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ABSTRACT

This thesis addresses the topic of example-based colour transfer from the domain of

image processing. Colour transfer is often recast as a distribution transfer problem in

which the actual probability density function of a given target colour samples is trans-

ferred to the input colour samples. Existing colour transformations rely on solving the

problem only in colour space and do not scale well to high-dimensional spaces due to

the increase in the computational complexity associated with the increase of the data

dimensionality. This poses a challenging problem to current colour transfer methods

and limits the potential of encoding and fusing different types of relevant information

that could enhance image descriptors and guide the transfer process.

The aim of this thesis is to propose transfer functions that are scalable to high-

dimensional spaces and suitable to parallel computation. We extend the colour prob-

lem space to high-dimensional space by constructing pixel descriptors that encode

colour, spatial and local structure information to guide and enhance the performance

of the transfer function. We propose to solve the high-dimensional distribution trans-

fer problem in 1D space using an iterative projection approach with three statistical

methods: Optimal Transport, L2 inference, and Kernel Regression, taking into ac-

count available information about correspondences between the input and the target

distributions. Our high-dimensional construction implies a new reconstruction step

since each recoloured pixel benefits from the contribution of several estimated candi-

dates using an averaging solution that allows denoising and artifact removal as well as

colour transfer. The extensive experiments and analysis conducted in this thesis show

quantitative and qualitative competitive results compared with the leading state of

the art methods of colour transfer.
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CHAPTER

ONE

INTRODUCTION

1.1 Context and Motivation

Computer vision, as an interdisciplinary scientific field, is concerned with building

computers that can automate three main tasks the human vision system can do: image

acquisition, image processing, and image analysis. The goal is to enable computers to

reach a high-level understanding of digital images that empower them with the ability

of decision making in such contexts as prediction and control, Figure 1.1.

In image acquiring task, a digital image may be acquired by one or several image

sensors such as light-sensitive cameras, range sensors, tomography devices, radar,

ultra-sonic cameras, etc. These devices produce different types of images: 2D im-

age, 3D volume, or an image sequence (video). The pixel values typically correspond

to light intensity in one spectral band (gray image) or several spectral bands (colour

images), and can also be related to various physical measures, such as depth measure-

ments and electromagnetic waves. Additionally, images are often captured at different

device settings, different resolutions, and under different lighting conditions. These

Figure 1.1: The purpose of Computer Vision is to mimic human vision in three tasks:
image acquisition, image processing, and image analysis. The goal is to enable com-
puters to reach a high-level understanding of digital images that empower them with
the ability of decision making.
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Figure 1.2: Reconstruction of the Colosseum from extremely diverse, large, and un-
constrained photo collections (Agarwal et al., 2010).

different conditions make images largely heterogeneous.

Many applications involve high-level image analysis and integration of complemen-

tary and valuable information from multiple imaging resources to represent them in

a single coherent informative image. An example is presented in Figure 1.2, where

a diverse and large number of images distributed on the Internet that exhibit over-

lapped scenes are used for 3D reconstruction of buildings. Two problems arise in this

integration: the geometric and the photometric alignment. The geometric alignment

is commonly referred to as image registration, which is a fundamental task in image

processing used to geometrically overlay two or more images of the same scene, pos-

sibly taken at different times, from different angles or different devices. In contrast,

the photometric alignment refers to colour transfer, and it is the process of matching

colour statistics or eliminate colour variations between images. The colour variations

between images often happen due to illumination changes, using different cameras,

different in-camera settings, or tonal adjustments of the users, and this poses a prob-

lem to the fusion of information from several images. Moreover, the alignment that

is given by an image registration algorithm (geometric alignment) can never be accu-

rate to the pixel level and it may contain mismatches and errors, which makes a direct

colour matching of pixel to pixel unfeasible solution. Therefore, the problem of how to

match the colours of images must be tackled differently. The works undertaken in this

thesis aim to contribute to the domain of example-based colour transfer (photometric

alignment). In the following, we briefly discuss the research problems.

1.2 Research Problems and Scope

Example-based colour transfer refers to the process of changing the colours of an in-

put image (denoted as the source image) so that they match the colours of an example
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image (denoted also as the target image). In many computer vision applications such

as image mosaicking or stitching where there is a shared content, images are required

to have consistent colours. In these cases, colour transfer methods can be used for

harmonizing and eliminating the colour variations between images. Figure 1.3 shows

examples of images with overlapped scenes that need to be harmonized. Colour trans-

fer techniques can also be used to transfer the colour feel of one image to another when

there is no shared content between them, as in Figure 1.4. This type of colour transfer

problem is a fundamental process in film post-production. In this thesis, we focus on

colour transfer between realistic images that exhibit overlapped scenes.

A popular approach is to formulate colour transfer as a problem of transforming sta-

tistical distributions, where the actual probability density function (pdf) of the target

colour samples is transferred to the source colour samples. This problem is known

as the distribution transfer problem, and it is the main interest of this thesis. Recent

algorithms based on the idea of minimizing the distance between probability density

functions proved to be efficient tools for a wide range of applications. Of particular

interest are the methods based on the Optimal Transport cost function (Muzellec and

Cuturi, 2019; Meng et al., 2019; Kolouri et al., 2018; Arjovsky et al., 2017) and L2 diver-

gence cost function (Grogan and Dahyot, 2019, 2018; Ma et al., 2015; Jian and Vemuri,

2011). However, Optimal Transport has not been investigated in high dimensional

spaces, and the L2 divergence based methods do not scale well in high dimensional

spaces due to the increase in computational complexity associated with the increase

of the data dimensionality. Indeed, enhancing image descriptors by fusing different

information such as spatial information and colour information as well as directional

information (orientations of image gradients) is interesting for the improvement of the

quality of results, but that would increase the dimensionality of the data. This poses a

challenging problem to current colour transfer methods and limits the potential of uti-

lizing different data types in estimating the transformation functions. This implies the

need for transfer functions that are scalable to multi-dimensional spaces and reduce

computational costs.

In this perspective, to propose a new example-based colour transfer method, several

questions need to be addressed:
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Figure 1.3: This figure shows examples of source and target images with overlapped
contents. Colour transfer technique is applied with the goal of harmonizing and elim-
inating the colour variations between images. Flow fields show motion changes be-
tween the source and target images. In the last column, the recoloured source images
in the 1st, 2nd, and 3rd rows are processed with our proposed colour transfer tech-
niques in the same order (Alghamdi and Dahyot, 2020b; Alghamdi et al., 2019; Al-
ghamdi and Dahyot, 2020a), the 4th row is processed with our proposed technique in
Chapter 7.

• How to estimate a transformation function that matches high-dimensional prob-

ability density functions and is computationally efficient.

• Is it possible to solve the colour transfer problem using high dimensional repre-

sentations that encode spatial information and colour information and preserve

local structures.

• How to estimate a transformation function that is accurate enough to match the

colours of the target image.

• How to estimate a transformation function that preserves most of the structures

of the source image and allows denoising and artifact removal.
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Figure 1.4: This figure shows examples of source and target images with different
contents. Colour transfer technique is applied with the goal of transferring the colour
feel of the target image to the source image. In the last column, the recoloured source
images are processed with the IDT colour transfer technique (Pitie et al., 2007).

• How to account for pixel correspondences in matching high-dimensional prob-

ability density functions.

To address these questions, we extend the original problem space to high-dimensional

spaces, encoding a lot of information that could guide the estimation of the trans-

formation function. We investigate solving the high-dimensional problem using the

1D iterative projection approach with three statistical models: Optimal Transport, L2

inference, and Nadaraya–Watson estimator that accounts for pixel correspondences.

This approach has the potential to adapt well in higher dimensions, and it is also suit-

able for parallel optimization.

1.3 Thesis Contributions

In 1D space, optimal transportation, inference with L2 divergence, and computing

Nadaraya–Watson estimates are straightforward and have low computational cost. In

this thesis, we utilize these efficient 1D transformation functions to tackle high di-

mensional distribution transfer problems using the 1D iterative projection approach.
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The idea is to iteratively project dataset values originally in high dimensional space

to a 1D subspaces and solve 1D transformation functions and then propagate the so-

lution back to the original space. This operation is repeated with different directions

in 1D space until convergence. The 1D transformation problems are independent of

each other; hence the process is suitable for parallel optimization. We show the po-

tentials of the proposed approaches in solving colour transfer between two images

that exhibit overlapped scenes. We conduct experiments that show quantitative and

qualitative improvements over the previous state of the art colour transfer methods.

We now summarize the main contributions in this thesis:

• We compare and visualize how Optimal Transport, inference with L2 diver-

gence, and Nadaraya–Watson behave in the 1D case. We conducted simu-

lated experiments to compare popular approaches proposed in the literature that

tackle the high-dimensional problems using 1D Optimal Transport solution.

• We propose a new colour transfer, the patch-based colour transfer with Optimal

Transport, to transfer the colour of a source image to match the colour of a tar-

get image of the same scene. In order to preserve local topology and transfer

coherent colours to neighboring pixels, we encode overlapping neighborhoods

of pixels (patches) in high-dimensional spaces. In addition, spatial information

as well as colour content of pixels are both encoded in high-dimensional feature

vectors. Both overlapping patches and combining spatial and colour informa-

tion improve the pixel descriptors in the 1D dimensional subspaces and this

compensates for the loss of the structure of the original dimensional space. This

original construction implies a new reconstruction step since each recoloured

pixel benefits from the contribution of several estimated candidates using an av-

eraging solution that allows denoising and artifact removal. Experiments show

quantitative and qualitative improvements over the state of the art colour trans-

fer in images where spaces of dimensions up to 100 have been used.

• We propose a new colour transfer method with Optimal Transport to transfer

the colour of a source image to match the colour of a target image of the same

scene that may exhibit large motion changes between images. By definition, Op-

timal Transport does not take into account any available information about cor-

respondences when computing the optimal solution. To tackle this problem, we
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propose to estimate motions flow using motion estimation and incorporate the

spatial correspondences in the encoded overlapping neighborhoods of pixels.

This new formulation makes Optimal Transport implicitly takes into account

correspondences when computing the optimal solution. Moreover, we intro-

duce smoothing as part of the iterative algorithms for solving optimal transport,

namely Iterative Distribution Transport (IDT) and its variant, the Sliced Wasser-

stein Distance (SWD). We show quantitative and qualitative improvements over

the state of the art colour transfer in images where spaces of dimensions up to

125 have been used.

• We propose Iterative Nadaraya-Watson Distribution Transfer for accounting for

pixel correspondences in matching high-dimensional probability density func-

tions. We demonstrate the potentials of this mapping in solving colour transfer

between two images that exhibit overlapped scenes with motion changes be-

tween them. The 2D/3D problem is extended to higher dimensions by encod-

ing overlapping neighborhoods of data points and solving the high dimensional

problem in 1D space using the iterative projection approach. Nadaraya-Watson

provides smooth mapping and alleviates artifacts. Quantitative and qualita-

tive experiments show that our approach is competitive with the state of the

art colour transfer in images where spaces of dimensions up to 45 have been

used.

• We introduce the Sliced L2 Distance based approach that minimizes the L2 dis-

tance between two pdfs using the 1D projection approach. This approach ex-

tends the standard L2 inference to high-dimensional optimization problems.

The L2 based inference is flexible as it takes advantage of correspondences that

may be available and performs well in the presence of correspondence outliers.

We show how to combine L2 solutions with correspondences and without cor-

respondences to tackle semi-supervised situations where correspondences are

only partially available.
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1.4 Thesis Outline

The works undertaken in this thesis is structured into eight chapters:

• In Chapter 2, we provide the theory and applications of Optimal Transport, L2

inference, Nadaraya-Watson estimator, and we present the state of the art colour

transfer techniques.

• In Chapter 3, we compare and visualize the models’ behavior in the 1D case.

Also, We compare the iterative projection approaches that tackle the high-

dimensional problems using a 1D OT solution.

• In Chapter 4, we present our colour transfer approach with Optimal Transport,

where we encode overlapping neighborhoods of pixels containing colour infor-

mation as well as spatial information.

• In Chapter 5, we present colour transfer approach with Optimal Transport,

where we incorporate spatial correspondences estimated using motion estima-

tion. Also, we introduce smoothing as part of the iterative algorithms for solving

optimal transport.

• In Chapter 6, we present colour transfer approach with Nadaraya-Watson that

maps one N-dimensional distribution to another using the 1D projection-based

approach, taking into account available information about correspondences.

• In Chapter 7, we extend L2 framework to higher dimensional problems and

introduce the Sliced L2 Distance approach that minimizes the robust L2 between

two N -dimensional distributions using the 1D projection-based approach.

• In Chapter 8, we summarise the work carried out in this thesis and presents

possible future directions of investigation.

• Finally, Appendices provide a number of supplementary results generated by

the methods proposed in this thesis.

8



1.5 List of Publications

A number of paper publications took place during the preparation of this thesis:
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CHAPTER

TWO

LITERATURE REVIEW: THEORY AND

APPLICATIONS

2.1 Introduction

The main contributions of this thesis are to introduce high dimensional distribution

transfer functions with Optimal Transport, L2 divergence inference, and a Kernel re-

gression technique (Nadaraya-Watson estimator), which have been inspired by the 1D

iterative approach implemented in algorithms proposed initially as solutions to Opti-

mal Transport in N -dimensional spaces. The proposed transfer functions are guided

by high dimensional point representations encoding content information (such as

colour and spatial information and local structures) to produce accurate mappings.

To show these mappings’ potentials, we apply them to colour transfer between two

images that exhibit overlapped scenes. Therefore, in this chapter, we present the back-

ground structured in a way that serves the subsequent chapters. First, we will sum-

marize the theory and applications of Optimal Transport, L2 inference, and Nadaraya-

Watson estimator in Section 2.2. Following this, we present a brief review of colour

transfer techniques in Section 2.3. Finally, we conclude in Section 2.4.
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2.2 Statistical Techniques and Applications

2.2.1 Optimal Transport

Optimal Transport (OT), also known as the Wasserstein Distance (Villani, 2003, 2008)

or as the Earth Mover’s Distance (EMD) (Rubner et al., 2000), is a framework con-

cerned with the problem of finding an optimal solution with a minimum cost of trans-

ferring a source distribution to a target distribution. It was first formulated by the civil

engineer Gaspar Monge (Monge, 1781) for the purpose of finding an optimal way to

move a pile of soil from one site to another with minimum transportation cost. Later

the problem was extensively analyzed by Kantorovich (Kantorovich, 1942) with a fo-

cus on developing techniques for the optimal economic allocation of resources. Since

then, OT has appeared in numerous fields like econometrics, fluid dynamics, auto-

matic control, transportation, and production planning as they all involve moving a

group of items or distributions from a source to a target destination (Villani, 2003;

Rachev and Rüschendorf, 1998).

In the last two decades, OT received significant attention from researchers in Com-

puter Science, imaging, and data analysis. The rationale for such interest is the pow-

erful geometric tools which provide effective means for defining distances between

probability measures that may be defined in high-dimensional metric spaces. Opti-

mal transport based techniques have been shown to produce powerful and robust

results in numerous pattern recognition related problems (Kolouri et al., 2017).

In the following, we introduce an overview of key mathematical concepts and features

of OT, and how it has been used as a distance metric between probability distributions,

including the possible closed-form solutions in one-dimensional space, as well as how

OT can be computed in N -dimensional space. Lastly, we summarize interesting ap-

plications of OT in image processing, computer vision, and learning problems. For

more detailed arguments and analysis, the interested reader is referred to books that

have been written on the topic by Villani (2008, 2003) for more comprehensive math-

ematical discussion, and by Santambrogio (2015) for a discussion targeted at applied

mathematics, and more recently, a book by Peyré and Cuturi (2019) which looks at

OT from a computational viewpoint centered on applications in computer vision and

machine learning.

11



Figure 2.1: Given (X , f ) and (Y, g), metric spaces paired with probabilities measures
which have the same total mass=1. A mapping φ : X → Y is a measure preserving if
for any measurable set B ⊂ Y, f(A) = g(B) such that A = φ−1(B).

2.2.1.1 Theoretical foundations

Estimate a warping map φ. Given general metric spaces paired with probability

measures (X , f ) and (Y, g) that represent the source and target respectively, where the

balance of mass condition (Eq. (2.1)) is satisfied, i.e., the source and target have the

same total mass, generally chosen to be one (Kolouri et al., 2017):

∫
X
f(x)dx =

∫
Y
g(y)dy = 1 (2.1)

A mapping φ : X → Y is measure preserving if for any measurable set B ⊂ Y , a local

version of the condition (2.1) holds, Figure 2.1:

∫
A
f(x)dx =

∫
B
g(y)dy (2.2a)

such that A = φ−1(B) (2.2b)

Monge’s formulation of the optimal transport problem defines the ”optimal” measure

preserving map φ(x) = y that transports the source distribution into the target distri-
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Figure 2.2: Monge’s formulation seeks to find a deterministic mapping φ with a min-
imum total cost that sends the mass from a single source location x to a single target
location y. Kantorovich’s formulation seeks to find a joint distribution with a mini-
mum total cost that splits the mass of a single source location and sends it to multiple
target locations y.

bution with minimal total transportation cost, and it is defined as follows:

argmin
φ

∫
X
c(x, φ(x)) f(x)dx (2.3a)

such that φ satisfies condition (2.2) (2.3b)

where c(x, φ(x)) = ‖x− φ(x)‖2 is the Euclidean distance. The cost of moving a unit

of mass from source point x to target point y is induced by the product of the source

point’s mass f(x) by the distance between the source point x and the target point y

to which the source is transported. Condition (2.3b) implies that f(x ∈ A) = g(y ∈

B) such that A = φ−1(B). Note that Monge’s map is a deterministic coupling, a

mass from a single location x is being sent to a single location y, i.e., it is a one-to-one

mapping, Figure 2.2.

Estimate a joint distribution γ. Kantorovich optimal transport formulation seeks

to estimate a transport ”plan” γ instead of a ”map” φ that matches f into g with a

minimum modification of the source as possible (Kantorovich, 1942). The amount of

modification done is interpreted as the total cost and induced by the product of the

transformed source mass associated with a point x by the distance between that source
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point and the target point which is assigned to. Kantorovich’s formulation is defined

as follows:

argmin
γ∈Π(f,g)

∫
X×Y

c(x, y) γ(x, y)dxdy [Total cost] (2.4a)

such that : γ(x, y) ≥ 0 [Positive mass] (2.4b)

γ(A× Y) = f(A) [Start at f ] (2.4c)

γ(X ×B) = g(B) [end at g] (2.4d)

For all measurable sets A ⊆ X and B ⊆ Y . The set of all possible measure couplings

between f and g is denoted Π(f, g). Kantorovich’s formulation, unlike Monge’s for-

mulation, has the ability to distribute the mass from one location in source distribution

to multiple locations in target distribution, i.e., splits the mass instead of sending it to

a single location, Figure 2.2.

2.2.1.2 Geometric properties: Optimal Transport as a distance metric

Optimal transport can be viewed as a tool for comparing distributions in a way that

measures the similarity between f and g. For example, the (Eq. (2.4a)) returns the

transport plan γ that gives ”minimum” total transportation cost of transforming f

into g. If the minimum total transportation cost is small, then the amount of mass

needed to be moved from each source x will not travel so far to match its destination

y, i.e., they are close to each other. If the minimum transportation cost is large, then

that indicates that f and g are dissimilar, and the amount of the effort to match them

is large. The quadratic Wasserstein distance is defined as follows:

W(f, g) = min
γ∈Π(f,g)

∫
X×Y

‖x− y‖2 γ(x, y)dxdy (2.5)

W(f, g) is the cost of the optimal plan that transfers the total mass of f to g, where

‖x− y‖2 is the cost of transforming the mass from x to y. The quadratic Wasserstein

distance satisfies the distance properties: non-negativity, symmetry, and triangle in-

equality (see Villani (2008, 2003) for more detailed proof and a generalized version of

Wasserstein distance). In the case of a deterministic coupling y = φ(x), the quadratic
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Figure 2.3: Illustration of CDF-matching approach. f and g are the source and target
pdfs respectively. G and F are the corresponding cumulative functions. φ maps the
source and target pdfs using CDF-matching approach.

Wasserstein distance is defined as follows:

W(f, g) = min
φ

∫
X
‖x− φ(x)‖2 f(x)dx (2.6)

2.2.1.3 Closed-form solution for φ in one-dimensional space

In one-dimensional space (1D), there are closed-form solutions for the optimal trans-

port map φ; we will refer to these solutions as the CDF-matching approach and the

quantile-matching approach. The simplicity and explicitness with which a solution

can be obtained in that setting have been used to tackle problems in higher dimen-

sions in different contexts as it alleviates the need for optimization, as we will see in

Section 2.2.1.4. In the following we explain these solutions:

CDF-matching approach. Suppose that f and g are probability measures on R for

1D random variables x and y respectively, and their cumulative distribution functions

(CDF) are defined as follows:
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Figure 2.4: Illustration of Quantile-matching approach. x and y are random variables
represent the source and target respectively. φ maps the two random variables using
Quantile-matching approach.

F (x) =

∫ x

∞
f(x) dx, G(y) =

∫ y

∞
g(y) dy (2.7)

And the inverse of G is defined as:

G−1(t) = inf { y ∈ R; G(y) > t} (2.8)

Then the optimal map φ is set as:

y = φ(x) = G−1 ◦ F (x) (2.9)

According to the above, the data point x is sent onto y (i.e. y = φ(x)), if and only if

F (x) = G(y), Figure 2.3. This method is referred to as the increasing rearrangement

by Villani (2008). φ(x) = y defines an optimal transport map for Monge’s problem

that transports the mass at minimal cost in such a way that associates to each point x

a single point y, i.e, no mass splitting.

Quantile-matching approach. This approach does not employ cumulative distri-

bution; instead, it is based on matching two sorted arrays, Figure 2.4. More specifi-

cally, it sorts the n observations {xi} and {yj} of the source and target distributions

respectively to define quantiles with regular increments of size 1
n between 0 and 1 for

both distributions, and then the optimal solution φ is a direct assignment between

the sorted datasets. This approach was first introduced by Rabin et al. (2012), where

the authors formulated the problem as a permutation problem. Let σX and σY be the

permutations that order the points of the source and the target data sets respectively:
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Figure 2.5: Optimal transport φ maps the source f into g. The optimal transport map
has the property of being monotone in the sense that if x1 6 x2 then φ(x1) 6 φ(x2).

∀i, xσX(i) 6 xσX(i+1) (2.10a)

and ∀j, yσY (j) 6 yσY (j+1) (2.10b)

The optimal permutation σ is computed as follows:

σ(i) = σY ◦ σ−1
X (i) (2.11)

And then the deterministic coupling φ can be rewritten as follows:

φ(xi) = yσ(i) (2.12)

Both approaches CDF-matching and quantile-matching provide monotone rearrange-

ments that preserve the ordering of the points after transformation (Figure 2.5) such

that:

if x1 6 x2 then φ(x1) 6 φ(x2) (2.13)

Quantile-matching and CDF-matching are approaches used for histogram specifica-

tion and histogram equalization that have many applications in image processing

(Morovic et al., 2002; Rolland et al., 2000). Histogram specification is a process where

a given source time series or an image is modified such that its histogram matches
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that of target time series or an image, and hence the source cumulative density func-

tion (CDF) matches that of a target CDF. Histogram equalization (normalization) is a

special case, where the target histogram is a uniform random distribution (the CDF is

a straight line). The effect of histogram equalization is to spread the data values over

the range of data.

However, in terms of the computational complexity, the CDF-matching can be com-

puted in O(n) where n is the number of samples processed (Pitie et al., 2005b).

Quantile-matching can be computed in O(n log(n)) operations using a fast sorting

algorithm (Rabin et al., 2012). When a small number of observations are available,

using quantile-matching is best, but with a very large number of observations, CDF-

matching is more efficient.

2.2.1.4 Computational Optimal Transport

The high computational cost induced by solving for the optimal transport due to the

huge amount of data that modern applications deal with raised the need for develop-

ing fast algorithms for optimal transport. In the following, we give a brief overview

of available computational solutions for optimal transport.

Linear programming. The optimal transport problem (Eq. (2.4a)) is a basic formu-

lation of a linear program which consists of minimizing a cost function that is linear

with the unknown variables (a value of γ for each pair (x, y)) with linear inequality

and equality constraints. Linear programming is a classical problem in operations re-

search, and there exist algorithms to solve linear programs, including the Simplex al-

gorithm developed by Dantzig (1990), the Auction algorithm developed by Bertsekas

(1988), and the Hungarian algorithm (Kuhn, 1955). These algorithms can be used to

solve transportation problems for small or medium sized problems but can suffer from

scaling issues, adding that the computational complexity with linear program solvers

increases in multidimensional spaces (Santambrogio, 2015; Villani, 2003).

Entropic regularization. Motivated by the large scale transport problems that us-

ing Linear programming to induce solutions is expensive in terms of computational

complexity, a regularized version of optimal transport is proposed, which means that

the problem is slightly modified in order to make it easier and more tractable. The
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optimal transport in Eq. (2.4a) is modified as follows:

argmin
γ∈Π(f,g)

[ ∫
X×Y

c(x, y) γ(x, y)dx dy − λ H(γ(x, y))
]

(2.14)

H(γ(x, y)) computes the entropy of the transport plan γ and it is defined as:

H(γ(x, y)) =

∫
X×Y

− γ(x, y) log γ(x, y) dx dy (2.15)

When λ=0, we recover the original optimal transport Eq. (2.4a). When λ increases,

the optimization objective favors minimizing the second term, which equals minus

the entropy of the transport plan γ and hence large values of λ increase the entropy

of the transport plan. Adding the regularization term leads to a fast algorithm by

introducing a solution of the transport plan γ in the following form:

γ(x, y) = u(x)e(
−c(x,y)

λ
)v(y) (2.16)

In the original optimal transport Eq. (2.4a), solving for γ(x, y) involves quadratic num-

ber of variables to be optimized (one value of γ for each (x, y) pair), but with the reg-

ularized Eq. (2.14) we have linear number of variables (v(x) and u(y) for every x and

y) to solve for. The Sinkhorn algorithm is developed to estimate u and v jointly. With

the regularized formulation of optimal transport and the Sinkhorn algorithm, an ap-

proximation of the solution to transport problems can be obtained without the need to

use complex and specialized algorithms. We refer the interested reader to Peyré and

Cuturi (2019) for more detailed treatment.

Efficient approximate mass transport solvers. The Iterative Distribution Transfer

algorithm (IDT) proposed by Pitie et al. (2007) is considered an approximate mass

transport solver. IDT uses the 1D Optimal Transport solution Eq. (2.9) to tackle

problems in multidimensional spaces. More specifically, IDT proposed to iteratively

project the observations {xi} and {yj} originally in RN to a 1D subspace and solve the

1D OT using Eq. (2.9) in this 1D subspace and then propagate the solution back to the

original space RN . This operation is repeated with different directions in 1D space un-

til convergence. This strategy was inspired by the idea of the Radon Transform (Pitie
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et al., 2007), which states the following proposition: if the target and source distribu-

tions are aligned in all possible 1D projective spaces, then matching is also achieved

in RN space. IDT can be considered as a form of quantile matching but with irregular

quantile increments derived from the cumulative histograms of the source and target

distributions - as source and target quantiles do not match exactly, interpolation can

be used to compute the solution (Pitie et al., 2007).

Another approximate mass transport solver called the Sliced Wasserstein Distance

(SWD) algorithm, which follows from the iterative projection approach of IDT but

computes the 1D OT solution with quantile matching (Eq. (2.11)) instead of cumula-

tive histogram matching. Moreover, SWD uses a stochastic gradient descent method

to derive the solution (Bonneel et al., 2015; Rabin et al., 2012).

