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A B S T R A C T

With the greying population, it is increasingly necessary to establish robust and individualized markers of
cognitive decline. This requires the combination of well-established neural mechanisms, and the development of
increasingly sensitive methodologies. The P300 event-related potential (ERP) has been one of the most heavily
investigated neural markers of attention and cognition, and studies have reliably shown that changes in the
amplitude and latency of the P300 ERP index the process of aging. However, it is still not clear whether either the
P3a or P3b sub-components additionally index levels of cognitive impairment. Here, we used a traditional visual
three-stimulus oddball paradigm to investigate both the P3a and P3b ERP components in sixteen young and thirty-
four healthy elderly individuals with varying degrees of cognitive ability. EEG data extraction was enhanced
through the use of a novel signal processing method called Functional Source Separation (FSS) that increases
signal-to-noise ratio by using a weighted sum of all electrodes rather than relying on a single, or a small sub-set, of
EEG channels. Whilst clear differences in both the P3a and P3b ERPs were seen between young and elderly
groups, only P3b amplitude differentiated older people with low memory performance relative to IQ from those
with consistent memory and IQ. A machine learning analysis showed that P3b amplitude (derived from FSS
analysis) could accurately categorise high and low performing elderly individuals (78% accuracy). A comparison
of Bayes Factors found that differences in cognitive decline within the elderly group were 87 times more likely to
be detected using FSS compared to the best performing single electrode (Cz). In conclusion, we propose that P3b
amplitude could be a sensitive marker of early, age-independent, episodic memory dysfunction within a healthy
older population. In addition, we advocate for the use of more advanced signal processing methods, such as FSS,
for detecting subtle neural changes in clinical populations.
1. Introduction

The P300 was one of the first event-related potentials (ERPs) to be
reported (Sutton et al., 1965), and its discovery is largely credited for the
application of EEG methods to cognitive neuroscience (Polich, 2012).
The P300 ERP presents as a large positive waveform with a
centro-parietal topography peaking approximately 300ms after stimulus
onset. Although the term P300 (or P3) is often used in the literature, it is
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important to clarify that the P300 encompasses at least two distinct
subcomponents; the P3a and P3b (Squires et al., 1975). Whilst the P3b
has a parietal topography, the P3a presents with a more anterior focus
peaking around central electrodes most likely indicating that the P3a and
P3b ERP components are underpinned by distinct neural sources (Linden,
2005; Polich, 2003). In addition, the morphology of P3a and P3b ERPs
also differ. Whilst the peak of the P3a is relatively consistent across trials,
the P3b peak is response-locked and as such it changes from trial-to-trial
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depending on the speed of the response (Hillyard et al., 1971; Squires
et al., 1973). When P3a and P3b trials are averaged across subjects, this
often means the grand average P3a presents with a clear peak around
300ms (due to the consistent single trial peaks), whereas the P3b has a
wide spread morphology ranging between 300 and 600ms. These dif-
ferences in scalp topography and ERP morphology suggest that the P3a
and P3b might sub-serve different cognitive processes (Linden, 2005;
Polich, 2007, 2003). The P3a is often driven by rare non-target (dis-
tractor) stimuli, and as such it is believed that the P3a ERP represents
stimulus-driven frontal attention mechanisms (Linden, 2005; Polich,
2007). The P3b is often elicited by target detection paradigms (most
famously the oddball paradigm), however there is still ongoing debate
about whether the P3b encodes allocation of attentional resources
(Nieuwenhuis et al., 2011), context and memory updating (Donchin and
Coles, 1988; Polich, 2007), the uncertainty of the stimulus (Mars et al.,
2008), or the accumulation of sensory evidence (Kelly and O'Connell,
2015).

Along with being one of the most investigated ERPs in typical pop-
ulations, the P300 has proven to be a useful marker of clinical pathology.
Perturbations of the P300 have been shown in ADHD, Autism, Depres-
sion, Obsessive Compulsive Disorder, and Parkinson's disease to name
but a few (Polich and Criado, 2006). However, the largest number of
P300 studies have focussed on how the P300 ERP changes with age and
whether this might be a marker of cognitive decline seen in Mild
Cognitive Impairment (MCI) and Alzheimer's disease (AD) (Rossini et al.,
2007). Polich (1997) previously showed that increases in P300 latency
(which we assume to be the P3b based on the paradigm) and decreases in
P300 amplitude correlate with age (20–80yrs; n¼ 120, 10 male and 10
female per decade). Walhoovd and Fjell (Walhovd and Fjell, 2001)
expanded on this by using a combination of two- and three-stimulus
oddball paradigms to distinguish the P3a and P3b ERPs. They similarly
found that both P3a and P3b peak latency increase with age and P3a and
P3b peak amplitude decrease with age. Studies by Polich and
Corey-Bloom (2005) and Van Deursen et al. (van Deursen et al., 2009)
have shown that the amplitude of P300 responses further decreased
whilst peak latency further increased in both MCI and AD compared to
matched elderly controls.

Compensatory neural mechanisms that occur with aging, along with
increasing frontalization of brain responses, have been formalized in the
Compensation-Related Utilization of Neural Circuits Hypothesis
(CRUNCH; (Reuter-Lorenz and Cappell, 2008)) and Posterior-Anterior
Shift in Aging (PASA; (Davis et al., 2008)) models respectively. Some
studies have suggested that this increased frontal activity in elderly in-
dividuals is important for task performance (Davis et al., 2008; Goh and
Park, 2009), however studies by Fabiani et al. (Fabiani et al., 1998) and
West et al. (2010) have also shown that elderly individuals who show a
larger frontal P300 response performmore poorly on neuropsychological
tests of executive functions. Although it is not clear whether the
increased frontal activity that occurs with aging is a help or a hindrance,
it is clear that understanding age-related changes and cognitive decline
requires investigating both frontal and parietal mechanisms in parallel
rather than just exploring single electrodes in isolation.

