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Abstract 

 

Global economic growth since the Industrial Revolution has been facilitated, in large part, 

by the increased use of natural resources as energy in the production process. This has 

revolutionised how society functions. Historical energy use has accelerated climate change, 

which has dire implications for future economies, environments and ecosystems. 

Governments have attempted to enact policies that attempt to avoid this crisis, by seeking to 

lower energy use, increase renewable energy generation and by improving energy efficiency.  

 

Research has noted significant variation in the effectiveness of energy efficiency policies. It 

has noted several market-based and behavioural factors that help to explain the energy use 

of consumers and firms. The central concept of many energy efficiency policies is to reach 

the socially optimal solution that considers the externality associated with energy use. 

 

This thesis studies the effectiveness of energy efficiency policies in the residential sector and 

the benefits of energy efficiency for data centres. The former is important due to the 

ambitious plans to decarbonise the residential sector. The latter topic is relevant due to the 

rapid and under-researched evolution of new, large scale industry that has the potential to 

compromise national efforts towards combating climate change. 
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Summary 

This thesis explores four distinct questions related to the adoption and effectiveness of 

energy efficiency. This work features an empirical focus and applies a range of econometric 

tools to investigate each research question. The choice of research questions considers 

energy efficiency through the distinct lenses of the residential sector and commercial data 

centres. This dual perspective is important as homeowners and firms face unique challenges 

and warrant attention, with no silver bullet that represents a solution for all markets. Table I 

summarises the four papers in this thesis and details the research questions, method and the 

author’s contribution. 

 

Chapter 1 introduces the dissertation, including a high-level background to the research and 

a preview of the specific research questions explored in this dissertation. It discusses the 

critical role of energy use in historical economic development, how this activity has 

contributed to the urgent issue of climate change and how energy efficiency may represent 

a pathway to reducing emissions without compromising on economic output. 

 

Chapter 2 presents the first article of the dissertation and examines the critical role of 

Energy Performance Certificates (EPC) in guiding residential energy efficiency policy and 

tests the extent to which they accurately reflect occupant energy use behaviour. It uses a 

unique dataset that merges metered electricity and gas use data and EPC information for a 

general housing sample over multiple years. It performs a range of regression techniques to 

investigate differences in actual and theoretical energy use and to understand influential 

drivers of differences.  

 

The results of this paper indicate that there is a weak relationship between a dwellings EPC 

and occupant energy use. There is evidence of an Energy Performance Gap, with an average 

deficit of actual energy use between 8-17% below the adjusted EPC level. It highlights 

significant heterogeneity in the size of the Energy Performance Gap across dwellings. 

Individuals in the lowest efficiency dwellings feature an average difference ranging from -

15% to -56% of the relevant EPC. Conversely, individuals in the most efficient dwellings 

display higher-than-theoretical energy use, with average differences ranging from 39% to 

54% of the relevant EPC. This sounds a note of caution for policymakers that expect a 

theoretical EPC to translate to energy savings. This paper has been presented at multiple 

conferences and is currently under review (R&R) in Energy Efficiency. 
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Chapter 3 presents the second paper of the dissertation and investigates the effectiveness of 

a national subsidy towards domestic energy efficiency measures. It uses a unique dataset that 

merges metered electricity and gas use data with retrofit and EPC information for a general 

housing sample over multiple years. A novel contribution is the ability to study behavioural 

whole-home energy use for households that received a subsidised improvement before the 

observation period. It applies fixed effects linear regression to account for household- and 

time-related heterogeneity.  

 

Results show that retrofits reduce energy use by 943 kWh/year, on average, after accounting 

for customer- and period-related heterogeneity. However, the magnitude of this effect varies 

depending on the measures received, with some leading to higher energy use post-retrofit. 

Additional results suggest that retrofits offer better value for money when measured by 

actual changes in energy use, instead of a measure based on the change in EPC. Although 

retrofit subsidies may be a productive policy lever, this paper suggests it may lead to 

unintended consequences, such as an outcome where households avail of the subsidy to 

purchase an energy efficiency technology that they intended to purchase in the absence of 

any subsidy. This undermines the intention of such subsidies. This paper has been presented 

at an international conference and is currently under review in Energy Policy. 

 

Chapter 4 presents the third paper and focuses on the significant energy use within the 

commercial data centre sector and quantifies the scope for improving energy efficiency. A 

key contribution of this chapter is the development of a technology-agnostic model of 

technology diffusion to aid decision making under uncertainty where public data are limited. 

This is particularly important given the degree to which information asymmetry is pervasive 

in many sectors and can often hinder the adoption of energy efficiency. Results show that 

technology adoption could lower national electricity demand by between 0.81% to 3.16% 

by 2028, depending on whether the technology could be adopted by data centres that are 

already operational. This paper has been presented at multiple conferences and is currently 

under review in the Journal of Cleaner Production. 
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Chapter 5 presents the fourth and final paper, which quantifies the key economic benefit in 

terms of energy use for a commercially available large-scale energy efficiency technology 

that converts renewable electricity into cooling supply for data centres while also providing 

hot water supply. This chapter represents an example of technology has suffered from a lack 

of adoption as it provides multiple benefits to private and public stakeholders.  

 

It combines a unique dataset of information on data centre capacity with technical parameters 

of the technology to develop market-level forecasts. The public benefits of technology 

adoption are quantified using a power systems model of the national transmission system. 

Results illustrate the potential for energy efficiency to deliver real energy savings at the firm 

and national levels, contingent on technology adoption.  

 

Results find that technology adoption could lower sectoral energy use by 26% and supply 

12.40 TWh of hot water for use in a 4th Generation district heating network in Ireland over 

the 2019-2028 period. A 2030 power systems analysis suggests that adoption can reduce 

renewable electricity capacity requirements by 6.92% and lower system-wide emissions by 

3%. Results highlight the potential for technology adoption to enhance sector coupling and 

deliver benefits in multiple sectors. This paper co-authored with Dr. Desta Fitiwi of the ESRI 

is currently under review in the Journal of Cleaner Production. 

 

Chapter 6 concludes the dissertation and frames the research within the broader context of 

energy efficiency. Limitations of the research are highlighted and potential areas for future 

research are detailed. 
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Chapter 1: Introduction 
 

1.1 Energy and the global economy 

Energy use has influenced the global economy for centuries. At a fundamental level, Ayres 

& Kneese (1969) note that all economic activity is constrained by the laws of 

thermodynamics and the conversion of matter. On this matter, Stern (1997) asserts that 

energy is an essential factor of production, where any sort of output involves work by a 

factor of production. Malthus (1798) characterised the pre-industrial economy as a difficult 

balance between achieving simultaneous population and agricultural output growth. Wrigley 

(1990) noted that the Industrial Revolution was fuelled, in part, by fossil fuel use that relaxed 

constraints on energy supply and spurred economic growth.  

 

Following this period, there was a profound shift in the global economy. McNeill (2000) 

notes how the Industrial Revolution helped facilitate a doubling of population in Africa, Asia 

and Europa and a five-fold increase in the Americas, Australia and Oceania from 1850-1950. 

More recent work by Dalgaard & Strulik (2007) prove a link between energy supply and 

long term growth in technological progress. In particular, the influential role of coal in global 

economic development during the period 1800-1970 is established by Froeling (2011). 

 

Through this lens, the classical Malthusian Trap was overcome due in part to the extraction 

of natural resources and its conversion into energy for use in the production process. The use 

of natural resources as energy combined with technological progress ushered in an era of 

unprecedented economic development, helping make more productive workers, better 

learners and to change how individuals interact with the world. 

 

In the twenty-first century, it has become apparent that future generations will pay the price 

for the fossil-based economic growth of recent centuries. The United Nations 

Intergovernmental Panel on Climate Change states that “human activities are estimated to 

have caused approximately 1.0°C of global warming above pre-industrial levels … Global 

warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase at the 

current rate” (UN-IPCC 2018). In one example, a spatial macroeconomic analysis of the 

future impact of climate change suggests that global GDP would fall by 0.26% through 

changes in the ten most popular crops alone (Costinot et al. 2016).  
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Through an economic lens, Stern (2008) noted that “greenhouse gas emissions are 

externalities and represent the biggest market failure the world has seen”. In particular, it has 

been noted that economic activity since the industrial revolution did not bear the full cost of 

production because firms did not internalise the social costs associated with air and water 

pollution (Andrew 2008; N. Stern 2006). Climate change has the unique combination of 

global causes and consequences that are long-term, persistent and uncertain (N. Stern 2006).  

 

A global problem requires a global solution. Every country (with some notable abstentions) 

has agreed to strive to limit global temperature increase to two degrees Celsius (United 

Nations 2015). The European Union has been progressive in this area, with member-specific 

targets to increase energy generation from renewable sources, reduce emissions and increase 

energy efficiency by the year 2030 (European Commission 2018) on the pathway to a net-

zero carbon economy by 2050 (European Commission 2019a). 2030 climate targets include 

i) sourcing 32% of the energy mix from renewable sources, ii) reducing GHG emissions by 

40% from 1990 levels and iii) a 32.5% improvement in energy efficiency, relative to a 2007 

forecast (European Parliament 2018). Technologies that improve energy efficiency typically 

serve a dual purpose by enabling a transition towards a low-carbon economy. 

 

This thesis explores four distinct questions related to the effectiveness of selected energy 

efficiency technologies and policies. Understanding their potential is critical to understand 

how energy efficiency can improve societal welfare and help to combat climate change. 

Specifically, it studies the accuracy of policy tools designed to increase awareness of 

residential energy efficiency (Chapter 2), the adoption of residential energy efficiency 

technologies through a subsidised retrofit scheme (Chapter 3), the scope to improve 

commercial data centre energy efficiency under uncertainty (Chapter 4) and the potential for 

commercially-ready technology to improve data centre energy efficiency while supporting 

decarbonisation efforts in the electricity and heating sectors (Chapter 5).  

 

This work is motivated, in large part, by the substantial efforts of governments, firms and 

consumers to lower their energy demand while also maintaining a high standard of living. It 

identifies policies and technologies that are effective, highlights areas for improvement and 

details the potential of emerging technologies and industries that could play a key role in 

decarbonising the economy.  
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1.2 Energy efficiency - Doing more with less 

Improvements in energy efficiency and its widespread adoption could help to decouple 

economic growth from energy use. It is a good example of the type of endogenous long-run 

economic growth discussed by Romer (1990), where technological innovations provide 

spill-over effects to society. With the lives of future generations at risk, energy efficiency 

serves a vital public good.  

 

Analysts are enthusiastic about the potential of energy efficiency. McKinsey (2010) assert 

that energy efficiency represents about 40 percent of the potential to reduce global 

greenhouse gas (GHG) emissions at a cost of less than €60 per metric tonne of carbon dioxide 

equivalent. In many cases, energy efficient technologies feature a negative net present value 

- paying for itself over time. Jaffe and Stavins (1994a) highlight how energy efficiency is 

often a pathway to reach optimal resource allocation. Like an athlete relegated to the bench, 

it is difficult for energy efficiency to have a real impact if it is not being used. Substantive 

change only occurs when innovations are widely adopted. The International Energy Agency 

assert that energy efficiency has had limited uptake to date due to the ongoing use of less 

efficient technologies, a lack of effective policy and limited investment (IEA 2020).  

 

The Energy Efficiency Gap (Jaffe and Stavins 1994b) represented one of the earliest theories 

explaining why energy efficiency is under-adopted at the societal level. If an energy efficient 

good has a positive net present value, then why is it not adopted by consumers? Subsequent 

research has worked to understand why this occurs, with a variety of evidence across 

contexts. Gerarden et al. (2017) synthesise all of the empirically observed phenomena and 

assert that the Energy Efficiency Gap is comprised of market failures (examples include 

principal-agent issues, asymmetric information and liquidity constraints that all limit 

technology adoption), behavioural factors (e.g. salience and inattention) and model 

measurement error (e.g. incorrect assumptions regarding costs, benefits or consumer 

behaviour patterns). Allcott & Greenstone (2012) delve into the latter of these issues by 

theorizing that the size of the Energy Efficiency Gap is overstated due to overly-optimistic 

engineering-based models of savings. This helps to rationalise, in part, why the level of 

technology adoption of energy efficiency lags behind a social optimum.  
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Jaffe and Stavins (1994b) highlight the important role of public policy in helping to spur the 

adoption of energy efficiency. Such government intervention is commonly observed in the 

residential sector. Examples include subsidies towards adoption of energy efficient 

technologies (Fowlie et al. 2018), carbon taxes levied on the purchase of certain fuels (Lin 

and Li 2011), taxes on energy bills to aid development of renewable energy generation 

(Lynch and Devine 2019) and the deployment of smart home metering to improve residential 

demand side management  (Di Cosmo et al. 2014).  

 

Evidence from the residential sector on the effectiveness of such energy efficiency policies 

is situation-specific and mixed (Allcott and Greenstone 2012). Recent examples highlight 

the unintended outcomes of certain policies. For example, customers that would have 

upgraded their home heating system without a subsidy, use the subsidy to purchase a larger-

than-necessary system that negated the energy savings of improved energy efficiency 

(Alberini et al. 2016). In other cases, the adoption of energy efficient technology can reduce 

a ‘rebound’ effect, where the lower effective price of heating induces a behavioural response 

in end-users, resulting in increased energy use (Heesen and Madlener 2018; Sorrell et al. 

2009). There is an extensive literature on the ‘rebound’ effect from a variety of contexts, 

where the adoption of energy efficiency causes consumers to change their energy use. 

Estimates of the extent of rebound vary, with a bibliographic review noting an average long-

run rebound of 30% (Sorrell et al. 2009). Rebound effects have the potential to undermine 

the intent of policies that subsidise retrofit (Gerarden et al., 2015), with the context-specific 

nature of rebound making it difficult to correctly formulating energy efficiency policies  

(Aydin et al. 2017). 

 

Although the presence of rebound complicates forecasts of progress towards national energy 

efficiency targets, it is still an intended outcome. Consumers increasing energy use after 

receiving a subsidy is often one of the intentions of a residential energy efficiency policy. 

This is especially the case for socially vulnerable occupants in low-efficiency dwellings that 

traditionally under-heated their homes (Coyne et al. 2018; Fowlie et al. 2018; Sunikka-blank 

and Galvin 2012). As an example, Coyne et al. (2018) find an average 30% shortfall between 

the expected and actual change in energy use for a sample of social housing tenants. This 

emphasises the important role of occupant behaviour in achieving expected energy savings 

and may influence the effectiveness (and motivation) for similar policies in the future. 
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Subsidising energy efficiency presents a pathway for policymakers to improve societal 

wellbeing by improving access to the multiple benefits associated with improving energy 

efficiency. However, it is important for policymakers to understand the responses of end-

users to improvements in energy efficiency, accounting for the Energy Efficiency Gap, 

issues such as rebound (considered in Chapter 3) and differences in actual consumer 

behaviour and theoretical assumptions (considered in Chapter 2) may result in a lack of 

achievement towards EU-level energy efficiency targets. This has wider consequences for 

national efforts to combat climate change and can result in substantial penalties.  

 

The collective body of evidence to date helps to advance our understanding of what policies 

are effective. Helm (2010) sounds an important note of caution on the effectiveness of 

policymakers, noting that although governments attempt to formulate effective climate 

policy, interventions often lead to suboptimal policies. He demonstrates this for the cases of 

economic rent capture in emissions trading schemes. 

 

Through this lens, there is a need for research that attempts to critically evaluate the actual 

benefit of energy efficiency (in terms of changes in energy demand pursuant to national 

targets) and to understand the factors driving its adoption. A failure to understand current 

limitations across the entire built environment (including residential and commercial agents) 

makes it challenging to correctly calibrate prescribe policies that help to fulfil national 

responsibilities to tackle the global issue of climate change. 
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1.3 Thesis motivation and chapter previews 

Chapter 2: Testing the accuracy of residential Energy Performance Certificates 

 

In an effort to draw awareness to energy efficiency and the often invisible nature of energy 

use in buildings, many countries have modelled the expected energy use of buildings 

(European Parliament 2018). In many cases, this has led to the creation of Energy 

Performance Certificates (EPCs), which denote a building’s performance. These labels  are 

often required for property sales and leases (European Commission 2018). Prior studies have 

found evidence of an Energy Performance Gap, with significant differences exists between 

actual energy use and the EPC-predicted level (De Wilde 2014). Evidence into the EPG 

suggests that policies aiming to reach a certain EPC standard may not achieve the expected 

energy savings (Cozza et al. 2020; Gram-Hanssen and Georg 2018; Zou et al. 2018). 

 

This is the first study that tests for the presence of an EPG using a measure of whole-home 

energy use for a non-social housing sample of 9,923 households that do not receive a retrofit. 

The key contribution of this paper is the combination of i) the analysis of whole-home energy 

use, ii) for a non-social housing sample that iii) does not feature behavioural changes that 

would be induced by retrofit. Previous studies have considered one or two of these aspects, 

but this is the first study combines all three to overcome limitations of previous studies 

(Cozza et al. 2020; van den Brom et al. 2018).  

 

The key insight from this study is the striking lack of variation in average actual energy use 

across the sample (457 kWh/year). This suggests that occupant demand for energy may not 

be as responsive to dwelling energy efficiency. Results find evidence of an Energy 

Performance Gap, with an average deficit of between 8-17% below theoretical energy use. 

However, there is significant heterogeneity in the direction of the difference. Houses with 

the lowest energy efficiency feature an average difference ranging from -15% to -56% of the 

relevant EPC. Conversely, the most efficient houses display higher-than-theoretical energy 

use, with average differences ranging from 39% to 54% of the relevant EPC. These results 

highlight the potential for occupant behaviour to undermine the effectiveness of policies that 

expect a theoretical EPC to translate to real savings in energy use. 
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Chapter 3: Evaluating a national residential energy efficiency subsidy scheme using 

whole-home energy use data 

 

One of the most popular policy tools used to improve energy efficiency in buildings is a 

subsidy towards the upgrade of certain dwelling measures (retrofit). Subsidies targeted 

towards the residential sector are warranted since the residential sector represents 25.4% of 

final energy use in the EU in 2016 (Eurostat 2019a). They are also justified by the fact that 

75% of EU buildings are energy inefficient and that only 0.4-1.2% of the building stock is 

renovated annually among EU member states (European Commission 2018). Policymakers 

rely on retrofit to increase energy efficiency and lower emissions from existing dwellings. 

However, the empirical evidence on the effectiveness of retrofit is mixed (Alberini and Towe 

2015; Allcott et al. 2015; Allcott and Greenstone 2012). 

 

This chapter evaluates the impact of a national retrofit scheme, using a unique dataset of 

whole-home energy use with subsidy details for a sample of natural gas-heated homes 

(n=7,832 households) over a two-year period. This study measures the extent to which 

domestic retrofit delivers on the promise of real energy use savings. The study focuses on 

Ireland, a country which has been a poor performer in decarbonising residential energy use. 

 

This study makes several important contributions. It is one of the largest studies of retrofit 

using whole-home energy data for a general housing sample, who do not disproportionately 

experience fuel poverty (Fowlie et al. 2018). Secondly, it uses whole-home energy data to 

capture potential spill overs between fuel sources induced by retrofit. This is not captured in 

other papers examining retrofit effectiveness (Coyne et al. 2018; Scheer et al. 2013). Finally, 

this study addresses concerns regarding self-selection issues associated with the decision to 

undergo a retrofit. Most studies of retrofit compare a treatment group that receives a subsidy 

and a control group that do not (Fowlie et al. 2018; Scheer et al. 2013).  

 

In the absence of experimental variation, this study considers two control groups: homes that 

never receive a retrofit (consistent with prior literature) and a second control group of homes 

that received a retrofit prior to the observation period. This helps account for potential self-

selection issues related to the choice to undergo a retrofit. 
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Results indicate that retrofits reduce energy use by 943 kWh/year, on average. However, the 

magnitude of savings depends on the combination of measures installed. Additionally, actual 

energy use is 23% lower than the EPC-suggested level. Within this, more efficient homes 

consume more energy than expected. Finally, evidence suggests that retrofits offer better 

value for money when measured by actual changes in energy use, instead of theoretical 

changes in the EPC.  

 

These results present promising findings on the effectiveness of retrofit, but highlight 

possible unintended consequences of the policy, where households avail of the subsidy and 

consume more energy post-retrofit. Although this is likely one of the expected outcomes of 

such a retrofit policy, it hinders progress towards national energy efficiency targets. 

 

Chapter 4: A Model of Technology Diffusion to Forecast Data Centre Electricity Use 

 

This chapter studies the scope for energy efficiency in one of the fastest growing industrial 

energy end-users: data centres. Data centres are a critical component of the modern 

economy, facilitating cloud computing and communication. In 2015, data centres in the EU 

were estimated to consume 78 TWh of electricity per year, 2.5% of total electricity use 

(European Commission, 2015). In 2018, data centres are estimated to be responsible for one 

per cent of global electricity use (Masanet et al., 2020). The uncertain yet increasing presence 

of data centres poses a challenge for national generation and transmission network planning.  

 

Although technological advances are expected to improve data centre energy efficiency 

(IEA, 2017), the specific technology and pattern of adoption are unknown. This uncertainty 

is a significant concern for policymakers attempting to guide national energy and use and 

emissions towards EU-level 2030 targets (European Commission 2018).  

 

This paper applies an epidemic model of technology diffusion to forecast how potential 

efficiencies in data centre energy use could be adopted over time. It is motivated in large 

part by the rapid rise in data centre energy use. The method applied in this paper can be 

applied to any existing or emerging energy efficiency technology, using limited information.  

The specific innovation considered in this study is a switch to direct liquid server cooling, 

which addresses a number of challenges by rising server power density.  
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Liquid cooling has a higher thermal carrying capacity than air, can be retrofitted to existing 

units and can reduce the required floor space (Sickinger et al. 2014). Liquid cooling could 

also help data centres provide low-carbon waste heat supply (Ebrahimi et al. 2014). 

 

This is the first paper to use an epidemic model of technology diffusion in the context of the 

data centre sector and it serves as a helpful resource for researchers that are dealing with the 

need to provide sectoral forecasts under uncertainty with little detailed information. It 

considers the adoption of liquid server cooling in Ireland, a country that is responsible for 

14% of the global trade in ICT services (OECD, 2017) and where data centres are forecast 

to consume between 28% and 37% of national electricity demand by 2028 (EirGrid, 2019).  

 

Results suggest that technology adoption could lower national electricity demand by 

between 0.81% to 3.16%, depending on whether the technology could be adopted by existing 

facilities. The methods used here serve as a technology-agnostic resource for researchers 

that need to perform forecasts under uncertainty with limited information. 

 

 

Chapter 5: The benefit of energy systems integration: The Irish data centre sector and 

electro-thermal energy storage solutions. 

 

This chapter is motivated by a commonly observed issue where an energy efficiency 

technology that benefits different stakeholders fails to be adopted. It connects two distinct 

strands of literature on i) the Energy Efficiency Gap, which theorizes there is a relative social 

under-adoption of energy efficient technologies (Jaffe and Stavins 1994a) and ii) the lack of 

collaboration between public and private stakeholders, where different discount rates result 

in a lack of investment (Solow (1963); Arrow & Lind (1978)). 

 

 

Binding EU 2030 targets for renewable generation, emissions reduction and energy 

efficiency (European Commission, 2019) pose a particular challenge for Ireland, which 

features a large share of intermittent renewable generation, limited record of low carbon 

heating and an expected surge in data centre energy use, which are forecast to drive three 

quarters of the growth in national electricity demand from 2017-2026 (Oireachtas 2017). 
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This is the first study to evaluate the national economic benefit of an energy efficiency 

technology that fosters energy systems integration. It connects two distinct strands of 

literature on small-scale data centre energy efficiency and large-scale consequences of data 

centres on power systems. It considers a commercially available large-scale technology that 

uses a charging cycle to convert electricity into hot and cold thermal energy. It also stores 

electricity, facilitates increased RES generation and helps improve system demand response. 

  

Results model a representative data centre paired with technical parameters of the energy 

efficiency technology using a forecast of Irish data centre construction. Indirect benefits 

estimate the hot water available for use in another sector due to technology adoption. Tertiary 

benefits are quantified using ENGINE, a power systems model of the Irish economy (D. Z. 

Fitiwi et al. 2020). Results suggest that adoption could lower sectoral energy use by 26% 

and supply 12.40 TWh of hot water for a 4th Generation district heating network over the 

2019-2028 period. A 2030 power systems analysis suggests that adoption reduces renewable 

electricity capacity requirements by 6.92% and lowers system-wide emissions by 3%. 

 

Results highlight the potential for technology adoption to deliver benefits in multiple sectors. 

Although results are specific to Ireland and the EET considered, it represents an important 

example of the potential for sector coupling to help achieve climate targets. It also provides 

a methodology that can be applied to other technologies, industries and power systems. 

 

Chapter 6: Conclusions 

 

Chapter 6 presents concluding remarks from the previous chapter, including a discussion of 

key policy implications. It also features a discussion of limitations or this research and 

outline some of the possible areas for further research.  



11 

 

Chapter 2: Testing the accuracy of residential 

Energy Performance Certificates 
 

2.1 Introduction 

2.1.1 Residential energy policies 

Approximately 75% of buildings do not meet energy efficient standards as defined by the 

EU building standards (European Commission 2019b). This is likely because 35% of the EU 

dwelling stock is over fifty years old (BPIE 2011) and only 0.4-1.2% of the building stock 

is renovated annually, depending on the member country (European Commission 2019b). 

The residential sector represented 25.4% of final energy use in the EU in 2016, with the 

majority of energy  (79.2%) used for space and water heating (Eurostat 2019a).  

 

The EU has set targets for renewable generation, emissions reduction and energy efficiency 

to achieve climate neutrality by 2050 (European Commission 2019a). 2030 climate targets 

include i) sourcing 32% of the energy mix from renewable sources, ii) reducing GHG 

emissions by 40% from 1990 levels and iii) a 32.5% improvement in energy efficiency, 

relative to a 2007 forecast (European Parliament 2018). Improving energy efficiency is a key 

way to reduce emissions, representing almost 40% of the potential for reducing greenhouse 

gases for less than €60 per metric tonne of carbon dioxide equivalent (McKinsey 2010).  

 

The EU Energy Performance of Buildings Directive (EPBD) is a regulation that aims to 

improve building energy efficiency in member states (European Commission 2019b). It 

emphasises the use of Energy Performance Certificates (EPCs) for building sales and rentals 

(European Commission 2018) to improve information for buyers and sellers on the 

indicative energy performance of a building. EPCs also contributes towards other aspects of 

the EPBD, such as providing guidance on possible energy efficiency improvements1. In 

Ireland, the Climate Action Plan plans to reduce energy use in buildings through a policy to 

upgrade 500,000 homes to an energy efficient B2 standard (Government of Ireland 2019). 

This is equivalent to a quarter of the national dwelling stock (Central Statistics Office 2017). 

 

 

 
1 See https://ec.europa.eu/energy/en/content/introduction-11 

https://ec.europa.eu/energy/en/content/introduction-11
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2.1.2 The value of Energy Performance Certificates 

Despite policymaker enthusiasm for introducing EPCs, evidence on the relationship between 

EPCs and property prices is mixed. Although studies for the EU and Ireland found 

correlations between a better rating and a higher sales or rental prices in EU countries 

(European Commission 2013; Hyland et al. 2013), German homeowners found it was 

difficult to translate EPCs into the value of energy efficiency and did not consider it a priority 

in their property purchase decision (Amecke 2012). Evidence from Northern Ireland that 

applies quantile regression finds evidence of a premium attached to energy efficient 

dwellings at high sales prices and discounts attached to low energy efficiency dwellings for 

sale at high prices (McCord et al. 2020). 

 

 EPCs have also been related to other important outcomes. Comerford et al. (2018) find that 

introducing an EPC induced investment in household energy efficiency in the UK. Evidence 

from Wales suggests a statistically significant price premium of 12.8% for A/B-rated 

dwellings (Fuerst et al. 2016). However, the authors make an important observation that 

energy performance may not be the only factor driving this price premium, as it is likely to 

be correlated with other desirable factors.  

 

2.1.3 The limitations of Energy Performance Certificates 

The mixed evidence on the value of EPCs is unsurprising. Evidence for the Irish EPC 

suggests that trust in the measure could be undermined due to systematic bunching2 in the 

distribution of EPCs with regard to property sale prices (Hyland et al. 2016). Furthermore, 

EPCs have been shown to suffer from a lack of ex-post verification between measured and 

theoretical energy use (Burman et al. 2014; van Dronkelaar et al. 2016). There is often a 

disparity between the engineering model-based EPC and actual energy use (Cozza et al. 

2020; De Wilde 2014; Gram-Hanssen and Georg 2018; Majcen et al. 2013; Zou et al. 2018). 

This is known commonly as the Energy Performance Gap (EPG)3.  

 

 
2 Bunching is defined by Hyland et al. (2016) as “an excess frequency of homes on the favourable side of a threshold 

accompanied by a much-reduced frequency on the unfavourable side of that threshold.” 
3 The Energy Performance Gap can be considered within the broader theory of the Energy Efficiency Gap (Jaffe and Stavins 

1994a) which considers the under-adoption of energy efficient goods with a positive net present value at the societal level. 
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Research has found a negative relationship between dwelling energy efficiency and the 

direction of the EPG, with a positive EPG for energy efficient dwellings and a negative EPG 

for the least efficient (Cozza et al. 2020; Majcen et al. 2013; van den Brom et al. 2018). 

Studies of the EPG have identified the influential role of occupant behaviour (De Wilde 

2014; Gram-Hanssen and Georg 2018; Zou et al. 2018).  

  

There has been substantial evidence on the behavioural factors influencing energy use when 

dwelling energy efficiency changes (‘retrofit’). Many studies have identified ‘rebound’ 

effects, where a lower effective price of heating encourages increased energy use (Heesen 

and Madlener 2018; Sorrell et al. 2009). Some studies of retrofit have found a ‘prebound’ 

effect, where the least energy efficient dwellings consume less heating than expected (per 

their EPC) following a retrofit (Sunikka-blank and Galvin 2012). Accurate estimates of the 

EPG are complicated by improvements in dwelling energy efficiency that may induce any 

behavioural change in the occupant. Aydin et al. (2017) show a negative relationship 

between household income and rebound in gas use4. Research into an Irish energy retrofit 

also found that socially vulnerable occupants often under-heat their homes, use more energy 

and alternative heating fuels following a retrofit (Coyne et al. 2018). 

  

The rapid nature of technological change also poses challenges for research into the EPG. 

Delghust et al. (2015) note how research needs to study all fuels used in the house, including 

electricity, which represents a greater share of energy use in efficient dwellings and is 

becoming more popular due to changes in heating systems.  

 

2.1.4 Contribution 

Evidence into the EPG suggests that policies aiming to reach a certain EPC standard may 

not deliver the expected energy savings (Cozza et al. 2020; Gram-Hanssen and Georg 2018; 

Zou et al. 2018). Research has noted that country-level differences in the implementation of 

the EPBD require country-specific studies of the Energy Performance Gap (Andaloro et al. 

2010; Delghust et al. 2015). This is especially true for Ireland, where there are ambitious 

plans to upgrade the energy efficiency of the dwelling stock (Government of Ireland 2019).  

 
4 Studies of domestic energy use are complicated by such ‘rebound’ effects, where  improvements in energy efficiency 

lower the cost of energy services, thus increasing energy use (Sorrell et al. 2009) 
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This is the first paper that tests for the presence of an EPG using a measure of whole-home 

energy use for a non-social housing sample of 9,923 households that do not receive a retrofit. 

The key contribution of this paper is the combination of i) the analysis of whole-home energy 

use, ii) for a non-social housing sample that iii) does not feature behavioural changes that 

would be induced by retrofit. Previous studies have considered one or two of these aspects, 

but this is the first study combines all three to overcome limitations of previous studies.  

 

Firstly, this estimate of the EPG considers a whole-home measure of energy use. This is 

different to other studies which focus exclusively on the EPG for a single fuel source for 

space and water heating (Cozza et al. 2020; van den Brom et al. 2018). The benefit of 

considering both electricity and gas demand, is that it can capture fuel switching behaviour 

amongst these fuel sources. This is an important contribution due to the increasing use of 

alternative fuels in households, especially for socially vulnerable homes in low-efficiency 

dwellings (Coyne et al. 2018; van den Brom et al. 2018). Accounting for electricity use is 

relevant as energy efficient dwellings tend to have a higher share of electric heating 

(Delghust et al. 2015). This paper uses a comprehensive dataset that eliminates 

complications from fuel-switching which may overstate the true EPG when measured using 

only one fuel source (Cozza et al. 2020; van den Brom et al. 2018). 

 

Secondly, this research features a generally representative sample of households over a two-

year period. Some other EPG studies only feature social housing tenants (Majcen et al. 2013; 

van den Brom et al. 2018), a cohort which has been shown elsewhere to have particular 

energy use behaviour (Coyne et al. 2018; Delghust et al. 2015). For this reason, a general 

sample of households may provide a more general view of the EPG.  

 

Thirdly, our estimate of the EPG does not include changes in occupant behaviour that would 

be induced due to a change in dwelling energy efficiency from a retrofit. Other prominent 

EPG studies note the potential for retrofit in their sample (Cozza et al. 2020; Heesen and 

Madlener 2018). However, research has shown that a retrofit can induce a behavioural 

change in occupant energy use (Sorrell et al. 2009; Sunikka-blank and Galvin 2012; Webber 

et al. 2015).  
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The chapter is laid out as follows: Section 2.2 details select relevant literature and 

background on the Irish context. Section 2.3 details the model of real and actual energy use. 

Section 2.4 details the data and variables used. Section 2.5 presents results, while Section 

2.6 discusses the main findings. Section 2.7 concludes with some policy recommendations. 

 

2.2 Literature 

This section details how consumer behaviour is hard to measure within the context of 

modelling building energy use. It then provides background to the Irish market, the setting 

of this study. Finally, the Irish EPC and some of its key assumptions are noted. 

 

2.2.1 Studies of the Energy Performance Gap 

The Energy Performance Gap (EPG) is central to this study. As noted in Section 2.1.3, there 

are a diverse range of studies of the difference between actual energy use and the level 

calculated by an EPC. Differences between the engineering model-based EPC and actual 

energy use often arise (Cozza et al. 2020; De Wilde 2014; Gram-Hanssen and Georg 2018; 

Majcen et al. 2013). The different implementations of the EPBD across member states 

justifies the need for country-specific research (Andaloro et al. 2010; Delghust et al. 2015).  

The EPG often has a distributional aspect, where low energy efficiency households and 

socially vulnerable occupants demonstrate substantial under-consumption, relative to the 

EPC (Cozza et al. 2020). Studies of the EPG for a sample of social housing tenants found 

that energy-efficient dwellings use more energy than calculated and vice versa (Majcen et 

al. 2013; van den Brom et al. 2018).  

 

Studies of the EPG are complicated by behavioural changes in the occupant (‘rebound’) 

observed due to retrofit, where a lower effective price of heating encourages increased 

energy use (Heesen and Madlener 2018; Sorrell et al. 2009). In some cases, a retrofit has 

been shown to lead to a fall in energy use (Sunikka-blank and Galvin 2012). Aydin et al. 