2.2.1.5 Optimal Transport applications

Nowadays, many modern computer vision, statistical, and machine learning prob-

lems can be recast as finding the optimal transport map (or plan) between two proba-

bility distributions. One of the earliest applications of the optimal transport problem

was in image retrieval. Rubner et al. (2000) employed the Wasserstein Distance (also

denoted as the Earth Mover’s Distance) to measure the dissimilarity between image

histograms. They compared the Wasserstein metric with common metrics such as

Jeffrey’s divergence, χ2 statistics, L1 distance, and L2 distance in an image retrieval

task; and it was shown that the Wasserstein metric achieves the highest performance

amongst all. A recent popular application in machine learning is domain adapta-

tion, which is designed to compensate for the difference between training and test

data distribution. Optimal Transport based techniques have been utilized in design-

ing a stable domain adaptation algorithms (Redko et al., 2019; Muzellec and Cuturi,

2019; Courty et al., 2016; Courty et al., 2014). Other popular applications nowadays

are deep generative models (Goodfellow et al., 2014), which map an input distribu-

tion, such as Gaussian or uniform distribution, to the underlying target distribution

of a real dataset. Wasserstein distance has been utilized as a metric between the tar-

get distribution and the generator distribution to enhance and improve the stability

of the learned model (Meng et al., 2019; Tanaka, 2019; Sanjabi et al., 2018; Arjovsky

et al., 2017). In statistics, Wasserstein Distances provide a powerful tool to carry out

statistical tasks such as: provide goodness-of-fit testing (Panaretos and Zemel, 2019),
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and as statistical inference on a distribution registration model for general deforma-

tion functions (Del Barrio et al., 2019), or as a tool for statistical analysis of datasets

whose elements are random histograms by computing Principal Component Analy-

sis of histograms with respect to the Wasserstein distance between probability density

functions (Cazelles et al., 2018). Chen et al. (2018) proposed optimal mass transport

framework to compare, interpolate and average Gaussian mixture models which are

widely used in statistical inference. In Computer Vision, there are many applications,

for example, shape deformation (Peyré and Cuturi, 2019; Bonneel et al., 2016), shape

matching and comparison (Su et al., 2015), and colour transfer applications (Bonneel

and Coeurjolly, 2019; Shu et al., 2017; Bonneel et al., 2016, 2015; Rabin et al., 2014; Fer-

radans et al., 2013; Rabin and Peyré, 2011; Freedman and Kisilev, 2010). More details

about colour transfer application with optimal transportation are presented in Section

2.3. A more detailed review of Optimal Transport applications in signal processing

and machine learning can be found in (Kolouri et al., 2017).

2.2.2 Inference with L2

Another approach for solving the distribution transfer problem is estimating a trans-

formation function φ that minimizes the divergence between two probability density

functions. In the shape registration context, several probabilistic methods recast the

shapes matching problem as a matching process between probability density func-

tions. In this case, the source and target datasets are modeled as probability density

functions, and then the source pdf is transformed to match the target pdf by minimiz-

ing a distance metric between them. Each density matching method differs in how

to model these pdfs and what distance metric is used. As for modeling pdfs, Kernel

Density Estimate (KDE) is a popular non-parametric method used to estimate a den-

sity function in density matching methods. As for distance metrics, several measures

have been proposed to compute the similarity between two probability density func-

tions, including L2 divergence (Jian and Vemuri, 2011), Kullback-Leibler (KL) diver-

gence (Kullback and Leibler, 1951), Cauchy-Schwartz divergence (Hasanbelliu et al.,

2011), Shanon Divergence (Wang et al., 2006), Bregman divergence (Liu et al., 2010)

and Havrda-Charvt divergence (Chen et al., 2010). Of these divergences, L2 has been

shown to be a robust metric (Jones et al., 2001; Basu et al., 1998). Besides robustness,

L2 has another attractive feature of having a closed-form solution when density func-
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tions are modeled as Gaussian Mixtures Models (GMM). Of particular interest is the

successful work of Jian and Vemuri (2011), who proposed to model the datasets using

GMMs and used an optimization process that minimizesL2 distance between the pdfs

to estimate the parameters of the transformation function φ that matches the source

and target shapes (Jian and Vemuri, 2011). The GMM can be obtained by applying

a kernel density estimate with a Gaussian kernel. Jian and Vemuri’s work inspired

successive works in shape registration and colour transfer applications (see Section

2.2.2.2).

In the following, we introduce an overview of key mathematical concepts of L2 di-

vergence between probability density functions and parameter inference with L2, and

then we summarize interesting applications of inference with L2 in computer vision.

For more detailed arguments and analysis, the interested reader is referred to (Jian and

Vemuri, 2011; Scott, 2001), and to recent theses (Grogan, 2017; L. Arellano Vidal, 2014)

for generalized L2 inference in colour transfer and shape registration, respectively.

2.2.2.1 Theoretical foundations

Unlike the OT model which relies on two random variables x and y, only one random

variable x appears explicitly in L2 model, and both the source pdf f and target pdf g

are candidate pdfs for the random variable x. A parametric model proposed by this

approach to solving distribution transfer is f(x|θ) for the source distribution such that

the parameter θ controls the mapping function φ. The L2 is the Euclidean distance

between the density functions f and g, and can be defined as follows:

L2(f(x), g(x)) =

∫
f2(x)dx− 2

∫
f(x)g(x)dx+

∫
g2(x)dx (2.17)

The parameter θ that controls the transformation φ that transforms the pdf f into g

is estimated by minimizing L2 distance between the the moving source distribution

f(x|θ) and the target g(x) as follows:

θ̂ = argmin
θ

[
L2(f(x|θ), g(x)) =

∫
f2(x|θ)dx− 2

∫
f(x|θ)g(x)dx

]
(2.18)

Since the target is fixed and independent of the transformation estimation, the term∫
g(x)2dx is removed from the cost function (2.18). The transfer function φ can be
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conveniently defined as a rigid, affine or non-rigid parametric function such as Thin

Plate Splines (TPS) (Grogan and Dahyot, 2019, 2018; Jian and Vemuri, 2011).

Let us assume that the two probability density functions f and g representing source

and target samples are Gaussian mixtures as follows:

f(x) =

n∑
i=1

wiN (x;µi,Σi) (2.19)

and

g(x) =
m∑
j=1

wjN (x;µj ,Σj) (2.20)

where N (x;µ∗,Σ∗) is the normal probability density function of mean µ∗ and covari-

ance Σ∗, and 0 ≤ w∗ ≤ 1 is its weight in the mixture such that
∑∗∗
∗=1w∗ = 1 (with

∗ = i, j and ∗∗ = n,m). The L2 distance can be computed explicitly as there exists

a closed-form expression for the L2 distance between Gaussian mixtures due to the

following formula:

∫
N (x;µ1,Σ1)N (x;µ2,Σ2) = N (0;µ1 − µ2,Σ1 + Σ2) (2.21)

2.2.2.2 L2 inference applications

As mentioned earlier, Jian and Vemuri (2011) proposed to register two point sets by

fitting Gaussian mixture models to each dataset and minimizing the L2 distance be-

tween them to estimate φ, where isotropic covariance are used for the GMMs. A gener-

alized L2 approach is used by Wang et al. (2009) for groupwise point-sets registration.

Ma et al. (2015) also proposed a similar method which uses the approximation L2E

to estimate φ. Roy et al. (2007) proposed to use Expectation-Maximization algorithm

(EM) to fit the GMMs enforcing identical isotropic covariance matrices and uniform

occupancy probabilities and uses the L2 distance as part of the optimization process.

Arellano and Dahyot (2016) extended Jian and Vemuri’s framework by adding gradi-

ent directional information to the model, capturing the normals’ angles of the shapes

and showed that it gives improved results for ellipse detection, where they modeled

the bandwidths of the density functions as non-isotropic to reduce the number of com-
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Figure 2.6: Simulated data show examples of functional data. The left panel shows
discrete observations reflecting a smooth variation appears to be nicely sinusoidal,
and on the right panel there is a tendency for the data to show exponential growth.

ponents needed in the Gaussian Mixture. Grogan and Dahyot (2018) proposed to use

von Mises-Fisher kernels to model the normal vectors of the shape, adding them as an

extra dimension to the model previously proposed by Jian and Vemuri (2011).

Inspired by the success of Jian and Vemuri’s L2 framework for shape registration con-

text, Grogan et al. (2015) proposed a similar approach in colour transfer applications,

which models the colour distributions of the source and target images using GMMs,

and match them by minimizing the robust L2 distance between the mixtures. The

parametric transformation has been shown that can be also applied to video sequences

(Grogan and Dahyot, 2015). Moreover, the L2E framework has been extended further

to let the users engage in the colour transfer process by choosing correspondences and

refining the recolouring (Grogan et al., 2017). The subsequent extension by Grogan

and Dahyot (2019) showed that L2 framework takes advantage of colour correspon-

dences that may be available and performs well in the occurrence of correspondence

outliers. L2 framework has been shown to be useful for many colour transfer applica-

tions such as correcting light fields’ colour discrepancies (Matysiak et al., 2020; Grogan

and Smolic, 2019).

2.2.3 Functional Data Analysis: Nadaraya-Watson

Functional data analysis (FDA) refers to a collection of methods for analyzing data

over a curve, surface, or continuum. ”Functional” data is usually data observed as a
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Figure 2.7: Several types of kernel functions are commonly used: uniform, triangle,
epanechnikov, quartic, and gaussian.

sequence of discrete pairs (correspondences) {(xi, yi)}ni=1 over a continuum. The con-

tinuum can take different forms of continua such as time, spatial position, frequency,

weight etc. These discrete observations reflect a smooth variation and are assumed

that they are observations of some underlying function φ that maps xi to yi. An im-

portant assumption in FDA is that the underlying function φ has to be smooth, in the

sense that two samples xi and xi+1 that are similar should still be mapped to loosely

similar observations yi and yi+1, i.e., the function φ generally is well-behaved and not

too ”wiggly” or locally variable.

The goal of Functional data analysis is to develop methods to turn the raw observa-

tions {(xi, yi)} into smooth functions, i.e to estimate the corresponding smooth func-

tions that are presumed to generate them. Because the raw observation may exhibit

some noise, functional data analysis considers combining noise model with smooth

functional representation in order to produce the observed data, and this can be ex-

pressed in the following model given the dataset of discrete observations {(xi, yi)}:

yi = φ(xi) + εi (2.22)

Here the standard model for the error assumes that the errors εi are independently

and identically distributed with mean zero and constant variance σ2. Figure 2.6 shows

examples of functional data: on the left panel, the data show a pattern that appears to

be nicely sinusoidal, and on the right panel there is a tendency for the data to show
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Kernel function Equation

Gaussian W (x) = 1√
2π
e−

1
2x

2

Triangular W (x) = (1− |x|) support: |x|6 1

Epanechnikov W (x) = 3
4 (1− x2) support: |x|6 1

Quartic W (x) = 15
16 (1− x2)

2 support: |x|6 1

Uniform W (x) = 1
2 support: |x|6 1

Table 2.1: This table shows the most popular kernel functions that can be used with
the Nadaraya-Watson estimator.

overall exponential growth. These data require a smooth curve fitting, and one of

the classical methods functional data analysis provides for this purpose is the non-

parametric Nadaraya Watson estimator (NW).

2.2.3.1 Theoretical foundations

Nadaraya Watson estimator is considered to be part of a family of non-parametric

Kernel regression techniques, and it was invented independently by Nadaraya

(Nadaraya, 1965) and Watson (Watson, 1964). Non-parametric means that the given

observations are used directly to compute the function, while parametric techniques

assume that the observed data follows a particular parametric probability distribution

and the parameters of the distribution can be estimated via fitting the distribution us-

ing the observed data. The underlying function can be estimated by sampling data

from the fitted distribution.

Nadaraya Watson makes use of local weights such that the estimated value of the

function at a point xi must be influenced mostly by the observations near xi. Given

the correspondences {(xi, yi)}ni=1 the estimator is defined as follows:

φh(x) = E[y|x] =

∫
y p(y|x)dy (2.23a)

'
n−1

∑n
i=1 yi Wh(x− xi)

n−1
∑n

i=1Wh(x− xi)
(2.23b)
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Figure 2.8: Simulated data shows an example of functional data where the discrete ob-
servations reflect a smooth variation that appears to be nicely sinusoidal. The curves
show Nadaraya Watson φh solutions with different bandwidth values h = (0.2, 1, 3).
The selection of the smoothing parameter affects how well NW approximates the un-
derlying function.

With this form, NW can be seen as a locally weighted average of {yi}ni=1, using a kernel

as a weighting function that defines the shape of weights of averaged values, where

the bandwidth h is the hyperparameter or scale parameter of the kernel that defines

the range of averaged values, the larger the value of h the more φh gets smoothed.

Table 2.1 shows popular kernel functions. As we can see, all kernels define a range

for input values to be averaged, except Gaussian kernel which takes into account all

neighbouring points when computing the estimation of xi. In practice, the selection of

kernel function generally influences less than the selection of the smoothing parameter

h, Figure 2.8 shows an example of the effect of the value of h. Different methods

proposed in the literature for estimating h can be found in (Shao and Tu, 2012; Turlach,

1993; Fan and Gijbels, 1992; Terrell and Scott, 1992; Gasser et al., 1991; Terrell, 1990).
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2.3 Colour Transfer

Colour transfer techniques based on the source image only (Cohen-Or et al., 2006;

Lischinski et al., 2006) often require time-consuming manual adjustments. To reduce

the efforts involved in parameterization and subjective judgment, example (also de-

noted as reference or target) based colour transfer have been introduced. The problem

can be reduced to transferring the colour of the example image to the source image by

estimating a transfer function φ that used to recolour a source colour pixel x to φ(x).

There are many colour transfer applications in image processing problems. In general,

a mosaic is created if a combination of two or more images of the same scene is needed

for comparison or integration purposes. In these cases, correspondences are available

and colour transfer methods can be used for harmonizing and eliminating the colour

variations between the images. This process of colour transfer is also known as pho-

tometrical alignment or colour correction. Such applications range from generating

colour consistent images in image mosaicing and stitching applications (Li et al., 2020;

Brown and Lowe, 2007), city 3D modeling (Micusik and Kosecka, 2009), stereo images

(Wang et al., 2010), to colour enhancement and colour style manipulation (Hwang

et al., 2019).

Research works in the field of example based colour transfer can be classified into two

categories: global methods and local methods. Global colour transfer methods calcu-

late the colour statistics by taking into account all pixels in the images, and local colour

transfer methods are guided by content information derived by considering the spa-

tial relationships via segmentation and clustering or using colour correspondences.

In this section, we give an overview of the example based colour transfer techniques

explored in each area. An extended, detailed reviews about colour transfer techniques

and approaches can be found in (Faridul et al., 2014; Pitie et al., 2008).

2.3.1 Global Transfer Methods

Many methods use global statistical properties to describe the colour distribution of

the source and target images and propose ways to reshape the colour distribution

of the source image so that it matches that of the target image. The notion of transfer

statistical properties can refer to the simple process of matching the mean, variance (or
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covariance) or to matching the full colour distribution. The following subsections will

focus on the problem of finding a colour mapping that transfers the colour statistics of

a target image to the source image and presents a brief overview of the techniques that

have been explored in this context. Starting in Section 2.3.1.1 with the methods that

only consider a linear transformation in which the colour distributions are modeled

using the multivariate Gaussian distribution and only transfer the second statistical

moments of the distribution, i.e. the mean and the covariance, and then presenting

the non-linear transformation methods in Section 2.3.1.2 that can match any type of

distribution.

2.3.1.1 Linear Transfer

For simplicity, many colour transfer methods assume that the probability density

functions of the colours in the source and target images, denoted f and g respectively,

follow a simple multivariate Gaussian distribution (MGD) model (f ≡ N (x;µx,Σx)

and g ≡ N (y;µy,Σy)). These methods consider the problem of finding a linear map-

ping with parametric form as follows (Faridul et al., 2014; Pitie et al., 2008):

φ(x) = Ax+ b (2.24)

where A is NxN matrix and b is an offset vector. Since the Gaussian distribution is

fully specified by its first two statistical moments, the mean and covariance matrix,

the linear transform Eq. (2.24) is computed by matching the empirical estimates of

(µx,Σx) and (µy,Σy) for source and target colour distributions as follows (Pitie et al.,

2008):

φ(x) = A(x− µx) + µy (2.25a)

with ATΣ−1
y A = Σ−1

x (2.25b)

There exist several solutions proposed in the literature for the matrixA that lead to dif-

ferent ways of transferring the colour statistics. The first solution uses an independent

transfer (Reinhard et al., 2001) that assumes multivariate distributions with indepen-

dent variables, thus the covariance matrices are diagonal. In this case, the mean and
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the variance of each space component (here the colour channels) are matched inde-

pendently. This assumption of independence is rarely true for real images, and it is

only applicable in decorrelated colour spaces such as lαβ colour space (Ruderman

et al., 1998). The success of these techniques depends on the chosen target images

because lαβ colour space cannot be guaranteed to successfully decorrelate the colour

space components. To account for inter-component dependencies, colour distribu-

tions are assumed to follow MGD with non-diagonal covariance matrices, and the so-

lution in this case for the matrix A can be found using Cholesky Decomposition (Pitie

et al., 2008; Pitie and Kokaram, 2007). The disadvantage of this method is that the

derived solution is dependent on the ordering of the axes components (colour chan-

nels). Another possible solution can be found using Principal Component Analysis

(Abadpour and Kasaei, 2007) that shows improvements in the resulting image over

Cholesky Decomposition (see evaluations by Pitie et al. (2008)). Pitie and Kokaram

(2007) proposed the Linear Monge-Kantorovitch solution for multivariate Gaussian

distributions, which is more reliable than Cholesky Decomposition and gives results

that are slightly better than the ones of the Principal Axes method (see evaluations by

Pitie et al. (2008)).

However, these linear colour transfer techniques are limited to simple affine trans-

formations of the colour space; they perform well when a single Gaussian can well

describe the colour distribution of the source and target images, but poorly perform

when the colour distributions are more complex and hence fail to resynthesize the

colour scheme of the target image. For detailed treatments, comparisons, advantages

and disadvantages of each linear technique, the interested reader is referred to a recent

comprehensive review by Pitie et al. (2008).

2.3.1.2 Non-linear Transfer

Multivariate Gaussian distributions are too simple and can not describe the com-

plex characteristics of general distributions. Alternatively, many algorithms proposed

to approximate colour distributions using histograms and propose non-parametric

transfer functions. The following sections present techniques explored in the colour

transfer literature that can match any colour distribution and are organized based on

how the solution is approached.
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Independent Transfer. Similarly to the linear transfer case, multivariate distribu-

tions with independent variables are assumed here, and histograms are used to ap-

proximate the full distribution of values in each coordinate independently, and then

histogram matching is used separately for each coordinate (Grundland and Dodgson,

2005). In this case, the joint (multivariate) distribution is the product of its marginals:

f(x1, x2, ..., xN ) = f(x1)f(x2)...f(xN ) (2.26)

Hence, the mapping of a sample x ∈ RN is composed for each component indepen-

dently as follows:

Φ(x) = Φ(x1, x2, ..., xN ) = (φ1(x1), φ2(x2), ..., φd(xN )) (2.27)

Each 1D mapping φ1, φ2, ..., φN is found by using the corresponding pdf match:

φ1(x1) : f(x1)⇒ g(y1)

φ2(x2) : f(x2)⇒ g(y2)

...

φN (xN ) : f(xN )⇒ g(yN )

(2.28)

This technique is applicable to decorrelated colour space like lαβ colour space (Rud-

erman et al., 1998) where the joint distributions become separable. However, this full

histogram transfer tends to be too harsh and may affect the appearance of the source

image by producing artifacts. Therefore, recent works resolve this problem by match-

ing histograms at different scales (Pouli and Reinhard, 2011) and by constraining the

histogram matching to preserve the gradient distribution of the source image (Xiao

and Ma, 2009).

Knothe Rosenblatt Rearrangement. The Knothe-Rosenblatt rearrangement was

independently proposed by (Rosenblatt, 1952), and by (Knothe, 1957). This method

has been applied to the colour transfer problem by Neumann and Neumann (2005).

Here we assume we have dependent multivariate joint distribution and hence it is
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defined as follows:

f(x1, x2, ..., xN ) = f(x1)f(x2|x1)...f(xN |x1, .., xN−1) (2.29)

Each conditional marginal f(∗) can be treated independently from the others, and

1D histogram matching is used separately for each conditional marginal as follows

(Villani, 2008):

Φ(x) = Φ(x1, x2, ..., xN ) = (φ1(x1), φ2(x2|x1), ..., φN (xN |x1, .., xN−1)) (2.30)

Each 1D mapping φ1, φ2, ..., φN is found by matching the source conditional marginal

with the corresponding conditional marginal in the target distribution:

φ1(x1) : f(x1)⇒ g(y1)

φ2(x2|x1) : f(x2|x1)⇒ g(y2|y1)

...

φN (xN |x1, .., xN−1) : f(xN |x1, .., xN−1) => g(yN |y1, .., yN−1)

(2.31)

This method is dependent on the order of axes coordinates in which the variables are

conditioned on each other which produces different results (Villani, 2008). Moreover,

only a very limited number of colour samples are used to estimate the conditional

marginals, as only a few pixels have exactly the same colour, which may lead to poor

results (detailed evaluations can be found in (Pitie et al., 2008)).

1D Iterative Projection based Transfer. Here the entire target colour distribution is

transferred to the source colour samples. The iterative approach explained in Section

2.2.1.4 is used here for colour distribution transfer, which is based on the iterative use

of 1D CDF-matching (Pitie et al., 2005a,b) and its variant 1D quantile-matching (Bon-

neel et al., 2015) for various random projection directions in the N -dimensional space.

Similar to the Knothe Rosenblatt rearrangement based transfer, the estimation process

is based on the use of 1D pdfs. The difference is that the pdfs are not conditional

probabilities. This implies that the method is not affected by the ordering of the axes
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coordinates (colour channels). Also, the estimation of the marginals does not suffer

from the data sparseness. However, when the content of the target and source images

differs, grain artifacts may appear and the noise level may be amplified in the result-

ing image. The subsequent extension by Pitie et al. (2007) proposed a post-processing

step to eliminate the artifacts and ensure that the gradient field of the resulting im-

age matches the gradient field of the source image. Similarly, Bonneel et al. (2015)

proposed using a gradient smoothing technique introduced in (Rabin et al., 2011) to

reduce any artifacts that may appear in their results. Recent works used this approach

in solving colour transfer problems such as (Shu et al., 2017; Bonneel and Coeurjolly,

2019).

Discrete Monge-Kantorovitch Optimal Transportation. Many researchers inves-

tigated the discrete Monge-Kantorovitch formulation in solving colour transfer prob-

lem (Rabin et al., 2014; Ferradans et al., 2013; Rabin and Peyré, 2011; Freedman and

Kisilev, 2010) who proposed to relax the mass conservation constraint and introduce

a regularization term in order to eliminate the transport artifacts and the amplified

noise level in the resulting images.

2.3.2 Local Transfer Methods

Local colour transfer methods are guided by image content information expressed

in terms of spatial relationships (using Gaussian Mixture Model segmentation or ex-

tracted dominant colours) or colour pixel correspondences between two overlapped

images or semantic relationships between source and target images (using deep learn-

ing frameworks). The following gives an overview of each type.

Using Gaussian Mixture Model. Many local colour transfer methods exploit GMM

for image segmentation, where the segmentation results achieved by GMM are used

to derive better colour coherence in mapping results. Tai et al. (2007) proposed a so-

lution in which the colour transfer is defined on colour segments based on GMM esti-

mated by a modified Expectation-Maximization algorithm that allows a given pixel to

fit within more than one GMM, resulting in more seamless transitions between adja-

cent regions. They transfer the statistics of colour distributions between each segment

pair using histogram matching similar to the approach in (Reinhard et al., 2001). Jeong
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and Jaynes (2008) proposed a method to harmonize the colours of object appearances

from multiple disjoint camera views for subject recognition purposes. They modeled

colour distributions using GMMs and minimized the Kullback–Leibler divergence be-

tween Gaussian components to estimate an affine transformation function. Grogan et

al. (Grogan et al., 2015; Grogan and Dahyot, 2015) extended the affine transformation

function by using a more complex colour mapping, TPS transformation, in which they

modeled the colour distributions of the source and target images using GMMs, and

estimated the parameters of the TPS function by minimizing the robust L2 divergence

between the the two pdfs. Xiang et al. (2009) proposed to segment the source image

and multiple target images into regions by using the GMMs fitted by EM algorithm.

An affine transfer function is constructed between the regions using the multiple tar-

get regions to ensure the best target region is assigned to the source region. Hris-

tova et al. (2015) partitioned images into Gaussian clusters by considering their main

style features (either ”light-based style” if the image exhibits one dominant colour, or

”colour-based style” if the image exhibits at least two different and significant domi-

nant colours) in order to improve the colour transfer process. However, small regions

with insufficient numbers of pixels may be misclassified into other Gaussian compo-

nents. An alternative approaches for segmenting colours into regions can be used

such as mean-shift (Oliveira et al., 2015) and K-means (Shuchang Xu et al., 2005).

Using Dominant Colours. Frigo et al. (2014) proposed a colour transfer technique

where colour modes are extracted from the source and target images. Then a mapping

based on the Monge-Kantorovitch optimal transport between these two sets of modes

is performed by using the Simplex linear programming (Dantzig, 1990). Likewise, Yoo

et al. (2013) and Dong et al. (2010) proposed a dominant colour mapping methods to

reduce mapping unrelated items.

Using Correspondences. Many methods assume that there are spatial correspon-

dences {(xi, yi)}ni=1 to be found between the source and the target image to guide the

colour transformation. Oliveira et al. (2015) proposed to extract the overlapped area

from the source and target images, and from this overlapped area colour mapping

functions are estimated and applied to all the pixels of the source image. The colour

estimation is performed for each channel independently using fitted truncated GMM

representations. Vazquez-Corral and Bertalmı́o (2014) proposed a method for colour
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stabilization for images of the same scene, taken under the same illumination but have

colours that do not exactly match. They use colour correspondences to estimate a cor-

rection matrix composed of a linear term which is a 3x3 matrix, and power terms

which are gamma correction parameters. Frigo et al. (2016) proposed a colour cor-

rection model for video sequence similar to the model proposed by (Vazquez-Corral

and Bertalmı́o, 2014) except that it is separable over colour channels and aided by

motion estimation to infer large sets of correspondences between frames. The final

correction is temporally weighted by the motion speed. Park et al. (2016) proposed

a technique to ensure colour consistency across photo collections, estimating white

balance and gamma correction across images. Their algorithm is robust to correspon-

dence outliers and can achieve good results with fewer correspondences than similar

techniques (HaCohen et al., 2013). Xia et al. (2017) proposed to process each colour

channel separately by defining the transformation model as three monotonically in-

creasing mapping curves, which are formulated as quadratic spline curves with 6

knots under colour, gradient and contrast constraints. Bellavia and Colombo (2018)

proposed a compositional framework that combines local and global colour correction

algorithms. More specifically, the framework employed a monotone mapping curve

for each channel separately, which is formulated as a piecewise Hermite cubic spline

with 4 knots to estimate the local colour transformation for the overlapped region of

the source and target images. It then employed a linear propagation step to propagate

the estimated colour transformation to the non-overlap region. Grogan and Dahyot

(2019) extended their colour transfer model with L2 divergence (Grogan et al., 2015;

Grogan and Dahyot, 2015) to take advantage of the available colour correspondences,

and they demonstrated that it performs well in the presence of correspondence out-

liers. Hwang et al. (2014) proposed 3D nonlinear and nonparametric colour transfor-

mation by applying scattered point interpolation based on moving least squares al-

gorithm combined with weights, expressed as a probability value for each correspon-

dence pair in order to make the model robust against correspondences outliers and

noise. The moving least squares transformation independently corrects each pixel’s

colour in the source image. it can be very costly for large images. Therefore the au-

thors propose to add a parallel processing scheme to increase the computational effi-

ciency. Moreover, because the algorithm corrects each pixel’s colour independently, it

allows nearby pixels in the resulting image to be recoloured differently, and unwanted

artifacts can appear when a large number of pixel correspondences are incorrect. The
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subsequent extension by Hwang et al. (2019) improved the algorithm by introducing

a new weight to account for spatially varying colour transfer in such a way that colour

transfer for the pixel is dominated by closer and more similar control points.

