50 0.00 0.001 
Congruent*Equal*Phi 2 0.71 0.49 0.000 67.51 0.00 0.001 14.40 0.00 0.000 139.41 0.00 0.001 
Z*Equal*Phi 2 0.89 0.41 0.000 1.65 0.19 0.000 1.56 0.21 0.000 0.48 0.62 0.000 
Congruent*Z*Equal*Phi 2 1.16 0.31 0.000 2.52 0.08 0.000 7.20 0.00 0.000 1.89 0.15 0.000 
n*Phi 4 201.43 0.00 0.006 220.18 0.00 0.001 94.45 0.00 0.002 395.32 0.00 0.004 
Congruent*n*Phi 4 3.75 0.00 0.000 39.52 0.00 0.001 104.21 0.00 0.002 409.06 0.00 0.004 
n*Z*Phi 4 0.95 0.43 0.000 1.67 0.15 0.000 6.76 0.00 0.000 3.55 0.01 0.000 
Congruent*n*Z*Phi 4 2.49 0.04 0.000 1.08 0.36 0.000 5.19 0.00 0.000 2.27 0.06 0.000 
n*Equal*Phi 4 4.20 0.00 0.000 26.82 0.00 0.001 2.40 0.05 0.000 27.87 0.00 0.000 
Congruent*N*Equal*Phi 4 1.14 0.33 0.000 4.36 0.00 0.000 3.90 0.00 0.000 32.64 0.00 0.000 
n*Z*Equal*Phi 4 0.44 0.78 0.000 0.24 0.92 0.000 0.74 0.56 0.000 0.22 0.93 0.000 
Congruent*n*Z*Equal*Phi 4 0.60 0.67 0.000 0.33 0.85 0.000 0.97 0.42 0.000 0.43 0.78 0.000 

Notes: Significant effects are shown in bold type. Model R-squares are .45, .58, .66, and .82 for rc, theta (θ), WALD, and DIFF respectively. 
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Key findings from Table 1 are straightforward. With the effect sizes, the factors account for 

more variance in the model for θ than for rc, R-square = .58 versus .45 respectively. Across the 

model conditions, the congruence manipulation has by far the strongest effect: ω2 = .42 for θ and 

.31 for rc. The next highest effects are ω2 = .09 for the sample size across both rc and θ. The 

remaining effect sizes are .02 or less for all main effects and interactions. Therefore, the 

congruence manipulation works as intended, and the sample size influences rc and θ values in 

ways not shown by the random correlations summarized in Fig. 1. 

The results show that the model terms account for more variance in DIFF outcomes than for 

WALD tests (R-square = .82 versus .66). The congruence manipulation again has the largest 

effects, both overall and in combination with the sample size. Congruence, sample size, and 

congruence x sample size ω2 values are respectively .42, .16, and .17 for DIFF and .24, .17, and 

.12 for WALD. The number of Z-variables I has an ω2 value .08 for WALD versus .01 for DIFF. 

The other main effects and interactions are all minor, ω2 ≤ .014. 

4.2. Data distributions and box plots 

To see the data distributions underlying the GLM results in Table 1, the graphs in Figs. 3-6 

show box plots for almost all combinations of design factors. The exception is the equal/unequal 

reliability manipulation, which explains almost no variance in the outcome variables (maximum 

ω2 = .012) and is therefore omitted for graphical parsimony. The most obvious patterns in the 

figures are from the congruence manipulation, with congruent results in the upper graph and 

incongruent results in the lower. Within each of these sets, the first nine box plots are for I = 3 

and the second nine represent I = 5. Further subdivisions include the three levels of sample sizes, 

and finally across each value of n are the levels of f. The axis labels reflect this ordering, with 

the first letter representing Congruence vs. Incongruence, then 3 or 5 Z-variables, then sample 
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sizes of 100, 250, and 500 (shown as 1, 2, and 5), and finally f of .71 (shown as .7), .8, and .9. 

 

 

Fig. 3. rc simulation results  

Notes: rc distributions for the congruent simulations are in the upper panel; incongruent simulations are in the lower 
panel. In both panels, k = 5 (three Z-variables) results are on the left, k = 7 (five Z-variables) results are on the right. 
Results are combined across levels of the Equal/Unequal reliability manipulation. 
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Fig. 4. Theta simulation results  

Notes: θ distributions for the congruent simulations are in the upper panel; incongruent simulations are in the lower 
panel. In both panels, k = 5 (three Z-variables) results are on the left, k = 7 (five Z-variables) results are on the right. 
Results are combined across levels of the Equal/Unequal reliability manipulation. 
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In Figs. 3 and 4, in every case, the averages are higher for rc and lower for θ when X and Y 

are congruent rather than incongruent. The differences are not large, but as discussed above, 

neither is the incongruence manipulation. The results are less variable for congruent samples, 

with smaller interquartile ranges and fewer outliers than in incongruent samples. Variability also 

decreases as sample sizes increase. The figures give a hint of fXY effects, with slightly greater 

congruence (higher rc, lower θ) for fXY = .8 than for .71 and .9. However, the distributions 

overlap for all three levels, consistent with the minor main effects and interactions shown in 

Table 1.  