(2017) highlight a negative relationship between household income and rebound in gas use, 

with the lowest income quintile featuring an average rebound almost ten percentage points 

higher than the average rebound for the rest of the distribution.  
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Estimates of the EPG are further complicated if improvements in building energy efficiency 

from a retrofit do not deliver the expected improvement (Gram-Hanssen and Georg 2018). 

In the UK, Dowson et al. (2012) note that model predicted energy savings may be halved in 

reality due to poor installation, monitoring and increased heating use post-retrofit. Research 

into an Irish energy retrofit also found that socially vulnerable occupants often under-heat 

their homes, and use alternative heating fuels (Coyne et al. 2018). 

 

Many studies of the EPG find occupant behaviour to be an important factor (De Wilde 2014; 

Gram-Hanssen and Georg 2018; Zou et al. 2018). In a commercial context, actual energy 

use could be 2.5 times larger than predicted (Menezes et al. 2012). Herrando et al. (2016) 

find an average EPG of 30%. Majcen et al. (2013) find that energy inefficient homes 

consume less than predicted and energy efficient homes consume more than predicted for a 

sample of 200,000 social housing tenants in the Netherlands. Van den Brom et al. (2018) 

find similar results for a larger sample of Dutch social housing tenants. 

 

Most studies only consider energy for space and water heating, and do not account for fuel 

switching, which has been shown for select cohorts (Coyne et al. 2018; Delghust et al. 2015). 

Although research has identified discrepancies between the actual and theoretical level of 

energy use, this message has not reached policymakers (Gram-Hanssen and Georg 2018). 

Reasons for this discrepancy include the limitations of building modelling, inaccurate 

assumptions regarding occupant behaviour and flaws during the building design phase. 

 

In summary, research has shown that modelling residential energy use is challenging. Part 

of this challenge arises from how consumer behaviour changes over time through rebound 

effects from changes in building energy efficiency. The EPG has also been shown to be 

particularly sensitive to the socioeconomic status of occupants. For these reasons, a study of 

the EPG using a measure of whole-home energy use for a general sample of households that 

did not receive a retrofit is highly relevant. 

 

 

 

 



Chapter 2. Testing the accuracy of residential Energy Performance Certificates 

 

 

17 

 

 

2.2.2 Ireland as a case study 

Ireland intends to improve energy efficiency (lowering energy use) by 20% before 2020, 

relative to average national energy use from the period 2001-2005. This equates to savings 

of 31,925 GWh (DCENR 2009). As part of the EU Energy Efficiency Directive, member 

states must submit a National Energy Efficiency Action Plan with specific measures 

designed to improve energy efficiency (European Union 2012). By early 2017 Ireland only 

achieved a 12% improvement and is expected to miss the 2020 target by 3.77% (DCCAE 

2017a). Achieving compliance for the 2020 target could cost €80-140 million5. 

  

Despite this, Ireland has made progress in improving residential energy efficiency. Energy 

use per dwelling has fallen by 32% from 1990-2015 due to technology improvement, 

retrofits, building regulations and macroeconomic factors (SEAI 2016). However, there is 

more to be done as Ireland has the fourth highest level of greenhouse gas emissions in the 

EU of 13.3 tonnes of CO2 equivalent per capita in 2017 (Eurostat 2020). Irish homes 

consume the most energy on average in the EU, with the second largest average occupancy 

in the EU-28 of 2.7 persons per house (SEAI 2018). According to EU-SILC data from 2017, 

8.3 per cent of the Irish population live in apartments (Eurostat 2019b), lower than the EU 

average of 41.9 per cent and almost half the second-lowest country, the UK (14.7 per cent). 

Electricity plays an important role in residential energy use. In 2017, over 20 per cent of 

electricity used in the Irish residential sector was for space and water heating6. 

  

Irish interventions to improve residential energy efficiency aim to simplify consumer 

decision-making for durable appliances (Carroll et al. 2016), to improve dwelling energy 

efficiency through a grant-supported retrofit (Scheer et al. 2013) or to alter intraday 

electricity (Di Cosmo et al. 2014) and gas (Harold et al. 2018) usage patterns. Research has 

established how information from an EPC on theoretical dwelling energy efficiency is 

positively associated with property sale and rental prices (Hyland et al. 2013). Hyland et al. 

(2016) suggest there is scope to improve the Irish EPC due to systematic bunching in the 

distribution of ratings. 

 
5 See https://www.rte.ie/eile/brainstorm/2017/1124/922516-missing-climate-and-energy-targets-will-cost-ireland-

millions/ 
6 See https://www.seai.ie/data-and-insights/seai-statistics/key-

statistics/residential/#:~:text=For%202018%20we%20estimate%20that,%2C%20and%202%25%20for%20cooking. 

https://www.rte.ie/eile/brainstorm/2017/1124/922516-missing-climate-and-energy-targets-will-cost-ireland-millions/
https://www.rte.ie/eile/brainstorm/2017/1124/922516-missing-climate-and-energy-targets-will-cost-ireland-millions/
https://www.seai.ie/data-and-insights/seai-statistics/key-statistics/residential/#:~:text=For%202018%20we%20estimate%20that,%2C%20and%202%25%20for%20cooking
https://www.seai.ie/data-and-insights/seai-statistics/key-statistics/residential/#:~:text=For%202018%20we%20estimate%20that,%2C%20and%202%25%20for%20cooking
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Evidence of an EPG presents an issue if policymakers expect real emissions reductions from 

improving the dwelling stock to a certain EPC threshold. In Ireland, the government aims to 

retrofit 500,000 homes to B2 EPC standard by 2030 (Government of Ireland 2019). The 

presence of an EPG would cause actual savings to deviate from the level expected. 

 

 

2.3 Methodology and Data 

2.3.1 Methodology 

Policymakers attempting to reduce emissions by upgrading the dwelling stock to a certain 

EPC standard face a problem if an EPC is based on assumptions regarding theoretical 

occupant energy use (𝑇𝑄𝑖 ) that does not accurately reflect actual occupant energy use 

(𝐴𝑄𝑖𝑡). Consequently, the presence of an Energy Performance Gap (EPG) may limit the 

effectiveness of policies designed to lower residential energy use by targeting a benchmark 

EPC standard. This paper features three distinct research questions that explore the existence 

of an EPG and the factors influencing actual energy use. Each research question directly 

corresponds to a subsection of the results. 

 

The first research question (Section 2.4.1) tests for the presence of an Energy Performance 

Gap with a null hypothesis that the EPC accurately reflects actual occupant usage (Equation 

2.1). For a given household i in year t, actual household energy use (AQit) is equal to the 

theoretical EPC level of energy use (TQi) if there is no Energy Performance Gap. Since an 

EPC estimate does not account for appliance use and occupant behaviour, it will not reflect 

true dwelling energy use (Section 2.3.4). It is expected that this difference will not be equal 

to zero (Cozza et al. 2020; van den Brom et al. 2018; Zou et al. 2018). This result is presented 

in aggregate (kWh/year) and as a percentage of the EPC (Cozza et al. 2020). 

 

  H0: AQit  −  TQi = 0     [2.1] 
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This question is highly relevant since the Energy Performance Gap is widely accepted in the 

research community but often ignored in policy discourse (Gram-Hanssen and Georg 2018). 

This is the first study that controls for whole home energy use, the sample and the potential 

for retrofit-induced behavioural changes.   

 

The second research question (Section 2.4.2) aims to quantify the extent to which key 

dwelling factors influence actual energy use at the bimonthly level (n=149,518 readings). It 

uses a linear regression at the bimonthly time frequency and accounts for the influential role 

of seasonality in energy use. It considers the EPC and relevant dwelling characteristics 

(detailed in Section 2.3.3 and 2.3.5, respectively). It models actual energy use (AQit) for 

household i in period t as a function of the theoretical energy efficiency of the dwelling 

(TQi), a vector (Xi) of key dwelling features such as dwelling type, size, number of stories, 

age and a vector (Wt) of time-varying weather controls (Equation 2.2). Results (Section 

2.4.2) begin by regressing actual energy use on the fully interacted EPC (Model 1), then 

expands to include dwelling characteristics (Model 2) and a time fixed effect (Model 3). 

 

 

   AQit = ai + β1TQi + β2Xi  +  β3Wt + uit            [2.2] 

 

The third research question (Section 2.4.3) explores whether the relationship between actual 

energy use and key dwelling factors persists across each of the five EPC bands j (Equation 

2.3). This is motivated by the potentially different influence of covariates across the EPC 

spectrum. This relationship is explored for each specific EPC grade at the bimonthly 

frequency (Model 4) using the linear regression in Model 3, featuring a time fixed effect.  

 

  AQijt = ai + β1TQij + β2Xi  + β3Wt + uit   [2.3] 
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2.3.2 Data sources 

Household energy use data of electricity and natural gas (A) is sourced from Electric Ireland, 

the largest residential electricity utility in Ireland. This paper studies homes with natural gas 

heating observable by meter readings. This data is observed from November 2014 to June 

2017, sixteen bimonthly7 periods. This is merged with dwelling information from SEAI (B) 

using the common meter point number. Time-varying weather (C) controls are also included 

(Table 2.1). The sample consists of 9,923 homes, 19,251 customer-year observations and 

149,518 bimonthly readings. Appendix A2 details the data cleaning process, including the 

removal of 333 households with highly abnormal energy use. This did not affect later results. 

As in Cozza et al. (2020), such households likely represent a holiday home that is sparingly 

used. The sample distinguishes between households that never receive a retrofit (n=8,311) 

and households that receive one prior to the observation period (n=1,612 houses)8. 

  

Table 2.1: Data sources 

ID Data Details Source 

A Energy use Electricity and gas readings Electric Ireland 

B Building Energy Rating Dwelling features, EPC SEAI 

C Weather Heating Degree Days (HDDs), Rainfall Met Eireann 

Note: Appendix 2.C details the data cleaning process and the handling of outliers and unreliable data. 

 

2.3.3 The Irish EPC 

The Sustainable Energy Authority Ireland (SEAI) promotes energy efficiency and operates 

the Building Energy Rating (BER) scheme, which is the Irish EPC. A BER is required for 

every property sold, rented or in receipt of a grant-supported retrofit (European Union 2002). 

The BER denotes the theoretical energy performance of a dwelling using a 15-point scale 

from A1-G in units of kilowatt-hour per metre squared per annum (Table 2.2).  It is compliant 

with the EU Energy Performance of Buildings Directive and is based on both IS EN 13790 

and the UK Standard Assessment Procedure for dwelling energy ratings (SEAI 2012). 

 

 
7 The term ‘bimonthly’ denotes a period of two months. This is not to be confused with the ‘twice-monthly’ frequency. 
8 Appendix 2.F performs a robustness check of annual results, split by subsample and finds no major differences. 
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Table 2.2: Building Energy Rating (BER) levels and Simplified EPC 

BER 
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 E1 E2 F G 

<25 >25 >50 >75 >100 >125 >150 >175 >200 >225 >260 >300 >340 >380 >450 

Simple 

EPC 

AB C D E FG 

0-150 151-224 225-299 300-379 >380 

Source: SEAI. Note: Values in kWh/m2/year. Simplified EPC is used in later analysis for convenience. 

 

𝑇𝑄𝑇𝑜𝑡𝑎𝑙 = 𝑄𝑆𝑝𝑎𝑐𝑒𝐻𝑒𝑎𝑡  +  𝑄𝑊𝑎𝑡𝑒𝑟𝐻𝑒𝑎𝑡  +  𝑄𝐴𝑢𝑥𝐸𝑛𝑒𝑟𝑔𝑦 𝑄𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔  − 𝑄𝑃𝑉 −  𝑄𝐶𝑜𝐺𝑒𝑛        [2.4] 

 

The BER calculates “the energy required for space heating, ventilation, water heating and 

lighting, less savings from energy generation technologies” (SEAI 2012). Equation 2.4 

details its components, which are similar to other dwelling asset rating models (Majcen et 

al. 2013; van den Brom et al. 2018). The BER is influenced by factors such as dwelling size, 

type, insulation, ventilation and heating system (SEAI 2014). It reflects theoretical primary 

energy use for space and water heating, ventilation and lighting9. It does not include energy 

consumed by appliances, estimates to be roughly 20% of domestic energy use (SEAI 2018).  

There is no formal validation of the BER awarded from the in-home audit using real billing 

information. This deficiency has also been noted in studies of the UK EPC (Burman et al. 

2014; van Dronkelaar et al. 2016). Collins & Curtis (2018) examine changes in BER pre- 

and post-retrofit and find discontinuities in the national distribution of post-retrofit BERs, 

but not in the pre-retrofit BERs. They find no evidence of illicit behaviour by BER assessors, 

but a high rate of low energy lighting prevalent in the distribution. This study is the first 

evaluation of the BER using actual energy use data for a sample without retrofit. 

 

Weather conditions are considered at a local level but the model assumptions regarding 

occupant heating behaviour are more important  (SEAI 2012). The BER assumes that the 

heating season runs from October to May inclusive, with the primary living space being 

heated to 21 degrees Celsius and the rest of the house heated to 18 degrees Celsius for eight 

hours a day (SEAI 2012). Given that space and water heating demand is the single largest 

energy demand in the home, the a priori expectation is that differences between actual and 

theoretical energy use would be largely driven by deviations in actual heating behaviour, 

especially after accounting for appliance usage, which is not included in the EPC. 

 
9 Primary energy use includes energy delivered to the home and an overhead for energy lost in generation and transmission. 
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2.3.4 Dependent variable: Actual energy use 

Most studies of the Energy Performance Gap draw a comparison between metered energy 

for heating with the theoretical EPC (Cozza et al. 2020; Heesen and Madlener 2018; Majcen 

et al. 2013; Scheer et al. 2013). Such studies fail to capture electricity used as a secondary 

fuel (nor do they seek to). This omission has the potential to overstate the true Energy 

Performance Gap and may acutely affect the most energy efficient homes, which feature a 

larger share of electricity use (Delghust et al. 2015). It may also disproportionately affect 

homes that engage in substantial fuel switching, such as low income social housing 

occupants (Coyne et al. 2018). For these reasons, we include an adjustment for appliance 

use to allow comparability with the EPC (since the EPC does not include appliances). 

 

This study leverages the rich data available to develop a measure of the Energy Performance 

Gap that compares whole-home energy use (natural gas plus electricity) with the theoretical 

Irish EPC, which is denoted in units of primary energy use. Table 2.3 summarises the 

primary energy factors for the sample with an average ratio of 1.24, leading to actual meter 

readings being inflated for comparison with the EPC. Any mention of energy from this point 

is referring to primary energy use, unless explicitly stated otherwise. While it would be 

interesting to separate primary energy consumption into electricity and gas, the EPC is an 

aggregate measure which does not distinguish separate consumption levels.  

 

In order to compare theoretical energy use from the EPC, the variable of actual energy use 

is adjusted to account for the heatable floor space and the ratio of primary to delivered energy 

(Equation 2.5)10.  Actual energy use must also be adjusted to reflect the fact that EPCs do 

not include energy use for appliances within the home. SEAI (2018) estimates that appliance 

usage comprises, on average, 20% of Irish home energy use. Results in this paper consider 

two versions of appliance usage (AAj). The first (AARelative) involves a relative scaling of 

usage to a factor of 0.8, based on SEAI (2018). 

 

  𝐴𝑄𝑖𝑡 =
𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐻𝑒𝑎𝑡𝑎𝑏𝑙𝑒𝐹𝑙𝑜𝑜𝑟𝐴𝑟𝑒𝑎𝑖
 ∗  

𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖
∗ 𝐴𝐴𝑗      [2.4] 

 

 
10 Appendix A1 provides more detail on the construction of the dependent variable. 
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Table 2.3: Summary of household-level primary energy factors 

 
N Mean Median SD Min Max Skew. Kurt. 

Primary energy 9,923 22674 20165.91 11343.98 -28236.7 122777.9 1.67 8.06 

Delivered energy  9,923 18505 16459.11 9431.09 -27848.8 73646.2 1.53 6.89 

Ratio (P/D) 9,923 1.24 1.21 0.14 1 3.11 7.31 69.4 

Source: Author’s calculations using SEAI data (9,923 households). Note: Values in kWh/year. Delivered 

energy includes energy assumed to be consumed in the dwelling. Primary energy includes generation 

and transmission losses. The ratio helps to scale metered energy use to reflect actual energy use. 

 

The second version of appliance adjustment accounts for concerns about the distributional 

effect of a relative appliance adjustment across the spectrum of building energy efficiency. 

The second appliance adjustment (AAAbsolute) involves an absolute deduction for annual 

appliance usage (1,357 kWh/year) for a subset of appliances assumed common to each home 

(Owen and Foreman. 2012)11. The bimonthly panel of 9,923 households (n=149,518 

readings) has a completeness of 94.17%, with an average of 15.06 periods present and an 

average gap of 1.31 periods. Figure 2.1 shows the seasonal pattern of sample energy use. 

 

 
Figure 2.1: Total bimonthly actual energy use over time (AARelative) 

 

 
11 This is detailed further in Appendix 2.B. 
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The sample features 9,923 households with one full year of actual energy use (AQY1) and 

9,328 observations with an additional second full year (AQY2). Table 2.4 compares mean 

annual actual (AQY1, AQY2) and theoretical (𝑇𝑄) energy use, with all variables in units of 

annual energy use per square metre. Figure 2.2 compares the distributions of annual actual 

(AQY1, AQY2) and annual theoretical energy use (𝑇𝑄). It shows a higher share of 

observations in the A- and B-rated (most efficient) range of the distribution and a lower share 

of observations in the C- and D-rated range of theoretical energy efficiency. The presence 

of large positive actual energy use in the right tail of the distribution is notable, especially 

since the EPC lacks an upper bound on theoretical energy efficiency for G-rated homes. A 

Z-test is performed for each combination of the three variables that suggests three 

distributions are similar, with 𝑍AQY1,AQY2 = 0.76, 𝑍AQY1,𝑇𝑄 = 0.24 and 𝑍AQY2,𝑇𝑄 = 0.15. 

 

Table 2.4: Comparison of mean annual actual and theoretical energy use (AARelative) 

 
N Mean SD Min Max Skew. Kurt. 

Actual energy use (AQY1) 9,923 197.80 124.26 9.51 1,777.77 1.50 10.80 

Actual energy use (AQY2) 9,328 211.16 123.73 11.29 1,687.24 1.35 8.55 

Theoretical energy use (TQ) 9,923 235.44 101.03 39.97 1,240.73 1.95 11.3 

Note: Values in kWh/m2/year. 

 

 

Figure 2.2: Distribution of theoretical and actual annual energy use (AARelative) 
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2.3.5 Dwelling characteristics and weather 

The SEAI dataset features dwelling information on house type, age, height and heatable floor 

area. Importantly, it includes a variable of theoretical energy use in units of kWh/m2/year, 

which informs the categorical EPC. Table 2.5 summarises key continuous variables for the 

sample used in later bimonthly analysis that measures the factors associated with actual 

energy use (Section 2.4.2, 2.4.3). Research has identified correlations between weather and 

electricity (Kavousian et al. 2013), heating (Quayle and Diaz 1979) and appliance use (Hart 

and De Dear 2004). To account for this, households are linked at the county level with the 

nearest weather station12. A Heating Degree Day variable reflects the number of days the 

daily mean temperature is below 15.5 degrees Celsius. A total bimonthly rainfall variable 

also features. This reflects days where occupants are more likely to require heating. A total 

bimonthly rainfall variable also features. 

 

Table 2.5: Summary of continuous dwelling and weather control variables 

Variable     Mean SD Min Max 

Number of floors 1.94 0.48 0 4 

Year of Construction 1979 28.98 1753 2017 

Percentage of home that is living area 21.33 9.81 0 81.1 

     

Bimonthly heating degree days 53.29 10.6 10 61 

Total bimonthly precipitation (in cm) 18.78 104 5.63 55.6 

Note: n=9,923 homes. Note: Weather for 16 bimonthly periods and five weather stations. 

 

Table 2.6 compares key theoretical energy efficiency for the sample and the population of 

SEAI EPC records (reflecting roughly half of the national dwelling stock)13. An additional 

comparison by dwelling type includes the 2016 census national occupied dwelling stock, 

which does not feature EPC information. SEAI data underrepresents detached dwellings, 

overrepresents apartments and terrace homes. This is because an EPC is only required when 

a property is sold, leased or undergoes a retrofit. Compared to the SEAI population, the 

sample has a higher share of C houses and a similar share of AB and D houses. The sample 

under-represents detached homes and apartments and over-represents semi-detached and 

terraced. It is important to consider the potential for the sample to understate effects for FG-

rated homes and to over-emphasise results for C-rated homes nationally. 

 
12 Available on the European Climate Assessment & Dataset http://eca.knmi.nl/dailydata/customquery.php 
13 Appendix 2.B compares dwelling type and theoretical energy efficiency for the initial and analysis sample. 

http://eca.knmi.nl/dailydata/customquery.php
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Table 2.6: Sample v SEAI population dwelling comparison 

   

Sample 

(n=9,923) 

SEAI Population 

(n=729,599) 

Occupied Dwelling Stock 

(n=1,675,795)* 

  Count % Count % Count % 

EPC AB 1,351 13.61 104,084 14   

 C 4,257 42.90 270,628 37   

 D 2,486 25.05 178,172 24   

 E 1,059 10.67 86,401 12   

 FG 770 7.76 90,324 12   

Dwelling 

Type Detached 1,197 12.06 232,677 32 715,133 43 

 Apartment 873 8.80 144,289 20 204,145 12 

 Semi-detached 3,565 35.93 193,543 27 471,948 28 

 Terrace 4,288 43.21 159,100 22 284,569 17 

 Total 9,923 100 729,599 100 1,675,795 100 

Note: 2016 census values sourced from the Irish CSO for occupied households. 

 

2.4 Results 

As noted in Section 2.3.1, results are presented in order of the three research questions. 

Section 2.4.1 quantifies the Energy Performance Gap by testing for significant differences 

in annual values of actual and theoretical energy use. Section 2.4.2 features regressions using 

the bimonthly data account for relevant covariates. Finally, Section 2.4.3 studies potential 

heterogenous effects by EPC category. Section 2.3.4 introduced two variants of actual 

energy use to account for appliance use. In each subsection, the first set of results features 

the dependent variable constructed using the RELATIVE appliance adjustment 

(AARelative). The second set features the dependent variable constructed using an 

ABSOLUTE appliance adjustment (AAAbsolute).  

 

2.4.1 Annual results 

The sample features 19,251 annual observations of energy use (AQ), representing 9,923 

observations of one full year (AQY1) and a further 9,328 observations featuring a second full 

year of energy use (AQY2)14. Energy use variables are in units of kilowatt-hours per year 

(kWh/year). Table 2.7 performs a test of paired differences shows that average annual actual 

energy use is significantly lower than the theoretical level from the EPC, suggesting the 

existence of an Energy Performance Gap (EPG).  

 
14 Appendix 2E features a robustness check that splits data for each full year of actual energy use (Y1, Y2). 
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The average deficit in annual consumption is 2,279 kWh, roughly 15% of the average value 

of 15,000 kWh/year considered by the Irish utilities regulator (CRU 2017)15. Differences 

between the sample and the regulator reference likely stem from differences in the samples. 

Results denote the difference between Mean AQ and Mean TQ (‘Difference’) and the 

percentage difference as a percentage of the Mean TQ (‘% Difference’), which is similar to 

the measure used by Cozza et al. (2020).    

 

Table 2.7: Difference between annual actual and theoretical energy use (AARelative) 

  

Actual Annual 

Energy Use (AQ) 

Theoretical Annual 

Energy Use (TQ) T-Test of Equality of Means 

 n 

Mean 

AQ 

Median 

AQ 

Mean 

TQ Median TQ 

Difference SE P-Value 

Mean %   

AQAll – TQ 19,251 10,869 10,167 13,148 11,402 - 2,279 - 17.33 61 0*** 

EPC Grade          
AB 2,601 10,569 9,661 7,571 6,620 2,998 39.60 122 0*** 

C 8,269 10,880 10,334 10,826 9,734 54 0.50 70 0.44 

D 4,835 10,917 10,231 14,353 12,826 - 3,436 -23.94 104 0*** 

E 2,051 11,026 10,421 18,133 16,300 - 7,106 -39.19 173 0*** 

FG 1,495 10,964 9,853 24,962 22,466 - 14,000 -56.09 290 0*** 

Dwelling          
Apartment 1,674 8,115 7,211 11,595 10,983 - 3,481 -30.02 163 0*** 

Detached 2,316 13,712 13,150 19,385 17,184 - 5,673 -29.27 247 0*** 

Semi-

detached 6,905 11,398 10,917 14,008 12,495 - 2,610 -18.63 99 0*** 

Terrace 8,356 10,197 9,712 11,020 9,490 - 823 -7.47 82 0*** 
*** P<0.01, **P<0.05, *P<0.10. Note: Units in kWh/year. Sample features 9,923 observations of one year of actual 

energy use and a further 9,328 observations from the same sample of houses with a second year of actual energy 

use. Medians reported. A test of equality of medians (using signtest STATA command (Snedecor & Cochran, 1989), 

confirms the same significant differences exist as the T-Test of means (displayed above). 

 

The most striking observation is a distinct lack of variation in average actual energy use 

across the entire sample. There is only a difference of 457 kWh/year between the lowest and 

highest average. This suggests that the demand for energy is unresponsive to the energy 

efficiency of the dwelling. A similar relationship has been observed in a study of UK office 

buildings (Better Buildings Partnership 2019). On a comparative basis, there is significant 

differences between average actual and theoretical energy use. The most efficient homes 

(AB) feature an average positive difference of 2,998kWh per year, 39% greater than 

theoretical.  

 

 
15 The Irish regulator reference values for average energy use are discussed in Appendix 2D. 
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Conversely, less efficient homes (D, E, FG) exhibit actual energy use lower than theoretical, 

with an average difference ranging from 24% for D-rated homes to 56% for F- and G-rated 

homes. There are also significant differences by dwelling type. Apartments and detached 

dwellings feature a deficit in the region of 30%. Semi-detached homes semi-detached (19%) 

and terrace houses (7%) feature a smaller deficit. 

 

Table 2.7 shows a greater-than-theoretical energy use for efficient homes and lower-than-

theoretical energy use for less efficient homes, a finding which is consistent with other 

estimates of the EPG (Cozza et al. 2020; Majcen et al. 2013; van den Brom et al. 2018). 

However, this result has not previously been shown using a measure of whole-home energy 

use. In particular, Cozza et al. (2020) find a median EPG of -11% and mean EPG of -6% for 

a sample of Swiss dwellings. In this study, the median EPG is similar (10.8%), but the mean 

difference is far greater (-17%). 

 

When using a measure of the dependent variable that features an absolute appliance 

deduction, results still suggest evidence of an EPG (Table 2.8). The overall average 

difference is smaller (1,105 kWh, -8.40%), yet larger positive differences are observed for 

AB-rated homes (53.61%). C-rated homes also consuming more than the theoretical amount 

(11.20%). FG-rated homes consume less than theoretical (-51.28%), but the magnitude of 

this difference is smaller. Similar trends are observed across dwelling type. 

 

Results using a measure of the dependent variable that features an absolute appliance 

deduction still suggests a minor difference 677 kWh/year between the highest and lowest 

actual energy use averages (Table 8). Within EPC bands, results suggest that an EPG exists, 

with. The overall average difference is smaller (1,105 kWh, -8.40%), yet larger positive 

differences are observed for AB-rated homes (53.61%). C-rated homes also consume more 

than the theoretical amount (11.20%). FG-rated homes consume less than theoretical (-

51.28%), but the magnitude of this difference is smaller. A test of equality of medians 

showing similar significance of results. 
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Table 2.8: Difference between annual actual and theoretical energy use (AAAbsolute) 

  

Actual Annual 

Energy Use (AQ) 

Theoretical Annual 

Energy Use (TQ) T-Test of Equality of Means 

 
n 

Mean 

AQ 

Median 

AQ 

Mean 

TQ Median TQ 

Difference SE P-Value 

Mean %   

AQAll – TQ 19,251 12,044 11,158 13,148 11,402 -1,105 -8.40 68 0*** 

EPC Grade 
  

 
 

 
 

 
  

AB 2,601 11,630 10,499 7,571 6,620 4,059 53.61 147 0*** 

C 8,269 12,039 11,356 10,826 9,734 1,213 11.20 83 0*** 

D 4,835 12,119 11,207 14,353 12,826 -2,234 -15.57 120 0*** 

E 2,051 12,307 11,490 18,133 16,300 -5,826 -32.13 195 0*** 

FG 1,495 12,187 10,773 24,962 22,466 -12,800 -51.28 308 0*** 

Dwelling 
  

 
 

 
 

 
  

Apartment 1,674 8,617 7,507 11,595 10,983 -2,978 -25.68 184 0*** 

Detached 2,316 15,620 15,003 19,385 17,184 -3,765 -19.42 267 0*** 

Semi-

detached 6,905 12,702 12,063 14,008 12,495 -1,306 -9.32 111 0*** 

Terrace 8,356 11,195 10,584 11,020 9,490 175 1.59 93 0.06* 

*** P<0.01, **P<0.05, *P<0.10. Note: Units in kWh/year. Sample features 9,923 observations of one year of actual 

energy use and a further 9,328 observations from the same sample of houses with a second year of actual energy 

use. Medians reported. A test of equality of medians (using signtest STATA command (Snedecor & Cochran, 1989), 

confirms the same significant differences exist as the T-Test of means (displayed above). 

 

 

Figure 2.3: Comparison of Energy Performance Gap 

Note: EPG presented as the difference between actual and theoretical energy use as a percentage of 

theoretical energy use. Each box reflects the interquartile range of EPG, with whiskers denoting the 

adjacent value. Sample includes 19,251 observations. Figure reflects the relative appliance adjustment. 
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Figure 2.3 illustrates the extent of the EPG across the spectrum of dwelling energy 

efficiency. It emphasises the substantial differences in the EPG, with a positive EPG for the 

most efficient dwellings and a negative EPG for the least efficient dwellings. 

 

2.4.2 Bimonthly results 

Section 2.4.1 provided evidence of an EPG across the entire EPC spectrum on an annual 

basis. Sections 2.4.2 and 2.4.3 investigate the factors associated with actual energy use at 

the bimonthly frequency to better understand seasonal differences (Tables 2.9 - 2.12), using 

a linear regression (Equation 2.2 and 2.3). There are 149,518 data points in these regressions, 

indicated in the fourth row from the bottom in each table. In addition to the EPC and dwelling 

type, each regression controls for the following dwelling characteristics that are related to 

dwelling energy use, obtained from the EPC: number of floors, year of construction, 

percentage of home classed as living area (from Section 2.3.5). Regressions also control for 

weather using a measure of heating degree days and bimonthly rainfall. 

 

Actual bimonthly energy use (AQt) is modelled as a function of the bimonthly theoretical 

energy use (TQt = TQ/6), a full interaction with the categorical EPC, specific dwelling 

characteristics and weather controls (Table 2.9). Standard errors are clustered at the 

household level. Table 2.9 shows a less than 1:1 relationship between changes in actual and 

theoretical energy use. Model 1 suggests that, on average, a 1 kWh/bimonth increase in 

theoretical energy use leads to a 0.47 kWh increase in actual bimonthly energy use. In Model 

2 the theoretical EPC coefficient falls to 0.198 and features significant effects for dwelling 

size and weather covariates. A one square metre increase in dwelling size is associated with 

8.69 kWh higher actual energy use, on average. Relative to a one floor dwelling, houses with 

a second floor, on average, use 548 kWh more each period. Results suggest that larger homes 

consume more energy and that actual energy use rises during colder periods. 

  

Model 3 replaces the weather variables with a categorical time variable. Relative to 

November-December 2014, we observe lower actual use in spring/summer and higher 

energy use in autumn/winter. The coefficients for the EPC and dwelling features are largely 

unchanged. Models 1-3 also interact the continuous EPC with its categorical form.  

 



Chapter 2. Testing the accuracy of residential Energy Performance Certificates 

 

 

31 

 

 

Significant interactions in Model 1 suggest a heterogenous relationship between the 

continuous EPC and actual energy use, depending on the theoretical level of energy 

efficiency. Following AIC and BIC criteria, we consider Model 3 the most appropriate16. 

 

Table 2.9: Bimonthly Results – Continuous EPC (AARelative) 

Dep Var: Actual energy 

use (kWh/bimonth) 

Model 1 Model 2 Model 3 

Coef. SE Coef. SE Coef. SE 

TQ (kWh/bimonth) 0.466*** (0.042) 0.202*** (0.063) 0.222*** (0.061) 

       

EPC = AB (REF)       

C -33.080 (67.636) 63.796 (69.185) 67.532 (66.217) 

D -50.590 (72.906) 132.875* (76.916) 131.218* (73.388) 

E -204.105** (94.404) 14.525 (99.869) 32.140 (95.389) 

FG 35.592 (117.020) 109.705 (113.436) 71.718 (111.735) 

       

TQ#AB (REF)       

TQ#C -0.100** (0.048) -0.027 (0.049) -0.041 (0.047) 

TQ#D -0.183*** (0.047) -0.071 (0.051) -0.094* (0.049) 

TQ#E -0.185*** (0.050) -0.043 (0.057) -0.076 (0.055) 

TQ#FG -0.321*** (0.049) -0.102* (0.059) -0.124** (0.057) 

       

Detached (REF)       

Apartment   5.487 (41.743) -56.685 (39.239) 

Semi-detached   -17.547 (32.802) -47.427 (31.008) 

Terrace   -18.061 (35.134) -53.857 (33.098) 

       

1 Floor (REF)       

2 Floors   518.289*** (33.150) 492.860*** (31.563) 

3 Floors   829.710*** (46.477) 784.223*** (44.264) 

4 Floors   552.210*** (206.635) 483.133** (193.952) 

       

Floor area (m2)   8.480*** (1.297) 7.806*** (1.235) 

Year of construction   -0.040 (0.366) -0.052 (0.344) 

Living area percent    -2.032* (1.103) -3.294*** (1.055) 

       

Heating Degree Days   27.651*** (0.313)   

Total precipitation (cm)   23.491*** (0.674)   

Bimonthly Time Dummy     Yes Yes 

Constant 1024.657*** (53.899) -1425.67* (751.461) 1857.671*** (707.585) 

N 149,518  149,518  149,518  

r2 0.028  0.112  0.255  

AIC 2634556  2621070  2594909  

BIC 2634655  2621278  2595246  

Asterisks note significance at the 10 (*), 5 (**), or 1 percent (***) level. Standard errors in brackets. 

Model 1 features a significant interaction for the continuous and categorical EPC independent variables. 

 

 

 
16 Appendix 2G confirms the relationship persists using a categorical version of theoretical energy use. 
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Results in Table 2.10 are obtained using the variant of actual energy use that features an 

absolute reduction in appliance use (AAAbsolute) are in line with those in Table 2.9. Every 

significant coefficient is larger in magnitude than before, reflecting a stronger association 

between theoretical energy use, dwelling characteristics and actual energy use. 