Deep Learning based Colour Transfer. Recently deep neural networks have be-

come popular and are often more exploited in the form of ”style” transfer for non-

realistic rendering than colour transfer, due to the strong capacity of convolutional

neural networks in capturing latent texture features. Style can be seen as a combi-

nation of colour and texture features, and style transfer is the task of transforming a

source image in such a way that it mimics the style of a given target image. Deep

features are usually extracted from pre-trained networks to build the relationship be-

tween the source and target images (Xiao et al., 2020; He et al., 2019, 2018; Luan et al.,

2017; Liao et al., 2017). Deep learning based models usually provide excellent results,

however, they require long term training and they are supposed to be trained on a

large-scale target image database that contains all possible objects, which is impossi-

ble in practice; thus, they are dependent on the type of the images they are trained on,

for example, if the model was trained on real images, it would fail with the synthetic

image (Cheng et al., 2015) or with unusual or artistic colours (He et al., 2018).

While there are researchers exploring neural networks already, we wanted to explore

a slightly different approach. The approach we chose to explore in this thesis is sim-

ilar to a neural network, but we do not learn the projections (weights) in the convo-

lutional layers; we choose them randomly instead. In fact, we learn more complex

activation functions: non-parametric activation functions such as Optimal Transport

and Nadaraya-Watson kernel regression and parametric activation function based on

the L2 framework. In our approach, we need only a single pair of images to estimate

the nonlinear mapping.
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2.4 Conclusion

In this chapter, we have reviewed the theoretical base that will be used in this thesis.

First, we presented a set of popular statistical methods in computer science and statis-

tical communities: OT, L2 inference, and NW. This thesis will exploit and extend the

capabilities of the presented statistical techniques to higher-dimensional space prob-

lems. We also presented the 1D iterative approach that has the potentials to scale well

in high-dimensional spaces. This thesis will exploit this approach to undertake an

estimation process that involves 1D marginal distributions, hence involving low com-

putation costs. We presented an overview of the application of interest, the colour

transfer, and explained the local and global approaches. Those techniques compute

the transfer function considering colour space only. Fusing different available infor-

mation to guide the process of the estimation would be interesting to investigate, but

that would create high-dimensional spaces that would consequently cause computa-

tional complexity challenges to the current methods. In this thesis, we will extend the

problem space from colour space to higher augmented space that encodes spatial fea-

tures, colour features, and local structures. Our formulations are considered as global

in the sense of transferring the whole target pdfs, but at the same time, they are guided

by local descriptors.

The following chapters present our solutions. We compare our proposed methods to

B-PMLS and PMLS (Hwang et al., 2019; Hwang et al., 2014), L2 (Grogan and Dahyot,

2019), GPS/LCP and FGPS/LCP, (Bellavia and Colombo, 2018), IDT (Pitie et al., 2007).

We also compared with (Xia et al., 2017; Park et al., 2016) but PMLS has been shown to

perform better than these two (Grogan and Dahyot, 2019), so PMLS is the one reported

in the experimental assessment sections. Moreover, we compared with (Bonneel et al.,

2016; Ferradans et al., 2013) but IDT also has been shown to be superior (Grogan and

Dahyot, 2019), hence IDT is the one reported in the experimental assessment sections

to make the comparison clear and easy.
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CHAPTER

THREE

COMPARISONS: OPTIMAL

TRANSPORT, L2 AND

NADARAYA-WATSON

In this thesis, three models, Optimal Transport, inference with L2 and Nadaraya-

Watson, are used for high-dimensional distribution transfer using the 1D iterative

projection approach (see Section 2.3.1.2). Therefore in this chapter, we compare and

visualize how each function behaves in 1D case (Section 3.1). We also compare pop-

ular approaches proposed in the literature that tackle the high-dimensional problems

using 1D OT solution, which are the iterative projection approaches proposed as ap-

proximated solutions for OT, namely IDT and SWD algorithms, and the independent

transfer method (Section 3.2).

3.1 OT, NW, and L2 inference in 1D space

To explore the differences between the three methods in 1D, we create a simple dataset

Sx,y = {(xi, yi)}, where {xi} and {yi} ∈ R denoted as source and target samples

respectively, such that:

yi = cos(xi) + εi (3.1a)

with noise εi ∼ N (0, 1) (3.1b)
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Figure 3.1: Simulated data show example of functional data. The discrete observations
reflecting a smooth variation appear to be nicely sinusoidal.

In this situation we know the ground truth answer is φ(x) = cos(x). The dataset Sx,y

can be visualised as a point cloud in 2D with xi the coordinate on the x-axis and yi the

corresponding coordinate on the y-axis, Figure 3.1.

3.1.1 Nadaraya-Watson solution

The non-parametric Nadaraya-Watson estimator takes the correspondences {(xi, yi)}

and computes the function φNWh (x) using the Eq. (2.23) (Section 2.2.3). As we previ-

ously explained, NW is a local weighted average of {yi} using a kernel as a weighting

function, such that the estimated value of the function at a point xi must be influenced

mostly by the observations near xi. The smoothing bandwidth h controls the amount

of smoothing. Small bandwidths give very rough estimates while larger bandwidths

give smoother estimates. If we assume deterministic coupling between variables

y = φ(x), then NW provides the approximation ŷ = φNWh (x) as an estimate of the

conditional expectation E[y|x] = φ(x), and in case of assuming non-deterministic cou-

pling in the form y = φ(x) + ε, then NW provides its estimate when E[ε] = 0. The red
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Figure 3.2: Solutions for mapping source dataset to target dataset using Opti-
mal Transport φOT (OT), smoothed Optimal Transport using Nadaraya-Watson φOT1

(OTNW), Nadaraya-Watson φNW1 (NW), L2 estimate φL2θ without correspondences
(L2), and with correspondences (L2 corr) .

curve in Figure 3.2 shows the Nadaraya-Watson solution ŷ = φNW1 (x) with Gaussian

kernel and bandwidth value h = 1. It provides a smooth estimate of the underlying

function.

3.1.2 Optimal Transport solution

If we consider that we have the datasets shown in Figure 3.1 and no pairing infor-

mation (correspondences) is given, hence we only have access to separate datasets

Sx = {xi} and Sy = {yi} and we assume an invertible deterministic mapping

y = φ(x), then OT solution in 1D for the mapping φ is straightforward and can be de-

fined using the non-parametric 1D mapping of the Eq. (2.9) (CDF-maching) or its vari-

ant Eq. (2.11) (quantile-matching). We estimated Optimal Transport solution ŷ = φOT

using quantile matching with the sort algorithm and the solution is the dark blue

curve visualized in Figure 3.2. Because OT does not take into account when comput-

ing the solution any available information about correspondences and the solution is
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an increasing function by definition, the computed solution φOT for the sinusoidal be-

haviour type of data is irrelevant as it does not capture the pattern shown in the data,

while NW solution φNW taking advantage of the correspondences {(xi, yi)} gives a

better estimate of the underlying function. The monotonic characteristic of OT map-

ping is useful in certain situations where there are no correspondences available and

the desired mapping between the source and target datasets is increasing, such as

colour transfer between images with no shared contents, as this property preserves

the relative position of colours in the transformed source image. This means that ar-

eas of the source image that were bright will remain bright after the transformation,

and those that were dark will remain dark (cf. Figure 1.4). Note that the result of OT

is not smooth. We can compute smoother OT using NW estimator with OT estimated

correspondences {(xi, φOT (xi))}, and we denote it as φOTh (x) (cf. Figure 3.2 compares

dark blue curve with light blue curve for smoother OT solution).

3.1.3 Constructing L2 inference based solution

The L2 distance between probability density functions can be used to estimate the a

parametric mapping φθ between the source and target datasets (cf. Section 2.2.2). The

problem then is formulated as a parameter estimation:

θ̂ = argmin
θ

L2(f(x|θ), g(x)) (3.2)

Unlike the OT formulation (Section 2.2.1.1), which depends on two random variables

x and y (see Eq. (2.3a)), only one random variable x appears explicitly in L2 frame-

work, and both the source pdf f and target pdf g are candidate pdfs for the random

vector x defined here in space R. In Section 2.2.2 we explained that there is a closed

form solution for L2 when using Gaussian mixture models.

In the following, we first formulate the L2 framework in 1D space and then use it to

estimate a parametric mapping φθ that maps the source to target data in the example

shown in Figure 3.1:

L2 between pdfs: Let us consider that the two probability density functions f and

g representing the source and target samples are Gaussian mixtures as follows:
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f(x) =
n∑
i=1

wiN (x;µsi , h
2
i ) (3.3)

g(x) =

m∑
j=1

wjN (x;µtj , h
2
j ) (3.4)

The notation N (x;µ∗, h
2
∗) indicates a one-dimensional Gaussian distribution, with

mean µ∗ and variance h2
∗, and 0 < w∗ < 1 is the weight of the distribution such that∑∗∗

∗=1w∗ = 1 (with ∗ = i, j and ∗∗ = n,m). For simplicity we constructed the Gaus-

sian mixture models explicitly as follows: 1) The number of Gaussian components is

the number of samples in the dataset and all components are weighted equally, 2) for

each component, the mean is given by the spatial location of each sample, and 3) all

components share the same bandwidth h∗.

The L2 distance between Gaussian mixtures is computed as follows:

L2(f(x), g(x)) =

∫
f(x)2dx− 2

∫
f(x)g(x)dx+

∫
g(x)2dx (3.5)

Inference with L2: In order to map the source distribution f(x) to the target distri-

bution g(x), f(x) is changed to a parametric family of distributions f(x|θ), with pa-

rameters θ controlling the transformation φθ which maps the Gaussian mixture f(x|θ)

to g(x). One method to define f(x|θ) involves applying the transformation φθ to the

means of the Gaussians {µsi} (Grogan and Dahyot, 2019; Jian and Vemuri, 2011). The

GMM f(x|θ) is then given by:

f(x|θ) =
n∑
i=1

wiN (x;φθ(µ
s
i ), h

2
i ) (3.6)

The parameters θ are estimated by minimizingL2 distance between the moving source

distribution f(x|θ) and the target g(x) as follows:

θ̂ = argmin
θ

[
L2(f(x|θ), g(x)) =

∫
f(x|θ)2dx− 2

∫
f(x|θ)g(x)dx

]
(3.7)

Since the target is fixed and independent of the transformation estimation we removed

the term
∫
g(x)2dx from the cost function (3.7).
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Closed-form solution for L2: By utilizing the Eq. (2.21), the term
∫
f(x|θ)2dx in Eq.

(3.7) is evaluated as follows:

∫
f(x|θ)2dx =

1

n2

n∑
i=1

n∑
j=1

N (0, φθ(µ
s
i )− φθ(µsj), 2h2) (3.8)

The term
∫
f(x|θ)g(x)dx can be computed based on two situations: with correspon-

dences and without taking account of the correspondences (Grogan and Dahyot,

2019). In case we do not take into account the correspondences the term is computed

as follows:

∫
f(x|θ)g(x)dx =

1

nm

n∑
i=1

m∑
j=1

N (0, φθ(µ
s
i )− µtj , 2h2) (3.9)

When the correspondences {(xsi , xti)}ni=1 are given then the term
∫
f(x|θ)g(x)dx is com-

puted as follows:

∫
f(x|θ)g(x)dx =

1

n

n∑
i=1

N (0, φθ(µ
s
i )− µti, 2h2) (3.10)

Defining the parametric transformation model φθ: We consider a parametric non-

rigid 1D transformation using radial basis functions (RBF) transformation. The trans-

formation model is decomposed into a linear part which is modeled by an affine mo-

tion in 1D, and a nonlinear part which is controlled by linear spline warping coeffi-

cients, the equation is as follows:

φ(x, θ) = c0 + c1x+
r∑
l=1

wl ϕ(Γl) (3.11)

where:

θ = {c0, c1, w1, w2, ..., wr}, parameters control the transformation to be estimated

ϕ(Γl) =Γl, radial basis function of linear spline type

Γl = ‖x− xl‖2, euclidean distance

xl control points
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We choose r=125 control points on regular intervals spanning the entire range of the

1D projected dataset. As a consequence the dimension of the latent space that needs

to be explored when estimating θ in this case is:

dim(θ) = (125× 1) + 1 + 1 = 127

with dim(xl) = 1, dim(c0) = 1, and dim(c1) = 1.

Optimization: When minimizing the cost function Eq. (3.7) to estimate the parame-

ters of the transformation φθ Eq. (3.11), we employed Quasi-Newton method (Shanno,

1970), which is a gradient-based numerical optimization technique. We computed the

analytical derivative of the cost function Eq. (3.7) and passed it to the gradient ascent

algorithm to speed up the optimization (Grogan and Dahyot, 2019; Jian and Vemuri,

2011). As for the implementation specifics, we used the Matlab function (fminunc) that

implements the Quasi-Newton minimization method, which is suitable for our prob-

lem formulation. fminunc function returns a vector that is a local minimizer of the

scalar valued function. In our case, the scalar valued function is our cost function that

returns the L2 distance and the returned vector that gives minimum L2 distance is our

parameters θ = {c0, c1, w1, w2, ..., wr}. To select the bandwidth for the Gaussians in

the GMMs, we choose the fixed value h = 1 for the example data in Figure 3.1. In

Chapter 7, we set a data-driven bandwidth value.

Estimating φL2θ : The green curve in Figure 3.2 shows the L2 based solution when

using the correspondences ŷ = φL2θ (x). It provides a smooth estimate of the underly-

ing function. The pink curve in Figure 3.2 shows the L2 solution without taking into

account the correspondences. We can see it is an increasing smooth function but it is

not necessarily a strictly increasing function.

3.1.4 Wasserstein Distance comparison

Recall Wasserstein DistanceW(f, g) (Section 2.2.1.1):

W(f, g) = min
γ

∫
X×Y

‖x− y‖2 γ(x, y)dxdy (3.12)
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y = φ(x) No correspondences Correspondences

Non-parametric φ Optimal Transport φOT Nadaraya–Watson φNWh

Parametric φθ L2 rubust fitting φL2

θ L2 robust fitting φL2

θ

Table 3.1: Summary of the differences between the four transfer function solutions,
Optimal transport(φOT ), Nadaraya–Watson (φNWh ), L2 based solution (φL2θ ) taking ad-
vantage of correspondences between the source and target when available, and with-
out correspondences.

Which with a deterministic coupling reduced to:

W(f, g) =

∫
X
‖x− φ(x)‖2 f(x)dx (3.13a)

= E
[
‖x− φ(x)‖2

]
=

1

n

n∑
i=1

‖xi − φ(xi)‖2 (3.13b)

Which is the sum of square differences between φ(x) and x. It is interesting to calcu-

late the Wasserstein Distance for all the transfer functions. The Wasserstein Distance

results are tabulated in Table 3.2. The Optimal Transport solution φOT is invertible

and an increasing function by definition, also the case with the smoothed OT φOT1 . L2

based solution φL2θ , which fit linear spline function without using correspondences,

is also shown to be an increasing and invertible function for the example in the Fig-

ure 3.2, but it is not guaranteed that it is always the case with the linear spline function.

On the other hand, L2 based solution using correspondences and Nadaraya–Watson

are non-monotonic functions. The Table 3.2 shows that L2 without correspondences

gives the lowest distance, then OT is followed (Eq. (2.11) quantile-matching) followed

by the smoothed OT, then comes L2 using the correspondences giving lower distance

value than Nadaraya–Watson solution.
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OT (φOT ) Smoothed OT (φOT1 ) NW (φNW1 ) L2 corr (φL2

θ ) L2 (φL2

θ )

W(f, g) 9.657 9.682 13.754 13.659 9.622

Table 3.2: Comparing the Wasserstein Distance between the source and target after
the transformation using the four transfer function solutions, Optimal transport (φOT ),
smoothed Optimal Transport (φOT1 ), Nadaraya–Watson (φNW1 ),L2 based solution (φL2θ )
taking advantage of correspondences between the source and target, and without cor-
respondences. Red, blue, green, pink and cyan indicate 1st, 2nd, 3rd, 4rd, and 5rd best
result in terms of minimum distance, respectively (lower values are better).

3.2 Using 1D OT in N-D space

Of the non-linear distribution transfer methods explained in Section 2.3.1.2 that tackle

N -dimensional transfer problems using 1D OT pdf transfer functions (Eq. (2.9) CDF-

matching, or its variant Eq. (2.11) quantile-matching), we picked the most popular

ones used in the literature which are the independent transfer, Iterative Distribution

Transfer (IDT) and Sliced Wasserstein Distance (SWD). In Section 2.3.1.2, we explained

the independent transfer, which assumes multivariate distributions with independent

variables where the histogram is used to approximate the full distribution of values

in each coordinate independently. 1D non-parametric CDF-matching function is per-

formed on each coordinate separately. On the other hand, Iterative projection-based

approaches tackle the problem of estimating a N -dimensional OT by breaking down

the problem into a series of subproblems, each of which finds a 1D OT solution using

projected samples. IDT algorithm solve the 1D OT subproblems using CDF-matching

(Eq. 2.9), and SWD algorithm solves 1D OT subproblems using quantile-matching

(Eq. (2.11)) using sorting operation (see Section 2.2.1.3). These projection-based ap-

proaches provide faster calculation as well as smaller memory consumption compared

with regularization-based optimal transport methods; they become useful tools when

we have a large number of data samples in high-dimensional spaces. In the following

we give detailed explanation for the projection-based approaches:

Denote a particular axis by its unit vector direction e ∈ RN . The projection of the N -

dimensional samples x and y on the axis e is given by the 1D scalar values u = eTx

and v = eT y for the source and target respectively. The projection of datasets {xi}

and {yj} yields to the projection of both pdfs f and g onto the axis e, which results in

two 1D marginal pdfs fe and ge. Using the non-linear 1D Optimal Transport mapping
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Algorithm 1: Iterative projection-based transform using Optimal Transport

1: Input: datasets Source {xi}ni=1 and Target {yj}mj=1 in RN

2: Initialisation: k ← 0 and ∀i, x(0)
i ← xi

3: repeat
4: Generate D random unit vectors in RN stored in matrix R = [e1, ..., eD]
5: for r = 1 to D do
6: Compute projections ∀i, ui = eTr x

(k)
i and ∀j, vj = eTr yj

7: Compute 1D transfer functions φ1 to φD such that φr is the optimal transport
solution (Eq. (2.9) or Eq. (2.11))

8: end for
9: Remap the source dataset

Φ(x
(k)
i ) = R


φ1(eT1 x

(k)
i )

...
φD(eTDx

(k)
i )

 =

D∑
r=1

(φr(e
T
r x

(k)
i )) er

10: Update source dataset x(k+1)
i ← (λ− 1)(x

(k)
i ) + λ(Φ(x

(k)
i ))

11: R← Random rotation of R
12: k ← k + 1
13: until convergence on all marginals for every possible rotation (noted k ≡ ∞)
14: Result: The final one-to-one mapping Φ in RN is given by ∀i, xi 7→ Φ(xi) = x

(∞)
i

yields a 1D mapping φOTe (Eq. (2.9) or its variant Eq. (2.11)) on this axis e that matches

the marginal fe to ge. After the transformation, the 1D sample is back-projected into

the original space by the following operation:

x→ (φe(e
Tx)) e (3.14)

We can summarize and present both projection-based approaches IDT (Pitie et al.,

2005b) and SWD (Bonneel et al., 2015) in Algorithm 1. It consists in choosing a ma-

trix of D directions (unit vectors) R = (e1, ..., eD), and then applying the following

mapping Φ:

Φ(x) = R


φ1(eT1 x)

...

φD(eTDx)

 =
D∑
r=1

(φr(e
T
r x)) er (3.15)

The φr is the corresponding 1D transfer for axis er and can be done independently for

each axis. This manipulation is iterated over different random rotations of R matrix
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over k iteration that results in a sequence of distributions f (k) that eventually con-

verges to the target distribution g. Algorithm 1 converges when the overall estimated

transfer function becomes the identity function: Φ(x(k)) ' Id(x(k)) = x(k) (i.e the sam-

ples do not move anymore), and in practice this happens after kt iterations where kt

can be set empirically as a stopping condition of the algorithm (Bonneel et al., 2015;

Pitie et al., 2007). Pitie et al. (2005b) measured the convergence experimentally by

computing the average Kullbach-Leibler divergence between pdfs, and they showed

that it decreases with each iteration. The subsequent extension by Pitie et al. (2007)

proposed to choose a matrix of 6 directions (unit vectors) and initialized it with op-

timized values for RGB space. A theoretical and numerical study of the method is

developed in more depth in (Pitie et al., 2007).

In SWD (Bonneel et al., 2015), the authors introduced a regularization term λ in their

model to control the transfer function with the use of the identity function. More

specifically, in the update step 10 in Algorithm 1, the modified source points are ob-

tained by taking a partial step with λ=0.2 such that:

x
(k+1)
i = (1− λ)(x

(k)
i ) + λ Φ(x

(k)
i ) (3.16)

This regularization term λ enforces a pulling constraint on the transfer function to-

wards the identity. The goal is to create a transfer function that moves as little as

possible the source points, minimizing the displacement to eliminate the excessive

stretching of the transfer function (note the increasing identity function has a mini-

mum transport cost). On the other hand, the IDT algorithm takes the full step and

can be shown in Algorithm 1 by setting λ=1. Figure 3.3 shows illustration of the IDT

algorithm.

Simulated experiments: To explore and visualize the differences and similarities

under different settings to better understand each transfer method’s behavior and ca-

pabilities, we conduct a simulated experiment in R2. Here, the assumption regarding

the joint distributions they operate on is different in terms of independent and de-

pendent random multivariate variables. Figure 3.4 and Figure 3.5 show results of

the application of the three distribution matching algorithms on multivariate distri-

butions with independent variables, including common distributions such as uniform
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Figure 3.3: Illustration of the 1D iterative projection approach with full updating step
(λ = 1) in algorithm 1 (gray boxes). The input sample x (blue node) and the output
transformed sample y (orange node) with k = 1, ..., 20 iterations. xT er (gray nodes)
represents the projection on 1D axis er. φr (green nodes) represents the estimated
transformation function in the direction of the projection axis er. x(k) (white nodes)
represents the back-projected transformed sample in iteration k (Best viewed in colour
and zoomed in).

distribution, Gaussian distribution and Irwin-Hall distribution. Generative models

such as Variational Auto Encoders (VAEs) (Kingma and Welling, 2014) and Generative

Adversarial Networks (GANs) (Goodfellow et al., 2014) are trained for a fixed prior

distribution in the latent space, such as uniform or Gaussian. It is a common practice

in the literature of generative models to explore the learned model behavior and out-

puts under various arithmetic operations on the latent space samples. The operations

that are commonly used such as linear interpolation (Goodfellow et al., 2014) or vicin-

ity sampling (Radford et al., 2016), create a distribution mismatch between the prior

distribution of the latent space and the distribution of the results of these operations.

Irwin hall distribution is the resulting distribution of the linear midpoint interpolation

on the prior uniform distribution of the latent space. Distribution matching using the

independent transfer can be used to obtain latent space operations (e.g. interpolation,

vicinity sampling) that preserve the prior distribution of the latent space (Agustsson
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et al., 2019). Figures 3.4 and 3.5 visualize the simulated data alongside with the con-

tour lines of the pdfs for a better visualization. We can see from the figures that the

independent transfer algorithm converges in all examples. IDT algorithm converges

from the first iteration on all four examples. SWD convergence is slower than IDT due

to the partial step (Eq. (3.16)).

In contrast, Figure 3.6 shows results of the application of the three algorithms on two

examples of multivariate distributions with dependent variables. As we can see from

the results, the independent transfer does not converge in all examples while IDT con-

verges faster than SWD. We can conclude that using independent transfer is plausible

when we are guaranteed that we are dealing with separable distributions, otherwise

this approach does not produce correct results. However in most situations this set-

ting is not realistic. IDT is considered as a generalization of the independent transfer

algorithm and works well with all settings. Sliced Wasserstein Distance is slower than

IDT due to the partial step (Eq. (3.16)).
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3.3 Conclusion

In this chapter, we formulated inference with L2 to solve 1D problems, and compared

the L2 based solution, Optimal Transport and Nadaraya-Watson solutions with each

other in 1D space. L2 is a robust metric that proposes to estimate a parametric func-

tion which matches source and target distributions with a flexible framework that can

take into account information about correspondences when it is available. L2 with

non-rigid transformation functions such as splines is not scalable to high-dimensional

spaces, as the complexity of the optimization increases with high dimensional spaces.

Optimal Transport is a non-parametric pdf transfer function, and by definition, it does

not take into account any available correspondences when computing the solution,

while the ability to take advantage of the available correspondences would guide the

transfer process and improve the results. Moreover, the OT solution is increasing

by definition but not smooth in behavior, and that could affect the results’ accuracy.

Nadaraya-Watson estimator is a non-parametric kernel regression function that takes

advantage of the available correspondences for computing predictions. We have also

explored the capabilities of Optimal Transport based algorithms that tackle N-D prob-

lems, namely the independent transfer and the projection-based algorithms (IDT and

SWD). The projection-based algorithms can match any distribution, while the inde-

pendent transfer is restricted to distributions with independent variables.

This thesis explores the connections between the ideas mentioned above to overcome

the limitations and solve high-dimensional space problems in colour transfer appli-

cation. More specifically, we create high-dimensional representations that encode

spatial information, colour information and correspondences whilst preserving lo-

cal structures for better inference. These representations extend the original problem

space (colour space) to higher dimensions that lead to computational complexities. To

tackle the problem and avoid the computational complexities, in the next chapters, we

use 1D projection-based approach to explore Optimal Transport’s performance with

the high-dimensional representations (cf. Chapter 4), with implicit correspondences

(cf. Chapter 5), explore the application of kernel regression Nadaraya-Watson to the

colour transfer problem (cf. Chapter 6) and, finally, extend the L2 inference (cf. Chap-

ter 7) to high-dimensional space problems.
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CHAPTER

FOUR

PATCH-BASED COLOUR TRANSFER

WITH OPTIMAL TRANSPORT

4.1 Introduction

Colour variations between photographs often happen due to illumination changes,

using different cameras, using different in-camera settings, or due to tonal adjust-

ments by the users. Colour transfer methods have been developed to transform a

source colour image into a specified target colour image to match colour statistics

or eliminate colour variations between different photographs. There are many ap-

plications in image processing problems, ranging from generating colour consistent

image mosaicing and stitching (Li et al., 2020) to colour enhancement and style ma-

nipulation (Hwang et al., 2019). In this chapter, we propose a new colour transfer

method with Optimal Transport to transform the colour of a source image to match

the colour of a target image of the same scene. As the transfer process is performed

in the colour space, it does not consider that coherent colours should be transferred to

neighboring pixels, which can create results with blocky artifacts emphasizing JPEG

compression blocks or increasing noise. To tackle this problem, we propose to extend

the colour problem to higher dimensional spaces by encoding overlapping neighbor-

hoods of pixels, taking into account both their colour and spatial information. Using

an iterative projection approach, we address the high dimensional distribution trans-

fer problem in the 1D subspace where only 1D marginal distributions are used in the

estimation process, thus requiring low computational costs. Since several recoloured

candidates are now generated for each pixel in the source image, we define an orig-
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inal procedure to efficiently merge these candidates, which allows denoising and ar-

tifact removal as well as colour transfer. Experiments show competitive results, both

quantitatively and qualitatively, compared with leading state of the art colour trans-

fer methods. Our approach can be applied to various colour transfer contexts, such

as colour transfer between different camera models, camera settings, lighting condi-

tions, and colour retouching. The work presented in this chapter has been published

in (Alghamdi et al., 2019).

4.2 Optimal Transport for Colour Transfer

As described in Section 2.2.1.1, Monge’s formulation of OT (Villani, 2008) defines the

deterministic coupling y = φ(x) between random vectors x∼ f(x) and y ∼ g(y) that

capture the colour information of the source and target images respectively, and its

solution minimizes the total transportation cost:

argmin
φ

∫
‖x− φ(x)‖2 f(x) dx (4.1.a)

such that : f(x) = g(φ(x)) |detOφ(x)| (4.1.b)

with f the probability density function (pdf) of x, and g the pdf of y. The solution for

φ can be found using existing linear programming algorithms such as the Hungarian

and Auction algorithms (Santambrogio, 2015). However, in practice, it is difficult to

find a solution for colour images when dim(x) = dim(y) = N > 1 as the computa-

tional complexity of these solvers increases in multidimensional spaces (Villani, 2003).