EEG source reconstruction suffers from the fact that multiple potential
source configurations result in the same measured EEG potentials. This
issue is especially problematic when a very low number of electrodes are
used, which is often the case in clinical applications. For this reason, EEG
studies investigating the P300 in aging, MCI, and AD have avoided source
localization and relied upon one single electrode or a localised subset of
electrodes. However, the generators of EEG activity cannot be reliably
inferred on the basis of a-priori selected single channels, or a limited
group of channels, due to the electric/magnetic field propagation prob-
lem (Rusiniak et al., 2013; Siegel et al., 2012). Moreover, using infor-
mation coming from only one electrode can be misleading especially
when the activated network is spread among the entire scalp, as in the
case of the P300. As such, this traditional approach of using a limited
number of electrodes to investigate age-related changes may lack the
536
sensitivity to detect the neural changes underpinning cognitive decline
and thus only pick up on the much clearer age-related changes in ERP
activity. In order to overcome this issue, we propose using a novel signal
processing method - Functional Source Separation (FSS – (Porcaro and
Tecchio, 2014; Porcaro et al., 2009a, 2008; Tecchio et al., 2007). FSS
overcomes an important limitation of most previous studies by using the
best combination of all available electrodes to detect the P300 genera-
tors. This approach has already been applied to extract EEG specific
features for primary motor (Porcaro et al., 2008), primary sensory
(Porcaro et al., 2009a,b; 2008), and primary visual (Porcaro et al., 2011,
2010) areas. We believe this approach will provide much richer infor-
mation than traditional EEG approaches, especially given the larger
network of brain regions involved in producing the P3a and P3b
responses.

Here for the first time, we have used FSS as a tool to investigate the
P3a and P3b ERP responses in young and older individuals. Here we
propose two complementary hypotheses: 1) differences in P300 ERP
responses will correspond with individual differences in cognitive
decline (based on neuropsychological measurements) in the older pop-
ulation, and 2) the FSS approach (utilizing a weighted combination of all
electrodes) will be more sensitive to these differences than traditional
approaches based on individual electrodes.

2. Materials and methods

2.1. Participants

Sixteen young (18–28 years old; mean age, 22.4� 3.28 years) and
thirty-four elderly individuals (65–78 years old; mean age, 70.22� 4.31
years) were recruited for this study. Data from two elderly participants
had to be discarded due to technical problems and poor EEG data quality,
and one young and one additional elderly participant were excluded for
poor performance on the task (d-prime <1). Table 1 shows demographic
details for young and old participants. All participants were right-handed
according to the Edinburgh Handedness Questionnaire (Oldfield, 1971).
Participants gave written informed consent before the study, which was
approved by the Trinity College Dublin School of Psychology Ethics
Committee. On a day separate from the EEG testing (elderly group:
163.43� 118 days; young group: 161� 81 days), participants also un-
derwent a neuropsychological battery consisting of the Mini Mental State
Examination (MMSE; (Folstein et al., 1975)), the National Adult Reading
Test (NART; estimate of intelligence; (Nelson, 1982)), the Stroop test,
category fluency (animal), the Logical Memory subtest of the Wechsler
Memory Scale III (WMS; (Wechsler, 1997)), and the Hospital Anxiety and
Depression Scale (Zigmond and Snaith, 1983). Participants who scored
more than 8 on either the anxiety or depression subscales of the Hospital
Anxiety and Depression Scale were excluded from the study. Participants
were not taking any psychiatric or neurological medications at the time
of testing.

We subdivided old participants into cognitively high performing (HP)
and low performing (LP) individuals as suggested by previous research
(Dockree et al., 2015). To do so, logical memory delayed recall scores and
NART estimated IQ scores were converted into Z scores. LP individuals
were identified as having a logical memory score one standard deviation
below their NART estimated IQ scores. This approach of baselining
memory scores using NART IQ has been shown to be more sensitive than
using raw values to categorize individuals (Dockree et al., 2015).

2.2. EEG recording

EEG recordings were acquired with a 32-channel BrainAmp system
(BrainProducts, Munich, Germany). Thirty-three EEG electrodes were
placed on the scalp, including the reference electrode positioned at FCz
and the ground electrode placed at position AFz. One external electrode
was applied to the subjects back to acquire the electrocardiogram (ECG).
Electrode impedances were maintained at less than 10 kΩ. Data were



Table 1
Participant demographics for young compared to elderly individuals. T values were generated using Students two sample t-test (no variables showed a significant
difference in Levene's test of equality of variance). Significant differences between young and old individuals are highlighted in bold (p< 0.05). Effects size (Cohen's d)
and Bayes Factor are also reported to highlight the magnitude of the effect. Cohen's d values between 0.2 and 0.5 are considered small, 0.5–0.8 medium, and greater than
0.8 are considered large. Bayes Factors between 1 and 3 are considered anecdotal, 3–10 moderate, and greater than 10 are considered strong.

Young (n¼ 15) Old (n¼ 31) t df p Cohen's d BF10

mean SD mean SD

Gender 4/15 female 18/31 female
Age (yrs) 22.4 3.418 70 4.195 38.173 44 <.001 12.006 3.923e þ31
Years of Education 16.357 2.951 14.5 3.012 �1.896 40 0.065 �0.621 1.265
HADS anxiety 4.143 2.248 3.667 2.905 �0.541 42 0.591 �0.175 0.353
HADS depression 1.357 1.737 2.367 1.79 1.758 42 0.086 0.569 1.043
MMSE 29.2 0.862 28 1.713 �2.551 44 0.014 �0.802 3.743
Log Memory (Zscore) 0.573 0.914 0.511 0.979 �0.207 44 0.837 �0.065 0.313
NART (Zscore) 0.952 0.35 1.253 0.467 2.207 44 0.033 0.694 2.03
LogMem – NART �0.379 1.063 �0.742 0.83 �1.268 44 0.211 �0.399 0.58
Oddball performance
Hits (%) 84.388 13.251 88.94 12.706 1.124 44 0.267 0.353 0.507
False Alarm (%) 3.513 4.516 7.772 10.165 1.544 44 0.13 0.486 0.785
D-Prime 3.151 0.89 2.902 0.756 �0.988 44 0.328 �0.311 0.453
RT (ms) 485.684 58.566 509.605 78.189 1.049 44 0.3 0.33 0.475
RT variability 0.245 0.077 0.3 0.115 1.669 44 0.102 0.525 0.917
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recorded on a laptop computer using Brain Recorder v1.04 software
(BrainProducts, Munich, Germany) at a sampling rate of 5 kHz with a
band-pass filter of 0.016–250Hz.