 

Table 2.10: Bimonthly Results – Continuous EPC (AAAbsolute) 

Dep Var: Actual 

energy use 

(kWh/bimonth) 

Model 1Abs Model 2 Abs Model 3 Abs 

Coef. SE Coef. SE Coef. SE 

TQ (kWh/bimonth) 0.586*** (0.052) 0.257*** (0.077) 0.282*** (0.074) 

       

EPC = AB (REF)       

C -36.686 (83.897) 80.930 (85.970) 85.474 (82.242) 

D -50.335 (90.273) 172.676* (95.467) 170.472* (91.035) 

E -234.916** (117.127) 27.987 (124.325) 49.941 (118.660) 

FG 69.487 (141.041) 154.345 (137.354) 106.771 (134.915) 

       

TQ#AB (REF)       

TQ#C -0.126** (0.060) -0.035 (0.060) -0.051 (0.058) 

TQ#D -0.232*** (0.058) -0.091 (0.063) -0.120** (0.061) 

TQ#E -0.234*** (0.062) -0.055 (0.070) -0.096 (0.067) 

TQ#FG -0.407*** (0.061) -0.134* (0.073) -0.162** (0.070) 

       

Detached (REF)       

Apartment   1.912 (51.753) -75.859 (48.617) 

Semi-detached   -26.190 (40.772) -63.580* (38.530) 

Terrace   -28.773 (43.670) -73.615* (41.127) 

       

1 Floor (REF)       

2 Floors   640.371*** (40.979) 608.591*** (38.963) 

3 Floors   1031.274*** (57.534) 974.431*** (54.734) 

4 Floors   677.805*** (255.956) 591.653** (240.308) 

       

Floor area (m2)   10.473*** (1.584) 9.632*** (1.504) 

Year of construction   -0.180 (0.454) -0.195 (0.426) 

Living area percent    -2.413* (1.368) -3.990*** (1.307) 

       

Heating Degree Days   34.441*** (0.390)   

Total precipitation 

(cm) 

  29.411*** (0.840)   

       

Bimonthly Time     Yes Yes 

Constant 1009.958*** (66.653) -1770.902* (933.531) 2329.161*** (878.001) 

N 149,518  149,518  149,518  

r2 0.029  0.113  0.257  

AIC 2,700,145  2,686,646  2,660,127  

BIC 2,700,244  2,686,855  2,660,464  

Asterisks note significance at the 10 (*), 5 (**), or 1 percent (***) level. Standard errors in brackets. 

Model 1 features a significant interaction for the continuous and categorical EPC independent variables. 
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2.4.3 Bimonthly results: Split by EPC 

This section answers the third research question, which investigates whether the effects from 

Model 3 are heterogeneous across the levels of the EPC. These results are presented in Model 

4, which splits the sample according to EPC (Table 2.11). Results show decreasing 

explanatory power for the least energy efficient dwellings. This finding is similar to van den 

Brom et al. (2018), who find their EPC to be more reliable for efficient households.  

 

Table 2.11: Bimonthly Results – Continuous EPC, by EPC category (AARelative) 

Dep Var: Actual energy 

use (kWh/bimonth) 

Model 4 - EPC Label 

AB C D E FG 

TQ (kWh/bimonth) 0.21** 0.16** 0.10 0.44*** 0.09* 

(0.09) (0.06) (0.08) (0.13) (0.04) 

Detached (REF)      

Apartment 31.98 -82.10 -0.66 -57.27 -179.64 

 (101.10) (62.65) (83.19) (136.72) (166.66) 

Semi-detached -97.60 -110.07** 27.47 -48.44 117.17 

 (79.59) (46.16) (61.41) (111.91) (116.53) 

Terrace -33.00 -76.90 -16.62 -53.52 -57.04 

 (81.51) (50.51) (66.16) (115.57) (119.99) 

1 Floor (REF)      

2 Floor 357.15*** 500.60*** 598.68*** 426.30*** 441.32*** 

 (114.05) (51.35) (54.03) (87.08) (100.78) 

3 Floor 673.08*** 819.08*** 725.50*** 771.94*** 708.54*** 

 (133.47) (67.14) (91.89) (146.46) (189.89) 

4 Floors 1110.28*** 357.92 551.62*   

 (149.40) (246.11) (329.90)   

Floor area (m2) 7.45*** 8.41*** 9.84*** -9.41 8.32** 

 (2.05) (1.98) (3.65) (7.38) (3.87) 

Year built -1.38 -0.58 0.01 2.81*** -1.94* 

 (0.95) (0.59) (0.66) (0.84) (1.11) 

Living area percent -12.06*** -3.86** 0.51 -3.93 -0.26 

 (2.98) (1.69) (1.92) (2.86) (3.97) 

      

Bimonthly Time Yes Yes Yes Yes Yes 

Constant 3333.49* 2764.72** 1605.77 -3851.8** 5548.46*** 

 (2011.66) (1184.99) (1334.01) (1658.07) (2126.24) 

N 20,116 64,456 37,506 15,897 11,543 

r2 0.273 0.260 0.255 0.265 0.219 

AIC 346,797 1,113,643 651,925 277,468 203,840 

BIC 346,995 1,113,879 652,147 277,659 204,023 
Asterisks note significance at the 10 percent (*), 5 percent (**), or 1 percent (***) level.  Standard errors in brackets. 

 

Differences are observed in the magnitude of the coefficient for the continuous measure of 

theoretical energy use (EPC). Average effects range from 0.16 to 0.45, which differs from 

the same coefficient in Model 3 (0.22). 
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When split by EPC, dwelling type is only significantly lower for C-rated apartments and 

semi-detached houses. There are significant effects for dwelling size throughout and a 

significant floor area effect in all except E-rated homes, with larger average effects (8.15-

9.78) than in the pooled Model 3 (8.13).  

 

Using the alternative version of our dependent variable (absolute appliance adjustment), we 

see similar results (Table 2.12). Average effects range from 0.20 to 0.56, suggesting that 

changes in theoretical energy use are more closely related to changes in actual energy use. 

Although results at the bimonthly level do not prove the existence of an EPG (Section 2.4.1), 

they highlight the statistically significant role of the EPC, dwelling characteristics and 

seasonality when modelling actual energy use. 

 

Table 2.12: Bimonthly Results – Continuous EPC, by EPC category (AAAbsolute) 

Dep Var: Actual energy 

use (kWh/bimonth) 

Model 4Abs - EPC Label 

AB C D E FG 

EPC (kWh/bimonth) 0.28*** 0.20** 0.13 0.56*** 0.09* 

(0.10) (0.08) (0.10) (0.16) (0.05) 

Detached (REF)      

Apartment 46.28 -107.23 -9.15 -81.08 -238.90 

 (125.04) (78.08) (103.02) (170.65) (199.12) 

Semi-detached -120.69 -140.87** 30.48 -69.20 131.12 

 (98.38) (57.53) (76.44) (139.03) (142.58) 

Terrace -38.88 -102.54 -25.43 -80.06 -84.14 

 (101.16) (62.95) (82.25) (143.65) (146.65) 

1 Floor (REF)      
2 Floor 447.60*** 617.86*** 735.36*** 528.56*** 550.79*** 

 (139.06) (63.87) (66.94) (107.96) (121.96) 

3 Floor 840.97*** 1016.06*** 903.99*** 963.06*** 889.66*** 

 (162.93) (83.37) (114.67) (181.54) (230.83) 

4 Floors 1383.02*** 440.42 664.84   

 (183.26) (305.80) (409.67)   

Floor area (m2) 8.76*** 10.44*** 12.12*** -12.54 11.88** 

 (2.48) (2.47) (4.54) (9.17) (4.65) 

Year built -1.74 -0.86 -0.14 3.31*** -2.47* 

 (1.18) (0.73) (0.82) (1.04) (1.35) 

Living area percent -14.99*** -4.75** 0.65 -4.52 0.35 

 (3.66) (2.11) (2.38) (3.54) (4.85) 

      

Bimonthly Time Yes Yes Yes Yes Yes 

Constant 5796.75** 3779.70** 2025.20 -4260.4** 6792.98** 

 (2473.12) (1479.84) (1658.99) (2108.26) (2681.35) 

N 20,116 64,456 37,506 15,897 11,543 

r2 0.276 0.262 0.257 0.267 0.223 

AIC 355,463 1,141,976 668,373 284,384 208,743 

BIC 355,660 1,142,212 668,595 284,575 208,927 
Asterisks note significance at the 10 percent (*), 5 percent (**), or 1 percent (***) level.  Standard errors in brackets.  
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2.5 Discussion 

The key insight from this study is the striking lack of variation in average actual energy use 

across the sample (457 kWh/year). This suggests that occupant demand for energy may not 

be as responsive to dwelling energy efficiency, which has been observed in the energy use 

of commercial buildings (Better Buildings Partnership 2019). This study also finds evidence 

of an Energy Performance Gap (EPG) for the Irish EPC, with significant differences between 

actual and theoretical energy use. Annual actual energy use is below the theoretical level, 

with a mean deficit of 2,279 kWh/year (-17%) and a median deficit of 1,235 kWh/year 

(10.83%). By comparison, Cozza et al. (2020) find a median EPG of -11% and mean EPG 

of -6% for a sample of Swiss dwellings. In this study, the median EPG is similar (10.8%), 

but the mean difference is far greater (-17%). This confirms the presence of an EPG in the 

Irish context but suggests that the EPG may be larger.    

   

The size of the EPG varies by the EPC level. For the most efficient homes, actual energy use 

exceeds theoretical, with an average difference in the range of 39.6% for AB-rated homes. 

For the least efficient homes, actual energy use is below theoretical, with an average deficit 

of 24% for D-rated homes, 39% for E-rated homes and 56% for FG-rated homes.  

 

These results have significant policy implications, as a nationwide upgrade of dwelling 

energy efficiency may lead to unintended consequences, such as under-heating in the least 

efficient homes potentially leading to over-heating following any upgrade. This is an 

important consideration, as it may run counter to policy targets of reducing energy use (while 

accepting it would likely improve occupant comfort and wellbeing). This is especially 

relevant considering the fact that the Energy Performance Gap is widely accepted in the 

research community, but often ignored in policy discourse (Gram-Hanssen and Georg 2018). 

 

Findings are in line with similar studies of the EPG (Cozza et al. 2020; Majcen et al. 2013; 

van den Brom et al. 2018). Similar to the observation of Delghust et al. (2015), this study 

emphasises the importance of accounting for electricity use, instead of limiting the focus 

strictly space and water heating (Scheer et al. 2013). This is especially important as homes 

become increasingly energy efficient and electricity reliant.  
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The lack of variation in energy use across dwelling of very different theoretical efficiency 

presents opportunities for research across households of differing dwelling energy efficiency 

and socioeconomic status. For example, it could be the case that occupants of energy 

efficient homes have paid a premium for a home that can be heated at a lower effective per-

unit cost. Similarly, possible explanations for the under-heating observed in energy 

inefficient homes could be due to other barriers to energy use such as fuel poverty, which 

have been established in research elsewhere (Coyne et al. 2018). 

 

Results at the bimonthly frequency indicate that a 1 kWh increase in bimonthly theoretical 

energy use is associated with a 0.222 kWh increase in actual energy usage, on average. Other 

results suggest the EPC broadly works as intended, with a less efficient EPC being associated 

with greater actual energy use, when also controlling for key dwelling characteristics and 

seasonality. The coefficient values for dwelling floor size (7.81 kWh/bimonth) indicate that 

larger homes tend to consume more energy. When split by EPC category, greater explanatory 

power for more efficient homes is observed. The model better explains variation for more 

efficient homes, suggesting there is greater uncertainty when modelling less efficient homes, 

a finding that is consistent with van den Brom et al. (2018). 

  

Future work might seek to address some of the limitations of this study. One concern is that 

the actual energy data observed is understated if a home uses another fuel source, e.g. open 

wood burning stove. This is true of many studies that focus on one space heating fuel. In this 

study, this risk is minimized by focusing homes with either natural gas or electricity as their 

heating fuel. To address sample attrition that may arise from customers switching energy 

provider17, criteria based on the number of readings, the level of missingness and for 

unrealistically low metered energy use is applied to ensure sufficient energy use is observed 

(see Appendix 2B). Customer switching could be addressed with access to data from more 

utilities. The addition of household socioeconomic information could help to explain the 

main result of a lack of variation in actual energy use across the sample. Finally, future 

research could seek to quantify changes in whole-home energy use before and following a 

home energy retrofit. This would require a dataset with metered energy use and EPCs pre- 

and post-retrofit. 

 
17 There were 26,154 electricity customer switches on average each month in 2017 (CRU 2018). 
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2.6 Concluding remarks 

This paper investigates the difference between theoretical energy use denoted by a 

residential Energy Performance Certificate (EPC) with actual energy use for a sample of 

9,923 households in Ireland from late 2014 to mid-2017. It is the first paper to test for the 

presence of an Energy Performance Gap using a measure of whole-home energy use for a 

non-social housing sample of dwellings that do not receive a retrofit. It focuses on homes 

heated by natural gas and electricity to profile whole-home energy use and capture fuel 

switching. Households that underwent a retrofit during the observed period are excluded 

from the sample in order to isolate the difference in actual energy use and the theoretical 

level created by the engineering-based model that informs the EPC. 

 

Results show there is very little difference in actual average consumption for households 

across the EPC spectrum. There is a less than five per cent discrepancy (457 kWh/year) 

between the highest and lowest average value. This is a surprising observation which 

warrants further investigation to understand the factors underlying this result. Analysis 

within EPC bands shows evidence of an Energy Performance Gap (EPG), with lower-than-

expected energy use for houses with low energy efficiency and higher-than-expected energy 

use for energy efficient houses. For more efficient homes (AB, C) the average difference 

ranges from +39% to -56% of the relevant EPC value. Less efficient homes (E, FG) feature 

actual energy use lower than predicted, with an average difference ranging from -23% to -

56% below the relevant EPC. Results using a measure of actual energy use with an absolute 

deduction for appliance usage (instead of relative) display similar results.  

 

Results are consistent with similar studies of the EPG that focused exclusively on social 

housing tenants (Majcen et al. 2013; van den Brom et al. 2018). Additional results show a 

heterogenous relationship between theoretical energy efficiency and actual energy use across 

EPC levels. This is consistent with prior work that found the EPC has less explanatory power 

for the least efficient homes (Cozza et al. 2020; Sunikka-blank and Galvin 2012; van den 

Brom et al. 2018) and for the ‘prebound’ effect (Cozza et al. 2020; Sunikka-blank and Galvin 

2012). 
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Policymakers could seek to improve the EPC by including historical energy use information. 

This could be facilitated by the upcoming rollout of residential smart meters as part of the 

Climate Action Plan (Government of Ireland 2019). Since the Irish EPC is consistent with 

EU guidance, it is likely that the issues identified in this paper could be present in other 

contexts, especially in the UK, as the Irish EPC is based on the UK Standard Assessment 

Procedure for dwelling energy ratings (SEAI 2012) and a similar lack of variation in actual 

energy use has been observed in commercial buildings (Better Buildings Partnership 2019).  

Future work could include additional utilities, socioeconomic information and track 

occupants over time (as is done in a retrofit study by Aydin et al. (2017)) to minimise 

customer attrition and include additional relevant covariates. This would enable researchers 

to understand the factors causing differences in the most and least efficient homes. 
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2.A Constructing actual energy use variable 

This paper tests for differences in actual energy use (AQ) with the theoretical level from the 

Irish residential EPC (TQ). Whenever actual energy use is mentioned, it applies to the 

created variable that is comparable to theoretical energy use (Equation 2.5). Actual meter 

readings are aggregated, weighted by the heatable floor area (per EPC) and account for the 

difference between ‘primary’ and ‘delivered’ energy use (per EPC). The actual energy use 

variable must be adjusted to reflect ‘primary’ energy consumed.  

 

Per SEAI, ‘primary’ energy use includes the energy consumed in the house plus an overhead 

for energy used in its generation and transmission. ‘Delivered’ energy is only what is 

consumed within the home. In the SEAI database of 729,609 homes, ‘primary’ is 39% larger 

than ‘delivered’ on average. In the sample of 9,923 homes, ‘primary’ is 22% larger than 

‘delivered’ on average (Figure 2.4). We then adjust it to only reflect energy for space and 

water heating, lighting and ventilation. 

 

EPC TQi =
PrimaryEnergyi

HeatableFloorAreai
 [2.5] 

Actual energy use AQit =
∑ Meter readings

it

HeatableFloorAreai
 ∗  

TotalPrimaryEnergyi

TotalDeliveredEnergyi
∗ AA𝑗 [2.6] 

 
Figure 2.4: [2A] Sample scatter of Primary Energy v Delivered Energy 
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The EPC is based on heatable floor area (in kWh/m2/year). Heatable and total floor area 

variables are present in the SEAI data. One source of sample attrition is that approximately 

11% of dwellings in the SEAI database report a heatable floor area of zero, the majority 

being mid-floor apartments where heat loss is through the external wall (Table 2.13). These 

are excluded as they prevent the actual energy use variable from being constructed. 

 

Table 2.13: [2A] Homes with zero floor area 

  Apartment Basement  Detached  
Ground 

Apartment 
Maisonette 

Mid  

floor 

apartment 

Top 

floor 

apartment 

Total 

Houses 2,359 2 1 815 2,357 42,276 33,406 81,216 

Source: SEAI BER EPC Database (n=729,609) 

 

Figure 2.5 compares the distribution of the continuous theoretical energy use (TQ) with the 

actual energy use (AQ) for the two full years observed (Y1, Y2). The distributions are within 

a similar range, which suggests that the removal of extreme values was successful. 

 

 

Figure 2.5: [2B] Distributions of continuous theoretical v actual energy use (Y1, Y2) 
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2.B Construction and cleaning of meter readings 

This appendix summarises the steps taken to link, clean and filter the sample of residential 

energy use to reach a sample that is suitable for analysis. 

 

1. Linking customers 

• Gas fuelled homes are identified by linking Electric Ireland gas customer accounts with 

the corresponding Electric Ireland electricity account. 

• Electricity accounts are anonymously merged with the SEAI dwelling data using the 

electric meter number (MPRN), which was unobservable to the research team. 

• There are 286,523 unique customer matches between the original Electric Ireland 

measured energy use data and the SEAI dwelling data. Of this, 21,198 are unique 

matches for a gas customer account that is linked to an electricity customer account. 

 

2. Energy data merge and sample restrictions 

The original energy dataset features 30,045,696 daily energy readings (28,563,625 

electricity, 1,482,071 gas) beginning November 2011. We drop households with no match 

in the SEAI dwelling data. Readings are aggregated bimonthly and adjusted to reflect the 

period of use e.g. A reading in March 2015 reflects usage in January 2015. Additional 

observations are dropped for the following reasons: 

 

• Total household metered energy usage is zero.  

• House is not heated by gas (per SEAI). 

• Multiple meters for a house (per SEAI). 

• A house received a grant-supported retrofit during the observed period (per SEAI). 

• Drop electricity readings before the start of the gas sample (November 2014) to focus on 

the common period of electricity and gas use. 

• A ratio of the number of missing periods to the number of periods present is created. 

This ratio is equal to 0.75 if a household is present for 16 periods but if missing for any 

four periods. Any household with a ratio less than 0.5 is dropped, which does not 

discriminate against homes that enter the data later. 

 



Chapter 2. Testing the accuracy of residential Energy Performance Certificates 

 

 

42 

 

• Drop any household with a gap between observations of at least six months. Although 

the customer might be present during the entire sample period, such a large missing 

period makes it unsuitable for analysis, especially for annual values. 

• Drop any house with fewer than six observations (a full year of readings). 

• Drop any house with an annual energy usage value (Y1, Y2) reading in the top or bottom 

one percent of the distribution to observe households with realistic energy use. 

• Drop homes with an SEAI heatable floor area of less than 10m2. Mostly apartments. 

• Remove households with a Delivered Energy value in the top or bottom 1% of the 

distribution. As noted in Appendix 2.A, the SEAI dataset includes two variables of 

calculated annual use, one reflecting consumed energy (Delivered Energy) and the other 

including an overhead for energy generation (Primary Energy). 

 

Table 2.14: [2B] Assumed appliance-specific electricity energy use 
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Total 

Annual consumption 

(kWh) 

427 290  56 167 22 178 18 199  1,357 

Source: Owen & Foreman (2012). Note: Values used to construct AAAbsolute. 1.Values assume a multiple 

person household. The annual average lighting energy consumption of 548 kWh is disregarded in our 

analysis as the EPC accounts for lighting. 
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Table 2.15 compares dwelling characteristics for the initial sample (n=13,906) and the final 

sample (n=9,923) that is used for analysis in the body of the chapter. Based on this 

comparison, data cleaning did not change the profile of the sample in terms of theoretical 

dwelling energy efficiency and dwelling features. 

 

Table 2.15: [2C] Initial Sample v Final Sample dwelling comparison 

   

Initial Sample 

(n=13,906) 

Final Sample 

 (n=9,923) 

  Count % Count % 

EPC AB 1,998 14.37 1,351 13.61 

 C 5,894 42.38 4,257 42.90 

 D 3,369 24.23 2,486 25.05 

 E 1,471 10.58 1,059 10.67 

 FG 1,174 8.44 770 7.76 

      

Dwelling Type Detached 1,759 12.65 1,197 12.06 

 Apartment 1,217 8.75 873 8.80 

 Semi-detached 5,171 37.19 3,565 35.93 

 Terrace 5,759 41.41 4,288 43.21 

      

 Number of households 13,906 100 9,923 100 

      

Dwelling Features  Mean SD Mean SD 

 Number of floors 1.96 0.48 1.94 0.48 

 Year of Construction 1978 30 1979 28.98 

 Percentage of home that is living area 21.24 9.93 21.33 9.81 
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2.C Weather and energy price controls 

 

Figure 2.6: [2C] Bimonthly Heating Degree Days and Rainfall (by Station) 

Source: Met Eireann. Note: A Heading Degree Day occurs when mean temperature is below 15.5 Celsius. 

 

 

 

Figure 2.7: [2D] EU 2016 H2 electricity and gas price 

Source: Eurostat H2 2016 Energy Prices  
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2.D The Irish utility regulator annual energy use benchmark 

The Irish Commission for Regulation of Utilities (CRU) provides reference values for annual 

domestic energy use to be used by price comparison websites and energy providers. 2017 

annual averages were set at 4,200kWh and 11,000kWh for electricity and natural gas, 

respectively. These are approximately 20% lower than the pre-2017 reference values. Table 

16 shows the CRU annual means split by electricity meter type and dwelling type for gas.  

 

The CRU observes average electricity use by tariff, with urban and rural 24HR tariffs below 

the national average. However, urban and rural Day/Night tariffs show an average above the 

national mean. The CRU gas data shows that the national average of 11,000 is higher than 

what would be expected for an apartment. Unfortunately, we cannot control for tariff type 

in our data. This underscores the need to consider appropriate reference points for annual 

national averages when considering our constructed variable of actual energy use and how 

it can vary by tariff and property type. 

 

Table 2.16: [2D] CRU Average Energy Consumption 

 Annual average electricity 

consumption (kWh) 

 Annual average gas 

consumption (kWh) 

CRU Mean (2017) 4,200  11,000 

    

Electricity Tariff Type  Gas Dwelling Type  

Urban 24HR 3,600 (-14%) Apartment (1-3 bed) 7,000 (-46%) 

Urban Day/Night Tariff 6,200 (+48%) House (1-3 bed) 10,500 (-5%) 

Rural 24HR 3,900 (-7%) Large House (4-6 bed) 13,000 (+18%) 

Rural Day/Night Tariff 12,000 (+286%) Standalone Residential 15,000 (+36%) 

Source: CRU Decision Paper CER/17042 
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2.E Robustness Check 1 – Annual results (Split by year of energy use) 

This section provides a robustness check on the earlier test of significant differences between 

annual values of theoretical and actual energy use. The body of the paper aggregates 19,251 

observations of actual annual energy use. Here we split the sample into 9,923 household-

level observations for one full year of energy use and a further 9,328 observations of a second 

full year of energy use. Comparing Table 2.17 and Table 2.18, we observe a similar trend in 

differences between actual and theoretical energy use. Results for the second year of energy 

use feature a slightly smaller deficit between actual and theoretical energy use, with smaller 

deficits observed across every level of the EPC and property type. The only exception is the 

most energy efficient homes, with a slightly larger deficit for AB- and C-rated homes. 

 

Table 2.17: [2E] Y1 difference between annual actual and theoretical energy use  

   n Mean AQY1 Mean EPC Difference % Difference SE P-Value 

AQAll,Y1 – TQ  9,923   10,532   13,152  -2,620 -19.92% 86 0*** 

EPC Grade 
    

 
  

 AB  1,351   10,392   7,509  2,882 38.38% 171 0*** 

 C  4,257   10,521   10,842  -322 -2.97% 100 0.002*** 

 D  2,486   10,546   14,373  -3,827 -26.62% 147 0*** 

 E  1,059   10,745   18,159  -7,414 -40.83% 246 0*** 

 FG  770   10,499   24,990  -14,500 -58.02% 400 0*** 

Dwelling Type 
    

 
  

 Apartment  873   7,914   11,625  -3,711 -31.92% 227 0*** 

 Detached  1,197   13,261   19,323  -6,061 -31.37% 346 0*** 

 Semi-detached  3,565   11,026   13,996  -2,970 -21.22% 140 0*** 

 Terrace  4,288   9,892   11,039  -1,146 -10.38% 116 0*** 

*** P<0.01, **P<0.05, *P<0.10. Note: Sample of 9,923 homes with 9,923 observations of actual annual energy use 

(AQ) and 9,328 observations of a second year of energy use. Measured using AARelative dependent variable. 

 

Table 2.18: [2F] Y2 difference between annual actual and theoretical energy use 

   n Mean AQY2 Mean EPC Difference % Difference SE P-Value 

AQAll,Y2 – TQ  9,328   11,229   13,144  -1,916 -14.57% 87 0*** 

EPC Grade 
    

 
  

 AB  1,250   10,761   7,637  3,124 40.90% 175 0*** 

 C  4,012   11,262   10,808  453 4.20% 99 0*** 

 D  2,349   11,309   14,332  -3,022 -21.09% 147 0.6 

 E  992   11,326   18,105  -6,778 -37.44% 242 0*** 

 FG  725   11,458   24,932  -13,500 -54.15% 421 0*** 

Dwelling Type 
    

 
  

 Apartment  801   8,333   11,563  -3,230 -27.93% 233 0.002*** 

 Detached  1,119   14,194   19,451  -5,258 -27.03% 354 0.181 

 Semi-detached  3,340   11,796   14,021  -2,226 -15.87% 139 0*** 

 Terrace  4,068   10,518   11,000  -483 -4.39% 117 0*** 

*** P<0.01, **P<0.05, *P<0.10. Note: Sample of 9,923 homes with 9,923 observations of actual annual energy use 

(AQ) and 9,328 observations of a second year of energy use. Measured using AARelative dependent variable. 
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2.F Robustness Check 2 – Annual results (Split by sub-sample) 

As noted in the body of the paper, the sample of 9,923 houses (149,518 readings) is divided 

across 8,311 houses (124,763 readings) that never receive a retrofit and a further 1,612 

houses (24,755) that completed a retrofit prior to the start of our observed period of energy 

use. Results in the body of the paper report values for the entire sample, being explicit in 

how the sample excludes houses that change their dwelling energy efficiency over time. This 

appendix replicates those results, split by subsample, as a robustness check, to show no major 

discrepancy exists between houses in the sample (Table 2.19 and 2.20). 

 

Table 2.19: [2G] Never Retrofit - Difference in annual actual and theoretical energy use 

   n Mean AQ Mean EPC Difference % Difference SE P-Value 

AQControl – TQ  16,091   10,657   12,985  -2,327 -17.92% 68 0*** 

EPC Grade 
    

 
  

 AB  2,317   10,205   7,087  3,118 43.99% 129 0*** 

 C  6,590   10,604   10,346  258 2.49% 77 0.001*** 

 D  3,861   10,711   14,045  -3,335 -23.74% 114 0*** 

 E  1,858   11,081   17,995  -6,914 -38.42% 179 0*** 

 FG  1,465   10,937   25,035  -14,100 -56.32% 294 0*** 

Dwelling Type 
    

 
  

 Apartment  1,622   8,088   11,501  -3,413 -29.68% 165 0*** 

 Detached  1,723   13,391   19,390  -5,998 -30.94% 301 0*** 

 Semi-detached  5,485   11,207   14,041  -2,834 -20.18% 113 0*** 

 Terrace  7,261   10,167   10,998  -831 -7.56% 90 0*** 

*** P<0.01, **P<0.05, *P<0.10. Note: Sample of 8,311 homes that never avail of a grant-supported 

retrofit. 8,311 observations of one year of actual energy use and a further 7,780 observations for the 

same houses with a second year of observed actual energy use. Measured using AARelative variant of 

dependent variable. 

 

Table 2.20: [2H] Retrofitted - Difference in annual actual and theoretical energy use 

   n Mean AQ Mean EPC Difference % Difference SE P-Value 

AQTreated – TQ  3,160   11,949   13,980  -2,031 -14.52% 138 0*** 

EPC Grade 
    

 
  

 AB  284   13,540   11,517  2,023 17.57% 375 0*** 

 C  1,679   11,966   12,711  -745 -5.86% 171 0*** 

 D  974   11,735   15,573  -3,838 -24.65% 250 0*** 

 E  193   10,495   19,456  -8,961 -46.06% 626 0*** 

 FG  30   12,293   21,387  -9,094 -42.52% 1318 0*** 

Dwelling Type 
    

 
  

 Apartment  52   8,954   14,544  -5,590 -38.44% 1043 0*** 

 Detached  593   14,644   19,371  -4,728 -24.41% 408 0*** 

 Semi-detached  1,420   12,135   13,879  -1,744 -12.57% 194 0*** 

 Terrace  1,095   10,392   11,165  -772 -6.92% 196 0*** 

*** P<0.01, **P<0.05, *P<0.10. Note: Note: Sample of 1,612 homes that avail of a grant-supported 

retrofit before the period of energy use. 1,612 observations of one year of actual energy use and a further 

1,548 observations for the same houses with a second year of observed actual energy use. Measured using 

AARelative variant of dependent variable. 
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2.G Robustness Check 3 – Bimonthly results using categorical EPC 

In addition to the continuous version of the EPC, we model the categorical version of the 

EPC to observe associations (Table 2.21). This is performed in order to consider the average 

effect of a one unit increase in actual energy use for a change in the EPC. This is appealing 

if we believe that occupants know their EPC but are inattentive to the specific unit value. 

These results are consistent with those in the body of the paper using a continuous EPC and 

confirm that less efficient EPCs are associated with increasing levels of actual energy use. 

 

Table 2.21: [2I] Bimonthly OLS results – Categorical EPC 

Dep Var: Bimonthly 

measured energy use 

(kWh) 

Model 5 Model 6 Model 7 

Coef. SE Coef. SE Coef. SE 

EPC Label = AB REF  REF  REF  

C 37.644 (26.467) 152.072*** (25.291) 143.463*** (23.823) 

D 36.961 (28.886) 224.829*** (29.235) 189.794*** (27.623) 

E 54.256 (35.535) 277.004*** (37.420) 231.953*** (35.467) 

FG 49.832 (41.052) 310.585*** (44.758) 241.323*** (42.668) 

       

Detached (REF)       

Apartment   -9.963 (41.907) -72.374* (39.406) 

Semi-detached   -19.210 (32.817) -49.929 (31.025) 

Terrace   -26.649 (35.015) -63.286* (32.978) 

       

1 Floor (REF)       

2 Floors   491.419*** (32.992) 467.667*** (31.387) 

3 Floors   794.670*** (46.279) 750.215*** (44.048) 

4 Floors   508.383** (201.707) 443.997** (190.195) 

       

Floor area (m2)   13.923*** (0.566) 13.342*** (0.540) 

Year built   -0.374 (0.358) -0.408 (0.336) 

Living area percent   -2.558** (1.091) -3.708*** (1.044) 

       

Total Heating Degree 

Days 

  27.656*** (0.313)   

Total rainfall (cm)   23.470*** (0.676)   

       

Bimonthly Time     YES YES 

Constant 1613.435*** (23.329) -805.289 (731.714) 2537.047*** (688.257) 

N 149,518  149,518  149,518  

r2 0.000  0.111  0.254  

AIC 2,638,800  2,621,245  2,595,109  

BIC 2,638,849  2,621,404  2,595,396  

Asterisks note significance at the 10 percent (*), 5 percent (**), or 1 percent (***) level. Standard errors 

in brackets. Modelled using AARelative variant of dependent variable. 
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2.H Robustness Check 4 – Fuel-specific results 

Results in the body of this paper consider a measure of actual energy use that includes 

electricity and gas, while deflating to account for appliance use. This is designed to be 

comparable to the EPC. Many other studies of the EPG focus on the comparison between 

gas energy use and the EPC (Aydin et al. 2017; Cozza et al. 2020; Sunikka-blank and Galvin 

2012). This section presents annual results that performs a t-test of means for gas. If this 

shows similar results to Section 2.4.1, this suggests that the evidence on the EPG observed 

is all due to a difference in gas consumption from the theoretical EPC level. 

 

Table 2.22: [2J] Difference between annual Actual (AQ) and Theoretical (TQ) gas use (AARelative) 

   n Mean AQ Mean TQ Difference % Difference SE P-Value 

AQAll – TQ 19251 9452.773 13148.1 -3695.331 -28% 64.591 0*** 

EPC Grade        

 AB 2601 8979.353 7570.791 1408.562 19% 134.252 0*** 

 C 8269 9279.777 10825.76 -1545.985 -14% 77.938 0*** 

 D 4835 9628.3 14353.03 -4724.732 -33% 114.68 0*** 

 E 2051 9990.076 18132.59 -8142.514 -45% 189.71 0*** 

 FG 1495 9928.487 24961.51 -15000 -60% 303.971 0*** 

Dwelling Type        

 Apartment 1674 6945.365 11595.13 -4649.767 -40% 177.632 0*** 

 Detached 2316 12413.54 19384.96 -6971.412 -36% 259.594 0*** 

 Semi-detached 6905 9990.711 14008.02 -4017.31 -29% 105.639 0*** 

 Terrace 8356 8689.943 11019.98 -2330.038 -21% 86.446 0*** 
*** P<0.01, **P<0.05, *P<0.10. Note: Units in kWh/year. Sample features 9,923 observations of one year of actual 

GAS use and a further 9,328 observations from the same sample of houses with a second year of actual GAS use. 

A test of equality of medians (using signtest STATA command (Snedecor & Cochran, 1989), confirms the same 

differences exist. 