But as shown in Section 2.2.1.3 for dimension N = 1, with x, y ∈ R, a solution for φ is

straightforward and can be defined using the increasing rearrangement (Villani, 2008):

φOT = G−1 ◦ F (4.2)

where F and G are the cumulative distributions of the colour values in the source and

target images respectively. Section 2.3.1.2 explained how the 1D OT solution (Eq. (4.2))

could be used to tackle problems in multidimensional colour spaces and of particu-

lar interest is the Iterative Distribution Transfer (IDT) algorithm for colour transfer
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proposed by Pitie et al. (2005b). They proposed to iteratively project colour values

{xi}ni=1 and {yj}mj=1 originally in RN to a 1D subspace and solve the OT using Eq. (4.2)

in this 1D subspace and then propagate the solution back to RN space. This operation

is repeated with different directions in 1D space until convergence. This strategy was

inspired by the idea of the Radon Transform (Pitie et al., 2007), which states the fol-

lowing proposition: if the target and source colour points are aligned in all possible

1D projective spaces, then matching is also achieved in RN space. Note that the im-

plementation of IDT approximates F and G using cumulative histograms, which can

be considered as a form of quantile matching but with irregular quantile increments

derived from the cumulative histograms of the source and target images - as source

and target quantiles do not match exactly, interpolation can be used to compute the

solution (Pitie et al., 2007). The IDT algorithm can be computed in O(nKL), where n

is the number of samples processed, K is the number of iterations until convergence,

and L is the number of projection directions considered in each iteration.

The Sliced Wasserstein Distance (SWD) algorithm was later proposed (Section 2.2.1.4),

similarly using the iterative projection approach of IDT, and was applied to texture

mixing applications (Rabin et al., 2012) and colour transfer (Bonneel et al., 2015). The

SWD algorithm uses quantile matching (Section 2.2.1.3) instead of cumulative his-

togram matching to solve Eq. (4.2). More specifically, SWD sorts the n 1D projections

of the source and target images respectively to define quantiles with regular incre-

ments of size 1
n between 0 and 1 for both source and target distributions. The SWD

algorithm can be computed in O(n log(n)KL) operations using a fast sorting algo-

rithm (Rabin et al., 2012). When a small number of observations are available, using

SWD is best, but with a very large number of observations, histogram matching with

IDT is more efficient.

The warping map φOT derived by using the closed-form (Eq. (4.2)) has a number of

important characteristics: it is parameter free, no strong hypotheses are made about

the distributions (i.e. f and g). By design it is an increasing function and this is an

important property for colour transfer problems since OT does not take into account

available correspondences to guide the transfer process. More specifically, this in-

creasing property preserves the relative position of colours in the transformed source

image, i.e., the areas of the source image that were bright will remain bright after trans-

formation, and those that were dark will remain dark. Also, this function provides a
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tractable iterative solution for imaging applications formulated in higher dimensional

spaces. However, undesirable visual artifacts can be produced in the output image

and a post processing step is added to ensure that the gradient field of the resulting

image matches the gradient field of the source image (Pitie et al., 2007). Similarly, Bon-

neel et al. (2015) use an iterative post-processing technique introduced in (Rabin et al.,

2011) to regularize the transportation map.

4.3 Patch-based Colour Transfer (PCT OT)

We propose to solve colour transfer by encoding overlapping neighborhoods of pix-

els, accounting for both colour information as well as pixel location, and extending

the problem to higher dimensional space. We solve the transfer problem in 1D space

using an iterative projection approach. In our context, we found that using the quan-

tile matching approach that employs sorting operations is better than the histogram

technique. The problem with building histograms is that the regular bin size used for

every projection must be chosen, and so to alleviate the need to optimize the bin size

parameter, we choose the sorting technique (Bonneel et al., 2015). Due to overlapping

regions in patches, several recoloured candidates are now generated for each pixel

in the source image. Therefore, we also define an original procedure to merge these

candidates efficiently. Our proposed pipeline consists of the following steps:

4.3.1 Combine colour and spatial information

Shu et al. (2017) have proposed to incorporate spatial information for portrait relight-

ing that transfers shading with an awareness of the face geometry in source and target

images. Similarly, we propose to incorporate the original pixel positions in the grid co-

ordinate of the image (global coordinates) with colour information to take into account

spatial information when recolouring images with shared contents. The pixel’s colour

denoted xc and its pixel position xp are concatenated into a vector x = (xc, xp)T such

that dim(x) = dim(xc) + dim(xp). Adding this spatial information extends Monge’s

formulation in Eq. (4.1.a) such that φ(x) minimizes the following cost:
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Figure 4.1: This figure shows an example of overlapping patches to create points in
higher dimensions when A) using the colour information only (chrominance) and
when B) combine positions and the colour information (best viewed in colour and
zoomed in).

∫
(‖xc − φc(x)‖2 + ‖xp − φp(x)‖2) f(x) dx (4.3.a)

such that : f(x) = g(φ(x)) |detOφ(x)| (4.3.b)

where now f denotes the pdf of x, and g the pdf of y in the high dimensional space

(RN , where N = dim(x)). φc and φp are the components of φ that return the trans-

formed colour and spatial features respectively. The Eq. (4.3.a) highlights the effect

of Monge’s formulation on the combined colour and spatial information, which mini-

mizes the distance in the colour space as well as in the spatial domain.
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4.3.2 Data normalisation

In the case when colour and spatial information are combined, the colours have inte-

ger values from 0 to 255, and the spatial values can be anything depending on the size

of the image. In order to produce consistent results regardless of the size of the image,

all the colour and position coordinates are normalized to lie between 0 and 255 to cre-

ate a hypercube in RN (for example, N = dim(x) = 5, where 5D dimensional feature

space comes from the combined 3D RGB colour space and the 2D pixel’s position in

the image plane). We then stretch that space in the direction of the spatial coordinates

by a factor w to make it harder to move the pixels in the spatial domain than in the

colour domain, because since we are focusing on transferring colour between images

of a same scene, we know that the scenes are overlapped.

4.3.3 Create patch vectors

We encode overlapping neighborhoods of pixels to preserve local topology informa-

tion. Starting from the origin of the coordinate system of the images (upper left cor-

ner), we use a sliding window operation of window size d × d to extract overlap-

ping patches. From each individual patch we create a high dimensional vector in RN ,

where N = dim(x) × d × d, by concatenating all the pixels in the patch with their

dim(x) dimensional features (colour values only such that x = (xc)T Figure 4.1 (A),

or colour and spatial features such that x = (xc, xp)T Figure 4.1 (B)). We apply this

process to the source and target images to create patch vector sets {xi} and {yj} for

each respectively. Note, the formulation that includes spatial information favors local

mapping between patches such that it penalizes mappings between patches that are

spatially distant from each other even if their colours are similar.

Note that we experimented with using local coordinates where we extract the patches

first, then we consider each patch as a mini image where it has its origin of the coordi-

nate system (upper left corner of the patch), and we calculate the pixel coordinates in

the patch based on the patch’s origin. We found that using local coordinates does not

produce any improvements in the results, while using the image’s global coordinates

improves the results.
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4.3.4 Iterative projection transfer

The SWD algorithm (Bonneel et al., 2015) that employs sorting operation is used as

follows (Algorithm 1): let x(k) represents the high dimensional source point in RN

at iteration k. At each iteration, we generate a random orthogonal basis for the RN

space and project the source and target points onto these axes. Along each axis, φOT

is estimated and then applied to the source points to create an intermediate value

φOT (x(k)). As explained in Section 3.2, in the SWD algorithm the final modified source

point at the k iteration are obtained by taking a partial step with λ=0.2 (see step 10

Algorithm 1) such that:

x(k+1) = (1− λ)(x(k)) + λ ΦOT (x(k)) (4.4)

Here we have chosen a full step λ=1 to get an updating step similar to Pitie et al.

(2005b), hence not enforcing any pulling constraint on the transfer function towards

the identity as Bonneel et al. (2015). After convergence, we retain only the transformed

colour information and discard any changes in the positions.

4.3.5 Merge recoloured candidates

Due to the overlapping regions between patches, several recoloured candidates are

generated for each pixel in the source image. We compute the average colour value

from the candidates and use it in conjunction with the original position to create the

output recoloured image. This procedure of merging with average operation allows

denoising and artifact removal as well as producing smoothed colour transfer. Our

proposed pipeline is outlined in Algorithm 2.
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Algorithm 2: Our pipeline for colour transfer between overlapped scene images
1: Input: Source & Target images
2: Output: recoloured Source image
3: Formulate the Source image & the Target image as colour samples datasets
{xi}ni=1 & {yj}mj=1 of r.v. x and y ∈ RN , respectively. For example in RGB colour
transfer, N = 3 and xi = (ri, gi, bi) where ri, gi, bi are the red, green and blue
components of source pixel number i

4: if Combining colour and spatial information then
5: The pixel’s colour xc and its pixel position in the image plane xp are

concatenated into a vector x = (xc, xp)T in RN such that
N = dim(x) = dim(xc) + dim(xp), same process is applied to the target

6: Normalize all the colour and position coordinates to lie between 0 and 255
7: Choose a window size d× d and use the combined colour and position features

(i.e. x = (xc, xp)T & y = (yc, yp)T ) to create overlapping patch vectors {xi} &
{yj} in RN where N = dim(x)× d× d

8: else if colour only then
9: Choose a window size d× d and create colour only (i.e. x = (xc)T & y = (yc)T )

patch vectors {xi} & {yj} in RN where N = dim(x)× d× d
10: end if
11: Giving patch vectors {xi} & {yj}, compute Optimal Transport mapping

(Algorithm 1) where matrix R is random orthogonal basis for the RN space (step
4 in Algorithm 1)

12: Merge recoloured candidates from the overlapping patches {x(∞)
i } to create the

output recoloured source image

4.4 Experimental Assessment

We provide quantitative and qualitative evaluations to validate our method PCT OT

with both of our optimal transport solutions - using colour patches only, annotated in

the results as Our c, and using colour patches with spatial information, annotated as

Our cp.

4.4.1 Colour space and parameters settings

Colour space: Here we use the YCbCr colour space and investigate transforming

the luminance (Y) and chrominance (CbCr) components separately, and recombining

the resulting recoloured sources (Y and CbCr) to create the final recoloured source

image. Other colour spaces such as RGB, lαβ, CIELAB may be considered, but be-

cause full statistics (pdfs) are transferred by the proposed method, this has no impli-

cations and the method would function regardless of the colour space chosen. For

Our cp, when processing chrominance, each pixel is represented by its 2D chromi-
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Figure 4.2: This figure shows the impact of using larger or smaller values of the stretch-
ing parameter w = {1, 3, 5, 10, 20, 30} on the estimated mapping in the case when we
combine the pixel’s position with colour information. When we increase the value of
w, the transfer function still maintains the structure of the source image but introduces
shadows from the target image in places where there are large motion changes (best
viewed in colour and zoomed in).

nance (CbCr) value and its 2D spatial position. When processing luminance, each

pixel is represented by its 1D luminance (Y) value and its 2D spatial position. The

spatial information corresponds to the position coordinates of the pixel in the image,

with the origin of the coordinate system in the upper left corner (Figure 4.1).

Patch size: When creating patch vectors, we evaluated the impact of using different

patch sizes. Figure 4.3 shows colour transfer results when using different patch sizes

d × d with d = {1, 5, 10}. When we increase the value of d we get smoother colour

transitions across pixels. We found that a size of 5 × 5 captures enough of a pixel’s

neighborhood. Our patches now with combined colour and spatial features create a

vector in 75 dimensions (3 × 5 × 5) for the luminance and position components, and

100 dimensions (4× 5× 5) for the chrominance and position components. For Our c,

pixel position is not accounted for, and only chrominance and luminance are used.

The code we used to implement our method is available online1.

The value of the stretching parameter w: The w parameter controls the influence

of the positions in the transfer process. We evaluate the impact of using larger or

smaller values of the stretching parameter w on the estimated mapping in the case

when we combine the pixel’s position with colour information. Figure 4.2 shows ex-

1 https://github.com/leshep/PCT_OT
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Figure 4.3: This figure shows the impact of using different patch sizes d × d with
d = {1, 5, 10}. When we increase the value of d, we get smoother colour transitions
across pixels (best viewed in colour and zoomed in).

amples of colour transfer results when using different values w = {1, 3, 5, 10, 20, 30}.

When we increase the value of w, the transfer function still maintains the structure of

the source image but introduces shadows from the target image in places where there

are large motion changes. The higher the value of w, the bigger influence of pixel po-

sitions on the estimated mapping. We found that setting w = 2.5 is a good balance

and produces the best visual results.

4.4.2 The state of the art algorithms for comparison

We compare our methods to different state of the art colour transfer methods noted

by B-PMLS (Hwang et al., 2019), L2 (Grogan and Dahyot, 2019), GPS/LCP and

FGPS/LCP, (Bellavia and Colombo, 2018), PMLS (Hwang et al., 2014), IDT (Pitie et al.,

2007). Note that the results using B-PMLS and PMLS were provided by the authors
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(Hwang et al., 2019; Hwang et al., 2014). We also compared with two other recent

techniques (Xia et al., 2017; Park et al., 2016) that incorporate correspondences into

their framework, but PMLS has been shown to perform better than these two (Grogan

and Dahyot, 2019), so PMLS is the one reported here with (Grogan and Dahyot, 2019;

Bellavia and Colombo, 2018) as algorithms that incorporate correspondences in their

methodologies. Moreover, we compared with (Bonneel et al., 2016; Ferradans et al.,

2013) that do not take into account correspondences, but IDT also has been shown to

be superior (Grogan and Dahyot, 2019), hence IDT is the one reported here to make

the comparison clear and easy.

4.4.3 Evaluation dataset

To evaluate our algorithms, we use image pairs with similar content from a popular

dataset provided by Hwang et al. (2014). The dataset includes 30 images that com-

pose 15 geometrically registered pairs of images (source and target), which exhibit

different colour change sources from different cameras, different in-camera settings,

different illuminations, different tonal adjustments and different photo retouch styles.

Some of the images contain large motion changes such as images of ”building”, some

exhibit object changes such as ”illum”, some have marginal motion changes such as

the case of retouch styles images (images of ”gangnam”) and others do not contain

motion changes such as the case with tonal adjustment images (images of ”tonal”).

The dataset is provided in Appendix A.

4.4.4 Evaluation tools

Numerical metrics: to quantitatively assess the recolouring results, four metrics

are used: peak signal to noise ratio (PSNR) (Salomon, 2004), structural similarity in-

dex (SSIM) (Zhou Wang et al., 2004), colour image difference (CID) (Preiss et al., 2014)

and feature similarity index (FSIMc) (Zhang et al., 2011). These metrics are often used

when considering source and target images of shared contents for which correspon-

dences are easily available (Matysiak et al., 2020; Hwang et al., 2019; Grogan and

Dahyot, 2019; Bellavia and Colombo, 2018; Oliveira et al., 2015; Hwang et al., 2014;

Lissner et al., 2013). As we said earlier, the dataset used for the evaluation contains

geometrically registered pairs of images, but note, the alignment that is given by the
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image registration algorithm sometimes can never be accurate to the pixel level and

it may contain mismatches and noise, and while the registration errors can affect the

evaluation metrics, the measures for the different colour transfer methods have been

calculated using the same registration information.

Descriptive statistics: we graphically depict the numerical data through box plots.

The purpose of the box plots is to visually show the distribution of the numerical data

and visualize differences among methods and show how close our methods are to the

state of the art algorithms.

Significance analysis: we further use the non-parametric Kruskal-Wallis Rank

Sum test, which is an extension of the two-sample Wilcoxon Rank Sum test, to deter-

mine if there are statistically significant differences in the experiment results between

multiple methods. The advantage of this test is that it is non-parametric which means

it does not rely on data belonging to any particular parametric family of probability

distributions (unlike ANOVA and two-sample t-test which assume normal distribu-

tion). Also, the null hypothesis of the Kruskal-Wallis test is equal medians which

makes it much less sensitive to outliers (unlike ANOVA and two-sample t-test which

compare the means that are sensitive to outlier values).

Qualitative analysis: we provide visual assessments. For clarity, the results are

presented in image mosaics, created by switching between the target image and the

transformed source image column-wise (Figure 4.5, top row). If the colour transfer is

accurate, the resulting mosaic should look like a single image (ignoring the small mo-

tion displacement between source and target images), otherwise column differences

appear. The result mosaics approach makes the comparison accurate and easy. We

also provide close up look results to visualize the differences between the methods

that are not picked up by the numerical metrics.

4.4.5 Experimental results

Quantitative Evaluation: The numerical results of each metric with means and

standard errors (SE) are shown in Table 4.2 and Table 4.3, along with box plots car-

rying a lot of statistical details as shown in Figures 4.6 to 4.9. The purpose of the box
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plots is to visualize differences among methods and to show how close our methods

are to the state of the art algorithms. By looking at the Table 4.2 and Table 4.3, all met-

rics show our solution that incorporates the colour and spatial information (Our cp)

outperforms the solution that uses colour features only (Our c). Moreover, we can

see the significant difference in the performance between our method Our cp and the

IDT method, as we can see that the optimal transport performance is highly improved

when we extended the colour problem to high dimensional representation that encode

colour, spatial, and neighborhood information (as suggested by our model Our cp),

these results can be visualized in the box plot in Figures 4.6 to 4.9. Comparing Our cp

with leading state of the art colour transfer methods, we find that Our cp is compet-

itive with three top methods B-PMLS, L2 and PMLS. We can see clearly in the sum-

mary statistics (box plots in Figures 4.6 to 4.9) that B-PMLS, L2, PMLS and Our cp are

greatly overlapped with each other, the median and mean values (the means shown

as red dots in the plots, and the medians shown as horizontal black lines) are the high-

est among all algorithms and are very close in value, hence, B-PMLS, L2, PMLS and

Our cp are considered equivalent in their performances.

In conclusion, the quantitative metrics show that our method with colour and spatial

information (Our cp) performs similarly with top methods B-PMLS, L2 and PMLS,

and outperforms the rest of the state of the art algorithms. It might be worth mention-

ing that having mean values in SSIM and FSIMC metrics (Figure 4.9 and Figure 4.7)

that are located at the edge of the box plots of some methods is due to having out-

liers in the results (shown as black dots in the plots). However, if we removed those

outliers, this will not affect our above conclusion (see Appendix A). Moreover, our

conclusion is supported by statistical analysis, using Kruskal-Wallis Rank Sum test.

For each individual metric results, the Kruskal-Wallis Rank Sum test compares the

resulting medians of the methods. We found that with 95% confidence level, the P-

values for all metrics are greater than α 2 which indicates that there is no significant

difference between PMLS, L2, B-PMLS and our method Our cp, Table 4.1.

Qualitative Evaluation: Figure 4.5 provides qualitative results. For clarity, the re-

sults are presented in image mosaics (Figure 4.5, top row). If the colour transfer is

accurate, the resulting mosaic should look like a single image (ignoring the small mo-

2with confidence level = 95%, the significance level α = 0.05. If the P-value < α, the hypothesis test
is statistically significant.
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Metrics P-values

PSNR 0.6856

SSIM 0.4614

CID 0.7293

FSIMc 0.9774

Table 4.1: This table shows results of Kruskal-Wallis Rank Sum statistical test for each
metric separately. The test tests if there are significant differences between our method
Our cp results and the top performance methods, namely, B-PMLS, L2 and PMLS.
The null hypothesis Ho states that all medians are equal, the alternative hypothesis
H1 states that at least one median is different. The confidence level = 95%, and the
significance level α = 0.05. If the P-value < α, the null hypothesis is rejected and
alternative hypothesis is accepted. Since the P-values for each metric is greater than
the significance level α = 0.05, this indicates that there is no significant difference
between the aforementioned methods.

tion displacement between source and target images), otherwise column differences

appear. As can be noted, Optimal Transport which by definition does not take into

account the correspondences but when incorporates the colour and spatial and neigh-

borhood information (our approach Our cp) outperforms the original IDT solution in

alleviating the column differences, and is better than PMLS and L2 which take advan-

tage of correspondences when estimating the colour mapping.

While B-PMLS and PMLS provide good results in terms of metrics, they introduce

visual artifacts if the input images are not registered correctly (Figure 4.4), while our

method is robust to registration errors. Note that although the accuracy of the PSNR,

SSIM, CID and FSIMc metrics relies on the fact that the input images are registered

correctly; if this is not the case, these metrics may not accurately capture all artifacts

(cf. Figures 4.4 and 4.5). In addition, due to the merging step of our algorithm (cf. step

5 Section 4.3), our approach allows us to create a smooth colour transfer result, and

can also alleviate JPEG compression artifacts and noise (cf. Figure 4.4 for comparison).

Our method Our cp can also correctly transfer colours between images that contain

moving objects, as can be seen in Figure 4.4 with examples ”illum” and ”mart”. How-

ever, Our cp can create shadow artifacts when there are large changes between target

and source images (Figure 4.4 in example ”building”). In this case, Our c does not

suffer from these shadow artifacts and creates good colour transfer results.
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Figure 4.6: Comparing PCT OT (colour only Our c, colour and position Our cp) with
the state of the art colour transfer methods using PSNR metric (Salomon, 2004). De-
tailed quantitative results in Table 4.2 are summarized in a box plot (higher values are
better, best viewed in colour and zoomed in).

Figure 4.7: Comparing PCT OT (colour only Our c, colour and position Our cp) with
the state of the art colour transfer methods using SSIM metric (Zhou Wang et al., 2004).
Detailed quantitative results in Table 4.2 are summarized in a box plot (higher values
are better, best viewed in colour and zoomed in).
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Figure 4.8: Comparing PCT OT (colour only Our c, colour and position Our cp) with
the state of the art colour transfer methods using CID metric (Preiss et al., 2014). De-
tailed quantitative results in Table 4.3 are summarized in a box plot (lower values are
better, best viewed in colour and zoomed in).

Figure 4.9: Comparing PCT OT (colour only Our c, colour and position Our cp) with
the state of the art colour transfer methods using FSIMc metric (Zhang et al., 2011).
Detailed quantitative results in Table 4.3 are summarized in a box plot (higher values
are better, best viewed in colour and zoomed in).
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4.5 Conclusion

Several contributions to colour transfer with Optimal Transport have been made in

this chapter, showing comprehensive quantitative and qualitative evaluations with

leading state of the art colour transfer methods. In particular, first, neighborhoods

of pixels (patches) are used with Optimal Transport algorithm in high dimensional

space, and second, spatial information as well as colour content of pixels are both en-

coded in the high dimensional feature vectors. This original construction implies a

new reconstruction step since each recoloured pixel benefits from the contribution of

several estimated candidates using an averaging solution which allows denoising and

artifact removal as well as smoothed colour transfer. One limitation of our proposed

method is that it can create shadow artifacts when large changes exist between target

and source images. In the next chapter, we tackle this problem and use a motion es-

timation technique (SIFT flow) to estimate spatial correspondences and encode them

as well as colour content of pixels in the high dimensional feature vectors making Op-

timal Transport implicitly account for correspondences, then we investigate whether

this formulation can improve the colour transfer results between images that may ex-

hibit large motion changes between them. We further introduce smoothing as part of

the iterative algorithms for solving Optimal Transport.
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CHAPTER

FIVE

PATCH-BASED COLOUR TRANSFER

USING SIFT FLOW

5.1 Introduction

Computing the colour transfer function considering only the colour information does

not take into account the fact that coherent colours should be transferred to neighbor-

ing pixels, which can create results with blocky artifacts emphasizing JPEG compres-

sion blocks or increase noise. In Chapter 4, we tackled this problem and proposed the

Patch-based Colour Transfer (PCT OT) approach that encodes overlapping neighbor-

hoods of pixels, taking into account both their colour and pixel positions (Alghamdi

et al., 2019). The PCT OT algorithm not only shows improvements over the state of

the art methods but also shows limitations by creating shadow artifacts when there

are large changes between target and source images. The mapping that is used in

PCT OT is Optimal Transport, and by definition OT does not take into account any

available correspondences {(xi, yi)} when computing the optimal solution and only

has access to separate datasets {xi} and {yj}. Moreover, the OT solution is invertible

and an increasing function by definition but not smooth. In this chapter, we tackle

these problems and propose a new colour transfer method with Optimal Transport to

transfer the colour of a source image to match the colour of a target image of the same

scene that may exhibit large motion changes between images. We accomplish this by

improving PCT OT method by first improving the data preparation step for defining

patches thanks to SIFT flow (Liu et al., 2011). We estimate motions between images

using the SIFT flow approach and incorporate the estimated spatial correspondence
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Figure 5.1: Correspondences are estimated using the SIFT flow approach that matches
densely sampled, pixel-wise SIFT features between the target and source image. The
flow fields on the top right show the motion changes between the two images. On the
bottom right, flow field visualization is shown based on the code in (Baker et al., 2007):
each pixel denotes a flow vector where the orientation and magnitude are represented
by the hue and saturation of the pixel, respectively.

information in the encoded overlapping neighborhoods of pixels. This new formu-

lation makes OT implicitly takes into account correspondences when computing the

optimal solution. Our second contribution is to introduce smoothing as part of the

iterative algorithms for solving optimal transport namely Iterative Distribution Trans-

port (IDT) and its variant the Sliced Wasserstein Distance (SWD). Experiments show

quantitative and qualitative improvements over the previous state of the art colour

transfer methods, including the PCT OT method. The work presented in this chapter

has been published in (Alghamdi and Dahyot, 2020b).

5.2 PCT OT with SIFT Flow

When target and source images are from the same scene, correspondences can be

found to guide the process of recolouring. Indeed, colour transfer techniques often

employ correspondences to harmonize colours across a video sequence or across mul-

tiple view images such as in image stitching or image mosaicing tasks.

The SIFT flow algorithm (Liu et al., 2011) is well suited for matching densely sampled,

pixel-wise SIFT features between the two images. SIFT flow adopts the computational
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Figure 5.2: Spatial correspondences for the target image are calculated by adding the
flow vectors generated by SIFT flow and the original grid coordinates of the target
image and then concatenate the computed positions with the image colour channels.

framework of optical flow, but by matching SIFT descriptors instead of RGB colours

or gradient that is used in optical flow (Brox et al., 2004). A discrete, discontinuity pre-

serving, flow estimation algorithm is used to match the SIFT descriptors between two

images. The use of SIFT features allows matching across different scene/object ap-

pearances and the discontinuity-preserving spatial model allows matching of objects

located at different parts of the scene. Hence, SIFT flow is well suited for finding cor-

respondences between images that exhibit colour variations and large motions, which

is used in our proposed solution, Figure 5.1.

5.2.1 Combine colour and spatial correspondences

In the proposed method, the spatial information for the target image is calculated

using the SIFT flow method, which estimates dense spatial correspondences (Liu et al.,

2011), while in PCT OT method (Chapter 4) the original pixel positions in the grid

coordinate of the image are used. Using correspondences will allow colour transfer

between images that contain moving objects and overcome the limitations in PCT OT.

More specifically, let yp be the 2D pixel position of the target image that needs to

be computed, and let p = (a, b) be the 2D grid coordinate of the target image and

w(p) = (wx(p),wy(p)) be the flow vector at p computed using the SIFT flow method,

then yp = p + w(p) = (a + wx(p), b + wy(p)) is the new pixel position for the target

image that matches a pixel position in the source image, Figure 5.2. The target pixel’s

colour yc and its new pixel position yp are concatenated into a vector y = (yc, yp)T

such that dim(y) = dim(yc) + dim(yp). The source image keeps the grid coordinate of

the image as pixel positions, i.e xp = p and similarly to the target image the pixel’s

78



Figure 5.3: An illustration shows the overlapping patches extracted from the target
image, where for each patch, we concatenate all pixels information in the patch to
create a point in a higher-dimensional space (best viewed in colour and zoomed in).

colour xc and its pixel position xp are concatenated into a vector x = (xc, xp)T such

that dim(x) = dim(xc) + dim(xp).

5.2.2 Data normalisation

Since the colours have integer values from 0 to 255, and the spatial values can be

anything depending on the size of the image, we normalize all the colour and position

coordinates to lie between 0 and 255 to create a hypercube in RN , whereN = dim(x) =

dim(xc) + dim(xp), in order to produce consistent results regardless of the size of the

image and better control parameters. We then stretch that space in the direction of

the spatial coordinates by a weight factor w. This stretching makes the pixel positions

significantly influence the estimated mapping more than the colour information in a

way that forces the algorithm to match the colour of pixels that have same positions.