2.3. Experimental procedure

Participants performed a 3-stimulus visual oddball task previously
described in O'Connell et al. (2012a). Every 2075ms a stimulus appeared
on the screen for 75ms. Standard stimuli consisted of a 3.5-cm diameter
purple circle and appeared on 80% of trials. Target stimuli were a slightly
larger purple circle (4 cm diameter) and appeared on 10% of trials.
Distractor stimuli were a black and white checkerboard and appeared on
10% of trials. Participants were asked to make a speeded response to
target stimuli using the response box placed in their right hand. The
stimulus array was pseudo randomly designed such that between 3 and 5
standard stimuli were presented after any target or distractor stimulus.
Thus, the minimum interval between a P300 eliciting events was
8300ms but because targets and distractors were randomly interspersed
throughout the task the interval between 2 targets or between 2 dis-
tractors could be as high as 64 s. The average was approximately 20 s,
and approximately 70% of trials occurred between 8 and 22 s. All stimuli
were presented on a grey background and participants were asked to
maintain fixation on a white cross-presented at the centre of the screen.

2.4. EEG pre-processing

The data were re-referenced to common average and down-sampled
to 512Hz. The data were bandpass filtered (0.5–30 Hz) prior to the off-
line analysis. Whilst it has been argued that a highpass filter > 1Hz is
preferable for ICA, this filter setting significantly reduces the amplitude
of the P300 ERP, which has an optimal highpass filter of 0.1Hz (Kap-
penman & Luck, 2010). For this reason, a highpass filter setting of 0.5Hz
was chosen, as in previous studies (Murphy et al., 2011). The first step of
the analysis we have employed is a semiautomatic independent compo-
nent analysis (ICA)-based procedure to identify and remove cardiac
and/or ocular artefacts without rejecting the contaminated epochs
(Barbati et al., 2004; Porcaro et al., 2015).

2.5. Functional source separation

Functional source separation (FSS – (Barbati et al., 2008, 2006, Por-
caro et al., 2009a,b; 2008; Porcaro et al., 2011, 2010; Tecchio et al.,
2007) is a semi-blind source separation method (Porcaro and Tecchio,
2014) which uses some well-known distinctive features of
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electrophysiological signals. The aim of FSS is to enhance the separation
of relevant signals by exploiting a priori knowledge without renouncing
the advantages of using only information contained in original signal
waveforms. FSS, analogous to ICA, models the set of EEG recorded signals
x as a linear combination of an equal number of sources s via a mixing
matrixA. Differing from other constrained ICAmodels (Khan et al., 2012;
Lu and Rajapakse, 2005; Wang and James, 2007), FSS identifies a single
source at a time, building a contrast function for that source that exploits
fingerprint information associated to the neuronal pool to be identified
(Porcaro and Tecchio, 2014). In general, FSS starts from the original EEG
data matrix x for each source, and returns one functional source (FS) with
the required functional property. This scheme gives us the possibility to
extract the FS that maximizes the functional behaviour in agreement with
the functional constraint (Porcaro and Tecchio, 2014). A modified cost
function (with respect to standard ICA) is defined as: F¼ JþλRwhere J is
the statistical constraint normally used in ICA, while R accounts for the a
priori information known about the sources. The relative weight of these
two parameters can be adjusted via λ ((Porcaro et al., 2008) - Appendix
A). λ has been chosen to both minimize computational time and maxi-
mize the functional constraint R. Moreover, the FSS contrast function F is
optimized by means of simulated annealing (Kirkpatrick et al., 1983),
thus allowing prior information about the FS to be described by a
non-differentiable function.

Our study aimed to investigate the activity on P300 in both young and
old participants. Thus, we first identified the functional source underly-
ing the P300 processes maximizing the P300 response (around the
following time window [320–480ms] for both young and old partici-
pants) named FSP300. The functional constraints used were defined as
follows:

RFSP300 ¼
Xt2

t1

jEAðtÞj �
X0

t¼�500

jEAðtÞj

with the evoked activity, EA, computed by averaging signal epochs of the
source FSP300, triggered on the visual stimulation (t¼ 0); t1 is the lower
bound (320ms) and t2 is the upper bound (480ms) of the window chosen
to maximize the temporal fingerprint of the source. The baseline was
computed in the time interval from �500 to 0ms.
2.6. Functional sources behaviour

Once the sources (FSP300) were extracted, ERP analysis and topo-
graphic distribution were calculated in both young and old participants
to characterize and validate the source extracted. In particular, ERP
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analysis was performed on P3a and P3b to investigate different behav-
iours in the two groups (Young vs. Old) and ‘High Performing’ vs. ‘Low
Performing’ (HP vs. LP) Elderly groups. Target trials (P3b) and distractor
trails (P3a) were epoched (�500 to 1000ms) separately and were
baseline corrected for the interval from �500 to 0ms. For each subject,
single trails were averaged excluding error trials (i.e. missing response
for Target trials, or a response for Distractor trials). We performed
pointwise statistical analysis on the averaged target (P3b) and distractor
(P3a) waveforms conducting two-sample permutation t-tests (10,000
permutations) on every point of the ERP waveform (0–1000ms). We
used false discovery rate (FDR) to correct for multiple comparisons. In
addition, peak amplitude and latency values were extracted and analysed
using a combination of frequentist and Bayesian approaches. These an-
alyses were conducted in JASP (The JASP Team, 2017) v0.8.2 - https://
jasp-stats.org).

2.7. Support vector machine (SVM) learning

We trained separate sets of classifiers to predict from EEG data
whether an individual belonged to the Young vs HP, Young vs LP, or
HP vs LP groups. Each set of classifiers used peak amplitude and
latency as the only features, but these features were derived from
either the P3a or P3b ERP which were extracted from (i) FSS data,
or from the single electrodes (ii) Fz, (iii) Cz, or (iv) Pz. In total we
implemented eight separate sets of classifiers (P3a vs P3b x FSS vs
Fz vs Cz vs Pz) using linear support vector machines (SVM, default
parameters of Matlab R2016a). Accuracies were determined using a
leave-one-subject-out cross-validation scheme. For example, for the
LP versus HP classification we trained the classifier on a test dataset
consisting of thirty participants and validated it on one participant
who has been left out. This procedure was repeated 31 times (i.e.
leaving out each of the participants) and the overall accuracy was
calculated as the percentage of participants which were accurately
classified during the validation step. Feature permutation was used
to assess the significance of the classifier performance under the
null-hypothesis of independence between features and labels. The p-
value was calculated as the fraction of classification accuracies from
the permuted dataset larger than accuracies obtained from the
original dataset, here based on 1000 such permutations (Ojala and
Garriga, 2009). Subsequently, all p-values were corrected for mul-
tiple comparisons using the false discovery rate to account for the
fact that we used multiple classifiers.
Table 2
Participant demographics for HP compared to LP individuals. T values were gener
in Levene's test of equality of variance in which case Welch's t-test was used). Significa
Effect sizes (Cohen's d) and Bayes Factor are also reported to highlight the magnitude
medium, and greater than 0.8 are considered large. Bayes Factors between 1 and 3 are

