Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21

Highlights

- Mtb infection of macrophages limits metabolic reprogramming over time
- Glycolysis is limited through sustained induction of anti-inflammatory miR-21
- PFK-M is a miR-21 target gene
- IFN-γ promotes glycolysis by targeting miR-21

In Brief

Hackett et al. identify a role for the anti-inflammatory miR-21 in limiting host glycolysis during tuberculosis (TB) infection to favor bacterial replication. This occurs by targeting a pro-glycolytic isoform at the rate-limiting step in glycolysis, PFK-M, a process antagonized by the host Th1-cytokine IFN-γ, to promote full macrophage activation and antimicrobial function.
Mycobacterium tuberculosis Limits Host Glycolysis and IL-1β by Restriction of PFK-M via MicroRNA-21

Emer E. Hackett, 1 Hugo Charles-Messance, 1 Seónadh M. O’Leary, 2 Laura E. Gleeson, 2 Natalia Muñoz-Wolf, 1 Sarah Case, 1 Anna Wedderburn, 1 Daniel G.W. Johnston, 1 Michelle A. Williams, 3 Alicia Smyth, 2 Mireille Ouimet, 6 Kathryn J. Moore, 9 Ed C. Lavelle, 1 Sinéad C. Corr, 3 Stephen V. Gordon, 4 Joseph Keane, 2 and Frederick J. Sheedy 1, 5, 7, *

1 School of Medicine, Trinity College, Dublin 2, Ireland
2 School of Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
3 School of Genetics and Microbiology, Trinity College, Dublin 2, Ireland
4 School of Veterinary Medicine and Conway Institute, University College Dublin, Dublin, Ireland
5 Conway Institute, University College Dublin, Dublin, Ireland
6 School of Medicine, New York University, New York, NY, USA
7 Lead Contact
*Correspondence: fsheedy@tcd.ie
https://doi.org/10.1016/j.celrep.2019.12.015

SUMMARY

Increased glycolytic metabolism recently emerged as an essential process driving host defense against *Mycobacterium tuberculosis* (Mtbc), but little is known about how this process is regulated during infection. Here, we observe repression of host glycolysis in Mtbc-infected macrophages, which is dependent on sustained upregulation of anti-inflammatory microRNA-21 (miR-21) by proliferating mycobacteria. The dampening of glycolysis by miR-21 is mediated through targeting of phosphofructokinase muscle (PFK-M) isofrom at the committed step of glycolysis, which facilitates bacterial growth by limiting pro-inflammatory mediators, chiefly interleukin-1β (IL-1β). Unlike other glycolytic genes, PFK-M expression and activity is repressed during Mtbc infection through miR-21-mediated regulation, while other less-active isoenzymes dominate. Notably, interferon-γ (IFN-γ), which drives Mtbc host defense, inhibits miR-21 expression, forcing an isoenzyme switch in the PFK complex, augmenting PFK-M expression and macrophage glycolysis. These findings place the targeting of PFK-M by miR-21 as a key node controlling macrophage immunometabolic function.

INTRODUCTION

Reprogramming of cellular metabolism has emerged as a directive mechanism controlling responses in immune cells (Pearce and Pearce, 2013). In particular, macrophages display an increased reliance on the glycolytic pathway during inflammatory activation (Jha et al., 2015; Rodríguez-Prados et al., 2010). This is linked to pro-inflammatory processes, including cytokine production (Tannahill et al., 2013), antigen presentation (Everts et al., 2014), and containment of bacteria (Garaude et al., 2016). We recently demonstrated the importance of glycolysis in host defense against the intracellular pathogen *Mycobacterium tuberculosis* (Mtbc) (Gleeson et al., 2016, 2018), which has evolved to replicate within macrophages of the pulmonary compartment (Huang et al., 2018). Failure to contain mycobacteria results in the development of tuberculosis, both latent and active infections, which, coupled with increasing drug resistance and ineffective vaccines, has caused a global health crisis (O’Garra et al., 2013). Exploiting metabolic reprogramming through manipulation of nutrients or by repurposing of existing drugs will impact the development of novel immunotherapies and improved vaccines.

While several studies have documented increased glycolysis in Mtbc-infected macrophages (Braverman et al., 2016; Gleeson et al., 2016; Huang et al., 2018; Lachmandas et al., 2016a, 2016b), alongside the reprogramming of other metabolic pathways, including lipid metabolism (Knight et al., 2018; Ouimet et al., 2016; Russell et al., 2009), little is known about how these pathways are regulated during infection and whether they play a role in defective immunity leading to disease. Additionally, macrophage ontogeny is known to affect immunometabolic responses, although the mechanisms controlling this remain unclear (Gleeson et al., 2018; Huang et al., 2018). Non-coding RNAs, particularly microRNAs (miRNAs), are important regulators of macrophage activation and innate immunity (Graff et al., 2012). miRNA-21 (miR-21) is one of the most highly expressed miRNAs in myeloid cells and emerged as an anti-inflammatory miRNA (Sheedy, 2015). We previously demonstrated that miR-21 is induced by TLR4 signaling to promote interleukin-10 (IL-10) production by limiting PDCD4 protein (Sheedy et al., 2010), and other groups have implicated this in effecrocytosis, alongside negative regulation of tumor necrosis factor (TNF) by targeting PTEN protein (Das et al., 2014). Dendritic cell activation and subsequent T cell function is also limited by miR-21 by targeting IL-12p35 mRNA (Lu et al., 2011). Expression of miR-21 has been reported in various cellular models of mycobacterial infection (Kumar et al., 2012; Wu et al., 2012) and importantly was associated with dormancy in *Mycobacterium leprae* lesions through negative regulation of multiple pro-inflammatory processes (Liu et al., 2012). However, its role in cellular metabolic programming is not known.

Since Mtbc infection is known to favor the development of anti-inflammatory macrophages and evades pro-inflammatory...
mechanisms (O’Garra et al., 2013), we hypothesized that it would also evade host immunometabolic responses. Interestingly, we observe that persistent Mtb infection of macrophages was associated with negative regulation of host glycolysis, and this was dependent on the induction of miR-21. Our data indicate that Mtb replication in macrophages was driven by suppression of metabolic reprogramming and associated IL-1β production through miR-21. Crucially, we found that the specific control of glycolysis in Mtb-infected cells occurred through repression of a novel miR-21 target at the rate-limiting and committed step of glycolysis (Tanner et al., 2018), the phosphofructokinase muscle (PFK-M) isoform, whose expression is dynamically regulated during Mtb infection to evade inflammation and in macrophage activation by interferon-γ (IFN-γ), to drive pro-inflammatory responses. Collectively, these data suggest that Mtb alters macrophage immunometabolic programming via miR-21 to ensure survival and replication.

RESULTS

Mtb Infection Attenuates Metabolic Reprogramming and Drives Anti-Inflammatory miR-21

To further explore the mechanisms underlying metabolic reprogramming during Mtb infection, we treated bone-marrow-derived macrophages (BMDMs) with equivalent amounts of heat-killed Mtb (hk-Mtb) H37Ra or viable bacillus. Interestingly, we observed that hk-Mtb caused sustained accumulation of extra-cellular lactate over 72 h similar to lipopolysaccharide (LPS) treatment, indicative of increased glycolysis, whereas the viable bacillus was unable to induce lactate production to the same extent (Figure 1A). This was associated with reduced ability of viable Mtb to promote IL-1β production, despite triggering similar TNF production (Figures S1A and S1B) and reduced induction of pro-glycolytic genes after 24 h infection, including Slc2a1 (which encodes the glucose transporter GLUT1), hexokinase-2 (HK2; which encodes the primary step in glycolysis), and lactate dehydrogenase-A (LdhA), the final glycolytic step for lactate production (Figure 1B). A similar trend was observed when BMDMs were infected with virulent Mtb H37Rv, with reduced lactate accumulation observed in cells infected with equivalent amounts of attenuated H37Ra or virulent H37Rv Mtb strains (ranging from 2 to 5 bacteria per cell), relative to a top dose of inactivated forms of each strain (iMtb; hk-Mtb for H37Ra or γ-irradiated Mtb [γMtb] for H37Rv) (Figure 1C). A similar trend was observed in human cells when human-mono-cyte-derived macrophages (hMDMs; Figure S1C) were infected with equal amounts of viable Mtb H37Ra or hk-Mtb H37Ra (Figure 1D). To confirm that persistent infection with Mtb can attenuate macrophage metabolic reprogramming over time, we modeled the primary host cell for Mtb ex vivo (Huang et al., 2018). Human alveolar macrophages (hAMs) were isolated from donor bronchoalveolar lavage and infected in vitro with virulent Mtb H37Rv or γMtb H37Rv, alongside LPS treatment. Again, treatment with the inactive form was superior at inducing IL1B mRNA, although both forms induced similar TNF mRNA, which decreases over time (Figure 1E). As previously observed (Gleeson et al., 2018), γMtb promoted the induction SLC2A1 and HK2, while live Mtb infection is a poor inducer of these (Figure 1E). No induction of LDHA was observed in these cells. Our results are supported by a recent report examining macrophage bioenergetics and the accumulation of glycolytic intermediates after virulent Mtb infection (Cumming et al., 2019) and together demonstrate that infection with Mtb, which adapts and grows within macrophages over time, negatively regulates the induction of glycolysis in macrophages.