Since we are focusing on transferring colour between images of the same scene, we

know that the scenes are overlapped, and hence the more overlapped areas we have,

the bigger the value of w we can set. Note, in case we have outlier correspondences,

then the bigger value of w, the more influence of the outlier correspondences in the

transfer process, as we will see in the experiment part. This value could be adjusted

by the user, depending on the images being processed.
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Figure 5.4: Results show the smoothed Optimal Transport solution using non-
parametric Nadaraya-Watson (φOTh ) with different bandwidth values h = {3, 10, 20}.
Nadaraya-Watson significantly reduces the grainy artifacts produced by the original
Optimal Transport function (φOT ), mapping the source patch projections to the target
patch projections. The bigger h value, the more smoothed mapping. The results were
processed without a post-processing step. Note that the graph is a zoom-in on 0-255
range pixel values (best viewed in colour and zoomed in).

5.2.3 Create patch vectors

In a similar way to PCT OT (Chapter 4), we encode overlapping neighborhoods of pix-

els to preserve local topology information. Starting from the origin of the coordinate

system of the images (upper left corner), we use a sliding window operation of win-

dow size d×d to extract overlapping patches. From each individual patch we create a

high dimensional vector in RN whereN = dim(x)×d×d. We apply this process to the

source and target images to create patch vector sets {xi} and {yj} for each respectively,

Figure 5.3.

5.3 Smoothing φOT with Nadaraya-Watson Estimator

As we mentioned in Section 4.2, the 1D solution φOT Eq. (4.2) has been used to tackle

problems in multidimensional colour spaces. Of particular interest is the Iterative Dis-

tribution Transfer (IDT) algorithm for colour transfer proposed by Pitie et al. (2007)

and the Sliced Wasserstein Distance (SWD) algorithm that follows from the iterative

projection approach of IDT but computes the 1D solution φOT with quantile matching

instead of cumulative histogram matching (Rabin et al., 2012; Bonneel et al., 2015).

Optimal Transport does not provide an explicit expression of φOT but instead an esti-

mated correspondence (x, φOT (x)) for every data point x in the source dataset. We can

use the OT estimated correspondences to compute a smoothed OT solution for colour
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transfer using the Nadaraya Watson estimator (Section 2.2.3). Recall the general def-

inition of Nadaraya Watson estimator assuming we are giving the correspondences

{(xi, yi)}qi=1:

E[y|x] =

∫
y p(y|x) dy =

∫
y
p(y, x)

p(x)
dy '

∑q
i=1 yi Wh(x− xi)∑q
i=1Wh(x− xi)

= φNWh (x) (5.1)

With this form, NW can be seen as a locally weighted average of {yi}qi=1, using a ker-

nel as a weighting function where the bandwidth h is the hyperparameter or scale

parameter of the kernel, the larger the value of h the more φNWh gets smoothed.

We propose to smooth the 1D φOT computed in IDT or SWD by using the non-

parametric Nadaraya Watson estimator: at each iteration k, following the step of pro-

jecting {xi}ni=1 and {yj}mj=1 originally in high dimensional space to a 1D subspace

creating two 1D datasets {ui}ni=1 and {vj}mj=1 in the projective space (step 6 in Algo-

rithm 4). We then calculate the optimal map φOT to estimate OT correspondences

{(ui, φOT (ui))}ni=1 (step 7 in Algorithm 4). We then choose a subset of K = 2000

number of correspondences {φOT (ui)}Ki=1 spreading out the entire range of the pro-

jected dataset in the 1D subspace. Next, we feed the estimated OT correspondences

{(ui, φOT (ui))}Ki=1 to the NW estimator to compute a smoother OT solution, denoted

as φOTh , defined as follows:

φOTh (u) =

∑K
i=1 φ

OT (ui) Wh(u− ui)∑K
i=1Wh(u− ui)

(5.2)

Figure 5.4 illustrates the effect of computing smoother OT solutions using NW with

different bandwidth values on colour transfer compared with the original OT solu-

tion computed using IDT algorithm (Pitie et al., 2007). Optimal Transport solutions

are suitable in situations where the function that we need to estimate must satisfy

necessary side conditions, such as being strictly increasing. The non-parametric NW

estimator on top of the OT solution can provide the smoothness required in the esti-

mated function. In addition, one of the important characteristics of using OT and NW

estimators is that they do not assume an explicit expression controlled by parameters

on the regression function, which makes them directly employable. In the following

sections, we apply OT and NW smoothing in the relevant context of colour transfer

where the estimated function satisfies the condition of being an increasing function.
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Algorithm 3: Our pipeline for colour transfer between overlapped scene images
using SIFT flow and smoothed OT solution

1: Input: Source & Target images
2: Output: recoloured Source image
3: Formulate the Source image & the Target image as colour samples datasets
{xi}ni=1 & {yj}mj=1 of r.v. x and y ∈ RN , respectively. For example in RGB colour
transfer, N = 3 and xi = (ri, gi, bi) where ri, gi, bi are the red, green and blue
components of source pixel number i

4: if Combining colour and spatial information then
5: Use SIFT flow method to compute new positions yp for the target
6: Combine target colours yc with the new computed positions yp into a vector

y = (yc, yp)T in RN where N = dim(y) = dim(yc) + dim(yp), same process
applied to the source colours but with positions in the grid coordinate of the
image

7: Normalize all the colour and position coordinates to lie between 0 and 255
8: Choose a window size d× d and use the combined colour and positions

features (i.e. x = (xc, xp)T & y = (yc, yp)T ) to create overlapping patch vectors
{xi} & {yj} in RN where N = dim(x)× d× d

9: else if colour only then
10: Choose a window size d× d and create colour only (i.e. x = (xc)T & y = (yc)T )

overlapping patch vectors {xi} & {yj} in RN where N = dim(x)× d× d
11: end if
12: Giving patch vectors {xi} and {yj}, compute smoothed Optimal Transport

mapping with Nadaraya-Watson step (Algorithm 4)
13: Merge recoloured candidates from the overlapping patches {x(∞)

i } to create the
output recoloured source image
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Algorithm 4: Smoothed iterative projection-based OT transform

1: Input: datasets Source {xi}ni=1 and Target {yj}mj=1 in RN

2: Initialisation: k ← 0 and ∀i, x(0)
i ← xi

3: repeat
4: Generate D random unit vectors in RN stored in matrix R = [e1, ..., eD]
5: for r = 1 to D do
6: Compute projections ∀i, u(k)

i = eTr x
(k)
i and ∀j, vj = eTr yj

7: Compute 1D transfer functions ∀i, φOT (r)
(u

(k)
i ) such that φOT

(r)
is the OT

solution (Eq. (4.2) or Eq. (2.11)) for the projection r
8: Choose subset of K correspondences {(u(k)

i , φOT
(r))(u

(k)
i )}Ki=1 from

{u(k)
i , φOT

(r)
(u

(k)
i )}ni=1

9: Giving the correspondences {(u(k)
i , φOT

(r)
(u

(k)
i ))}Ki=1, compute a smoothed

OT ∀i in source dataset, φOT
(r)

h (u
(k)
i ) such that φOT

(r)

h is the NW solution
(Eq. (5.2))

10: end for
11: Remap the source dataset, ∀i

Φ(x
(k)
i ) = R


φOT

(1)

h (u
(k)
i )

...
φOT

(D)

h (u
(k)
i )

 =
D∑
r=1

(φOT
(r)

h (u
(k)
i )) er

12: Update source dataset x(k+1)
i ← (λ− 1)(x

(k)
i ) + λ(Φ(x

(k)
i ))

13: R← Random rotation of R
14: k ← k + 1
15: until convergence on all marginals for every possible rotation (noted k ≡ ∞)
16: Result: The final one-to-one mapping Φ in RN is given by ∀i, xi 7→ Φ(xi) = x

(∞)
i
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5.4 Experimental Assessment

We use the evaluation tools presented in Section 4.4.4 which consist of using numerical

metrics, summary descriptive statistics, statistical significance tests, and visual anal-

ysis. We provide extensive quantitative and qualitative evaluations of our approach,

noted by OT NW, with comparisons to various state of the art methods of colour trans-

fer noted by L2 (Grogan and Dahyot, 2019), GPS/LCP and FGPS/LCP (Bellavia and

Colombo, 2018), PMLS (Hwang et al., 2014), IDT (Pitie et al., 2007) and PCT OT (Chap-

ter 4). In these evaluations, we use image pairs with similar contents from an existing

dataset (Section 4.4.3) provided by Hwang et al. (2014). Note that the results using

PMLS were provided by the authors (Hwang et al., 2014). We also compared with two

other recent techniques (Xia et al., 2017; Park et al., 2016) that account for correspon-

dences into their framework, but PMLS has been shown to perform better than these

two (Grogan and Dahyot, 2019), so PMLS is the one reported here with (Grogan and

Dahyot, 2019; Bellavia and Colombo, 2018) as algorithms that incorporate correspon-

dences in their methodologies. Moreover, we compared with (Bonneel et al., 2016;

Ferradans et al., 2013) that do not take into account correspondences, but IDT also has

been shown to be superior (Grogan and Dahyot, 2019), hence IDT is the one reported

here for ease of comparison.

5.4.1 Colour space and parameters settings

Colour space and patch size: We use the RGB colour space where each pixel

is represented by its 3D RGB colour values and its 2D spatial position. Similarly to

PCT_OT (Chapter 4), we use patch size of 5 × 5 to capture enough of a pixel’s neigh-

borhoods. Our patches with combined colour and spatial features create a vector in

125 dimensions (5 × 5 × 5) for the RGB colours (3D) and position components (2D),

Figure 5.3. Similarly to PCT_OT, other colour spaces could be considered, but since

the proposed method transfers complete statistics (pdfs), this has no implications and

the method would function regardless of the colour space chosen.

The value of the stretching parameter w: We evaluated the impact of using larger

or smaller values of the stretching parameter w (Section 5.2.2) on the estimated map-

ping and in the presence of outlier correspondences. Figure 5.5 (A) shows colour
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Figure 5.5: This figure shows the impact of using smaller or bigger values of the
stretching parameter w. The top row is the source and target that need to be matched.
The second row (A) shows results of our method OT_NW when using different val-
ues of w = {1, 5, 10, 50}. The third row (B) shows our method’s results with motion
flow but without the NW smoothing step. All results are shown with corresponding
metrics results (best viewed in colour and zoomed in).

transfer results when using different valuesw = {1, 5, 10, 50}with corresponding met-

rics results. When we increase the value of w, we get better metrics scores, but also

artifacts start appearing in places where there are outlier spatial correspondences. The

higher the value of w, the higher influence of pixel positions on the estimated map-

ping. We found that setting w = 10 produces the best visual results.

Assessing the method with and without the NW smoothing step: Figure 5.5 (B)

shows an example of the results with motion flow only and without the NW smooth-

ing step. We see with everyw value the metrics produce better scores with comparison

to adding NW smoothing step such that bandwidth h = 10. We found that adding NW
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Figure 5.6: This figure shows the impact of the NW bandwidth h in our method OT_NW
while fixing w = 10. The higher the values, the more smoothed colour transfer but
with less accurate colour transfer. All results are shown with corresponding metrics
results.

smoothing step acts as a regularization for the OT mapping and hence allows smooth

colour transfer between images as well as artifact removal, but at the expense of an

accurate colour transfer, hence we experimented with different values of h and we

found that h = 10 is a good balance, producing best results. Figure 5.6 shows more

results for various h values, while fixing w = 10.

5.4.2 Experimental results

Quantitative evaluation: The numerical results of each metric are shown in Ta-

bles 5.2 to 5.5, along with statistical measures and plots as shown in Figures 5.7 to 5.10,

respectively. The purpose of the box plots is to visualize differences among methods

and to show how close our method is to the state of the art algorithms. By looking at

Tables 5.2 and 5.3, we can see that PSNR and SSIM metrics show that OT NW method

competes very well with the top methods PMLS and L2, and improves the perfor-

mance over the PCT OT method (Chapter 4). This conclusion is confirmed by the box

plot results in Figure 5.7 and Figure 5.8, as we can see the mean (the mean shown

as red dots in the plots), median (shown as horizontal black lines) and deviation of
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OT NW method are similar to the corresponding ones of the top methods PMLS and

L2, while they indicate a better performance of the OT NW method over the PCT OT

method. Moreover, the box plot of SSIM metric (Figure 5.8) shows that the median

is higher than the mean in the OT NW, PMLS and L2, which indicates left-skewness in

favor of higher performance.

On the other hand, the numerical results of Tables 5.4 and 5.5 (CID and FSIMc metrics)

are not certain in distinguishing the performance among the four methods. However,

the box plots can provide us with better visualization. From the box plot results in

Figure 5.9 and Figure 5.10, the CID and the FSIMc metrics show that OT NW method

still competes very well with the top methods PMLS and L2. With respect to com-

paring with the PCT OT method, the FSIMc shows similar performance between the

OT NW and PCT OT methods, while the CID metric indicates that the OT NW outper-

forms the PCT OT, at which there is a right-skewness in favor of higher performance

(note that in CID metric, lower values indicate higher performance). In conclusion,

the quantitative metrics show that our algorithm with Nadaraya Watson OT NW per-

forms similarly with top methods PMLS, L2, and improves the performance over the

PCT OT (Chapter 4), and outperforms the rest of the state of the art algorithms.

According to statistical significance analysis, using Kruskal-Wallis Rank Sum test (Sec-

tion 4.4.4), we found that the P-values for all metrics are greater than the significance

level α = 0.05, which indicates that with confidence level = 95% there is no significant

difference between PMLS, L2, PCT OT and OT NW method, Table 5.1.

Qualitative evaluation: Figure 5.11 provides qualitative results. For clarity, the re-

sults are presented in image mosaics, created by switching between the target image

and the transformed source image column wise. If the colour transfer is accurate, the

resulting mosaic should look like a single image (ignoring the small motion displace-

ment between source and target images), otherwise column differences appear. As can

be noted, our approach OT NW with Nadaraya Watson step is successful in removing

the column differences, improving the performance over the PCT OT (Chapter 4).

Figure 5.12 shows more qualitative results. We can see that our method OT NW is ro-

bust to registration errors, unlike PMLS which introduces visual artifacts if the input

images are not registered correctly. Note that the accuracy of the PSNR, SSIM, CID

and FSIMc metrics relies on the fact that the input images are registered correctly, and
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Metrics P-values

PSNR 0.9134

SSIM 0.5936

CID 0.9489

FSIMc 0.9895

Table 5.1: This table shows results of Kruskal-Wallis Rank Sum statistical test that
tests if there are significant differences between OT NW results and the top performance
methods, namely, PMLS, L2 and PCT OT. The null hypothesis Ho states that all medi-
ans are equal, the alternative hypothesis H1 states that at least one median is different.
The confidence level = 95%, and the significance level α = 0.05. If the P-value < α,
the null hypothesis is rejected and alternative hypothesis is accepted.

if this is not the case, then these metrics may not accurately capture all artifacts, and

these can be visualized clearly with PMLSmethod in Figures 5.11 and 5.12 (best viewed

zoomed in). PCT OT creates shadow artifacts when there are large changes between

target and source images (Figure 5.12, in example ”building”), while OT NW method

that incorporates correspondences in the overlapped patches can correctly transfer

colours between images that contain significant spatial differences and alleviates the

shadow artifacts, as can be seen in Figure 5.12 with examples ”illum”, ”mart” and

”building”. Moreover, OT NW visually outperforms PMLS and L2 in keeping the orig-

inal structure of the source image after the transformation, and due to the Nadaraya

Watson smoothing step in our algorithm, OT NW allows us to create a smoother colour

transfer result, and can also alleviate JPEG compression artifacts and noise (cf. Fig-

ure 5.12 for comparison between all methods).
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
5x5

Gangnam1 25.354 35.725 24.048 23.936 35.358 31.479 33.565
Gangnam2 27.116 36.553 25.952 25.944 35.524 35.502 33.627
Gangnam3 22.372 35.007 21.908 21.913 33.284 26.393 28.217

Illum 19.822 20.167 19.785 19.960 19.079 20.306 20.858
Building 20.554 22.634 22.736 22.769 20.499 25.019 24.039

Playground 27.184 27.835 25.501 25.436 27.647 28.482 28.491
Flower1 24.238 26.981 23.765 23.706 26.857 25.186 27.158
Flower2 25.417 25.760 25.259 25.223 25.772 26.373 26.497
Tonal1 30.082 37.215 31.617 31.413 37.332 37.044 37.151
Tonal2 27.992 31.508 25.062 25.087 31.356 32.049 31.579
Tonal3 29.575 36.246 28.136 28.065 36.644 33.793 35.014
Tonal4 28.605 34.521 28.852 28.848 34.344 33.819 35.320
Tonal5 30.330 35.260 29.580 29.448 34.303 36.437 36.616
Mart 22.747 24.742 23.183 23.196 24.450 24.509 25.189

Sculpture 29.884 32.062 29.037 28.820 32.067 31.237 32.735
Mean 26.085 30.814 25.628 25.584 30.301 29.842 30.404
SE 0.905 1.459 0.841 0.821 1.518 1.306 1.291

PSNR

Table 5.2: Comparing OT NW with the state of the art colour transfer methods using
PSNR metric (Salomon, 2004). Red, blue, and green indicate 1st, 2nd, and 3rd best
performance respectively in the table (higher values are better, best viewed in colour
and zoomed in).
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Figure 5.7: Comparing OT NW with the state of the art colour transfer methods using
PSNR metric (Salomon, 2004). Detailed quantitative results in Table 5.2 are summa-
rized in a box plot (higher values are better, best viewed in colour and zoomed in).
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2        
2019

PCT_OT 
2019

OT_NW 
5x5

Gangnam1 0.900 0.992 0.892 0.891 0.990 0.964 0.973
Gangnam2 0.920 0.993 0.909 0.909 0.986 0.980 0.976
Gangnam3 0.859 0.991 0.873 0.864 0.980 0.930 0.959

Illum 0.641 0.649 0.643 0.646 0.648 0.673 0.687
Building 0.808 0.865 0.864 0.863 0.862 0.888 0.875

Playground 0.920 0.940 0.878 0.876 0.939 0.939 0.943
Flower1 0.909 0.967 0.913 0.912 0.966 0.926 0.959
Flower2 0.901 0.928 0.894 0.894 0.927 0.933 0.939
Tonal1 0.953 0.988 0.971 0.970 0.987 0.988 0.991
Tonal2 0.968 0.987 0.926 0.926 0.986 0.988 0.986
Tonal3 0.962 0.992 0.947 0.946 0.992 0.987 0.990
Tonal4 0.944 0.983 0.932 0.932 0.983 0.981 0.985
Tonal5 0.965 0.986 0.953 0.954 0.985 0.990 0.991
Mart 0.904 0.957 0.925 0.925 0.956 0.941 0.954

Sculpture 0.942 0.971 0.934 0.932 0.972 0.945 0.974
Mean 0.900 0.946 0.897 0.896 0.944 0.937 0.946
SE 0.022 0.023 0.020 0.020 0.023 0.020 0.020

SSIM

Table 5.3: Comparing OT NW with the state of the art colour transfer methods using
SSIM metric (Zhou Wang et al., 2004). Red, blue, and green indicate 1st, 2nd, and 3rd

best performance respectively in the table (higher values are better, best viewed in
colour and zoomed in).
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Figure 5.8: Comparing OT NW with the state of the art colour transfer methods using
SSIM metric (Zhou Wang et al., 2004). Detailed quantitative results in Table 5.3 are
summarized in a box plot (higher values are better, best viewed in colour and zoomed
in).
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IDT      
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
5x5

Gangnam1 0.252 0.040 0.226 0.222 0.048 0.085 0.088
Gangnam2 0.268 0.039 0.291 0.292 0.089 0.068 0.109
Gangnam3 0.496 0.108 0.472 0.487 0.193 0.261 0.267

Illum 0.386 0.390 0.395 0.396 0.397 0.377 0.376
Building 0.374 0.228 0.313 0.321 0.249 0.183 0.275

Playground 0.440 0.238 0.443 0.471 0.254 0.209 0.221
Flower1 0.389 0.163 0.396 0.400 0.174 0.285 0.194
Flower2 0.337 0.245 0.322 0.323 0.266 0.218 0.201
Tonal1 0.310 0.101 0.285 0.308 0.111 0.097 0.063
Tonal2 0.288 0.128 0.351 0.347 0.145 0.099 0.118
Tonal3 0.244 0.079 0.294 0.294 0.081 0.077 0.079
Tonal4 0.240 0.108 0.248 0.238 0.107 0.065 0.065
Tonal5 0.156 0.091 0.205 0.192 0.092 0.051 0.067
Mart 0.526 0.219 0.405 0.402 0.225 0.426 0.249

Sculpture 0.242 0.137 0.213 0.224 0.143 0.232 0.120
Mean 0.330 0.154 0.324 0.328 0.172 0.182 0.166
SE 0.027 0.024 0.022 0.023 0.024 0.031 0.025

CID

Table 5.4: Comparing OT NW with the state of the art colour transfer methods using
CID metric (Preiss et al., 2014). Red, blue, and green indicate 1st, 2nd, and 3rd best
performance respectively in the table (lower values are better, best viewed in colour
and zoomed in).
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Figure 5.9: Comparing OT NW with the state of the art colour transfer methods using
CID metric (Preiss et al., 2014). Detailed quantitative results in Table 5.4 are summa-
rized in a box plot (lower values are better, best viewed in colour and zoomed in).
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
5x5

Gangnam1 0.936 0.986 0.944 0.943 0.985 0.972 0.979
Gangnam2 0.952 0.992 0.962 0.962 0.988 0.990 0.986
Gangnam3 0.946 0.992 0.962 0.961 0.990 0.987 0.982

Illum 0.800 0.819 0.824 0.824 0.818 0.839 0.844
Building 0.874 0.928 0.930 0.929 0.926 0.942 0.937

Playground 0.950 0.958 0.933 0.932 0.955 0.956 0.960
Flower1 0.954 0.975 0.968 0.967 0.976 0.971 0.977
Flower2 0.941 0.950 0.945 0.945 0.949 0.954 0.956
Tonal1 0.964 0.997 0.986 0.986 0.997 0.998 0.997
Tonal2 0.984 0.993 0.973 0.973 0.992 0.993 0.992
Tonal3 0.979 0.997 0.984 0.983 0.997 0.997 0.995
Tonal4 0.966 0.989 0.972 0.973 0.990 0.995 0.994
Tonal5 0.980 0.994 0.987 0.987 0.993 0.998 0.997
Mart 0.946 0.969 0.960 0.959 0.967 0.969 0.970

Sculpture 0.980 0.987 0.982 0.980 0.988 0.988 0.987
Mean 0.943 0.968 0.954 0.954 0.967 0.970 0.970
SE 0.012 0.012 0.010 0.010 0.012 0.010 0.010

FSIMc

Table 5.5: Comparing OT NW with the state of the art colour transfer methods using
FSIMc metric (Zhang et al., 2011). Red, blue, and green indicate 1st, 2nd, and 3rd best
performance respectively in the table (higher values are better, best viewed in colour
and zoomed in).
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Colour transfer methods
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Figure 5.10: Comparing OT NW with the state of the art colour transfer methods using
FSIMc metric (Zhang et al., 2011). Detailed quantitative results in Table 5.5 are sum-
marized in a box plot (higher values are better, best viewed in colour and zoomed
in).
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5.5 Conclusion

In this chapter, several contributions to colour transfer with Optimal Transport have

been made, showing comprehensive quantitative and qualitative assessments with

leading state of the art methods of colour transfer. In particular, first, SIFT flows

based spatial correspondence information as well as colour content of pixels are both

encoded in the high dimensional feature vectors, making OT implicitly taking into

account correspondences when computing the optimal solution, and second, we in-

troduced smoothing as part of the iterative algorithms for solving optimal trans-

port, namely Iterative Distribution Transport (IDT) and its variant the Sliced Wasser-

stein Distance (SWD). The algorithm allows denoising, artifact removal as well as a

smoother colour transfer between images that may contain large motion changes. In

the next chapter, we introduce the Nadaraya-Watson estimator with the 1D iterative

projection approach taking advantage of the correspondences explicitly in its formu-

lation, and investigate whether this method can solve the colour transfer problem.
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CHAPTER

SIX

ITERATIVE NADARAYA-WATSON

DISTRIBUTION TRANSFER FOR

COLOUR GRADING

6.1 Introduction

Light field (LF) is one application of colour transfer, which has recently become a sig-

nificant research topic (Matysiak et al., 2020; Grogan and Smolic, 2019), Figure 6.1.

The increase of this technology’s popularity is due to the availability of LF camera de-

vices such as lenslet cameras. These cameras extract sub-aperture images (SAI) with

an extensive depth of field representing different viewpoints of the same scene. How-

ever, the extracted views suffer from several artifacts, such as colour discrepancies.

When the source and target images are from the same scene such as light field images,

correspondences can be found to guide the process of recolouring. The SIFT flow

algorithm (Liu et al., 2011) (Section 5.2) is well suited for matching densely sampled

pixel-wise SIFT features between the two images and is used in our proposed pipeline

to extract correspondences (cf. Figure 6.3). This chapter proposes a new method with

Nadaraya-Watson that maps one N -dimensional distribution to another, taking into

account available information about correspondences. We extend the 3D problem to

higher dimensions by encoding overlapping neighborhoods of data points, and solve

the high dimensional problem in 1D subspace using the iterative projection approach.

To show the potentials of this mapping, we apply it to colour transfer between two im-

ages that exhibit overlapped scene. Experiments show competitive results, both quan-
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Figure 6.1: Results on SAI light fields images. Our method NW cp successfully corrects
colour inconsistencies in the selected outer views images using the centre view image
(SAI 0707) as the target image. The flow fields show the motion changes between the
target and each source image. The top row on the right shows flow field visualization
based on the code in (Baker et al., 2007): each pixel denotes a flow vector where the
orientation and magnitude are represented by the hue and saturation of the pixel,
respectively.

titatively and qualitatively, compared with the previous state of the art colour transfer

methods. The work presented in this chapter has been published in (Alghamdi and

Dahyot, 2020a).

6.2 The Proposed Method

We explain our algorithm (Algorithm 6) in Section 6.2.1. It is inspired by the iterative

projection approach implemented in the IDT (Pitie et al., 2007) and SWD (Bonneel

et al., 2015) algorithms originally proposed to solve Optimal Transport problem in N -

dimensional spaces. Our algorithm is part of our overall pipeline (Figure 6.3), which

is explained in Section 6.2.2.
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Figure 6.2: This figure shows an example result of the non-parametric Nadaraya-
Watson mapping function (φNW5 ) with bandwidth h = 5 that accounts for correspon-
dences to guide the transfer process compared with the strictly increasing Optimal
transport function (φOT ) that does not take into account the correspondences.

6.2.1 Nadaraya-Watson vs Optimal Transport Solution in 1D

The IDT algorithm (Pitie et al., 2007) proposes to project two multidimensional inde-

pendent datasets {xi}ni=1 and {yj}mj=1 sampled for two random vectors x ∈ RN and

y ∈ RN with respective distributions fx and gy, to 1D subspace (cf. Algorithm 1).

This projection creates two 1D datasets {ui}ni=1 and {vj}mj=1 with corresponding fu

and gv whose cumulative distributions Fu and Gv are matched using the 1D opti-

mal transport solution φOT (u) (Eq. (4.2) CDF-maching). Recall that OT by definition

does not take into account any available information about the correspondences when

computing the mapping, while the ability of taking advantage of the available corre-

spondences would guide the transfer process and improve the results. Also, OT is an

increasing function by definition and not smooth and locally variable. We propose to

replace the 1D φOT by the Nadaraya-Watson estimator (cf. Algorithm 6 line 8) taking

advantage of the correspondences {(xi, yi)}ni=1 giving correspondences {(ui, vi)}ni=1 in

the projective space:

φNWh (u) =

∑n
i=1 vi Wh(u− ui)∑n
i=1Wh(u− ui)

(6.1)

The NW estimator computes the estimate of an expectation of u given v using a Gaus-

sian kernel (Section 2.2.3.1) with bandwidth h. This bandwidth controls the smooth-

ness of the estimated function φNWh . Figure 6.2 presents the two estimates φOT and

φNWh estimated as part of one iteration of our algorithm. Not having correspondences,

φOT is a strictly increasing function, whereas φNWh provides a smooth non-monotonic

mapping function u to v.
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Sift Flow

Target y

Source x

Recoloured
Source 

Patch
Correspondences INWDT

Recoloured 
Candidates

Merging of recoloured 
patches

Input

Output

Figure 6.3: Proposed Pipeline: following OT NW method (Chapter 5), correspondences
between target and source are found using SIFT flow (Liu et al., 2011). These corre-
spondences are used directly in our proposed INWDT algorithm (cf. Algorithm 6)
to compute recoloured candidates that are then merged using the same process as
PCT OT method (Chapter 4) to compose the recoloured source image.