 

Table 2.22 highlights that the average EPG is 28% when only studying gas energy use. This 

is almost larger than the average deficit in the body for total energy use (-17%). Interestingly, 

a similar negative relationship exists between the size of the deficit and energy efficiency 

(+19% for AB, -68% for FG). This result suggests that estimates of the EPG that do not 

account for electricity use in the home may be overstating the true EPG as they do not 

account for fuel switching. This is especially the case for homes with the lowest energy 

efficiency. The sample average deficit of 28% is in line with estimates of rebound effects 

observed in other contexts (Sorrell et al. 2009). 
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Although Table 2.22 made a suitable comparison between gas energy use and the EPC), 

Table 2.23 is difficult to interpret because electricity use in the home was never intended to 

be the sole determinant of the EPC (which reflects space and water heating). As such, the 

average deficits are large negative values. This makes sense, as electricity is more commonly 

used as a secondary fuel in this sample, in association with gas heating. 

 

Table 2.23: [2K] Difference in annual Actual (AQ) and Theoretical (TQ) electricity use (AAAbsolute) 

   n Mean AQ Mean EPC Difference % Difference SE P-Value 

AQAll – TQ 19251 4134 13148 -9014 -69% 53 0*** 

EPC Grade       
 

 AB 2601 4232 7571 -3339 -44% 81 0*** 

 C 8269 4321 10826 -6505 -60% 51 0*** 

 D 4835 4018 14353 -10300 -72% 81 0*** 

 E 2051 3793 18133 -14300 -79% 147 0*** 

 FG 1495 3777 24962 -21200 -85% 272 0*** 

Dwelling Type       
 

 Apartment 1674 3198 11595 -8397 -72% 126 0*** 

 Detached 2316 4726 19385 -14700 -76% 222 0*** 

 Semi-detached 6905 4257 14008 -9751 -70% 82 0*** 

 Terrace 8356 4056 11020 -6964 -63% 67 0*** 
*** P<0.01, **P<0.05, *P<0.10. Note: Sample of 9,923 homes with 9,923 observations of one year of actual 

ELECTRICITY use and a further 9,328 observations for the same houses with a second year of observed actual 

ELECTRICITY use. A test of equality of medians (using signtest STATA command (Snedecor & Cochran, 1989), 

confirms the same differences exist. 
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Chapter 3: Evaluating a national residential 

energy efficiency subsidy using whole-home 

energy use data 
 

3.1 Introduction 

In the EU, buildings are responsible for roughly 40% of energy use and 36% of CO2 

emissions (European Commission, 2019). Although new building regulations drive 

improved efficiency for new builds, upgrading the efficiency of the existing building stock 

is an important goal. It is especially important since approximately 75% of buildings are 

energy inefficient and only 0.4-1.2% of the building stock is renovated annually, depending 

on the country (European Commission, 2019). The residential sector represents 25.4% of 

final energy use in the EU in 2016. Many policies aim to improve the efficiency of space 

and water heating, which is responsible for 79.2% of residential energy use on average in 

the EU (Eurostat, 2019).  

 

Influential evidence from US studies note that although subsidies of energy efficiency could 

improve welfare, their current calibration does not represent value for money or deliver 

expected savings (Allcott and Greenstone, 2017; Fowlie et al., 2018). As noted by Fowlie et 

al. (2018), many energy efficiency investments offer a win-win outcome, paying for 

themselves through energy use savings, while also decreasing emissions and improving 

health and comfort (Schwarz and Taylor, 1995).  

 

Studies of the external benefits of energy efficiency present the case for subsidised energy 

efficiency, especially for renovating existing dwellings. However, reality often deviates from 

the social optimum. Jaffe and Stavins (1994) present the ‘Energy Efficiency Gap’ theory, 

where society features an under-adoption of energy efficient technologies with a positive net 

present value. Gerarden et al. (2015) identify three main areas that help to explain the lack 

of adoption of energy efficiency: Market failures, behavioural factors and model 

measurement error. Allcott & Greenstone (2012) note that evidence on the Energy Efficiency 

Gap is often situation specific, with measured savings often lower than engineering-based 

estimates.  
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In many residential retrofit settings, ‘rebound’ effects may occur when occupants consume 

a portion of the savings delivered by retrofit (Sorrell et al., 2009).  Policymakers  that intend 

to subsidize retrofit only to achieve savings in energy use to achieve national targets may be 

disappointed by the savings if rebound is present. However, many retrofit subsidy policies 

feature multiple objectives, including improving occupant comfort and wellbeing (Coyne et 

al. 2018; Ryan and Campbell 2012). 

 

This study measures the extent to which domestic retrofit delivers real energy savings in 

Ireland. It is motivated by a policy target to upgrade a half a million homes to a specific EPC 

standard (B2) by 2030 (Government of Ireland, 2019)) and the mixed empirical evidence to 

date from other contexts. According to the Sustainable Energy Authority of Ireland (SEAI, 

2019), Ireland is second last out of 28 EU countries in decarbonising heating, primarily due 

to the spatially dispersed nature of dwellings. By late 2019, a residential energy efficiency 

subsidy scheme has been adopted by 376,218 homes (18% of the 2016 national dwelling 

stock of 2,003,645)18. Despite this, Ireland is set to miss its targeted 20% improvement in 

energy efficiency, relative to 2005 levels, with savings of 16%.  

 

This paper makes several important contributions. It is one of the largest studies of retrofit 

using whole-home energy use data for a non-social housing sample. This is important to 

quantify the effectiveness of retrofit without focusing on a sample that disproportionately 

experiences fuel poverty (Fowlie et al., 2018). Secondly, it uses whole-home energy data 

(i.e. electricity and gas meter readings) to capture potential spill overs between fuel sources 

due to retrofit. This is not captured in other papers examining retrofit effectiveness (Coyne 

et al., 2018; Scheer et al., 2013).  

 

Finally, this study addresses concerns regarding self-selection issues associated with the 

decision to undergo a retrofit. Most studies of retrofit compare a treatment group that 

receives a subsidy and a control group that do not (Fowlie et al., 2018; Scheer et al., 2013).  

 

 

 
18 See https://www.seai.ie/grants/home-energy-grants/home-upgrades/home-energy-upgrades-by-county.pdf 

https://www.seai.ie/grants/home-energy-grants/home-upgrades/home-energy-upgrades-by-county.pdf
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In the absence of experimental variation, this study considers two control groups: homes that 

never receive a retrofit (consistent with prior literature) and a second control group of homes 

that received a retrofit prior to the observation period. This helps account for potential self-

selection issues related to the choice to undergo a retrofit. 

  

The rest of this study is laid out as follows: Section 3.2 details relevant literature. Section 

3.3 provides context to the case study. Section 3.4 details the conceptual framework, states 

the research questions and details the empirical strategy. Section 3.5 describes the dataset 

while Section 3.6 presents results. Section 3.7 concludes by discussing policy implications. 

 

3.2 Related Literature 

This section summarises notable studies of retrofit, many of which are concerned with 

rebound effects that causes actual savings to deviate from the level expected. Other literature 

which considers the multiple benefits of retrofit are also discussed.  

 

3.2.1 The effectiveness of retrofit 

Studies of retrofit have identified rebound effects, where improvements in dwelling energy 

efficiency lower the effective cost of domestic energy services and result in increased energy 

use post-retrofit (Sorrell et al., 2009). Rebound effects have the potential to undermine the 

intent of policies that subsidise retrofit (Gerarden et al., 2015). Such retrofit policies aim to 

overcome the investment inefficiencies that comprise part of the Energy Efficiency Gap 

(Jaffe and Stavins, 1994). As noted by Aydin et al. (2017), uncertainty regarding the actual 

size of rebound makes it difficult to include when formulating energy efficiency policies. 

 

The level of rebound has been shown to vary across contexts, with effects ranging from 0% 

to 100%, with an average long run rebound of 30% (Sorrell et al., 2009). Sanders and 

Phillipson (2006) find that only 50% of expected savings are realised, with temperature take-

back responsible for 15% of the shortfall. In the UK, Dowson et al. (2012) note that predicted 

savings from a model may be halved in reality due to poor installation, monitoring and the 

increased use of heating (i.e. rebound) following refurbishment. 
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Aydin et al. (2017) highlight some of the factors causing rebound to differ, with homeowners 

(26.7%) rebounding less than tenants (41.3%). They also find significant heterogeneity in 

rebound depending on household income, with low-income households displaying a higher 

rebound effect than other cohorts. This is likely due to fuel poverty, detailed in the next 

section as a qualitative motivation for retrofit.  

 

Fowlie et al. (2018) outline the extent of the rebound issue in an analysis of 30,000 US low-

income homes. They suggest that upfront investment costs are about twice the actual energy 

savings and model-projected savings are more than three times larger than actual savings. 

Even after accounting for rebound (which they observe little of) and societal benefits from 

reduced emissions they find an average annual rate of return of approximately -7.8%. In a 

study of subsidised heat-pumps in the USA, Alberini et al. (2016) show that average energy 

savings of 8% are driven by an average 16% saving from adopters without rebate and 

average savings close to zero for those that received a rebate. This serves as a note of caution 

to policymakers about the importance of calibrating policies correctly. 

 

Despite the generally bleak consensus around the ability of energy-related subsidies to 

achieve results, there is hope. Allcott & Greenstone (2017) evaluate the welfare effects of a 

randomly assigned subsidy towards home energy audits. They find unobserved benefits and 

costs, with realized energy savings only 58% of the level predicted. They estimate that 

average gas savings after retrofit are only 29% of the level predicted by an engineering-

based model.  Without proper subsidy calibration, societal welfare is net negative. However, 

there is potential to improve welfare if the subsidy is better calibrated.  The evidence to date 

on residential energy efficiency schemes suggests they do not appear to deliver on their 

promise of achieving stated reductions in energy use. This is mainly due to human behaviour 

deviating from engineering model-based estimates (Allcott and Greenstone, 2012). 

 

3.2.2 The multiple benefits of retrofit 

Like many energy efficiency policies, a subsidised retrofit may seek to achieve multiple 

aims, lowering energy use while also increasing occupant comfort (Ryan and Campbell 

2012). Evidence suggests that homeowners considering a retrofit are influenced by potential 

energy savings, the private cost of investment and comfort gain, respectively (Aravena et al. 

2016). Environmental benefits are a by-product of lower energy use.  
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The multiple benefits of retrofit are pronounced when policies target social housing tenants 

who experience fuel poverty (Coyne et al. 2018; Fowlie et al. 2018). In a study of social 

housing tenants (n=94), Coyne et al. (2018) note that there is an average 30% shortfall 

between the expected and actual change in energy use, which underlines the important role 

of occupant behaviour in realising the expected energy savings.  

 

Although much attention is given to the qualitative benefit of retrofit, consideration should 

be given to the negative qualitative consequences. Collins & Dempsey (2019) detail 

international case studies of the unintended consequences of retrofit, suggesting that 

increased air tightness can lead to higher levels of radon gas and increased mould growth. In 

a separate study of social housing tenants, improved cavity wall insulation increased indoor 

temperatures and occupant comfort but also increased pollutants (Broderick et al. 2017).  

 

It is likely that indirect benefits and consequences help inform decisions to subsidise 

retrofits. In this sense, studies that focus on changes in energy use following a retrofit likely 

provide a lower bound estimate of total societal welfare. From the narrow perspective of 

reducing energy use, studies that focus exclusively on social housing tenants run the risk of 

presenting a pessimistic view on the energy savings of retrofit, as occupants are more likely 

to consume their energy savings. 

 

3.3 Case study context: Ireland 

This study quantifies actual changes in whole-home energy use for a non-social housing 

sample of Irish households. This section provides context to the research setting, including 

key policies and relevant research to date. 

 

3.3.1 Residential energy efficiency in Ireland 

The EU set 2030 climate targets to i) source 32% of the energy mix from renewable sources, 

ii) reduce greenhouse gas emissions by 40% from 1990 levels and iii) improve energy 

efficiency by 32.5%, relative to a 2007 forecast of 2030 energy use (European Parliament, 

2018). As part of this, Ireland aims to improve energy efficiency by 20% before 2020 relative 

to average national energy use from the period 2001-2005, equating to energy savings of 

31,925 GWh (DCENR, 2009).  
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By early 2017 Ireland has only achieved a 12% improvement in energy efficiency and is 

expected to miss the 2020 target by 3.77% (DCCAE, 2017), with compliance penalties 

potentially costing €80-140 million (Deane, 2017).  

 

Ireland is an ideal case study because it features the third highest per-capita emissions in the 

EU19, despite energy consumed per dwelling falling by 32% from 1990-2015 due to 

increased retrofits, improved building regulations and macroeconomic factors (SEAI, 2016). 

Secondly, Ireland has an ambitious plan to improve residential energy efficiency by 

retrofitting half a million homes (a quarter of the 2016 national dwelling stock20) to a high 

B2 EPC standard by 2030. Other targets include the installation of smart meters in every 

home by 2024 to improve demand side responsiveness (Government of Ireland, 2019). 

 

Ireland also expects to reduce residential emissions by transitioning to natural gas use, which 

is considered a ‘clean’ fossil fuel that emits 40% less CO2 than coal and 22% less CO2 than 

oil (Government of Ireland, 2019). Gas currently represents 21.7% of Ireland’s final energy 

consumption in the residential sector, 12th highest in EU-28 (Eurostat, 2019). By contrast, 

Ireland is highest in the EU-28 in terms of oil (38.9%) and second highest for solid fuel 

(11.7%). Gas is viewed as a low-carbon transition fuel that could accommodate hydrogen 

and biomethane by 2050 (GNI, 2019). It is present in 700,000 Irish houses, with 300,000 

potential customers close to the network who mostly use oil (Ervia, 2018). Analysis suggests 

that decarbonising heating for the one million homes on or close to the gas network is three 

times cheaper with renewable gas than it is for electrification (Ervia, 2018). 

 

3.3.2 SEAI and the Better Energy Homes grant 

The Sustainable Energy Authority of Ireland (SEAI) administers energy efficiency policy 

supports in Ireland. Since 2009, this includes the residential Better Energy Homes grant, 

where measures are approved by a registered contractor and inspected following completion. 

As of June 2018, 219,988 homes availed of the grant with a total subsidy of €225 million21. 

Table 3.1 details the most recent grant levels, with bonus payments for adopting three or 

four measures. Measures generally include insulation or a boiler replacement.  

 
19 See https://www.cso.ie/en/releasesandpublications/ep/p-eii/eii19/mainfindings/ 
20 See https://www.cso.ie/en/releasesandpublications/ep/p-cp1hii/cp1hii/hs/ 
21 See https://www.seai.ie/data-and-insights/seai-statistics/better-energy-home-statistics/ 

https://www.cso.ie/en/releasesandpublications/ep/p-eii/eii19/mainfindings/
https://www.cso.ie/en/releasesandpublications/ep/p-cp1hii/cp1hii/hs/
https://www.seai.ie/data-and-insights/seai-statistics/better-energy-home-statistics/
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Table 3.1: Better Energy Homes grant payment levels  

Measure Category Grant value (€) from March 2015 

Roof Attic Insulation 300 

Wall Cavity wall insulation 300 

 Internal dry-lining1 1200/1800/2400 

 External wall insulation1 2250/3400/4500 

Boiler High efficiency boiler (oil / gas) with 

heating controls 

700 

 Heating controls upgrade only 600 

Solar Solar heating 1200 

BER Mandatory Pre- and Post-Retrofit Audit 50 

Bonus Three measures 300 

 Four measures 100 
Source: Collins & Curtis (2016). Note: 1 Values for Apartment / Semi-Detached / Detached houses, 

respectively. A version of this table including prior iterations of the scheme is present in Appendix 3.A. 

 

SEAI manage the Building Energy Rating (BER) EPC that is required for properties that are 

sold, rented or receive a grant-supported retrofit (European Union, 2002). The EPC reflects 

theoretical energy use for space and water heating, ventilation and lighting while making 

assumptions regarding occupant behaviour. Table 3.2 shows the categories of the EPC.  

 

Table 3.2: Energy Performance Certificate (EPC) levels  

EPC A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 E1 E2 F G 

Min 0 25 50 75 100 125 150 175 200 225 250 300 340 380 450 

Max 25 49 74 99 124 149 174 199 224 249 299 339 379 449   

Source: SEAI. Note: Minimum and Maximum  values in kWh/m2/year. 

 

The EPC is influenced by dwelling factors such as size, type and heating source (SEAI, 

2014) and discloses theoretical energy performance in units of kilowatt-hour per metre 

squared per annum (kWh/m2/year). This performance is based on ‘primary’ energy use, 

defined as energy delivered plus an overhead for generation and transmission losses. It does 

not include appliance energy use, which estimated at 20% of energy use (SEAI, 2018).  

 

3.3.3 Studies of the Better Energy Homes grant 

Collins and Curtis (2017) examine the value for money of the Better Energy Homes grant 

by studying grant levels and expected changes in energy use. They find that retrofitting less 

efficient homes, larger homes and homes with less air circulation provide greater net benefit.  
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They also assert that retrofits including attic and cavity wall insulation and boiler upgrades 

provide the greatest benefit, while solid and external wall insulation provides less value. 

Work by Scheer et al. (2013) study the same grant, finding an average shortfall of 36% 

between theoretical and actual gas use for an Irish sample (n=210). 

 

This study improves on prior research by focusing on actual changes in whole-home energy 

use. Scheer et al. (2013) study changes in domestic gas usage but do not account for 

electricity used by households. This omits significant energy use in the household. Collins 

and Curtis (2017) estimate the value for money of specific retrofit measures but fail to 

account for changes in actual energy use, relying solely on the change in theoretical energy 

use denoted by EPCs. This does not account for changes in actual energy use, which may 

deviate from the theoretical level.  

 

By focusing on changes in whole-home energy use, this paper addresses two key aspects of 

understanding the total effect of a retrofit: calculating the actual change in total energy use 

and quantifying the actual value for money of a retrofit represents. 

 

3.4 Conceptual framework 

Although a national retrofit scheme aims to improve energy efficiency, there are behavioural 

and market-driven factors which may limit adoption - creating an Energy Efficiency Gap 

(Jaffe and Stavins, 1994). Allcott & Greenstone (2012) detail how policies that i) reduce 

investment inefficiencies or ii) incorporate energy use externalities can help shift demand 

towards a more socially optimal level. Through this lens, a subsidy towards home energy 

retrofit can be viewed as an attempt to reduce investment inefficiencies. 

 

Fowlie et al. (2018) note how an individual privately benefits from improving home energy 

efficiency. Firstly, a more efficient home reduces energy use. Secondly, it increases 

consumption of energy services within the home, as it is now a lower effective price 

following the retrofit (i.e. rebound). From a social perspective, rebound improves consumer 

wellbeing through increased heating and comfort.  
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If the policymaker’s sole objective is to lower energy use, it is important to study actual 

changes in energy use, where consumer behaviour could deviate from the expected change. 

Furthermore, if consumers are availing of a subsidized home energy retrofit, the state is 

effectively financing the additional energy use of households, creating an additional barrier 

to meeting energy efficiency targets. 

 

3.4.1 Research questions 

This study has three specific research questions. The first research question tests whether 

receiving a retrofit lowers actual energy use. Equation 3.1 presents the null hypothesis that 

actual total household energy use does not change following retrofit. The alternative 

hypothesis states that actual energy use following retrofit is different to the level of energy 

use prior to retrofit. Rejection of the null hypothesis is to be expected. However, it is an 

important question to answer given that other studies suggest that actual energy use could 

increase (Heesen and Madlener 2018; Sorrell et al. 2009) or decrease (Cozza et al. 2020; 

Sunikka-blank and Galvin 2012) following a retrofit. Results test this hypothesis in multiple 

ways using a binary measure of retrofit and by focusing on specific combinations of 

measures. This is motivated by previous work that shows different retrofit measures deliver 

different reductions in energy use (Collins and Curtis 2017). 

𝐻0: 𝐸𝐴𝑖,𝑃𝑟𝑒𝑅𝑒𝑡 = 𝐸𝐴𝑖,𝑃𝑜𝑠𝑡𝑅𝑒𝑡     [3.1] 

 𝐻𝐴: 𝐸𝐴𝑖,𝑃𝑟𝑒𝑅𝑒𝑡 ≠ 𝐸𝐴𝑖,𝑃𝑜𝑠𝑡𝑅𝑒𝑡 

 

The second research question investigates the extent to which actual energy use 

approximates the theoretical level of energy use denoted by an EPC. This is important for 

policymakers attempting to reach savings in actual energy use by setting national EPC 

targets (Government of Ireland 2019). Equation 3.2 details the null hypothesis, where there 

is no difference in actual and EPC-based energy use, measured at the bimonthly frequency22. 

 

𝐻0: 𝐸𝐴𝑖,𝑡 =  𝐸𝑇𝑖,𝑡    [3.2] 

   𝐻0: 𝐸𝐴𝑖,𝑡 ≠  𝐸𝑇𝑖,𝑡  

 
22 The term ‘bimonthly’ denotes a period of two months. This is not to be confused with the ‘twice-monthly’ 

frequency. 
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The third research question of this study quantifies the value for money that combinations 

of retrofit measures deliver. A comparison is drawn between expected value for money, 

denoted by the cost of achieving changes in theoretical energy use, and actual value for 

money, denoted by changes in actual energy use. Equation 3.3 states the null hypothesis that 

features no difference between expected and actual value for money for a specific retrofit. 

 

𝐻0: 𝑒𝑉𝐹𝑀𝐻𝐻 =  𝑎𝑉𝐹𝑀𝐻𝐻     [3.3] 

𝐻𝐴: 𝑒𝑉𝐹𝑀𝐻𝐻 ≠  𝑎𝑉𝐹𝑀𝐻𝐻   

 

3.4.2 Empirical strategy 

Similar to Fowlie et al. (2018), this study uses a difference-in-differences approach to 

estimate the benefit of a retrofit received. Equation 3.4 details how (for household 𝑖 in 

bimonth 𝑚 and year 𝑡) energy use (𝐸𝑖𝑚𝑡) is modelled as a function of the decision to receive 

a retrofit (𝐷𝑖𝑚𝑡). Additional covariates include household-by-bimonth fixed effects (𝛼𝑖𝑚) 

to control for household-specific differences and a group of bimonth-by-year fixed effects 

(𝛼𝑚𝑡) to adjust for average time effects, such as weather. The coefficient 𝛽1 captures the 

mean difference in energy use from the retrofit, after accounting for the fixed effects. Fowlie 

et al. (2018) obtain unbiased estimates by randomizing encouragement to undergo a retrofit 

and by studying a sample of participants that households that applied for the subsidized 

retrofit but had not received it by the end of the observation period. 

 

𝑙𝑛(𝐸𝑖𝑚𝑡) = 𝛽1𝐷𝑖𝑠𝑚𝑡  +  +𝛼𝑖𝑚 + 𝛼𝑚𝑡 + 𝜖𝑖𝑚𝑡   [3.4] 

 

This paper performs a generalised difference-in-differences (Equation 3.5) across three 

subsamples (Control (CL), Already Treated (AT) and Treatment (TR)) to account for self-

selection bias in the retrofit adoption choice. For household i in subsample s, bimonth m and 

year t, actual energy use (𝐸𝐴𝑖𝑠𝑚𝑡) is modelled as a function of receiving a retrofit (𝐷𝑖𝑠𝑚𝑡), 

household fixed effects (𝛼𝑖𝑚) to control for household-specific differences and a group of 

bimonth-by-year fixed effects (𝛼𝑚𝑡) to adjust for average time effects. The OLS estimate of 

the coefficient 𝛽1 reflects the estimated impact of the retrofit on actual energy use. 

 

𝐸𝐴𝑖𝑠𝑚𝑡 = 𝛽1𝐷𝑖𝑠𝑚𝑡 + 𝛼𝑖𝑚 + 𝛼𝑚𝑡 + 𝜖𝑖𝑚𝑡   [3.5] 
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3.5 Data description 

3.5.1 Data sources 

This study compares theoretical energy use from an EPC with meter readings for a large 

sample of Irish households. Per Table 3.3, metered electricity and gas data are sourced from 

Electric Ireland, the largest residential electricity utility. Dwelling characteristics and EPCs 

are obtained from a public SEAI database. A separate SEAI database provides information 

on retrofits. These are merged using an anonymous identifier based on the unique electricity 

meter for each dwelling. Data is observed for the period November 2014 to June 2017, 

sixteen bimonthly periods. Data is also collected for time-varying weather controls.   

 

Table 3.3: Data sources 

ID Data Details Source 

A Energy use Electricity and gas readings Electric Ireland 

B Building Energy Rating Dwelling features, EPC SEAI 

C Better Energy Homes  Retrofit measures and costs SEAI 

D Weather Heating degree days, rainfall Met Eireann 

Note: Appendix 3.B details the data cleaning process and the handling of unreliable data. 

 

3.5.2 Sample dwelling information 

The dataset features a balanced panel of 7,832 households (n=125,312 bimonthly readings). 

Table 3.4 summarises three subsamples: Control (CL) households never receive a retrofit. 

Already Treated (AT) households have a recorded retrofit before the period of observed 

energy use. Treatment (TR) households undergo a retrofit during the observation period. 

Table 3.4: Sample classification 

Sub-sample Number of houses Bimonthly Observations 

Control (CL) 5,982 95,712 

Treated (AT) 1,279 20,464 

Treatment (TR) 571 9,136 

Total 7,832 125,312 

Source: Author’s calculations. Houses feature measured energy use from November 2014-June 2017.  

 

Table 3.5 compares sample representativeness. Compared to the SEAI EPC Population, the 

Full Sample has a higher share of B-rated and C-rated houses and a lower share across other 

EPC bands.  
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The Full Sample under-represents detached homes and apartments and over-represents semi-

detached and terraced23. In the Full Sample, there is a larger share of C-rated homes in both 

the AT and TR groups, relative to the CL group. CL group has a larger share of apartments 

and terraced houses. Compared to the 2016 national dwelling stock, SEAI EPC population 

data underrepresents detached dwellings, overrepresents apartments and terrace homes. This 

is likely since an EPC is required when a property is sold or undergoes a retrofit. The focus 

on gas-connected dwellings partly explains the under-representation of detached dwellings, 

which are more likely to be fuelled by oil or solid fuel. 

 

Table 3.5: Comparison of sample, EPC population and national dwelling stock 

 

Full Sample 

(n=7,832) 

Control CL 

(n=5,982) 

Already 

Treated 

AT 

(n=1,279) 

Treatment 

TR 

(n=571) 

SEAI EPC 

Population 

(n=729,599) 

National 

Dwelling 

Stock 

(n=1,675,795)* 

EPC n % n % n % n % n % n % 

A1         41 0.01   

A2 10 0.13 10 0.17     4,368 0.6   

A3 61 0.78 61 1.02     16,212 2.22   

B1 104 1.33 100 1.67 2 0.16 2 0.35 9,083 1.24   

B2 240 3.06 215 3.59 17 1.33 8 1.4 21,772 2.98   

B3 613 7.83 458 7.66 96 7.51 59 10.33 52,608 7.21   

C1 1,100 14.04 802 13.41 181 14.15 117 20.49 81,450 11.16   

C2 1,262 16.11 880 14.71 254 19.86 128 22.42 94,673 12.98   

C3 1,148 14.66 805 13.46 248 19.39 95 16.64 94,502 12.95   

D1 1,105 14.11 776 12.97 251 19.62 78 13.66 95,190 13.05   

D2 839 10.71 648 10.83 141 11.02 50 8.76 82,980 11.37   

E1 464 5.92 386 6.45 55 4.3 23 4.03 48,364 6.63   

E2 337 4.3 306 5.12 23 1.8 8 1.4 38,036 5.21   

F 320 4.09 308 5.15 9 0.7 3 0.53 38,416 5.27   

G 229 2.92 227 3.79 2 0.16   51,904 7.11   

Dwelling Type            

Detached 1,327 12 897 11 300 19 130 16 232,677 32 715,133 43 

Apartment 890 8 846 10 27 2 17 2 144,289 20 204,145 12 

Semi-D 3,999 37 2,840 34 725 45 434 53 193,543 27 471,948 28 

Terrace 4,527 42 3,728 45 560 35 239 29 159,100 22 284,569 17 

Source: Author’s calculations based on SEAI BEH and EPC data and 2016 Census. 2016 Census values 

include occupied households, excluding ‘Not stated’ and temporary accommodation. Note: Semi-D 

refers to dwellings considered as a semi-detached or end of terrace dwelling. 

 

 

 

 

 
23 The under-representation of apartments is because most apartments have zero heatable floor space. This 

makes them incompatible with this study, which constructs a measured energy use variable using floor area.  
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Table 3.6 summarises key dwelling features of the sample. The average year of construction 

in the Full Sample is 1979. On average, the TR and AT homes are larger, older and have a 

smaller fraction of the home that is classed as the main living area than the CL group. 

 

Table 3.6: Summary of key dwelling features (split by subsample) 

Variable     Mean SD Min Max 

Full Sample (n=7,832)     

Number of floors 1.95 0.47 1 4 

Year of Construction 1978.54 28.26 1753 2017 

Percentage of home that is living area 21.02 9.55 0 81.1 

Heatable Floor Area (m2) 57.38 22.89 10.4 272.1 

CL: Control (n=5,982)     

Number of floors 1.92 0.48 1 4 

Year of Construction 1980.78 28.38 1753 2017 

Percentage of home that is living area 21.68 10.03 0 81.1 

Heatable Floor Area (m2) 54.7 20.95 10.4 247.1 

AT: Already Treated (n=1,279)     

Number of floors 2.03 0.42 1 4 

Year of Construction 1969.5 27.47 1847 2008 

Percentage of home that is living area 19.1 7.5 4.94 59.2 

Heatable Floor Area (m2) 65.81 26.05 16.9 212.3 

TR: Treatment (n=571)     

Number of floors 2.07 0.44 1 3 

Year of Construction 1975.32 24.03 1869 2006 

Percentage of home that is living area 18.51 7.2 7.75 61.4 

Heatable Floor Area (m2) 66.53 27.43 13.5 272.1 

Source: Author’s calculations based on SEAI BEH and EPC data. Note: Heatable floor variable reflects 

the floor area requiring heating, per SEAI. It is often not equal to the total floor area of a home. 
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3.5.3 Sample retrofit information 

Table 3.7 details the average grant level and retrofit cost24. The average grant is lower for 

the TR group, with a larger average cost of works and a lower average number of measures. 

This suggests that more recent retrofits have not been influenced by the bonus subsidy for 

multiple measures. The three most common retrofits are an upgraded gas boiler with heating 

controls (36.28% AT, 50.61% TR), roof and cavity wall insulation (29.24% AT, 8.93% TR) 

and external wall insulation (14.54% in AT, 9.98% in TR), respectively.  

 

Table 3.7: Uptake of Better Energy Homes subsidy 

 

Total number of houses 

AT  

n=1,279 

TR  

n=571 

 Mean SD Mean SD 

Cost of Works (€) 4,307.81 4,075.15 4,784.04 5954.17 

Grant Payable (€) 1,214.29 1,195.65 1,103.15 1058.79 

Number of measures 1.48 0.58 1.22 0.47 

Source: Author’s calculations based on SEAI BEH data. 

 

Table 3.8 illustrates how retrofits improve theoretical dwelling energy efficiency. It reports 

sample frequency for each EPC band, with Already Treated (AT) and Treatment (TR) houses 

moving from a pre-retrofit (column) to a post-retrofit (row) EPC. The most common change 

is from a D2 to C3 rating (n=117). This is followed by homes moving from D1 to C2 rating 

(n=114). Notably, no retrofitted house reaches A-rated status, and the majority that move to 

B-rated status climb from a D-rated house, at worst. This suggests that current retrofits help 

improve theoretical energy efficiency, but may not achieve policymaker ambition to retrofit 

all existing dwellings to B2 EPC standard (Government of Ireland 2019). 

 

  

 
24 Appendix 3.C features additional discussion of the sample and retrofit measures received. 
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Table 3.8: Full Sample change in categorical EPC (Count) 

Pre-EPC G F E2 E1 D2 D1 C3 C2 C1 B3 Control Total

Post-EPC No. No. No. No. No. No. No. No. No. No. No. No.

G 2 227 229    

F 10 2 308 320    

E2 21 10 306 337    

E1 32 28 14 4 386 464    

D2 22 87 41 27 14 648 839    

D1 18 57 89 67 80 18 776 1,105 

C3 6 18 41 69 117 84 8 805 1,148 

C2 11 6 7 38 98 114 88 20 880 1,262 

C1 9 10 11 8 37 91 57 61 14 802 1,100 

B3 9 11 7 7 12 14 27 33 30 5 458 613    

B2 2 1 4 2 2 4 3 4 3 215 240    

B1 2 1 1 100 104    

A3 61 61     

A2 10 10     

Total 144 230 214 222 360 326 183 118 47 6 5,982 7,832  

Source: Author’s calculations. Note: Each column features the number of Already Treated (AT) and 

Treatment (TR) homes. Table 3.C.3 features a version of this table for the TR subsample. 

 

3.5.4 Dependent variable: Actual energy use 

Two adjustments are made to adapt the dependent variable of actual energy use to be 

comparable to the EPC (Equation 3.6). The first accounts for the ratio of primary to delivered 

energy. The EPC is based on primary energy use, including energy for generation and 

transmission. The second adjustment accounts for appliance usage, which does not factor 

into the EPC. SEAI (2018) suggests that appliance usage comprises, on average, 20% of 

home energy use. Two appliance usage (AAj) measures are considered. The body of the paper 

applies a relative scaling of appliance usage (AARelative) to a factor of 80% (SEAI 2018). The 

actual energy use variable (𝐸𝐴𝑖) is measured in units of kilowatt-hours per bimonth. 

 

𝐸𝐴𝑖 = 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖  ∗  
𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐸𝑛𝑒𝑟𝑔𝑦𝑖

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦𝑖
∗ 𝐴𝐴𝑗  [3.6] 

 

Direct comparison to the EPC requires actual energy use to be scaled by heatable floor area 

(kWh/m2/year). The sample features 7,832 households with 15,664 observations of two full 

years (Y1, Y2) of meter readings.  
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Table 3.9 summarises the observations of annual actual energy use with the theoretical EPC. 

On average, actual energy use per square meter is lower than the theoretical level. Results in 

Section 3.6.3 use this variant of the EPC. 

 

Table 3.9: Summary of mean annual Actual and Theoretical energy usage 

Annual actual energy use N Mean SD Min Max 

Control (CL) 11,964 215 127 9.51 1,778 

Already Treated (AT) 2,558 199 109 15.57 777 

Treatment (TR) 1,142 207 116 11.2 873 

Full Sample 15,664 211 124 9.51 1,778 

Theoretical energy use 7,832 233 96 40 1,241 

Note: Values in kWh/m2/year. Actual energy use is adjusted for primary energy use and deflated for 

appliance use. 15,664 observations reflect two annual observations for every sample house 

(n=7,832): Control (CL, n=5,982 houses), Already Treated (AT, n=1,279 houses), Treatment (TR, 

n=571 houses). 

 

 

3.6 Results 

This section presents results based on the earlier research questions. The first result tests 

whether a retrofit lowers actual energy use and how this differs based on measures received 

(Section 6.1) The second result tests for differences between actual and theoretical energy 

use denoted by the EPC (6.2). The final result investigates the difference between expected 

and actual value for money in the upfront retrofit cost (6.3).  