If the WALD and DIFF tests follow a chi-square distribution, as expected, their average 

values should equal their degrees of freedom when the null hypothesis is true (i.e., in the 

congruent condition). They should also have the correct size, meaning they reject the true null in 

the same percent of random samples as the chosen alpha level (e.g., five percent when α = 0.05). 

When the null is false (the incongruent simulations), the tests should have good power to 

produce significant results relative to alpha. Low power leads to conservative inferences, and the 

wrong size can be either too conservative or liberal. For example, the Fornell-Larcker (1981) test 

is normally applied as a directional comparison of shared variance versus AVE, giving it a size 

of .50 in random samples when its null hypothesis is actually true (Franke & Sarstedt, 2019). 

By these standards, the WALD test underperforms. In the congruent condition (upper panel, 

Fig. 5), when the null hypothesis is true, the average test value is always lower than the expected 

value shown by the straight horizontal lines at 2 and 4 (left axis). The average percent of 

significant results is lower than the expected p = .05 (right axis). Therefore, the size of the 

WALD test is lower than the .05 alpha level, meaning it is unnecessarily conservative.  
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Fig. 5. WALD chi-square distributions for the congruent simulations are in the upper panel; incongruent simulations 
are in the lower panel. In both panels, k = 5 (three Z-variables) results are on the left, k = 7 (five Z-variables) results 
are on the right. The solid lines (left axis, upper panel) at 2 and 4 are the expected chi-squares under the null 
hypothesis. The dashed lines are the critical chi-square values with 2 and 4 d.f. The red solid line at p = .05 (upper 
panel, right axis) is the expected size of the test. Dotted lines (both panels, right axis) are the percent of significant 
findings at p = .05. 
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Power rather than size is relevant when the null hypothesis is false, as in the incongruent 

condition (lower panel, Fig. 5). The dotted lines with the filled square markers show the percent 

of null hypotheses that are correctly rejected (i.e., the power of the test). When n = 100, power is 

near 0. When n = 250, power is less than .30. Even when n = 500, the only simulation condition 

with power above the conventional .80 standard combines five Zi variables with a very high fXY 

= .9. The sample size has a much stronger effect when the null hypothesis is false than when it is 

true, so that the two panels in the figure illustrates the congruence x n interaction found in the 

GLM results (Table 1). 

The DIFF test is more effective, as shown in Fig. 6. In the congruent condition (upper 

panel), the average chi-squares are consistently very near the expected values of 2 and 4, and the 

proportion of significant results is close to the expected p = .05. Therefore, DIFF has the 

appropriate size for rejecting the true null hypothesis. Power is substantially higher than in the 

WALD test for detecting measure incongruence (lower panel). When n = 100, power ranges 

from roughly .45 to .60 depending on the value of fXY. Power is consistently above .90 when n = 

250, and approaches 1.0 when n = 500. In Table 1, ω2 for the congruence x n interaction is .17 

for DIFF versus .12 for WALD, as reflected in the disparate power findings in Figs. 5 and 6. 
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Fig. 6. DIFF test simulation results  

Notes: DIFF chi-square distributions for the congruent simulations are in the upper panel; incongruent simulations 
are in the lower panel. In both panels, k = 5 (three Z-variables) results are on the left, k = 7 (five Z-variables) results 
are on the right. The solid lines (left axis, upper panel) at 2 and 4 are the expected chi-squares under the null 
hypothesis. The dashed lines are the critical chi-square values with 2 and 4 d.f. The red solid line at p = .05 (upper 
panel, right axis) is the expected size of the test. Dotted lines (both panels, right axis) are the percent of significant 
findings at p = .05. 
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Fig. 1 gives a baseline for interpreting rc and θ values for random correlations, and Figs. 3-6 

show results in the context of a particular simulation design. In empirical applications measuring 

variables within nomological networks, correlations between constructs are expected to show 

more meaningful patterns as predicted by theory. To illustrate congruence assessment in practice, 

the next section presents three examples with real data: the first with observed data for multiple 

indicators of latent variables, the second with published correlations between measures of 

organizational market information-processing practices, and the third with published MTMM 

correlations from an analysis of personality dimensions assessed using multiple measures. 

5. Empirical examples 

We examine measure congruence in three examples. In the first two, we also apply three 

tests of discriminant validity: the Anderson-Gerbing criterion, the Fornell-Larcker criterion, and 

McDonald’s (1999) test. The last test is not widely used, but it has the desirable feature of 

directly taking measure reliability into account (Franke & Sarstedt, 2019). AVE as considered in 

the Fornell-Larcker test can be calculated in terms of average item reliabilities, but unlike CR, 

the number of indicators is irrelevant to AVE. McDonald (1999, p. 212) does not propose an 

explicit test criterion, but gives an example that suggests a workable test incorporating the 

reliabilities of both constructs (Franke & Sarstedt, 2019): 

     !"!.# − !"$.# ∗ %$! > 0		and		!"$.# − !"!.# ∗ %$! > 0                              (4) 

for constructs 1 and 2. That is, indicators should have a stronger relationship with their intended 

construct than with another construct. Paraphrasing McDonald’s description, CR1.5 * f21 = .77 

versus CR2.5 = .78 means that the indicators of construct 1 are almost as good a measure of 

construct 2 as are 2’s own indicators. 
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5.1. Example 1: Data from Bove et al. (2009) 

Bove et al. (2009) present a model of how four measures of customer appraisals of service 

workers influence the customers’ organizational citizenship behaviors (OCBs), such as positive 

word-of-mouth and participation in the organization’s activities. Using data from 484 

respondents, they apply the Fornell-Larcker (1981) criterion in terms of the average AVE 

between pairs of constructs, rather than for each construct individually. Farrell (2010) identifies 

three correlations between constructs that fail the actual Fornell-Larcker (1981) criterion. 