To promote its own survival within macrophages, Mtb is known to induce anti-inflammatory mediators, including IL-10 (Flynn et al., 1995; Pitt et al., 2012), which has been linked to negative regulation of glycolysis (Ip et al., 2017). However, we did not observe enhanced IL-10 production in BMDMs infected with live Mtb (H37Ra or H37Rv) relative to inactivated forms, despite reduced IL-1β (Figures S1D–S1J). We next examined the expression of another anti-inflammatory mediator linked to IL-10 production, the miRNA miR-21 (Sheedy et al., 2010). Notably, we observed dose-dependent induction of the bioactive mature miR-21 in both BMDMs and hMDMs treated with increasing hk-Mtb or viable Mtb (Figures 1F and 1G), with viable Mtb inducing significantly more miR-21 than equivalent amounts of hk-Mtb (Figures 1F and 1G). This is preceded by early induction of the primary miR-21-containing transcript, pri-miR-21 (Figure 1H, 3–24 h post-infection), implying elevated transcriptional upregulation by live Mtb infection. A similar trend was observed when BMDMs were infected with virulent or attenuated Mtb strains (H37Ra or H37Rv), with viable forms of both similarly driving enhanced mature miR-21 levels relative to inactivated forms 72 h post-infection (Figure 1I), with similar kinetics of pri-miR-21 and mature miR-21 appearance (Figure S1K). A similar effect was observed in hAMs with early upregulation of pri-miR-21 preceding accumulation of mature miR-21 (Figure 1J). Furthermore, lung tissue from mice infected in vivo with Mtb (Erdman strain) shows upregulation of pri-miR-21 at 30 days post-infection, which is maintained up to 53 days post-infection (Figure 1K), indicative of an important role for miR-21 during chronic Mtb infection.

miR-21 Limits Glycolysis during Mtb Infection

To investigate whether miR-21 impacts macrophage metabolism during Mtb infection, we utilized a mouse model of macrophage miR-21-deficiency. We isolated BMDM from wild-type (WT) and miR-21 loxP-targeted mice (Johnston et al., 2017) and confirmed similar numbers of CD11b+F4/80 double-positive cells (Figure S2A). In resting miR-21-deficient BMDMs, both primary and mature miR-21 were undetectable, while levels of neighboring Tmem49 gene were unaffected (Figure S2B). Functionally, MiR-21−/− BMDMs express higher levels of miR-21 targets, Pdcd4 and Pten mRNA, before and after LPS treatment, and consistent with earlier work (Sheedy et al., 2010) show impaired IL-10 production during TLR4 signaling (Figures S2B and S2C). Upon infection with a moderate MOI (5 bacteria per cell) of Mtb H37Ra, we found that the production of lactate over time was dramatically enhanced in MiR-21−/− BMDMs (Figure 2A), although uptake of bacteria at 3 h was similar between the two genotypes (Figures S2D and S2E). Enhanced lactate production was also observed when MiR-21−/− BMDMs were infected with virulent Mtb H37Rv (Figure 2B), which was not linked to altered viability, since similar amounts of cell death were
Figure 1. Mtb Infection Attenuates Macrophage Metabolic Reprogramming and Drives miR-21

(A) Extracellular lactate from bone-marrow-derived macrophages (BMDMs) infected with live Mycobacterium tuberculosis (Mtb) H37Ra or treated with heat-killed Mtb (hk-Mtb) H37Ra at an MOI of 5 bacteria per cell alongside LPS treatment (100 ng/ml) for the indicated times.

(B) qPCR of indicated genes in BMDMs treated as in (A) for 24 h.

(C) Extracellular lactate from BMDMs infected with viable Mtb H37Ra or H37Rv strains at indicated MOI or treated with hk-Mtb H37Ra or γ-irradiated Mtb H37Rv (MOI 5) for 24 h.

(D) Extracellular lactate from mature human-monocyte-derived macrophages (hMDMs) infected with Mtb as in (A).

(E) qPCR analysis of the indicated genes in human alveolar macrophages (hAMs) treated with viable Mtb H37Ra strain (Figure S3A). These data suggest that miR-21 limits macrophage metabolic reprogramming during Mtb infection.

(F–H) qPCR of mature miR-21 or primary miR-21 transcript (pri-miR-21) in BMDMs (F and H) or hMDMs (G) treated with hk-Mtb or infected with viable Mtb H37Ra (Mtb) at the indicated MOI for 24 h (F and G) or at MOI of 5 for various times (0–72 h; H).

(I) qPCR of mature miR-21 in BMDMs treated as in (C) for 72 h.

(J) qPCR of pri-miR-21 expression in lung tissue from mice infected with Mtb (Erdmann strain) for the indicated time (days). Data represent mean concentration ± SEM for n = 3 independent experiments (A, C, and D) and mean fold-induction over uninfected cells ± SEM for n = 3 (B, G, and I) or n = 5 (F and H) independent experiments, n = 4 donors (E and J), or n = 5 mice (K). *p < 0.05; n.s., p > 0.05 for the indicated group comparisons (ANOVA with post hoc Tukey tests).

observed across both genotypes, as measured using a secreted lactate dehydrogenase (LDH) assay (Figure S2F). To validate the impact of miR-21 on glycolysis, we ablated miR-21 expression using antisense oligonucleotides in hMDMs. Reduction of basal and induced miR-21 by anti-miR-21 transfection was confirmed by qPCR (Figure S2G). Silencing of miR-21 in hMDMs increased lactate accumulation over the course of Mtb H37Ra infection, suggestive of increased glycolysis, and was similarly augmented in response to treatment with LPS or γMtb (Figure 2C). While infection with Mtb H37Ra drives the induction of pro-glycolytic genes (e.g., Slc2a1, Hk2, and LdhA) in BMDMs in a dose-dependent fashion to similar levels as LPS treatment, expression of these genes is enhanced in miR-21-deficient cells (Figure 2D). Enhanced induction of Slc2a1 and LdhA mRNA was also observed in miR-21-deficient BMDMs after infection with the Mtb H37Rv strain (Figure S3A). These data suggest that miR-21 limits macrophage metabolic reprogramming during Mtb infection.

To confirm the role of miR-21 in regulating the macrophage bioenergetic response, we performed extracellular flux analysis
in resting BMDMs and BMDMs treated with γMtb, since viable infection was not compatible with the exposed Seahorse system. While resting WT and Mir-21−/− BMDMs display similar levels of both extracellular acidification (indicative of glycolytic activity) and oxygen consumption (a readout of tricarboxylic acid [TCA]-cycle-fueled oxidative phosphorylation), challenge with γMtb resulted in greater extracellular acidification rate (ECAR) in Mir-21−/− BMDMs (Figure 2E). Although both ECAR and oxygen consumption rate (OCR) are similar across uninfected WT and Mir-21−/− BMDMs basally, when treated with oligomycin to block oxidative phosphorylation and allow maximal glycolysis, Mir-21-deficient macrophages demonstrate a higher glycolytic reserve (GR) than WT cells (Figure 2F). Furthermore, although GR is normally decreased after challenge with γMtb as cells begin to adopt glycolysis basally, Mir-21−/− BMDMs retain a higher capacity for glycolysis than their WT counterparts (Figures 2F, S3B, and S3C). Uncoupling the mitochondrial membrane with FCCP allows maximal oxidative phosphorylation and calculation of spare respiratory capacity (SRC), which is not significantly altered across
Restraint of Glycolysis through miR-21 Permits Mtb Growth in Macrophages

We next investigated how negative regulation of glycolysis by miR-21 impacts macrophage anti-mycobacterial responses. We observed similar levels of bacterial uptake in WT and miR-21-deficient macrophages by microscopy (Figures S2D and S2E) and measuring mycobacterial colony-forming units (CFUs) at 3 h post-infection (Figure S4A). However, at later time points, we noted a marked difference in the ability of macrophages to contain Mtb. Although WT BMDMs initially contain Mtb H73Ra, bacterial growth ensues at later times. MiR-21−/− BMDMs permitted significantly less Mtb growth, with similar CFU numbers as baseline (Figure 2I). Similar containment of virulent Mtb was observed in MiR-21−/− BMDMs when the viability of Mtb H37Rv was measured using bacterial-chromosome-specific probes as readouts of bacterial replication (Figure 2J). This method was validated by Mtb H37Ra experiments, which revealed similar patterns as detected by CFU methods, undetectable in cells treated with hk-Mtb (Figures S4B and S4C). The decreased intracellular mycobacterial growth observed by multiple methods suggested an increased capacity of MiR-21−/− BMDMs to respond to Mtb. Conversely, MiR-21−/− BMDMs displayed increased levels of pro-inflammatory mediators linked to bacterial containment, including Nos2 mRNA, a consequent reduction in Mtb-induced Arg1, and more reactive nitrogen and oxygen species (Figure 2K). Similar effects were observed in miR-21-silenced hMDMs, with improved containment of Mtb H37Ra up to 5 days post-infection (Figure S4D). To ascertain if the increased ability of miR-21-deficient macrophages to contain Mtb is linked to elevated glycolysis, we poisoned glycolysis with 2DG (Figure S4E). Inhibition of glycolysis enhanced bacterial growth in WT BMDMs and abrogated the protective effect of miR-21 deficiency (Figures 2L and S4F). Importantly, 2DG also blocked the production of nitrite species in both WT and miR-21-deficient macrophages in response to LPS and γMtb treatment (Figure 2M), implying that the anti-microbial response in MiR-21−/− BMDMs is driven by increased glycolytic flux, which is normally limited by miR-21 induction.