 

3.6.1 Result 1: Effect of receiving a retrofit on actual energy use 

Following Fowlie et al. (2018), this section quantifies how actual energy use changes post-

retrofit, using a binary retrofit variable for TR homes when a retrofit is received. Two fixed 

effects are considered: Household-level fixed effects account for unobserved heterogeneity 

within households over time. Time fixed effects account for period-specific effects that 

effect all houses equally. In all cases, standard errors are clustered at the household level. 

 

Per Table 3.10, Model 1 shows a significant reduction in actual energy use post-retrofit (-

130.867 kWh/bimonth). Model 2 highlights the influence of seasonality on energy use, as 

the retrofit coefficient changes to +118.721 kWh/bimonth with a time fixed effect.  
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Model 3 suggests that household-specific behaviour influences energy use, with an average 

fall in energy use of -811.449 kWh/bimonth post-retrofit. The preferred Model 4 accounts 

for both household-specific and period-specific heterogeneity, reporting an average fall in 

energy use of -157.175 kWh/bimonth post-retrofit. This equates to 943.05 kWh per annum.  

 

Table 3.10: Impact of retrofit (TR subsample) 

 Model 1 Model 2 Model 3 Model 4 

Retrofit = 1 -130.867*** 118.721*** -811.449*** -157.173*** 

 (34.806) (34.196) (52.047) (50.425) 

House FE N N Y Y 

Time FE N Y N Y 

Constant 1698.772*** 2988.600*** 1723.614*** 2988.600*** 

N (9.709) (25.303) (1.900) (19.606) 

R2 125312 125312 125312 125312 

Adj. R2 0.000 0.220 0.259 0.475 

Note: Table reports estimates of the change in bimonthly energy use following adoption of a retrofit. TR 

homes are classed as retrofit. The dependent variable is bimonthly electricity and gas energy use (in 

kWh). All specifications include standard errors (in brackets) clustered at the customer level (n=7,832). 

Asterisks indicate significance at the 10 percent (*), 5 percent (**), or 1 percent (***) level. 

 

Although Model 4 helps to explain average retrofit-related savings, it does not account for 

different retrofit measures. Table 3.11 presents results for the eight retrofit measures (𝑀𝑗), 

accounting for household and time fixed effects. Only retrofits with external wall insulation 

(-436.80 kWh/bimonth) or solar heating (-484.50 kWh/bimonth) are associated with 

significant reductions in actual energy use. This suggests that the average retrofit coefficient 

of -157.175 kWh/bimonth in Model 4 masks larger savings from specific measures. 

 

  



Chapter 3. Evaluating a national residential energy efficiency subsidy scheme 

 

68 

 

 

Table 3.11: Impact of specific retrofit measures on average energy use 

Model 5 M5.1 M5.2 M5.3 M5.4 M5.5 M5.6 M5.7 M5.8 

Measure 

(Mj) 

Cavity 

Wall 

Dry-

Lining 

External 

Wall 

Insulation 

Heat 

Controls 

(HC) 

Gas 

Boiler 

w/HC 

Oil 

Boiler 

w/HC 

Roof 

Insulation 

Solar 

Heating 

Retrofit 50.525 510.686 -436.8*** -270.950 -117.19* 432.362 93.030 -484.5*** 

 (112.713) (349.324) (136.811) (235.845) (66.812) (370.936) (119.897) (157.642) 

         

House FE Y Y Y Y Y Y Y Y 

Time FE Y Y Y Y Y Y Y Y 

Constant 2988.6*** 2988.6*** 2988.6*** 2988.6*** 2988.6*** 2988.6*** 2988.6*** 2988.6*** 

 (19.615) (19.615) (19.610) (19.612) (19.613) (19.615) (19.616) (19.612) 

N 125312 125312 125312 125312 125312 125312 125312 125312 

# Adopted 95 16 70 27 319 7 116 23 

R2 0.475 0.475 0.475 0.475 0.475 0.475 0.475 0.475 

Adj. R2 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.440 

Note: Each column reports estimates of the fall in bimonthly energy use following adoption of a specific 

retrofit measure for TR homes. The dependent variable is bimonthly electricity and gas energy use (in 

kWh). All specifications include standard errors (in brackets) clustered at the customer level (n=7,832). 

Asterisks indicate significance at the 10 percent(*), 5 percent(**), or 1 percent(***) level. 

 

Most retrofits in the TR subsample receive one measure (n=458 of 571 households, 80.21%). 

A substantial number involve two (n=99, 17.34%) or three (n=14, 2.45%) measures. Table 

3.12 presents results for 23 unique combinations of retrofit measures received, accounting 

for household and time fixed effects. Each model removes all observations from other TR 

retrofits, to focus on the difference between treated households in question, versus the CL 

and AT groups. This removes the potential for other retrofits to influence results.  

 

Table 3.12 shows heterogeneity in the magnitude and direction of savings across retrofit 

combinations. Only 11 of the 23 combinations exert a significant effect after accounting for 

customer and time fixed effects. Six of the eleven measures deliver significant energy 

savings following the upgrade: Solar Heating (-503.2 kWh/bimonth),  Oil Boiler w/HC + 

Solar Heating (-1,122), Gas Boiler (-171.15), Heating Controls + Solar Heating (-725.47), 

External Wall Insulation (-467.8) and External Wall Insulation + Gas Boiler w/HC (-725.6). 
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Table 3.12: Impact of specific combinations of retrofit measures 

Model Measures Coef. SE Number of  

houses 

adopted 

1 Solar Heating -503.2*** (168.554) 10 

2 Roof Insulation -277.528 (227.462) 28 

3 Oil Boiler w/ HC 676.28*** (209.869) 5 

4 Oil Boiler w/HC; Solar Heating -1,122*** (8.291) 1 

5 Gas Boiler w/HC -171.15** (70.871) 279 

6 Gas Boiler w/HC; Solar Heating -318.625 (322.727) 9 

7 Gas Boiler w/HC; Roof Insulation 321.253 (357.239) 10 

8 Heating Controls (HC) -346.014 (245.812) 23 

9 Heating Controls; Solar Heating -725.47** (291.883) 3 

10 External Wall Insulation -467.8*** (158.559) 53 

11 External Wall Insulation; Roof Insulation -496.994 (358.637) 9 

12 External Wall Insulation; Gas Boiler w/HC -725.6*** (260.932) 4 

13 External Wall Insulation; Gas Boiler w/HC; Roof Insulation 103.651 (570.225) 4 

14 Internal Dry Lining -158.522 (426.278) 3 

15 Internal Dry Lining; Roof Insulation -331.801 (741.139) 5 

16 Internal Dry Lining; Gas Boiler w/HC 884.274 (589.127) 3 

17 Internal Dry Lining; Gas Boiler w/HC; Roof Insulation 1537.49*** (280.982) 4 

18 Internal Dry Lining; Heat Controls; Roof Insulation 1787.64*** (11.149) 1 

19 Cavity Wall Insulation -228.546* (135.467) 37 

20 Cavity Wall Insulation; Roof Insulation 187.476 (177.483) 51 

21 Cavity Wall Insulation; Oil Boiler w/HC 1,125.26*** (8.291) 1 

22 Cavity Wall Insulation; Gas Boiler w/HC 702.947*** (267.524) 3 

23 Cavity Wall Insulation; Gas Boiler w/HC; Roof Insulation 228.735 (216.384) 3 

Note: Coefficient reports the average change in bimonthly energy use (in kWh) after adopting a specific 

combination of retrofit measures for TR homes with an observed change (n=549 of a possible n=571). 

Model includes customer and bimonth fixed effects. Standard errors (in brackets) clustered at the 

customer level. Asterisks indicate significance at the 10 percent(*), 5 percent(**), or 1 percent(***) level. 

 

Conversely, five combinations display a significant increase in energy use post-retrofit: Oil 

Boiler w/HC (676.28 kWh/bimonth), Internal Dry Lining + Gas Boiler w/HC + Roof 

Insulation (1537.49 ), Internal Dry Lining + Heat Controls + Roof Insulation (1787.64), 

Internal Dry Lining + Heat Controls + Roof Insulation (1787.64), Cavity Wall Insulation + 

Oil Boiler w/HC (1125.26) and Cavity Wall Insulation + Gas Boiler w/HC (702.947). 
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Results from Table 3.12 contradict Table 3.11, where only external wall insulation and solar 

heating featured a significant average reduction. In particular, upgrades that only feature a 

gas boiler upgrade now display a statistically significant average reduction in energy use (-

171.15 kWh/bimonth). Although results are statistically significant, it is important to 

consider sample size, especially for oil boiler recipients, where actual energy use increases 

by +676.28 kWh/bimonth on average, yet a retrofit with an oil boiler and solar heating 

delivers average savings of -1,122 kWh per bimonth.  

 

Results from Section 3.6.1 suggest that retrofits deliver savings in actual energy use. 

However, the magnitude of savings varies significantly by the measures installed, even 

leading to an increase in energy use. This highlights the vital role of occupant behaviour in 

determining energy use and the importance of accurately calibrating subsidy levels for 

specific measures. It bears repeating that results are based on the sample, which features 

relatively few cases of retrofit to the most efficient EPC levels (Table 3.8). 

 

3.6.2 Result 2: Theoretical vs Actual energy use 

It is important to verify that EPCs are accurate so that policies to improve dwelling energy 

efficiency translate to real savings. Table 3.13 performs a paired test for significant 

differences between actual (𝐸𝐴) and theoretical EPC-calculated energy use (𝐸𝑇) at the 

bimonthly frequency. The headline finding is that actual energy use is significantly below 

the theoretical level, with an average deficit of -23%. 

 

The direction and magnitude of the effect differs when split by EPC grade. The most energy 

efficient homes display a surplus of actual energy use above theoretical, with an average 

surplus for homes from A2 (312%) to C1 (2.83%). Less energy efficient homes demonstrate 

an average deficit of actual energy use below theoretical, ranging from -6.76% for C2-rated 

homes to -63.48% for G-rated homes. This is consistent with research in other countries 

studying social housing  (Majcen et al. 2013; van den Brom et al. 2018).  

 

The extent to which actual energy use approximates the EPC differs by subsample. The 

largest deficit exists for TR houses (-28.12%), with the lowest deficit for AT dwellings  

(-21.64%). The AT average deficit is better than the CL average (22.96%), possibly 

reflecting improvements in AT homes.  
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The lack of major change post-retrofit for the TR subsample suggests that there is not an 

immediate narrowing of the deficit. Considered with the AT result, this presents evidence 

that occupant behaviour may take time to adjust. 

 

Table 3.13: Test of significant difference between Actual and Theoretical energy use 

 
n Mean EA Mean ET Difference % Difference to ET SE P-Value 

EA – ET 125,312 1,694 2,205 -           511 -        23.18  5 0*** 

EPC Grade       

A1 N/A N/A N/A N/A N/A N/A N/A 

A2 160 2,454 594 1,860         312.84  131 0*** 

A3 976 1,543 679 864         127.32  54 0*** 

B1 1,649 1,511 923 588           63.68  36 0*** 

B2 3,796 1,639 1,255 384           30.57  25 0*** 

B3 9,401 1,690 1,482 209           14.09  17 0*** 

C1 16,936 1,647 1,602 45             2.83  12 0*** 

C2 19,679 1,700 1,833 -           133 -          7.25  12 0*** 

C3 18,224 1,682 2,001 -           319 -        15.93  12 0*** 

D1 17,941 1,695 2,262 -           567 -        25.07  13 0*** 

D2 13,689 1,723 2,590 -           867 -        33.48  16 0*** 

E1 7,647 1,661 2,840 -        1,179 -        41.51  21 0*** 

E2 5,772 1,868 3,253 -        1,385 -        42.58  27 0*** 

F 5,587 1,677 3,614 -        1,937 -        53.60  28 0*** 

G 3,855 1,794 4,921 -        3,127 -        63.54  44 0*** 

Dwelling Type        

Apartment 9,536 1,260 1,926 -           666 -        34.58  15 0*** 

Detached 15,264 2,140 3,247 -        1,108 -        34.11  21 0*** 

Semi-detached 45,648 1,792 2,375 -           583 -        24.54  9 0*** 

Terrace 54,864 1,564 1,822 -           259 -        14.19  7 0*** 

Subsample        

Already Treated 20,464 1,816 2,318 -           501 -        21.64  13 0*** 

Control 95,712 1,648 2,139 -           491 -        22.96  6 0*** 

Treatment 9,136 1,899 2,641 -           743 -        28.12  23 0*** 

TR Pre-Retrofit 4,562 2,230 3,090 -          860  -        27.83  37 0*** 

TR Post-Retrofit 4,574 1,568 2,194 -          626  -        28.53  26 0***  

*** P<0.01, **P<0.05, *P<0.10. Note: Observations at bimonthly frequency. Variable of actual energy 

use features a 20% deflation to account for appliance use (𝑨𝑨𝑹𝒆𝒍𝒂𝒕𝒊𝒗𝒆). 125,312 bimonthly observations 

for 7,832 households. Values in terms of kWh/m2/year. EPC for TR households is pre-retrofit EPC prior 

to retrofit and post-retrofit EPC grade from the date of retrofit onwards. 
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Results in Section 3.6.2 suggest that people do not behave according to their EPC, with 

differences most pronounced at opposite ends of the EPC spectrum. This result is not 

unexpected, as model measurement error often exists (Allcott and Greenstone 2012).  

 

Policies to subsidize domestic retrofit to attain a high national EPC standard (Government 

of Ireland 2019) may lead to unintended consequences, such as  households increase their 

energy use after availing of a subsidised home energy retrofit. However, this concept of 

rebound is well-established in the literature (Heesen and Madlener 2018; Sorrell et al. 2009; 

Sunikka-blank and Galvin 2012) and improving the comfort and wellbeing of occupants is 

likely part of the motivation behind offering the subsidy, in particular to socially vulnerable 

groups (Coyne et al. 2018). From the perspective of reducing energy demand, such a result 

in the Irish context would hinder efforts towards meeting national and EU-level targets. 

 

3.6.3 Result 3: Value for money 

Collins & Curtis (2017) investigated the value for money of specific retrofits through the 

Better Energy Homes grant using theoretical changes in energy use. However, Section 3.6.2 

shows how actual energy use deviates from the theoretical level. This section innovates on 

earlier work by studying actual changes in energy use. Equation 3.7 defines expected value 

for money (eVFM) for the household (𝑖) as the ratio of the difference in the capital cost (𝐶0) 

net of the level of grant received (𝐺0) to the change in the EPC (kWh/m2/year) before and 

following retrofit. A high eVFM suggests there is either a large upgrade cost (numerator) or 

a small change in theoretical energy efficiency (the denominator).  

 

𝑒𝑉𝐹𝑀𝑖 =
𝐶0 − 𝐺0

𝐸𝑃𝐶𝑃𝑟𝑒𝑅𝑒𝑡 − 𝐸𝑃𝐶𝑃𝑜𝑠𝑡𝑅𝑒𝑡
     [3.7] 

 

eVFM is limited because it does not reflect differences between actual and theoretical energy 

use. Equation 3.8 presents actual value for money (aVFM) that scales eVFM by delta (𝛿), a 

weight reflecting the average difference between bimonthly actual and theoretical energy 

use by EPC grade (Section 3.6.2) 25. 

 
25 𝜹 does not change for AT homes. For TR homes, 𝜹 reflects the average difference between actual and 

theoretical energy use for the pre-retrofit and post-retrofit EPC, as appropriate. Appendix 3.D considers a 

separate measure of aVFM for 166 retrofits, with one full year of energy use before and after retrofit. 
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δ𝑖 = 
(𝐸𝐴𝑃𝑟𝑒𝑅𝑒𝑡,s,t − 𝐸𝑇𝑃𝑟𝑒𝑅𝑒𝑡,s,t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   +  (𝐸𝐴𝑃𝑜𝑠𝑡𝑅𝑒𝑡,s,t − 𝐸𝑇𝑃𝑜𝑠𝑡𝑅𝑒𝑡,s,t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

2
 

 

𝑎𝑉𝐹𝑀𝑖 =
𝐶0  −  𝐺0

𝐸𝑃𝐶𝑃𝑟𝑒𝑅𝑒𝑡  −  𝐸𝑃𝐶𝑃𝑜𝑠𝑡𝑅𝑒𝑡
 ∗ (1 + δ̅) 

 

Table 3.14 presents VFM analysis for both the AT and TR subsamples. The top panel 

summarizes the pre- and post-retrofit EPC (in units of kWh/m2/year), the average cost of 

works and grant value. Compared to the AT group, the TR subsample features slightly better 

theoretical energy efficiency, costlier retrofits and lower grant amounts. 

 

The bottom panel of Table 3.14 compares expected and actual VFM. For AT households, 

average aVFM (36.52 €/kWh/m2/year) is lower than average eVFM (43.83 €/kWh/m2/year). 

This suggests that it costs less to improve actual energy efficiency than improving theoretical 

energy efficiency. The effect is stronger for TR households, where average aVFM (43.60 

€/kWh/m2/year) is lower than average eVFM (56.25 €/kWh/m2/year). Valuations based on 

actual energy use show a larger reduction for TR houses, with an average drop of 12.65 

€/kWh/m2/year, compared to a drop of 7.31 €/kWh/m2/year for AT households. 

 

Table 3.14: Expected value for money (eVFM) and actual value for money (aVFM) 

 AT households (n=1,277) TR households (n=571) 

 Mean SD Min Max Mean SD Min Max 

Dwelling Characteristics        

Pre-Retrofit EPC  312.92 106.63 139.86 1,311.66 296.22 94.8 128.39 847.08 

Post-Retrofit EPC  216.29 54.33 83.42 518.73 204.88 52.96 86.14 449.03 

Cost of works (€) 4,307.81 4,075.16 460 29,700 4,784.04 5,954.17 300 100,000 

Grant value (€) 1,214.29 1,195.65 250 5,560 1,103.15 1,058.79 300 5,800 

         

Delta δ (%) -0.19 0.17 -0.6 0.45 -0.25 0.1 -0.57 -0.07 

         

Household VFM (€/kWh/m2/year)       

eVFM  43.83 72.55 -122.7 1,451.22 56.25 85.09 0 1,041.08 

aVFM  36.52 56.39 -79.71 807.27 43.60 69.95 0 877.42 

Difference -7.31 24.48 -730.7 42.98 -12.65 18.22 -244.6 0 

Note: Table reports the average expected value for money of receiving a retrofit for 1,277 AT households 

and 571 TR households. Pre-Retrofit EPC and Post-Retrofit EPC are in units of kWh/m2/year. 

 

 

 

[3.8] 
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Results in Section 3.6.3 suggest that the upfront cost of retrofit is lower when factoring in 

the difference between actual and theoretical energy use. This suggests that there would be 

wider retrofit adoption if customers understood this difference. This may help explain why 

adoption of certain energy efficiency technologies may be limited (Jaffe and Stavins 1994a).  

 

3.7 Concluding remarks 

Evidence on the effectiveness of retrofit schemes note that although subsidies could improve 

societal welfare, they currently do not represent value for money or deliver the savings 

expected (Allcott and Greenstone 2017; Fowlie et al. 2018). The effectiveness of subsidised 

retrofit policies is important for countries that must achieve energy savings from the 

residential sector. This paper is one of the largest studies of retrofit using measured whole-

home energy use data for a non-social housing sample. It compares the ‘treatment’ of a 

subsidized retrofit with two important control groups: Homes that received a subsidized 

retrofit before the observation period and homes that do not receive a subsidized retrofit 

during the observation period. 

 

The first result suggests that a retrofit reduces actual energy use by -157.173 kWh/bimonth 

on average, controlling for household and time fixed effects. When considering every 

combination of measures, six combinations deliver energy savings, while five are associated 

with increased energy use. Notably, gas boiler upgrades show a significant average reduction 

in energy use (-171.15 kWh/bimonth). From a policy perspective, this shows how retrofit is 

effective in many cases and subsidy levels should be calibrated accordingly. Results suggest 

that subsidies for gas boiler replacement and external wall insulation should be promoted, 

with resources diverted from ineffective measures. Further investigation is warranted, as the 

subsidy may be designed to improve other outcomes (Ryan and Campbell 2012).  

 

On this issue, the Irish government has outlined plans to consider how retrofits could be 

designed in a more affordable manner. In particular, by designing the policy so the cost of 

the upgrade is recouped through household bills over time, rather than the entire cost being 

levied prior to the upgrade (Government of Ireland 2019) . Furthermore, SEAI are 

conducting a National Heat Study in 2021 that outlines potential options for reducing heating 

emissions in Ireland on the pathway towards a net-zero emissions economy by 205026. 

 
26 See https://www.seai.ie/data-and-insights/national-heat-study/ 
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The second result finds significant differences in actual and theoretical energy use, with an 

average deficit of 23.18% translating to an average annual deficit of 3,066 kWh/year. The 

direction and magnitude of this difference varies by the EPC level, with the most energy 

efficient households displaying a surplus and the least energy efficient households exhibiting 

a deficit. The difference varies by subsample, with AT homes featuring the smallest average 

deficit (-21.64%) and TR homes featuring the largest deficit (-28.12%). This possibly 

reflects the improved efficiency of AT homes. This highlights the importance of studying 

actual energy use data, instead of relying purely on asset rating models that inform EPCs.  

 

The third result measures value for money. Using changes in the EPC, the average expected 

value for money of a retrofit is 47.81 €/kWh/m2/year. This has risen for more recent TR 

households (56.25 €/kWh/m2/year) compared to earlier AT houses (44.03 €/kWh/m2/year). 

A measure of actual value for money is constructed, reflecting EPC-level differences in 

actual and theoretical energy use. The average for the AT group is 36.52 €/kWh/m2/year, 

lower than the TR average (43.60 €/kWh/m2/year). This suggests that retrofits represent 

more value than advertised by EPC-based measures. From a policy perspective, measuring 

actual energy use could present a more accurate guide to homeowners on the effective cost 

of retrofit. National plans to install smart meters in homes by 2024 should help provide a 

comprehensive view of residential energy use (Government of Ireland 2019). 

 

There are some limitations of the study. In particular, the sample focuses exclusively on gas-

heated homes from the largest utility. Further cooperation from every utility in the market 

could study more houses and reduce sample attrition due to customer switching. Secondly, 

the data lacks tariffs and socioeconomic information of occupants. Finally, this work does 

not include other benefits that accrue from having a more efficient home, including 

emissions saved, improved health and comfort. The focus in this study is on how policies 

and models should be revised to reflect actual patterns of consumer energy use.  

 

Taken together, the first result shows retrofits reduce energy use. However, the second result 

shows how occupants with a better EPC are more prone to consuming above the EPC-

predicted level. There is concern that subsidising retrofit will lead to more efficient homes, 

but consume more energy at those EPC levels, This work sounds a note of caution regarding 

possible unintended consequences of extensive retrofit, including potential for occupants to 

change their behaviour to the detriment of national emissions reduction targets. 
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3.A Additional details of BEH subsidy 

Table 3.15 highlights past values of the BEH scheme. This may only be relevant for homes 

in the ‘Already Treated’ group since almost every home in our ‘Treatment’ sample receives 

a retrofit in the period following March 2015. Since then, there has been no change in the 

grant levels. Grant measures include insulation, replacement of an inefficient boiler or an 

upgrade to include solar heating. Comprehensive (or ‘deep’) retrofits within the Irish Climate 

Action Plan, focus on significantly upgrading dwelling energy efficiency (Government of 

Ireland, 2019).  However, the estimated €50 billion exchequer cost of a nationwide retrofit 

scheme has led to additional suggestions, including a transition away from subsidies towards 

financing where the capital cost is reclaimed through energy bill savings. 

 

Table 3.15: [3A] Full schedule of Better Energy Homes grant payment levels 

  Grant value (€) 

Measure Category March 

2009 

June 

2010 

May 

2011 

December 

2011 

March 

2015 

Roof Attic Insulation 250 250 200 200 300 

Wall Cavity wall insulation 400 400 320 250 300 

 Internal dry-lining1 2500 2500 2000 900/1350/1800 1200/1800/2400 

 External wall insulation1 4000 4000 4000 1800/2700/3600 2250/3400/4500 

Boiler High efficiency boiler (oil / 

gas) with heating controls 

700 700 560 560 700 

 Heating controls upgrade only 500 500 400 400 600 

Solar Solar heating   800 800 1200 

BER Mandatory Pre- and Post-

Retrofit Audit 

100 100 80 50 50 

Bonus Three measures     300 

 Four measures     100 

Source: Collins & Curtis (2016). Note: 1 Values for Apartment / Semi-Detached / Detached houses, 

respectively where split. 
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3.B Construction and cleaning of meter readings 

This appendix summarises the steps taken to link, clean and filter the sample of residential 

energy use to reach a sample that is suitable for analysis. 

 

3. Linking customers 

• Gas fuelled homes are identified by linking Electric Ireland gas customer accounts with 

the corresponding Electric Ireland electricity account. 

• Electricity accounts are anonymously merged with the SEAI dwelling data using the 

electric meter number (MPRN), which was unobservable to the research team. 

• There are 286,523 unique customer matches between the original Electric Ireland 

measured energy use data and the SEAI dwelling data. Of this, 21,198 are unique 

matches for a gas customer account that is linked to an electricity customer account. 

 

4. Energy data merge and sample restrictions 

The original energy dataset features 30,045,696 daily energy readings (28,563,625 

electricity, 1,482,071 gas) beginning November 2011. We drop households with no match 

in the SEAI dwelling data. Readings are aggregated bimonthly and adjusted to reflect the 

period of use e.g. A reading in March 2015 reflects usage in January 2015. Additional 

observations are dropped for the following reasons: 

• Total household metered energy usage is zero.  

• House is not heated by gas (per SEAI). 

• Multiple meters for a house (per SEAI). 

• A house received a grant-supported retrofit during the observed period (per SEAI). 

• Drop electricity readings before the start of the gas sample (November 2014) to focus on 

the common period of electricity and gas use. 

• A ratio of the number of missing periods to the number of periods present is created. 

This ratio is equal to 0.75 if a household is present for 16 periods but if missing for any 

four periods. Any household with a ratio less than 0.5 is dropped, which does not 

discriminate against homes that enter the data later. 
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• Drop any household with a gap between observations of at least six months. Although 

the customer might be present during the entire sample period, such a large missing 

period makes it unsuitable for analysis, especially for annual values. 

• Drop any house with fewer than six observations (a full year of readings). 

• Drop any house with an annual energy usage value (Y1, Y2) reading in the top or bottom 

one percent of the distribution to observe households with realistic energy use. 

• Drop homes with an SEAI heatable floor area of less than 10m2. Mostly apartments. 

Remove households with a Delivered Energy value in the top or bottom 1% of the 

distribution. As noted in Appendix 3.A, the SEAI dataset includes two variables of 

calculated annual use, one reflecting consumed energy (Delivered Energy) and the other 

including an overhead for energy generation (Primary Energy). 

 

 

3.C Extended description of sample dwelling characteristics 

Table 3.16 details the combination of retrofit measures received. For both the AT and TR 

groups, the top three retrofit combinations are similar. For the sample, the most common 

measure is an upgraded gas boiler with heating controls (36.28% AT, 50.61% TR). The next 

two most popular combinations are roof and cavity wall insulation (29.24% AT, 8.93% TR) 

and external wall insulation (14.54% in AT, 9.98% in TR), respectively.  
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Table 3.16: [3B] Better Energy Homes grant measures received 

 All All AT AT TR TR 

Measures n % n % n % 

Gas boiler with HC 753 40.7 464 36.28 289 50.61 

Roof Insulation + Cavity Wall Insulation 425 22.97 374 29.24 51 8.93 

External Wall Insulation 243 13.14 186 14.54 57 9.98 

Roof Insulation + Gas Boiler w/HC 65 3.51 54 4.22 11 1.93 

Heating Controls (HC) 54 2.92 29 2.27 25 4.38 

Cavity Wall Insulation 37 2   37 6.48 

Roof Insulation + External Wall Insulation 31 1.68 22 1.72 9 1.58 

Roof Insulation 30 1.62 1 0.08 29 5.08 

Solar Heating 30 1.62 17 1.33 13 2.28 

Roof Insulation + Gas Boiler w/ HC 

+ Internal Dry Lining Insulation 28 1.51 24 1.88 4 0.7 

Roof Insulation + Internal Dry Lining Insulation 27 1.46 22 1.72 5 0.88 

Gas Boiler w/ HC + External Wall Insulation 17 0.92 13 1.02 4 0.7 

Internal Dry Lining Insulation 14 0.76 11 0.86 3 0.53 

Oil Boiler w/ HC 14 0.76 9 0.7 5 0.88 

Solar Heating + Gas Boiler w/ HC 14 0.76 5 0.39 9 1.58 

Roof Insulation + Gas Boiler w/ HC + Cavity Wall 

Insulation 11 0.59 8 0.63 3 0.53 

Roof Insulation + Heating Controls (HC) 9 0.49 9 0.7   

Roof Insulation + Gas Boiler + External Wall Insulation 8 0.43 3 0.23 5 0.88 

Gas Boiler w/ HC + Internal Dry Lining Insulation 7 0.38 4 0.31 3 0.53 

Roof Insulation + Heating Controls (HC) 

+ Internal Dry Lining Insulation 7 0.38 6 0.47 1 0.18 

Gas Boiler w/HC + Cavity Wall Insulation 5 0.27 2 0.16 3 0.53 

Roof Insulation + Heating Controls (HC) 

+ Cavity Wall Insulation 4 0.22 4 0.31   

Solar Heating + Heating Controls (HC) 4 0.22 1 0.08 3 0.53 

Roof Insulation + Oil Boiler w/ HC 2 0.11 2 0.16   
Roof Insulation + Oil Boiler w/ HC 

+ Cavity Wall Insulation 2 0.11 1 0.08 1 0.18 

Solar Heating + Oil Boiler w/ HC 2 0.11 1 0.08 1 0.18 

Solar Heating + Roof Insulation 2 0.11 2 0.16   
Solar Heating + Roof Insulation 

+ Gas Boiler w/HC + External Wall Insulation 2 0.11 2 0.16   

Heating Controls (HC) + Internal Dry Lining Insulation 1 0.05 1 0.08   

Heating Controls (HC) + External Wall Insulation 1 0.05 1 0.08   
Roof Insulation + Heating Controls (HC) 

+ External Wall Insulation 1 0.05 1 0.08   

Total Number of Households 1,850 100 1,279 100 571 100 

Note: Table reflects the all retrofits observed in the sample (n=1,850). Values are in descending order of 

retrofit measure combinations for both the Already Treated (AT) and Treatment (TR) subsamples. 
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Households are linked with bimonthly weather information with the nearest of seven weather 

stations (Table 3.17). A bimonthly Heating Degree Day variable reflects the number of days 

where mean temperature is below 15.5 degrees Celsius and total rainfall variable is also 

included. Later results omit these variables due to collinearity with the bimonthly frequency. 

 

Table 3.17: [3C] Summary of weather controls 

Variable   Mean SD Min Max 

Bimonthly heating degree days 53.55 11.09 20.1 60.9 

Total bimonthly rainfall (mm) 163.72 69.9 97.6 368.4 

Source: European Climate Assessment & Dataset  http://eca.knmi.nl/dailydata/customquery.php 

 

Table 3.18 summarises the changes in the EPC, split by subsample. The average reduction 

in theoretical energy use is 30 per cent, falling from 307.77 kWh/m2/year to 232.74 

kWh/m2/year. It is notable that a retrofit improves theoretical dwelling energy efficiency to 

the point that the average retrofit home (TR and AT) is more efficient that the average 

Control (CL) home. 

 

There is a similar reduction in theoretical energy use for Already Treated (AT) and 

Treatment (TR) subsamples (-96.63 kWh/m2/year for AT compared to -91.35 kWh/m2/year 

for TR). Before retrofit, AT homes are slightly less efficient (312.92 kWh/m2/year, E1 EPC 

average) than TR homes (296.22 kWh/m2/year, D2 EPC average). One likely explanation 

for this difference is the average year of construction (Table A3.4), which is 1969 for the AT 

group and 1975 for the TR group. After the retrofit, the same trend continues, with AT homes 

being slightly less energy efficient (216.29 kWh/m2/year, C3 average) than TR homes 

(204.88 kWh/m2/year, C3 average), yet within the same EPC band. 

  

http://eca.knmi.nl/dailydata/customquery.php
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Table 3.18: [3D] Change in EPC-calculated annual energy use 

Variable Mean Std. Dev Min Max 

Full Sample (n=7,832) 
    

Post-retrofit EPC 6.84 2.54 1 14 

Pre-retrofit EPC 4.65 2.11 1 10 

Difference 2.58 1.64 0 11 

Post-retrofit theoretical energy use 232.74 95.74 40 1240.7 

Pre-retrofit theoretical energy use 307.77 103.38 128.4 1311.7 

Difference -95 83.19 -1014.2 12.1 

Control (n=5,982)     

Post-retrofit EPC 6.72 2.71 1 14 

Pre-retrofit EPC     

Difference     

Post-retrofit theoretical energy use 238.92 104.56 40 1240.7 

Pre-retrofit theoretical energy use     

Difference     

Already Treated (n=1,279) 
    

Post-retrofit EPC 7.11 1.8 1 12 

Pre-retrofit EPC 4.54 2.09 1 10 

Difference 2.57 1.63 0 11 

Post-retrofit theoretical energy use 216.29 54.33 83.4 518.7 

Pre-retrofit theoretical energy use 312.92 106.63 139.9 1311.7 

Difference -96.63 86.38 -1014.2 12.1 

Treatment (n=571) 
    

Post-retrofit EPC 7.5 1.8 2 12 

Pre-retrofit EPC 4.89 2.14 1 10 

Difference 2.61 1.67 0 11 

Post-retrofit theoretical energy use 204.88 52.96 86.1 449 

Pre-retrofit theoretical energy use 296.22 94.8 128.4 847.1 

Difference -91.35 75.52 -665.9 -4.96 

Note: Theoretical energy use is in units of kWh/m2/year. This informs the EPC, which ranges from 1 to 

15 in ascending theoretical energy efficiency. Two AT households experienced a rise in theoretical annual 

energy use but remained within the same EPC category. 
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3.D Alternative value for money (VfM) subsample (n=166) 

Section 3.6.3 studies the value for money for specific retrofit combinations. In particular, it 

distinguishes between the expected value for money in the change in EPC and the actual 

value for money by multiplying the expected change in EPC with the average deficit or 

surplus between actual and theoretical energy use observed in Section 3.6.2. This is to 

facilitate a comparison between all households. This appendix features a separate value for 

money analysis for a subsample of 166 retrofits that occur in the middle of the observation 

period, with one full year of energy use before and after retrofit. Equation 3.D.1 denotes a 

VFM measure that replaces the change in the EPC with the change in actual energy use. 

 

In this study, energy use is observed from November 2014 to June 2017. Actual value for 

money (aVFM) can be compared for a subset of 166 retrofits that occur in the middle of the 

sample (from November 2015 to June 2016), where a full year of pre-upgrade (November 

2014 - October 2015) and a full year of post-upgrade (July 2016 - June 2017) energy readings 

are available. For this subsample, it is possible to compare the expected (eVFM) and actual 

(aVFM) value for money (assuming that both years feature similar weather). 