Analyzing data provided by one of Bove’s coauthors (with OCB parcels rather than all 29 

original items), we derive the results shown in Table 2. 
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Table 2. Empirical Example 1: Bove et al. (2009) 

Construct 1 Construct 2 rc Theta 
(θ) 

WALD (p<) (df = 
2) 

DIFF (p<) (df = 
2) 

PHI FL 1  
(p <) 

FL 2  
(p <) 

McDonald 1 (p 
<) 

McDonald 2 (p 
<) 

Commitment Credibility 0.929 21.8 34.2 (.00) 50.8 (.00) 0.51 .61 (.00) .40 (.00) .48 (.00) .45 (.00) 
Commitment Benevolence 0.964 15.3 48.9 (.00) 53.9 (.00) 0.64 .47 (.00) .22 (.00) .38 (.00) .30 (.00) 
Commitment Loyalty 0.988 8.8 25.0 (.00) 29.8 (.00) 0.82 .20 (.00) -.03 (.42) .21 (.00) .12 (.00) 
Commitment OCB 0.995 5.9 7.6 (.02) 7.5 (.02) 0.78 .27 (.00) -.09 (.06) .29 (.00) .12 (.00) 
Credibility Benevolence 0.991 7.5 5.9 (.05) 6.0 (.05) 0.77 .08 (.06) .04 (.35) .24 (.00) .19 (.00) 
Credibility Loyalty 0.973 13.3 41.1 (.00) 55.6 (.00) 0.72 .15 (.00) .13 (.00) .28 (.00) .24 (.00) 
Credibility OCB 0.958 16.6 40.6 (.00) 54.4 (.00) 0.57 .34 (.00) .18 (.00) .44 (.00) .33 (.00) 
Benevolence Loyalty 0.993 6.7 24.2 (.00) 30.0 (.00) 0.79 -.00 (.95) .02 (.74) .18 (.00) .19 (.00) 
Benevolence OCB 0.986 9.7 9.1 (.00) 46.8 (.00) 0.69 .15 (.00) .03 (.57) .31 (.00) .24 (.00) 
Loyalty OCB 0.998 3.5 5.5 (.06) 6.7 (.05) 0.80 .01 (.90) -.13 (.02) .22 (.00) .13 (.00) 
Notes: All PHI-values < 1, p < .001. FL 1 and FL 2 indicate the Fornell-Larcker criterion value when using the average variance extracted of Constructs 1 and 2, 
respectively. McDonald 1 and 2 indicate the criterion value applied to Constructs 1 and 2, respectively. Some results do not match Bove et al. (2009) and Farrell 
(2010) due to published rounding errors and the use of OCB parcels in the available data. 
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The results show that the f values are generally large, ranging from .51 to .82, but are 

consistently significantly less than 1.0. The Fornell-Larcker values show the difference between 

f2 and the AVE for each of the paired variables, corresponding to Constructs 1 and 2 (FL 1 and 2 

in Table 2, respectively). Positive values imply discriminant validity according to the Fornell-

Larcker criterion. Nonsignificant p-values suggest that confidence intervals are ambiguous about 

whether AVEs are larger or smaller than shared variances. For McDonald’s (1999) test, using 

Construct 1 for CR1 and Construct 2 for CR2 in Eq. 4 (McDonald 1 and 2 in Table 2, 

respectively) shows that the measures are better indicators of their intended construct than the 

other construct in each pair. 

Given the nature of the constructs, involving related worker perceptions and voluntary 

citizenship behaviors, the results in Table 2 unsurprisingly suggest congruence between 

variables. The least congruent pair involves customer commitment to the worker and perceptions 

of worker credibility, with rc =.929 and θ = 21.8. For random correlations with five variables, 

these values are close to the 90th and 5th percentiles respectively. All other pairs show even 

stronger congruence, with the greatest similarity between loyalty to the service worker and OCBs 

(rc =.998 and θ = 3.5). However, even with these extreme values, the DIFF tests reject 

congruence for all ten pairs of variables (p-values ranging from .000 to .049). The less powerful 

WALD test does not reject congruence for two pairs at a strict .05 level: for loyalty-OCBs, p < 

.063, and for credibility-beneficence, p < .052. 