6.2.2 The Pipeline

We follow PCT OT (Chapter 4) and OT NW (Chapter 5) methods in constructing high

dimensional descriptors with differences in choosing the parameters, as explained in

the following:

6.2.2.1 Patch correspondences

First, giving the source colour pixels denoted by {xci}ni=1 and the target colour pix-

els {ycj}mj=1, we use SIFT flow motion estimation (Liu et al., 2011) to compute motion

flows (explained in Section 5.2.1) and extract the correspondences {(xci , yci )}ni=1 in RN

(for example N = dim(xc) = 3 for RGB colour space). Second, we concatenate the

original pixels’ positions in the grid coordinate of the images with the colour chan-

nels such that {(xi, yi) = ( (xci , x
p
i ) , (yci , y

p
i ) )}ni=1 in RN , where N = dim(x) =

dim(xc) + dim(xp). Next, we normalize the coordinates to lie between 0 and 255,

and we encode overlapping neighborhoods of pixels correspondences with patch size

neighborhood d × d to create high dimensional pairs of vectors {(xi, yi)}qi=1 in RN ,

where N = dim(x)× d× d. We also consider patches containing only colour informa-
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Figure 6.4: An illustration of creating binned correspondences {(ūi, v̄i)}Ki=1 from
{(ui, vi)}qi=1. The red dots representing the mean of the corresponding target values
for the source observations falling in each bin.

tion of a pixel neighborhood, i.e., {(xi, yi) = (xci , y
c
i )}ni=1, similar to PCT OT method

(cf. Figure 4.1 (A)).

6.2.2.2 Iterative Nadaraya-Watson Distribution Transfer (INWDT)

Our INWDT algorithm outlined in Algorithm 6 is applied to our set patch correspon-

dences {(xi, yi)}qi=1 (input) to compute recoloured patches {x(∞)
i }qi=1 (output). At each

iteration k, we project the correspondences {(xi, yi)}qi=1 originally in RN space, where

N = dim(x)×d×d, to a 1D subspace creating 1D datasets {(ui, vi)}qi=1 in the projective

space (step 6 in Algorithm 6). Next, we use binned Nadaraya-Watson estimator where

we create binned correspondences by dividing the support of the source points {ui}qi=1

into K = 200 number of bins (subintervals), and calculate the averages of the source

observations falling in each bin {ūi}Ki=1 as well as calculate the averages of the corre-

sponding target values {v̄i}Ki=1 (for example, ū4 is the average of all uis falling in the

4th bin, and v̄4 is the average of vis such that the corresponding uis is in the 4th bin),

Figure 6.4 illustrates an example for this procedure. The key idea of binned imple-

mentation is to greatly reduce the number of kernel evaluations (Murphy, 2014; Fan

and Marron, 1994) as we have large number of SIFT flow correspondences and many

of these evaluations are the same in the projective space. Next, we feed the correspon-

dences {(ūi, v̄i)}Ki=1 to the binned NW estimator to compute an estimate v = φNWh (u)
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for every data point in the source patch dataset {ui}qi=1 as follows:

φNWh (u) =

∑K
i=1 v̄i Wh(u− ūi)∑K
i=1Wh(u− ūi)

(6.2)

Exploring the Convergence: To explore the convergence, the standard L2 distance

between N -dimensional probability distributions (Jian and Vemuri, 2011) is used as a

measure to quantify how well the transformed distribution fx matches the target pdf

gy after each iteration k of the algorithm (at step 14 in Algorithm 6). We chose L2 dis-

tance between probability distributions over the popular Kullback-Leibler (Kullback

and Leibler, 1951) divergence to assess the convergence because L2 distance is robust

to outliers, unlike KL (Grogan and Dahyot, 2019; Sugiyama, 2013; Jian and Vemuri,

2011). As explained in Section 2.2.2.1, the L2 distance between probability distribu-

tions is defined as follows:

L2(f(x), g(x)) =

∫
f2(x)dx− 2

∫
f(x)g(x)dx+

∫
g2(x)dx (6.3)

There is only one random variable x appears explicitly in the Eq.(6.3), and both the

source pdf f and target pdf g are candidate pdfs for this random variable. We esti-

mated the underlying pdfs using a similar setting to the one we used in Section 3.1.3,

as follows:

We consider that the two probability density functions f and g representing source

and target samples are Gaussian mixtures:

f(x) =

n∑
i=1

wiN (x;µsi ,Σi) and g(x) =

m∑
j=1

wjN (x;µtj ,Σj) (6.4)

The notation N (x;µ∗; Σ∗) indicates a N -dimensional Gaussian distribution, with

mean µ∗ and covariance matrix Σ∗, and 0 < w∗ < 1 is the weight of the distribu-

tion such that
∑∗∗
∗=1w∗ = 1 (with ∗ = i, j and ∗∗ = n,m). We construct the Gaussian

mixture models from the given 1D datasets in a simplified setting as follows: 1) The

number of Gaussian components is the number of samples in the dataset and all com-

ponents are weighted equally, 2) for each component, the mean is given by the spatial

location of each sample, and 3) all components share the same spherical covariance

matrix Σ = h2I, where I is the N × N identity matrix and h is a scalar value controls
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the spherical covariance matrix. We set a data-driven bandwidth h value as follows 1

(Jian and Vemuri, 2011):

h =
[
det
(
XTX

n

)] 1

(2N ) (6.5)

WhereX is n×N matrix denoting the source dataset. Figure 6.5 illustrates the conver-

gence of the original distribution to the target over several iterations k of our algorithm

visualized in 2D space.

6.2.2.3 Merge recoloured candidates.

Because the same pixel is present in overlapping patches {x(∞)
i }qi=1, the average colour

value from all the candidates is selected for recolouring the source dataset {xi}ni=1 sim-

ilar to PCT OT method (Chapter 4) and OT NW method (Chapter 5). Our modified

pipeline is outlined in Algorithm 5.

1 https://github.com/bing-jian/gmmreg
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Algorithm 5: Our pipeline for colour transfer between overlapped scene images
with SIFT flow based correspondences

1: Input: Source & Target images
2: Output: recoloured Source image
3: Formulate the Source image & the Target image as colour samples datasets
{xi}ni=1 & {yj}mj=1 of r.v. x and y ∈ RN , respectively. For example in RGB colour
transfer, N = 3 and xi = (ri, gi, bi) where ri, gi, bi are the red, green and blue
components of source pixel number i

4: Use SIFT flow to estimate dense correspondences {(xci , yci )}ni=1 ∈ R3 (for 3D RGB
colour space)

5: if Combining colour and spatial information then
6: Combine spatial correspondences with colour information

{(xi, yi) = ( (xci , x
p
i ) , (yci , y

p
i ) )}ni=1 in RN where

N = dim(x) = dim(xc) + dim(xp) (see Section 6.2.2.1)
7: Normalize all the colour and position coordinates to lie between 0 and 255
8: Choose a window size d× d and create patch correspondence vectors using the

combined colour and positions features {(xi, yi)}qi=1 in RN where
N = dim(x)× d× d (for 3D RGB and d = 3, R45 where N = 5× 3× 3 = 45)

9: else if colour only then
10: Use colour pixels correspondences (i.e. {(xi, yi) = (xci , y

c
i )}ni=1) to create colour

patch correspondence vectors {(xi, yi)}qi=1 in RN (for 3D RGB and d = 3, R27

where N = 3× 3× 3 = 27)
11: end if
12: Transform {xi}qi=1 using INWDT giving patch correspondences {(xi, yi)}qi=1(cf.

Algorithm 6)
13: Merge recoloured candidates from the overlapping patches {x(∞)

i }qi=1 to create
the output recoloured source image
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Source                                                      Target                                                   Iteration 1

Iteration 2                                                 Iteration 3                                               Iteration 4

Iteration 8                                                Iteration 30                                            L2 distance

Source                                                  Target                                          Transformed Source                      

Figure 6.5: Example of pdf of the transferred source patches projected in 2D space
(RG). The patch size chosen is 1 × 1 and only the colour information is used N = 3
(space RGB). The L2 distance (Grogan and Dahyot, 2019; Jian and Vemuri, 2011) is
computed at each iteration to illustrate the convergence of the original distribution to
the target one by our transfer method.
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Algorithm 6: Generalized Pseudo-code for Iterative Nadaraya-Watson
Distribution Transfer (INWDT)

1: Input: Source and Target correspondences {(xi, yi)}qi=1, samples of r.v.
(x, y) ∈ RN × RN

2: Initialisation: k ← 0 and ∀i, x(0)
i ← xi

3: repeat
4: Generate D random unit vectors in RN stored in matrix R = [e1, ..., eD]
5: for r = 1 to D do
6: Compute projections ∀i, ui = eTr x

(k)
i and vi = eTr yi

7: Choose K bins and create binned correspondences {(ūi, v̄i)}Ki=1 from
{ui, vi}qi=1

8: Compute 1D NW estimate ∀i in {ui}qi=1, vi = φNWr (ui) with {(ūi, v̄i)}Ki=1

(Eq. 6.2)
9: end for

10: Remap the source dataset

Φ(x
(k)
i ) = R


φNW1 (eT1 x

(k)
i )

...
φNWD (eTDx

(k)
i )

 =
D∑
r=1

(φNWr (eTr x
(k)
i )) er

11: Update source dataset x(k+1)
i ← Φ(x

(k)
i )

12: R← Random rotation of R
13: k ← k + 1
14: until convergence L2(fx, gy)→ 0 (noted k ≡ ∞)
15: Result: With the recoloured patches {x(∞)

i }qi=1, the final one-to-one mapping Φ in
RN is given by xi 7→ Φ(xi) = x

(∞)
i , ∀i.
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6.3 Experimental Assessment

We use the evaluation tools presented in Section 4.4.4 which consist of using numerical

metrics, summary descriptive statistics, statistical significance tests, and visual analy-

sis. We provide extensive quantitative and qualitative evaluations to validate both of

our NW solutions - using colour patches only, annotated in the results as NW c, and us-

ing colour patches with pixel location information, annotated as NW cp. We compare

our methods to different state of the art colour transfer methods noted by L2 (Gro-

gan and Dahyot, 2019), GPS/LCP and FGPS/LCP (Bellavia and Colombo, 2018), PMLS

(Hwang et al., 2014), IDT (Pitie et al., 2007), also we compare with PCT OT (Chapter 4)

and OT NW (Chapter 5). In these evaluations, we use image pairs with similar contents

from an existing dataset (Section 4.4.3) provided by (Hwang et al., 2014). Note that

the results using PMLS were provided by the authors (Hwang et al., 2014). We also

compared with two other recent techniques (Xia et al., 2017; Park et al., 2016) that ac-

count for correspondences into their framework, but PMLS has been shown to perform

better than these two (Grogan and Dahyot, 2019), hence PMLS is the one reported here

with (Grogan and Dahyot, 2019) as algorithms that incorporate correspondences in

their methodologies. We also compared with (Bonneel et al., 2016; Ferradans et al.,

2013) that do not take into account correspondences, but IDT has been shown to be

superior (Grogan and Dahyot, 2019), hence IDT is the one reported here for ease of

comparison.

6.3.1 Colour space and parameters settings

We use the RGB colour space and we found a patch size of 3× 3 captures enough of a

pixel’s neighbourhood. For our NW cp version, each pixel is represented by its 3D RGB

colour values and its 2D pixel position (i.e 5D). The patches with combined colour and

spatial features create a vector in 45 dimensions (N = 3× 3× 5 = 45). For NW c, pixel

position is not accounted for, and only RGB colours are used (N = 3 × 3 × 3 = 27).

For the bandwidth selection in Nadaraya-Watson Eq. (6.2), using a cross-validation

method such as the popular Jackknife cross-validation criterion (Shao and Tu, 2012) is

overly costly computationally. Hence, we experimented with different values, and a

fixed bandwidth of h = 5 was selected for the best results.
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6.3.2 Experimental results

Quantitative evaluation: The numerical results of each metric with means and

standard errors (SE) are shown in Tables 6.2 to 6.5, along with box plots shown in

Figures 6.6 to 6.9, respectively. The purpose of the box plots is to visualize differences

among methods and to show how close our method is to the state of the art algo-

rithms. By looking at the tables (Tables 6.2 to 6.5), all metrics show that both solutions

with NW (colour only NW c, and combined colour and positions NW cp), which takes

correspondences into account, significantly outperforms OT (IDT algorithm) that does

not take the available correspondences into account when estimates the mapping, and

this is visualized in each metric box plot, Figure 6.6 to 6.9. Moreover, the results show

that NW cp which incorporates colour and spatial information improves the perfor-

mance over NW c which uses colour only. Comparing NW cp with the best perfor-

mances we reported so far, namely, PMLS, L2 and OT NW, we find that although NW cp

outperforms the other methods in many cases as measured by PSNR as shown in the

Table 6.2, by examining all the metrics’ box plots in Figures 6.6 to 6.9 we see that the

methods PMLS, L2, OT NW, and NW cp are greatly overlapped with each other, where

the values of the median and mean (the means shown as red dots in the plots, and the

medians shown as horizontal black lines) are very close in value. In conclusion, the

quantitative metrics show that our algorithm with Nadaraya-Watson competes very

well with top methods PMLS, L2 and OT NW (Chapter 5), and outperforms the rest of

the state of the art algorithms. Moreover, our conclusion is supported by statistical sig-

nificance analysis. We picked the methods that are shown to be greatly overlapped in

the box plots, namely PMLS, L2, OT NW and NW cp, and we used Kruskal-Wallis Rank

Sum test (Section 4.4.4) for each metric separately. We found that with 95% confidence

level, the P-values for each metrics are greater than the significance level α = 0.05,

which indicates that there is no significant difference between PMLS, L2, OT NW and

NW cp method, Table 6.1.

Qualitative evaluation: Figure 6.11 provides qualitative results. For clarity, the re-

sults in Figure 6.11 are presented in image mosaics, created by switching between the

target image and the transformed source image column wise. If the colour transfer is

accurate, the resulting mosaic should look like a single image (ignoring the small mo-

tion displacement between source and target images), otherwise column differences
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Metrics P-values

PSNR 0.9836

SSIM 0.7832

CID 0.6059

FSIMc 0.972

Table 6.1: This table shows results of Kruskal-Wallis Rank Sum statistical test for each
metric separately. The test tests if there are significant differences between NW cp
results and the top performance methods, namely, PMLS, L2, and OT NW. With 95%
confidence level, the P-values for each metric is greater than the significance level
α = 0.05, which indicates that there is no significant difference between the aforemen-
tioned methods.

appear. Figure 6.11 shows that both NW solutions (colour only NW c, and combined

colour and positions NW cp), which take correspondences into account, are successful

in alleviating the column differences, where significantly outperform the original OT

(IDT algorithm) that does not take the available correspondences into account (cf. Fig-

ure 6.11 in examples ”Tonal 4”, ”Gangnam2” and ”Gangnam1”). However, NW is a

smooth function provides a very smooth mapping that sometimes affecting the exact

colour mapping, which in this case makes OT NW (Chapter 5) the best in alleviating

the columns differences (cf. Figure 6.11 in examples ”building” and ”illum”).

Figure 6.10 shows more qualitative results. We can see that both NW solutions are

robust to registration errors and do not introduce visual artifacts, unlike PMLS which

produces those artifacts although it provides good results in terms of metrics. More-

over, as can be seen in Figure 6.10 with examples ’illum’, ’mart’ and ’building’, both

NW solutions can transfer colours between images that contain significant spatial dif-

ferences and eliminate the shadow artifacts better, visually, than OT NW, and unlike

PCT OT (cf. Figure 6.10, in example ‘building’). In addition, NW approach can create a

smoother colour transfer result, and can also alleviate JPEG compression artifacts and

noise (cf. Figure 6.10 for comparison). In general, Figure 6.10 and Figure 6.11 show

that NW, which accounts for the correspondences explicitly in its modeling, gives sim-

ilar results visually with both solutions (colour only NW c, and combined colour and

positions NW cp), although NW cp gives better numerical results in terms of metrics.
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
2020

NW_c   
3x3

NW_cp 
3x3

Gangnam1 25.354 35.725 24.048 23.936 35.358 31.479 33.565 30.353 32.241
Gangnam2 27.116 36.553 25.952 25.944 35.524 35.502 33.627 31.350 32.783
Gangnam3 22.372 35.007 21.908 21.913 33.284 26.393 28.217 27.069 29.269

Illum 19.822 20.167 19.785 19.960 19.079 20.306 20.858 20.236 21.066
Building 20.554 22.634 22.736 22.769 20.499 25.019 24.039 22.726 22.895

Playground 27.184 27.835 25.501 25.436 27.647 28.482 28.491 28.532 28.625
Flower1 24.238 26.981 23.765 23.706 26.857 25.186 27.158 26.973 27.530
Flower2 25.417 25.760 25.259 25.223 25.772 26.373 26.497 26.326 26.445
Tonal1 30.082 37.215 31.617 31.413 37.332 37.044 37.151 36.264 36.719
Tonal2 27.992 31.508 25.062 25.087 31.356 32.049 31.579 31.755 32.394
Tonal3 29.575 36.246 28.136 28.065 36.644 33.793 35.014 33.889 34.900
Tonal4 28.605 34.521 28.852 28.848 34.344 33.819 35.320 34.118 35.202
Tonal5 30.330 35.260 29.580 29.448 34.303 36.437 36.616 34.356 35.656
Mart 22.747 24.742 23.183 23.196 24.450 24.509 25.189 25.271 25.574

Sculpture 29.884 32.062 29.037 28.820 32.067 31.237 32.735 32.857 33.356
Mean 26.085 30.814 25.628 25.584 30.301 29.842 30.404 29.472 30.310
SE 0.905 1.459 0.841 0.821 1.518 1.306 1.291 1.202 1.249

PSNR

Table 6.2: Comparing our algorithms NW c and NW cp with the state of the art colour
transfer methods using PSNR metric (Salomon, 2004). Red, blue, and green indicate
1st, 2nd, and 3rd best performance respectively in the table (higher values are better,
best viewed in colour and zoomed in).
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Figure 6.6: Comparing our algorithms NW c and NW cp with the state of the art colour
transfer methods using PSNR metric (Salomon, 2004). Detailed quantitative results in
Table 6.2 are summarized in a box plot (higher values are better, best viewed in colour
and zoomed in).
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2        
2019

PCT_OT 
2019

OT_NW 
2020

NW_c   
3x3

NW_cp 
3x3

Gangnam1 0.900 0.992 0.892 0.891 0.990 0.964 0.973 0.947 0.965
Gangnam2 0.920 0.993 0.909 0.909 0.986 0.980 0.976 0.960 0.972
Gangnam3 0.859 0.991 0.873 0.864 0.980 0.930 0.959 0.890 0.955

Illum 0.641 0.649 0.643 0.646 0.648 0.673 0.687 0.662 0.678
Building 0.808 0.865 0.864 0.863 0.862 0.888 0.875 0.873 0.870

Playground 0.920 0.940 0.878 0.876 0.939 0.939 0.943 0.941 0.941
Flower1 0.909 0.967 0.913 0.912 0.966 0.926 0.959 0.960 0.963
Flower2 0.901 0.928 0.894 0.894 0.927 0.933 0.939 0.923 0.930
Tonal1 0.953 0.988 0.971 0.970 0.987 0.988 0.991 0.986 0.988
Tonal2 0.968 0.987 0.926 0.926 0.986 0.988 0.986 0.986 0.988
Tonal3 0.962 0.992 0.947 0.946 0.992 0.987 0.990 0.985 0.989
Tonal4 0.944 0.983 0.932 0.932 0.983 0.981 0.985 0.982 0.985
Tonal5 0.965 0.986 0.953 0.954 0.985 0.990 0.991 0.983 0.987
Mart 0.904 0.957 0.925 0.925 0.956 0.941 0.954 0.955 0.957

Sculpture 0.942 0.971 0.934 0.932 0.972 0.945 0.974 0.965 0.971
Mean 0.900 0.946 0.897 0.896 0.944 0.937 0.946 0.933 0.943
SE 0.022 0.023 0.020 0.020 0.023 0.020 0.020 0.021 0.020

SSIM

Table 6.3: Comparing NW c and NW cpwith the state of the art colour transfer methods
using SSIM metric (Zhou Wang et al., 2004). Red, blue, and green indicate 1st, 2nd, and
3rd best performance respectively in the table (higher values are better, best viewed in
colour and zoomed in).
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Figure 6.7: Comparing NW c and NW cp with the state of the art colour transfer meth-
ods using SSIM metric (Zhou Wang et al., 2004). Detailed quantitative results in Table
6.3 are summarized in a box plot (higher values are better, best viewed in colour and
zoomed in).
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IDT      
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
2020

NW_c   
3x3

NW_cp 
3x3

Gangnam1 0.252 0.040 0.226 0.222 0.048 0.085 0.088 0.115 0.094
Gangnam2 0.268 0.039 0.291 0.292 0.089 0.068 0.109 0.140 0.123
Gangnam3 0.496 0.108 0.472 0.487 0.193 0.261 0.267 0.401 0.297

Illum 0.386 0.390 0.395 0.396 0.397 0.377 0.376 0.405 0.373
Building 0.374 0.228 0.313 0.321 0.249 0.183 0.275 0.344 0.328

Playground 0.440 0.238 0.443 0.471 0.254 0.209 0.221 0.291 0.253
Flower1 0.389 0.163 0.396 0.400 0.174 0.285 0.194 0.264 0.233
Flower2 0.337 0.245 0.322 0.323 0.266 0.218 0.201 0.300 0.250
Tonal1 0.310 0.101 0.285 0.308 0.111 0.097 0.063 0.126 0.105
Tonal2 0.288 0.128 0.351 0.347 0.145 0.099 0.118 0.157 0.129
Tonal3 0.244 0.079 0.294 0.294 0.081 0.077 0.079 0.128 0.107
Tonal4 0.240 0.108 0.248 0.238 0.107 0.065 0.065 0.132 0.091
Tonal5 0.156 0.091 0.205 0.192 0.092 0.051 0.067 0.122 0.094
Mart 0.526 0.219 0.405 0.402 0.225 0.426 0.249 0.252 0.246

Sculpture 0.242 0.137 0.213 0.224 0.143 0.232 0.120 0.221 0.172
Mean 0.330 0.154 0.324 0.328 0.172 0.182 0.166 0.227 0.193
SE 0.027 0.024 0.022 0.023 0.024 0.031 0.025 0.027 0.025

CID

Table 6.4: Comparing NW c and NW cpwith the state of the art colour transfer methods
using CID metric (Preiss et al., 2014). Red, blue, and green indicate 1st, 2nd, and 3rd

best performance respectively in the table (lower values are better, best viewed in
colour and zoomed in).
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Figure 6.8: Comparing NW c and NW cp with the state of the art colour transfer meth-
ods using CID metric (Preiss et al., 2014). Detailed quantitative results in Table 6.4 are
summarized in a box plot (lower values are better, best viewed in colour and zoomed
in).
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IDT     
2007

PMLS 
2014

GPS/LCP 
2018

FGPS/LCP 
2018

L2       
2019

PCT_OT 
2019

OT_NW 
2020

NW_c   
3x3

NW_cp 
3x3

Gangnam1 0.936 0.986 0.944 0.943 0.985 0.972 0.979 0.967 0.975
Gangnam2 0.952 0.992 0.962 0.962 0.988 0.990 0.986 0.977 0.982
Gangnam3 0.946 0.992 0.962 0.961 0.990 0.987 0.982 0.972 0.980

Illum 0.800 0.819 0.824 0.824 0.818 0.839 0.844 0.819 0.828
Building 0.874 0.928 0.930 0.929 0.926 0.942 0.937 0.926 0.928

Playground 0.950 0.958 0.933 0.932 0.955 0.956 0.960 0.957 0.956
Flower1 0.954 0.975 0.968 0.967 0.976 0.971 0.977 0.974 0.975
Flower2 0.941 0.950 0.945 0.945 0.949 0.954 0.956 0.949 0.950
Tonal1 0.964 0.997 0.986 0.986 0.997 0.998 0.997 0.996 0.996
Tonal2 0.984 0.993 0.973 0.973 0.992 0.993 0.992 0.991 0.993
Tonal3 0.979 0.997 0.984 0.983 0.997 0.997 0.995 0.992 0.993
Tonal4 0.966 0.989 0.972 0.973 0.990 0.995 0.994 0.990 0.993
Tonal5 0.980 0.994 0.987 0.987 0.993 0.998 0.997 0.993 0.995
Mart 0.946 0.969 0.960 0.959 0.967 0.969 0.970 0.968 0.971

Sculpture 0.980 0.987 0.982 0.980 0.988 0.988 0.987 0.984 0.986
Mean 0.943 0.968 0.954 0.954 0.967 0.970 0.970 0.964 0.967
SE 0.012 0.012 0.010 0.010 0.012 0.010 0.010 0.011 0.011

FSIMc

Table 6.5: Comparing NW c and NW cpwith the state of the art colour transfer methods
using FSIMc metric (Zhang et al., 2011). Red, blue, and green indicate 1st, 2nd, and 3rd

best performance respectively in the table (higher values are better, best viewed in
colour and zoomed in).
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Figure 6.9: Comparing NW c and NW cp with the state of the art colour transfer meth-
ods using FSIMc metric (Zhang et al., 2011). Detailed quantitative results in Table
6.5 are summarized in a box plot (higher values are better, best viewed in colour and
zoomed in).
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6.4 Conclusion

We have shown how to use the Nadaraya-Watson estimator to adapt OT (the IDT

algorithm) for accounting for input correspondences in matching high dimensional

probability density functions. We conducted extensive quantitative and qualitative ex-

periments and analyses. Our approach outperforms the IDT algorithm and is shown

to be competitive with the leading state of the art of colour transfer in images where

spaces of dimension up to 45 have been used. Future work will look into combining

solution φOT and φNW to tackle semi-supervised situations where correspondences

are only partially available.

Nadaraya-Watson and Optimal Transport, by definition, have no parametric formu-

lation of the solution φOT and φNW , which limits the possibility and flexibility of ap-

plying this transformation to previously unseen values. In this context, Grogan and

Dahyot (2019) proposed a parametric L2-based colour transfer framework that has

been shown to be competitive with alternative Optimal Transport based solutions but

does not scale well in high dimensional spaces due to the increase in computational

complexity associated with the increase of the data dimensionality. In the next chap-

ter, using the 1D iterative projection approach, we extend the L2-based framework to

higher dimensions, where only 1D marginal distributions are used in the estimation

process, which therefore involves low computational costs.
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CHAPTER

SEVEN

SLICED L2 DISTANCE FOR COLOUR

GRADING

7.1 Introduction

Optimal Transport has been successfully used as a way for defining cost functions for

optimization when performing distribution transfer (Peyré and Cuturi, 2019), which

have been used more recently to solve machine learning problems (Tanaka, 2019;

Meng et al., 2019; Muzellec and Cuturi, 2019). Optimal Transport solutions for colour

transfer based on the 1D iterative projection approach have also been proposed, as de-

scribed in Section 2.3.1.2. However, by OT definition, no parametric formulation of the

solution φOT is available. Instead, an estimated correspondences {(xi, φOT (xi))}ni=1

are only produced by the OT mapping, limiting the possibility and flexibility of ap-

plying this transformation to a previously unseen value xi. In order to extend OT

solution to unseen values such as recolouring multiple frames in a video sequence,

Frigo et al. (Frigo et al., 2014) proposed to fit a smooth Thin Plate Spline transfor-

mation to the OT solution for colour transfer and estimate the colour transformation

between target image and a key frame of a video sequence and encode it in a LUT

(LookUp Table) to be applied to all frames in the video sequence.