 

𝑎𝑉𝐹𝑀𝐻𝐻 =
𝐶0 − 𝐺0

𝐸𝐴𝑃𝑟𝑒𝑅𝑒𝑡  − 𝐸𝐴𝑃𝑜𝑠𝑡𝑅𝑒𝑡
     [3.D.1] 

 

Table 3.19 compares the expected and actual VFM for the subsample (n=166). For 

households, the average expected VFM (56.13 €/kWh/m2/year) is higher than actual VFM 

(23.72 €/kWh/m2/year). This suggests that it is cheaper to improve actual energy efficiency 

(based on the change in two years of energy readings) than improving theoretical energy 

efficiency (denoted by the change in EPC). A similar result holds for the policymaker 

measure, where the actual VFM improves when it is based on changes in actual energy use.  

 

Generalised to the population, it suggests that the upfront value of a retrofit is actually higher, 

so there should be less of a barrier to engaging with energy efficiency improvements. 

However, one limitation of the actual VFM metrics is the fact that they are based on changes 

in actual energy use, so higher energy use post-retrofit creates a negative VFM. 
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Table 3.19: [3E] Value for Money (VfM) comparison 

Suitable TR households (n=166) Unit Mean SD Min Max 

Pre-Retrofit EPC kWh/m2/year 283.52 91.51 146.51 847.08 

Post-Retrofit EPC kWh/m2/year 199.78 49.41 115.34 449.03 

Pre-Retrofit actual energy use kWh/m2/year 197.95 115.04 13.62 552.76 

Post-Retrofit actual energy use kWh/m2/year 123.35 61.25 18.99 346.83 

      

Household VFM      

eVFM €/kWh/m2/year 56.13 63.35 1.5 453.11 

aVFM €/kWh/m2/year 23.72 378.11 -1828.67 4207.75 

Difference €/kWh/m2/year 32.41 384.52 -4166.77 1933.84 

Note: Table reports the average expected value for money of receiving a retrofit for a subset of 166 TR 

households that receive a retrofit in the middle of the observation period, following Equation 3.E.1.  

 

Section 3.6.2 noted that actual energy use differs from the theoretical level. Results in 

Appendix 3.D completes this line of inquiry by highlighting how the value for money also 

changes when considering changes in actual energy use for a subsample. Although results 

are based on a sample of various retrofits, they suggest that retrofits, on average, offer better 

value for money than expected. This emphasises the importance of accurate EPC modelling. 
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Chapter 4: A Model of Technology Diffusion to 

Forecast Data Centre Electricity Use 
 

4.1 Introduction 

Most economic agents struggle to predict the future. This makes it difficult for policymakers 

to be proactive and forward-looking in their design of regulations and price controls. A 

classic example of this concept is how few could have predicted how reliant the modern 

economy would become on the internet as an engine for economic growth. However, the 

European Commission now considers internet infrastructure “a key new type of economic 

asset” (European Commission 2017a, 2017b), the UN lists affordable internet access as a 

Sustainable Development Goal (UN 2015) and it is estimated that four billion people are 

currently without internet access (World Economic Forum 2016). 

 

The policy ambition behind increasing internet access is justified. Pradhan et al. (2013) 

found evidence of a long run relationship between the percentage of a country’s population 

with internet connectivity and economic growth, inflation and government expenditure for 

OECD countries during the period 1990 to 2010. Koutroumpis (2009) found a significant 

causal impact of increased broadband penetration on economic growth for OECD countries. 

In the United States, the adoption of internet is associated with increased economic activity, 

higher income growth and lower unemployment growth in rural areas (Whitacre et al. 2014). 

Lechman and Kaur (2016) suggest a link between increasing internet connectivity, ICT use 

and improved social progress in developing countries from 2000 to 2014.  

 

Internet infrastructure is a complex network that requires significant investment and running 

costs. Data centres form the beating heart of modern internet infrastructure, and their 

significant energy footprint, private ownership and (relatively) rapid growth presents a 

challenge to policymakers. This paper demonstrates how an epidemic model of technology 

diffusion can forecast the potential energy savings that data centres could deliver energy use, 

were they to adopt a specific energy efficiency technology (EET). 

 

Data centres are large industrial units dedicated to storing and transmitting electronic data. 

They help facilitate innovations such as cloud computing (McKendrick 2016), online 

transactions, social media (McKinsey 2010) and driverless cars (Macauley 2016).  
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The volume of data in the economy is expected to grow rapidly in the coming years, with 

estimates that global annual internet traffic will be 3.3ZB in 2021 (zettabyte, or one trillion 

gigabytes), almost triple the 2016 level of 1.2ZB (CISCO 2017). International Data 

Corporation estimates that the ‘digital universe’ of data will grow from 4.4ZB in 2013 to 

44ZB in 2020 – more than doubling every two years27.  

 

Estimates vary on the energy footprint of the data centre sector. Recent estimates suggest 

that data centres account for one per cent of global electricity demand (Masanet et al. 2020). 

In the EU, data centres were estimated to consume 78 TWh of electricity in 2015, 2.5% of 

total electricity use (European Commission 2015). Koomey (2011) estimates that global data 

centre electricity consumption doubled from 2000 to 2005 and increased by 56% from 2005 

to 201028. Ebrahimi et al. (2014) estimate that US data centres consume between 1.3% to 

2% of the US national electricity consumption. In a study of equipment shipment data, 

Shehabi et al. (2018) forecast 2020 US data centre electricity use around 70 billion kWh, 

noting how energy efficiency has prevented electricity use from rising proportionally with 

the exponential increase in data. Importantly, this relationship is contingent on the nature 

and diffusion of future energy efficiency technologies (Shehabi et al. 2018). 

 

For information-intensive firms, the data centre can represent half of the company’s 

corporate carbon footprint (McKinsey 2010). Appendix 4.A provides a technical overview 

of common data centre cooling techniques. However, firms often fail to optimize data centre 

energy efficiency. The Uptime Institute estimate that 20% of the servers in a data centre are 

underutilised, with ‘comatose servers’ that idle on standby. Koomey and Taylor (2015) 

found that 30% of servers (from a sample of 4,000 across North America) delivered no 

computing services in the six months prior to monitoring. A subsequent study found that a 

quarter of comatose servers were located in firms that took no action to remove them (J. 

Koomey and Taylor 2017). 

 

Accurately reporting plant-level efficiency is difficult. The most popular metric is Power 

Usage Effectiveness (PUE), which is the ratio of total data centre energy use divided by the 

energy for computing equipment.  

 
27 See https://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htm 
28 Analysis based on commercial sales of server components, omits the largest ‘hyper scale’ facilities. 
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In a 2014 Uptime Institute survey of 1000 data centre managers, the average PUE is 1.729. 

Brady et al. (2013) find that firms manipulate PUE by including energy consumption that is 

not strictly for IT purposes. PUE also fails to account for hardware efficiency, energy 

productivity and environmental performance (Horner and Azevedo 2016). Ebrahimi et al. 

(2014) note that rising energy costs are likely to spur adoption of more energy efficient 

technologies. 

 

This paper applies an epidemic model of technology diffusion to forecast how potential 

efficiencies in data centre energy use could be adopted over time. It is motivated in large 

part by the rapid rise in data centre energy use. The method applied in this paper can be 

applied to any existing or emerging data centre cooling technology. The specific innovation 

considered in this study is a switch to direct liquid server cooling, which addresses a number 

of challenges by rising server power density: Liquid cooling has a higher thermal carrying 

capacity than air cooling, it can be fitted to existing server units and can halve the floor space 

required (Sickinger et al. 2014). Furthermore, liquid cooling could help data centres serve as 

a source of low-carbon waste heat supply to the grid (Ebrahimi et al. 2014). 

 

As noted by Garimella et al. (2013), liquid cooling could reduce total data centre electricity 

demand by a third. After quantifying the rate of technology adoption, it models the reduction 

in electricity use and associated CO2 emissions. This is the first study to use an epidemic 

model of technology diffusion in the context of the data centre sector. It serves as a helpful 

resource for researchers that are dealing with the need to provide sectoral forecasts under 

uncertainty with little detailed information. This is studied for Ireland, a key hub for global 

ICT activity where data centres are expected to be responsible for between 28% to 37% of 

national electricity demand by 2028, depending on the level of construction (EirGrid, 2019). 

 

The rest of the chapter is laid out as follows: Section 4.2 provides context to the Irish data 

centre and national energy picture. Section 4.3 details the conceptual framework, model of 

technology diffusion, assumptions, data and scenarios considered. Section 4.4 details the 

results for electricity demand and emissions. Section 4.5 concludes. 

 

 
29 See https://journal.uptimeinstitute.com/2014-data-centre-industry-survey/ 

https://journal.uptimeinstitute.com/2014-data-center-industry-survey/
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4.2 Case study system 

The previous section detailed how data centres have become an important part of the global 

economy and its energy use. This section focuses on the Irish economy, its complex 

relationship with data centres and the potential implications this has for the Irish energy 

market and related climate change targets. 

 

4.2.1 The Irish data economy 

Ireland is responsible for 14% of the global trade in ICT services in 2016 ($70 billion), higher 

than any other country (OECD, 2017). It is the second-largest European city in terms of data 

centre capacity, trailing London (Host in Ireland, 2017). More recent publications note that 

Dublin accounts for a quarter of the European data centre market with over 53 data centres 

(Host in Ireland, 2019). Ireland features the key infrastructure to support data centres 

including a secure electricity supply and technological readiness (Schwab, 2015). The data 

centre location decision is influenced by quality electricity supply, robust fibre broadband 

infrastructure and the presence of affordable business units (IWEA 2015).  

 

Despite the large energy footprint of the data centre sector on a constrained island electricity 

network, sectoral growth is anticipated to continue due to the strong economic benefits. The 

Irish Development Agency surveyed a sample of 16 data centre managers and estimated that 

since 2010, the data centre sector has contributed €7.13bn to the Irish economy (IDA 2018). 

The benefit is split into €4.64bn in construction (of which €1.59bn is indirect) and €2.49bn 

in operational expenditures (of which €0.90bn is also indirect). In response to concerns about 

the relatively low level of direct employment by data centres (Lillington 2016), IDA (2018) 

notes that annual average employment from data centres is equivalent to 5,700 full-time 

equivalent employees. Furthermore, they note that companies with a data centre in Ireland 

have increased their employment from 4,000 to almost 10,000 since 2010. 

  

The Irish government views data centres as essential for becoming a pillar of the European 

digital economy (Government of Ireland 2018). It aims to implement a plan-led approach 

that recognises the significant electricity demand of data centres. It aims promote regional 

data centre investment that avoids unnecessary grid infrastructure investment.  
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It also plans to balance the distributional impact of higher energy costs from an increase in 

data centre capacity. It also aims to streamline data centre planning processes. If achieved, 

these plans could foster data centre growth with minimal disruption. 

 

Firms note how an Irish data centre justifies further investment in finance, sales and software 

engineering in Ireland. This has led to collaboration between firms and higher-level 

education institutes to develop skills. The Irish market features spatial agglomeration, where 

companies build data centres in proximity to large data service providers to benefit from 

lower connection latency (IDA, 2018). Recent changes in legislation could shift demand for 

Irish data centres. The introduction of General Data Protection Regulation (European Union 

2016) has important consequences for how companies handle EU consumer data (EU GDPR 

2017). Paired with the looming exit of Britain from the European Union, it is likely that UK-

based firms might need to relocate their data to comply with data protection legislation. 

 

4.2.2 Challenges facing the Irish energy market 

The popularity of Ireland as a data centre destination poses challenges for the electricity grid. 

Businesses seeking a connection capacity of less than 20MVA connect to the grid through 

ESB Networks, the Distribution System Operator (DSO) of the medium-to-low voltage 

power lines. The increasing capacity of data centres above this threshold requires direct 

applications to EirGrid, the transmission system operator (TSO) of high-to-medium voltage 

power lines. Through this channel, it is possible for private negotiation with the TSO 

throughout the application and connection process30. EirGrid estimates that approximately 

490 MVA installed capacity of data centres in 2019 consumes roughly 13.9% of the national 

electricity demand (~4.3 TWh out of 30.9 TWh). By 2028, it is expected that data centres 

could be responsible for between 28% to 37% of national electricity demand, depending on 

the level of growth (EirGrid 2019). New data centre capacity is expected to drive three 

quarters of the national growth in electricity demand over the next decade (Oireachtas 2017).  

 

Figure 4.1 illustrates how national electricity demand forecasts (top panel) are influenced by 

expected data centre capacity (bottom panel) across three demand scenarios: 

 

 
30 See https://www.eirgridgroup.com/customer-and-industry/becoming-a-customer/demand-customer/ 
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• Low: All existing data centre capacity and half of all in-progress enquiries 

• Medium: All existing data centre capacity and all in-progress enquiries 

• High: All existing, in-progress and likely material enquiries 

 

 
Figure 4.1: EirGrid (2019) Forecast of Electricity Demand and Data Centre Capacity 

 

The EU has set targets to achieve climate neutrality by 2050 (European Commission 2019a). 

Earlier 2030 climate targets include i) sourcing 32% of the energy mix from renewable 

sources, ii) reducing GHG emissions by 40% from 1990 levels and iii) a 32.5% improvement 

in energy efficiency, relative to a 2007 forecast of 2030 energy use (European Parliament 

2018). Ireland aimed to improve energy efficiency by 20% before 2020 relative to average 

national energy use from the period 2001-2005, equivalent to savings of 31,925 GWh 

(DCENR 2009). By early 2017 Ireland has only achieved a 12% improvement in energy 

efficiency and is expected to miss the 2020 target by 3.77% (DCCAE 2017a), with 

compliance for the 2020 target potentially costing €80-140 million (Deane 2017). 

 

In recent years, Ireland has become a home to a thriving data centre industry. At the same 

time, Ireland is not on track to meet current EU emissions reduction targets. Although data 

centres have many associated economic benefits, future sectoral growth has the potential to 

undermine progress towards reducing energy use and emissions in future targets. 
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4.3 Conceptual framework and methodology 

Rising global energy consumption and emissions pose a serious threat to the global economy 

(N. Stern 2008). Although there is limited research into the role of data centres in the energy 

system, there is a broad literature that explains why economic agents fail to engage with 

energy efficiency. The theory underlying the “Energy Efficiency Gap” posits that goods with 

a positive net present value are not as widely adopted as they should be (Gerarden et al. 

2015; Jaffe and Stavins 1994a). This gap is explained by market failures, model 

measurement error and behavioural factors.  

 

In studying improved energy efficiency of consumer durable appliances in the 20th century, 

Newell et al. (1999) found that autonomous technical change, standards and energy prices 

all influence the range of products on offer. In many cases, there is ample information on 

market participants and their purchasing decisions. Researchers are challenged by the lack 

of information in markets where purchasing decisions are not observable. In such cases, 

modelling technology diffusion serves a helpful purpose. 

 

This study considers how energy efficient server cooling technology could be adopted in the 

Irish data centre market to reduce energy use. Given the lack of private information on data 

centres, modelling market adoption helps quantify the potential benefit of upgrading, which 

could be used to design effective policies. It is especially helpful when public data are 

limited, as is the case with data centres, which are often privately. Early applications of 

diffusion have studied mortality (Gompertz 1825) and economic growth (Prescott 1922). 

Epidemic models of technology diffusion are based on the concept that potential adopters 

adopt the technology after observing its effectiveness. Their flexibility has been used to 

model the spread of computerised firm processes (Karshenas and Stoneman 1993) and the 

diffusion of mail services worldwide (Pulkki-Brännström and Stoneman 2013). 

 

Jaffe and Stavins (1994a) note that the adoption of economically superior technologies is 

never instantaneous. In fact, market adoption usually approximates a sigmoid (s-shaped) 

curve. Technology adoption has been studied across a range of contexts: Energy efficient 

durable consumer goods (Bass 1967), patterns of wind energy diffusion following policy 

interventions (S. W. Davies and Diaz-Rainey 2011), the diffusion of electric vehicle 

charging points in Stuttgart over time (Wirges et al. 2012).  
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Baptista (1999) summarises key work in the area of induced diffusion. S-shaped diffusion 

features a slow initial uptake followed by growth as the product becomes more widely 

adopted before slowing down again as the market saturates. Davies and Diaz-Rainey (2011) 

apply the Bass model (1967)  to sales data of consumer durable goods to model the expected 

diffusion of new technologies. 

  

Equation 4.1 denotes the general diffusion framework, where the change in diffusion (𝑃) 

between two periods (𝑡, 𝑡 + 1) depends on the speed of diffusion (𝑏), the current penetration 

rate relative to saturation (𝑃(𝑡)) and exogenous ‘external’ effects, such as advertising, 

marketing or government interventions (𝑎). Where this is not present, 𝑎 = 0. 

 

{𝑃(𝑡 + 1) − 𝑃(𝑡)}

{1 − 𝑃(𝑡)}
= 𝑎 + 𝑏𝑃(𝑡)                              (4.1) 

 

The Gompertz curve is considered a better fit than the logistic curve to reflect technology 

diffusion (Yamakawa et al. 2013). The Gompertz function (Equation 4.2) is an asymmetric 

curve, where the growth in a period (𝑤) is a function of the maximum growth rate (𝑤𝑚𝑎𝑥) 

which is 1 for full market adoption, a constant (𝑘) and the difference between the mid-point 

(𝑡𝑚) and end point (𝑡): 

   𝑤 = 𝑤𝑚𝑎𝑥𝑒−𝑒−𝑘(𝑡−𝑡𝑚)
          (4.2) 

 

One limitation of the Gompertz curve is that it reaches its asymptotic peak at infinity. Yin et 

al. (2003) adjust the curve to feature a defined end-point (𝑡𝑖𝑒) and mid-point (𝑡𝑖𝑚). 

Following Equation 4.3, for any given period (𝑖) the proportional level of diffusion (𝜆𝑖𝑡) is 

related to the end- and mid-points of the specified horizon: 

𝜆𝑖𝑡 = (1 +
𝑡𝑖𝑒 − 𝑡𝑖

𝑡𝑖𝑒 − 𝑡𝑚
) (

𝑡𝑖

𝑡𝑖𝑒
)

𝑡𝑖𝑒
(𝑡𝑖𝑒−𝑡𝑖𝑚)

                                 (4.3) 

 

This paper considers the rate of diffusion of an energy efficiency technology (liquid server 

cooling) in the data centre sector in Ireland. The rate of diffusion determines how quickly 

the new technology is adopted and therefore the amount of energy saved each year.  
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This paper follows Yin et al. (2003) and assumes full market adoption by the end of 2028, 

which is consistent with the horizon forecast of data centre capacity developed by EirGrid, 

the Irish Transmission System Operator (EirGrid 2019).  

 

Following Equation 4.3, the symmetric ‘s-shaped’ adoption curve (Yin et al. 2003) is chosen 

as it is more representative of market behaviour than a constant adoption rate each year 

(Figure 4.2). Following this curve, initial adoption is slow, but increases as other firms 

observe the technology is viable. As the technology approaches full market adoption, growth 

slows due to saturation. Figure 4.2 illustrates the market adoption pattern, with adoption 

beginning in 2020 and ending in 2028, a nine-year period where the market reaches fifty 

percent saturation four and a half years into the horizon (mid 2023). 

 

Figure 4.2: Author’s comparison of linear and s-shaped market diffusion (2019-2028) 

 

4.3.1 Assumptions 

This study applies a model of technology diffusion to quantify the potential for liquid cooling 

technology to lower data centre energy use in Ireland. Given the lack of publicly available 

data, assumptions are needed regarding the composition of data centres: 

1. The market consists of identical data centres using standard mechanical air cooling. 

2. A form of direct liquid cooling for computer server cooling is adopted. This is chosen 

for two reasons: Firstly, rising demand for data services will require denser computer 

servers that require advanced liquid cooling. Secondly, increasing energy and climate 
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awareness will spur interest in technologies that help reduce energy consumption and 

that have an additional benefit in reusing waste heat. 

3. The liquid cooling technology is assumed to provide a 33% reduction in data centre 

electricity demand (following Garimella et al. (2013)). The additional benefit of 

reused waste heat is not quantified but is noted as an important factor for the 

commercial viability of liquid cooling adoption (Garimella et al. 2013). 

 

4.3.2 Data sources and scenarios 

This study uses a forecast of national data centre capacity from EirGrid (2019). Values are 

converted from units of mega-volt ampere (MVA) to capacity units of mega-watts (MW). 

Annual electricity demand is calculated by converting to mega-watt hours (MWh) and 

multiplying by the number of days and hours, assuming a data centre capacity factor of 0.75 

(IWEA (2015)). Changes in electricity demand depend on the share of the market that adopts 

the new technology. Two types of data centre are considered: Those operational before 2020 

(“Existing (E)”) and those in the connection process (“New (N)”), per the EirGrid (2019) 

medium demand forecast. Data centres choose whether to use traditional mechanical air 

cooling using a vapour compression cycle (“M”) or the new liquid cooling that provides a 

33% reduction in plant-level electricity use (“L”). Table 4.1 considers three scenarios: 

 

1. Business as Usual (BAU: NM, EM): Liquid cooling is not adopted by any plant. 

Consumption in this case is assumed to match the projection provided by EirGrid. 

2. New Only Diffusion (ND: NL, EM): In this scenario, only the new data centres will 

adopt liquid cooling as the existing stock of data centres do not adopt the technology. 

The new data centres adopt liquid cooling in the period they commence operation. 

3. All Diffusion (AD: NL, EL): Both existing and new data centres adopt liquid cooling 

with the timing of adoption subject to the s-shaped diffusion model. 

 

Table 4.1: Taxonomy of EET adoption scenarios 

 

Existing data centres (E) 

N
ew

 d
a

ta
 

ce
n

tr
es

 (
N

)  
Liquid 

(L) 

Mechanical Air Cooled 

(M) 

Liquid (L) NL, EL NL, EM 

Mechanical Air Cooled (M) NM, EL NM, EM 

Note: Table lists possible adoption scenarios. NL, EL features both New and Existing data centres adopt. 

NL, EM only features adoption for new data centres. NM, EM features no adoption and reflects the status 

quo. NM, EL (highlighted) suggests only existing data centres adopt. It is not discussed as it is unrealistic. 
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4.4 Results 

This section presents results following the previously discussed approach. Firstly, results are 

presented for the data centre sector (Section 4.1). This outlines the scope for efficiencies in 

data centre cooling over the coming years. This is followed by results presented at the 

national level (4.2). These results provide context on how Ireland is particularly sensitive to 

the data centre sector and stands to benefit from any efficiencies in their energy demand. 

The final set of results (4.3) quantify the reduced emissions as a result of reduced electricity 

demand. This is an important societal benefit of the reduction in data centre energy use. 

 

4.4.1 Data centre electricity demand 

Figure 4.3 illustrates the reduction in data centre capacity associated with each scenario. It 

highlights the significant scope for reducing data centre capacity in the ND (light blue bar) 

and AD (dark blue bar) case, depending on the extent of adoption. 

 

Figure 4.4 illustrates the forecast of sectoral electricity demand, including a capacity factor 

of 0.75. The most interesting comparison is between the Business as Usual (BAUMED) 

scenario, which EirGrid consider most likely with two adoption scenarios: New Only 

diffusion (ND, long-dash line) and All Diffusion (AD, dot-dash line), the latter of which 

assumes that existing data centres also upgrade their cooling technology. In 2028, electricity 

consumption by data centres would be 6% lower in the “New only diffusion” diffusion (ND) 

scenario and 33.3% lower in the “All diffusion” scenario (AD).  
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Figure 4.3: Data centre sector capacity (MW) 

Source: Author’s calculations using EirGrid (2019). Note: Capacities in MW, no capacity factor applied. 

 

This result is consistent with the assumption that technology adoption will reduce data centre 

energy consumption by a third, but it also emphasises the significant role that existing data 

centres play in determining the scope for new technology to spur widespread improvement 

in sectoral energy demand. 

 

Figure 4.4: Data centre sector electricity consumption (TWh) 

Source: Author’s calculations using EirGrid (2019). Note: Assumes a data centre capacity factor of 0.75. 
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Focusing only on the final year of the horizon neglects the cumulative energy savings. Over 

the nine-year period (2020-2028) when diffusion occurs, the ND scenario lowers energy use 

by 5.58% over the entire period, while the AD scenario lowers energy use by 21.14% over 

the same period (relative to the EirGrid BAUMED scenario). This result emphasises the 

importance of the timing of technology adoption, in addition to which plant choose to adopt. 

 

4.4.2 National electricity demand 

This section considers the effect of data centre technology adoption on national electricity 

demand. When computing a forecast of national energy use, it is important that energy use 

reflects the difference between the higher BAU level of data centre electricity consumption 

and the lower sectoral energy use of data centres considered in adoption (ND, AD) scenarios. 

Equation 4.4 shows how national electricity demand (𝑁𝑎𝑡𝐷𝑒𝑚) for diffusion scenarios is 

deflated according to the difference in relative share of data centre electricity use as a 

proportion of the BAU national total electricity demand. 𝐷𝐶 𝐶𝑜𝑛𝑠 reflects the electricity 

demand attributable to data centres each year. 

 

𝑁𝑎𝑡𝐷𝑒𝑚𝐴𝐷,𝑁𝐷 = 𝑁𝑎𝑡𝐷𝑒𝑚𝐵𝐴𝑈_𝑀𝐸𝐷 ∗ [1 − (
𝐷𝐶 𝐶𝑜𝑛𝑠𝐵𝐴𝑈𝑀𝐸𝐷

𝑁𝑎𝑡𝐷𝑒𝑚𝐵𝐴𝑈𝑀𝐸𝐷

−  
𝐷𝐶 𝐶𝑜𝑛𝑠𝐴𝐷,𝑁𝐷𝑀𝐸𝐷

𝑁𝑎𝑡𝐷𝑒𝑚𝐵𝐴𝑈𝑀𝐸𝐷

)] (4.4) 

 

 

Figure 4.5 illustrates national electricity demand, with the three BAU scenarios where no 

technology diffusion occurs (EirGrid 2019) compared with the technology diffusion 

scenarios (long-dash ND line, dot-dashed AD line). In 2028, the ND scenario reduces 

national electricity consumption by 1.32% relative to BAUMED, while the AD scenario would 

save 7.31%. Over the nine-year period, the total reduction in electricity demand is 1.03% 

and 3.94% for ND and AD scenarios, respectively. This result highlights the significant 

presence of data centres on the national level and emphasises the significant scope for 

improvements in data centre energy to translate to significant national savings. 
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Figure 4.5: National electricity consumption 

Source: Author’s calculations using EirGrid (2019). Note: Assumes a data centre capacity factor of 0.75. 

 

Table 4.2 highlights the share of national electricity consumption attributable to data centres 

over time. Every forecast shows data centres comprising a smaller share relative to BAUMED. 

Based on savings from the 2020-2028 period, the ND scenario reflects a 1.00 percentage 

point reduction in the national share, from an average of 18.44% under BAUMED to 17.44 

under ND. The reduction is even greater for the AD scenario, featuring a 3.76 percentage 

point reduction in the national share to an average share of 14.69%. This result highlights 

the large share of data centres in the national context while also highlighting the significant 

scope for energy savings, especially in the scenario where all data centres adopt the 

technology in question. 

 

The final two columns of Table 4.2 show how the level of savings is moderated somewhat 

when the share of data centre consumption is computed as a fraction of the deflated national 

electricity consumption (following Equation 4.4). For the ND case, the average shares for 

the 2020-2028 period are 17.63% and 15.28% in the ND and AD scenarios, respectively. 

This result emphasises the influential role of data centres in the national context, even after 

accounting for a forecast of national electricity demand that accounts for improvements in 

data centre efficiency over time. 
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Table 4.2: Data centre share of national electricity demand 

 BAU ND AD 

 LOW 

% 

MED 

% 

HIGH 

% 

MED** 

% 

MED** 

% 

2015 3.12 3.12 3.12 3.12 3.12 

2016 4.59 4.59 4.59 4.59 4.59 

2017 5.92 5.92 5.92 5.92 5.92 

2018 7.99 7.99 7.99 7.99 7.99 

2019 10.44 10.44 10.61 10.44 10.44 

2020 12.57 12.77 13.12 12.57 12.65 

2021 13.98 14.4 15.82 14.04 13.88 

2022 15.74 16.3 19.37 15.73 15.11 

2023 17.43 18.31 22.55 17.4 16.18 

2024 18.68 19.69 24.73 18.6 16.5 

2025 19.22 20.21 25.89 19.13 16.02 

2026 20.07 20.96 27 19.91 15.82 

2027 20.59 21.47 27.7 20.43 15.64 

2028 21.03 21.89 28.07 20.86 15.74 

      

2015-2028 Average Share (%) 13.67 14.15 16.89 13.62 12.11 

Saving vs. BAUMED    -0.52 -2.03 

2020-2028 Average Share (%) 17.70 18.44 22.69 17.63 15.28 

Saving vs. BAUMED       -0.81 -3.16 
Note: Values are in percent (%). Assumes a data centre capacity factor of 0.75. Note: NDMED**, ADMED** 

based on deflated value of BAUMED to reflect lower data centre consumption each year. Source: Author’s 

calculations based on EirGrid (2019) data. 

 

4.4.3 Carbon dioxide emissions 

Associated with the reduction in energy demand from the data centres are a reduction in CO2 

emissions from electricity generation. The International Energy Agency (IEA) publishes 

country-specific emissions factors, which relate the level of carbon dioxide (CO2) emissions 

to the quantity of energy consumed in a country. However, Brander et al. (2011) note that 

the IEA reports a composite electricity and heat emissions factor, which might not reflect 

the actual value of electricity emissions. For data centres whose main energy source is 

electricity, the correct emissions factor should be adjusted to only reflect electricity 

consumption.  

 

Table 4.3 presents emissions factors for Ireland based on 2010 energy quantities, accounting 

for transmission and distribution losses, finding a 7% difference between the IEA composite 

emissions factor and an electricity specific factor (Brander et al. 2011). 
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Table 4.3: Electricity specific emissions factors 

   

 kgCO2/kWh  

Electricity-specific generated emissions factor 0.5212 (1) 

IEA composite electricity/heat factor 0.4862 (2) 

Difference 0.0350 (7.2%) (1-2) 

Electricity transmission & distribution loss emissions factor 0.0449 (3) 

Electricity consumed emissions factor 0.5661 (4=1+3) 

Source: Brander et al. (2011) data for Ireland. 

 

The electricity-specific emissions factor of 0.5661 kgCO2/kWh (Brander et al. 2011) is 

applied to the electricity consumption in each scenario to quantify the abated emissions 

associated with improvements in data centre energy efficiency (Table 4.4). Over the 2020-

2028 period, emissions would be 4.7% lower for the ND scenario and 23.04% lower for the 

AD scenario. This result highlights a societal benefit of improving energy efficiency.  

 

This is especially important in the case of Ireland, where fines for non-compliance will result 

from failing to achieve EU energy efficiency targets. These results are illustrative given that 

results are sensitive to the emissions factor, which is likely to improve over time as the 

generation mix for Ireland becomes less carbon intensive. In this sense, these results serve 

as an upper bound of the potential savings. 

 

Table 4.4: Estimates of data centre CO2 emissions 

 BAU ND AD 

Year LOW MED HIGH MED** MED** 

2015 0.49 0.49 0.49 0.49 0.49 

2016 0.73 0.73 0.73 0.73 0.73 

2017 0.97 0.97 0.97 0.97 0.97 

2018 1.34 1.34 1.34 1.34 1.34 

2019 1.83 1.83 1.86 1.83 1.83 

2020 2.27 2.34 2.41 2.3 2.31 

2021 2.6 2.71 3.05 2.64 2.61 

2022 3 3.2 4.01 3.09 2.95 

2023 3.41 3.75 4.99 3.56 3.26 

2024 3.73 4.16 5.75 3.91 3.35 

2025 3.92 4.35 6.21 4.1 3.21 

2026 4.18 4.61 6.68 4.37 3.12 

2027 4.37 4.81 7.02 4.57 3.02 

2028 4.52 4.97 7.21 4.72 3.03 

      

2015-2028 Total 37.36 40.26 52.72 38.62 32.22 

Saving vs. BAUMED (%)    4.07% 19.97% 

2020-2028 Total 32 34.9 47.33 33.26 26.86 

Saving vs. BAUMED (%)    4.70% 23.04% 

*Note: Values are in units of million tonnes of CO2 equivalent (Mt CO2eq), based on national electricity 

demand and Brander et al. (2011) emissions factors for Ireland. Assumes a data centre capacity factor 

of 0.75. Note: NDMED**, ADMED** based on deflated BAUMED to reflect lower data centre consumption. 
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4.5 Concluding remarks 

This chapter is motivated by the recent emergence of data centres that help power the modern 

economy. In particular, it is interested in the significant pressure they exert on national 

energy demand. The presence of data centres is a particular challenge for certain economies, 

such as Ireland, that are already struggling to comply with long term EU targets for 

improving energy efficiency. Data centres are an example of a rapidly evolving technology 

that poses a planning challenge for policymakers, with consequences for future energy 

demand, transmission systems and emissions. Such analysis is made especially complex by 

the lack of publicly available information on data centres, where the only data source is a 

forecast of expected data centre capacity. This can hinder decision making under uncertainty. 

 

In order to evaluate whether particular policies in this space would be effective, it is 

important to first quantify the scope for achievable efficiencies. This paper applies an 

epidemic model of technology diffusion which can be applied to quantify the potential 

savings from a specific energy efficiency technology. It serves as a helpful tool when 

publicly available data are limited. Although the specific technology may change, research 

has identified cooling as one of the most energy-intensive aspects of data centres. In fact, 

mechanical cooling can comprise one third of energy use in a data centre (Garimella et al. 

2013). This study focuses on eliminating this share of energy use in the data centre, and the 

consequences this would have on the Irish energy system. 

 

When evaluating technologies that improve data centre energy efficiency, it is important to 

consider the direct energy savings. It is also important to quantify the external benefit of 

reduced carbon emissions. Although some benefits do not accrue directly to firms, they are 

an important consideration for policymakers when formulating possible incentives. 

 

The key finding in this paper is that data centres can serve a key role in fostering 

improvements in energy efficiency. This is especially true in Ireland, where data centres 

could use almost 40% of national electricity demand by 2028. Compared to other countries, 

data centres have a sizeable impact on Irish efforts to energy efficiency and lower energy 

use. There is potential to reduce national energy use by 3.16% over the 2020-2028 period if 

every data centre adopts the energy efficiency technology.  
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The second result is that the level of savings depends on how extensively such technology 

can be adopted by new and existing data centres. The 3.16% reduction in national electricity 

demand is only achieved if every data centre adopts. These savings fall to a 0.81% reduction 

if adoption is not possible for existing capacity. The final result notes the potential to reduce 

sectoral emissions by 23.04% over the period 2020-2028, depending on the level of 

technology adoption. This is a significant saving that serves as added motivation for 

policymakers to foster improvement in data centre energy efficiency. 

  

Certain topics are beyond the scope of this study. Although future market trends cannot be 

predicted, technological innovations are expected. It is for this reason that the paper has 

taken a technology-agnostic approach. Advancements in energy generation, transmission 

and interconnection will also matter, as the current results for emissions reduction are a 

function of the carbon-intensity of electricity generation in Ireland. However, changes in 

legislation and political events may serve as demand shifters for the data centre sector. 