To summarize, while the pairwise tests give mixed evidence for discriminant validity, 

congruence assessment raises concerns about the distinctiveness of OCBs relative to three other 

variables: commitment, benevolence, and loyalty. Though the DIFF test rejects congruence for 

all three pairs at p < .05, the magnitudes of rc and θ suggests that each pair has similar 
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(proportionally equal) correlations. Loyalty also shows high congruence with commitment and 

benevolence, as would be expected in response to good or bad customer service. Overall, 

congruence assessment supports Bove et al.’s (2009) findings of an important relationship 

between service worker perceptions and customer OCBs. However, the results raise questions 

about whether the measured OCBs are better construed as behavioral outcomes of worker 

perceptions, or as affective indicators of attitudes toward the service provider. 

5.2. Example 2: Data from Hult et al. (2005) 

Hult et al. (2005) test a model in which three cultural aspects and three information-

processing aspects of market orientation influence organizational responsiveness to customers 

and competitors, which in turn influences performance. They also take six control variables into 

account. Except for firm size, age, and performance, all constructs are measured with multiple 

items. They note that for every pair of latent variables, a test of f < 1 is significant. However, 

AVE < f2 for two pairs of information-processing variables, suggesting a lack of discriminant 

validity between information dissemination and generation, and between dissemination and 

shared interpretation. Note that this does not compromise their study’s results, but might with 

other analysis approaches or nomological networks.  

Hult et al. (2005) report correlations, AVEs, and shared variance (f2) values for 217 firms. 

Table 3 presents results as available from analyzing the three pairs of information-processing 

variables. Congruence effects indicate that the variables have nearly proportional correlations 

with the other variables analyzed: rc ≥ .986 and θ ≤ 9.6. Nevertheless, the DIFF test significantly 

(p < .036) rejects congruence for all three pairs. The WALD test fails to reject congruence for the 

same pairs as indicated by the Fornell-Larcker criterion: information generation and 

dissemination (p < .057) and information dissemination and shared interpretation (p < .261). 
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McDonald’s (1999) test directionally support discrimination for all three variable pairs. Note that 

the available information does not allow for assessing the Fornell-Larcker and McDonald’s 

(1999) test for significance. 



33 

 

Table 3. Empirical Example 2: Hult et al. (2009) 
Variable 1 Variable 2 rc Theta 

(θ) 
WALD (p<) (df = 
2) 

DIFF (p<) (df = 
2) 

PHI FL 1 (p<) FL 2 (p<) McDonald 1 
(p<) 

McDonald 2 
(p<) 

Information 
Generation 

Information 
Dissemination 

0.990 8.0 21.9 (.06) 40.3 (.00) 0.72 .11 (na) -.08 (na) .25 (na) .23 (na) 

Information 
Generation 

Shared 
Interpretation 

0.986 9.6 26.0 (.02) 58.1 (.00) 0.68 .17 (na) .39 (na) .28 (na) .31 (na) 

Information 
Dissemination 

Shared 
Interpretation 

0.990 6.6 15.8 (.26) 23.5 (.04) 0.78 -.17 (na) .24 (na) .18 (na) .21 (na) 

Notes: All PHI-values < 1, p < .001, per Hult et al. (2009). na is not available. FL 1 and FL 2 indicate the Fornell-Larcker criterion value when using the average 
variance extracted of Constructs 1 and 2, respectively. McDonald 1 and 2 indicate the criterion value applied to Constructs 1 and 2, respectively. 
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In sum, the latent-variable correlations, McDonald’s (1999) tests, and DIFF test results 

imply distinctions between the information-processing variables. However, the congruence effect 

sizes suggest that their correlations with the other variables in the data are generally very 

consistent (proportionally equal). Rather than raising concerns about the measures, this pattern 

supports Hult et al.’s (2005) treatment of market information processing as a single summated 

scale, rather than as three distinct dimensions. 

5.3. Example 3: Data from Hong et al. (2008) 

The “Big Five” personality traits of openness to experience, conscientiousness, extraversion, 

agreeableness, and neuroticism are a research focus in many settings (e.g., Park et al., 2020). 

Hong et al. (2008) report an MTMM investigation (n = 295) in which the methods are three 

different measures of the Big Five: the NEO Five-Factor Inventory (Costa & McCrae, 1992), the 

Five-Factor Nonverbal Personality Questionnaire (Paunonen et al., 2004), and an adjective rating 

form called B5-ADJ (Goldberg, 1992). For comparison with other MTMM analyses, and 

because of the large number of variable pairs, Table 4 shows effect sizes rc and θ without 

pairwise tests of significance or discriminant validity. 
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Table 4. Empirical Example 3: Hong, Paunonen and Slade (2008) 

 NEO-FFI FF-NPQ B5-ADJ 
NEO-FFI N E O A C N E O A C N E O A C 
Neuroticism 0.86 37.75 55.97 47.87 45.45 12.47 32.77 55.27 75.85 53.77 30.59 60.39 78.77 65.44 45.18 
Extraversion 0.79 0.78 61.62 36.13 58.40 40.80 24.38 48.38 82.15 68.12 42.49 41.46 70.42 55.81 60.11 

