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Summary 

People are defined by their genes, familiar background and personal 

experiences, that can have either a negative or positive impact. Altogether, this 

represents and shapes their decisions, behaviours and relationships with others, 

but also their brain and body. In particular, external stimuli can have a big impact 

on the brain anatomy, resulting in specific behavioural and emotional responses. 

Cognitive abilities, such as memory, attention, emotional processing, are 

modulated by anatomical and functional connections between brain regions that 

process external stimuli from the environment and produce specific behavioural 

responses.  

This thesis work aims to investigate the brain areas that are more structurally 

sensitive to physiological changes and environmental stimuli during two critical 

periods of time in life, such as adolescence and aging. In this thesis, three studies 

will be presented, exploring structural brain changes due to stress and brain 

aging with three different structural neuroimaging approaches. In Chapter 1, a 

general overview of the brain areas involved in emotion and memory processing 

is presented, along with a description of magnetic resonance imaging (MRI), 

which is the neuroimaging technique used in all the studies.  

Chapter 2 illustrates the first study forming this thesis. Brain connectivity changes 

are investigated between two groups of adolescents with different levels of stress 

due to negative life events (Low vs High stress), by using both a graph theory 

and whole-brain connectivity approach. The High stress group showed a 

decrease of betweenness centrality measure in the somato-motor cortex, as well 

as an increase of degree centrality in the visual network and dorsal attention 
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network. The whole-brain connectivity showed an increase of connectivity 

strength between regions of the limbic and attentional networks. In Chapter 3, 

the effect of stress on the hippocampus subfields volume was investigated 

between the two groups of adolescents from the previous study. The relationship 

between and hippocampus and the personality trait of Neuroticism was also 

considered. A relationship between Neuroticism and volume changes was seen 

in more than one subfield in the left hemisphere of adolescents perceiving higher 

stress levels. The second part of the analysis explored longitudinal changes of 

the subfields volume across two time points representing two stages of 

adolescence. Negative results were found after statistical correction, showing no 

relationship between hippocampal volumes and stress over time. In Chapter 4, 

microstructural changes of the cingulum bundle were explored in normal aging, 

by dividing the whole tract into three branches. Tractography was run on each 

branch for both hemispheres, and diffusivity measures were extracted to 

investigate between-group differences. A bilateral reduced microstructural 

integrity was found in the subgenual (the most anterior) branch in older healthy 

people.  

Overall, this thesis shows how brain areas involved in emotion and memory 

processing are those that are more affected and sensitive to changes during two 

critical stages of life, namely adolescence and aging. Structural alterations in 

these areas may lead to the development of psychiatric disorders, as well as to 

the acceleration of neurodegenerative processes. More knowledge about the 

impact that external factors have on the brain can help developing more effective 

therapeutic interventions.   
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1. General Introduction 

 

 

 

1.1. Background 

People are defined by their genes, familiar background and personal events they 

experience, that can have either a negative or positive impact. Altogether, this 

represents and shapes not only their life externally, meaning their decisions, 

behaviours and relationships with others, but also internally, namely their brain 

and body. In particular, external stimuli can have a big impact on the brain 

anatomy and functioning, which then result in specific behavioural and emotional 

responses. Cognitive abilities, such as memory, attention and emotional 

processing, are possible through anatomical and functional connections between 

brain regions. For example, a group of regions form the so-called ‘limbic system’, 

described for the first time by Broca in 1878 as ‘le gran lobe limbique’, (from Latin 

limbus means border) (Pessoa and Hof 2015), referring to the curved rim which 

comprehends the cingulate and the parahippocampal gyri (Rajmohan and 

Structural 
MRI

Brain 
connectivity 
and Stress

Hippocampus 
volumes and 
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Fibre tracts 
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Mohandas 2007). Almost a century later, Papez and Yakovlev (Yakovlev 1948, 

Papez 1995) attributed this system to emotional processing for the first time. The 

brain regions forming what today is known as the limbic system are the cingulate 

and parahippocampal gyri, the hippocampal formation (represented by the 

dentate gyrus, the subiculum complex and the hippocampus proper), the 

amygdala (responsible of the flight or fight mode response), the septal area and 

the hypothalamus, which altogether are responsible for the emotional and 

cognitive responses to external and internal stimuli, through memory and 

motivation (McLachlan 2009). Some of the regions belonging to the limbic system 

are also involved in memory processes (i.e. formation, consolidation, and 

retrieval) such as the hippocampus and parahippocampal gyrus. Therefore, the 

limbic system, together with other brain areas, is a key part in behavioural 

responses, and it influences how people interact with peers and the external 

world. Any type of external offense can alter the normal relationship between 

brain structures, leading to structural damages, which can trigger the 

development of neuropsychiatric disorders, such as mood disorders, 

schizophrenia, as well as accelerate neurodegenerative processes.  

 

Neuroimaging is a powerful tool to investigate structural and functional changes 

of the brain, and useful to identify potential biomarkers in brain aging and 

diseases. In particular, structural imaging can identify, analyse and detect 

anatomical relationships between brain areas, based on investigating cortical 

thickness, structure volume changes and alterations in fibre microstructure. 

Looking at what happens inside the brain is useful to link the effect of external 

stimuli on specific brain regions that are responsible for behavioural and cognitive 

responses. 
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The brain is a plastic organ, and the extent of the brain damage is strictly 

associated to the time period during which an offense takes place. Literature on 

neurodevelopment shows there are specific time windows when the brain is more 

sensitive to external stimuli and have a bigger impact on either structural or 

functional organization. One key stage in someone’s life is adolescence, which 

is a transitional stage during which the brain is still maturing, and some areas are 

less developed than others (Casey, Jones et al. 2008). For example, frontal 

regions (involved in reasoning) are not yet fully developed in adolescence, 

making adolescents more sensitive to life events in such a way that their brain is 

highly susceptible to morphological and microstructural alterations, which can 

rearrange information and emotional processing and culminate in atypical 

behavioural responses. Changes occurred during these years can be persistent 

and causing permanent structural alterations, that can increase the possibility of 

developing neuropsychiatric disorders in such a young age and continue in 

adulthood. Cognitive abilities, and eventual decline, are consequently influenced 

by the effect of life experiences.  

 

Literature focused on investigating the effect of negative events on the brain 

shows changes in the volume of regions belonging to the limbic system, such as 

hippocampus, amygdala and anterior brain areas (McEwen 2012), and 

subcortical regions as the caudate and putamen (Soares, Marques et al. 2014). 

Soares investigated the effect that stress mood and aging have on both WM and 

GM volumes in an adult population. They found how WM volume changes were 

negatively correlated with age in the orbitofrontal cortex, superior frontal, inferior 

and middle temporal, parahippocampal, posterior cingulate. A significant 

interaction was found specifically between stress levels, aging and the frontal 
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brain areas, with behavioural stress and depressive symptoms affecting both 

structure and function of the prefrontal cortex in particular (Soares, Marques et 

al. 2014). Amygdala and hippocampal volumes have been found to be smaller in 

adults if the negative life event occurred in the early stages of life, confirming a 

relation between life events and age (Gerritsen, Kalpouzos et al. 2015) and, 

furthermore, pointing out childhood maltreatment is associated to brain 

alterations lasting throughout adulthood (Dannlowski, Stuhrmann et al. 2012). It 

is clear, then, the level of stress experienced in early life and during adolescence 

is crucial for brain development.  

1.1.1. Brain Regions Involved in Stress and Memory 

The brain regions involved in stress response and memory processing involve 

both GM structures and WM tracts, whose structure can be target of external 

offenses. 

The fornix is mainly a projection tract connecting the hippocampus with the 

mammillary body, the anterior thalamic nuclei, and the hypothalamus. It also has 

a small commissural component known as the hippocampal commissure (Gupta, 

Sahni et al. 2016). Fibres arise from the hippocampus (subiculum and entorhinal 

cortex) of each side, run through the fimbria, and join beneath the splenium of 

the corpus callosum to form the body of the fornix (Catani, Dell'acqua et al. 2013). 

Most of the fibres within the body of the fornix run anteriorly beneath the body of 

the corpus callosum towards the anterior commissure. Above the interventricular 

foramen, the anterior body of the fornix divides into right and left columns. As 

each column approaches the anterior commissure, it diverges again into two 

components. One of these, the posterior columns of the fornix, curve ventrally in 
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front of the interventricular foramen of Monroe and posterior to the anterior 

commissure to enter the mammillary body (post-commissural fornix), adjacent 

areas of the hypothalamus, and anterior thalamic nucleus. The second 

component, the anterior columns of the fornix, enter the hypothalamus and 

project to the septal region and nucleus accumbens (Pascalau, Popa Stănilă et 

al. 2018) (Figure 1.1).  

 

Figure 1.1: Dissection and tractography of the fornix (Pascalau et al., 2018) 

 

The mammillo-thalamic tract originates from the mammillary bodies and after a 

very short course terminate in the anterior and dorsal nuclei of the thalamus 

(Pascalau, Popa Stănilă et al. 2018). A ventrally directed branch projects from 

the mammillary bodies to the tegmental nuclei (mammillo-tegmental tract). 

According to Nauta (1958), the mammillo-tegmental tract, together with other 

fibres of the medial forebrain bundle, forms an important circuit between medial 
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limbic structures of the midbrain and hypothalamus to relate visceral perception 

to emotion and behaviour (Nauta 1958). 

The anterior thalamic nuclei are another important part involved in cognitive 

processes related to emotions and memory (Clark and Harvey 2016). They 

receive projections from the fornix and mammillo-thalamic tract and connect 

through the anterior thalamic projections to the orbitofrontal and anterior 

cingulate cortex. The anterior thalamic projections run in the anterior limb of the 

internal capsule (Pascalau, Popa Stănilă et al. 2018). 

The cingulum bundle (CB) is a WM structure with a U-shape that runs from the 

anterior to the posterior part of the brain, just above the corpus callosum (Catani 

&Thiebaut de Schotten, 2008). Vogt conducted a study on the cingulum 

connectivity in monkeys, and he divided the cingulum in four regions: the anterior 

cingulate cortex (ACC), the medial cingulate cortex (MCC), the posterior 

cingulate cortex (PCC) and the retrosplenial cortex (RSC), shown in Figure 1.2. 

Each of these branches can be further sub-divided, as they present different 

connections to the other brain regions and reflect different cognitive functions at 

the same time (Vogt et al., 2009):  

-ACC is defined as primary limbic cortex,  

-aMCC is limbic premotor cortex,  

-pMCC is limbic premotor orientation cortex,  

-dPCC is defined as limbic association cortex and  

-vPCC is limbic sensory assessment cortex.  
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Figure 1.2: Location of each sub-region of the cingulum bundle in a flat map (Vogt, 2009) 

In this division, four out of five subregions present connections to the limbic 

system. The limbic system includes the anterior cingulate gyrus, involved in 

emotional processing and error-monitoring (Whalen et al., 2006), the posterior 

cingulate gyrus, involved in the evaluation of risk and reward (McCoy and Platt, 

2005), the isthmus of the cingulate gyrus, engaged in memory and pain 

processing (Nielsen et al., 2005), the parahippocampal cortex, implicated in 

memory, and the entorhinal cortex, involved in memory and spatial processing 

(Eustache et al., 2001). The grey matter subcomponents of the limbic cortex are 

structurally connected with each other via the cingulum.  

The cingulum contains fibres of different lengths, the longest running from the 

amygdala, uncus, and parahippocampal gyrus to subgenual areas in the frontal 

lobe. From the medial temporal lobe, these fibres reach the occipital lobe and 

arch almost 180° around the splenium to continue anteriorly within the white 

matter of the cingulate gyrus (Bubb, Metzler-Baddeley et al. 2018). The dorsal 

and anterior fibres of the cingulum follow the shape of the superior aspect of the 

corpus callosum. After curving around the genu of the corpus callosum, the fibres 

javascript:void(0);
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javascript:void(0);
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terminate in the subcallosal gyrus and the paraolfactory area. Shorter fibres that 

join and leave the cingulum along its length, connect adjacent areas of the medial 

frontal gyrus, paracentral lobule, precuneus, cuneus, cingulate, lingual, and 

fusiform gyri (Wu, Sun et al. 2016). The cingulum can be divided into an anterior-

dorsal component, which constitutes most of the white matter of the cingulate 

gyrus, and a posterior-ventral component running within the parahippocampal 

gyrus, retrosplenial cingulate gyrus, and posterior precuneus. Preliminary data 

suggest that these subcomponents of the cingulum may have different 

anatomical features. For example, a higher fractional anisotropy has been found 

in the left anterior-dorsal segment of the cingulum compared to right, but reduced 

fractional anisotropy has been reported in the left posterior-ventral component 

compared to the right (Gong, Jiang et al. 2005). 