Control of IL-1β Production by miR-21 Regulates Anti-Mtb Responses

To further investigate inflammatory responses suppressed by miR-21 regulation of glycolysis, we measured the production of various cytokines. Although miR-21 promotes IL-10 production in TLR4 signaling (Sheedy et al., 2010; Figure S5A), no significant difference in Mtb-induced IL-10 was observed in WT and miR-21-deficient macrophages, and addition of IL-10 to MiR-21−/− BMDMs did not restore mycobacterial growth to WT levels (Figures S5B and SSC). Furthermore, although Mtb-induced TNF production was enhanced in Mtb-H37Ra-infected MiR-21−/− BMDMs (Figures S5D and SSE), neutralizing this with a blocking antibody that augments bacterial growth in WT cells did not restore growth to WT levels in MiR-21−/− BMDMs or alter levels of lactate production (Figures S5F and SSG). We thus turned our attention to IL-1β, a cytokine central in host defense to Mtb and sensitive to changes in metabolism (Gleeson et al., 2016; Mayer-Barber et al., 2014). Levels of extracellular IL-1β increase at later times post-infection with both Mtb H37Ra and H37Rv, and we observed a marked enhancement of IL-1β production in response to Mtb infection in MiR-21−/− BMDMs relative to WT (Figure 3A), as well as in miR-21-silenced hMDMs (Figure 3B). Conversely, transfection of BMDMs with a miR-21 mimic reduced IL-1β secretion after Mtb H37Ra infection (Figure 3C), confirming the ability of miR-21 to modulate IL-1β responses. Notably, blocking IL-1β using a specific antibody that significantly increases mycobacterial growth in WT cells also increased mycobacterial growth in MiR-21−/− BMDMs, restoring growth to WT levels (Figure 3D).

Since IL-1β production is subject to multiple levels of regulation, we thus monitored the induction of Il1b mRNA in Mtb-infected macrophages and found this was significantly augmented by miR-21 deletion, particularly at later times post-infection, in H37Ra- and H37Rv-infected BMDMs (Figure 3E). This effect on IL1B mRNA is also observed in miR-21-silenced hMDMs (Figure S5H). Increased glycolysis in macrophages potentiates late IL1B transcription via HIF-1α (Palsson-McDermott et al., 2015; Tannahill et al., 2013), and therefore, we examined if increased flux through glycolysis was fueling the increased pro-inflammatory response in miR-21-deficient macrophages. Blocking glycolysis with 2DG abolished the increased Il1b mRNA levels in miR-21−/− BMDM after Mtb infection or LPS treatment (Figure 3F), implicating general transcriptional induction of the Il1b gene as a key process regulated by miR-21. Similar results were obtained in miR-21-silenced hMDMs when glycolysis is circumvented by an alternative method, replacing glucose with galactose (Gohil et al., 2010; Figure 3G), similar to 2DG-treated MiR-21−/− BMDMs (Figure S5I). To confirm the in vivo impact of miR-21 on Mtb-induced inflammation, we monitored cytokine levels in the murine peritoneal cavity after local injection of hk-Mtb (Martin et al., 2009). A small but significant increase was observed in TNF levels in lavage fluid from MiR-21−/− mice, with a more pronounced effect observed in vivo IL-1β production and no impact on IL-10 (Figure 3H). Thus, production of IL-1β is a key process fueled by glycolysis and targeted by miR-21 to impact the ability of macrophages to contain Mtb.

miR-21 Targets the Expression of the Glycolytic Enzyme PFK-M

To confirm that increased glycolysis is a cause and not a consequence of increased inflammatory activity in miR-21-deficient macrophages, we monitored the effect of IL-1β targeting on lactate production and observed similar levels in all cultures (Figure S6A). Curiously, when we measured extracellular glucose in
culture media, which decreases after infection due to increased metabolic activity (Figure S6B), we did not observe differences across genotypes, although MiR-21−/− BMDMs have increased glycolytic rates and produce more lactate. This suggested that the expression, and therefore activity, of a key process within the glycolytic pathway is directly impacted by miR-21. Although we previously observed increased induction of pro-glycolytic genes Slc2a1, Hk2, and LdhA in MiR-21−/− BMDMs (Figure 2D), these genes do not contain predicted binding sites for miR-21. Our in silico analysis of glycolytic genes and found an isoform of the committed step of glycolysis (Mor et al., 2011), PFK-M, which contains a predicted miR-21-binding site in its long 3′ UTR, conserved across multiple species including human and mouse. Other PFK isoforms (PFK-L [liver] and PFK-P [platelet]) have shorter 3′ UTRs and lack this sequence (Figure 4A). To confirm the potential for miR-21 to directly repress PFK-M expression, we cloned its 3′ UTR into a luciferase reporter. Plasmid-based overexpression of miR-21 dose-dependently decreases expression of the human PFK-M 3′ UTR-linked reporter by ~30% in both HEK293Ts and the macrophage cell line RAW267.4 (Figure 4B), with similar results obtained by co-transfection of miR-21 mimics (Figure S6D). This repression was lost when the predicted miR-21-site is mutated (Figure 4B). Consistent with metabolic reprogramming after infection or LPS activation of BMDMs, the expression of Pfk-l and Pfk-p isoforms was enhanced, with higher induced-Pfk-l levels in miR-21-deficient cells (Figure 4C). Pfk-m, however, displays a differential expression pattern and is not induced by Mtb infection in WT cells (Figure 4C). However, when miR-21 is absent, increased Pfk-m mRNA is observed after infection with both H37Ra and H37Rv Mtb strains (Figures 4C and 4D), supporting the notion that induction of miR-21 limits the expression of this isoform, which biochemical and genetic studies have suggested possesses an increased affinity for its substrate fructose-6-phosphate (Dunaway et al., 1988; Garcia et al., 2009) and therefore supports increased glycolysis. Importantly, baseline levels of Pfk-m mRNA are higher in MiR-21−/− BMDMs, a trend not observed for other PFK isoforms. Conversely, basal levels of Pfk-m mRNA are reduced by overexpression of miR-21 in RAW267.4 (Figure 4E), similarly to Pdcd4 mRNA, supporting the notion that this isoform represents a bona fide miR-21-target. We thus examined protein expression, which miRNAs preferentially regulate (Selbach et al., 2008), and found that miR-21

Figure 3. Control of IL-1β Production by miR-21 Regulates Anti-Mtb responses

(A and B) IL-1β ELISA in supernatants from BMDMs (genotype indicated) infected with Mtb H37Ra (A, left) or H37Rv (A, right) or hMDMs transfected with 50 nM miR-21-specific antisense (miR-21) or a control nonspecific antisense (anti-miR-Ctrl) and subsequently infected with Mtb H37Ra (B) (MOI 5, indicated times).

(C) IL-1β ELISA in supernatants from BMDMs transfected with 50 nM of miR-21-specific mimic (miR-21 mimic) or a control nonspecific molecule (Ctrl-miR) infected with Mtb H37Ra (Mtb; MOI 5) for 24 h.

(D) Bacterial growth in BMDMs treated with anti-IL-1β specific antibody (aIL-1β; 1 μg/mL) or control immunoglobulin G (IgG) 3 h post-infection with Mtb H37Ra as in (A, left).

(E) qPCR of IL-1β mRNA in BMDMs (genotype indicated) infected with Mtb H37Ra or H37Rv as before (A).

(F) qPCR of IL-1β mRNA in BMDMs pretreated with 2DG (10 mM) infected with Mtb H37Ra (MOI 5) or treated with LPS (100 ng/mL) for 24 h.