Openness -0.56 -0.48 0.67 82.07 85.70 61.89 63.42 33.31 84.71 88.32 57.74 65.07 62.53 78.51 64.86 
Agreeableness 0.67 0.81 -0.14 0.76 45.12 44.54 32.42 73.66 60.84 49.00 52.19 65.68 76.30 60.64 63.42 
Conscientiousness 0.70 0.52 -0.08 0.71 0.82 38.82 47.64 84.13 67.21 31.14 58.75 81.25 85.09 80.50 54.55 
FF-NPQ                
Neuroticism 0.98 0.76 -0.47 0.71 0.78 0.80 31.94 63.02 69.31 45.34 31.27 65.73 80.27 67.88 47.61 
Extraversion 0.84 0.91 -0.45 0.84 0.67 0.85 0.82 58.44 64.28 53.31 36.21 54.37 73.22 61.84 57.96 
Openness -0.57 -0.66 0.84 -0.28 -0.10 -0.45 -0.52 0.80 72.07 82.96 60.78 52.09 51.52 78.91 75.09 
Agreeableness 0.24 0.14 0.09 0.49 0.39 0.35 0.43 0.31 0.76 49.22 70.76 83.93 80.77 72.53 73.97 
Conscientiousness 0.59 0.37 -0.03 0.66 0.86 0.70 0.60 0.12 0.65 0.79 56.61 85.85 84.51 78.37 49.41 
B5-ADJ                
Neuroticism 0.86 0.74 -0.53 0.61 0.52 0.85 0.81 -0.49 0.33 0.55 0.84 57.52 79.19 63.61 53.83 
Extraversion 0.49 0.75 -0.42 0.41 0.15 0.41 0.58 -0.61 -0.11 0.07 0.54 0.87 72.88 57.56 67.60 
Openness -0.19 -0.34 0.46 -0.24 -0.09 -0.17 -0.29 0.62 0.16 0.10 -0.19 -0.29 0.74 83.68 81.48 
Agreeableness 0.42 0.56 -0.20 0.49 0.17 0.38 0.47 -0.19 0.30 0.20 0.44 0.54 0.11 0.85 56.08 
Conscientiousness 0.70 0.50 -0.42 0.45 0.58 0.67 0.53 -0.26 0.28 0.65 0.59 0.38 0.15 0.56 0.81 

Notes: rc is below the diagonal, reliabilities (from Hong et al. 2008) are on the diagonal, and theta (θ) is above the diagonal. Monotrait-heteromethod (validity) 
correlations are in bold. Heterotrait-monomethod correlations are in italics. 
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Following Hong et al. (2008), the validity diagonals (same traits, different methods) are 

shown in bold in Table 4. Heterotrait-monomethod correlations are in italics. According to the 

seminal Campbell and Fiske (1959) criteria, values in the validity diagonals should be large 

enough to merit further consideration of convergent validity. At the other extreme (different 

variables and different methods), for each variable, its validity-diagonal value should be larger 

than the heterotrait-heteromethod correlations (plain text in Table 4). An intermediate criterion is 

that validity-diagonal correlations should be larger than heterotrait-monomethod correlations; 

that is, the correlations should reflect common-trait effects more strongly than common-method 

effects. Finally, heterotrait triangles should show consistent patterns regardless of method. Given 

the correlations reproduced in Table 4, Hong et al. (2008, p. 162) see “evidence of generally 

good convergent and discriminant validity according to the Campbell and Fiske (1959) criteria.” 

However, alternative CFA analysis procedures “indicated that discriminant validity of the Big 

Five factors is at best moderate” (p. 163). 

For comparison with the values in Table 4, extending Fig. 1 to include k = 15 (for three 

methods and five traits) gives 90th, 95th, and 99th percentiles of rc = .629, .704, and .754 

respectively. For θ, the 10th, 5th, and 1st percentiles (angles closer to 0o) are 51.0, 45.2, and 35.1 

degrees respectively. Therefore, several entries in the validity diagonals do not reflect 

congruence levels much better than chance. Most but not all of the validity-diagonal values are 

larger than the heterotrait-monomethod congruences. Visual examination suggests multiple 

discrepancies between patterns of correlations in the heterotrait triangles. Overall, the results in 

Table 4 suggest that measures of neuroticism and extraversion are reasonably congruent across 

methods, though less so for the FF-NPQ and B5-ADJ measures. Openness and conscientiousness 

are relatively congruent for the NEO-FFI and FF-NPQ measures. Agreeableness correlations are 
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not especially congruent between any pairs of measures. 

In short, congruence assessment, which considers all measures simultaneously without 

imposing an a priori measurement model, does not strongly support Hong, Paunonen and Slade’s 

(2008) conclusions based on the Campbell and Fiske (1959) criteria or CFA results. Except for 

neuroticism, the B5-ADJ dimensions are not particularly congruent with each other or across 

measures. Neuroticism and extraversion are substantially more congruent than random 

correlations, but the rc and θ values clearly allow for inconsistent correlations with other 

variables. Thus, the congruence results indicate that the Big Five dimensions are empirically 

distinct, as expected, but raise questions about exactly what aspects of personality are captured 

by the alternative measurement scales. 