The uncinate fasciculus connects the anterior part of the temporal lobe with the 

orbital part of the frontal cortex. The fibres of the uncinate fasciculus originate 

from the temporal pole, parahippocampal gyrus, and amygdala, then after 

changing their trajectory with a U shape, they enter the extreme capsule (Bhatia, 

Henderson et al. 2017). Between the insula and the putamen, the uncinate 

fasciculus runs inferior to the fronto-occipital fasciculus before entering the orbital 

region of the frontal lobe (Cellerini, Konze et al. 1997). Here, the uncinate splits 

into a ventrolateral branch, which terminates in the anterior insula and lateral 

orbitofrontal cortex, and an antero-medial branch that continues towards the 

cingulate gyrus and the frontal pole (Pascalau, Popa Stănilă et al. 2018). Whether 

the uncinate fasciculus is a lateralised bundle is still debated. An asymmetry of 

the volume and density of fibres has been reported in a human post-mortem 

neuro-histological study in which the uncinate fasciculus was found to be 



9 
 

asymmetric in 80% of subjects, containing on average 30% more fibres in the 

right hemisphere compared to the left (Highley, Walker et al. 2002). However, 

diffusion measurements have shown higher fractional anisotropy in the left 

uncinate compared to the right in children and adolescents (Eluvathingal, Hasan 

et al. 2007) but not in adults, suggesting how the brain is still maturing during 

adolescence. 

1.2. Magnetic Resonance Imaging (MRI) 

The three studies forming this work of thesis have been conducted by using three 

different modalities of structural imaging, all based on magnetic resonance 

imaging (MRI). The first MRI scan was done in New York in 1973 and since then 

it has been widely used to detect alterations in the human body. It is similar to 

computed tomography (CT), with the difference of no impact of x-ray on the body 

(Carr and Grey 2002). 

1.2.1. MRI Physics 

About 60% of the human body is made of water, while the brain contains about 

73% of water (Whittall, MacKay et al. 1997). The atomic nucleus is formed by 

nucleons, differentiated in protons and neutrons, which have both a mass equal 

to 1, but different electric charge (protons have positive charge, whereas 

neutrons have charge equal to zero). Nuclei have a property of spin, which is 

associated to a small magnetic field. The magnetic fields of the particles  creates 

a nuclear magnetic moment (NMM), equal to a spin value different from zero, that 

reflects the different number of nucleons (Khurshid and Hussain 1991). A value 

different from zero is the base of the interactions with an external magnetic field 
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applied, which makes the hydrogen atoms respond to its strength by absorbing 

its energy so that the atoms spin orient in the same direction as the magnetic 

field (Johnston, Liu et al. 1985). These interactions describe the principle of MRI. 

The NMM has properties of both intensity and direction. Without an applied 

magnetic field, the direction of the NMM is casual, whereas when a magnetic field 

is applied, the vector NMM tends to align itself to the direction of the vector 

magnetic field (defined B0). (Carr and Grey 2002). This whole process is called 

“precession”.  

The frequency of precession around B0, is defined Larmor frequency (L), and it 

depends on two parameters: the strength of B0 and the type of nucleus of interest 

(Kiselev 2019). The latter determines the “gyromagnetic ratio”, indicated with the 

Greek letter γ. When an atom of H2 spins, an electric current is also created, 

given the positive charge of the proton contained in the atom. When a proton 

spins, it generates both a magnetic moment and an angular moment; both are 

essential to generate MR signal. The speed of the precession defines the 

strength and intensity of the MR signal. This means, the frequency 

measurements can be used to distinguish MR signals at different positions in 

space, enabling the image reconstruction (Hansen and Kellman 2015). When a 

magnetic field B0 is applied without gradients the nuclei precess at the same 

frequency, whereas when a gradient is applied, nuclei respond at different speed, 

depending if they “precess” at a direction that is parallel or perpendicular to the 

magnetic field (Scott, Joy et al. 1995). Hydrogen nuclei respond to applied forces 

by moving their axes with a perpendicular direction to the one of the applied 

forces, creating a magnetic moment. The sum of all the magnetic moments is 

called “net magnetization” and it is generally zero in absence of a magnetic field, 
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but it increases proportionally to the strength of the magnetic field applied. The 

net magnetization can be thought as a vector with two components: a longitudinal 

component (that is either parallel or antiparallel to the magnetic field) and a 

transverse component (which is perpendicular to the magnetic field) (Scherzinger 

and Hendee 1985). To measure the intensity of the magnetic field, a perturbation 

in the equilibrium of the spins in a volume must be created. To change this 

equilibrium, radiofrequencies (RF) emit photons that create an excitation phase 

on protons. Usually, the net magnetization follows the Larmor frequency, and to 

excite protons, a series of electromagnetic energy must be given to the system 

for a certain period.  

The event that energy pulses are given repeatedly to the net magnetization is 

defined “resonance” (Ai, Morelli et al. 2012). The electromagnetic pulses 

represent a second magnetic field given (B1), called also radiofrequency field 

(RF), lead to proton excitation, which usually lasts few seconds. The phase of 

excitation is followed by a phase of relaxation, where the particles return to the 

initial equilibrium state, after absorbing the energy of RF. The relaxation phase is 

a key event to detect MR signal (Martinez 2018). During the relaxation, the 

energy that is formed is released to the surrounding environment, and the 

perpendicular component to the B0 creates a RF signal.  

1.2.1.1. T1 and T2 Relaxation Time 

There are two types of relaxation, longitudinal and transverse relaxations, 

represented by the time constants, T1 and T2, respectively (Scherzinger and 

Hendee 1985). T1 is known as “spin-lattice relaxation”, whereby the “lattice” is 

the environment surrounding the nucleus. As longitudinal relaxation occurs, 
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energy is dissipated into the lattice. T1 is the time in milliseconds necessary to 

the net magnetization vector to recover 2/3 of its total projection, i.e. its thermal 

equilibrium following an RF pulse. T1 can be manipulated by varying the times 

between RF pulses, defined repetition time (TR) (Pykett, Rosen et al. 1983). 

Water and cerebrospinal fluid (CSF) have long T1 values (3000–5000 ms), and 

thus they appear dark on T1-weighted images, while fat has a short T1 value 

(260 ms) and appears bright on T1-weighted images. When a RF pulse is 

applied, nuclei align predominantly along the axis of the applied energy. The 

faster the proton realign, the brighter the MRI image is.  

T2 relaxation time, or also called transverse relaxation, is the loss of net 

magnetization within the transverse plane due to loss of phase coherence of 

spins. In fact, when the spins are excited, they all precess at the same phase, 

but when they return to their initial state the different chemical components of 

nucleus lead to a diphase of spins. During this event, there is no exchange of 

energy between spins and environment, but the energy lost by a nucleus is 

absorbed by other nuclei near it, defined spin-spin relaxation (Scherzinger and 

Hendee 1985). The signal loss due to this event is called T2 decay. Generally, 

T2 is faster than T1 relaxation; usually the T2 signal is associated with two 

events. The first is the loss of “phase coherence”, indicated with T2 signal, and 

the second is the lack of homogeneity of the local magnetic field, indicated with 

T2*, which can be indicated as the effective T2 signal observed. T2* can be lower 

or equal to T2 (Chavhan, Babyn et al. 2009).   

The signal MR is produced when the radiofrequency pulse is removed and the 

protons realign with the magnetic field, realising energy that is detected by the 

scanner during the relaxation process and converted into an image. The 
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sinusoidal shape detected by the system is modulated by the Free Induction 

Decay (FID), which contains information about the quantity of spins during the 

relaxation process (Scherzinger and Hendee 1985), that are the elements that 

define the MR signal. Multiple RF pulses are applied to obtain multiple FIDs, 

which are then averaged to improve the signal-to-noise ratio (SNR) (Uğurbil, 

Adriany et al. 2003); the signal averaged FID can be then resolved by a 

mathematical process known as Fourier transformation. The Spin echo (SE) 

signal, which is the refocusing of spin magnetisation by a pulse of resonant 

electromagnetic radiation, is influenced by two parameters which are the 

repetition time (TR) and the echo time (TE) (van Geuns, Wielopolski et al. 1999). 

The mathematical formula is the following: 

𝑒−𝑇𝐸 𝑇⁄ 2

𝑆 = 𝑘𝐻 ∙ (1 − 𝑒−𝑇𝑅 𝑇⁄ 1) ∙
 

where [H] is the spin (proton) density and K is a scaling factor. This equation 

shows how T1 effects are connected to TR and T2 effects are connected to TE, 

whereas [H] effects are always present. An increase of TR determines an 

increase of the signal, while an increase of TE determines a decrease of the 

signal. The repetition time (TR) and the echo time (TE) are used to control image 

contrast and defining the "weighting" of the MR image: a short TR and short TE 

give a T1-weighted image, whereas long TR and long TE give T2-weighted 

image. Based on the type of TE and TR, different acquisition sequences can be 

used and defined in MRI. 
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1.2.2. Spin-Echo Sequence 

This type of sequences was born in 1950 and they are the most used sequences 

till today (Jung and Weigel 2013), thanks to the fact they can give information 

about the three types of brain tissue. There are three main families of SE: with 

short TR ad short TE, with long TR ad short TE, and  with long TR ad long TE 

(Chavhan 2016). 

1.2.2.1. Sequence SE with Short TE (<30 ms) and Short TR (<600 ms) 

with these parameters the sequences SE produce images dependent by the T1 

tissue, represented by hyper tensed tissues with short T1 and hypo tensed 

tissues with long T1. The highest intensities are found in the adipose tissues, 

while the CSF has the lowest intensities. A lower signal reflects more water 

content, like in case of inflammation, and high signal for fat. It measures spin-

lattice relaxation.  

1.2.2.2. Sequence SE with Long TR (>1500 ms) and Short-Intermediate TE 

(20-40 ms)  

This second class includes images depending on the proton density (PD) of 

tissue to minimize T2, where the adipose tissues have higher level of 

hypertension than cerebro-spinal fluid (CSF). 

1.2.2.3. Sequence SE with Long TR (>1500 ms) and Long TE (>60 ms) 

These images depend on the T2 signal, measuring spin-spin relaxation. With this 

type of sequence, the images appearing brighter are those with the highest level 

of CSF. When different types of images need to be analysed (for example, T2 

and PD), another sequence can be used which is the multi-echo sequence, 
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characterized by long TR and two or more echoes that have the same distance 

between them. Even if it is possible to have a high number of echoes per each 

image, the higher is the number of echoes per each image, the worse the signal-

to-noise-ratio (SNR) becomes, leading to a lower image quality (Bitar, Leung et 

al. 2006). The most common solution is using multi-echo sequence with two 

asymmetric echoes, the first between the 20 and 40 ms and the second around 

the 100 ms, which in general produce all the information that are necessary for a 

diagnosis.  

1.2.3. Echo-Planar Imaging (EPI) 

Echo-planar imaging (EPI) is a very fast magnetic resonance imaging technique 

that is able to acquire a whole MR image in a fraction of second (DeLaPaz 1994). 

It is performed using a pulse sequence in which multiple echoes of different 

phase steps are acquired using rephasing gradients instead of repeated 180° 

radio frequency pulses following the 90°/180° in a spin echo sequence. In a 

single-shot echo planar sequence, the entire range of phase encoding steps 

(usually up to 128) are acquired in one TR. In multi-shot echo planar imaging, the 

range of phase steps is equally divided into several "shots" or TR periods 

(Edelman, Wielopolski et al. 1994). For example, an image with 256 phase steps 

could be divided into 4 shots of 64 steps each. The benefits of this type of 

sequence is reduced imaging time and reduced motion artefacts.  

1.2.4. Fluid-Attenuated Inversion Recovery (FLAIR) 

FLAIR is an imaging method that inverts time that leads to fluid suppression 

(there is a high signal in case of meningitis or multiple sclerosis) (Schreiner, Liu 

et al. 2014).  
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Table 1.1 summarizes the main terminology used to describe the physics of MRI, 

that are parameters influencing the image quality during data acquisition.  