(G) IL-1β ELISA in supernatants from MDMs transfected as in (B) 24 h prior to infection with Mtb H37Ra (MOI 5, 24 h) in glucose-containing media (GLU) or glucose-free galactose-containing media (GAL).

(H) ELISA of indicated cytokines in lavage fluid taken from mice (genotype indicated) 24 h post-intraperitoneal infection of h-Mtb (750 μg per mouse) or PBS. Data show mean concentration, fold-change in baseline CFUs (3 h) (A–C, G, and H) (D) and fold-induction over uninfected cells (E and F) and represent mean ± SEM for n = 4 (A, left panel) or n = 3 (A, right panel, B–G) independent experiments and for n = 3 mice per group (H). *p < 0.05; n.s., p > 0.05 for the indicated group comparisons (ANOVA with post hoc Tukey tests).
Figure 4. miR-21 Targets the Expression of the Glycolytic Enzyme PFK-M

(A) Schematic of PFK mRNA indicating the miR-21 site and mutant constructs.

(B) 3’ UTR luciferase reporter activity of PFK-M 3’ UTR (WT 3’ UTR) or mutant construct (mutant 3’ UTR) following co-transfection of HEK293T cells (left) or RAW267.4 cells (right) with control plasmid (−) or increasing amounts of miR-21 overexpressing plasmid (pCMV-miR-21, (+) 25 ng per point, (++) 50 ng per point).

(C and D) qPCR of PFK genes in BMDMs infected with Mtb H37Ra at the indicated MOI or treated with LPS (100 ng/mL) for 24 h (C) or Mtb H37Rv (MOI 5, 24 h) (D). (E) Relative expression of the indicated RNA species in RAW267.4 cells following 48-h transfection with increasing amounts of miR-21 overexpressing plasmid (pCMV-miR-21, 0–75 ng per point).

(F) PFK-M immunoblot in RAW267.4 macrophages transfected with increasing amounts pCMV-miR-21 as in (E) (top panel) or BMDMs (genotype indicated) (+) 25 ng per point, (++) 50 ng per point).

(G) In vitro enzyme activity for PFK or hexokinase (HK) in BMDMs lysates treated as in (F).

(H–J) In vitro PFK (H and J) or HK (I) enzyme activity in the indicated tissues from WT and miR-21−/− mice (20 mg tissue).

Data represent percent inhibition relative to control transfected cells (A), fold-induction relative to uninfected or control transfected cells (C–E), or mean concentration with individual mouse values indicated (G–J). Blots show one experiment representative of n = 3 independent experiments with normalized PFK-M band intensity provided underneath (F). Data represent mean ± SEM for n = 5 (B, C, E, and G) or n = 3 (D) independent experiments or n = 6 (J–I) or n = 3 (J) mice per group (H–J), *p < 0.05; n.s., p > 0.05 for the indicated group comparisons (ANOVA with post hoc Tukey tests).

overexpression dose-dependently reduced basal PFK-M protein levels in RAW267.4 macrophages (Figure 4F). Although PFK-M protein levels are not significantly altered by Mtb infection in WT BMDMs, levels are dramatically increased in both uninfected and infected MiR-21−/− BMDMs (Figure 4F). To confirm the elevated expression relates to augmented enzyme activity, we performed in vitro PFK activity assays by providing an excess of fructose-6-phosphate to cell lysates and monitoring the production of linked NADH. Uninfected WT BMDMs had modest PFK activity, which is actually decreased by Mtb infection, supporting the notion that during infection, this key enzyme complex is targeted for negative regulation (Figure 4G). This effect of infection was not observed when the earlier hexokinase step in the glycolytic pathway is measured (Figure 4G). When miR-21 is absent, untreated macrophages have significantly higher PFK, but not hexokinase, activity (Figure 4G), which is resistant to Mtb-induced regulation. PFK activity is determined by multiple isoforms with tissue-specific expression (Dunaway et al., 1988) that can also form functional hetero-tetramers. Each isoform (PFK-L, PFK-P, and PFK-M) is expressed in macrophages. To confirm the differences observed in MiR-21−/− BMDMs were specifically due to altered PFK-M expression, we measured PFK activity in murine tissues with defined and restricted expression of each isoform. Specifically, we found that although liver tissue (which solely expresses PFK-L) from WT and MiR-21−/− mice displayed similar levels of PFK activity, cardiac muscle tissue (which solely expresses PFK-M) had significantly more PFK activity in MiR-21−/− mice (Figure 4H), confirming that restriction of PFK-M by miR-21 controls metabolic activity in vivo. As before, no differences between genotypes were observed for hexokinase activity when measured ex vivo (Figure 4I). Thus, the increased PFK activity measured in miR-21-deficient BMDM is likely due to altered expression of the PFK-M isoform. Lung tissue, the primary site of Mtb infection, expresses all three PFK isoforms (Shi et al., 2015). Despite this, a modest but significant increase in PFK enzyme activity is measured in lungs from MiR-21−/− animals (Figure 4J), suggesting that miR-21 plays a role limiting glycolysis in this environment during the immune response.

Targeting of PFK-M by miR-21 Controls Mtb Responses

Since our results suggested an important role for PFK-M regulating glycolysis during Mtb infection that impacts host defense, we more directly targeted Pfk-m itself using small interfering RNA (siRNA). Although knockdown was not observed in uninfected BMDMs, which express low basal levels of PFK-M protein, our siRNA transfection led to knockdown after treatment with hk-Mtb, which normally stabilizes PFK-M protein expression and...
drives glycolysis (Figure 5A). Importantly, the induction of glycolysis after hk-Mtb treatment was significantly impaired by PFK-M knockdown, as was the production of IL-1β (Figures S6E and S6F). During infection of BMDMs with live Mtb H37Ra, we measured knockdown using qPCR and found significant reduction in basal Pfk-m mRNA levels (up to 50%; Figure 5B), an effect mirrored by infection with Mtb H37Ra. Importantly, whereas the decrease in Pfk-m mRNA by Mtb infection is normally impaired in MiR-21−/− BMDMs, siRNA transfection maintained this at low levels (Figure 5B), allowing us to specifically examine the role of Pfk-m targeting my miR-21. The enhanced ability of MiR-21−/− BMDMs to contain Mtb intracellular growth is lost when increased PFK-M expression is targeted by siRNA (Figure 5C), confirming the importance if this molecule controlling the immunometabolic response to Mtb.

To confirm directly that this repression impacts Mtb responses, we employed a target protection strategy (Choi et al., 2007) to specifically block the interaction of Pfk-m mRNA and miR-21 (Figure 5D). Transfection of WT BMDMs with this oligonucleotide increased PFK-M protein levels in both uninfected and Mtb-infected macrophages (Figure 5D). Similarly, extracellular levels of lactate and IL-1β were enhanced (Figures 5E and 5F), as was the ability to contain intracellular Mtb (Figure 5G). Importantly, these effects are phenocopied, but not enhanced, by oligonucleotide treatment in MiR-21−/− BMDMs. Target protection does not alter the changes observed in Mtb-induced TNF or IL-10 production across genotypes (Figures S6G and S6H). Collectively, these data support the notion that Mtb targets this key step in the glycolytic pathway to limit host responses via persistent upregulation of miR-21, which inhibits the expression of the pro-glycolytic PFK-M isoenzyme and subsequent activation of host defense through IL-1β production.

miR-21 Impacts AM Immunometabolic Responses to Mtb

After confirming the importance of the miR-21/PFK-M axis in the model mouse BMDM and hMDM systems, which mimic macrophages recruited to sites of infection, we investigated the primary host cell for Mtb, the resident alveolar macrophage...
Responses to Mtb Infection

Figure 6. miR-21 Limits Alveolar Macrophage Responses to Mtb Infection

(A) qPCR of mature miR-21 in resting BMDMs or mouse alveolar macrophages (mAMs). (B) GR and SRC of resting BMDMs or mAMs (genotype indicated).

(C) Extracellular lactate from mAMs (genotype indicated) treated with γ-irradiated Mtb (γ-Mtb) or infected with Mtb H37Ra (Mtb; MOI 5, 24 h).

(D) qPCR of indicated genes in mAMs (genotype indicated) infected with Mtb H37Ra (MOI 5, 24 h).

(E) IL-1β ELISA in supernatants from mAMs treated as in (D).

Data represent normalized ΔCt values across cell types (A), fold change in indicated parameter relative to WT mAMs (B), mean fold-change in lactate production relative to uninfected WT mAMs (C), fold induction relative to uninfected WT mAMs (D), and mean concentration (E). All experiments are mean ± SEM for n = 3 mice per group. *p < 0.05 and #p < 0.05 for the indicated group comparisons (ANOVA with post hoc Tukey tests in C–E or Student’s t test in A and B).