HP (n¼ 17) LP (n¼ 14)

mean SD mean SD

Gender 8/17 female 10/14 female
Age (yrs) 71.235 4.25 68.5 3.73
Years of Education 15.059 2.609 13.636 3.50
HADS anxiety 3.176 2.789 4.308 3.03
HADS depression 2.059 1.784 2.769 1.78
MMSE * 28.471 1.068 27.429 2.17
Log Memory (Zscore) 1.21 0.505 �0.338 0.69
NART (Zscore) 1.296 0.431 1.2 0.51
LogMem – NART �0.086 0.428 �1.538 0.34
Oddball performance
Hits (%) 89.174 9.565 88.656 16.1
False Alarm (%) * 5.862 4.665 10.09 14.1
D-Prime 2.917 0.728 2.884 0.81
RT (ms) 512.146 87.254 506.52 68.6
RT variability * 0.262 0.062 0.346 0.14
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3. Results

3.1. Oddball performance and neuropsychological differences

Table 1 summarizes demographic information, results from neuro-
psychological tests and the oddball task performance for young and
elderly individuals. In all cases frequentist and Bayesian two sample t-
tests were performed to establish group differences. Young subjects had
significantly more years of education and performed better on the MMSE
while old individuals performed significantly better on the NART
compared to young individuals. However, a complementary Bayesian
analysis found that these results were in the anecdotal range (BF10< 3).
There were no significant differences in oddball performance (all p� 0.1;
BF< 1). In addition, when the old group was split into HP and LP in-
dividuals, there were no significant differences in oddball performance
(Table 2). The only significant between-group differences were perfor-
mance on the logical memory subscale of the WMS III, and the difference
between the logical memory subscale and the NART.

3.2. Electrophysiological signals

3.2.1. Functional source behaviour validations
FSS successfully extracted P300 ERP responses in both old (HP and

LP) and young participants (FSP300). The outcomes of the FSS approach
mirror a number of well-established properties of the P300 in aging. First,
topographic maps show a posterior to anterior shift in the old group with
respect to the young participants (Fig. 1, left column). Second, there was
an apparent delay in the peak latency of the FSP300 ERPs in the old group
(420� 44ms; mean� standard deviation) compared to the young group
(380� 30ms). All of these findings are well established in previous
electrophysiology studies of aging and the P300 (Balsters et al., 2013;
O’Connell et al., 2012a).

3.2.2. Discrepancy quality check
In order to validate the quality of the FSP300 source extraction we

performed the ERP P300 on Raw Data, reconstructed data by FSP300 and
discrepancy (i.e. the ERP Raw Data minus the ERP obtained recon-
structing the data using the source FSP300 extracted). As shown in Fig. 2,
for both groups we were able to identify all the electrical activity at
around 380ms and 420ms for the P3a and P3b peaks respectively. The
discrepancy topography map also showed that the residual activity of the
P300 peak is near to zero for both P3a and P3b.
ated using Students two sample t-test (an asterisk indicates a significant difference
nt differences between HP and LP individuals are highlighted in bold (p< 0.05).
of the effect. Cohen's d values between 0.2 and 0.5 are considered small, 0.5–0.8
considered anecdotal, 3–10 moderate, and greater than 10 are considered strong.

t df p Cohen's d BF10

7 �1.881 29 0.07 �0.679 1.263
1 �1.232 26 0.229 �0.477 0.627
8 1.059 28 0.299 0.39 0.528
7 1.08 28 0.289 0.398 0.537
4 �1.638 18.1 0.119 �0.608 1.054
4 �7.178 29 <.001 �2.591 138051.179
9 �0.56 29 0.58 �0.202 0.385
5 �10.245 29 <.001 �3.698 1.421e þ8

19 �0.111 29 0.912 �0.04 0.343
81 1.069 15.32 0.302 0.401 0.567
6 �0.119 29 0.906 �0.043 0.343
95 �0.196 29 0.846 �0.071 0.346
7 1.998 16.79 0.062 0.745 1.833
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Fig. 1. FSS extracted signal between 300 and 600ms in
elderly and young participants.
The topographic map and Event Related Potential (ERP) are
shown for the FSP300 source extracted (young top row; old
bottom row). In the ERP plot, the vertical dashed line indicates
the stimulus onset and the continuous lines indicate the
maximum peaks for the P3a and P3b respectively. The vertical
continuous line in topographic map indicate maximum topo-
graphic peak to emphasize the shift between the two groups.
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3.2.3. Group differences in P3a and P3b derived using FSS
Fig. 3 shows P3a and P3b ERPs and topographic maps for each group

separately (Young, HP, LP). To assess whether there were any significant
group differences we began by running a one-way ANOVA on peak la-
tency and amplitude in the P3a and P3b (see Fig. 4). The P3a showed
significant main effect of group in both latency (F(2,43)¼ 21.01,
p< 0.001, partial eta squared¼ 0.494) and amplitude (F(2,43)¼ 5.785,
p¼ 0.006, partial eta squared¼ 0.212). In both cases group differences
were driven by the young group compared to both HP and LP. Post-hoc t-
tests confirmed that young individuals had faster peak latencies in the
P3a compared to HP group (t(30)¼ 5.717, pFDR<0.001) and the LP
group (t(27)¼ 5.531, pFDR<0.001). There were no significant differ-
ences between the HP and LP group in P3a peak latency (t(29)¼ 0.084,
pFDR¼ 0.934). Post-hoc t-tests also confirmed that young individuals
had larger P3a peak amplitudes compared to HP group (t(30)¼ 2.797,
pFDR¼ 0.015) and the LP group (t(27)¼ 3.085, pFDR¼ 0.011). There
were no significant differences between the HP and LP group in P3a peak
amplitude (t(29)¼ 0.431, pFDR¼ 0.669).