An alternative framework was first successfully proposed by Jian and Vemuri (2011)

in shape registration context, where the cost function used for inferring a paramet-

ric transfer function is defined as the robust L2 divergence between two probability

density functions. Inspired by the success of the L2 framework, Grogan and Dahyot

(2019) proposed an example based colour transfer approach, whereby a parametric
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transformation function φθ is estimated by minimizing the L2 distance between two

GMMs which capture the colour content of the source and target images. They have

shown that L2 based solution is very competitive with alternative solutions based on

OT for colour transfer. Unlike OT, Grogan and Dahyot’s L2 based formulation is flex-

ible as it allows colour correspondences {(xi, yi)} that may be available to be taken

into account and performs well in the presence of correspondence outliers, while OT

by definition does not take into account any available information about correspon-

dences when computing the optimal solution.

While the L2 based technique solves the problem directly in 2D/3D considering a

smooth parametric non-linear transformation such as TPS (Grogan and Dahyot, 2019;

Jian and Vemuri, 2011), TPS does not scale well in high dimensional spaces due to

the increase in computational complexity associated with the increase of the data di-

mensionality. Hence, this chapter proposes to extend it to higher dimensions and in-

troduce the Sliced L2 Distance based approach that minimizes the robust L2 between

twoN -dimensional distributions using the 1D projection-based approach. L2 with the

projection-based approach has the potential to adapt well in N -dimensional spaces

where N > 3. More specifically, we create high dimensional descriptors including

colour and spatial features as well as neighborhoods structural information and ex-

tend the data space from 3D to higher dimensional spaces. Using the 1D iterative pro-

jection approach in solving the high dimensional problem, only 1D marginal distribu-

tions are used in the estimation process, which therefore involves low computational

costs. We show how to tackle semi-supervised situations where correspondences are

only partially available by combining L2 based solutions using correspondences and

without using correspondences. To show potentials of this mapping, we apply it to

the colour transfer problem between two images that exhibit overlapped scene, and

conduct exhaustive experiments that show quantitative and qualitative competitive

results as compared with the previous state of the art colour transfer methods.

7.2 The Proposed Method

We explain our Sliced L2 Distance (SL2D) for distribution transfer (Algorithm 7) in

Section 7.2.1. It is inspired by the projection-based approach utilized by the IDT (Pitie

et al., 2007) and SWD (Bonneel et al., 2015) algorithms that have been originally pro-
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posed to solve OT in N -dimensional spaces. We modified our pipeline outlined in

Algorithm 5 (Chapter 6) and incorporate SL2D as part of it, which is explained in

Section 7.2.2.

7.2.1 L2 based solution vs Optimal Transport solution in 1D

As we explained in Section 6.2.1, the IDT (Pitie et al., 2007) projects two multidimen-

sional independent datasets {xi}ni=1 and {yj}mj=1 sampled for two random vectors

x ∈ RN and y ∈ RN with respective distributions fx and gy, to 1D subspace (cf.

line 6 in Algorithm 1). This projection creates two 1D datasets {ui}ni=1 and {vj}mj=1

with corresponding marginals fu and gv whose cumulative distributions Fu and Gv

are matched using the 1D optimal transport solution φOT (u) (Eq. (4.2)). We propose

to replace the non-parametric φOT (u) by the L2 derived estimate φL2θ (u) (cf. line 14

& line 20 in Algorithm 7), where the parameters θ that control the mapping function

φL2θ (u) are estimated as follows:

θ̂ = argmin
θ

[
L2(f(u|θ), g(u)) =

∫
f(u|θ)2du− 2

∫
f(u|θ)g(u)du

]
(7.1)

TheL2 framework has only one random variable - denoted by u here since we are solv-

ing the problem in 1D projective spaces - appears explicitly in the modeling Eq. (7.1),

and both the source pdf f and target pdf g are candidate pdfs for the random variable

u ∈ R. Eq. (7.1) proposes a parametric model f(u|θ) for the source distribution where

θ is the parameters of the mapping function φ that minimizes the L2 divergence be-

tween the source and target marginal probability density functions. In the following,

whenever needed, we distinguish the sample that is coming from the source dataset

by us and the sample that is coming from the target dataset by ut. In Section 3.1.3,

we formulated L2 inference (Eq. 7.1) in 1D space. The parametric pdf f(u|θ) repre-

senting the 1D source distribution is modeled as a GMM with parameterised means

{φθ(µsi )}Ki=1, and the pdf g(u) representing the 1D target distribution is modeled as a

GMM with the means {µtj}Kj=1. In colour transfer context, we select the means and

variances differently, and define the parametric transformation model as described in

the following sections.
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7.2.1.1 Computing L2 without using correspondences

In the patch vectors space (see Section 7.2.2.1), we apply the K-means algorithm 1

(following Grogan and Dahyot (2019)) to create the datasets {xsi}Ki=1 and {xtj}Kj=1. Pro-

jecting the resulted datasets on 1D subspace (Algorithm 7 step 12) gives 1D datasets

{usi}Ki=1 and {utj}Kj=1, we set the means of the GMMS as {µsi = usi}Ki=1 and {µtj = utj}Kj=1

for the source and target respectively. Both the source and target GMMs use identical

variance h2. In this case, the term
∫
f(u|θ)2 in Eq. (7.1) is evaluated as follows:

∫
f(u|θ)2du =

1

K2

K∑
i=1

K∑
j=1

N (0, φθ(µ
s
i )− φθ(µsj), 2h2) (7.2)

And the term
∫
f(u|θ)g(u) in Eq. (7.1) is evaluated as follows:

∫
f(u|θ)g(u)du =

1

K2

K∑
i=1

K∑
j=1

N (0, φθ(µ
s
i )− µtj , 2h2) (7.3)

7.2.1.2 Computing L2 with correspondences

Given the 1D patch correspondences {(usi , uti)}
q
i=1, the correspondence means

{µsi , µti}Ki=1 are selected using the binned correspondences procedure which imple-

mented in INWDT (Section 6.2.2.2, Figure 6.4), as follows:

We divide the support of the source points {usi}
q
i=1 into K number of bins (subinter-

vals), and calculate the averages of the source observations falling in each bin {ūsi}Ki=1

as well as calculate the averages of the corresponding target values {ūti}Ki=1. We set

the number of the Gaussians equal to the number of the binned correspondences such

that {(µsi , µti) = (ūsi , ū
t
i)}Ki=1. With the correspondences, the term

∫
f(u|θ)g(u)du (in

Eq. (7.1)) is computed as follows:

∫
f(u|θ)g(u)du =

1

K

K∑
i=1

N (0, φθ(µ
s
i )− µti, 2h2) (7.4)

1Note that using the K-means algorithm is equivalent to using the Expectation Maximization algo-
rithm with constraining the algorithm to provide spherical covariance matrices.
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Figure 7.1: Illustration of both L2 based parametric functions, using correspondences
(φL2

corr
) and without (φL2), compared with the non-parametric Nadaraya-Watson

mapping function (φNW ) that accounts for correspondences and the non-parametric
strictly increasing Optimal transport function (φOT ) that does not take into account
the correspondences.

7.2.1.3 Selecting the bandwidth h:

All Gaussian components share the same bandwidth h. We set a data-driven band-

width value h using Eq. (6.5) (Jian and Vemuri, 2011), where X = {usi}ni=1 is vector of

our 1D projected source dataset, and N = 1 dimensional space.

7.2.1.4 Defining the parametric transformation model φθ:

We consider a parametric non-rigid 1D transformation model decomposed into a lin-

ear part which is modeled by an affine motion in 1D, and a nonlinear part which is

modeled by radial basis functions in 1D, the equation is defined as follows:

φ(u, θ) = c0 + c1x+

r∑
l=1

wl ϕ(‖u− ul‖2) (7.5)

Where θ = {c0, c1, w1, w2, ..., wr} the parameters that control the transformation that

need to be estimated, {ul}rl=1 are the control points, ϕ(‖u− ul‖2) = ‖u− ul‖2 is radial

basis function of linear spline type, with ‖ . ‖2 denoting the Euclidean norm on R. We

experimented with different numbers r of control points and we found r = 125 control
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points on regular intervals spanning the entire range of the 1D projected dataset give

best results. As a consequence the dimension of the latent space that needs to be

explored when estimating θ in this case is:

dim(θ) = (125× 1) + 1 + 1 = 127

with dim(ul) = 1, dim(c0) = 1, and dim(c1) = 1 (Eq. 7.5).

7.2.1.5 Optimization:

In order to estimate the parameters of the transformation φθ in Eq. (7.5) that mini-

mizes the cost function in Eq. (7.1), we used Quasi-Newton method (Shanno, 1970),

which is a gradient-based numerical optimization technique. We computed the an-

alytical derivative of the cost function Eq. (7.1) and passed it to the gradient ascent

algorithm to speed up the optimization (Grogan and Dahyot, 2019; Jian and Vemuri,

2011). As for the implementation specifics, we used the Matlab function (fminunc)

that implements the Quasi-Newton minimization method, which is suitable for our

problem formulation. fminunc function returns a vector that is a local minimizer of

the scalar valued function. In our case, the scalar valued function is our cost function

that returns the L2 distance and the returned vector that gives minimum L2 distance

is our parameters θ = {c0, c1, w1, w2, ..., wr}.

7.2.2 The Pipeline

We follow INWDT (Chapter 6) in constructing high dimensional descriptors, but we

replace INWDT by SL2D in the pipeline in Algorithm 5 (in step 12). For clarity, we

explain the pipeline with SL2D in the following.

7.2.2.1 Patch correspondences

We use the same process explained in Section 6.2.2.1 to create a set of correspond-

ing patches. First, giving the source colour pixels denoted by {xci}ni=1 and the tar-

get colour pixels {ycj}mj=1, we use SIFT flow motion estimation (Liu et al., 2011) to

compute motion flows (explained in Section 5.2.1) and extract the correspondences

{(xci , yci )}ni=1 in RN (for example N = dim(x) = 3 for RGB colour space). Second, we
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concatenate the original pixels’ positions in the grid coordinate of the images with

the colour channels such that {(xi, yi) = ( (xci , x
p
i ) , (yci , y

p
i ) )}ni=1 in RN , where

N = dim(x) = dim(xc) + dim(xp). Next, we normalize the coordinates to lie between

0 and 255, and we encode overlapping neighborhoods of pixels correspondences with

patch size neighborhood d× d to create high dimensional pairs of vectors {(xi, yi)}qi=1

in RN , where N = dim(x) × d × d. We also consider patches containing only colour

information of a pixel neighborhood, i.e., {(xi, yi) = (xci , y
c
i )}ni=1.

7.2.2.2 Sliced L2 Distance Distribution Transfer

Our SL2D algorithm outlined in Algorithm 7 is applied to our set patch correspon-

dences {(xi, yi)}qi=1 (input) to compute recoloured patches {x(∞)
i }qi=1 (output). At

each iteration k, and at each projection r, following the step of projecting the corre-

spondences {(xi, yi)}qi=1 originally in RN space, where N = dim(x) × d × d, to a 1D

subspace creating 1D datasets {(ui, vi)}qi=1 in the projective space, we estimate the pa-

rameters θ without using correspondences using Eq.(7.1) with Eq.(7.3) (cf. step 14 in

Algorithm 7), or by using correspondences using Eq.(7.1) with Eq.(7.4) (cf. step 20 in

Algorithm 7), as explained in Section 7.2.1. Next, we apply the estimated parametric

transformation on every data point in the source patch dataset {ui}qi=1 (cf. step 15 &

step 21 in Algorithm 7) to derive new estimates {φr(ui, θ̂)}qi=1.

Exploring the Convergence: To explore the convergence, the standard L2 distance

between N -dimensional probability distributions (Jian and Vemuri, 2011) is used as a

measure to quantify how well the transformed distribution f matches the target pdf g

after each iteration k of the algorithm (at step 29 in Algorithm 7). We follow the same

process in Section 6.2.2.2 to compute the standard L2 between N -dimensional pdfs.

Figure 7.2 illustrates several iterations k of our algorithm visualized in 2D space, using

correspondences (φL2
corr

) and without correspondences (φL2). As we can see from the

figure, φL2 at iteration 30 is not yet matching the target distribution in comparison to

φL2
corr

that is able to match the target and converge faster by iteration 7.

Interpolation between solutions: We can create new transformations by interpo-

lating in each iteration between the solutions φL2
corr

when taking into account the

correspondences, and φL2 without correspondences to tackle semi-supervised situa-
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tions where correspondences are only partially available (Grogan et al., 2017; Grogan

and Dahyot, 2019). For example, given the L2 derived solution (ĝ1) when using φL2

to transfer the source distribution (f ) into the target distribution (g), and given the

solution (ĝ2) when using φL2
corr

that incorporate the correspondences, we can create

a linear interpolation between the two solutions as follows:

∀ λ ∈ [0, 1], S = (1− λ)ĝ1 + λĝ2 (7.6)

S is the interpolation between the two solutions ĝ1 (obtained at λ=0) and ĝ2(obtained

at λ=1). This solution is useful when we have large non-overlapped areas or occlu-

sions, Figure 7.9 illustrates some examples of this situation.

7.2.2.3 Merge recoloured candidates.

Because the same pixel is present in overlapping patches {x(∞)
i }qi=1, the average colour

value from all the candidates is selected for recolouring the source dataset {xi}ni=1

similar to PCT OT method (Chapter 4), OT NW method (Chapter 5), and INWDT

method (Chapter 6).
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Figure 7.2: Example of pdf of the transferred source patches projected in 2D space
(RG). The patch size chosen is 1 × 1 and only the colour information is used N = 3
(space RGB). The standardL2 distance is computed after each iteration to illustrate the
convergence of the source distribution to the target one by our transfer methods. We
note that φL2 at iteration 30 is not yet matching the target distribution in comparison
to φL2

corr
that is able to match the target and converge faster by iteration 7.
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Algorithm 7: Pseudo-code for Sliced L2 Distance (SL2D)
1: Input: Source and Target datasets with correspondences {(xsi , xti)}

q
i=1 if available,

samples of r.v. x ∈ RN
2: Initialisation: k ← 0 and ∀i, xsi (0) ← xsi
3: if no correspondences taken into account) then
4: Choose K and apply K-means to create source cluster {xsi}Ki=1 and target cluster

{xtj}Kj=1

5: else if Using correspondences then
6: Pass {(xsi , xti)}

q
i=1 to the following steps

7: end if
8: repeat
9: Generate N random unit vectors in RN stored in matrix R = [e1, ..., eN ]

10: for r = 1 to N do
11: if no correspondences then
12: Compute projections ∀ i, j usi

(k) = eTr x
s
i
(k) and utj = eTr x

t
j

13: Set the means as {µsi (k) = usi
(k)}Ki=1 and {µtj = utj)}Kj=1

14: θ̂ ← argmin
θ

[ L2(f(u|θ), g(u))] (Eq. (7.1) with Eq. (7.2) and Eq. (7.3))

15: Compute 1D L2 derived estimates {φr(µsi (k), θ̂)}Ki=1 & source dataset
{φr(usi (k), θ̂)}

16: else if with correspondences then
17: Compute projections ∀ i usi (k) = eTr x

s
i
(k) and uti = eTr x

t
i

18: Choose K bins and create binned correspondences {ūsi , ūti}Ki=1

19: Set the means {(µsi , µti) = (ūsi , ū
t
i)}Ki=1

20: θ̂ ← argmin
θ

[ L2(f(u|θ), g(u))] (Eq. (7.1) with Eq. (7.4))

21: Compute 1D L2 derived estimates {φr(usi (k), θ̂)} for the source dataset
22: end if
23: end for
24: if no correspondences then
25: Update the means {xsi (k+1) ← Φ(µsi

(k)) =
∑D

r=1(φr(µ
s
i
(k), θ̂) er}Ki=1 (Eq. (3.15)

26: end if
27: Update source dataset {xsi (k+1) ← Φ(xsi

(k)) =
∑D

r=1(φr(u
s
i
(k), θ̂)) er}

28: k ← k + 1
29: until convergence L2(f, g)→ 0 (noted k ≡ ∞)
30: Result: The final one-to-one mapping Φ in RN is given by
∀i, { xi} 7→ {Φ(xi)} = {x(∞)

i }
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7.3 Experimental Assessment

We provide extensive quantitative and qualitative evaluations to validate our four

SL2D based solutions: the first without correspondences using colour patches only

annotated in the results as SL2Dc, the second without correspondences using colour

patches with pixel location information annotated as SL2Dcp, the third with corre-

spondences using colour patches only annotated in the results as SL2Dcorrc , and the

fourth with correspondences using colour patches with pixel location information an-

notated as SL2Dcorrcp . We use the evaluation tools presented in Section 4.4.4 which con-

sist of using numerical metrics, summary descriptive statistics, statistical significance

test, and visual analysis. We compare our methods with different state of the art colour

transfer methods noted by B-PMLS (Hwang et al., 2019), L2 (Grogan and Dahyot,

2019), GPS/LCP and FGPS/LCP (Bellavia and Colombo, 2018), PMLS (Hwang et al.,

2014), IDT (Pitie et al., 2007), also we compare them with PCT OT (Chapter 4), OT NW

(Chapter 5) and INWDT (Chapter 6). In these evaluations we use image pairs with sim-

ilar content from an existing dataset provided by Hwang et al. (Hwang et al., 2014).

The dataset includes registered pairs of images (source and target) taken with differ-

ent cameras, different in-camera settings, and different illuminations and recolouring

styles.

Note that the results using PMLS and B-PMLS were provided by the authors Hwang

et al. (2014); Hwang et al. (2019), respectively. We also compared them with two other

recent techniques (Xia et al., 2017; Park et al., 2016) that account for correspondences

into their framework, but PMLS has been shown to outperforms these two (Grogan

and Dahyot, 2019), hence PMLS is the one reported here. We also compared them with

(Bonneel et al., 2016; Ferradans et al., 2013) that do not account for correspondences,

but IDT has been shown to be superior (Grogan and Dahyot, 2019), hence IDT is the

one reported here for ease of comparison.

7.3.1 Colour space and parameters settings

We use the RGB colour space and we found a patch size of 3 × 3 captures enough

of a pixel’s neighbourhood. For our SL2Dcp and SL2Dcorrcp versions, each pixel is

represented by its 3D RGB colour values and its 2D pixel position (i.e 5D). The patches
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with combined colour and spatial features create a vector in 45 dimensions (N = 5 ×

3×3 = 45). For SL2Dc and SL2Dcorrc , pixel position is not accounted for, and only RGB

colours are used, which create patch vectors in 27 dimensions (N = 3× 3× 3 = 27).

7.3.2 Experimental Results

Quantitative evaluation: The numerical results of each metric with means and

standard errors (SE) are shown in Tables 7.3 to 7.6, along with box plots shown in

Figures 7.3 to 7.6, respectively. The purpose of the box plots is to visualize differences

among methods and to show how close our method is to the state of the art algo-

rithms. By looking at the tables (Tables 7.3 to 7.6), with all metrics we can see that

Sliced L2 with correspondences (SL2Dcorrc and SL2Dcorrcp ) significantly outperforms

the Sliced L2 solutions without correspondences (SL2Dc and SL2Dcp), and this can be

clearly visualized in the box plots. Also, in all the metrics results, we find that incor-

porating colour and spatial information (SL2Dcorrcp ) improves the performance over

using colour space only (SL2Dcorrc ), this can be visualized in the box plots. More-

over, all metrics results in the tables show that the iterative projection approach with

L2 solutions that accounts for correspondences (colour only SL2Dcorrc and combined

colour and position SL2Dcorrcp ) outperform the iterative projection approach with OT

solution (IDT algorithm). Both solutions (SL2Dcorrc and SL2Dcorrcp ) aim to extend the

Grogan and Dahyot’s full L2 solution annotated in the results by L2 (Grogan and

Dahyot, 2019) to higher dimensions (note that we report here the correspondences

based L2 solution as reported in (Grogan and Dahyot, 2019) to be a superior to the

solution that does not account for correspondences), and when comparing their per-

formances with L2, we find that by looking at the tables (Tables 7.3 to 7.6), all metrics

show that the Sliced L2 approach which solves the high dimensional problem (up to

27 and 45 dimensions) outperforms L2 (which is limited to 3D space) in some cases,

and provide similar performance in other cases. However, by looking at the summary

statistics (the box plots) we see that both solutions SL2Dcorrc and SL2Dcorrcp and L2

solution (Grogan and Dahyot, 2019) and also the rest of the best performances from

the sate of the art, namely, B-PMLS (Hwang et al., 2019), PMLS (Hwang et al., 2014),

also OT NW (Chapter 5) and INWDT (Chapter 6) all greatly overlap with each other, the

median and mean values (the means shown as red dots in the plots, and the medi-

ans shown as horizontal black lines) are very close in value, and this indicates similar
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Metrics P-values

PSNR 0.954

SSIM 0.8662

CID 0.379

FSIMc 0.9934

Table 7.1: This table shows the results of Kruskal-Wallis Rank Sum statistical test
for each metric separately. The test tests if there are significant differences between
SL2Dcorrc and SL2Dcorrcp results and the top performance methods, namely, B-PMLS,
L2, PMLS, OT NW and INWDT. With 95% confidence level, the P-values for all metrics
are greater than the significance level α = 0.05, which indicate that there is no signifi-
cant difference between the aforementioned methods.

performances. We run the statistical significance analysis (Kruskal-Wallis Rank Sum

test) to see if there is significant differences between the methods that greatly overlap

in the box plots, namely, B-PMLS, L2, PMLS, OT NW, INWDT, SL2Dcorrc and SL2Dcorrcp .

For each individual metric results, the Kruskal-Wallis Rank Sum test compares the re-

sulting medians of the methods. The null hypothesis Ho states that all medians of the

methods distributions are equal, the alternative hypothesis H1 states that at least one

median is different. The confidence level = 95%, and the significance level α = 0.05.

If the resulting P-value < α, the null hypothesis is rejected and alternative hypothesis

is accepted. We found that with 95% confidence level, the P-values for all metrics are

greater than the significance level α = 0.05, which indicate that there is no significant

difference between the aforementioned methods, Table 7.1.

Qualitative Evaluation: Figure 7.7 and Figure 7.8 provide qualitative results. For

clarity, the results in Figure 7.8 are presented in image mosaics, created by switch-

ing between the target image and the transformed source image column wise. If the

colour transfer is accurate, the resulting mosaic should look like a single image (ig-

noring the small motion displacement between source and target images), otherwise

colour column differences appear. Figure 7.8 shows that SL2Dcorrc and SL2Dcorrcp that

accounts for correspondences are successful in alleviating colour column differences

compared with the other two versions SL2Dc and SL2Dcp that do not account for

correspondences. Moreover, Figure 7.8 shows that SL2Dcorrc and SL2Dcorrcp are more

successful in alleviating the column differences than the full L2 (cf. Figure 7.8 in ex-

amples ”building” and ”Tonal 4”), but OT NW (Chapter 5) is still the best in eliminating
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the colour column differences competing with B-PMLS.

Figure 7.7 shows more qualitative results. All sliced L2 distance solutions are robust

to registration errors and do not introduce visual artifacts, unlike PMLS and B-PMLS

which produce those artifacts although they provide the two top scores in terms of

the numerical metrics (Tables 7.3 to 7.6). Moreover, all sliced L2 distance solutions can

transfer colours between images that contain significant spatial differences and elimi-

nate the shadow artifacts unlike PCT OT (cf. Figure 7.7 with examples ”building”, ”il-

lum”, ”mart”). Also, we found that indeed the results of SL2Dcorrc and SL2Dcorrcp that

accounts for correspondences are very similar, visually, to INWDT method (Chapter 6),

they are all smooth functions and accounts for correspondences (Figure 7.1 shows the

mappings φNW and φL2
corr

in 1D). All sliced L2 distance solutions can create a smooth

colour transfer results, even smoother than the full L2 (Grogan and Dahyot, 2019), and

can also alleviate JPEG compression artifacts and noise (cf. Figure 7.7 for comparison).

We further show experimental results in Figure 7.9, where we interpolate (with λ =

0.2) between our solutions SL2Dcorrcp which accounts for correspondences and SL2Dcp

which does not account for correspondences and we apply the colour transfer be-

tween images with severe scene changes. These images exhibit large non-overlapped

areas where there are no correspondences. We compare our results with state of the

art methods B-PMLS and also (HaCohen et al., 2011) that uses Non-Rigid Dense Cor-

respondence (NRDC) which has shown effective results in finding dense correspon-

dence between partially overlapped images. As we can see from the figure, incorpo-

rating the correspondences lead to reasonable results (cf. Figure 7.9 last column).

Time Complexity: Here we detail the time complexity of our algorithms for com-

parison. The 1D iterative projection approach involves iterative projection of dataset

values originally in high dimensional space to a 1D subspaces and solve 1D trans-

formation functions and then propagate the solution back to the original space. This

operation is repeated with different directions in 1D space until convergence. The 1D

transformation problems are independent of each other; hence the process is suitable

for parallel computation and can be run independently for each pixel.

When we use the 1D transformation function as OT in the form of CDF-matching, the

algorithm takes O(k) where k is the number of the algorithm’s iterations. When we

use the 1D transformation function as OT in the form of quantile-matching, the algo-
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Optimal Transport Nadaraya-Watson L2 Inference

CDF-matching O(k)
O(k) O(rk)

Quantile-matching O(n log(n)k)

Table 7.2: Time complexity: when we use the 1D transformation function as Optimal
Transport (Chapter 4 and Chapter 5), when we use the 1D transformation function
as Nadaraya-Watson estimator (Chapter 6) and when we use the 1D transformation
function based on the L2 framework (Chapter 7). Where k is the the number of iter-
ations of the algorithm, n is number of samples in the dataset and r is the number of
iterations of the gradient ascent optimization function.

rithm takes O(n log(n)k) where n is the number of the samples in the dataset. When

we use the 1D transformation function as Nadaraya-Watson estimator, the Gaussian

kernel can be computed independently for each pixel hence the algorithm takesO(k).

When we use the 1D transformation function based on the L2 framework, the al-

gorithm takes O(rk) where r is the number of the iterations of the gradient ascent

optimization function, Table 7.2 shows a summary for the time complexity for each

algorithm.

Generally, the actual execution time of an algorithm typically relies on the program-

ming language, the style of implementation, and the hardware resources chosen (Cor-

men et al., 2009). Our approach is similar to neural networks architecture; hence we

can use the same strategy of implementing the neural networks using libraries such

as PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2015) that use GPUs.