(Am), which we and others recently described as having metabolic plasticity dependent on both ontogeny and local environmental signals (Gleeson et al., 2018; Huang et al., 2018). First, we compared basal levels of mature miR-21 in mouse AMs (mAMs) or mature BMDMs and found strikingly higher levels of miR-21 in mAMs (Figure 6A), also seen in hAMs versus hMDMs (Figure S7A). AMs possess distinct metabolic properties from BMDMs and induce less glycolysis after infection; therefore, we measured maximal glycolytic capacity and found that mAMs from Mtb H37Ra-infected mice have an increased GR compared to their WT counterparts, more akin to BMDMs, with no effect on SRC (Figure 6B). Stimulation with γ-Mtb induced modest extracellular lactate accumulation, which was enhanced in the absence of miR-21 (Figure 6C). Infection with live Mtb H37Ra did not lead to a similar boost in lactate production in WT mAMs, consistent with high levels of miR-21 and low glycolytic potential. However, although low, lactate induction was significantly enhanced in Mtb H37Ra-treated mAMs (Figure 6C), supporting the notion that the presence of miR-21 exerts a limiting effect on the glycolytic potential of these cells. Little to no significant induction of Slc2a1, HK2, or LDHα mRNA was observed in WT mAMs after infection with viable Mtb H37Ra (Figure 6D), unlike that seen in BMDMs (Figure 2D). However, more Slc2a1 and HK2 mRNA induction was observed in Mtb H37Ra-infected mAMs (Figure 6D). We observed a trend toward basally higher Pfk-m mRNA (p = 0.07) in Mtb H37Ra-infected mAMs than in WT, and while infection with Mtb H37Ra decreased Pfk-m mRNA levels in WT mAMs, this was stabilized and actually increased in Mtb H37Ra-infected mAMs (Figure 6D). With respect to host responses, there was significantly more accumulation of IL-1β protein in supernatants from Mtb-infected Mtb H37Ra-infected mAMs (Figure 6E). A similar enhancement of IL-1β mRNA was seen in hAMs transfected with miR-21 antisense prior to activation with LPS (Figure S7B). These results highlight the importance of miR-21 expression regulating the metabolic plasticity and immune phenotype of resident macrophages, which is influenced by both ontogeny and the nature of activating stimuli encountered during infection.

Activation of Macrophages by IFN-γ Targets Glycolysis via miR-21

We wondered whether other signals involved in the immune response could impact on the immunometabolic pathway via miR-21. Increased glycolysis has emerged as a cardinal feature of “M1” macrophages, which have been treated in vitro with a Toll-like receptor (TLR) ligand (LPS) and IFN-γ (Jha et al., 2015). In fact, IFN-γ treatment of LPS-activated BMDMs specifically enhances rates of glycolysis (Figure 7A) and lactate production in Mtb-infected BMDMs (Figure 7B) and hMDMs (Figure S7C). Increased glycolysis is required for the potentiation of TLR-related genes, including Itib by IFN-γ, since growing hMDMs in galactose-containing media reduces the boost in IL-1β production by IFN-γ (Figure 7C). IFN-γ also supports enhanced induction of glycolytic genes (Slc2a1, HK2, and LDHα; Figure 7D) during Mtb infection. Interestingly, the boost in IL-1β expression by IFN-γ is not apparent in miR-21-silenced MDMs (Figure 7C) or Mtb H37Ra-infected BMDMs (Figure S7D). Intriguingly, the IFN-γ-mediated boost in lactate production in WT BMDMs reaches levels similar to that seen in Mtb-deficient cells (Figures 7B and S7C), suggesting that IFN-γ overcomes miR-21 repression of glycolysis to promote its pro-inflammatory and anti-microbial activities. We therefore examined miR-21 levels in IFN-γ-treated cells. Although IFN-γ alters transcription of target genes (Hu and Ivashkiv, 2009), we did not observe alterations in pri-miR-21 transcript levels in IFN-γ-primed BMDMs after 24-h LPS treatment or infection with Mtb H37Ra (Figure 7E). However, a decrease was noted in the levels of the mature miR-21 species after IFN-γ treatment (Figure 7E). These data suggest that IFN-γ targets miR-21 production to temper its anti-inflammatory effects and negative regulation of glycolysis. Accordingly, Pfk-m mRNA, which normally decreases after Mtb infection, is maintained by IFN-γ (Figure 7E), with an increase in PFK-M protein expression in IFN-γ-primed BMDMs (Figure 7F). This corresponds with a ~20% increase in PFK activity in Mtb-infected cells following IFN-γ priming, which is not observed in Mtb H37Ra-infected BMDMs or at the level of hexokinase activity (Figure 7G), suggesting that IFN-γ counteracts the
inhibitory effects of Mtb by buffering the increase in miR-21. Since IFN-γ plays an important role in tuberculosis (TB) host defense (Bogunovic et al., 2012), we wondered if its anti-microbial effects proceeded through the miR-21/glycolysis axis. Again, IFN-γ treatment, which improves the ability of macrophages to contain Mtb, is phenocopied by MiR-21−/− BMDMs (Figure 7H). This antimicrobial effect of IFN-γ requires glycolysis, since it is blocked in both WT and MiR-21−/− BMDMs by 2DG, which permits mycobacterial growth despite the presence of IFN-γ (Figure 7H). This places miR-21 expression as an important molecular switch that balances the immunometabolic response of macrophages, targeted by both pathogen and host-encoded processes to shape immunity.

DISCUSSION

By examining how Mtb manipulates innate immunity, we have identified a central regulator of the macrophage immunometabolic response: control of PFK-M expression, activity, and glycolysis by a miRNA, miR-21. Whereas miR-21 was previously shown to negatively regulate innate immunity by modulating both pro- and anti-inflammatory cytokine production (Barnett et al., 2016; Chen et al., 2013; Das et al., 2014; Liu et al., 2012; Lu et al., 2011; Merline et al., 2011; Sheedy et al., 2010), the engagement of a novel mRNA target by miR-21 in the context of Mtb infection points toward the importance of the immunometabolic response in host defense and expands the identified targets for miR-21 that regulate innate immunity.

It is now apparent that the nutrients utilized by and the metabolic pathways engaged determine immune cell function, but these can be manipulated by environmental signals, both activating and inhibitory (Hobson-Gutierrez and Carmona-Fontaine, 2018). While activation of macrophages by microbial-sensing TLRs, particularly TLR4, is known to subvert TCA (Jha et al., 2015) and lead to increased reliance on glycolysis driven by HIF-1α (Rodríguez-Prados et al., 2010; Tannahill et al., 2013), less is known about the molecular mechanisms regulating this over time and during infection. We recently described the switch to increased glycolysis, critical for the ability of macrophages to contain Mtb, early in infection (Gleeson et al., 2016). Here, we demonstrate that this is temporally regulated during infection, with blunting of this process apparent in macrophages infected with proliferating mycobacteria. Furthermore, we show that augmenting production of mature miR-21 levels is central to mediating this control, suggesting that during infection, Mtb manipulates an endogenous host mechanism for the resolution of
inflammation (Das et al., 2014) to co-opt macrophage function and maintain an environment favorable to bacillary replication.

Central to this is the production of IL-1β, which we and others have recently shown is critical in macrophage containment of Mtb (Gleeson et al., 2016; Mayer-Barber et al., 2014). Though IL-1β production is controlled at multiple levels (Pröschnicki and Latz, 2017), in recent years, it has been appreciated that later potentiation of its transcription occurs through HIF-1α (Tannahill et al., 2013), driven by increased glycolysis (Palsson-McDermott et al., 2015). Our work with Mtb, which drives both transcriptional induction and inflammmasome activation (Mishra et al., 2010), revealed that miR-21 impacts IL-1β transcription, a finding not previously observed but upheld following induction of IL1b by the TLR4 ligand LPS. Even though miR-21 has been linked to negative regulation of pro-inflammatory processes, including TNF production (Das et al., 2014; Liu et al., 2012) and promotion of anti-inflammatory responses like IL-10 (Das et al., 2014; Merline et al., 2011; Sheedy et al., 2010), these data place IL-1β as a key cytokine sensitive to regulation by miR-21 and are consistent with recent data from studies of leprosy (Liu et al., 2012). Although it has been suggested that IL1b mRNA is a direct target for repression by miR-21 (Liu et al., 2012; Terao et al., 2011), our data demonstrate indirect transcriptional regulation through modulating macrophage metabolism. Recently, multi-drug-resistant strains of Mtb were shown to limit IL-1β production through reduced metabolic reprogramming (Howard et al., 2018). Although we use both attenuated (H37Ra) and virulent (H37Rv) lab Mtb strains for functional studies, in both cases, negative regulation of glycolysis and pro-inflammatory signaling by miR-21 was observed. It may be the case that more clinically relevant and drug-resistant strains, which differentially modulate cytokine production, may in fact mediate these effects through miR-21 induction, and this remains to be tested.