Similar to the P3a, there was a significant main effect of group in both
P3b latency (F(2,43)¼ 6.849, p¼ 0.003, partial eta squared¼ 0.242)
and P3b amplitude (F(2,43)¼ 12.49, p< 0.001, partial eta
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squared¼ 0.368). As with P3a peak latency, the significant main effect of
group was driven by significantly faster peak latencies in young in-
dividuals compared to both the HP group (t(30)¼ 2.764, pFDR¼ 0.017)
and the LP group (t(27)¼ 3.522, pFDR¼ 0.003). There was no signifi-
cant difference in P3b latency for LP compared to HP (t(29)¼ 0.914,
pFDR¼ 0.366). Young individuals showed greater P3b peak amplitude
compared to HP (t(30)¼ 2.745, pFDR¼ 0.018) and LP individuals
(t(27)¼ 4.992, pFDR<0.001), however, P3b peak amplitude was also
larger in HP compared to LP (t(29)¼ 2.445, pFDR¼ 0.019).

In summary, whilst latency and amplitude in both the P3a and P3b
distinguished young and old individuals, only P3b peak amplitude
distinguished between HP and LP individuals. The same pattern of results
was clear when ERPs were compared on a time-point basis (see Fig. 5).

3.2.4. Individual differences in P3a and P3b derived using FSS
In an effort to move beyond group-level approaches we applied ma-

chine learning techniques (SVM) in order to establish whether P300 ERP
responses (peak amplitude and latency) were capable of accurately cat-
egorizing Young, HP, and LP individuals (see Table 3). Highest overall
accuracy to distinguish between the 3 groups was found using FSS P3b
data (average 81.25% accuracy across all comparisons using FSS P3b ERP



Fig. 2. ERP FSP300 discrepancy quality check.
ERPs and topographic maps for Young (top row) and Old (bottom row) participants. Top and Bottom left, grand average ERP on the raw data. Top and Bottom middle
ERP of reconstructed FSP300 source. Top and bottom Right, ERP discrepancy i.e. Raw Data minus ERP of reconstructed data by FSP300. Topographic maps at 380ms
(Young Group) and 420ms (Old Group) are also shown for Raw Data, Reconstructed data using FSP300, and Discrepancy.

Fig. 3. Topographic maps and ERPs of P3a and P3b ERP responses in young and old groups extracted using FSS.
ERPs and topographic maps for the three groups (Young vs. HP vs. LP) on FSP300. Blue, magenta and red lines indicate FSP3a and green, cyan and brown lines indicate
FSP3b for Young, HP and LP groups respectively.
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Fig. 4. Group differences in P3a and P3b peak amplitude and latency extracted using FSS.
Box plots illustrating the first quartile, median, and third quartile and 95% confidence limits. Circles show the individual data points. Black horizontal lines highlight
significant differences between the groups (*p < 0.05 FDR corrected, **p <.
0.005 FDR corrected).
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information). In particular, this feature enabled us to classify HP from LP
participants with the highest accuracy (78.1% accuracy, 76.47% sensi-
tivity, 80% specificity, pFDR< 0.001). It was also possible to distinguish
between all comparisons using P3b ERP data from electrode Pz, however
this was not as accurate or specific as using FSS derived ERPs. We note
that when comparing HP and LP individuals, sensitivity (true positives)
was the same for both FSS ERPs and Pz ERPs (76.47%), however FSS
ERPs showed higher specificity (true negatives) compared to classifica-
tion using Pz ERP data (80% compared to 66.67%).

3.2.5. Is FSS more sensitive than traditional methods?
In order to establish whether FSS is more sensitive to individual dif-

ferences in aging compared to traditional channel selection we compared
P3b amplitude in all three groups at Fz, Cz, and Pz. There was no sig-
nificant effect of group at Fz (F(2,43)¼ 2.387, p¼ 0.104, partial eta
squared¼ 0.1), however there were significant group differences in P3b
amplitude at Cz (F(2,43)¼ 4.706, p¼ 0.014, partial eta squared¼ 0.18)
and Pz (F(2,43)¼ 9.327, p< 0.001, partial eta squared¼ 0.303).
Crucially, significant group differences at electrodes Cz and Pz were
driven by larger P3b peak amplitude in the Young group compared to
both the HP (Pz: t(30)¼ 3.387, pFDR¼ 0.003) and LP groups (Cz;
t(27)¼ 3.017, pFDR¼ 0.013; Pz: t(27)¼ 4.026, pFDR< 0.001). There
were no significant differences between HP and LP groups in P3b am-
plitudes from channel space (Fz: t(29)¼ 1.587, pFDR¼ 0.24; Cz:
t(29)¼ 1.134, pFDR¼ 0.263; Pz: t(29)¼ 0.821, pFDR¼ 0.416). There
were also no significant differences between HP and LP individuals in
P3b peak latency and P3a peak latency and amplitude.

To further compare FSS and channel-based methods we used
Bayesian independent samples t-tests. There are a number of advantages
for using Bayesianmethods over traditional frequentist approaches. First,
Bayesian approaches allow one to make inferences about null hypothesis
as well as the alternative hypothesis. Second, it is possible to compare
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Bayes factors across analyses and, based on the magnitude of the Bayes
Factor, make statements about whether one result is stronger than
another. Using the FSS approach, there was a significant group difference
in P3b amplitude (HP> LP: t(29)¼ 4.379, p< 0.001, Cohen's d¼ 1.58,
BF10¼ 156.252). P3b peak amplitude extracted from electrodes Fz and
Pz was not significantly different between HP and LP (Fz: t(29)¼ 1.537,
p¼ 0.135, Cohen's d¼ 0.555, BF10¼ 0.826; Pz: t(29)¼ 1.23, p¼ 0.228,
Cohen's d¼ 0.444, BF10¼ 0.604). P3b peak amplitude was significantly
different between HP and LP groups (t(30)¼ 2.149, p¼ 0.04, Cohen's
d¼ 0.776, BF10¼ 1.848), however, the magnitudes of the Bayes factors
for group differences using FSS and Cz were very different (156.252 for
FSS compared to 1.848 for Cz). This suggests that the alternative hy-
pothesis (HP <> LP) was 1.8 times more likely than the null hypothesis
using data from electrode Cz, whereas same the alternative hypothesis
was 156 times more likely than the null hypothesis using FSS. This means
the alternative hypothesis was 87 times more likely to be supported using
FSS compared to the best electrode (Cz).