       

Table 1.1: List of MRI-related terminology and definitions 

 

1.3. Thesis Objective  

 

Literature shows the limbic system is a target for environmental factors that can 

potentially alter its normal structural composition. For example, the hippocampus, 

important for memory processing, is rich in glucocorticoids receptors that are 

strictly associated to the level of cortisol in the brain. This can affect the circuits 

related to memory and emotion processing. This thesis work aims to investigate 

what are the human brain areas that are more structurally sensitive to 

physiological changes and environmental stimuli during two critical periods of 

time in life, such as adolescence and aging. In this thesis, three studies will be 

presented, exploring structural brain changes due to stress and brain aging with 
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three different structural neuroimaging approaches. Questions like: “How do 

cortical connections change in adolescents when they are exposed to stressful 

experiences?”, “How are brain areas related to emotions affected with stress over 

time?”, and “What effect does healthy aging have on the microstructure of brain 

tracts involved in memory and emotions?” are the objective of this thesis. The 

first study focuses on the effect of stressful events on brain connectivity in the 

cortex of the adolescent brain, divided into 17 networks; brain connectivity was 

measured both with graph theory measures and connectivity strength between 

edges.  

In the second study, volumetric changes of the hippocampus subfields are 

investigated, both cross-sectionally and longitudinally. The cross-sectional 

analysis focused on potential changes between two groups experiencing two 

different levels of stress in middle adolescence, while the longitudinal analysis 

sought to investigate changes within each stress group (defined at baseline) 

across two stages of adolescence (i.e. middle and late adolescence). 

Finally, the third study looked at microstructural changes in the cingulum with 

normal aging, that was divided into three branches, namely subgenual, 

retrospenial and parahippocampal branches. To carry out such analysis, 

diffusivity measures were statistically compared between young and old healthy 

people. All the three studies focus on key stages of a “journey” that starts at a 

young age in adolescence, and goes on till old age, exploring changes of the 

limbic brain areas along the “way”. In fact, an increase of cortisol release as 

consequence to negative life events is toxic for limbic structures, contributing to 

structural maturation and acceleration of cognitive decline. 
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1.4. Research Methodology and Methods 

 

For all the three studies forming this work, secondary data have been used. In 

the first study, brain connectivity changes have been investigated in a big 

population of adolescents that experienced negative events. The impact of stress 

was considered by analysing whole-brain connectivity and graph theory 

measures alterations in the cortex between two groups with different levels of 

stress perceived, i.e. Low vs. High stress. Such alterations were represented by 

decrease/increase of connectivity strength between brain areas, as well as by 

decrease/increase of measures indicating network properties of segregation, 

integration and centrality. Brain networks were obtained by applying an ROI-atlas 

to MRI grey matter segmentations. The second study can be considered as an 

extension of the first one, since it is focused on investigating the longitudinal 

changes of the hippocampus subfields volume in a sub-group of the adolescent 

population. This was done by extracting subfields volumes in Freesurfer 6.0 at 

three time points and see how they change overtime within each group based on 

the stress level at baseline. Finally, microstructural changes of the cingulum 

bundle were investigated with diffusion tensor imaging (DTI), comparing young 

healthy adults to an older healthy population. The cingulum is a fibre tract that 

embraces the corpus callosum, connecting anterior regions with the posterior 

part of the brain. The bundle was divided into three branches and diffusivity 

measures were extracted for each branch in both hemispheres. Diffusivity 

measures were considered both on a tract-average level and along the length of 

the tract.  
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2. Brain Connectivity Changes with Stress in 

Adolescence 

 

2.1. Adolescence 

Adolescence is a transitional period where humans experience physical, 

psychological and emotional changes. Researchers define adolescence as a 

window of time that usually starts with puberty and ends when youth reach the 

age of 19, or, as in some studies, in young adulthood (at 24 year old) (Sawyer, 

Afifi et al. 2012). Even though the age range is not universally defined, there are 

some key events that represent the end of adolescence, such as getting an 

independent job or becoming parent (Pringle, Mills et al. 2016). The hormonal 

shift happening in these years influences also the brain maturation of 

adolescents, which is key for their cognitive and behavioural responses. In fact, 

when puberty starts, the cognitive abilities increase drastically, represented for 

example by shorter reaction time, improved working memory, setting rules for 

adaptive behaviours (Ernst and Mueller 2008). The World health organization 

(WHO) divided adolescence into three stages: the first two stages are early (10-

14 years old) and late (15-19 years old) adolescence, whereas the third one is 

defined young adulthood (20-24 years old). During early adolescence, physical 

change starts with the growth of body hair and the development of sexual body 

parts, whereas, cognitively speaking, adolescents are better in thinking in an 

abstract way and more focused on the present (“here and now”), rather than the 

future. In late adolescence, physical growth slows down for girls, but it continues 

for boys, having reached, in both sexes, almost 95% of the adult growth. 

Cognitively, at this stage, adolescents start thinking more about the future, are 
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fully self-absorbed and are more prone to set goals. At this stage the frontal areas 

of the brain develop, and such development can be influenced by the events 

experienced during these years. Finally, during young adulthood adolescents are 

fully physically mature, and cognitively they are projected more into the future, 

planning their life (Sawyer, Afifi et al. 2012).  

2.1.1. Brain Maturation in Adolescence 

In adolescence, brain maturation is represented by changes in both grey and 

white matter. Global grey matter volume has seen being negatively correlated 

with the pubertal stage, gonadal hormone and testosterone levels, whereas white 

matter density increases with age (Vijayakumar, Op de Macks et al. 2018).  

During childhood and early adolescence an increase of axonal and synapses 

production takes place, followed by neural pruning in areas involved in attention, 

emotional response and memory, such as the nucleus accumbens, the prefrontal 

cortex and amygdala (Casey, Jones et al. 2010). Changes seem to progress from 

posterior to anterior dorsal regions, such that parietal grey matter loss is seen 

mostly from childhood to adolescence, while frontal grey matter decreases mostly 

from adolescence to adulthood (Ernst and Mueller 2008). The peculiar 

behavioural features of adolescence are influenced by an increase use of the 

limbic structures associated to emotions, and reduced use of cognitive inhibitory 

structures such as the ventrolateral prefrontal cortex. This may lead to 

unbalanced employment and development of emotion-related circuits over 

reasoning and reward-related systems; in terms of brain areas development, 

incorrect growth of amygdala, nucleus accumbens, and prefrontal regions 

involved in these circuits may occur (Casey, Jones et al. 2008). For example, the 
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enhancement in the nucleus accumbens activity may be associated to the 

increase of impulsivity and risk-taking behaviours observed in adolescents 

(Ernst, Nelson et al. 2005). Cognitively speaking, neurodevelopmental studies 

found an enhanced activity of regions involved in working memory, such as the 

temporo-parietal junction and frontal areas.  

Literature showed different changes in the brain development based on sex 

(Peper, Schnack et al. 2009, Berenbaum, Beltz et al. 2015, Gur and Gur 2016, 

Kaczkurkin, Raznahan et al. 2019). A relationship between the level of sex-

specific hormones is seen in adolescence, in particular a positive association 

between testosterone levels and global grey matter density was found in males, 

while females showed a negative association between oestradiol levels and grey 

matter density (Peper, Schnack et al. 2009). Gur and Gur described in their 

review the structural changes of the brain during puberty, highlighting sex 

differences in both GM and WM (Gur and Gur 2016), in a cohort of adolescents 

from Philadelphia. Regarding GM, females showed an increase of hippocampal 

volume, while changes in WM were represented by higher fractional anisotropy 

(FA) in the splenium of the corpus callosum. On the other hand, males presented 

a higher FA in the frontal part of the brain, confirmed by a recent study 

(Kaczkurkin, Raznahan et al. 2019). Furthermore, gender-based connectivity 

differences were seen, with males engaging more intra-hemisphere networks, 

whereas, in females, the wiring of brain connections tend to be more inter-

hemispheric. Specifically, in cortical connections, another study (Ingalhalikar, 

Smith et al. 2014) suggested that males engage more brain networks involved in 

perception and coordinated action, while females engage brain regions involved 

more in analytical and intuitive processes.  
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2.2. Stress and Cognition 

The term “stress” was used for the first time by Hans Selye in 1936 and it is 

defined as a threat to the physical or psychological integrity of an individual. 

Determinants can be defined stressful when a situation is novel, unpredictable, 

threatening to the ego or leading to a decrease of sense of control, as defined by 

the psychologist John Mason in 1960s. When a situation is perceived as 

stressful, two systems are activated, releasing hormones to cope with the stress 

effect on the body (McEwen 2012). The first one to activate is the sympathetic-

adrenal-medullary system, which releases catecholamine (epinephrine and 

norepinephrine – as known as adrenalin and noradrenalin) by the adrenal glands. 

The second system is the hypothalamic-pituitary-adrenal (HPA) axis, which 

releases glucocorticoids (GCs, that are steroid hormones) (Rudolph, Troop-

Gordon et al. 2018). To respond to the stressor effect (the situation or the factor 

causing stress), neurons in the hypothalamus are activated, which release a 

hormone called corticotropin releasing hormone (CRH), secreting a polypeptide 

hormone called adrenocorticotropin (ACTH) from the pituitary gland. The ACTH 

receptors on the adrenal glands release then the GCs. This top-down control of 

stress hormone release is counter-balanced by a negative feedback process 

carried out by the GCs through receptors at the pituitary, hypothalamic and the 

hippocampus levels. A graphical description of how the HPA axis works is shown 

in Figure 2.1. In humans, GCs concentration is the highest in the morning, while 

the lowest levels are in the late afternoon (Kuhlman, Geiss et al. 2018). According 

to the American Psychological Association (APA), three types of stress can be 

defined: acute stress, episodic acute stress and chronic stress. They can be 

present as single, or even combined, having more or less severe effects on the 



23 
 

body and brain (Peters, McEwen et al. 2017). Positive response to stress is 

characterized by the return of the physiological homeostasis, without inducing 

deep structural brain changes, whereas repeated and negatively perceived 

episodes are those that can cause permanent alterations at physiological and 

psychological levels (Bucci, Marques et al. 2016). 

 

Figure 2.1: Graphical representation of the HPA axis 

 

The presence of stress hormone receptors in the hippocampus, amygdala and 

prefrontal cortex is key for cognitive processes such as learning and memory. 
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The prefrontal cortex is involved in reasoning, planning, selective attention, 

working memory and decision making (Rolls 2015), but more importantly, the 

PFC is responsible to decide which information will be considered and which one 

will be inhibited during the performance of goal-directed behaviours (such as 

selective attention). The amygdala is involved in assessing the emotional 

significance of events, and it processes emotions of anger, aggression and fear 

(Scherf, Smyth et al. 2013). The hippocampal formation, divided into subfields, is 

involved in learning and memory; it is engaged both in the formation and retrieval 

of episodic memories (Tamnes, Walhovd et al. 2014). These three structures are 

involved in evaluating a situation and selecting an appropriate response 

(operated by the PFC) considering the emotional content of the situation 

(attributed to the amygdala) and past experiences (associated to hippocampal 

formation) (Vogel and Schwabe 2016).  

The process of acute stress response in the brain involves the anterior cingulate 

cortex (ACC) that determines the level of uncertainty of future events, whereas 

the amygdala responses to external or internal threats by its flight or fight 

response. These two structures form a descendant pathway to the brainstem 

nuclei, reaching the locus coeruleus (LC), which is activated by an increase of 

vigilant state, and the hypothalamic nuclei, that are key component of the HPA 

axis (Peters, McEwen et al. 2017).  

This suggests stress-related hormones can influence learning and memory 

processes, having an impact on these three areas. Elevated GCs levels during 

the encoding phase can result in impaired retention performance, but when 

emotional stimuli are used the opposite is true, encoding and consolidating the 

emotional component (Vogel and Schwabe 2016). The mechanism leading to 
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that sees the secretion of norepinephrine by the locus coeruleus and the GCs by 

the adrenal gland, resulting in an increased activation of adrenergic receptors 

throughout the brain. This modulates the hippocampal activity involved in the 

consolidation of emotionally component of events. The stress-related response 

to negative events is highly influenced also by personality traits; one study 

showed that more extrovert adolescents release lower levels of cortisol, whereas 

a linear association was found between the level of neuroticism and cortisol 

released (Evans, Stam et al. 2016).  

 

 

Figure 2.2: Brain regions that are part of the limbic system and are target of structural 

changes in stressful situations (Adjamian et al., 2014) 
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2.2.1. Brain Structural Changes with Stress in Adolescence 

Stress-related effect on the brain has been investigated for many years. 

Literature shows how the structural alterations in the brain determine emotional 

and cognitive responses, depending on the level and the type of stress 

experienced (Lupien, McEwen et al. 2009). Adolescence is a transitional stage, 

and the amount of novel stimuli, both physically, socially and emotionally can 

affect the teenager’s brain, and cause permanent changes lasting throughout  

adulthood (Andersen and Teicher 2008) both at structural and functional levels 

(Blakemore and Choudhury 2006, Ernst and Mueller 2008, Casey, Jones et al. 