Our studies of miR-21-deficient cells revealed unregulated glycolysis, despite intact glucose-fueled TCA basally. When interrogated Mtb did reduce SRC, which is consistent with an alternative fate for carbon intermediates feeding into the PPP. However, it is clear that the reprogramming of central energy metabolism observed during Mtb infection is distinct from the traditional “Warburg effect” observed in LPS-stimulated macrophages or tumor cells (Koppenol et al., 2011), with increased glycolytic rates being a key feature of infected macrophages. We show that this is limited over time by targeting the expression of a pro-glycolytic isoform of the rate-limiting PFK-1 step of glycolysis (Dunaway et al., 1988; Garcia et al., 2009; Tanner et al., 2018), which restricts flux through the glycolytic pathway and subsequent lactate production. These results are supported by a recent study that noted decreased glycolysis and lactate accumulation in Mtb-infected macrophages and, through metabolic flux analysis of glycolytic intermediates, pointed toward regulation at the level of PFK (Cumming et al., 2018). Increased metabolism of glucose through glycolysis has been suggested to promote macrophage activation by providing a rapid source of ATP and increasing levels of biosynthetic precursors required for inflammatory responses. Intermediates of nucleotides, amino acids, and lipids accumulate by feeding anabolic pathways from glycolysis, including the pentose-phosphate pathway (PPP). Crucially, the decision to commit to this pathway is regulated by PFK activity, and a decrease in pro-glycolytic PFK-M by Mtb-induced miR-21 may in fact support an alternative fate for carbon intermediates feeding into the PPP. Our observation that glucose consumption in WT and miR-21-deficient macrophages after infection remains unaltered, despite their ability to produce increased levels of lactate and increased PFK activity, suggests a complex reprogramming of kinetics and nutrient utilization that is central to host-pathogen interactions.

Targeting glycolysis at PFK-1 could allow bacteria to bypass host pro-inflammatory events fueled by increased glycolysis (Braverman and Stanley, 2017; Garaude et al., 2016; Gleeson et al., 2016; Palsson-McDermott et al., 2015) yet support immune evasion associated with altering intracellular anabolic pathways such as the PPP (Ouimet et al., 2016), including fatty acid synthesis or nucleotide production required for bacterial replication.

PFK-1 activity is also modulated by the host cytokine, IFN-γ, during Mtb infection. By relieving the repression of PFK-M by specifically modulating mature miR-21, IFN-γ can reprogram cellular metabolism to support pro-inflammatory activities. Consistent with this, IFN-γ-driven HIF-1α and nitric oxide (NO) production have emerged as key processes sensitive to changes in glycolysis (Braverman et al., 2016; Braverman and Stanley, 2017) that miR-21 also impact. Reprogramming of macrophage protein production by mTOR has been shown to be critical in IFN-γ signaling (Su et al., 2015) and is mediated in part through modulation of miRNA levels. The specific negative regulation of the mature miR-21 species by IFN-γ implies post-transcriptional regulation, which was previously observed for miR-21 during transforming growth factor β (TGF-β) signaling mediated through SMAD proteins (Su et al., 2015), which are also targets in IFN-γ signaling (Ghosh et al., 2001). This results in increased PFK-M expression and subsequent glycolytic flux in activated macrophages, facilitating pro-inflammatory signaling. Apart from increased glycolytic flux, how altered metabolic activities and intermediates downstream of increased PFK-1 activity contribute to the pro-inflammatory and antimicrobial effects of IFN-γ remain unclear. Recent studies suggest the mobilization of lipids in Mtb-infected cells contribute to IFN-γ activity (Knight et al., 2018), and the targeting of miR-21 observed here could contribute to this by driving flux through glycolysis to promote glyceraldehyde 3-phosphate production. Novel anti-mycobacterial strategies promoting IFN-γ activity are being developed, and our work suggests these may proceed by modulating miRNA expression. Since recent work suggests that the metabolic activity of resident cells contributes to pulmonary compartment susceptibility to TB (Gleeson et al., 2018; Huang et al., 2018), a better understanding of the signals and mechanisms that underlie this immunometabolic response, like our identification of a novel mRNA target and cellular process engaged by miR-21, provides a rationale for boosting defective immunity in chronic infection like tuberculosis and also other pulmonary diseases and cancer, where control of metabolic flux can have diverse and specific effects (Hobson-Gutierrez and Carmona-Fontaine, 2018).
STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **LEAD CONTACT AND MATERIALS AVAILABILITY**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Animals
 - Cell isolation and culture
 - Mycobacterium tuberculosis infections
- **METHOD DETAILS**
 - Gene Expression analysis
 - Metabolic assays
 - ELISA, Cell Viability, Nitrite and Intracellular ROS Assays
 - Transfection and Plasmids
- **QUANTITATIVE AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.cebrep.2019.12.015.

ACKNOWLEDGMENTS

Support for this work came from Science Foundation Ireland (starting investigator grants SFI/SIRG/2136 to F.J.S., 11/SIRG/B2099 to S.C.C., 12/SIRG/B2099 to S.M.O., and K.J.M. and National Institutes Of Health R35 HL135799 to K.J.M.

AUTHOR CONTRIBUTIONS

E.H. and H.C.-M. performed and analyzed all experiments. S.M.O., L.E.G., A.S., and S.V.G. provided assistance with miR-21-deficient animals. M.O. and K.J.M. performed the experiments shown in Figure 1K. J.K. conceived ideas and co-supervised the work. F.J.S. performed experiments, performed analysis, supervised the work, and wrote the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Mouse/Rat TNF alpha Functional Grade Purified Clone TN3-19.12</td>
<td>eBioscience</td>
<td>Cat# 16-7423-85, RRID: AB_469262</td>
</tr>
<tr>
<td>Armenian Hamster IgG Isotype Control Functional Grade Purified</td>
<td>eBioscience</td>
<td>Cat# 16-4888-85, RRID: AB_470172</td>
</tr>
<tr>
<td>murine IL-1β-neutralising antibody</td>
<td>R&D Systems</td>
<td>Cat# MAB4012, RRID: AB_2124619</td>
</tr>
<tr>
<td>goat IgG control</td>
<td>R&D Systems</td>
<td>Cat# AB-108-C, RRID: AB_354267</td>
</tr>
<tr>
<td>Human/Mouse/Rat Muscle Phosphofructokinase/PFKM Antibody</td>
<td>R&D Systems</td>
<td>Cat# MAB7667</td>
</tr>
<tr>
<td>Anti-b-actin</td>
<td>Sigma-Aldrich</td>
<td>Cat# A1978, RRID: AB_476692</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycobacterium tuberculosis H37Ra</td>
<td>American Type Culture Collection</td>
<td>25177</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis H37Rv</td>
<td>American Type Culture Collection</td>
<td>27294</td>
</tr>
<tr>
<td>Non-viable irradiated Mycobacterium tuberculosis strain H37Rv</td>
<td>BEI Resources</td>
<td>NR-49098</td>
</tr>
<tr>
<td>Heat-killed Mycobacterium tuberculosis H37Ra</td>
<td>Invivogen</td>
<td>tlr-hkmt-50</td>
</tr>
<tr>
<td>Biological Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human bronchoalveolar lavage fluid</td>
<td>Patients attending for bronchoscopy at St James’ Hospital, Dublin</td>
<td>n/a</td>
</tr>
<tr>
<td>Human buffy packs from donor blood</td>
<td>Obtained via the Irish Blood Transfusion Service</td>
<td>n/a</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse IL-10 Recombinant Protein</td>
<td>eBioscience</td>
<td>14-8101-62</td>
</tr>
<tr>
<td>Mouse IFN gamma Recombinant Protein</td>
<td>eBioscience</td>
<td>BM5326</td>
</tr>
<tr>
<td>Ultrapure LPS from E.coli 0111:B4</td>
<td>Invivogen</td>
<td>tlr-3pelps</td>
</tr>
<tr>
<td>Human IFN gamma Recombinant Protein</td>
<td>eBioscience</td>
<td>14-8319-80</td>
</tr>
<tr>
<td>2-Deoxy-D-glucose (2DG)</td>
<td>Sigma-Aldrich</td>
<td>D8375</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate Assay Kit</td>
<td>Sigma-Aldrich</td>
<td>MA064</td>
</tr>
<tr>
<td>TaqMan miRNA Reverse Transcription Assays</td>
<td>Applied Biosystems</td>
<td>4366596</td>
</tr>
<tr>
<td>High-Capacity cDNA Reverse Transcription Kit</td>
<td>Applied Biosystems</td>
<td>4368814</td>
</tr>
<tr>
<td>Seahorse XF Cell Energy Phenotype Test Kit</td>
<td>Agilent</td>
<td>103325-100</td>
</tr>
<tr>
<td>Griess Reagent Nitrite Measurement Kit</td>
<td>Cell Signaling</td>
<td>13547</td>
</tr>
<tr>
<td>DCFDA/H2DCFDA Cellular Reactive Oxygen Species Detection Assay Kit</td>
<td>Abcam</td>
<td>ab113851</td>
</tr>
<tr>
<td>Mouse IL-1 beta ELISA Ready-SET-Go! Kit</td>
<td>eBioscience</td>
<td>5017185</td>
</tr>
<tr>
<td>Mouse TNF alpha ELISA Ready-SET-Go! Kit</td>
<td>eBioscience</td>
<td>5017331</td>
</tr>
<tr>
<td>Mouse IL-10 ELISA Ready-SET-Go! Kit, 2nd Generation</td>
<td>eBioscience</td>
<td>501125188</td>
</tr>
<tr>
<td>Phosphofructokinase Activity Colorimetric Assay Kit</td>
<td>Sigma-Aldrich</td>
<td>MAK093</td>
</tr>
<tr>
<td>Hexokinase Activity Colorimetric Assay Kit</td>
<td>Sigma-Aldrich</td>
<td>MAK091</td>
</tr>
<tr>
<td>Dual Luciferase Reporter Assay System</td>
<td>Promega</td>
<td>E1910</td>
</tr>
<tr>
<td>CytoTox 96 Non-Radioactive Cytotoxicity Assay</td>
<td>Promega</td>
<td>G1780</td>
</tr>
<tr>
<td>Human IL-1 beta ELISA Ready-SET-Go! Kit, 2nd Generation</td>
<td>eBioscience</td>
<td>15571087</td>
</tr>
</tbody>
</table>