  

It is important to emphasise that a major contribution of this paper lies in its methodology 

and how this is applicable to a variety of contexts where forecasts must be made under 

uncertainty. It features flexibility to respond to new forecast horizons and alternative 

technologies within the data centre and the wider transmission network. It evaluates the 

scope for data centres to deliver energy savings through technology adoption. It does not 

consider the cost of the technology, in new-build data centres or retrofitted to existing plant. 

A more substantial cost-benefit analysis would be required to determine if the net present 

value of energy savings outweighs the marginal capital costs of adoption. 

 

Results highlight the potential savings and suggest that policymakers should aim to foster 

improvements in energy efficiency. This may be attainable given the relatively small number 

of firms in the market and their existing working relationship with EirGrid, the transmission 

system operator, formed during the planning and connection process. Another 

recommendation is that policymakers publish a more detailed record of data centres in 

Ireland and the efforts firms have made to improve energy efficiency. This has been effective 

at EU level, with the Data Centre Code of Conduct for Data Centre Energy Efficiency 

(European Commission 2016) that has been associated with improvements in average Power 

Usage Effectiveness (Avgerinou et al. 2017). 
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4.A Technical literature on data centre server cooling 

This section presents a non-technical overview on various server cooling techniques within 

data centres. Although this is not the primary focus of this study, it may offer helpful context 

to readers. A substantial literature exists on server cooling technology (see Ebrahimi et al., 

2014). In most data centres, servers are fan-cooled with a power-hungry mechanical chiller. 

A mechanical chiller can be responsible for one third of facility energy consumption 

(Garimella et al. 2013). One innovation has been air-side economization (‘free air’ cooling) 

which reduces energy costs by using filtered outside air to cool servers instead of a 

mechanical chiller. ‘Free air’ cooling is popular in temperate climates, especially for ‘hyper 

scale’ facilities. Song et al. (2015) found that ‘free air’ cooling could reduce consumption 

by up to 35% compared, depending on location, weather and energy prices. 

 

Another technology is direct liquid cooling, which pipes liquid through the computer server 

to remove heat. The use of direct liquid cooling has typically been required for High-

Performance Computing (HPC) units. However, it is suspected that typical data centres may 

require liquid cooling to operate effectively in the future31. To remove heat, Greenberg et al. 

(2006) note that liquid has a much higher thermal carrying capacity than air, being able to 

carry 3,500 times more heat. In studying a HPC unit in the USA, Sickinger et al. (2014) find 

that a direct liquid cooling unit (Asetek RackCDU) was easy to retrofit to the existing 

supercomputer. Contrary to industry concerns about liquid cooling leakage, there was no 

maintenance or leaks during 16 months of operation and over half of the heat emitted from 

the central processing unit (CPU) could be recovered. This shows how direct liquid cooling 

could eliminate the need for a mechanical chiller while reducing and reusing energy. The 

liquid cooling system also halved the floor space required, an additional benefit. 

 

The management of waste heat is of interest to data centres given their significant level of 

electricity consumption. With waste heat capture data centres could potentially meet data 

centre heating needs, replace power used in computer server cooling process, heat nearby 

premises or even convert waste heat to electricity and supply to the national grid (Ebrahimi 

et al. 2014). 

 
31 See http://www.datacenterknowledge.com/archives/2014/08/14/is-direct-liquid-cooling-making-a-

comeback/ 

http://www.datacenterknowledge.com/archives/2014/08/14/is-direct-liquid-cooling-making-a-comeback/
http://www.datacenterknowledge.com/archives/2014/08/14/is-direct-liquid-cooling-making-a-comeback/
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The higher temperature of heat recovered via liquid cooling makes it the preferred means, 

although there is a trade-off between the quality of the waste heat collected and effectively 

cooling servers (Carbó et al. 2016). An Apple data centre located in Jutland, Denmark, plans 

to use data centre waste heat in nearby homes32 as part of an existing district heating network 

which supplies 64% of homes33. Other work has noted the potential for data centres within 

a district heating network, but the significant capital cost of district heating remains a hurdle 

in many cases (G. F. Davies et al. 2016; IRBEA 2016). If reusing waste heat is socially 

optimal, but data centre operators do not benefit from spending the extra capital to capture 

waste heat then it is important to consider policies that could help incentivise this behaviour 

to reach the socially optimal outcome. Table 4.5 provides a non-technical overview of 

popular cooling methods, including key drawbacks and benefits. 

 

Table 4.5: [4A] Summary of data centre server cooling technologies 

Cooling Type Benefits Limitations 

Conventional Air 

Cooling  

 

(Mechanically chilled air 

is channelled through 

server rack.) 

Cost effective 

Scalable 

Location-friendly 

Widely used 

 

Mechanical chilling process is energy 

intensive 

Fan cooling inefficient, loud, short fan 

lifespan 

Difficult to reuse waste heat 

Free Air Cooling  

 

(Outside air is channelled 

through server rack.) 

Cost effective 

No mechanical chilling 

required 

Used for “hyper-scale” 

facilities 

Not suitable at all scales 

Somewhat location specific  

Extra work to manage humidity, particles 

Adverse working conditions (noise, heat) 

Direct Liquid Cooling  

 

(Closed loop of liquid is 

channelled through server 

rack to dissipate the heat.) 

Optimal server cooling 

Excellent waste heat 

extraction – suitable for 

district heating 

Likely needed for more 

computing power 

More costly 

Not proven at “hyper scale” 

Not widely used 

Reluctance to adopt liquid 

 

 
32 See http://www.usadk.org/news/apple-establishes-one-of-the-worlds-largest-data-centres-in-denmark/ 
33 See http://www.investindk.com/Clusters/Cleantech/Data-Centres 

http://www.usadk.org/news/apple-establishes-one-of-the-worlds-largest-data-centres-in-denmark/
http://www.investindk.com/Clusters/Cleantech/Data-Centres
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Figure 4.6 illustrates a conventional data centre, with servers arranged in ‘hot’ and ‘cold’ 

aisles to disperse heat. Mechanically chilled air is channelled through the floor into the 

servers. In contrast, a liquid-cooled facility would replace the mechanical air conditioner 

unit (CRAC) with a closed loop of fluid channelled through the server to remove heat 

effectively. There is general agreement on the continued increase in effective power density 

(Garimella et al. 2016). However, advances in cooling technologies could offset rising 

energy demand. 

 

 

Figure 4.6: [4A] Traditional data centre layout  

Source: (Zhou et al. (2011)) 

 

In summary, data centres aim to minimize their capital and operating costs. For most, this 

means using mechanically chilled air cooling, especially in regions with low electricity 

prices. For other facilities, the use of free air cooling avoids the need for a power-hungry 

mechanical chiller. Direct liquid cooling has the potential to reduce data centre energy 

consumption and maximise the potential for recapturing waste heat.  
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Chapter 5: The multiple benefits of large-scale 

energy efficiency technology adoption 
 

5.1 Introduction 

The EU set binding targets for renewable generation, emissions reduction and energy 

efficiency to achieve climate neutrality by 2050 (European Commission 2019a). 2030 

climate targets include i) reducing GHG emissions by 40% from 1990 levels, ii) 32% of the 

energy mix from renewable sources and iii) 32.5% improvement in energy efficiency, 

relative to a 2007 forecast (European Parliament 2018). Heating and cooling comprise 48% 

of global energy use and 39% of CO2 emissions (REN21 2019). 

 

Data centres consume one per cent of global electricity demand (Masanet et al. 2020). 

Conventional data centre cooling involves grid-powered chillers sending cold air to servers, 

comprising a third of facility electricity use (Garimella et al. 2013). In some cases, data 

centre waste heat contributes to a district heating network providing heating to two thirds of 

Danish households (Danish Energy Agency 2015). Data centres could meet heating demand 

in urban areas such as London (G. F. Davies et al. 2016) and Dublin (Gartland 2015; IRBEA 

2016). Studies to date are limited to the plant (Wahlroos et al. 2018) and city level (G. F. 

Davies et al. 2016), while advanced liquid cooling features in experimental server-level 

studies (Sickinger et al. 2014). 

 

An integrated energy system of electric and thermal fuels could accommodate rising energy 

demand while increasing generation from renewable sources (O’Malley et al. 2016). 

However, energy efficiency has yet to fulfil its potential due to the continued use of 

inefficient technologies, a lack of effective policy and weak investment (IEA 2020). For 

example, Persson et al. (2014) estimates that 46% of European waste heat could be reused, 

with correct incentives. Differences between the private and social optimal outcome 

contribute to underinvestment in energy efficiency (Jaffe and Stavins 1994b).  
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One under-researched area is the potential for energy efficient technology (EET) that 

simultaneously eliminates data centre cooling demand while supplying low-carbon energy 

for use elsewhere. This is relevant due to the ascension of data centres and the pressing need 

to reduce energy use and emissions globally. The lack of evidence to date possibly stems 

from the different investment perspectives (Arrow and Lind 1978), market failures 

(Gerarden et al. 2017) or the lack of commercially available technologies. 

 

This is the first paper to evaluate the national economic benefit of an EET that fosters energy 

systems integration.  It connects two distinct strands of literature on small-scale data centre 

energy efficiency and large-scale consequences of data centres on power systems. This paper 

considers a commercially available large-scale technology that uses a charging cycle to 

convert electricity into hot and cold thermal energy. It stores electricity, facilitates increased 

RES generation and helps improve system demand response. This is studied for Ireland, a 

country with an ambitious target of generating 70% of energy from renewable sources by 

2030 (Government of Ireland 2019), where reducing emissions in heating has proven 

challenging (SEAI 2019) and where data centres are forecast to drive 75% of the growth in 

national electricity demand from 2017-2026 (Oireachtas 2017).  

 

Results model a representative data centre paired with the EET at the national level using a 

forecast of Irish data centre construction. Indirect benefits estimate the hot water available 

for use in another sector due to technology adoption. Tertiary benefits are quantified using 

ENGINE, a power systems model of the Irish economy (D. Z. Fitiwi et al. 2020). Although 

results are specific to Ireland and the EET considered, it represents an important example of 

the potential for sector coupling to help achieve climate targets. It also provides a 

methodology that can be applied to other technologies, industries and power systems. 

 

The paper is presented as follows: Section 5.2 provides global policy context. Section 5.3 

provides context to the Irish case study. Section 5.4 details the research questions of this 

paper and provides a theoretical basis within the context of the Energy Efficiency Gap. 

Section 5.5 details the empirical approach of this paper, including scenario details and model 

inputs. Section 5.6 presents and discusses the results. Section 5.7 concludes. 
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5.2 Policy context 

5.2.1 Global energy demand and data centres 

Energy demand is rising globally, with significant increases in electricity use across 

developed economies. The International Energy Agency (IEA) assert that energy efficiency 

could be responsible for 80% of the reduction in future global energy use (IEA 2016). 

However, improvements in energy efficiency are under-exploited due to the use of less 

efficient technologies, a lack of effective policy and weak investment (IEA 2020). Data 

centres are estimated to consume one per cent of global electricity (Masanet et al. 2020). 

Their presence has risen as internet connectivity has become a "key economic asset" 

(European Commission 2017b). Data centres are critical for information storage, 

communication and computing and can unlock future innovations including driverless cars 

(Macauley 2016), 5G connectivity and machine to machine activity (OECD 2017).  

 

Improvements in data centre energy efficiency over time largely stem from improvements 

in computing electrical efficiency, which has doubled every 1.5 years in accordance with 

Moore’s Law since its inception in the 1960s (J. G. Koomey et al. 2011). Shehabi et al. 

(2018) forecast 2020 US data centre electricity use around 70 billion kWh, noting how rising 

energy efficiency has prevented electricity use from rising proportionally with increases in 

data workloads. However, this relationship is contingent on the nature and diffusion of future 

energy efficiency technologies (Shehabi et al. 2018). 

 

Koronen et al. (2020) notes that EU data centre energy efficiency policies are limited to 

voluntary schemes and research funding. The voluntary Code of Conduct for Data Centre 

Energy Efficiency (European Commission 2016) highlights best practice in optimising data 

centre energy efficiency. For 289 participants, the average Power Usage Effectiveness 

(PUE)34 has fallen from 1.9 in 2010 to 1.64 in 2016, suggesting a positive effect of the policy 

(Avgerinou et al. 2017). Other global survey data suggests the average PUE has fallen from 

2.5 in 2007 to 1.58 in 2018 (Uptime Institute 2018). However, PUE is an unreliable metric, 

especially when quantifying efficiencies involving waste heat reuse outside the facility 

(Brady et al. 2013; Horner and Azevedo 2016; Yuventi and Mehdizadeh 2013). 

 
34 PUE is defined as the total facility energy use divided by IT energy use. 
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5.2.2 Data centre energy efficiency potential 

The private ownership of many data centres makes monitoring energy use difficult 

(Whitehead et al. 2014). In a conventional data centre, computer servers require cooling to 

maintain operational temperatures. Cold air is generated by a mechanical chiller, passes 

through the servers, and exits the server as warm air. This process can represent a third of 

data centre electricity use (Garimella et al. 2013). However, larger ‘hyperscale’ data centres 

achieve greater efficiency using ambient air cooling to reduce total energy use. 

  

Aside from more efficient IT hardware, data centres could increase energy efficiency by 

recycling exhaust air (Ebrahimi et al. (2014) to supply a district heating (DH) network (G. 

F. Davies et al. 2016; Wahlroos et al. 2018). In most cases, low grade waste heat is boosted 

by heat pump to a suitable temperature. However, this is less of an issue for the latest 4th 

Generation DH systems that operate with a supply temperature of 45 − 55℃, rather than the 

current 3rd Generation DH networks that require 75 − 120℃ (Wahlroos et al. 2018). 

  

Research has highlighted the potential for data centres to meet heating demand in densely 

populated regions with no existing DH network such as London (G. F. Davies et al. 2016) 

and Dublin (Gartland 2015; IRBEA 2016). One underdeveloped area is the possibility of 

adopting an energy efficient technology that simultaneously eliminates data centre energy 

demand for cooling while also supplying energy for use in other sectors. 

 

5.3 Research setting - Ireland 

Ireland has a poor record in decarbonising heating (SEAI 2019), a large share of intermittent 

renewable energy sources (RES) and untapped potential for district heating (IRBEA 2016). 

By the end of 2018, Ireland has only realised 69% of their 2020 EU target for energy 

generation from renewable sources, 72% of the renewable transport target, 83% of the 

renewable electricity target and only 54% of heat from renewable sources (SEAI 2019). 

Improving energy efficiency forms a key part of national climate policies (DCCAE 2017b).  

Ireland has become the centre of the digital economy, conducting 14% of global trade in ICT 

services in 2016 (OECD 2017), the highest of any country.  
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Data centres locate in Ireland for the electricity supply (Schwab 2015), affordable business 

units (IWEA 2015), fibre internet (Bitpower and Host in Ireland 2017) and ease of doing 

business (William Fry 2016)35. However, firm-level decisions to locate data centres in 

Ireland have national consequences. Data centres are expected to comprise 75% of the 

growth in Irish electricity use from 2017-2026 (Oireachtas 2017). By 2028, it is projected 

that data centres will use between 25% and 37% of national electricity (EirGrid 2019). 

 

Less than one per cent of Ireland’s heat demand is met through district heating (DH), below 

the EU average (7%) and Denmark, where over 60% of residential area is heated by DH 

(IRBEA 2016).  The national Climate Action Plan aspires to have 60,000 DH-connected 

homes by 2040 (Government of Ireland 2019). Two DH projects have received grant support 

from the Climate Action Fund, one of which will reuse data centre waste heat with a heat 

pump to supply space and water heating for 1,962 homes, 16,250m2 of commercial space 

and 47,000m2 of public buildings (CODEMA 2018a). Ireland is the perfect case study for 

the effectiveness of an energy efficiency technology (EET) that lowers data centre energy 

use, decarbonises the heating sector and increases grid-level electricity storage. 

 

 

5.4 Economic theory and research questions 

5.4.1 Economic theory 

This paper considers one example of how differences in public and private investment 

decision making can result in a lack mutually beneficial projects. One explanation for the 

lack of collaboration is the different discount rate, with private sector investments often 

requiring a higher discount rate to invest (see Solow (1963), Arrow & Lind (1978)). This 

paper contributes evidence to the Energy Efficiency Gap, which theorizes there is a relative 

social under-adoption of energy efficient technologies with a positive net present value (Jaffe 

and Stavins 1994a).  

 

  

 
35 Appendix 5.A details a survey by IDA Ireland on the economic benefit of data centres to the Irish economy. 
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Jaffe & Stavins (1994b) argue that market failures such as information problems, principal-

agent issues and unobserved costs warrant government intervention, whereas non-market 

failure factors, including high customer discount rates, private information costs and adopter 

heterogeneity should not warrant government intervention. Gerarden et al. (2017) considers 

the three broad areas of market failures, behavioural factors and model measurement error 

to be the main drivers of the Energy Efficiency Gap. 

 

Allcott & Greenstone (2012)  consider a model of investment in energy-using durable goods 

to distinguish between (1) investment inefficiencies which may prevent consumers making 

‘optimal’ purchases and (2) energy use externalities, which result in energy use being priced 

at a socially optimal rate. The Energy Efficiency Gap acts as a weight on perceived energy 

cost savings, capturing investment inefficiencies when a consumer compares extra 

investment today with future energy savings. Examples include consumer inattention, the 

cost of information and differences in the interest rate and the risk-adjusted discount rate. 

This paper asserts that the EET would not be adopted by either policymakers or data centre 

operators alone, since the benefits accrue to both private (cheaper data centre cooling) and 

public (heating energy source, transmission network savings) agents. 

 

5.4.2 Research questions 

This study considers the economic benefit of an integrated energy system in terms of energy 

savings, where an energy efficiency technology (EET) facilitates increased penetration of 

renewable generation, which offers a low/zero carbon supply of cooling to data centres and 

heating to an alternative source. This is investigated across three specific research questions: 

 

RQ1: What is the primary benefit of data centre cooling energy savings? 

RQ2: What is the secondary benefit of heating energy savings? 

RQ3: What are the tertiary benefits of EET adoption? 

 

RQ1 considers the primary benefit of reduced energy use resulting from data centres availing 

of free cold-water supply from the EET (detailed in Section 5.2). RQ2 quantifies the 

secondary benefit of EET adoption in terms of hot water supply that could displace fossil-

based heating.  
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RQ3 quantifies the tertiary benefit to the wider transmission system associated with EET 

adoption in terms of grid-level investment and emissions, using a model of the Irish energy 

system in 2030. 

 

This study makes several important contributions. The first outlines the economic benefit of 

the chosen EET in terms of energy usage. The second contribution is the use of a unique 

dataset on forecasted plant-level data centre capacity. The third contribution is the results for 

the Irish energy system offered by the power system optimisation tool ENGINE, which acts 

as an approximation of the ‘public good’ benefit of technology adoption in terms of 

renewable generation capacity, system-wide curtailment and emissions. 

 

5.5 Methodology and data 

5.5.1 Methodology 

Figure 5.1 details the analysis. The first step involves designing a plant-level model of a data 

centre paired with the EET. Following this, the representative facility is considered within a 

market-level forecast of data centre capacity for the period 2019-2028. Finally, the power 

systems model quantifies the tertiary benefit of technology adoption in 2030. 

 
Figure 5.1: Data collection and methodology 
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This study models energy balances for a representative data centre that adopts the EET and 

builds an annual forecast based on national data centre planning applications. Four scenarios 

are considered: A Business as Usual (BAU) scenario with no EET adoption (𝐻0) is 

compared with three EET adoption scenarios with differing heating use: A low-temperature 

future 4th Generation District Heating system (𝐻1), a high temperature 3rd Generation 

District Heating system (𝐻2) and an industrial use of hot water (𝐻3). In each EET scenario 

(𝐻1 − 𝐻3), data centre cooling is displaced by cold water supply from the EET. 

 

Results are sensitive to the assumed utilization rate (𝑈) of the data centre i.e. what fraction 

is a data centre operating at its planned maximum capacity. This study infers energy demand 

(and cooling requirements) from planning capacity information for data centres. Results 

assume that data centres operate at their maximum utilization (𝑈𝑀) - reflecting the 

theoretical maximum energy use. Table 5.5.1 outlines the taxonomy of scenarios considered. 

 

Table 5.1: Taxonomy of scenarios 

Note: 4GDH refers to an emerging 4th generation low-temperature district heating network. 3GDH 

refers to an existing high-temperature 3rd generation district heating network. Industrial refers to a 

setting where an industry with a specific demand for hot water locates adjacent to the data centre. 

 

Plant-level results in Section 5.6.1 calculate annual energy use for data centres. For data 

centre 𝑖 with heating end use 𝐻, data centre utilization rate 𝑈 and year 𝑡, Equations 5.1, 5.2 

and 5.3 describe how capacities are converted to annual values in units of megawatt-hours 

(MWh) for Total energy use (𝑒𝑇𝑜𝑡𝑎𝑙), IT electricity use (𝑒𝐼𝑇) and Cooling energy use 

(𝑒𝐶𝑜𝑜𝑙𝑖𝑛𝑔). Three types of data centre are considered, based on EET adoption status (𝑎): 

facilities that are incompatible with the EET, facilities that are EET compatible but are 

already built (𝑎 = 1) and facilities that are EET compatible but are planned. Only the latter 

group adopts the EET. 

Heating End Use (H) 
Data Centre Utilization (U) 

UM = 100% 

H0: Business as Usual H0, UM 

H1: 4GDH (Future) H1, UM 

H2: 3GDH (Current) H2, UM 

H3: Industrial H3, UM 
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 𝑒𝑇𝑜𝑡𝑎𝑙𝑖,𝐻,𝑈,𝑡 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,𝐻,𝑈 ∗ 24 ∗ 365 [5.1] 

 𝑒𝐼𝑇𝑖,ℎ,𝑢,𝑡 = ((𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,ℎ,𝑢 ∗ 24 ∗ 365)/1.3) ∗ 1 [5.2] 

 𝑒𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑖,ℎ,𝑢,𝑡 = ((𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖,ℎ,𝑢 ∗ 24 ∗ 365)/1.3) ∗ 0.3 [5.3] 

 

Market-level analysis in Section 5.6.2 aggregates electricity consumed by data centres across 

each of the four scenarios. Equation 4 defines total market energy use (𝑚𝑒𝑇𝑜𝑡𝑎𝑙) in a given 

year 𝑡 as the weighted sum of energy use for data centres that are too small to adopt (𝑎 = 0), 

data centres that are large enough to adopt but are already built (𝑎 = 1) and data centres that 

will adopt (𝑎 = 2), depending on the heating end use. Equations 5.5 and 5.6 denote the 

annual electricity use for IT and cooling, respectively. 

 

𝑚𝑒𝑇𝑜𝑡𝑎𝑙𝐻,𝑈,𝑡 = ∑ 𝑒𝑇𝑜𝑡𝑎𝑙𝑖,𝐻,𝑈,𝑡 ∗ 𝑤𝑎,𝑡

𝑛

𝑖=1

 [5.4] 

𝑚𝑒𝐼𝑇 𝐻,𝑈,𝑡 = ∑ 𝑒𝐼𝑇𝑖,𝐻,𝑈,𝑡 ∗ 𝑤𝑎,𝑡

𝑛

𝑖=1

  [5.5] 

𝑚𝑒𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝐻,𝑈,𝑡 = ∑ 𝑒𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑖,𝐻,𝑈,𝑡 ∗ 𝑤𝑎,𝑡

𝑛

𝑖=1

 [5.6] 

 

 

5.5.2 Energy Efficiency Technology 

The majority of commercial solutions that cool data centres while producing high-grade heat 

output are based around hot air recovery and a heat pump. Examples of this include an 

upcoming district heating scheme (DH) in Ireland (CODEMA 2018a), data centres in the 

Nordic countries supplying an existing DH network, including an Apple data centre in 

Denmark (Wahlroos et al. 2018). In order to conduct the analysis, the researcher had to 

choose a technology. However, the same method could be applied to other technologies. 
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This study considers a large scale, commercially ready technology that provides high-grade 

heat output and cold supply for a data centre. The MAN Electro Thermal Energy Storage 

(ETES) system is the chosen EET. Fundamentally, ETES36 serves as a source of large-scale 

electricity storage, using a charging cycle to convert electric into thermal energy. ETES aims 

to further energy systems integration in three ways. Firstly, it provides data centre cold air 

supply using chilled water. Secondly, ETES hot water supply could displace fossil fuel used 

for heating. elsewhere Finally, the storage ability of ETES can benefit the national 

transmission system by lowering grid investment costs, reducing the need for additional 

renewable electricity capacity expansion and lowering generation-related emissions. 

 

ETES can operate at a range of temperature settings, which influences the capital cost and 

required electrical input. Key literature informs the supply and return temperature 

parameters across three possible heating end-uses (𝐻1, 𝐻2, 𝐻3). Table 5.2 summarizes the 

assumed supply and return temperatures for cold and hot water in analysis. 

 

Table 5.2: Temperature assumptions for ETES system 

Source: Consultation with MAN. Note: 4GDH refers to an emerging 4th generation low-temperature 

district heating network. 3GDH refers to an existing high-temperature 3rd generation district heating 

network. Industrial refers to a setting where an industry with a specific demand for hot water locates 

adjacent to the data centre. 

 

Cold-water: The EU Code of Conduct on Data Centre Energy Efficiency suggests that data 

centres should deliver air to the IT equipment within the 10 − 35°𝐶 range (European 

Commission 2014). This is consistent with ASHRAE industry standards, which recommends 

inlet temperatures between 18 − 27°𝐶 (Uptime Institute 2015). In this study, a cold supply 

temperature of 18°𝐶 and a cold return temperature of 27°𝐶 is assumed. 

 

 
36 Appendix 5.B includes additional information on the specifics of the ETES charging cycle. 

Temperature (degrees Celsius) Heating End Uses 

H2: 

3GDH 

H1: 

4GDH 

H3: Industrial 

Cold water supply 18 

27 Cold water return 

Hot water supply  90 60 120 

Hot water return 50 20 50 
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Hot-water supply: Hot water temperatures depend on the heating end-use. 𝐻1 considers a 

4th generation District Heating system that integrates heat, electricity and energy storage with 

energy efficient buildings (Lund et al. 2014). It is assumed to require a supply temperature 

of 60°𝐶 with a return of 20°𝐶. 𝐻2 considers existing 3rd generation DH systems that assumes 

a supply temperature of 90°𝐶 and a return temperature of 50°𝐶 (Lund et al. 2014). 𝐻3 

considers an industrial heating end-use where hot water is supplied at 120°𝐶 and returned at 

50°𝐶. It is assumed that the industrial user is located adjacent to the EET, similar to the 

upcoming Tallaght District Heating Scheme in Ireland (CODEMA 2018a). 

 

Table 5.3 summarizes EET efficiency for the three heating end uses based on an eight-hour 

charge. The higher coefficient of performance (COP) for 𝐻1 reflects the most efficient case. 

Conversely, there is a higher Hot Duty for 𝐻2 and 𝐻3, reflecting the higher supply 

temperature and the additional power input required. Appendix A.2 illustrates the negative 

relationship between charging time and both the power input and storage size of the EET. 

 

Table 5.3: ETES system efficiency parameters 

Heating End 

Use (𝑯) 

Utilization 

(𝑼) 

Hot 

COP 

Cold 

COP 

Assumed Cold 

Duty (MW) 

Hot Duty 

(MW) 

8H Power 

Input (MW) 

𝑯𝟏: 4GDH  1.0 4.63 3.59 6.84 8.84 5.72 

𝑯𝟐: 3GDH 1.0 2.68 1.60 6.84 11.48 12.86 

𝑯𝟑: Industrial 1.0 2.68 1.60 6.84 11.47 12.84 

Note: Based on a 29.64 MW data centre, which provides assumed values for Cold Duty. Hot and Cold 

COP, Hot Duty obtained from MAN. Power Input based on 8-hour charging time.  

 

5.5.3 Data centre market data 

This paper uses a unique data set of data centre planning applications compiled by Bitpower 

(2020)37. The data features 112 plant-level observations with details on location, type, 

development status, year of construction, design capacity (in MW) and IT Power (assuming 

an average PUE of 1.3).  

 
37 This study used 112 of 116 facilities in the Bitpower data to approximate the Irish Transmission System 

Operator forecast for 2030 data centre capacity (EirGrid 2017). Development status is used as an indicator for 

year operational. 'Under construction' facilities in 2019 (n=5) and 2020 (n=6) are assumed to operate in 2020. 

Projects with planning approval (n=25) are assumed to be built the year following construction. Projects with 

planning applications (n=9) or masterplan (n=6) are assumed to be operational two years from construction.  
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Table 5.4 summarizes the difference in average capacity for data centres that are EET 

compatible, split by development status. Technical guidance determined that data centres 

under 20MW are not economically viable for use with the EET due to economies of scale. 

Of the 47 data centres are at least 20MW (EET compatible), the average capacity is 29.80 

MW. Of these, 15 are already built, while 32 are planned. Of the 65 facilities that are too 

small to be compatible, their average capacity is 8.52 MW. 

 

Table 5.4: Irish data centre market (1997-2028) 

Data centres design capacity (MW) N Mean Median SD Min Max 

All Data Centres (1997-2028) 112 17.45 15 12.57 0.5 50 

       

Data Centres (Not EET Compatible) 65 8.52 9 5.37 0.5 19.20 

Built (1997-2019) 46 7.43 7.68 5.64 0.5 19.20 

Planned (2020-2028) 19 11.15 10 3.61 5.46 16 

       

Data Centres (EET Compatible) 47 29.80  30.45 8.53 20 50 

Built (1997-2019) 15 28.56 29.28 6.73 20 38.44 

Planned (2020-2028) 32 30.39 33.22 9.29 20 50 
Source: Data centre capacity information from Bitpower. Data centres assumed PUE of 1.3, meaning 

that 30% of energy use is for cooling. EET compatible threshold of 20MW capacity determined in 

consultation with MAN. 

 

Figure 5.2 illustrates the future Irish market, split by development status and EET 

compatibility. The 112 plant-level observations reflect, in order: 46 data centres that already 

built and too small to adopt the EET, 19 facilities that are planned but too small to adopt, 15 

facilities which are of sufficient scale to adopt but are already built and 32 facilities which 

are sufficiently large and are planned, respectively. Appendix A.3 provides a breakdown of 

expected data centre capacity and EET compatibility on a regional basis. 
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Figure 5.2: Irish Data Centre Market (by development status and EET compatibility) 

Source: Author’s calculations from Bitpower (2020). Table shows the count of data centres split by 

development status (Built, Planned) and their capacity. EET compatible threshold of 20MW 

determined in consultation with MAN. 

 

 

Analysis considers three types of data centre, based on adoption status (𝑎): 65 facilities that 

are EET incompatible with an average capacity of 8.52MW (𝑎 = 0), 15 facilities that are 

EET compatible but are already built with an average capacity of 29.80 MW (𝑎 = 1) and 

32 facilities that are EET compatible but are planned, with an average capacity of 29.80MW 

(𝑎 = 2). Only the latter group adopts the EET.  

 

5.5.4 Power systems model (ENGINE) 

EET adoption also has potential benefits to the power system in terms of reduced demand 

and increased flexibility as storage. This paper performs a power systems analysis to 

quantify the consequences of EET adoption for the Irish transmission system in the year 

2030. ENGINE determines the least-cost optimal generation capacity expansion and 

operation, subject to technical and policy constraints (D. Z. Fitiwi et al. 2020). 
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ENGINE has been used to model the consequences of increased interconnection, fossil 

generation phase out and increased renewable generation and carbon price scenarios by 

2030. Results indicate that costs are mainly driven by decommissioning old inefficient 

generation units. They also find that high renewable targets render carbon price rises 

ineffective in reducing system emissions (D. Z. Fitiwi et al. 2020).  

 

Finally, Fitiwi & Lynch (2020) consider the spatial effect of data centres on the Irish 

electricity grid. They find the rise in data centre energy use makes a policy target of reducing 

emissions more important than a renewable electricity generation target. They note the 

potential adverse effect on other users from increased transmission system costs from data 

centres. Table 5 details the parameters used in ENGINE for this study. 

 

 

Table 5.5: Parameters for ENGINE analysis 

Variable Detail Reference 

Year 2030 (D. Z. Fitiwi et al. 2020) 

Carbon Price €80 Climate Action Plan 2030 

RES-E 70% Climate Action Plan 2030 

   

Scenario   

BAU 
Planned fossil fuel phase out and north-south 

interconnector completed 
(D. Z. Fitiwi et al. 2020) 

EET BAU + EET adoption (D. Z. Fitiwi et al. 2020) 

Source: Author’s assumptions based on prior literature 

 

 

5.6 Results 

The first set of results quantify the primary benefit resulting from a reduction in data centre 

energy use due to EET adoption. Following this, the secondary benefit of EET adoption is 

quantified in terms of hot water supply. Finally, the tertiary benefits of technology adoption 

on the Irish transmission system in 2030 are presented using a power systems model. 

 

 

 



 

Chapter 5. The multiple benefits of large-scale energy efficiency 

 

119 

 

 

5.6.1 Plant level results 

This section details the plant-level model of energy use for each heating end use (H). In the 

BAU scenario (𝐻0) data centre cooling demand is met by mechanical chillers. In all other 

cases (𝐻1, 𝐻2, 𝐻3), the EET input consumes electricity that is converted to cold water supply 

which displaces the cold air demand from data centres and supplies hot water for use 

elsewhere, where EET adoption occurs (𝑎 = 2). Following Section 5.5.3, annual energy 

demand is compared for data centres that are too small to adopt (𝑎 = 0), that are of sufficient 

scale but already built (𝑎 = 1) and those eligible to adopt (𝑎 = 2), across each heating end 

use scenario (𝐻). Table 6 compares annual energy use for i) IT Input, ii) Grid Cooling iii) 

EET Input iv) EET Cooling Output and v) EET Heating Output: 

 

i. IT input is the electricity used to power servers. Per Equation 5.2, it is constructed 

by multiplying the assumed IT electricity use (in MW) by 24 hours by 365 days.  

ii. Grid Cooling is the electricity drawn from the grid used for cooling IT hardware for 

data centres and scenarios (𝐻0) where no EET adoption occurs (Equation 5.3). It is 

the model-based cold duty multiplied by 24 hours by 365 days per year. 

iii. EET Input is the electricity required to charge EET, adopted (𝐻1, 𝐻2, 𝐻3). 

iv. EET Cooling Output is the amount of cooling for data centres from the EET where 

adoption occurs (𝐻1, 𝐻2, 𝐻3). It is the model-based cold duty multiplied by 24 hours 

by 365 days per year. It is treated as deductible. 

v. EET Heating Output reflects the energy generated for use as hot water from the EET 

where adoption occurs (𝐻1, 𝐻2, 𝐻3). It is the model-based hot duty multiplied by 24 

hours by 365 days per year. It is treated as deductible. 
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Table 5.6: Annual plant-level energy balances (MWh) 

Scenario IT 

Input 

Grid 

Cooling 

EET 

Input 

EET 

Cooling 

Output 

EET 

Heating 

Output 

Total* 

H0: BAU       

a=0 Do Not Adopt (<20MW) 57,412 17,224 N/A N/A N/A 74,636 

a=1 Do Not Adopt (>=20MW)  200,806 60,242 N/A N/A N/A 261,048 

a=2 Adopt (>=20MW) 200,806 60,242 N/A N/A N/A 261,048 

       

H1: 4GDH       

a=0  57,412 17,224 N/A N/A N/A 74,636 

a=1  200,806 60,242 N/A N/A N/A 261,048 

a=2  200,806 N/A 16,799 (60,242) (77,831) 79,532 

       

H2: 3GDH       

a=0  57,412 17,224 N/A N/A N/A 74,636 

a=1  200,806 60,242 N/A N/A N/A 261,048 

a=2  200,806 N/A 37,746 (60,242) (101,045) 77,265 

       

H3: Industry       

a=0  57,412 17,224 N/A N/A N/A 74,636 

a=1  200,806 60,242 N/A N/A N/A 261,048 

a=2  200,806 N/A 37,698 (60,242) (101,031) 77,231 

Source: Author’s calculations based on Bitpower (2020) data and MAN parameters. Values in units of Megawatt-

hour (MWh) per year. Annual energy use for H0 (Business as Usual) is the sum of IT and Cooling Energy. The total 

for heating end-uses (H1, H2, H3) is the sum of IT and ETES Input electricity use, minus the Cooling and Heating 

Output. Values are based on average data centre capacity of 8.52 MW for a=0 and 29.80 MW for a=1,2. 