6. Discussion 

6.1. Theoretical implications of congruence 

Campbell and Fiske’s (1959) introduction of convergent and discriminant validity has 

influenced measurement methodology for more than half a century. Convergent validity seems 

straightforward: Do measures of items and constructs correlate significantly as expected, and to 

what extent? Discriminant validity has received considerably more research attention in recent 

years (including among others Franke & Sarstedt, 2019; Henseler et al., 2015; Matthes & Ball, 

2018; Rönkkö & Cho, 2021; Schaffer et al., 2016; Voorhees et al., 2016). As stated by Campbell 

and Fiske (1959, p. 84), “One cannot define without implying distinctions, and the verification of 

these distinctions is an important part of the validational process.” Or put more succinctly, 

“knowledge is knowledge of differences” (Fiske, 1982, p. 89). However, when measures of the 

same construct have different labels, theory development and testing, literature searches, survey 

length, and empirical analyses can all be compromised.  
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A construct has meaning only in the context of a nomological network: “Constructs are of 

interest only if they are connected to other constructs… Failure of the measure to relate to 

measures of other constructs (assuming the latter are accepted as valid) leads to the modification 

of the measure (and hence the construct), modification of the theory connecting the construct to 

the other constructs, or the abandonment of both” (Schwab, 1980, pp. 6-7). Congruence 

assessment considers similarities and differences between pairs of variables relative to a network 

of other variables, not in isolation. High congruence, like high correlations, “challenge[s] the 

proponent of distinct constructs to locate or create the circumstances under which the variables in 

question are distinguishable” (Messick, 1989, p. 51). An example can be found in Bove et al. 

(2009): Though the commitment and loyalty measures (directionally) fail the Fornell-Larcker 

criterion, their respective correlations of .51 and .72 with worker credibility differ significantly 

(p < .01). Whether this difference is substantively important within the nomological network is a 

different question than a yes-no conclusion about discriminant validity based on shared variance 

and AVEs. 

Even when “the true correlation between two traits is meaningfully less than unity” (Werts et 

al., 1974, p. 281, italics added), high congruence calls for further examination of the measures 

and data. Consistent correlations could result from common method variance, which can be 

addressed in data collection and analysis (Podsakoff et al., 2012). Alternatively, and more 

important theoretically, the variables in the network could have other common causes. 

Identifying, measuring, and controlling such influences would enhance understanding of 

relationships between other variables in the network. 

A test or measure is neither valid nor invalid in general: “What is to be validated is not the 

test or observation device as such but the inferences derived from test scores or other indicators” 
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(Messick, 1989, p. 13). Therefore, conclusions about two variables’ congruence, and more 

broadly about construct validity, logically depend on which other variables are considered within 

a nomological network. Evidence for or against congruence between the same two variables may 

meet theoretical expectations in different settings. However, as research in an area evolves, 

understanding “a theoretical construct is a matter of elaborating the nomological network in 

which it occurs, or of increasing the definiteness of the components” (Cronbach & Meehl, 1955, 

p. 290).  

Whitely (1983, p. 180) discusses the scope of a network in terms of its nomothetic span, 

which “indicates the importance of a test as a measure of individual differences.” Implication 

analysis calls for making theories elaborate. As a first step in theory testing, “the implications of 

a theory are developed for all sorts of conditions and circumstances … and these implications are 

then empirically examined… A useful theory should suggest a wide array of expansions” 

(Lieberson & Horwich, 2008, pp. 22-23). In a mature research area, meta-analytic investigations 

may examine congruence between variables across much broader networks than any single study 

reports. For example, King and King (1990, p. 59) use results from two previous meta-analyses 

to conclude, “the meta-analytic findings suggest that there is little difference between the two 

constructs [i.e., role conflict and role ambiguity], at least concerning patterns of relationships 

with other variables.” Thus, congruence assessment can contribute to theory and measure 

validation as a research area develops. 

6.2. Practical implications and future research 

Congruence assessment is well established in the measurement literature, including a 

discussion and version of Eq. 2 in the enormously influential “Two-Step Approach” paper by 

Anderson and Gerbing (1988). However, it has played only a very minor role in validation 
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practices over the years. One contribution of this paper is to show how and why congruence 

should play an important role in measure validation and theory testing. Another contribution is to 

show how congruence can be summarized in two related effect size indicators, rc and θ, and 

interpreted in terms of statistical significance using contemporary software in ways that were not 

possible in the past. Therefore, congruence assessment is a feasible tool for modern empirical 

research.  

Congruence of two measures relative to networks of other variables, especially diverse and 

extensive networks, suggest they are measures of the same thing. Why, then, should these 

variables not correlate perfectly? Several factors may produce weak equivalence (! ≠ 1 in Eq. 1) 

between otherwise equivalent measures. Some possible sources for weak equivalence and 

starting points for identifying congruence issues include: 

• The number of items used in multi-item measures. As is well known, for a given average 

correlation between indicators, using more items increases reliability and reduces 

measurement error (e.g., Nunnally, 1978, p. 211).  

• Random sampling of measurement items. The domain-sampling model provides a framework 

for examining measurement error (e.g., Nunnally, 1978, Chapter 6). It posits an infinitely 

large hypothetical correlation matrix of items that all correlate the same on average. By 

chance, two sets of items from the same domain may correlate more or less than average, 

increasing or decreasing reliability for a given number of items.  

• Measurement artifacts, which can influence correlations between observed and true scores 

(e.g., Schmidt & Hunter, 2014). One is range restriction, which could be reduced in measures 

or samples that differ in how much of the overall possible range of responses is captured. 