(Continued on next page)
LEAD CONTACT AND MATERIALS AVAILABILITY

Frederick J Sheedy (fsheedy@tcd.ie) is Lead Contact for this study. All unique reagents generated in this study (plasmids, oligonucleotides) are available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

miR-21-deficient mice were generated by Taconic using Cre-loxP technology to delete the miR-21 coding region downstream of Tmem49. Following successful deletion, mice were backcrossed further to obtain a full body MiR-21−/− line described by Johnston et al., 2017. Uncrossed mice were used as MiR-21+/+ controls (WT). Mice were bred and maintained under specific pathogen-free conditions. Mature (> 12 week) male and female mice were used for cell extractions (BMDM, AMs) and were age and sex-matched. Intra-peritoneal injection experiments were carried out on 12-week old male mice. Whole lung RNA from mice infected with Mtb H37...
Rv (Erdman strain) was described in (Qui met et al., 2016). All experiments were carried out under approval of the Health Products Regulatory Authority, Ireland and Trinity College Dublin Animal Research Ethics Committee.

Cell isolation and culture

BMDM were isolated as described in Weischenfeldt and Porse, 2008, and re-plated at day 7 post-differentiation at 1x10^6 cell/mL in DMEM supplemented with 10% FBS and 5% L929-conditioned medium for experiments. Murine AM were isolated by bronchoalveolar lavage with ice-cold PBS via intratracheal insertion of a 20G IV catheter post-sacrifice. Cells were centrifuged from lavage fluid and plated in DMEM supplemented with 10% FBS and antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin (Pen-Strep), counted and plated on plastic at 1x10^6 cell/mL to allow adherence of macrophages. Non-adherent cells were washed away after 24 h. Human AM were retrieved at bronchoscopy after informed consent. Bronchoalveolar lavage fluid was filtered through a 100-µm nylon strainer (BD Bioscience) and centrifuged at 1,400 rpm for 10 min. Cells were resuspended at 5 x 10^6 cells/ml in RPMI-1640 culture media supplemented with human serum (Sigma), 50 µg/ml fungizone, and 50 µg/ml cefotaxime. Adherence purification of AM was performed; non-adherent cells were removed by washing after 24 h and experiments performed within 48 h. Cells were plated at 5x10^5/ml. Work was approved by the Research Ethics Committee of St. James’s Hospital. To generate human MDM, mononuclear cells were isolated from peripheral blooduffy coats obtained from the Irish Blood Transfusion Services (Dublin, Ireland) using density gradient centrifugation with Lymphoprep (Stem Cell Technologies). Cells were cultured on plastic in RPMI-1640 media supplemented with 10% human AB serum (Sigma-Aldrich) at 2 x 10^5/ml. Non-adherent cells were removed by washing every 2-3 days incubated for a total of 7 days to allow differentiation to macrophages prior to performance of experiments. Supply of human blood products from IBTS was approved by clinical indemnity to FJS. HEK293T cells were a gift from Cliona O'Farrelly (Trinity College Dublin) and were maintained in DMEM containing 10% FBS and Pen-Strep. RAW264.7 cells were a gift from Luke O’Neill (Trinity College Dublin) and were maintained in RPMI containing 10% FBS and Pen-Strep.

Mycobacterium tuberculosis infections

Non-viable irradiated *Mycobacterium tuberculosis* (Mt b) strain H37Rv was obtained from the American Type Culture Collection (ATCC) (Manassas, VA) and prepared according to manufacturer’s instructions. Mtb strains H37Ra and H37Rv were also obtained from ATCC and propagated in Middlebrook 7H9 medium to log phase. On the day of infection, bacteria in log-phase were pelleted by centrifugation and resuspended in DMEM. Bacterial pellets were de-clumped by passing through a syringe with an 25G needle several times. A single cell suspension was isolated by centrifuging the bacterial suspension at 800 rpm for 3 min. The supernatant of this spin was quantified by spectrophotometry (OD600nm) and used to infect macrophages. Preliminary assessment of multiplicity of infection (MOI) was performed for each experiment and genotype to allow normalization for phagocytosis by infecting sample wells with varying amounts of resuspended Mtb for 3 h. For this, extracellular bacteria were removed by washing, cells fixed in 2% paraformaldehyde for 10 min and stained with Auramine O (Becton Dickinson) for acid-fast bacteria and with Hoechst 33358 (10 µg/ml; Sigma-Aldrich) for cell nuclei to allow determination of the number of bacilli per cell by observing slides under an inverted fluorescent microscope (Nikon TE 300). Macrophages were infected at an MOI of 5 bacilli per cell (unless otherwise stated) for 3 h, extracellular bacteria removed by collecting the supernatant which was then purified further by centrifugation at 13,000 rpm for 10 min to pellet extracellular bacteria. Bacteria-free media was returned to macrophages after washing in DMEM to remove extracellular bacteria. Baseline growth was assessed by lysing 3 h time-point in 0.1% Triton-X for 10 min. Serial dilutions were plated on 7H10 Middlebrook Agar in triplicate and colony-forming units enumerated after incubation at 37°C for 14 – 21 days after plating. For later growth measurements this lysate was combined with pelleted extracellular bacteria, obtained by centrifugation of supernatant. For experiments with viable Mtb, macrophage supernatants were sterilized through 20 nM filters before use. For intra-peritoneal injection of heat-killed Mtb (hk-Mtb), 12-week mice were injected with 750 µg hk-Mtb (InVivoGen) in 1 mL in endotoxin-free 1x PBS. 24 h post-injection mice were sacrificed and the peritoneal cavity flushed out with 2 mL PBS. Lavage fluid was collected and concentrated (Amicon Ultra Ultra-tracel 3K columns) for ELISA.

METHOD DETAILS

Gene Expression analysis

RNA was extracted with the RNeasy Kit (QIAGEN). All experiments were carried out under approval of the Health Products Regulatory Authority, Ireland and Trinity College Dublin Animal Research Ethics Committee.

BMDM were isolated as described in Weischenfeldt and Porse, 2008, and re-plated at day 7 post-differentiation at 1x10^6 cell/mL in DMEM supplemented with 10% FBS and 5% L929-conditioned medium for experiments. Murine AM were isolated by bronchoalveolar lavage with ice-cold PBS via intratracheal insertion of a 20G IV catheter post-sacrifice. Cells were centrifuged from lavage fluid and plated in DMEM supplemented with 10% FBS and antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin (Pen-Strep), counted and plated on plastic at 1x10^6 cell/mL to allow adherence of macrophages. Non-adherent cells were washed away after 24 h. Human AM were retrieved at bronchoscopy after informed consent. Bronchoalveolar lavage fluid was filtered through a 100-µm nylon strainer (BD Bioscience) and centrifuged at 1,400 rpm for 10 min. Cells were resuspended at 5 x 10^6 cells/ml in RPMI-1640 culture media supplemented with human serum (Sigma), 50 µg/ml fungizone, and 50 µg/ml cefotaxime. Adherence purification of AM was performed; non-adherent cells were removed by washing after 24 h and experiments performed within 48 h. Cells were plated at 5x10^5/ml. Work was approved by the Research Ethics Committee of St. James’s Hospital. To generate human MDM, mononuclear cells were isolated from peripheral blooduffy coats obtained from the Irish Blood Transfusion Services (Dublin, Ireland) using density gradient centrifugation with Lymphoprep (Stem Cell Technologies). Cells were cultured on plastic in RPMI-1640 media supplemented with 10% human AB serum (Sigma-Aldrich) at 2 x 10^5/ml. Non-adherent cells were removed by washing every 2-3 days incubated for a total of 7 days to allow differentiation to macrophages prior to performance of experiments. Supply of human blood products from IBTS was approved by clinical indemnity to FJS. HEK293T cells were a gift from Cliona O'Farrelly (Trinity College Dublin) and were maintained in DMEM containing 10% FBS and Pen-Strep. RAW264.7 cells were a gift from Luke O’Neill (Trinity College Dublin) and were maintained in RPMI containing 10% FBS and Pen-Strep.