2010). As said before, the hippocampus, the amygdala and the prefrontal cortex 

are among the structures that are mainly targeted by stress. The hippocampus 

presents a high number of glucocorticoids receptors interacting with the cortisol 

released during the stress response, and hippocampus volume reduction has 

been found in adolescents experiencing stressful events, especially in the cornu 

ammonis (CA) 3 and 4 and dentate gyrus (Eiland and Romeo 2013) as well as 

reductions of neurons and dendritic branches are seen in case of chronic stress. 

At a cognitive level, this was shown to affect memories formation and retrieval 

and spatial navigation (Yaribeygi, Panahi et al. 2017). Regarding amygdala 

alterations, repeated stressful events have been associated to increased 

volumes (Bucci, Marques et al. 2016), dendritic hypertrophy in the basolateral 

nucleus (Eiland and Romeo 2013), higher concentration of CRH, and abnormal 

connectivity in networks involving the amygdala, altogether affecting the neural 

circuitry responsible for the emotional response (Chen and Baram 2016). Finally, 

in the prefrontal cortex, which is the last to develop, a higher level of atrophy, 

reduction of synapsis and dendrites has been found caused by repeated stressful 
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events (Bucci, Marques et al. 2016) (Eiland and Romeo 2013). A study 

investigating the relationship between perceived stress and brain networks 

connectivity involved in emotional responses showed how the connectivity 

between amygdala and the ventromedial PFC associated to perceived stress 

changes with age (Wu, Geng et al. 2018). They found that, while in adolescence 

there was a positive correlation between the level of perceived stress (PSS) and 

amygdala-ventromedial prefrontal connectivity, young adults showed a negative 

relationship between PSS and the connectivity of the amygdala–vmPFC circuit. 

This suggests the brain circuits can undergo reorganization during 

neurodevelopment and, therefore, are more sensitive to the effect external 

factors.  

2.3. Structural Connectivity 

Structural connectivity describes anatomical connections between two regions, 

generally measured with diffusion imaging, which reconstructs anatomical 

connections in form of fibre tracts (Sporns, Tononi et al. 2002). Structural MRI 

measures not only the variations in the volume or surface of brain areas that are 

considered, but it allows the inference of structural connectivity. Correlations in 

thickness, volume, morphological composition similarity between two brain areas 

across people were shown to be associated with the presence of structural 

connections (fibres) between two areas (Tijms, Series et al. 2012).  

Structural connectivity can be calculated by using different approaches. An 

example is using DTI from T1-weigthed images. Diffusion anisotropy is 

associated to the brain white matter, with a maximum that coincides with the 

spatial orientation of nerve fibres within each voxel (Assaf and Pasternak 2008). 
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The signal generated by diffusion imaging can give information about the 

direction of the fibre tracts within each voxel of the brain. The spatial resolution 

of the signal is limited by the voxel size, which can influence the output tract, or 

the correlation coefficients associated to that voxel. Diffusivity measures are 

calculated to indicate the microstructural composition of WM fibres, and 

correlation matrices can be calculated based on the anatomical connection 

between two brain areas (Whitford, Kubicki et al. 2011). The second way is an 

ROI-analysis, where correlation matrices are built based on the linear correlation 

coefficients between two brain regions, after they have been parcelled based on 

a template, where each parcellation has its own coordinates. Thanks to the use 

of coordinates for each parcel, it is possible to obtain spatial information about 

the connections between regions of the cortex (Tijms, Series et al. 2012).   

Many studies have focused on structural connectivity alterations with diseases, 

which can be measured by investigating graph theory and connectivity changes 

(Whitford, Kubicki et al. 2011, Tijms, Moller et al. 2013, Bourque, Spechler et al. 

2017, Rimkus, Schoonheim et al. 2019), or changes in connectomes as pattern 

classifiers for diseases prediction (Shao, Myers et al. 2012). Structural 

connectivity can be used also in a multimodal neuroimaging approach to study 

the relation between structural and functional connectivity. In fact, dynamic 

processes shape the topology of a network and, in turn, the topology of the 

network influences the dynamic of the system. This is an example of the so-called 

“adaptive co-evolutionary networks” (Gross and Blasius 2008), that emphasizes 

how structural and functional connectivity influence each other. Understanding 

the relationship between the two types of connectivity can give a clearer picture 

of what happens in the brain with diseases. 



29 
 

2.3.1. Graph Theory Measures  

Graph theory is a mathematical approach (Sporns 2013) that defines the brain 

as a network, made of nodes (i.e. regions of interest) and edges (structural or 

functional connections between brain regions) (van den Heuvel and Sporns 

2013). Graphs can be distinguished in directed or undirected, where the directed 

graphs have edges connected to vertices in a specific direction (Bullmore and 

Sporns 2009). Connectivity correlation coefficients are estimated between all 

possible node pairs, building a connectivity matrix (also called adjacency matrix). 

For weighted graphs, edges are indicated by weights, which represent the 

connectivity strength between the two nodes that the edge connects. A threshold 

is then applied to binarize the weighted correlation matrix, such that if the value 

is higher than the threshold, the correlation coefficient will be equal to 1, whereas 

if the value is lower than the threshold then it will be 0, distinguishing the 

correlation matrices in either weighted or binary. The binary adjacency matrix is 

then used to compute graph theory metrics (Tijms, Series et al. 2012). 

Furthermore, graph theory describes network properties such as segregation, 

integration, centrality and density (Bullmore and Sporns 2009). Segregation 

allows information flow and processing within highly connected groups of brain 

regions, defined clusters, while integration refers to the global transmission of 

information across brain regions (Sporns 2013). Together they allow information 

to flow rapidly at a low wiring cost, defining the network economy. When networks 

are characterized by higher cluster coefficient and characteristic path length 

approximately the same of random networks, it says they have a property of 

small-worldness, which was observed by Watts and Strogatz for the first time 
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(Watts and Strogatz 1998). The graph theory measures considered in this thesis 

work have been described in the manuscript below.  

2.3.2. Brain Networks Parcellation 

Brain networks analysis is broadly carried out by an ROI-based approach. 

Usually a template or atlas is chosen, which divides the brain in a certain number 

of ROIs, or parcels. Each parcel is represented by a number of voxels and 

associated to different networks and functions (Arslan, Ktena et al. 2018). An 

advantage of using atlases for this type of analysis is that it considers the 

geometry of the brain, so that it is possible to investigate changes in connectivity 

strength with neuropsychiatric disorders or neurodegenerative diseases for each 

brain network. The choice of the atlas depends mainly on the research question. 

Parcellations can be built on cytoarchitectural organization of the brain, on the 

morphological similarity of the brain areas or on resting-state fMRI signals 

(Tzourio-Mazoyer, Landeau et al. 2002, Desikan, Segonne et al. 2006, Destrieux, 

Fischl et al. 2010). They can include only the cortex, as for example Yeo et al 

(2011), while other atlases include also sub-cortical structures. Usually a non-

linear registration is performed on MRI images to co-register them to the atlas 

stereotaxic space, and then correlation matrices are extracted.  

In this thesis work, brain connectivity changes in the cortex of adolescents were 

investigated in relation to different levels of perceived stress. The main research 

interest was to understand the impact of high stress levels on the brain networks 

properties when compared to adolescents who had none or minor exposure to 

stress, i.e. exploring how the severity of stressful events affects the brain 

structure in adolescents. The analysis results are reported in a manuscript which 
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has been submitted to a scientific journal. Below the entire manuscript can be 

found. Further material can be found in the Appendix A of this thesis.  

2.4. Manuscript – Structural Connectivity Alterations of the 

Cortex in Adolescents Due to Stressful Life Events 

Abstract 

Adolescence is a crucial period for physical and psychological development. As 

literature shows, negative life events (NLEs) experienced during this transitional 

stage can lead to stress and contribute to the onset of psychiatric disorders. The 

objective of this study is to investigate the relationship between NLEs and 

structural brain connectivity alterations, investigating changes in both graph 

theory measures and whole-brain connectivity. A sample of adolescents from the 

IMAGEN Consortium data was divided into two groups, Low and High Stress. 

Brain networks were extracted from individual grey matter segmentations, 

computing linear correlation matrices based on the morphological similarity 

between brain regions. The number and the parcellation of the brain areas were 

defined using an atlas-based region of interest approach. Between-group 

statistical comparisons were conducted on both global and local graph theory 

measures, and whole-brain connectivity was calculated with network-based 

statistics (NBS) method. No between-group differences were seen in the global 

graph theory measures. Results showed how sparsity was a key factor in 

structural connectivity changes, especially in the local graph theory measures. In 

the High stress group, centrality measures changed in the left somatomotor 

network (a decrease of betweenness centrality was seen at sparsity 5%, 

pcorr=0.0042), in the bilateral central visual network (increase of degree at sparsity 
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10%, pcorr=0.048) and in the left dorsal attention network (increase of degree at 

sparsity 30%, pcorr= 0.042). The whole connectome analysis with NBS showed 

changes in the dorsal attention (as seen in the graph theory measures), limbic 

and salience networks, represented by an increase of connectivity in the High 

Stress group between both inter- and intra-hemispherical edges. This study 

suggests that stress doesn’t alter structural connectivity globally, but it leads to 

local changes in the group who perceived higher levels of stress.  

2.4.1. Introduction 

Adolescence is defined as the transitional period between childhood and 

adulthood, beginning with the onset of puberty until the attainment of sexual 

maturity and neurobehavioral characteristics associated with the adulthood, 

reflecting changes physically, emotionally and physiologically (Holmbeck 2002). 

The maturation of the brain is a key event during adolescence, when both grey 

matter (GM) and white matter (WM) change due to neural pruning and 

myelination, influenced by the activity of sex hormones that leads to the re-

organization of perceptual, motivational, affective, and cognitive systems 

(Juraska and Markham 2004, Scherf, Smyth et al. 2013).  

Giedd and colleagues described how GM and WM brain compartments in the 

various lobes develop from childhood through adolescence (Giedd, Blumenthal 

et al. 1999). White matter tends to increase linearly with age (Giedd and Rapoport 

2010, Giorgio, Watkins et al. 2010, Ladouceur, Peper et al. 2012), with limbic 

tracts developing earlier than association tracts (Khundrakpam, Lewis et al. 

2016). Grey matter development, on the other hand, follows an inverted U shape, 

reaching its peak during adolescence. The age peak differs based on sex and 
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brain area: the frontal and parietal lobes reach the peak sooner in females than 

males, while the temporal lobe reaches its peak at the same age in both sexes 

(Gogtay, Giedd et al. 2004).  

Amid all these changes, stressful experiences can alter the normal brain 

development. The term “stress” was coined by Hans Selye in 1936 to indicate 

“the non-specific response of the body to any demand for change” (Seyle, 1936), 

whereas the specific factor triggering such changes is defined “stressor”. The 

effect of stressors alters the glucocorticoids secretion, leading to hyper-activation 

(or in some cases hypo-activation) of the hypothalamic-pituitary-adrenal (HPA) 

axis, that is responsible of behavioural responses (Lupien, McEwen et al. 2009), 

and that affects the normal development of specific brain areas involved in 

emotion regulation, decision making and reward systems (McEwen 2011). 

Alterations in the normal functioning of the HPA axis can influence the efficiency 

of information flow between brain regions, reflecting changes in brain connectivity 

(Eiland and Romeo 2013).  

Brain networks, usually referred as “connectome”, can be used as potential 

biomarkers to study alterations in brain connectivity such as due to stress and 

brain disorders in adolescence (Khundrakpam, Lewis et al. 2016). A common 

approach to quantify such changes is graph theory, which is a branch of 

mathematics (Sporns 2013) that describes the brain as a network, made of 

“nodes” (i.e. brain regions) and “edges” (connections between nodes) (Bullmore 

and Sporns 2009, van den Heuvel and Sporns 2013).  

Graph theory metrics can be applied to either structural (MRI, DTI) or functional 

(fMRI) imaging data. A study describing the change of such metrics during 
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development showed that, in adolescence, there was a decrease in the efficiency 

of information flow from one region to another (Khundrakpam, Reid et al. 2013) 

compared to childhood. Another study reported changes in the centrality of 

specific nodes following past maltreatment stress (Teicher, Anderson et al. 

2014): the main alterations were seen especially in the salience network (SN) 

and default-mode network (DMN). Two studies that used functional connectivity 

reported alterations in the clustering property of brain regions and in the path 

length between nodes in adolescents (13-14 years old) suffering of post-

traumatic stress disorder (PTSD)(Suo, Lei et al. 2015, Xu, Chen et al. 2018). 