Finally, we used a regression analysis to investigate which parameters
best explained individual variability in our metric of cognitive decline
(Logical Memory-NART). Independent variables included: Age, MMSE,
NART (Z transformed), FSS P3b amplitude, Fz P3b amplitude, Cz P3b
amplitude, and Pz P3b amplitude. A significant regression equation was
found (F(7,23)¼ 3.215, p¼ 0.016) with an R2 of 0.495. Only the FSS P3b
amplitude significantly explained cognitive decline scores across in-
dividuals (β¼ 0.162, SE¼ 0.048, t¼ 3.367, p¼ 0.003). A Bayesian
regression using the same variables found that the best model to explain
Logical Memory-NART scores was to use only the FSS P3b amplitude
(BF10¼ 205.485 compared to the null model). A Bayesian model average
of the candidate models for each of the independent variables showed
that only the inclusion of FSS P3b amplitude had a strong influence on
the model (BFinclusion¼ 59.741, all other variables had a BF< 1). A
separate Bayesian regression was run using independent variables of:



Fig. 5. P3a and P3b functional behaviour between young and old participants.
Point-by-point analysis of P3a and P3b ERPs extracted using FSS (top panels) and the best performing single EEG channel (CZ; bottom panels). In all plots Young (blue
Line), HP (Green Line), and LP (Magenta Line) are shown with the shaded area of the same colour highlighting standard error. Horizontal black, cyan and grey thick
lines indicate a significant group difference between Y vs. HP, Y vs. LP and HP vs. LP respectively (permutation t-test at p¼ 0.05; horizontal pink line in-
dicates pFDR< 0.05).
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Age, MMSE, NART (Z transformed), FSS P3a amplitude, FSS P3a latency,
FSS P3b amplitude, FSS P3b latency. This analysis was run to establish
which of the neural signals extracted by FSS best captured the variance in
Logical Memory-NART scores. Once again, the winning model was a
model that only included FSS P3b amplitude (BF10¼ 205.485 compared
to the null model). Similarly, Bayesian model averaging of the candidate
models found that only inclusion of the FSS P3b amplitude variable
influenced the model (BFinclusion¼ 74.176, all other variables had
BF< 1).

4. Discussion

Despite decades of research investigating the P300 ERP and aging, it
has been unclear whether changes in the P3a and P3b ERPs only reflect
the process of aging or whether these could be used as markers of
cognitive impairment. We posited that signal extraction techniques
commonly used in EEG analyses (i.e. using single electrodes or a small
subset of electrodes) could have reduced signal-to-noise by excluding
potential neural generators. The FSS approach used in this study utilised
a weighted combination of all available electrodes in an effort to improve
signal-to-noise ratio and avoid missing potential neural generators that
contribute to the P300 ERP. First, we demonstrated using FSS that whilst
both the P3a and P3b change with age, only changes in P3b amplitude
discriminated between individual differences in cognitive decline
(episodic memory baselined by IQ). Crucially, the relationship between
P3b amplitude and cognitive decline could not be explained by age.
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Second, we confirmed that EEG signals extracted using FSS were 87 times
more sensitive (based on Bayesian analyses) to these individual differ-
ences compared to EEG signals derived from the best single electrode
(Cz). These analyses not only highlight the importance of using more
advanced EEG signal processing methods such as FSS, but further high-
light the utility of the P3b ERP as an easy-to-acquire marker of early, age-
independent, loss of memory performance.
4.1. The advantages of Functional Source Separation (FSS)

Although non-invasive electrophysiological techniques, such as EEG,
provide the opportunity to directly measure the activity of large-scale
neuronal populations, different challenges remain in characterizing this
activity. In particular, electrical potentials generated by neuronal activity
are not only detected close to neuronal sources but also at distant sites
due to electric field propagation. Therefore, each channel positioned
across the whole head derives its signal from more than one source
(Porcaro and Tecchio, 2014; Rusiniak et al., 2013; Siegel et al., 2012).
Since the P300 undeniably arises from awidely distributed network (Fjell
et al., 2007; Linden, 2005; Polich, 2007, 2003), selecting a channel or
averaging a group of channels based on the topographic representation
might be misleading if one aims to describe a distributed brain network.
In this respect, we believe that methods capable of extracting the neural
source under investigation (such as FSS) are suitable to avoid selection of
channels and to overcome possibly misleading results. The FSS approach
has been successfully applied to extract EEG specific features using



Table 3
Machine learning accuracy for categorizing participants based on ERP data (peak amplitude and latency). P-values in bold survived FDR correction for multiple
comparisons (pFDR<0.05).

Young vs HP Young vs LP HP vs LP Average Accuracy

Accuracy P value Accuracy P value Accuracy P Value Young vs Old All comparisons

FSS P3a 81.25 <0.001 75.00 0.006 28.13 0.914 78.13 61.46
Fz P3a 56.25 0.276 71.88 0.007 53.13 0.402 64.06 60.42
Cz P3a 81.25 <0.001 81.25 <0.001 56.25 0.258 81.25 72.92
Pz P3a 84.38 <0.001 84.38 <0.001 50.00 0.518 84.38 72.92

FSS P3b 75.00 0.002 90.63 <0.001 78.13 <0.001 82.81 81.25
Fz P3b 78.13 0.002 75.00 0.003 56.25 0.26 76.56 69.79
Cz P3b 65.63 0.039 59.38 0.161 56.25 0.256 62.50 60.42
Pz P3b 71.88 0.004 75.00 0.002 71.88 0.004 73.44 72.92

Young vs HP Young vs LP HP vs LP Average Young vs Old Average All comparisons

Sensitivity
(TP)

Specificity
(TN)

Sensitivity
(TP)

Specificity
(TN)

Sensitivity
(TP)

Specificity
(TN)

Sensitivity
(TP)

Specificity
(TN)

Sensitivity
(TP)

Specificity
(TN)