Others are differing patterns of skewness or variable dichotomization, which can limit the 
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range of possible correlations (i.e., to greater than -1 or less than +1).  

• Test bias, which can influence response means, variances, reliabilities, and correlations (e.g., 

Drasgow, 1982). Though bias is often considered in how the same measure affects different 

groups, it could also affect how different measures affect a single group. 

• Bifactor models, in which measures are influenced both by a general underlying trait or 

“global” factor and another “local” factor that affects a subset of the variables. Variables X 

and Y could largely share the same global factor, but have distinct local factors (e.g., Raykov 

& Bluemke, 2020). Depending on whether and how the local factors relate to Zi, the XZi and 

YZi correlations could be congruent even though X and Y do not exclusively measure the 

same thing. 

These factors could have different implications for conventional tests of discriminant 

validity. Artifacts that reduce values of fXY in testing fXY = 1 could imply discriminant validity 

according to Anderson and Gerbing (1988), but reduced shared variance (fXY2) relative to AVE 

could imply a failure of discriminant validity according to Fornell and Larcker (1981). As shown 

in the simulations, neither of these criteria has direct implications for congruence assessment. 

That is, ! ≠ 1 is problematic for two popular tests of discriminant validity, but is explicitly 

accommodated in assessing congruence across nomological networks. 

In addition to further consideration of these possible influences on proportionality, several 

areas for future research on congruence seem promising. One is simply to apply the procedures 

described in this study to additional extant or future examples, to provide further grounds for 

interpreting congruence effect sizes and tests, and to see whether they offer new insights relative 

to conventional practices. Congruence is grounded in patterns of correlations, not their 

magnitudes. Therefore, like MTMM analyses and HTMT, it can be used for descriptive, 
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atheoretical purposes, such as comparing variable interrelationships over time with early versus 

late survey respondents or with test-retest and panel data. Congruence assessment across traits 

and methods in MTMM matrices could also provide new measures of effect sizes and 

significance relative to more conventional approaches (e.g., Hong et al., 2008). 

Hunter (1973, p. 61) makes the point that, “since similarity coefficients are based on more 

data than are direct correlation coefficients, they will be more stable in the face of sampling 

error.” Therefore, it may be useful to explore ways of visualizing and interpreting congruence 

coefficients. If they are all positive, or can be recoded as positive because of arbitrary underlying 

metrics (e.g., item reversals in data collection), rc and θ can be treated as distance measures. 

Steenbergen (2000) suggests that multidimensional scaling can reveal patterns of relationships 

that would be harder to detect in the coefficients themselves. This approach could be useful in 

examining MTMM results (as in Table 4). Hunter (1973), Tryon (1958), and others discuss 

“cluster analysis” of congruence coefficients as a superior alternative to factor analysis in 

identifying dimensions of individual differences, which could be used in item screening prior to 

CFA or structural analysis of the nomological network. 

An interesting research question is whether and how congruence may be related to 

multicollinearity in structural models (e.g., Grewal et al., 2004). Strong linear relationships 

between predictors increase the variances of their structural coefficients, potentially leading to 

estimates that are nonsignificant, have the wrong sign, or are affected by small changes in 

sample composition. Congruent predictors are not necessarily highly correlated, but they are 

redundant in the sense of having the same (proportional) relationships with other variables. 

Monte Carlo simulations under controlled conditions should clarify when congruent predictors 

may be effectively treated as distinct predictors, or when they are better treated as indicators of 
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the same underlying construct (as in Fig. 2, lower panel). Collinearity effects may also be 

relevant in the context of composite-based SEM, discussed in Appendix 2. 

The simulation results summarized in Table 1 and Figs. 3-6 are based on 72 experimental 

conditions, so the design is already fairly elaborate. However, it might be useful to determine 

whether analysis of nonnormal data affects the WALD and DIFF tests. Another possible 

extension is to consider additional patterns of congruence and incongruence. This study focuses 

on external consistency (relationships between constructs), but internal consistency (relationships 

within constructs) may provide new insights relative to conventional consideration of 

exploratory or confirmatory factor analyses. For both applications, the WALD test is convenient, 

since it requires a single analysis versus the two required for the DIFF test. However, accuracy is 

more important than convenience in measure validation.  

6.3. Conclusion 

Measures of different constructs can have high pairwise correlations, and alternative 

measures of the same construct do not necessarily correlate highly (Cronbach, 1989; Messick, 

1989). Our thesis is that constructs can only be validated in the context of nomological networks, 

rather than by comparing pairs of variables in isolation. Congruence assessment, unlike 

conventional criteria for convergent and discriminant validity, is fundamental for establishing 

whether and to what extent measures of focal constructs are consistent or distinct. Therefore, the 

procedures for congruence assessment presented in this paper can play a key role in validating 

focal variables relative to their theoretically implied antecedents, consequences, and correlates. 
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Appendix 1: Congruence calculations and significance tests 
 

For the first two examples, data are from Bove et al. (2009) and may not exactly match Table 2 
due to rounding. Composite reliabilities (CR) are in bold. 
 