Zalesky and colleagues reported that adolescents with PTSD showed loss of 

connections in dorsolateral prefrontal cortex, middle temporal gyrus, bilateral 

thalamus and middle occipital gyrus (Zalesky, Cocchi et al. 2012). Another study 

comparing PTSD and healthy teenagers showed a hypoconnectivity within the 

default-mode network (DMN), specifically between posterior cingulate and 

occipital cortex. Additionally to that, they found a decreased connectivity between 

the DMN and both the salient (SN) and the central executive network (CEN) 

(Viard, Mutlu et al. 2019) compared to healthy teenagers. 

The objective of this study is to further elucidate the relationship between stress 

and brain connectivity changes during adolescence. Our hypothesis is that the 

structural networks in the high stress group will be altered from the low stress 

group.  This is the first study exploring stress-related changes in structural 

connectivity in a large sample of healthy adolescents, where the stress level has 

been measured based on the number of negative life events. Results of this study 

will contribute to increase our knowledge on how stress may alter healthy brain 

maturation process.  
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2.4.2. Materials and Methods 

2.4.2.1. Participants 

Participants are from the IMAGEN study (Schumann, Loth et al. 2010), a 

longitudinal study on the brain development and behaviour of adolescents, with 

data being collected from eight different centres across Europe (in Germany, UK, 

France and Ireland). The IMAGEN cohort has more than 2,200 adolescents who 

underwent a series of behavioural, neuropsychological assessments, genetic 

screening and neuroimaging. Parents gave informed written consent and 

adolescents gave written assent to the study procedure prior to inclusion. All 

procedures were approved by each local institutional ethics committee. Further 

descriptions of the study design, sample, and recruitment procedure, including 

data storage and safety can be found elsewhere (Schumann, Loth et al. 2010). 

The population analysed in this study is a subgroup of the IMAGEN study at 

baseline (N=487, age mean=14.45 ± 0.55), who were the participants at the 

higher and lower distribution ends of the stress measure, who passed the MRI 

quality check and had all the covariates included in this analysis. 

To assess the level of stress in each participant, we used the Life Event 

Questionnaire (LEQ) (Newcomb et al., 1981) - a 39 item questionnaire – where 

each question asked about a specific event. The scoring scale had a range from 

-2 (very negative) to +2 (very positive), with the scoring indicating how the 

respondent rated the event. Events were classified into clusters: Family/Parents                

Accident/illness, Sexuality, Deviance, Relocation, Distress and Autonomy. The 

questions chosen from the LEQ are listed in Appendix A (Figure A3), based on a 

previous published paper (Galinowski et al., 2015) on resilience, that is defined 
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as the capacity to cope with NLEs. That is the reason why the same events 

indicated in Galinowski’s paper were selected for this study, and to have a 

uniform distribution of events across clusters. The number of NLEs was 

calculated adding up every time a participant experienced a negative event; the 

score was calculated adding up events which were scored either -2 or -1. Both 

the total score and the total number of NLEs were calculated.  

Furthermore, we also considered the pubertal change in adolescents, using the 

Pubertal Developmental Scale (PDS) (Petersen, Crockett et al. 1988). This is a 

self-report measure of physical development for youth under the age of 16. There 

are male and female versions of the PDS, where boys are asked whether growth 

has begun on body hair, facial hair, voice change, skin change, and growth spurt. 

The same questions are asked to girls about body hair, skin change, breast 

development, and growth spurt. Responses are based on 4-point scales (1 = no 

development and 4 = completed development). For girls, there is an additional 

yes-no question about the onset of menarche. For both genders, ratings are then 

averaged to create an overall score for physical maturation. Socio-economic 

status (SES) was also considered. It is based on the level of income, occupation, 

and education in the household, obtained from the parental European school 

Survey Project on Alcohol and other Drugs (ESPAD). 

Included in our statistical models were age, sex, centre, PDS and SES as 

covariates. PDS scores were standardized, using z-transformation. 

As the main objective of the study was to explore how the severity of stress level 

affects brain connectivity, the population was divided into two groups (N=487, 

Low Stress=360 and High Stress=127), taking into account the highest and 
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lowest stress levels perceived in both groups. The number of NLEs and the 

cumulative negative score were used as cut-off value to divide participants into 

Low and High stress groups. A cut-off of five NLE was chosen to define significant 

exposure to stress, corresponding to the level of stress experienced by 15% of 

young adults followed since childhood (Caspi et al. 2003). Adolescents who 

experienced from none to 5 NLEs and the total score was from -5 to 0 were 

categorized as Low Stress group, while those who had 6 or more NLEs and total 

score from -20 to -11 were defined as High Stress group. Both groups were 

gender balanced (Low Stress: male=182, female=178; High Stress: male=55, 

female=72).  

2.4.2.2. Imaging 

Details of the magnetic resonance imaging (MRI) acquisition protocols and 

quality checks have been described elsewhere (Schumann et al., 2010). MRI 

scans were acquired at the eight IMAGEN sites, using 3T MRI systems made by 

different manufacturers. High-resolution anatomical magnetic resonance images 

were acquired using a 3D T1-weighted gradient echo sequence  based on the 

ADNI protocol (http://www.loni.ucla.edu/ADNI/Cores/in-dex.shtml), which allowed 

comparable data to be acquired from all sites despite these scanner differences. 

2.4.2.3. MRI Analysis 

2.4.2.3.1. Pre-processing and Segmentation 

Images were pre-processed in SPM8, and segmented into grey matter (GM), 

white matter (WM) and cerebro-spinal fluid (CSF). 

2.4.2.3.2. Extraction of Brain Networks 

http://www.loni.ucla.edu/ADNI/Cores/in-dex.shtml
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Brain networks were extracted using a method previously published (Tijms, 

Series et al. 2012). At each voxel within the GM compartment, a cubic region of 

interest (ROI) was centred at each voxel, composed of 3x3x3 voxels (6x6x6 

mm3). Morphological similarity between all cube pairs (regions of interest) was 

calculated based on linear correlation (Tijms, Moller et al. 2013), and each cube 

was rotated relative to the other one to find the maximum linear correlation 

between two ROIs. The cubes maintained the structure of the cortex unaltered 

(calculations were performed in native space), and so geometrical information 

was part of the morphological similarity between nodes (Tijms, Moller et al. 2013). 

2.4.2.3.3. Matrix Resizing 

The above voxel-based analysis was then parcellated into 400 ROIs and 

organised into 17 networks using an atlas by (Schaefer, Kong et al. 2017) that 

was applied to each participant’s MRI image in native space. Table 2.1 describes 

the ROIs belonging to each network.  



39 
 

 

Table 2.1: Regions of interest (ROIs) that comprise the 17 networks in Schaefer 

template. Additional details of the network are included in the supplementary data  

 

The atlas was non-linearly registered to each participant’s MRI using DARTEL 

(in SPM8) (Ashburner and Friston 2000). Thus, the linear correlation coefficient 

between each pair of voxels was allocated to the respective 400 ROIs in the atlas, 

and then all the linear correlation values between ROIs were averaged, obtaining 

a matrix of 400x400 for all subjects – this process was called matrix resizing. To 

create a symmetric matrix, the transpose of the upper triangle of the matrix was 

calculated. A graphical representation of how the correlation matrices were 

resized is included in the Appendix A (Figure A5).  

2.4.2.3.4. Thresholding Levels 

Then Fisher’s r-to-z transformation was applied to the linear correlation matrices. 

Seven different sparsity levels (from 0.05 to 0.35 with increments of 0.05) were 
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chosen to investigate whether different thresholds altered the statistical 

comparisons between groups. Sparsity is defined as connectivity density in brain 

networks, i.e. it indicates the percentage of existing connections compared to the 

maximum number of possible connections in the network (Sporns 2013). For 

example, with a sparsity level of 0.2, only the highest 20% of all the connections 

(linear correlation values) was retained and used to calculate the graph 

measures. Finally, all the correlation matrices were binarized to create 

unweighted and undirected networks (see Figure 2.3). 

 

 

Figure 2.3: Graphical representation of the method used to calculate brain networks and 

extract graph theory measures. Correlation matrices are built by calculating the 

morphological similarity between two cubes. Connectivity matrices are resized based on 

an atlas 

 

To identify changes in brain networks due to stress, graph theory measures were 

quantified using the Brain Connectivity Toolbox (Rubinov and Sporns 2010). The 

global graph theory measures calculated were mean cluster coefficient (CP), 

mean degree centrality (DC), characteristic path length (LP), small-worldness 
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and global efficiency. The local graph theory measures were nodal betweenness 

centrality (BC), nodal degree and nodal clustering coefficient.  Cluster coefficient 

(CP) describes the number of connections among a node's topological 

neighbours (Sporns 2013), whereas characteristic path length (LP) indicates the 

global average of the shortest paths in the network (Rubinov and Sporns 2010) 

and it is linked to global efficiency, that is the average of the inverse of all the 

distances across the nodes (Stam and Reijneveld 2007). Node centrality is 

measured by degree and betweenness centrality. Degree centrality is defined as 

the number of edges for each node (Bullmore and Sporns 2009, Rubinov and 

Sporns 2010) while BC measures centrality at a local level, indicating the fraction 

of all shortest paths in the network that pass through a given node (Rubinov and 

Sporns 2010); nodes with high BC or degree are often defined network hubs (van 

den Heuvel and Sporns 2013). When networks have high cluster coefficient and 

short path length they present a property of small-worldness, which influences 

the network wiring cost (Watts and Strogatz 1998) (see Figure 2.4 for a graphical 

representation of graph theory measures. Further images are found in Appendix 

A).  

 

Figure 2.4: Graphical representation of graph theory measures. Integration, segregation 

and centrality are network properties that help to describe and define brain connectivity 
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2.4.2.4. Statistical Analysis 

To investigate between-group statistical differences (using SPSS v.24, IBM Inc, 

USA) on global graph theory measures, ANCOVA models were used on the 

mean cluster coefficient, mean degree, path length, global efficiency and small-

worldness, with age, sex, centre, PDS and SES as covariates; sex and centre 

were dummy coded in the model.  

At a local level, only network hubs were inspected, running two-tailed t–tests on 

nodal betweenness centrality, degree centrality and cluster coefficient. In this 

study, ROIs which had BC and DC values at 2 SD above the mean were identified 

as network hubs. For the CP all the 400 ROIs were considered, since differences 

in overall distributions between the groups were of interest. Statistical tests were 

corrected for multiple comparisons using false discovery rate (FDR), based on 

the Benjamini and Hochberg procedure (Benjamini & Hochberg, 1995).  

Graph theory measures describe between-group changes related to the node 

properties, but our interest was also in investigating the effect of stress on the 

edge connectivity strength between two nodes (such strength is indicated 

graphically by different thickness levels of the edges). To do so, we used 

Network-based Statistics (NBS) (Zalesky, Fornito et al. 2010), a toolbox based 

on a nonparametric statistical method to correct for multiple comparisons. In this 

study between-group differences at a single connection level were analysed, 

controlling for false discovery rate (i.e. number of false positive connections 

among all positive connections), based on 100,000 permutations, α= 0.05 and a 

two-sided t-test between groups. Any edge showing a p-values lower than the α 

value was considered statistically significant.  
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2.4.3. Results 

Table 2.2 summarizes the demographic information of the two groups. Chi-

square tests showed no statistically significant differences between groups in 

age, sex, or PDS scores. Data were also checked for the influence of the different 

centres in which the MRI scans were acquired, showing no statistically 

differences between groups (χ² = 0.104). 

 

Table 2.2: Demographic information of the sub-sample considered in this study 

  

2.4.3.1. Results of Graph Theory Analysis 

There were no statistically significant between-group differences in the global 

graph theory measures. Figure 2.5 shows how BC, DC, CP and LP change as a 

function of sparsity level. The lack of between-group differences in the global 

network measures reflects how stress due to negative life events does not alter 

the global structural connectivity in the adolescent brain, i.e. the brain’s properties 

as a network - that each graph theory measure describes - remain intact even 

after stressful experiences. 
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Figure 2.5: Graph theory measures at different sparsity levels. The x axis represents 

the sparsity levels, while the y axis represents graph theory measures values. LS=Low 

Stress (green), HS=High Stress (red) 

 

Regarding local network measures, in supplementary table 1 to 28 the top 50 

nodes are detailed, as quantified using DC or BC, at each sparsity level. Figure 

2.6 shows the node rank in the two groups at sparsity 10% based on DC. A 

statistically significant increase of DC was found in two hubs of the High Stress 

group: the left (xyz coord: [-14 -84 -13]) and right (xyz coord: [18 -86 -11]) 

extrastriate areas of the central visual network at sparsity 10% (t= -2.736, 

pcorr=0.048 and t= -2.951, pcorr= 0.048 respectively), while an increase in the 

posterior cingulate hub was seen in the left dorsal attention network (xyz coord: 

[-42 -37 46]) at sparsity level of 30% (t= -2.993, pcorr= 0.042).  
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Figure 2.6: Hubs rank changes between Low stress (green) and High stress (red) 

groups based on degree centrality at sparsity of 10% 

 

No between-group statistically significant differences were detected in the other 

sparsity levels. At all sparsity levels, the top 50 nodes as quantified by DC for 

each group are detailed in supplementary tables 1-14. Although not statistically 

significant, the nodes which were identified as hubs based on degree centrality 

all belong to the limbic network in the temporal pole, dorsal attention network and 

central executive and salience networks across sparsity levels. 