Mycobacterium tuberculosis infections

Non-viable irradiated *Mycobacterium tuberculosis* (Mt b) strain H37Rv was obtained from the American Type Culture Collection (ATCC) (Manassas, VA) and prepared according to manufacturer’s instructions. Mtb strains H37Ra and H37Rv were also obtained from ATCC and propagated in Middlebrook 7H9 medium to log phase. On the day of infection, bacteria in log-phase were pelleted by centrifugation and resuspended in DMEM. Bacterial pellets were de-clumped by passing through a syringe with an 25G needle several times. A single cell suspension was isolated by centrifuging the bacterial suspension at 800 rpm for 3 min. The supernatant of this spin was quantified by spectrophotometry (OD600nm) and used to infect macrophages. Preliminary assessment of multiplicity of infection (MOI) was performed for each experiment and genotype to allow normalization for phagocytosis by infecting sample wells with varying amounts of resuspended Mtb for 3 h. For this, extracellular bacteria were removed by washing, cells fixed in 2% paraformaldehyde for 10 min and stained with Auramine O (Becton Dickinson) for acid-fast bacteria and with Hoechst 33358 (10 µg/ml; Sigma-Aldrich) for cell nuclei to allow determination of the number of bacilli per cell by observing slides under an inverted fluorescent microscope (Nikon TE 300). Macrophages were infected at an MOI of 5 bacilli per cell (unless otherwise stated) for 3 h, extracellular bacteria removed by collecting the supernatant which was then purified further by centrifugation at 13,000 rpm for 10 min to pellet extracellular bacteria. Bacteria-free media was returned to macrophages after washing in DMEM to remove extracellular bacteria. Baseline growth was assessed by lysing 3 h time-point in 0.1% Triton-X for 10 min. Serial dilutions were plated on 7H10 Middlebrook Agar in triplicate and colony-forming units enumerated after incubation at 37°C for 14 – 21 days after plating. For later growth measurements this lysate was combined with pelleted extracellular bacteria, obtained by centrifugation of supernatant. For experiments with viable Mtb, macrophage supernatants were sterilized through 20 nM filters before use. For intra-peritoneal injection of heat-killed Mtb (hk-Mtb), 12-week mice were injected with 750 µg hk-Mtb (InVivoGen) in 1 mL in endotoxin-free 1x PBS. 24 h post-injection mice were sacrificed and the peritoneal cavity flushed out with 2 mL PBS. Lavage fluid was collected and concentrated (Amicon Ultra Ultra-tracel 3K columns) for ELISA.

METHOD DETAILS

Gene Expression analysis

RNA was extracted with the RNeasy Kit (QIAGEN). All experiments were carried out under approval of the Health Products Regulatory Authority, Ireland and Trinity College Dublin Animal Research Ethics Committee.
(Mm00477208_m1), human phosphatase and tensin homolog (Pten, Hs02621230_s1), mouse Pri-miR-21 (Mm03306822_pri), human pri-miR-21 (Hs03302625_pri), mouse tumor necrosis factor-α (Tnf, Mm00443258_m1) and human TNF (Hs00174128_m1). The AB7900HT platform (Applied Biosystems) was used for all PCR, performed in triplicate in FAST mode. Changes in expression were calculated by the change in threshold (ΔΔCT) method with Hprt or 18S as an endogenous control and were normalized to results obtained in untreated cells. For miRNA analysis, individual miRNA TaqMan assays for the endogenous reference small RNA RNU6B and miR-21 were performed according to the manufacturer’s instructions RNU6B (conserved) (001093) and miR-21 (conserved) (Hs04231424_s1) (Applied Biosystems). For measurement of mycobacterial viability by qPCR, RNA and genomic DNA was isolated simultaneously and measured using; Mtb IS6100 genomic DNA specific probe (custom designed probe) and Mtb 16 s rRNA probes (Ba04230899_s1). For quantification, Mtb IS6100 expression in genomic DNA was normalized to bacterial housekeeping 16 s rRNA and macrophage 18 s rRNA expression in RNA samples and expressed relative to 3h post-infection using the ΔΔCT method.

Metabolic assays
Lactate concentration was measured in supernatants using the colorimetric Lactate Assay Kit (MAK064) (Sigma-Aldrich). Glucose concentration was measured using Glucose Assay Kit (ab65333) (Abcam). Enzyme activity was measured using kits from Sigma-Aldrich (Phosphofructokinase Activity Colorimetric Assay Kit MAK093 and Hexokinase Activity Colorimetric Assay Kit MAK091) according to manufacturer’s instructions. Extracellular flux analyses were carried out using an XFe24 Extracellular Flux analyzer (Seahorse Biosciences) in Seahorse Media freshly supplemented with 10 mM glucose and 2 mM l-glutamine. Normalization for cell number was carried out with a Crystal Violet dye assay.

ELISA, Cell Viability, Nitrite and Intracellular ROS Assays
Cytokine concentration in supernatants were measured using sandwich ELISA READY-SET-GO kits from eBioscience according to the manufacturer’s instructions. The following cytokines were assayed; mouse TNF (88-7324-77), mouse IL-10 (88-7105-77), mouse IL-1β (88-7013-77), human TNF (88-7346-77), human IL-10 (88-7106-77) and human IL-1β (88-7261-77). Cell viability was determined by measuring secreted lactate dehydrogenase using the CytoTox 96 Non-Radioactive Cytotoxicity Assay from Promega. Nitrite was measured in fresh supernatant using the Griess Reagent Nitrite Measurement Kit (Cell Signaling). Intracellular ROS were quantified using the DCFDA/H2DCFDA Cellular Reactive Oxygen Species Detection Assay Kit (ab113851) (Abcam).

Transfection and Plasmids
miR-21 specific miRNA inhibitors and mimics and non-targeting negative control molecules were obtained from Horizon Discovery/Dharmacon (miRIDIAN microRNA Hairpin Inhibitor Negative Control #1, miRIDIAN Hairpin Inhibitor hsa-miR-21-5p, miRIDIAN microRNA Mimic Negative Control #1 and miRIDIAN Hairpin Mimic hsa-miR-21-5p). Lipofectamine 2000 (Invitrogen) was used as a delivery agent. 1x10⁶ MDM or BMDM were transfected 7 days after maturation with RNA:Lipofectamine complexes at concentration of 50 nM RNA molecule, 2% Lipofectamine in serum-free OptiMEM media – left to complex at room temperature for 20 min prior to transfection. Cells were allowed to recover for 24 h before infection with Mtb. Luciferase activity was measured by transfecting HEK293T cells using GeneJuice (Merck) or RAW267.4 cells using Lipofectamine 2000 with a luciferase reporter plasmid miRNA 3’UTR target expression clone for Human PFKM (NM_000289.5) or a control mutated sequence (GeneCopoeia) and assayed using the Dual-Luciferase kit (Promega). miR-21 was also overexpressed using pCMV-miR-21 or control vector pCMV-PL, both gifts from Bryan Cullen (Addgene plasmids 20381 and 20783). Target protection was achieved by transfecting cells using Lipofectamine 2000 to deliver the miR-21/PFNK-M target protecting morpholin and control morpholin (5’-AGCTTTTTTTAGAAAAACAGCACA-3’) and 5’-ACCTTTTTTTACGGAAAACAGCACA-3’) obtained from GeneTools (Oregon, USA). Mice Pk-r-m specific siRNA Horizon Discovery/Dharmacon (ON-TARGETplus Mouse Pk-r-m (18642) siRNA) and BMDM were transfected using Lipofectamine 2000 to a top concentration of 50 nM and normalized with a non-targeting siRNA control 48h before further treatment/infection.

QUANTIFICATION AND STATISTICAL ANALYSIS
Statistical significance was assessed by one-way analysis of variance with multiple comparison tests using Prism 8 (Graph Pad software) or unpaired, two-tailed Student’s t test for single comparison using Microsoft Excel. p values of less than 0.05 were considered significant and denoted by * or **. Information on replicates/error/significance are indicated in the figure legends

DATA AND CODE AVAILABILITY
This study did not generate any unique datasets or code