Example Spreadsheet Using Microsoft Excel 
 

 A B C D E F 
1 Formula for column:  =Bi*Ci =Bi^2 =Ci^2 
2  X Y Numerator Denominator 

X 
Denominator 

Y 
3 X            0.93           0.51          0.47            0.86            0.26  
4 Y            0.51           0.88           0.45             0.26            0.77  
5 Z1            0.64           0.77           0.49             0.40            0.59  
6 Z2           0.82           0.72           0.59             0.68            0.51  
7 Z3            0.76           0.54           0.41             0.57            0.29  
8 Sum          2.40             2.77            2.42  
9 rc          0.929  Formula =D9/(E9^0.5*F9^0.5) 
10 theta            21.8  Formula =DEGREES(ACOS(ABS(B10))) 

 
An alternative formula for rc that uses only columns B and C is 
=SUMPRODUCT(B3:B7,C3:C7)/(SUMSQ(B3:B7)^0.5*SUMSQ(C3:C7)^0.5) 
 
Example Code Using SAS PROC DISTANCE 
 
Capitalization is optional. Output is not shown. For more discussion and code for matrix algebra 
calculations, see https://blogs.sas.com/content/iml/2019/09/03/cosine-similarity.html. 
 
title ‘rc (“cosine coefficient”) for Bove et al. (2009)’; 
data bove; input comm cred bene loy ocb; 
cards; 
.93 .51 .64 .82 .76 
.51 .89 .77 .72 .54 
.64 .77 .83 .79 .67 
.82 .72 .79 .85 .78 
.76 .54 .67 .78 .76 
; 
proc distance data=bove out=cos method=cosine; 
var ratio(_numeric_); run;  
 
proc print data=cos; run; quit; 
 
Example WALD and DIFF Tests Using Mplus 
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General setup (not shown, with I = 3). Specify variables, input data, analysis method, etc. Create 
standardized measurement models for X, Y, and Z1 – ZI. Label X-Z and Y-Z correlations: 
 
x with y*; 
x with z1* (xz1); 
x with z2* (xz2); 
x with z3* (xz3); 
y with z1* (yz1); 
y with z2* (yz2); 
y with z3* (yz3); 
z1 with z2*;  
z1 with z3*; 
z2 with z3*; 
 
WALD Test: 
 
Create new variables for ratios of correlations, and test them for equality: 
 
model constraint: 
  new (ratio1* ratio2* ratio3*); 
  ratio1 = xz1 / yz1; 
  ratio2 = xz2 / yz2; 
  ratio3 = xz3 / yz3; 
 
model test: 
  ratio1 = ratio2; 
  ratio1 = ratio3; 

 
DIFF Test: 
 
Create a new variable RHO, and constrain the XZ correlations to equal RHO times the YZ 
correlations. Compare the resulting model chi-square with an unconstrained confirmatory factor 
analysis result (e.g., from the WALD test analysis): 

 
model constraint: 
  new (rho*); 
  xz1=rho*yz1; 
  xz2=rho*yz2; 
  xz3=rho*yz3; 
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Appendix 2 
Congruence testing in composite-based SEM 
 

Factor-based structural equation modeling employs the maximum likelihood method to 

estimate the model parameters. Composite-based SEM such as partial least squares (PLS-SEM; 

Wold, 1982) and generalized structured component analysis (GSCA; Hwang & Takane, 2014) 

minimizes a least squares criterion in parameter estimation. This fundamental difference has an 

important consequence for testing model fit. Factor-based SEM methods produce a model-

implied correlation matrix that can be assumed to follow a chi-square distribution, while 

composite-based SEM methods cannot make this claim (Dijkstra & Henseler, 2015; Hwang & 

Takane, 2014). Therefore, chi-square difference tests are not available in composite-based SEM.  

More generally, eminent SEM methodologists have noted several technical challenges with 

model fit statistics in PLS-SEM, and suggest that goodness-of-fit indices are questionable in a 

PLS-SEM context (Hair et al., 2019). Furthermore, PLS-SEM does not allow for imposing 

model constraints, which makes the method unsuitable for tests of model fit such as the WALD 

and DIFF tests. However, rc and θ can still be calculated using the same approaches as described 

in the first two examples of Appendix 1.  

Conversely, GSCA minimizes a single least-squares criterion and thus alternative goodness-

of-fit indices are available, such as standardized root mean square residual (SRMR) and the 

goodness of fit index (GFI; Ryoo & Hwang, 2017), whose efficacy has already been established 

in this methodological context (Cho et al., 2020). While GSCA currently allows for fixing of 

parameters, it does not allow for testing of model constraints, and thus the WALD and DIFF tests 

as described in the body of the paper and Appendix 1 cannot be implemented.  

However, researchers using GSCA can apply nonparametric bootstrapping to construct the 
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sampling distribution of a test statistic of the deviance between two models such as an SRMR 

difference (Hwang & Takane, 2014, Chapter 3.1.2). Such a test could compare the goodness-of-

fit of a standard model (such as the model in the upper panel in Fig. 2) with a nested model that 

includes a higher-order construct (such as the model in the lower panel in Fig. 2). A significantly 

different model fit would indicate that the lower-order constructs are not congruent. However, 

testing such an approach’s performance and drawing conclusions on its suitability are beyond the 

scope of this article. We invite further research into the topic.  
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