At a sparsity level of 5%, there is a statistically significant difference in BC 

between the high and low stress groups at the left somatomotor cortex (xyz 

coord: [-10 -41 72]) in the High stress group (t= 3.674, pcorr=0.0042). Figure 2.7 

also illustrates the locations of the highest nodes at this sparsity level. No other 

statistically significant differences between BC hubs were detected at other 
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sparsity levels. The node values of the BC at each sparsity level for each group 

are detailed in supplemental table 15-28. 
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Figure 2.7: Hubs rank in both groups based on betweenness centrality (BC) at 

sparsity=0.05. The size of the node is proportional to betweenness value and colour of 

node indicates to which network it belongs to. A star indicated the region with a 

statistically significant between-group difference (FDR corrected) 

 

Examining nodal CP, where all 400 nodes were considered, no p-value survived 

FDR correction, except for the network at sparsity 35%, where an increase was 

seen in one of the nodes belonging to the orbital frontal cortex (pcorr= 0.04) of the 
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High stress group. No statistically significant between-group differences were 

seen at the other sparsity levels. 

2.4.3.2. Whole-Brain Connectivity Results 

There were statistically significant increases of edge connectivity strength in the 

high stress group compared to the low stress group as shown in Figure 2.8. 

Specifically, two statistically significant increases were seen: an inter-

hemispheric edge connecting a node in the orbito-frontal cortex (xyz coord = [-

11 21 -4]) to a node in the right superior parietal lobule (xyz coord= [25 -85 34]), 

belonging respectively to the limbic network and dorsal-attention network (t-

value= 3.83, p<0.0001). The second edge connected the posterior cingulate 

cortex node of the left dorsal attention network (xyz coord= [-42 -37 46]) to the 

pars opercularis node of the left salience network (xyz coord= [-53 -49 30]), t-test 

= 4.39, p<0.00001. There were no statistically significant increases in 

connectivity detected in the low stress group compared to the high stress group. 
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Figure 2.8: Single edges showing significant increase of connectivity in High stress 

group compared to Low stress group   

 

2.4.4. Discussion  

This study investigated stress-related changes of structural connectivity in the 

cerebral cortex of the adolescent brain. Graph theory measures were calculated 

across a range of sparsity levels, reflecting different connectivity densities.  

Overall, there were no changes in structural network measures (mean DC, mean 

CP, LP, global efficiency and small-worldness) between Low and High Stress 

groups. Another study using our same methodological approach found no 

differences in any global or local graph theory measures between adolescents 

(13-18 years old) suffering with major depressive disorder (MDD) and healthy 

control (HC)  (Sacchet, Ho et al. 2016), consistent with  our findings. The lack of 

statistically significant results in the global measures suggest that stress does not 

lead to global structural connectivity changes in the brain. Ho and colleagues 

reviewed studies on MDD connectivity changes in adolescents, finding no 

differences in the global measures (Ho, Dennis et al. 2018). 

Regarding the global connectivity differences between the groups, changes 

analysed at an individual connection level with NBS were seen in two edges, 

showing an increase of connectivity in the High stress group. The first edge 

connected the orbital frontal cortex (OFC) of the left limbic network to the superior 

parietal lobule (SPL) of the right dorsal attention network (DAN). The second 

edge connected the pars opercularis of the left ventral attention network (VAN) 

to the posterior cingulate cortex of the left DAN. These results confirm previous 

studies on connectivity, showing the SPL is involved in top-down attention, and 
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attentional guidance of saccades (Asscheman, Thakkar et al. 2015), and it was 

found to be structurally altered in PTSD (Tan, Zhang et al. 2013), where volume 

reductions were seen (Yuii, Suzuki et al. 2007). Results of a previous study on 

structural brain changes in children who suffered early stress found a structural 

alterations in the OFC and parietal lobe in children victim of physical abuse, which 

was also correlated with social and learning difficulties (Hanson, Chung et al. 

2010).  

The pars opercularis node belongs to the cingulo-opercular network (CON), and 

it is involved in vigilance and alertness for working memory (Sadaghiani and 

D'Esposito 2015). Kolsnar and colleagues defined the cingulo-opercularis as a 

key network node for the neurodevelopment in adolescent. They showed that 

centrality measures in cingulo-opercular, cerebellar and frontoparietal areas 

were highly associated with better task and working memory performances 

(Kolskar, Alnaes et al. 2018). The pars opercularis cortical thickness was also 

shown to be inversely associated with the level of cortisol released as 

consequence of stress (Frodl and O'Keane 2013). Another study showed how 

the cingulo-opercular network had increased functioning in people suffering of 

general anxiety disorders (GAD), PTSD and social anxiety episodes (Sylvester, 

Corbetta et al. 2012). A review on the development of human functional network 

suggested from early to mid-adolescence, anterior regions (including the anterior 

cingulate cortex for example) reorganize connectivity from fronto-parietal to 

cingulo-opercular salience networks. Where the fronto-parietal and the cingulo-

opercular compartments represent a single graph component in younger children 

(7-9 years old), they break into two separate compartments at age 10-15 years 
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old (Power, Fair et al. 2010), shown by investigating connectivity in task-related 

ROIs with fMRI. 

The cingulate cortex was found to be altered in the default-mode network. For 

example, Soares and colleagues investigated the effect of stress on resting-state 

fMRI networks in a young adult population after a stressful situation. In particular, 

they reported  an increase of connectivity in the posterior cingulate cortex and 

the precuneus (pCUN) of the group with higher levels of stress, along with 

anterior brain areas, such as medial prefrontal cortex and mOFC (Soares, 

Sampaio et al. 2013), some of which are nodes of the DMN. Another study 

showed a hyperactivity of the DMN after the exposure to social stressors 

(Clemens, Wagels et al. 2017), with an increase in regions focused on visual 

motion processing and alertness. The increase of alertness state seen in the high 

stress group could explain the increase of degree centrality in the visual central 

network we found in our population. Such increase, in fact, reflects a higher 

number of edges connecting the visual central extrastriate node to other brain 

regions in both hemispheres. Also Soares’ findings (Soares, Sampaio et al. 2013) 

seems to reinforce such findings where he showed an increase of connectivity in 

the visual network of the high stress group, specifically at the level of the calcarine 

cortex. The other region where we found an increase of degree was the posterior 

cingulate node of the dorsal attention network. It is known that the posterior 

cingulate is part of the DMN, but a previous study showed dorsal PCC to be 

functionally correlated to other networks, such as attentional, somatomotor and 

executive control networks (Leech, Braga et al. 2012). In particular, functionally 

connectivity between the PCC and amygdalae has been shown to increase with 
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social stressful events, associated with an increased connectivity between the 

amygdalae and the orbito-frontal cortex (Veer, Oei et al. 2011). 

Other studies on rsfMRI networks and stress found a decrease of degree 

centrality in the visual cortex of PTSD adolescent population (Yin, Jin et al. 2012, 

Suo, Lei et al. 2015) associated with alterations in autobiographical and 

declarative memory in PTSD patients. Other nodes that came up as hubs in more 

than one sparsity levels belonged to the limbic, central executive and attentional 

networks, and even they were not statistically significant, previous studies 

confirmed such result (Power, Fair et al. 2010, Sacchet, Ho et al. 2016). 

A decrease of nodal BC in the High stress group in the left somatomotor network 

was found, suggesting a link between the high stress group and the brain 

morphological alterations in that area. Previous studies observed earliest GM 

loss in primary sensory-motor cortex (Paus 2005) during adolescence, starting 

around puberty and spreading rostrally over the frontal cortex and caudally over 

the parietal and finally to temporal cortex. In typical development, GM loss occurs 

firstly in primary sensorimotor areas and later in association areas (Gogtay, 

Giedd et al. 2004) at different stages across the lifespan (Ernst and Mueller 

2008). Alterations in this area can be sign of potential neuro-disorders. For 

example, a previous study defined the somatomotor centrality measures as one 

of the strongest predictors to identify connectivity alterations between typical 

developing children and patients with ADHD (dos Santos Siqueira, Biazoli Junior 

et al. 2014).  

Results from previous studies on brain connectivity have not been consistent. 

This may be due to methodological approaches such as network segmentation, 
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neuroimaging modality (structural vs. functional) and methods for calculating 

connectivity.  For example, Suo and colleagues reported a decrease in global 

efficiency and path length in PTSD group when they extracted the connectivity 

from DTI data (Suo, Lei et al. 2017), but they didn’t find the same effects with 

rsfMRI data (Suo, Lei et al. 2015). In both cases no small-worldness changes 

were detected between groups.  

In the results of this study, some of the between-group differences were seen in 

some sparsity levels but not others, indicating a lack of consistency across 

sparsity levels. Changes in sparsity level lead to different number of nodes 

included as a part of the network, thus the network would be altered, and it may 

lead to changes in defining which nodes may be hubs and in their relative 

connectivity to the neighbouring nodes. The choice of calculating connectivity 

metrics at different sparsity levels is linked to the definition of sparsity itself. In 

fact, when the network density increases, more edges are included. This 

influences the definition of hubs, and therefore, the computation of the metrics, 

especially at the local level (i.e. nodal degree and betweenness centrality, cluster 

coefficient) (Tsai SY, 2018), improving the reliability of network metrics. A few 

studies investigated how the brain connectivity measures were influenced by the 

choice of different sparsity levels, measured by the intra-class correlation 

coefficient (ICC) on both structural (DTI) (Dennis, Jahanshad et al. 2012, Yuan, 

Henje Blom et al. 2019) and resting-state functional connectivity (Wang, Zuo et 

al. 2011). As one of the main interests in this study was to explore the level of 

consistency and reliability of the graph measures with the variation of the edge 

number within networks, the range of different thresholds was a key factor in our 

analysis. For example, Dennis and colleagues found that LP and global efficiency 
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were very unstable until sparsity level of 0.25. Cluster coefficient had some dips 

within the sparsity range of 30-35%, whereas small-worldness presented many 

fluctuations, with peaks and dips. The least stable measures were found at the 

lowest sparsity levels, maybe due to the different nodes retained for the 

calculation of graph theory metrics (Dennis et al., 2012). Path length and global 

efficiency were less reliable than CP also because longer connections are 

trimmed before the shorter ones. Results on rsfMRI confirmed CP to have low 

reliability, whereas among the graph theory measures, nodal degree centrality 

showed high reliability (Wang, Zuo et al. 2011). Furthermore, they showed how 

the most reliable connections were in the frontal cortex, suggesting that the 

reliability is influenced also by the brain networks. Overall, literature indicates a 

tight relationship between the calculation of graph theory measures and the 

sparsity level. The methodological approach used in this study to extract brain 

networks from grey matter segmentation provides insight into the relationship 

between stress and brain connectivity, since it keeps the geometric and spatial 

information of the cortex. (Rimkus, Schoonheim et al. 2019). 

2.4.5. Conclusion 

The present study investigated changes of single-subject grey matter networks 

in adolescents who experienced negative life events. Overall, results showed 

group differences at a local level, whereas no differences were observed in the 

global graph theory measures. It is the first time that stress-related changes in 

brain connectivity were studied on such a large population of adolescents, giving 

a picture of what happens to the brain structural connectivity when healthy 

adolescents experience stressful events. Previously, only few studies were 

published on stress and brain networks from DTI and rsfMRI, and graph theory 
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measures, mostly in clinical populations. The findings of this study can provide 

insight of how stress contributes to alter the brain structure in adolescents, and 

which role plays in the development of neuropsychiatric conditions, such as major 

depressive disorder, anxiety disorders, emotional dysfunctions and PTSD. 

Knowing the key regions that are target of dysfunctions and disconnections 

during stressful events can help understanding better the adolescent emotional 

and behavioural disorders and developing effective interventions. 
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3. Volumetric Changes of Hippocampus Subfields Due 
to Stress 

 

3.1. Introduction 

3.1.1. Hippocampus Development in Adolescence 

During adolescence, the brain structures involved in memory and emotions that 

includes the hippocampus, amygdala, nucleus accumbens (NAc), prefrontal, 

frontal cortices and the hypothalamus, undergo prominent reorganization. 