FSS
P3a

80.00 82.35 73.33 76.47 35.29 20.00 76.67 79.41 62.88 59.61

Fz
P3a

60.00 52.94 73.33 70.59 47.06 60.00 66.67 61.76 60.13 61.18

Cz
P3a

73.33 88.24 80.00 82.35 58.82 53.33 76.67 85.29 70.72 74.64

Pz
P3a

73.33 94.12 80.00 88.24 41.18 60.00 76.67 91.18 64.84 80.78

FSS
P3b

73.33 76.47 86.67 94.12 76.47 80.00 80.00 85.29 78.82 83.53

Fz
P3b

80.00 76.47 80.00 70.59 35.29 80.00 80.00 73.53 65.10 75.69

Cz
P3b

66.67 64.71 60.00 58.82 64.71 46.67 63.33 61.76 63.79 56.73

Pz
P3b

66.67 76.47 60.00 88.24 76.47 66.67 63.33 82.35 67.71 77.12

C. Porcaro et al. NeuroImage 184 (2019) 535–546
different number of channels for primary motor 28 MEG Sensors, (Por-
caro et al., 2008); EEG Electrodes, (Di Pino et al., 2012); primary sensory
28 MEG Sensors, (Porcaro et al., 2008); 23 EEG Electrodes (Porcaro et al.,
2009a, 2009b); 39 EEG Electrodes (Porcaro et al., 2017) and primary
visual 64 EEG Electrodes (Ostwald et al., 2011; Porcaro et al., 2011,
2010) areas but this is the first demonstration that FSS can be used to
extract non-primary and wide spread brain activations. Based on the
spatial (source localization and topography) and functional behaviour of
the sources extracted by FSS, it seems that the impact of the number of
the electrodes is rather small. Moreover, functional behaviour and
signal-to-noise ratio (SNR) seems to be improved when FSS is applied,
independently of the number of channels used (Porcaro et al., 2009b,
2017, 2018, 2009a, 2011; 2010) making this a useful tool for clinical
datasets collected using a low number of electrodes. Since the P300 has
been intensively investigated, it provides a perfect framework to test the
quality of functional sources extracted by FSS (i.e. comparing the results
obtained by FSS with those obtained in previous studies and well
established in the literature). Here, we used specific temporal fingerprint
information, i.e. we maximized the P300 response in the chosen window
320–480ms for both young old participants to extract the functional
sources (FSs) of interest. The features extracted by FSS were well
matched with those reported in the literature using pre-selected channels
such as slower peak latency of the P300 response and a more frontal
topography map in the old group than the young one (Balsters et al.,
2013; O’Connell et al., 2012a). Moreover, our discrepancy measure (i.e.
the P300 ERP of Raw Data minus the P300 ERP obtained reconstructing
the data using the source FSP300) showed that the residual activity of the
P300 peak is near to zero for both P3a and P3b as expected if all the
electrical activity is in the FSP300. This check assured us that we were able
to extract all the electrical activity underlying the P300 response. Finally,
results obtained by FSS seemed to be more sensitive for discriminating
between HP and LP elderly than those obtained using the Cz channel
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which has been conventionally chosen to study the P3a and P3b com-
ponents of the P300 (Johnson, 1993; Linden, 2005; Magnano et al., 2006;
Polich, 2007; Rossini et al., 2007).

Independent Components Analysis (ICA) is the most common
approach for extracting neural sources underpinning the P300 ERP
response (Makeig et al., 2004). Recently, van Dinteren et al. (van Din-
teren et al., 2017) used group ICA to investigate the P300 aging effect,
however, a major drawback of using ICA compared to FSS is that multiple
independent components might describe the P300 ERP. Porcaro et al.
(2018) compared FSS and ICA approaches on data from primary motor
and primary sensory areas. The results showed that ICA tended to
describe the functional behaviour in multiple components whereas a
single functional source was extracted by FSS allowing for simpler ana-
lyses. In the case of van Dinteren et al. (van Dinteren et al., 2017), they
report four components that describe the P300 ERP, some of which show
differences with age. In addition to being difficult to interpret, the
ICA-based approach to extracting neural sources raises a number of
methodological issues. First, the selection of ‘relevant’ components is
usually biased by the choice of the user (depending on user experience).
This selection process can also be very demanding and time-consuming
on the user if they are working with high density EEG data (i.e. 128
channels or more). Finally, the combination of multiple components re-
quires the user to reconstruct the data by removing all non P300 com-
ponents from the data and returning to channel space. This then requires
channel selection for analysis, re-introducing previously mentioned
concerns about identifying sources. Compared to this, FSS exploits a
well-known a-priori ‘functional’ property (i.e. relevant “fingerprint” in-
formation regarding frequency range or time course characteristics) to
identify the source of interest. This means FSS gives the user one source
that maximises the pre-defined functional property of the data, thus
addressing all the concerns raised above. The potential drawback is that
FSS cannot be used to extract unexpected or unknown brain activities,



C. Porcaro et al. NeuroImage 184 (2019) 535–546
however previous studies have found that this semi-blind approach often
outperforms fully blind source separation approaches like ICA (Barbati
et al., 2008; Porcaro et al., 2011, 2010).