 

The key result from Table 5.6 is that the plant-level model suggests that EET adoption 

delivers approximately 70% energy savings in terms of the net energy use, relative to a 

similar data centre with standard mechanical cooling. This is driven, in large part, by the fact 

that cooling energy is an input for non-adopting plant and an output of the EET. This is a 

substantial plant level energy saving. Similarly, EET adoption scenarios feature a substantial 

level of heat energy as an indirect benefit. Table 5.6 presents the potential savings at an 

individual plant level (>20MW), the next section explores the market level impacts of these 

potential savings if the technology is employed in all new eligible data centres.    
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5.6.2 Market level results 

Using input data on upcoming data centre capacity from Bitpower (2020), a ten-year (2019-

2028) forecast of market energy use for each Heating End Use is created. This includes 

existing data centre capacity and new plant that is compatible with EET adoption. Table 5.7 

details the market size, split by EET adoption status (additional plant each year in brackets). 

Appendix 5.C illustrates the same information split by region. 

 

Table 5.7: Data centre market forecast 

Year Do Not Adopt Adopt Total 

 𝒂 = 𝟎, 𝟏 𝒂 = 𝟐  

1997-2019 61* 0 61 

2020 65 (+4) 7 (+7) 72 (+11) 

2021 70 (+5) 9 (+2) 79 (+7) 

2022 71 (+1) 12 (+3) 83 (+4) 

2023 75 (+4) 16 (+4) 91 (+8) 

2024 76 (+1) 21 (+5) 97 (+6) 

2025 78 (+2) 27 (+6) 105 (+8) 

2026 80 (+2) 30 (+3) 110 (+5) 

2027 80 31 (+1) 111 (+1) 

2028 80 32 (+1) 112 (+1) 

Total 80 32 112 
Source: Adapted from Bitpower (2020). Note: Values reflect the annual number of data centres, split by 

EET adoption status. For H0 (Business as Usual), no data centres adopt.  Values in brackets reflect the 

assumed additional data centres in each year. *Of the 61 Do Not Adopt data centres in 2019, 15 facilities 

are large enough to adopt (> 20MW capacity) but are already built and deemed ineligible. Their energy 

use is based on the average capacity of 29.80 MW. 

 

Table 5.8 forecasts market energy use (in TWh) using Equations 5.4-5.6 from Section 5.5. 

The BAU scenario shows sectoral electricity use rising from 7.35 TWh in 2019 to 17.12 

TWh in 2028. This reflects the projected market growth from 61 data centres in 2019 to 112 

by 2028. Based on the ten-year total energy use, EET adoption would deliver significant 

energy savings. All EET adoption scenarios (𝐻1, 𝐻2, 𝐻3) would save approximately 26% 

of energy compared to BAU (𝐻0) from 2019-2028. This is significant, especially 

considering 15 additional data centres are sufficiently large for EET adoption but are not 

considered since they are already built. These savings emphasise how the additional 

electricity to power the EET is more than offset by the savings in cooling and heating output. 
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Table 5.8: Data centre market electricity use 

 BAU  EET Adoption 

Year H0 Total  H1 Total H2 Total H3 Total 

2019 7.35  7.35 7.35 7.35 

2020 9.47  8.75 8.90 8.90 

2021 10.37  9.44 9.63 9.63 

2022 11.23  9.98 10.24 10.23 

2023 12.57  10.91 11.25 11.25 

2024 13.95  11.77 12.21 12.21 

2025 15.67  12.87 13.43 13.43 

2026 16.60  13.49 14.12 14.11 

2027 16.86  13.65 14.29 14.29 

2028 17.12  13.80 14.47 14.47 

2019- 2028 Total 131.19  112.01 115.88 115.87 

% Difference to BAU   74% 74% 74% 

      

2030 Total 17.12  13.80 14.47 14.47 

% Difference to BAU   19.38% 15.46% 15.47% 
Note: Author’s calculations using data centre capacity information from Bitpower (2020) and MAN EET 

parameters. Values in TWh. 2030 Total electricity demand in 2030 is reported as identical to 2028. This 

is because power systems analysis (Section 5.6.3) considers market-level changes in the year 2030. 

 

Table 5.8 masks the specific factors creating savings. The next subsection expands on these 

results to answer RQ1 and RQ2 by detailing the primary change in energy use for data centre 

cooling and the secondary change in heating energy use. 

 

5.6.2.1 Market - Direct savings (EET input & cooling) 

Figure 5.3 compares 2020 and 2028 market energy use, decomposed by energy source. Net 

energy use deducts the cooling energy and heating energy where EET adoption occurs. EET 

cooling and heating output (light blue and green bars, respectively) are considered an output 

of the EET electrical input, which causes net energy use to fall in each adoption scenario, 

relative to BAU. Net energy use that is lower than the sum of IT energy use (orange plus 

yellow bars) and conventional cooling (grey bar) suggests that EET adoption has a positive 

effect. 
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Figure 5.3: Market Level - Net energy use decomposition (2020 v 2028) 

Note: Author’s calculations based on Bitpower forecast and MAN EET parameters. 

 

The balance between energy displaced by cooling and heating, at the cost of additional 

electricity used to power the EET determine the level of savings. Per Table 5.9, over the ten-

year period from 2019-2028, the electrical EET Input represents between 14% (𝐻1) and 31% 

(𝐻2, 𝐻3) of the net energy saving delivered by the EET. Cooling output is responsible for 

between 49% (𝐻2, 𝐻3) and 50% (𝐻1) of the net savings, while heating is responsible for 

between 64% (𝐻1) and 82% (𝐻2, 𝐻3). 

 

Table 5.9: Comparison of EET-specific energy balance savings 

 a b c= a + b d e = c-d 

 

EET 

Cooling 

EET 

Heating 

EET Cool 

+ Heat 

EET 

Input 

Net 

Energy 

Saving 

2019-2028 Total Energy Use 

H1  11.14   14.40   25.54   3.11   22.44  

H2  11.14   18.69   29.84   6.98   22.86  

H3  11.14   18.69   29.84   6.97   22.86  

As Fraction of Net Energy Saving (e) 

H1 50% 64% 114% 14%  

H2 49% 82% 131% 31%  

H3 49% 82% 131% 31%  
Note: Based on Bitpower market forecast and MAN EET parameters. Values in TWh. 
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This result shows that savings in cooling represents roughly half of the net EET savings. The 

secondary benefit of heating energy requires further investigation in the next subsection to 

account for network losses. Clearly, EET adoption has a positive effect on lowering 

electricity demand for data centre cooling, even when factoring in the additional electricity 

input required. 

 

5.6.2.2 Market - Indirect energy savings (Heating) 

Results suggest that EET adoption delivers market-wide savings of 26% over the horizon, 

with Table 5.9 attributing a substantial share of savings in heating supply. Unfortunately, 

several factors prevent a full pass-through of this value into effective heating. This section 

accounts for heat losses associated with transportation from the EET to the supply source. 

  

CODEMA (2018b) notes that there are different heat losses associated with different DH 

systems. A representative existing DH network in Denmark features annual network heat 

losses in the range of 38-44%. However, an upgrade to a low-temperature 4th Generation DH 

system resulted in lower loss levels of 13-14% (CODEMA 2018b). Table 5.10 applies these 

loss factors for each heating end use to estimate delivered heat savings. 

 

Table 5.10: EET-specific energy balance savings - net of heat distribution losses 

 a b 

c 

= a + b d 

e 

 = c-d 

 

EET 

Cooling 

EET 

Heating 

EET 

Cool + 

Heat 

EET 

Input 

Net 

Energy 

Saving 

2019-2028 Energy Use 

H1 4GDH Market Forecast  11.14   14.40   25.54   3.11   22.44  

H1 - Heating network loss (14%)   2.00     

H1 - Net Energy Use  11.14   12.40   23.54   3.11   20.44  

      

H2 - 3GDH Market Forecast  11.14   18.69   29.84   6.98   22.86  

H2 - Heating network loss (44%)   8.00     

H2 Net Energy Use  11.14   10.69   21.84   6.98   14.86  

      

H3 - Industrial Market Forecast  11.14   18.69   29.84   6.97   22.86  

H3 - Heating network loss (44%)   8.00     

H3 - Net Energy Use  11.14   10.69   21.84   6.97   14.86  

      

H1 Savings (Fraction of Net Energy Saving) 55% 61% 115% -15%  

H2 Savings (Fraction of Net Energy Saving) 75% 72% 147% -47%  

H3 Savings (Fraction of Net Energy Saving) 75% 72% 147% -47%  

Note: Based on Bitpower market forecast and MAN EET technical parameters. Values in TWh. Heating 

network losses based on case study examples from Codema (2018b). 
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EET adoption still offers a net energy saving after accounting for heating network losses. 

Savings are least affected in 𝐻1, where a low-temperature 4th Generation DH network 

connects to energy efficient buildings. In 𝐻1, heating energy accounts for 61% of net energy 

savings, compared to 64% with no distribution loss applied. 

 

Savings are lower for a higher-temperature 3rd Generation DH network that supplies less 

energy efficient buildings, accounting for 72% of net energy savings when accounting for 

distribution losses, compared to 82% of net energy savings with no distribution losses. In 

this study, 𝐻3 is quantitatively identical to 𝐻2. However, it is possible that additional savings 

may be attainable by locating the industrial use adjacent to the EET. 

 

5.6.3 Tertiary savings for national transmission network 

As detailed in Section 5.5.4, this study uses the ENGINE model to quantify the consequences 

of EET adoption on the Irish transmission system in the year 2030. Results compare a 

benchmark BAU case with a scenario of EET adoption following 𝐻1. The power systems 

model does not quantify changes in heating energy use, so only one adoption scenario is 

considered. 

 

It assumes 1954 MW of data centre capacity installed by 2030, with an additional 424 MW 

attributed to the EET installations. ENGINE determines the least-cost pathway assuming 

that data centres can be powered either by the EET or conventionally cooled from grid-

sourced electricity. To account for possible cooling losses, the optimization includes a 

conservative 20% overhead for cooling load beyond the required level. 

 

Table 5.11 lists the anonymised regions of EET installations, including EET capacity and 

the level of cooling demand for data centres. The least-cost scenario highlights significant 

regional heterogeneity in EET capacity and notes that data centres are cooled by the EET 

roughly half of the time. This presents an argument for conventional grid-powered cooling 

infrastructure in addition to EET, although there is no consideration of the additional capital 

cost involved. During these times, the EET serves more valuable functions to the grid. 
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Table 5.11: EET capacity and data centre cooling demand (2030) 

  Cooling demand (TWh) 

Site ID  

(Anonymised) 

EET  

Capacity (MW) Direct ETES Total 

1 15.67 0.035 0.031 0.066 

2 26.44 0.057 0.054 0.110 

3 94.01 0.183 0.190 0.372 

4 68.54 0.148 0.141 0.289 

5 13.71 0.030 0.027 0.057 

6 6.85 0.015 0.013 0.029 

7 104.80 0.220 0.219 0.439 

8 55.83 0.121 0.115 0.235 

9 31.34 0.067 0.065 0.132 

10 6.85 0.015 0.014 0.029 

Total 424.04 0.891 0.869 1.758 

Source: Results based on ENGINE 2030 simulation. 

 

A public benefit of EET adoption is its storage function. Table 5.12 illustrates the change in 

capacity expansion to meet the 70% RES-E target. Adding 424 MW of EET adoption 

displaces 1,074 MW of planned generation capacity, while meeting the 70% RES-E target. 

Reductions are observed for Battery Storage (596 MW), Solar PV (536 MW) and Offshore 

Wind (365 MW). This represents substantial savings from the network planner perspective, 

especially considering additional issues such as local opposition to renewable generation. 

 

Table 5.12: Comparison of renewable generation expansion (2030) 

Variable 2030 BAU (MW) 2030 EET (MW) Difference Difference % 

Onshore Wind 5206 5206 - 3.40e-06 - 6.53e-08 

Solar PV 3445 2783 - 536 - 15.57 

Offshore Wind 3148 2783 - 365 - 11.60 

Battery Storage 3717 3121 - 596 - 16.03 

ETES EET 0 424 + 424 
 

Total 15,516 14,443 1,074 - 6.92 

Source: Results based on ENGINE 2030 simulation. 

 

Finally, ENGINE quantifies the difference in costs between scenarios (Table 5.13). The 

headline result is that EET adoption leads to an 8.64% reduction in operating and capital 

costs in term of net present value, before accounting for EET capital costs. There is also a 

2.76% reduction in system-wide emissions and a near-total reduction in costs associated with 

maintaining grid reliability. This is eliminated because the EET serves as electricity storage.  
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Table 5.13: Comparison of system-wide costs (2030) 

Variable 2030 

BAU 

2030 EET 

Adoption 

Difference Difference 

% 

Net Present Value (OP & Cap) (M€)  1613.39 1473.93 - 139.643 - 8.64 

Emissions (MtCO2) 9.58 9.319 - 0.264 - 2.76 

Grid Investment Needs (M€) 624.69 533.7758 - 90.91 - 14.55 

Reliability Cost (M€) 25.77 8.11e-07 - 25.76 - 99.99 

Emission Cost (M€) 318.15 309.38 - 8.77 - 2.76 

Energy Cost (M€) 644.80 630.78 - 14.01 - 2.17 

 Source: Results based on ENGINE 2030 simulation. 

In summary, power systems analysis shows promising benefits for the national grid 

associated with EET adoption. Overall, EET adoption leads to an 8.64% reduction in 

operating and capital costs in term of net present value. Importantly, this value does not 

include information on the capital cost of EET adoption or any heating network 

infrastructure (Section 5.6.2) but serve as a helpful threshold value when considering societal 

benefits associated with EET adoption. 

 

5.7 Concluding remarks 

The EU has set targets for increasing renewable generation, lowering emissions and fostering 

energy efficiency (European Commission 2019a). However, countries are free to decide how 

their goals are met. Ireland is a prime example of a country with success in intermittent 

renewable generation but with little progress in decarbonising heating. At the same time, 

Ireland is acutely affected by an expected surge in capacity from data centres (EirGrid 2019). 

The electricity-reliant nature of data centres paired with their spatial concentration pose 

unique questions for Ireland. It is imperative that policymakers leave no stone unturned in 

the search for energy efficiency technologies (EETs) that help to address these challenges, 

especially for solutions that foster energy systems integration across sectors. 

  

This paper quantifies the key economic benefits associated with technology adoption that is 

designed to supply cold water for data centres, hot water for a district heating network and 

grid storage to facilitate greater penetration of renewable electricity generation sources. The 

technology considered is the MAN electro-thermal energy storage (ETES) system, which 

can meet these objectives and foster sector coupling.  
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Pairing a unique plant-level forecast of data centre capacity in Ireland with technical 

parameters on the EET, this study quantifies i) the change in electricity demand associated 

with technology adoption ii) the hot water energy to use as supply to a potential district 

heating network and iii) a power-systems analysis of grid-level effects of technology 

adoption in the year 2030, subject to policy constraints.  

 

The first result suggests that technology adoption could help to reduce national electricity 

demand by 26%, over the period 2019-2028. This is driven by EET adoption that converts 

electricity into cooling energy, which can be displace grid-powered cooling in data centres. 

The second result suggests that technology adoption could supply 12.40 TWh of hot water 

for use in a 4th Generation district heating network. For Ireland, the lack of established 

district heating presents an opportunity to using the latest, most efficient technology.  

 

Finally, a power systems analysis in the year 2030 suggests that EET adoption can reduce 

system costs by 8.6%, albeit without accounting for the capital cost of the EET. This result 

includes a 6.92% reduction in additional RES capacity, as the EET provides grid storage. 

There is also a 3% reduction in emissions, without including savings associated with 

displacing fossil fuel-based heating with hot water supply. 

 

There are two notable limitations to this study. First, the true energy savings of EET adoption 

may be overstated due to the assumption that facilities are cooled by chilled air in the 

reference case, with a 30 per cent overhead on assumed IT load. Some data centres might 

plan to use ambient air cooling, which features a lower cooling overhead. However, the lack 

of private plant-level information, combined with trends in rising server density that are 

likely to require more advanced cooling techniques make these assumptions reasonable.  

 

The second limitation is the lack of information regarding additional capital costs associated 

with data centre adaptation, EET and heating end-use construction. A formal cost-benefit 

analysis would be heavily influenced by the capital costs of investment. The lack of plant-

level costings prevents such an exercise. Instead, this paper is concerned with quantifying 

the amount and value of energy balances, with a power systems analysis of a threshold value 

of additional grid investment in 2030.  
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The increasing demand for data centres paired with increased policymaker focus on energy 

efficiency justify the assumptions. Future work involving collaboration between relevant 

stakeholders could address this knowledge gap. The significant opportunity for 

decarbonisation outlined in this study warrants consideration of ways to foster this 

collaboration. In Ireland, pilot schemes for district heating have featured collaboration 

between city councils, a project partner and a private data centre (CODEMA 2018a). The 

important role of the national electricity grid suggests there is an opportunity for EirGrid, 

the Irish transmission system operator (TSO) to facilitate collaboration between public 

(government departments, county councils) and private (data centres, technology providers) 

stakeholders. This would be appropriate, since EirGrid already liaises with many data centres 

during the planning and construction phase. The scale and ambition of any such initiative 

may require a national authority, beyond the county council level. 

 

This paper highlights the multiple benefits associated with EET adoption to foster increased 

cooperation between different energy stakeholders. Although policymakers value the ability 

to store intermittent renewables and to supply a district heating network, they may not value 

cold-water supply for data centres. Asymmetric information and objectives may constitute a 

market failure where EET adoption may not occur. This study quantifies many of the benefits 

that could be achieved through policies that spur EET adoption. 
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5.A IDA Ireland (2018) Economic Contribution 

Section 5.3 highlights the significant presence of data centres in Ireland and how this is 

expected to develop over time. This appendix details efforts to quantify the economic 

contribution of sixteen firms with data centre operations in Ireland (IDA Ireland, 2018). 

Estimates of economic contribution is derived from direct investments and indirect economic 

activity, per national Input-Output table multipliers. Construction investment since 2010 at 

€4.64bn, of which €2.96bn is direct and a further €1.68bn is indirect benefit. The 

contribution from operations is valued at €2.49, of which €1.59bn is direct and €0.90bn is 

indirect. The report also reports employment value of 5,700 full-time equivalent positions, 

with 2,900 construction-related jobs (1,000 of which are indirect) and 2,800 workers (1,000) 

of which are indirect) employed as part of operations. 

 

IDA notes the contribution of companies with data centres in other sectors (IDA, 2018). 

Since 2010, companies with a large data centre investment in Ireland have doubled their 

employment from over 4,000 to almost 10,000 since 2010. Firms view their Irish data centre 

presence as strategically linked to their overall operations in Ireland. Further qualitative 

benefits include collaboration on higher level education courses and the exportability of 

skilled Irish data centre suppliers to other countries. A 2016 survey by the Irish Construction 

Industry Federation noted that Irish companies were involved in projects abroad with a 

capital value of over €2.2bn, with a direct employment of 6,600 full-time Irish jobs (IDA, 

2018). 
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5.B MAN ETES technology information 

The ETES system is based on a closed loop where CO2 is compressed with the resulting heat 

and cold being stored. During the charging cycle (Figure 5.4, left panel), electricity is 

converted into heat and cold and stored in isolated tanks. During the discharging cycle 

(Figure 5.4, right panel), the reverse occurs. MAN estimates that the round-trip grid-to grid 

efficiency of this process reaches approximately 50–55%. The use and distribution of heat 

or cold from the thermal storage increases the overall system efficiency up to 70%. 

Charging Cycle Discharge Cycle 

  

Figure 5.4: [5A] MAN ETES system description 

Source: MAN Energy Solutions. https://www.man-es.com/discover/a-tale-of-fire-and-ice 

 

The Charging Cycle 

• When intermittent renewables are generating surplus energy, this surplus energy is used to 

power a CO2 compressor, which heats it to 120°C.  This compressed CO2 is fed into a heat 

exchanger and used to heat water.  

• The hot water is stored in isolated tanks of varying pressure and temperature. In the base 

case there are four tanks, three atmospheric and one pressurized. This hot water is used as 

a source for district heating demand. 

• The high-pressure CO2 is then fed into an expander, which lowers the pressure of CO2 while 

also liquefying and cooling. This liquefied CO2 is then pumped through a second heat 

exchange system. However, this is performed on the cold side of the heat exchanger system.  

• The heat taken from the surrounding water and an ice storage tank is formed and maintained. 

This is used as an input in data centre cooling. 

https://www.man-es.com/discover/a-tale-of-fire-and-ice
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The Discharging Cycle 

• CO2 gas enters the heat exchanger on the cold side of the system and it condenses due to the 

cold originating from the ice storage tank. This melts the ice in the ice storage tank. 

• A CO2 pump is used to increase the pressure of the CO2 pump again. 

• The pressurised CO2 then passes through a heat exchanger and is heated by the water that is 

in the hot water storage tank. 

The heat from the heated CO2 is fed into a power turbine and is converted back into 

electricity via a coupled generator. This electricity is then provided to the grid and 

delivered to consumers during times of low generation. 

  

  

 

Figure 5.5: [5B] MAN ETES power input and storage size by charging time 

Source: MAN Energy Solutions. https://www.man-es.com/discover/a-tale-of-fire-and-ice 

 

  

https://www.man-es.com/discover/a-tale-of-fire-and-ice
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5.C Regional summary of EET compatibility 

This appendix provides a regional breakdown of data centre rollout and EET compatibility, 

which is presented nationally in the body. Figure 5.6 illustrates the regional frequency of 

data centres. Blue bars reflect data centres that are built, while red bars reflect upcoming 

data centres. Technical guidance determined that data centres under 20MW are not suitable 

for adoption due to economies of scale. Results impose technology adoption only on the 

planned data centres that are of sufficient scale, represented by red bars above the threshold. 

1. Meath (n=13) 4. Dublin S (n=15) 

  

2. Dublin NW (n=23) 5. Dublin SW (n=33) 

  

3. Dublin NE (n=16) 6. Rest of Ireland (n=12) 

  

Figure 5.6: [5C] Data centre capacity - by region (in 2028) and development status 

Source: Bitpower market data with threshold value of 20 MW informed by MAN. 
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Figure 5.7: [5D] Market adoption (by region) 

Source: Adapted from Bitpower (2020). Note: Values reflect the annual number of data centres, split by 

EET adoption status. For H0 (Business as Usual), no data centres adopt.  Values in brackets reflect the 

assumed additional annual data centres in each year. 
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Chapter 6: Conclusion 
 

This thesis identifies several areas where energy efficiency has promise in both the 

residential and commercial data centre sectors. It represents an important step in helping to 

understand the real benefits of energy efficiency policies across a variety of sectors. It 

emphasises the value of presenting accurate information through labelling policies and by 

correctly calibrating subsidies to improve energy efficiency and lower energy demand. It 

also quantifies the scope for improving energy efficiency in a key emerging, yet uncertain 

industry and highlights the multiple benefits to society associated with technology adoption.  

 

6.1 Key Findings 

This thesis provides a valuable contribution by studying the residential and commercial data 

centre sectors. Although each chapter focuses on one particular area or policy, the collective 

results are worth taking as a whole. The key findings are summarised as follows: 

 

1. EPCs are an imperfect benchmark 

 

Energy Performance Certificates serve a useful purpose as a source of information on 

dwelling energy efficiency. However, recent years have seen them used to underpin targets 

to decarbonise the residential sector. Chapter 2 tested for the existence of an Energy 

Performance Gap between theoretical and actual energy use in a sample of Irish dwellings 

and found significant heterogeneity across the entire EPC spectrum. The most efficient 

houses consumed more energy than expected while the least efficient demonstrated 

significantly less energy consumption than expected by the EPC.  

 

2. Residential retrofit policies may disappoint 

 

Chapter 3 studies the effectiveness of a national subsidy scheme, finding an average 

reduction in energy use associated with a retrofit after controlling for household and time 

fixed effects (average of 943 kWh/year). The strongest result is that a retrofit of just a gas 

boiler upgrade is associated with a significant reduction in energy demand (average of 1,027 

kWh/year). However, these results mask additional evidence suggesting there is a significant 

increase in energy use for almost half of the combinations of retrofit.  
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As the attention of policymakers move towards ‘deeper’ retrofits featuring many retrofit 

measures, this work suggests that caution must be taken to ensure retrofits will deliver value 

for money. On this point, Chapter 3 suggests that retrofits are currently less appealing (on 

the basis of net upfront cost per kilowatt-hour per year) to households, as the expected 

change in EPC due to retrofit is smaller than the actual change observed.  

 

 

3. Residential energy demand is relatively inelastic 

 

Chapters 2 and 3 demonstrate actual energy use deviating from the EPC-expected level. 

However, there is a striking lack of variation in average actual energy use observed. In 

Chapter 3, the 15-grade EPC features a high positive correlation with average bimonthly 

energy use (0.96). However, there is a far lower correlation between average actual 

bimonthly energy use and the same EPC (-0.14). In Chapter 2, the largest difference in 

average actual energy use is only 457 kWh/year between E-rated homes and AB-rated 

homes. The average difference for the same EPC bands is 10,562 kWh/year. 

 

Taken together, this thesis suggests that energy use does not vary by nearly as much as the 

EPC suggests. In this sense, EPCs fall short in being an appropriate yardstick for 

policymaking. Estimates suggest that a policy to retrofit 500,000 Irish homes by 2030 to B2 

standard (Government of Ireland 2019) may cost €50 billion (Farry 2019). This work shows 

why a more accurate picture of residential energy demand is required to diagnose appropriate 

needs and to target subsidies towards proven measures.  

 

Such a broad policy runs the risk of greatly improving dwelling energy efficiency while not 

changing (or even increasing) energy use. In practice, reaching a standard of energy 

efficiency may be easier than achieving a set reduction in energy use. However, this study 

is cognizant of the additional benefits of retrofit, including transitioning to lower carbon fuel 

sources and realising the non-monetary benefits of retrofit, which have been found to be 

especially important for the most vulnerable in society (Coyne et al. 2018).  
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4. New industries represent significant decarbonisation opportunities 

 

Chapters 4 and 5 highlight the issues policymakers face when trying to chart a course 

towards a low carbon future. In particular, plans made in the past may fail to account for the 

emergence of an entire industry that has an outsized impact on energy use at the national 

level. Both chapters are interested in the rise of data centres as a major source of electricity 

demand in Ireland and how this is expected to continue into the future. As data centres have 

become a vital part of the digital economy, their presence and energy use has real 

consequences for country-level energy use.  

 

Chapter 4 shows that data centres have the potential to contribute to helping reach the low-

carbon future by engaging with energy efficiency. If every data centre expected to be built 

in Ireland could fully abate the energy which is used for server cooling, it would translate to 

saving 2.93 TWh each year from 2028 onwards (39.57 TWh/year). For context, retrofitting 

500,000 homes using the average annual saving of 943 kWh/year in Chapter 3 leads to an 

annual saving of 0.4175 TWh/year.  

 

Extended to the ideal policymaker scenario, a national dwelling stock of 2,000,000 

households at B2 EPC standard would be expected to consume 15.06 TWh/year, based on 

the average theoretical energy use for the sample considered in Chapter 3 (7,530 per dwelling 

each year). This disparity serves to highlight the significant untapped potential in the 

industrial sector. However, the level of asymmetric information regarding current data centre 

technologies has the potential to limit the extent to which policymakers could spur energy 

efficiency in the sector through policies. It is argued that the benefits of reduced emissions 

accrue to all of society, not just firms. As such, there could be merit in a policy that could 

foster greater awareness and engagement with energy efficiency. 
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5. Great potential for decarbonisation through cross-sector collaboration 

 

Chapter 5 quantifies the multiple benefits associated with the adoption of energy efficiency 

technology that is designed to supply cold water for data centres, hot water for a potential 

district heating network and grid storage to facilitate greater penetration of renewable 

electricity sources. Chapter 5 quantifies i) the change in electricity demand associated with 

technology adoption ii) the hot water energy to use as supply to a potential district heating 

network and iii) a power-systems analysis of grid-level effects of technology adoption in the 

year 2030, subject to policy constraints. Aside from the savings for data centre electricity 

demand for cooling, technology adoption would provide substantial hot water for use as part 

of a district heating network (12.40 TWh/year).  

 

Technology adoption could help to reduce investment costs on the national electricity grid 

in the year 2030 by 8.6% or €139 million in NPV terms. It could help to reduce electricity 

generation capacity expansion (by 1,074 MW), facilitate greater system-level reliability and 

storage that can allow a higher penetration of intermittent renewable electricity. It would 

also lower the cost of energy by 2.17%.  

 

All of the discussed benefits do not accrue to the owner of the energy efficiency technology. 

This may help to explain, in part, why such technology has not been adopted widely to date. 

The results in Chapter 5 show the significant benefits for other sectors of the economy 

associated with technology adoption. Such a public good is certainly deserving of serious 

consideration by policymakers in their efforts towards reaching a low-carbon future. 

 

6.2 Future Research 

A number of promising avenues for further research have been identified, based on the 

findings and limitations within each chapter. These open questions have been highlighted as 

important areas for future work to address. These areas include the following: 
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1. Improving residential EPCs 

 

Chapters 2 and 3 highlight the valuable role of EPCs as an imperfect source of information 

regarding dwelling energy efficiency. Results identified significant variation in the extent to 

which actual energy use deviated from the level expected by the EPC. The increased 

adoption of smart home energy meters represents a rich new source of data on occupant 

behaviour which could help create a better EPC. Further work could seek to exploit this real-

time data to better understand consumer behaviour patterns. Up to now, evidence has been 

limited to trials (Di Cosmo et al. 2014; Harold et al. 2018).  

 

The importance of this data has been recognised at government level, with ambition to have 

full adoption of smart meters in the coming years to improve information and unlock 

potential for demand side management (Government of Ireland 2019). There is untapped 

potential in collating a national database of residential energy use across utilities. This 

platform would accommodate consumer switching between utilities and would provide a 

dwelling-specific measure of actual energy use that could be used to inform the construction 

of the EPC or to provide an extra data point to consumers. It would better reflect whole-

home energy use by accommodating consumers with electricity and heating from different 

utilities. The increasing use of heat pumps and natural gas will help to further reduce the 

extent to which unmetered fuels (oil, solid fuel) drive missingness in the data. 

 

2. Calibrate retrofit subsidies to reflect ex-post analysis 

 

Chapter 3 highlights the significant variation in occupant energy use after receiving a retrofit. 

It shows how almost every combination of measures improves dwelling energy efficiency, 

with some combinations leading to reduced energy use while others lead to higher energy 

use. This study highlights the importance of ensuring that subsidy levels are appropriately 

designed to reflect actual reductions in energy use. 
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One way to accurately calibrate subsidy levels is to monitor dwelling energy use pre- and 

post-retrofit. The real savings observed would show the actual effect of certain measures, 

while accounting for household-specific behaviour. Currently, recipients of a retrofit only 

receive a visual inspection that the work was completed, with no ex-post billing data 

analysis. Chapter 3 shows that observing energy use in dwellings is important to understand 

the benefit of retrofit, given that the main justification of such subsidies is to lower energy 

use and to work towards national climate targets. This would serve to improve the retrofit 

subsidy scheme by reallocating resources towards the most effective measures. 

 

3. Establish a scheme to promote energy efficiency collaboration with large 

industry 

 

Chapter 4 highlights the significant energy demand of large firms (with the example of data 

centres) and the great uncertainty that their presence can place on network planners and 

policymakers. The private nature of firms makes it difficult to understand current efforts 

towards energy efficiency and future plans for growth. This thesis proposes that a publicly 

available database of the sector that outlines current and future plans for energy efficiency 

would be a valuable resource. An example of such a voluntary scheme, like the EU Code of 

Conduct for Data Centre Energy Efficiency (European Commission, 2016), has been 

associated with improvements in data centre energy use (Avgerinou et al., 2017).  

 

If such a scheme featured the entire industry, it would have multiple benefits. Firstly, it 

would provide an accurate understanding on the true contribution of firms towards national 

energy demand, which is often poorly viewed (Lillington 2016). Secondly, it would 

introduce a competitive aspect to help motivate firms to improve energy efficiency. This 

would serve as a healthy form of competition where society benefits - an example of this is 

the Greenpeace ranking of green tech firms (Greenpeace 2017). Finally, improved 

information would reduce uncertainty and allow policymakers to design supports that would 

help to improve overall welfare. 
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4. Investigate further opportunities for energy systems integration 

 

Chapter 5 studies the significant energy savings that can be achieved by large-scale energy 

efficiency technology. As noted earlier, this could prove to be a fruitful avenue for 

policymakers to achieve savings across the residential sector, commercial operators and for 

the national grid infrastructure simultaneously. However, this is limited due to the historical 

lack of collaboration between public and private stakeholders, often due to differences in 

discount rates (see Solow (1963), Arrow & Lind(1978)). 

 

For policymakers, Chapter 5 outlines the benefit of policymakers serving as a matchmaker 

for private sector innovations (such as the one examined) and schemes which could help to 

improve societal welfare. At a minimum, such a platform would help to improve 

information. In theory, it could lead to the realisation of large-scale innovations which could 

benefit society, by facilitating greater use of renewable electricity and by serving as a source 

of low-carbon heating for households and firms. 

 

Results in Chapter 5 are limited by the uncertainty surrounding district heating networks in 

Ireland, which makes a cost-benefit analysis difficult to perform. Fortunately, pilot schemes 

are ongoing to provide district heating in Ireland (Government of Ireland 2019), which has 

been made possible by recent advances in technology. Future work should look to 

incorporate this data to understand the benefits of a district heating network in Ireland.  
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