Neuroimaging studies investigated how the hippocampal subfields change in a 

heterogeneous way during neurodevelopment from childhood to adolescence 

(Krogsrud, Tamnes et al. 2014, Tamnes, Bos et al. 2018, Lynch, Shi et al. 2019). 

In particular, an hemispheric-specific increase of hippocampus volume was found 

until 13-15 years, with the right hippocampal volume being bigger than the left 

side (Krogsrud, Tamnes et al. 2014), and gender-specific differences before 13 

years old. Regarding hippocampal subfields, they showed nonlinear trajectories 

with volume increases in the subiculum, molecular layer, fimbria and CA1 until 

early adolescence, whereas granular cellular layer of the dentate gyrus (GC-DG), 

para- and pre-subiculum, and CA2/3/4 showed linear volume decreases 

(Keresztes, Bender et al. 2017, Tamnes, Bos et al. 2018). Specific to 

adolescence, age-related increases were found in the right CA3, DG and CA1 

(Lee, Ekstrom et al. 2014), but not in the left side. 

Gender differences were found also when the hippocampus shape was 

considered , with females having larger surface expansion than males, especially 

in the superior posterior lateral surface of the left hippocampus (Lynch, Shi et al. 
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2019). Such gender differences can be explained with differences in testosterone 

levels, which influence prefrontal-hippocampal development in childhood and 

adolescence, representing an important factor for cognitive and mnemonic 

processes (Nguyen, Lew et al. 2017). It was found memory abilities increase with 

age (Riley, Chen et al. 2018), even though specific memory processes can be 

related to the hippocampus in different ways. For example, memories recall and 

retention have been associated to an increase of volume in the cornua ammonus, 

whereas a decrease of CA4 was associated to verbal learning (Tamnes, Walhovd 

et al. 2014). Another study investigated gender-specific interactions between 

brain networks critical for memory in early and late adolescence by calculating 

effective connectivity (Riley, Chen et al. 2018). They found younger boys had a 

higher number of connections between posterior visual areas and multi-sensorial 

regions in the parietal and frontal lobes, with fewer connections to the limbic 

system. Older boys showed the opposite trend, having more anterior connections 

between association and frontal multi-modal areas, such as the OFC. Younger 

girls showed connections similar to the older boys, where the limbic and sensory 

regions were connected more homogenously. Finally, older girls had connections 

widely spread, and this was the only group showing efferent connections from 

the hippocampus to not limbic regions. 

3.1.1.1 Psychiatric Disorders Caused by Stress 

Stress has been described as a potential factor that triggers alteration in the brain 

during adolescence, disrupting the physiological balance in structure, function 

and chemical components of brain areas involved in behavioural response and 

emotional processing (Andersen and Teicher 2008, Eiland and Romeo 2013, 

Bucci, Marques et al. 2016). In these years, according to Stanley Hall, 
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adolescents develop three specific key behaviours: mood disruptions, conflicts 

with parents and risk-seeking behaviours (Arnett 1999), reinforcing the idea of 

how the environment surrounding individuals at that age is key for their 

psychological and behavioural development. He defined this stage as the “storm 

and stress” view. This storm of events makes adolescence the period of time 

where individuals are more sensitive to stress and emotional perturbations, 

increasing the risk of developing psychiatric disorders, such as anxiety problems, 

post-traumatic stress disorders (PTSD) and depressive symptoms (Casey, Jones 

et al. 2010). 

Structural alterations caused by stress have been identified with smaller volume 

of the hippocampus in adolescents suffering of MDD; at the functional level young 

people affected by depressive disorders presented a higher activity of the 

amygdala when experiencing negative life events, while there was a reduced 

activation of the amygdala with positive life events (Redlich, Opel et al. 2018). 

Another multi-modal study including VBM and resting-state functional 

connectivity (RSFC) compared changes in both brain structures volume and 

connectivity in an adult population suffering of MDD and bipolar disorder (BD), 

compared to healthy people. They found alterations in frontal-limbic networks, 

specifically showed decreased grey matter volume (GMV) in the left anterior 

cingulate cortex, right hippocampus compared with the healthy controls. A 

decrease of resting-state connectivity was found that both the MDD and BD 

groups between the ACC and the left orbitofrontal cortex in both people with 

depressive and mood symptoms, compared to healthy people (Chen, Wang et 

al. 2018).  
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Another study investigated the relationship between genetic predisposition to 

experience stress and changes in stress-related brain areas in school-age 

children (Pagliaccio, Luby et al. 2015). They showed increasing genetic risk 

predicted alterations in connectivity between amygdala and the caudate, as well 

as with the postcentral gyrus. Furthermore, a higher number of stressful life 

events predicted weakened connectivity between the amygdala and ACC, the 

inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those 

children with more adverse environmental conditions. Finally, changes in 

amygdala connectivity predicted the likelihood of developing anxiety and 

decreased emotion regulation skills longitudinally (Pagliaccio, Luby et al. 2015). 

Another study looked at the intra and inter-connectivity of the default-mode 

network with the salience and central executive networks, in an adolescent 

population suffering of post-traumatic stress disorder (PTSD) (Viard, Mutlu et al. 

2019). Analyses revealed decreased within-DMN connectivity (between PCC 

and occipital cortex) in patients compared to controls. Furthermore, within-DMN 

connectivity (between PCC and hippocampus) was found to have a negative 

relationship with anxiety and depressive symptoms (Viard, Mutlu et al. 2019). 

These results were strengthened by another study that found smaller volume in 

some of the hippocampus subfields, namely CA2/3 and DG in adolescents with 

PTSD (Postel, Viard et al. 2019). 

In neurodevelopment, structures related in mnemonic and affective reactivity 

processes, such as the amygdala, hippocampus and striatum, mature earlier 

than frontal areas (including the ventromedial and dorsolateral PFC) that monitor 

and regulate the subcortical limbic functions. Anatomically, the volume of the 

amygdala starts to stabilize around late adolescence, whereas the ventromedial 
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prefrontal cortical thickness keeps changing throughout adolescence until young 

adulthood (Wu, Geng et al. 2018). This influences the connectivity between limbic 

structures and ventromedial prefrontal cortex (vmPFC), and the relationship with 

perceived stress in adolescents and young adults, supporting the idea that 

connectivity between emotion-related structures and prefrontal areas tends to be 

changing during brain development (Wu, Geng et al. 2018) (Kaiser, Clegg et al. 

2018).  

When an individual is exposed to stress, the amygdala sends signals to the 

hypothalamus about physiological perturbations, which activate an endocrinal 

cascade through the hypothalamic pituitary adrenocortical (HPA) axis, increasing 

the levels of circulating cortisol. When cortisol binds to the glucocorticoid 

receptors, there is an increment of corticotropin releasing hormone production in 

the amygdala, leading to greater HPA axis activity (Rudolph, Troop-Gordon et al. 

2018). When exposed to severe threat-related stress or chronic stress, the 

continuous increase of cortisol can affect hippocampal mechanisms regulating 

the activity of the HPA axis, while boosting amygdala activity and making the 

brain more sensitive to the action of new stressors (Kuhlman, Geiss et al. 2018). 

The continuous activation of the HPA axis due to stressful experiences affects 

the chemical balance in the body and the neurotransmitter systems in the brain. 

Dopaminergic system alterations were found in children and adolescents 

exposed to early maltreatments, causing lower ventral tegmental area (VTA) 

connectivity with the right hippocampus in trauma-exposed children relative to 

the control group (Marusak, Hatfield et al. 2017).  

A study investigating the relation between anxiety, depressive symptoms, 

impulsivity and brain regions structural changes in adolescents reported that 
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reductions in cortical thickness were seen in ventromedial PFC and medial OFC, 

as well as smaller GMV in the hippocampus bilaterally (Merz, He et al. 2018). 

Such reductions were associated with higher depressive symptoms, while higher 

impulsivity was associated with reduced thickness in frontal regions, for example 

pars orbitalis and frontal pole. They did not find any statistically significant relation 

with anxiety.  

Adolescent stress-related symptoms are related to both social and cognitive 

factors. Examples of social factors are social exclusion or the perception of 

judgment from others. Examples of cognitive factors are negative life events, 

which trigger cognitive vulnerability or negative self-representation (Jankowski, 

Batres et al. 2018). Both these factors increase the chances to develop 

psychiatric disorders during adolescence, and brain regions involved in peer 

victimization, intra- and interpersonal stress undergo structural changes as the 

brain is highly plastic over those years. These areas are amygdala, 

parahippocampal gyrus and subgenual anterior cingulate, which result in 

increased reactivity if investigated with functional MRI (Silk, Siegle et al. 2014). 

Such offenses to key areas of the brain involved in self-processing and emotional 

responses contribute to disruption of neural networks that can be lasting also in 

adulthood. In fact, studies conducted with fMRI investigated the reactivity of 

specific areas of the limbic and frontal regions in adults, and they found a 

hyperactivity of the anterior insula, anterior cingulate and amygdala, along with a 

reduced activity of the prefrontal cortex linked to negative stimuli (Hamilton, Etkin 

et al. 2012). Such pattern has been found to be common in depressed 

adolescents, where atypical activity of the anterior insula has been associated to 

altered connectivity in the limbic network (Ho, Yang et al. 2014).  
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3.1.2. The Hippocampus and Its Subfields 

3.1.2.1. Morphological Organization 

The hippocampus is a part of the limbic system that is involved in memory 

processing and navigation, autobiographical and episodic memory, as well as 

relational representations. This structure is situated in the temporal lobe 

bilaterally and its name derives from its share that reminds the sea-horse (Schultz 

and Engelhardt 2014). It is usually divided into three (or four) parts: the head, 

body and tail. Some papers include also the parahippocampal gyrus, which, is 

situated just under the hippocampus, and it is formed by the anterior and 

posterior halves. This last part is involved in memories retrieval related to 

emotions.  

The hippocampus is formed by subfields, which in turn are formed by different 

types or amount of fibres. The subfields of the hippocampus are the cornua 

ammonis 1,2,3,4 (CA1-CA4) (that is defined the” hippocampus proper”), the 

dentate gyrus (DG), the subicular complex and the entorhinal cortex. The most 

external layer of the hippocampus is the alveus, formed by myelinated axons. 

The CA1-CA4 are formed by stratum oriens, stratum pyramidale, stratum 

radiatum and stratum lacunosum-moleculare, located before the hippocampal 

sulcus (Li and Pleasure 2014). The stratum pyramidale is formed by pyramidal 

cells, that are principal excitatory neurons of the hippocampus formation, while 

the stratum radiatum is formed by Schaeffer fibres, dendrites that belong to the 

memory formation and emotional network (Booker and Vida 2018). The subicular 

complex is formed by three main parts: the parasubiculum (which is formed by 

grid cells, that are neurons responsive to movements), the presubiculum, that is 
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part of the spatial and memory systems, and the subiculum, which is the main 

output of the hippocampus formation. Finally, the parahippocampal gyrus is part 

of a circuit that sees the entorhinal cortex transmitting its signal from the 

parahippocampal cortex to the dentate gyrus via the perforant way (made of 

granule cell fibres) (Jones 1993).  

The different subfields of the hippocampus are involved in two circuits: the 

perforant (called also monosynaptic) and the trisynaptic circuits. In the 

monosynaptic circuitry, the entorhinal cortex and the CA1 play a role in the bigger 

trisynaptic circuitry, which has the function of producing and retrieving declarative 

memories (Yeckel and Berger 1990). The trisynaptic circuitry involves the three 

types of cells that form the HC subfields, and it develops later than the performant 

one. In this circuitry the information received by the entorhinal cortex from the 

neocortex travel to the subiculum and the dentate gyrus, to finish then in the 

parahippocampal gyrus (Figure 3.1). Gomez showed how the information flow 

from these regions to the CA1 and CA3, where the critical learning phase 

happens, i.e. new information are stored (Gómez and Edgin 2016). The new 

information flow to the subiculum through the fornix; from the subiculum it goes 

finally to the nucleus accumbens, amygdala and prefrontal cortex.  

The hippocampus represents a highly heterogeneous morphology of its subfields 

that are differently associated with age and gender. For example, age was 

negatively associated with the volume of combined CA1-2, whereas the 

entorhinal cortex, CA3 and DG, showed first a negative correlation with age 

during mid-childhood which was then attenuated in adulthood, around 50 year 

old (Daugherty, Bender et al. 2016). Regarding sex differences, no difference in 

the hippocampus morphology was found between males and females before 
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puberty, whereas larger hippocampi in both hemispheres at the level of the CA1 

subfield were found in females after puberty (Satterthwaite, Vandekar et al. 