4.2. P300, aging, and cognitive decline

Consistent with previous studies we showed that both peak latency
and peak amplitude of the P3a and P3b ERPs changed with age (Fjell
et al., 2007; O’Connell et al., 2012a; Polich, 1997; Walhovd and Fjell,
2001). Specifically, the peak latency of both the P3a and P3b responses
increased in the elderly group, whereas the peak amplitude of both the
P3a and P3b decreased with age. However, only the P3b amplitude
distinguished between the two elderly subgroups (HP vs LP). This effect
was also apparent when ERPs were compared at each sampling point and
when using machine learning to detect group classification. Fig. 5
highlights that there was no form of delayed P3b response in the LP group
compared to the HP, rather there was an absence of the P3b ERP in the LP
group. This is consistent with Dockree et al. (2015) who also subdivided
older individuals into HP and LP groups using the same criteria as this
study. Dockree et al. (2015) found that both young and HP showed
greater EEG activity in centroparietal regions when recognising previ-
ously learnt words, whereas ERP responses in LP individuals were not
different for learnt and novel words. Similar to this study (see Fig. 3), ERP
topographies presented in Dockree et al. (2015) show additional frontal
peaks in HP and LP individuals compared to purely centroparietal ac-
tivity in the Young group. Whilst some have suggested that the increased
frontal activity in aging reflects compensatory activity (Davis and Frie-
drich, 2010; van Dinteren et al., 2014), others have shown that increased
frontalisation of the P300 response is associated with poorer perfor-
mance in neuropsychological tests (Fabiani et al., 1998; West et al.,
2010). It has previously been suggested that the prefrontal cortex con-
tributes to the initial target detection trials, however, after a few trials a
model of the task is created and prefrontal control is no longer required
(Fabiani and Friedman, 1995; Richardson et al., 2011; West et al., 2010).
In line with this, it has been suggested that increased frontalization of
P3b responses in elderly individuals may reflect an inability to establish a
strong mental representation of the task stimuli, and as such there is a
continued reliance on both frontal and parietal regions in order to
maintain task performance. One limitation of these previous studies has
been the inability to localize this general frontalization effect to discrete
neural sources. In order to address this problem, O'Connell et al. (Red-
mond G. O’Connell et al., 2012) used simultaneous EEG-fMRI recordings
to investigate the neural generators underpinning this phenomenon.
Crucially, O'Connell et al. (O’Connell et al., 2012a) demonstrated that
this marked frontalization effect with age was driven by distinct neuro-
anatomical changes for the P3a and P3b responses. Whilst the increase in
frontal P3a responses with age was produced by increased activity in the
left inferior frontal gyrus and middle cingulate cortex, the increase in
frontal P3b responses was driven by increased activity in the right middle
frontal gyrus and putamen. This once again highlights that the P3a and
P3b responses are underpinned by unique patterns of brain activity and
are likely contributing to different cognitive processes. In addition, these
findings suggest that the general process of frontalization that occurs
during aging can be driven by distinct neural generators. Given that the
LP group showed reduced amplitude for P3b only, it is possible that the
cognitive decline may reflect aberrant cortico-striatal connectivity. This
is in keeping with previous work investigating cortico-striatal connec-
tivity in healthy elderly individuals by Ystad et al. (Ystad et al., 2011,
2010). Whilst Ystad et al. (2011) found that elderly individuals who
performed better on executive function tasks had stronger connections
between the putamen and dorso-medial parietal cortex (putatively dorsal
attention network), Ystad et al. (2010) showed a negative relationship
between the episodic memory and the number of coritco-striatal con-
nections. This suggests that whilst increased connectivity between the
putamen and parietal lobe is beneficial in aging, diffuse and more
distributed connectivity between the putamen andmultiple other regions
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is detrimental. This could suggest that increased frontal-striatal connec-
tivity is actually decreasing task performance, and perhaps taking re-
sources away from beneficial parieto-striatal connectivity. However, EEG
is not suited to address cortico-subcortical hypotheses and further
research in this area would require fMRI or simultaneous EEG-fMRI.

With the greying population there is a growing need for sensitive
markers of cognitive decline in ageing. Here, we have defined cognitive
decline in ageing using a combination of neuropsychological tests (age-
adjusted scores from the Logical Memory subtest of the Wechsler Mem-
ory Scale III baselined against NART IQ). The results of this study build
on a growing literature highlighting neural differences between HP and
LP elderly individuals as defined here (Dockree et al., 2015; Hogan et al.,
2011, 2012; O’Hora et al., 2013). Furthermore, LP individuals as defined
above, have shown differential receptor expression and cytokine profiles
indicative of inflammation that may be involved in the prodromal pro-
cesses leading to the development of neurodegenerative disease (Downer
et al., 2013). However, to our knowledge these findings have only been
demonstrated at the group level, and it is not clear whether the any of
these markers (including the P300 ERP) index individual differences in
cognitive decline. In an attempt to address this issue, we used a machine
learning approach to establish whether the P3b signals extracted using
FSS could be a useful tool to categorize elderly individuals as HP or LP.
This would be particularly advantageous clinically given the speed with
which P300 ERP data could be collected (~10mins), which is much faster
than the time needed to collect the neuropsychological battery (~2hrs).
The results of our SVM analysis were promising, demonstrating that P3b
signals extracted using FSS could categorize individuals as HP or LP with
78% accuracy (76% sensitivity; 80% specificity). However, it is impor-
tant to treat cross-sectional results with caution (Fisher et al., 2018).
Nyberg et al. (2010) found that whilst cross-sectional evidence showed
an increase in prefrontal activity with ageing, a longitudinal examination
showed the opposite trend. The results presented here provide an
important contribution to the ageing literature, however, it is crucial to
replicate these results with an independent sample, and to conduct lon-
gitudinal designs to establish whether individual changes in the P300
ERP index individual changes in cognitive decline.

It will also be important to move towards more mechanistic expla-
nations of perturbed neural activity (Hanks and Summerfield, 2017;
Montague et al., 2012). Converging evidence from mathematical
modelling and primate electrophysiology have suggested that the P300
ERP (specifically the P3b) has all the characteristics of a ‘decision vari-
able’ signal (Kelly and O’Connell, 2015; O’Connell et al., 2012b; Twomey
et al., 2015). A decision variable signal represents the accumulation of
sensory information over time until there is sufficient information (also
referred to as evidence) to pass through a boundary criterion. The
absence of the P3b response in the LP group could suggest that elderly
individuals at risk of cognitive decline have a reduced ability to accu-
mulate sensory evidence over time. This is in keeping with the findings of
Dockree et al. (2015), who found LP individuals showed significantly
slower evidence accumulation during an episodic memory task compared
to HP individuals. Unfortunately, traditional EEG paradigms such as the
three-stimulus oddball and the memory encoding paradigm used by
Dockree et al. (2015) are not optimal for investigating evidence accu-
mulation mechanisms. Further research is necessary to determine
whether the absence of this fundamental neural mechanism (evidence
accumulation) could become a crucial marker of cognitive decline and
dementia.

5. Conclusion

In conclusion, using a simple well-established paradigm in combi-
nation with advanced signal processing techniques (FSS), we were able to
reliably extract both subcomponents of the P300 ERP. Our analyses
demonstrated: 1) P3b amplitude could be a useful and easy-to-acquire
metric of age independent memory loss – and possibly prodromal dis-
ease – in elderly individuals, and 2) more advanced signal processing
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methods such as FSS are necessary in order to detect subtle variations in
EEG signals that are likely obscured by much larger effects such as age-
related differences.
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