However, we are not learning the projections (weights) as neural networks do. We,

in fact, are learning more complex activation functions. Thus, here we only have dis-

cussed the time complexity of algorithms theoretically. The task of optimizing the

implementation specifics using neural network libraries is left for future work.
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Figure 7.3: Comparing our algorithms SL2Dc, SL2Dcp, SL2Dcorrc and SL2Dcorrcp with
the state of the art colour transfer methods using PSNR metric (Salomon, 2004). De-
tailed quantitative results in Table 7.3 are summarized in a box plot (higher values are
better, best viewed in colour and zoomed in).
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Figure 7.4: Comparing SL2Dc, SL2Dcp, SL2Dcorrc and SL2Dcorrcp with the state of the
art colour transfer methods using SSIM metric (Zhou Wang et al., 2004). Detailed
quantitative results in Table 7.4 are summarized in a box plot (higher values are better,
best viewed in colour and zoomed in).
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Figure 7.5: Comparing SL2Dc, SL2Dcp, SL2Dcorrc and SL2Dcorrcp with the state of the
art colour transfer methods using CID metric (Preiss et al., 2014). Detailed quantitative
results in Table 7.5 are summarized in a box plot (lower values are better, best viewed
in colour and zoomed in).
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Figure 7.6: Comparing SL2Dc, SL2Dcp, SL2Dcorrc and SL2Dcorrcp with the state of the
art colour transfer methods using FSIMc metric (Zhang et al., 2011). Detailed quanti-
tative results in Table 7.6 are summarized in a box plot (higher values are better, best
viewed in colour and zoomed in).
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Figure 7.7: Visual analysis part 1: a close up look at some of the results generated using
the PMLS (Hwang et al., 2014), B-PMLS (Hwang et al., 2019), L2 (Grogan and Dahyot,
2019), PCT OT (Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6) and our algorithms
using correspondences (SL2Dcorrc and SL2Dcorrcp ) and without using correspondences
(SL2Dc and SL2Dcp) - best viewed in colour and zoomed in.
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Figure 7.8: Visual analysis part 2: a close up look at some of the results generated
using the IDT (Pitie et al., 2007), PMLS (Hwang et al., 2014), GPS/LCP and FGPS/LCP
(Bellavia and Colombo, 2018), B-PMLS (Hwang et al., 2019), L2 (Grogan and Dahyot,
2019), PCT OT (Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6) and our algorithms
using correspondences (SL2Dcorrc and SL2Dcorrcp ) and without using correspondences
(SL2Dc and SL2Dcp) - best viewed in colour and zoomed in.
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Figure 7.9: This figure shows our colour transfer results of interpolating between our
solutions SL2Dcorrcp and SL2Dcp with comparisons to the colour transfer results in
(Hwang et al., 2019; HaCohen et al., 2011).
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7.4 Conclusion

In this chapter, several contributions to colour transfer with L2 distance have been

made. We conducted extensive experiments and analysis that show quantitative and

qualitative competitive results as compared with the leading state of the art methods

of colour transfer. Using the 1D projection approach, we have introduced the Sliced

L2 Distance approach between high dimensional probability density functions, where

only 1D marginal distributions are used in the estimation process, which involves low

computational costs. Unlike IDT, L2 with 1D projection approach allows colour corre-

spondences that may be available to be taken into account. Also, we have shown how

to combine solutions that take advantage of correspondences between the source and

target images (φL2
corr

) and without correspondences (φL2) to tackle semi-supervised

situations where correspondences are only partially available.
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CHAPTER

EIGHT

SUMMARY AND CONCLUSIONS

8.1 Overview

The works undertaken in this thesis aim to contribute to the field of example-based

colour transfer (photometric alignment), which modifies the colour of a source image

using a colour palette of a target image. The colour transfer problem is formulated as

a distribution transfer problem, where the actual probability density function (PDF) of

the target colour samples is transferred to the source colour samples. We constructed

high dimensional image descriptors by fusing different information such as spatial

information and colour information and encoding pixel neighborhood information

to guide the transfer process. We investigated solving the high-dimensional distribu-

tion transfer problem using the 1D iterative projection approach, using three statistical

methods: Optimal Transport, L2 inference, and Nadaraya–Watson estimator. Accord-

ing to the 1D iterative projection approach only 1D marginal distributions are used

in the estimation process, which involves low computational costs. The extensive

experiments and analysis conducted in this thesis show quantitative and qualitative

competitive results as compared with the leading state of the art methods of colour

transfer. An overview of the work contributions achieved and the potential avenues

that could be explored for future work are summarized as follows.

8.2 Summary of Contributions

We have proposed in this thesis methods for solving colour transfer problems that

demonstrate three advantages: scalability to high-dimensional spaces, reduction of

141



computational costs, suitability for parallel optimization and providing competitive

results as compared with the leading state of the art colour transfer methods. We now

list the main contributions made in our work.

8.2.1 Patch-based Colour Transfer with Optimal Transport

Popular Optimal Transport solutions for colour transfer have been proposed by many

researchers as described in Chapter 2. However, as the Optimal Transport process is

performed in the colour space, it does not consider that coherent colours should be

transferred to neighboring pixels, which can create results with blocky artifacts em-

phasizing JPEG compression blocks or increasing noise. To tackle this problem, we

investigated the use of neighborhoods of pixels (patches) with Optimal Transport al-

gorithm in high dimensional space in order to preserve local topology and transfer

coherent colours to neighboring pixels, taking into account both pixels colour and

spatial information. Using the 1D iterative projection approach, we solved the high

dimensional distribution transfer problem in 1D subspaces using Optimal Transport

transfer function, where only 1D marginal distributions are used in the estimation

process, thus requiring low computational costs. The high dimensional construction

improved the pixel descriptors in the 1D subspaces and compensated for the loss of

the original dimensional space structure. This original formulation implies a new re-

construction step since each recoloured pixel benefits from the contribution of several

estimated candidates, due to the overlapped patches, using an averaging solution that

allows denoising and artifact removal as well as colour transfer. Our method’s per-

formance outperforms the IDT and SWD algorithms which use Optimal Transport in

colour space only. Moreover, extensive experiments and analysis show quantitative

and qualitative improvements over other state of the art colour transfer methods.

8.2.2 Optimal Transport with SIFT Flow

Optimal Transport solves the transfer problem with minimum cost but, by definition,

does not take into account any available information about correspondences when

computing the optimal solution, while the ability of taking advantage of the available

correspondences would guide the transfer process and improve the results. To tackle

this problem, we proposed to estimate motions flow between images using motion es-
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timation (SIFT flow approach (Liu et al., 2011)) and incorporate the spatial correspon-

dence information in the encoded overlapping neighborhoods of pixels. This new

formulation makes OT implicitly take into account correspondences to guide the esti-

mation process. Also, we introduced smoothing as part of the iterative algorithms for

solving optimal transport, namely Iterative Distribution Transport (IDT) and its vari-

ant, the Sliced Wasserstein Distance (SWD). The algorithm allows denoising, shadow

artifact removal, smoother colour transfer as well as improving the results over our

formulation summarized in Section 8.2.1.

8.2.3 Application of Non-parametric Kernel Regression to the Colour

Transfer Problem

Optimal Transport by definition does not take into account any available information

about the correspondences when computing the mapping and it is not smooth. Hence,

we investigated colour transfer with the non-parametric Nadaraya-Watson that ex-

plicitly accounts for input correspondences in matching high-dimensional probability

density functions. The high-dimensional PDF transfer problem is tackled using the

1D iterative projection approach, where only 1D datasets are used in the Nadaraya-

Watson estimation process, which therefore involves low computational costs. The

algorithm significantly outperforms the Optimal Transport variant that does not ac-

count for correspondences. Extensive quantitative and qualitative experiments show

competitive results as compared with the leading state of the art of colour transfer in

images where spaces of dimension up to 45 have been used.

8.2.4 Sliced L2 Distance for Colour Transfer

The use of L2 divergence between source and target PDFs to align the distributions

have been successfully used in 2D/3D problem spaces in the field of shape registration

(Jian and Vemuri, 2011) and recently in colour transfer context (Grogan and Dahyot,

2019) but this standard L2 framework is not scalble to high-dimensional problems.

The 1D projection approach motivated us to propose the Sliced L2 Distance which

significantly involves lower computational requirements than the standard L2 dis-

tance. The high-dimensional distributions are iteratively projected to one-dimensional

marginal distributions and the 1D parametric transformation function is estimated by
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minimizing the L2 distance between 1D GMMs representing the source and target

marginal distributions. We investigated how this new formulation performed when

applied to high-dimensional colour transfer problem. We conducted extensive exper-

iments and analysis that show quantitative and qualitative competitive results over

the leading state of the art methods of colour transfer in images where spaces of di-

mension up to 45 have been used.

8.2.5 Conclusions and recommendations across the approaches

While all the approaches report a comparative performance with each other, some

preferences can be taken into account when choosing a particular approach over the

other. Optimal Transport solutions are popular for colour transfer applications. Ex-

tending the Optimal Transport to be a geometry-aware solution by combining colour

and spatial would significantly enhance the results. If there are subtle motion changes

between the source and target images, such as the case of photo retouch styles, then

global image plane coordinates can be used (Chapter 4). If there are large motion

changes between the images, then a motion estimation technique can be used to esti-

mate motions between images, and the estimated spatial correspondence information

can be incorporated with the colour information (Chapter 5). Optimal Transport, by

definition, does not consider any available information about the correspondences;

hence an alternative approach that directly incorporates correspondences in its formu-

lation is the use of Nadaraya-Watson estimator (Chapter 6). Optimal Transport and

Nadaraya-Watson have no parametric formulation of the solution; hence if a para-

metric formulation is needed, then the L2 framework can be used (Chapter 7). With

parallel computing, Optimal Transport (CDF-matching) and Nadaraya-Watson share

the same time complexity of O(k) where k is the number of the algorithm’s iterations,

while the L2 framework has the time complexity of O(rk), which is slower due to the

r number of iterations of the gradient ascent optimization step.
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8.3 Limitations and Future Work

We have proposed global methods which calculate the colour statistics by taking into

account all pixels in the images. However, some inherent limitations have been iden-

tified and possible solutions could be implemented as presented in the following:

• Our experiments show that enhancing the pixel descriptors by incorporating

colour and spatial information improves the performance over using colour

space only. However, when colour transfer performed between images that have

small overlapped areas, one issue may appear such as shadow artifact. To tackle

this situation, one could extract overlapped area and estimate the colour transfer

and extrapolate the solution to non-overlapped areas

• Our experiments show that using motion estimation to find correspondences

can guide the transfer process when there are large motion changes (Chapter 5)

and greatly improve the results. However, the existence of outlier correspon-

dences would affect the estimated colour transfer when the position’s weight w

is set to a high value, and hence artifacts may appear. To tackle this situation, we

experimentally found that setting the position’s weight to not more than w = 10

produces the best visual results, but a possible alternative solution is to use the

motion estimation technique to determine which pixels in the source image have

moved in the target image. With pixels affected by large motion, the position’s

weight would be set to w = 0, making the algorithm account only for colour

based estimation. When pixels move less, the position’s weight w would be set

to higher number, making the algorithm account for colour and position based

estimation.

The results obtained from the work carried out in this thesis suggest to further explore

the following lines of research:

Exploring new optimisation techniques: We proposed Sliced L2 Distance algo-

rithm that performs the optimisation in 1D dimensional spaces which significantly

reduce the computational cost when searching a high dimensional latent space using

a gradient ascent technique. We can further reduce the computational cost by reduc-

ing the number of mixtures in the GMM, a smaller number of Gaussians with differing
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weights and variable variances could instead be used to model the distributions. In

addition, the advantage of the 1D projection approach is that the 1D transformation

problems involved are independent of each other, and are thus readily adapted for

parallel programming; this is therefore a path to be explored for future work.

Applying colour transfer to video sequence: In order to extend the non-

parametric solutions (OT and NW) to unseen values such as recolouring multiple

frames in a video sequence, a smooth Thin Plate Spline transformation could be used

to fit the solution for colour transfer and estimate the colour transformation between

target image and a key frame of a video sequence and encode it in a LUT (LookUp

Table) to be applied to all frames in the video sequence.

Exploring different applications: Point set registration using Gaussian Mixture

Models is a different application than colour transfer but with a similar problem de-

scription whereby a parametric transformation function is estimated by minimizing

the distance between two GMMs which capture the source shape and the target shape.

We have started investigating the registration of point clouds in R2 using the 1D it-

erative projection approach with Optimal Transport, where at each step the problem

solved is shape registration of 1D datasets, and we compared the results with standard

L2 solution for point set registration (Jian and Vemuri, 2011). Our preliminary results

has been published in (Alghamdi et al., 2017). Overall our IDT based algorithms have

a good performance while L2 remains the best. Note that IDTs solve iteratively the

problem in 1D projective spaces with an unconstrained non-parametric transforma-

tion while L2 solves it directly in 2D considering a smooth parametric transformation

(TPS). TPS does not scale well in high dimensional spaces, but IDT approach that con-

sidered 1D projective space has the potential to adapt well in higher dimensions, and

it is also suitable for parallel optimization. Moreover, we extended the 2D problem

space to higher dimensional spaces by encoding neighborhoods of points (called here

super-points) and investigated whether this formulation preserve some topology in-

formation of the original dataset (preliminary results can be found in Appendix B).

Continuing the exploration of the application of the 1D projection approach to shape

registration is an interesting direction for future work to assess if a projection approach

to registration can ease efficiently the computational load for registration of datasets

in high dimensional spaces.

146



Future work with Deep learning: Our approach is similar to neural network archi-

tecture. Exploring the iterative 1D projection approach with neural network frame-

work is an interesting direction for future work. For example, as we can see in the

Figure 3.3, the 1D projection approach involves a set of operations repeated through

iterations where each iteration’s output is an input to the next iteration, we can re-

design and describe the algorithm with a single layer of Recurrent Neural Networks

(RNNs) where the output from previous step are fed as input to the current step.

Many researchers have been looking at going beyond rectified linear unit (ReLU) func-

tion and having more complex activation functions (Lauriola et al., 2020; Scardapane

et al., 2019; Ramachandran et al., 2017). Our work could be seen as non-parametric

activation functions modeled as the monotonically non-decreasing Optimal Transport

or as the non-monotonic Nadaraya-Watson kernel regression. Future work will inves-

tigate how our Optimal Transport and Nadaraya-Watson activation functions could

contribute to that space of research in deep learning that can be applied to many ap-

plication domains.
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APPENDIX

ONE

COLOUR TRANSFER

In this Appendix we provide the evaluation dataset (Section A.1) and additional

colour transfer results generated using our proposed colour transfer methods (Sec-

tion A.2), and results of evaluation metrics with and without the extreme outliers for

comparison purposes (Section A.3).

A.1 Dataset

Figure A.1 and Figure A.2 show image pairs with a similar content from a popular

dataset provided by Hwang et al. (Hwang et al., 2014). The dataset includes geo-

metrically registered pairs of images (source and target) that exhibit different colour

change sources that come from different cameras, different in-camera settings, differ-

ent illuminations, and different photo retouch styles.
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Figure A.1: This figure shows part 1 of the evaluation dataset that contains geometri-
cally registered pairs of images (source and target). The flow fields show the motion
changes between the target and source image. The last row shows flow field visual-
ization based on the code in Baker et al. (2007): each pixel denotes a flow vector where
the orientation and magnitude are represented by the hue and saturation of the pixel,
respectively.
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Figure A.2: This figure shows part 2 of the evaluation dataset that contains geometri-
cally registered pairs of images (source and target). The flow fields show the motion
changes between the target and each source image. The last row shows flow field vi-
sualization based on the code in Baker et al. (2007): each pixel denotes a flow vector
where the orientation and magnitude are represented by the hue and saturation of the
pixel, respectively.
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A.2 Additional Colour Transfer Results

This section provides additional results generated using our proposed colour transfer

methods using colour information only and combined colour and spatial information.
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Figure A.7: Results on SAI light fields images. Our method SL2Dcorrcp (Chapter 7)
successfully corrects artifacts such as colour inconsistencies and noise in the selected
outer views images using the centre view image (SAI 0707) as the target image. Our
method also produces smooth results as can be seen in the close-up patches. The flow
fields show the motion changes between the target and each source image. The top
row on the right shows flow field visualization based on the code in Baker et al. (2007):
each pixel denotes a flow vector where the orientation and magnitude are represented
by the hue and saturation of the pixel, respectively.
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A.3 Metrics Comparisons with/without Extreme Outliers

With the metrics SSIM ( cf. Figure A.8 and Figure A.9) and FSIMc ( cf. Figure A.10 and

Figure A.11), having mean values that are located at the edge of the box plots of some

methods is due to having outliers in the results (shown as black dots in the plots).

However, if we removed those outliers, this will not affect our conclusions regarding

the performances.

Figure A.8: Comparing our proposed methods PCT OT (colours and positions
Ours_cp in Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6), SL2Dcorrc and
SL2Dcorrcp (Chapter 7 with the state of the art colour transfer methods using SSIM
metric (Zhou Wang et al., 2004). In this plot we removed the extreme outliers (higher
values are better, best viewed in colour and zoomed in).
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Figure A.9: Comparing our proposed methods PCT OT (colours and positions
Ours_cp in Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6), SL2Dcorrc and
SL2Dcorrcp (Chapter 7 with the state of the art colour transfer methods using SSIM
metric (Zhou Wang et al., 2004) with the present of outliers (higher values are better,
best viewed in colour and zoomed in).

Figure A.10: Comparing our proposed methods PCT OT (colours and positions
Ours_cp in Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6), SL2Dcorrc and
SL2Dcorrcp (Chapter 7 with the state of the art colour transfer methods using FSIMc
metric (Zhang et al., 2011). In this plot we removed the extreme outliers (higher val-
ues are better, best viewed in colour and zoomed in).
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Figure A.11: Comparing our proposed methods PCT OT (colours and positions
Ours_cp in Chapter 4), OT NW (Chapter 5), INWDT (Chapter 6), SL2Dcorrc and
SL2Dcorrcp (Chapter 7 with the state of the art colour transfer methods using FSIMc
metric (Zhang et al., 2011) with the present of outliers (higher values are better, best
viewed in colour and zoomed in).
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APPENDIX

TWO

SHAPE REGISTRATION:

PRELIMINARY RESULTS

In this appendix we present preliminary results on the investigation of the application

of the iterative 1D projection approach with optimal transport to shape registration.

Section B.1 presents a brief introduction for our published paper ”IDT vs L2 Distance

for Point Set Registration” (Alghamdi et al., 2017), and Section B.2 presents results

on encoding neighborhoods of points in high-dimensional spaces to preserve local

structures.

B.1 Part 1: IDT vs L2 Distance for Point Set Registration

Summary: Registration techniques have many applications such as 3D scans align-

ment, panoramic image mosaic creation or shape matching. We focused on 2D point

cloud registration using novel iterative algorithms that are inspired by the 1D Itera-

tive projection approach implemented in the IDT algorithm, originally proposed to

solve colour transfer (Pitie et al., 2007). We propose three variants to IDT algorithm

that we compare with the standard L2 shape registration technique (Jian and Vemuri,

2011). Overall our IDT based algorithms have a good performance while standard L2

remains the best. Note that IDTs solve iteratively the problem in 1D projective spaces

with an unconstrained non parametric transformation while L2 solves it directly in

2D considering a smooth parametric transformation (TPS). TPS does not scale well in

high dimensional spaces, but IDT approach that considered 1D projective space has

the potential to adapt well in higher dimensions, and it is also suitable for parallel
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optimization. For more information, the interested reader is referred to our published

work in the paper (Alghamdi et al., 2017).

B.2 Part 2: SWD with Superpoints for Point Set Registration

In this section we present preliminary results on encoding neighborhoods of points in

high-dimensional spaces to preserve local structures. In the following, Section B.2.1

presents a summary and conclusion of the work, and Section B.2.2 presents the work

details.

B.2.1 Summary

Context and motivation: In this work we investigate 2D point set registration. We

propose to extend the Sliced Wasserstein Distance algorithm to higher dimensional

spaces by encoding non-overlapping neighborhoods of points (called here super-

points). We investigate whether superpoints reserve some structure information of

the original 2D point set. One motivation to choose Sliced Wasserstein Distance to

extend, is that coding superpoints will decrease the size of the number of data points

dramatically and hence Sliced Wasserstein Distance approach is a proper solution for

this situation as it uses Quantile-matching approach (see Section 2.2.1.3) that does not

employ either histogram or cumulative distribution rather is based on the matching

of two sorted arrays.

Method proposed: Extending Sliced Wasserstein Distance to higher dimensional

spaces by encoding neighborhoods of points for shape registration.

Purpose: To register 2D point clouds of curves in iterative 1D projective spaces.

Dataset: 2D curves extracted from images taken from a dataset1 provided by Lu et

al. Lu et al. (2014).

Results: The proposed method is able to produce perfect alignments for all different

patterns used. The superpoints technique is able to reserve the topology information

1obtained at http://gfx.cs.princeton.edu/pubs/Lu2014DDS
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of the original 2D points. The interpolation technique used to estimate the correspon-

dences for new points in the source points cloud fails with some results by producing

noisy points. The reason for the noisy points is that while the superpoints maintain

neighborhood structure within the points that constitute the superpoints but does not

maintain continuity between superpoints, i.e, the new points in the source dense con-

tour might lie in between old points used in the registration step but these old points

are not adjacent and belong to separate parts of the shape.

B.2.2 Work Details

B.2.2.1 Method proposed

Creating superpoints: Given a 2D point clouds with even size (n), Assuming ran-

dom starting point, we take successive non-overlapping (n2 ) number of points in R2

space in one direction to form a superpoint in RN , such that N = (n2 )× 2. The result is

a data set contains two superpoints, Figure B.1. In case of odd sizes point clouds, the

point cloud could be interpolated to create an even data set size.

Figure B.1: Example of creating super-point set. {Pi}i=1,···,100 are point set in R2 trans-
formed to {vi}i=1,2 super-point set in R100, by taking non-overlapping neighborhoods
of points (best viewed in colour and zoomed in).

Generate orthogonal basis for RN : We generate a random subset S = {ar}r=1,···,N

of the vector space RN as follows Muller (1959):
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ai ∼ N (0, IN ) (B.1)

Where N (0, IN ) is a normal distribution in RN centered on the origin in RN with

covariance matrix equal to the identity matrix in RN . The number of vectors in S

equals the dimensions of the vector space RN . Then we generate the orthonormal

basis R = {er}r=1,···,N for the subset S (using matlab function ”orth”), that is, the ba-

sis vectors are all unit vectors and orthogonal to each other, i.e linearly independent

vectors and hence these basis can be used as orthogonal basis for the vector space RN .

1D projections and accumulated shifts: M = {ui}i=1,···,n (source) and Q =

{vj}j=1,···,m (target) are point clouds in RN to be registered, we generate random set

of orthogonal basis Rk of RN for each iteration k = 0, 1, ...,∞. The gradient descent

step start from the source as initial state M (0). For some step size τ` > 0 each point u

in the source is updated in each iteration as follows:

uk+1 = (1− τk)uk + τk φ(uk) (B.2)

Such that φ(u) transforms data point u using accumulated 1D transformations as fol-

lows:

φ(u) = Rk


φ1(e1

Tu)

φ2(e2
Tu)

...

φN (eN
Tu)

 =

N∑
r=1

φr(er
Tu) er (B.3)

The assumption is that the projections along the axes are independent, and the trans-

fer functions {φr}r=1,···,N model independent transfer functions for projected points

computed in the directions of {er}r=1,···,N .

1D optimal maps φr: The transfer functions {φr}r=1,···,N for the source and target

projected points in the directions of {er}r=1,···,N are computed using a closed form for

optimal transform in 1D, more specifically Quantile-matching, see Section 2.2.1.3.
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B.2.2.2 Experimental results

We present experimental results on the application of the Sliced Wasserstein distance

algorithm combined with superpoints to the registration of 2D curves extracted from

images taken from a dataset provided by Lu et al. Lu et al. (2014). All experiments

were performed using MATLAB R2017a on a PC with 16 GB of RAM and an Intel Core

i7-6700HQ (2.60 GHz) CPU. The goal of the point set registration is to align the source

shape onto the target shape.

Figure B.2 Shows results of the curves registration. Seven different images were se-

lected that represent different patterns to test the registration performance. The first

column is the source cloud points and the second column is the target cloud points

and the third column is the results of the registration. For a given pair of source and

target shape we extract dense boundary contours (cf. Figure B.2, the black shapes

in row 1,3,5,7,9,11,13) and then we extract sample points at equal interval along the

boundary contours (cf. Figure B.2, row 2,4,6,8,10,12,14).

For clarity we show points that constitute each superpoints with different colour ( blue

and red ) in the plots, Figure B.2. Please note in the plots we show the connection be-

tween the points within each superpoint by plotting a thin line from the start point

to the end point within the superpoint so we can track the connected points after the

mapping. The goal of encoding superpoints is to investigate whether this formula-

tion reserve some topology information of the original 2D points before projecting the

samples onto 1D subspaces, i.e answering questions such as do the connected points

stay adjacent after the mapping or are they mapped to different places? do they stay

in the same order?. Table B.1 shows the size and dimensionality of the point clouds

after grouping the points for all curves used for registration.

With the resulted correspondences from the registration step, we compute the corre-

spondence for the rest of the points in the dense contours by interpolating the points

using inverse distance weighted (IDW) average Shepard (1968) of the values of the

nearest two points along the contour, to transform the model dense contour into the

target pattern (cf. Figure B.2 column 3 row 1,3,5,7,9,11,13).

From the results shown in Figure B.2, we observe that the proposed method is able

to produce perfect alignments for all different patterns used. We can observe the con-

nected points in blue and red colour where they are mapped after the registration in
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Original point set Transformed point set

Curve # Number of points RN Number of points RN

Curve 1 200 R2 2 R200

Curve 2 200 R2 2 R200

Curve 3 800 R2 2 R800

Curve 4 200 R2 2 R200

Curve 5 200 R2 2 R200

Curve 6 800 R2 2 R800

Curve 7 800 R2 2 R800

Table B.1: Sizes of the points clouds and dimensionality for all the curves used for
registration.

Figure B.2, column 3 row 2,4,6,8,10,12,14. We can see that the connected points stay

adjacent and in the same order after the registration, hence we can conclude that the

superpoints technique reserve the topology information of the original 2D points.

The interpolation technique used to estimate the correspondences for new points in

the source points cloud produces correct estimation with some patterns like curve 1

and 2 in column 3 row 1 and 3, and degrades in performance by producing noisy

points with other patterns like curve 4 and 5, column 3 row 7 and 9. The reason for

the noisy points shown in the curves is that the superpoints maintain neighborhood

structure within the points that constitute the superpoints but does not maintain con-

tinuity between superpoints, i.e, the new points in the source dense contour might lie

in between old points used in the registration step but these old points are not adjacent

and belong to separate parts of the shape.

The transformations being estimated are non-parametric optimal transport. We can

create new transformations by interpolating between solutions. For example, given

optimal transport solution (Q̂1) when registering a model pattern (M ) to a target pat-

tern (Q1), we can create a linear interpolation between the two patterns as follows:

∀ t ∈ [0, 1], S = (1− t)M + tQ̂1 (B.4)

S is the interpolation between the two patterns M (obtained at t=0) and Q̂1 (obtained

at t=1). Given a second optimal transport solution (Q̂2) when registering a model
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Model SOTTarget

Curve 1

Curve 2

Curve 3

Curve 4

Curve 5

Curve 6

Curve 7

Figure B.2: Results of the curves registration using Sliced optimal transport
with super-points. Row 1,3,5,7,9,11,13 represent dense boundary contours. Row
2,4,6,8,10,12,14 represent sampled point clouds. The sampled point clouds used to reg-
ister the source to the target. Inverse distance weighting interpolation used to transfer
the dense contour into the target using the correspondence resulted from registering
step (best viewed in colour and zoomed in).
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𝐌 (1,0,0)

 𝐐𝟐 (0,0,1) 𝐐𝟏 (0,1,0)

𝐒𝟏 (0.75,0.25,0)

𝐒𝟐 (0.50,0.50,0)

𝐒𝟑 (0.25,0.75,0)

𝐒𝟗 (0.75,0,0.25)

𝐒𝟖 (0.50,0,0.50)

𝐒𝟕 (0.25,0,0.75)

𝐒𝟒(0,0.75,0.25) 𝐒𝟓(0,50,0.50) 𝐒𝟔(0,0.25,0.75)

𝐒𝟏𝟐 (0.25,0.25,0.50)𝐒𝟏𝟏 (0.25,0.50,0.25)

𝐒𝟏𝟎 (0.50,0.25,0.25)

Figure B.3: Pyramid shows the weights used to interpolate curves registered using
sliced optimal transport with super-points. Every circle in the figure represent the
corresponding curve with the associated weights. Red circle represent the the source
M and green circles represent the resulted registered curves Q̂1 and Q̂2 and blue circle
Si represent the interpolated curves between them. The associated weights (t1, t2, t3)
represent the weights of M , Q̂1 and Q̂2 respectively.

pattern (M ) to a target pattern (Q2), we can create a linear interpolation between the

three patterns M , Q̂1 and Q̂2 as follows:

∀ t1, t2 ∈ [0, 1], t3 = 1− (t1 + t2), S = t1M + t2Q̂1 + t3Q̂2 (B.5)

Figure B.3 shows the weights used to interpolate each curve, such that (t1, t2, t3) rep-

resent the weights of M , Q̂1 and Q̂2 respectively. The pyramids in Figure B.4 display

samples of curves generated by interpolating between the estimated transformations.
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Target 1 Target 2 Target 1 Target 2

Target 1 Target 2Target 1 Target 2

Target 1 Target 2

Figure B.4: Curve registration and interpolation results generated using Optimal
transfer with super-points. The shape in red square is the source, the shapes in green
squares are the resulted registered shapes and shapes in blue squares are the targets
(best viewed in colour and zoomed in).
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