2014). Morphological changes of the hippocampus subfields showed a temporal 

influence in their developmental trajectory, associated mainly to internal cortical 

myelination (Vos de Wael, Lariviere et al. 2018). For example, the dentate gyrus 

and the subiculum develop slowly over time, while CA develops more rapidly, 

due probably to different functional specializations (Cembrowski, Phillips et al. 

2018, Dimsdale-Zucker, Ritchey et al. 2018). For example, multivariate pattern 

similarity analysis showed how CA1 subfield was associated to objects that had 

a different episodic context, while CA2-3 and DG were engaged more in 

differentiating between objects from the same episodic context (Dimsdale-

Zucker, Ritchey et al. 2018). 

 

 

Figure 3.1: Anatomy of the hippocampus including the trisynaptic pathway as the 

principal neural circuit involved in the processing of information (Bartsch et al., 2015) 
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3.1.2.2. Structural Changes with Stress-Related Disorders 

Animal studies suggest that stress primarily acts to suppress neurogenesis of 

dentate gyrus granule neurons, and to cause remodelling of dendrites in the CA3 

(McEwen 2002). Reduced neurogenesis and consequent increases of neural 

loss lead the way to morphological changes in the brain structure, such as 

hippocampal atrophy, which contributes to cognitive impairment. A large part of 

these changes with stress has similar characteristics to those observed in 

neurodegeneration. This suggests that gene expression patterns might be 

shared between stress and neurodegeneration, as well as chronic stress or acute 

stress may be risk factors for earlier neurodegeneration.  

Hippocampus subfields are subjects to structural changes when adolescents 

experience childhood traumatic events. Literature showed how the anxiety and 

mood disorders related to negative experiences are associated to reduction of 

the hippocampal volume, especially in the left hemisphere (Teicher, Anderson et 

al. 2012, Chalavi, Vissia et al. 2015). The gravity of the hippocampal volume loss 

is associated to the severity of the childhood traumatic event, and the subfields 

more affected were shown to be the left CA2/3/4, DG, fimbria and subiculum, 

both in people without history of neuropsychiatric disorders (Teicher, Anderson 

et al. 2012), and in patients suffering with PTSD (Chalavi, Vissia et al. 2015), the 

latter presenting decreased volumes of CA2-3 and DG regions in both 

hemispheres when compared to controls (Postel, Viard et al. 2019). Female 

adolescents suffering of anorexia nervosa, associated to symptoms of 

depression, showed a decrease in GM volumes in most of the hippocampus 

subfields (Myrvang, Vangberg et al. 2018). Children and adolescents suffering of 

mood disorders, such as bipolar disorder (BD), showed a decrease In the right 
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CA1, CA4, subiculum, the GCL, ML and the hippocampal tail (Tannous, Amaral-

Silva et al. 2018). 

Maltreatment in childhood has been demonstrated to have a negative impact on 

limbic system structures when comparing with maltreated youth with PTSD, 

youth without PTSD and healthy controls (Morey, Haswell et al. 2016). Youth 

without PTSD had larger volumes in the left amygdala and right hippocampus 

when compared with maltreated youth with PTSD and non-maltreated control 

youth. Another study investigated the longitudinal effects of maltreatment on 

hippocampal sub-region volumes in young people from early to late adolescence, 

and the association between psychopathological component and the severity of 

the hippocampal alterations (Whittle, Simmons et al. 2017). Childhood 

maltreatment was linked to changes in the development of hippocampal sub-

regions in adolescents, particularly in the left subiculum and CA4-DG subfields. 

Furthermore, gender-based analyses showed a stronger effect in males 

compared to females. Other components related to adolescent lifestyle, such as 

socio-economic status (SES) and internal factors, for example perceived stress, 

were also found to be crucial for the healthy development of hippocampus 

subfields  (Piccolo and Noble 2018, Yu, Daugherty et al. 2018).  

3.1.2.3. Extraction of Subfields Volume with FreeSurfer 6.0 

The hippocampal subfield segmentation tool implemented in Freesurfer 6.0 has 

been hugely used in the last few years to investigate between-group differences 

in the hippocampus volume. This method is based on an atlas built ex vivo from 

MRI data with a resolution of 0.13 mm isotropically (Iglesias, Augustinack et al. 

2015). This resolution has led to define the hippocampus subfields in a more 
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accurate way than the previous version (V5.3), including structures that were 

missing, such as the molecular layer and the sub-division of the HC in head, body 

and tail. If compared to other two atlases known in the literature, the in-vivo atlas 

in Freesurfer 5.3 (Van Leemput, Bakkour et al. 2009) and the ex-vivo “UPenn” 

atlas (Yushkevich, Avants et al. 2009), the atlas implemented in Freesurfer 6.0 

has a higher number of subfields defined (15 vs 5 in the UPenn atlas) at ultra-

high resolution that can be only obtained ex vivo, determining more precise 

borders for each subfield. To build the new atlas, post-mortem brains were 

collected and scanned in a 7T Siemens scanner with a 0.1 mm isotropic 

resolution, (100 µm). When the subfields are more difficult to define, previously 

contrast images were used (Iglesias, Augustinack et al. 2015). The subfields 

obtained with this new segmentation algorithm are the alveus, the para- and 

presubiculum, the subiculum, the cornu ammonis from 1 to 4, the granule cell 

layer of dentate gyrus (GC-DG), the hippocampus-amygdala-transition-area 

(HATA), then fimbria, the molecular layer (ML), the hippocampal fissure, and the 

hippocampus tail (Figure 3.2).  

 

Figure 3.2: Segmentation of hippocampus subfields in FreeSurfer 6.0 
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Compared to the previous version of FreeSurfer (5.3), this newer version has a 

better resolution to distinguish the HC sub-regions, because it is based on 

defining the subfields by using an atlas (~0.1mm isotropic) ex-vivo MRI data, 

which gives a better visualization of anatomical boundaries. Additionally, 

pyramidal layer thickness and intensity were used to divide the subfields; that is 

more accurate than geometrical criteria (Iglesias et al., 2015). Finally, this new 

version has an additional feature to divide the HC in head, body and tail (using 

the developmental version of FS 6.0). 

3.1.3. Study Objective 

The objective of this study is to investigate the effect stress has on the 

hippocampus subfields volume changes. This was done both cross-sectionally 

at baseline, and longitudinally, investigating if hippocampus volume changes 

between two stages of adolescence are determined and correlated with the level 

of stress experienced throughout adolescence.  

 

3.2. Study Material and Methods 

3.2.1. Study Population: IMAGEN Data Sub-Group 

In this study, a sub-group of 329 participants from IMAGEN was considered and 

hippocampus subfield volumes were extracted at three time points. The sample 

size was obtained by considering the initial population in the previous study,  

keeping only those participants who had MRI scans acquired at three time points. 

This was done for both groups. Demographic information of the group of this 

study are found in Table 3.1.   
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Table 3.1: Demographic information of participants of the first time point. For age, 

total number of negative events, total score of NLE, PDS and SES values are reported 

showing the mean and SD in both groups 

3.2.2. Longitudinal Pipeline on High-Computing System (TCHPC) 

To define longitudinal changes in the hippocampus (HC) subfields volumes, 

FreeSurfer offers a pipeline that is based on creating a subject-specific unbiased 

atlas obtained by averaging the T1 images across all the time points considered, 

as discussed above (Iglesias, Augustinack et al. 2015). In the technical language, 

the unbiased template is called ‘-base’, and it is used to process each time point 

longitudinally. The template that is created is based on the median of the volume 

of all the time points, and each one of them is then registered to the unbiased 

template (in the specific language, they are co-registers cross-sectionally). After 

the longitudinal process, each time point filename has the suffix ‘-long’. The 

output of the longitudinal pipeline allows the statistical comparison of volume and 

surface differences across groups.  
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In this analysis, the hippocampus subfields were extracted by using the 

developmental version of FreeSurfer. The advantages of this version (v6-dev-

20180918) are less RAM memory requirement, the calculation of the amygdala 

nuclei, and the sub-division of the hippocampus in body head and tail (Iglesias et 

al., 2015). The use of longitudinal approach with FreeSurfer increases the 

robustness of the segmentation and the sensitivity in extracting sub-region 

volumes, and higher number of time-points whose MRI are considered help 

having a clearer idea of the neurodevelopmental changes in the hippocampus 

structural organization.   

The HC volumes were extracted by using a pipeline, including all the steps 

necessary for the longitudinal pipeline: 

1) cross-sectional ‘recon-all’ for each time point, and segmentation of the 

hippocampus cross-sectionally. Recon-all is the standard pre-processing 

step implemented in FreeSurfer, that runs all the cortical reconstruction 

process (Fischl 2012) 

2) creation of the unbiased averaged template (base), which is the result of the 

average image of all the time points (Reuter and Fischl 2011), using the 

stable version of FreeSurfer (v6.0) 

3) longitudinal recon-all and the segmentation of the hippocampus per each 

time point cross-sectionally. The developmental version calculates also the 

amygdala nuclei (which is subdivided into lateral, basal, accessory basal, 

central, medial, cortical and paralaminar nuclei, and cortico-amygdaloid 

transition and anterior amygdala areas), the brainstem and the sub-thalamic 

nuclei (Iglesias, Augustinack et al. 2015). 
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FreeSurfer was loaded on the high computing system available in Trinity College 

(https://www.tchpc.tcd.ie/resources/clusters/kelvin), as that would improve 

considerably the computational time. Part of the data set was run with single 

batch scripts for each time point, since /fresh was developed thereafter when part 

of the subjects had already been processed. The subjects were distributed into 

folders, with each folder containing 33 subjects with three time-points each. That 

helped in managing computational processes. The cross-sectional part was 

taking ~10 hours for each time point, while the creation of the base and the 

longitudinal recon-all took about ~18-20 hours per subjects. The computing time 

is strictly related to the pre-processing parameters, as well as the type of 

structural data used in the study. 

The rest of the subjects was analysed by using the same pipeline, which was 

automated thanks to the collaboration of a computer scientist and few other 

scientists working in the Neuroscience department. This pipeline is available on 

GitHub (https://github.com/smcgrat/fresh/blob/master/fresh), and that took about 

3 days of computing per subject. There were few technical problems during this 

step, either represented by missing output files, or lack of enough memory on the 

cluster. This was fixed repeating the segmentations for those scans that didn’t 

work and requesting more disk space when necessary.  

The output files have three suffices: 

1) “HBT” to indicate the HC divided into head body and tail 

2) “FS60” it mimics the segmentation of the stable version FS 6.0 (without the 

head and body) 

3) “CA” to indicate the molecular layer is included in the nearest neighbour, and 

GC-ML-DG are included in cornu ammonis 4 (CA4) 

https://www.tchpc.tcd.ie/resources/clusters/kelvin
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3.2.3. Data Post-Processing 

The next step was to extract the volume values for each subfield longitudinally, 

and this was done by using a script containing the bash function provided by the 

FreeSurfer webpage1:  

quantifyHAsubregions.sh hippoSf <T1>-<analysisID> 

<output_file> <OPTIONAL_SUBJECTS_DIR> 

and  

quantifyHAsubregions.sh amygNuc <T1>-<analysisID> 

<output_file> <OPTIONAL_SUBJECTS_DIR>. 

The first argument indicates the structure whose volume to extract, the second is 

the type of analysis done (in this study it is a longitudinal analysis, so ‘T1.long’ is 

used), the output file is the filename chosen (in .txt format), and finally the optional 

subject directory specifies the directory where the output data are stored. This 

script extracts and complies all the subfields volumes for each participant in one 

single spreadsheet, which was used for the statistical analysis. An additional 

column was added in the spreadsheet to indicate the estimated total intracranial 

volume (eTIV) at each time point that is part of FreeSurfer output. The eTIV 

resulted to be the same for all the three time points, as it is based on the average 

image calculated as base template.  

To extract the subfields volume values at single time points, the function 

asegstats2table implemented on FreeSurfer was used. It works in the same way 

as ‘quantifyHAsubregions.sh’, but it can be used cross-sectionally or for single 

subjects, and it extract the volume values per each hemisphere. 

 
1 https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAndNucleiOfAmygdala 

https://surfer.nmr.mgh.harvard.edu/fswiki/HippocampalSubfieldsAndNucleiOfAmygdala
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3.2.4. Statistical Analysis 

All the subfield values extracted from FreeSurfer were compiled in a spreadsheet. 

The data were inspected, checking for normality and potential outliers for each 

subfield. In case extreme outliers (values bigger than 3*inter-quartiles) were 

found, the single values were removed. Some subfields presented outliers more 

consistently than others across participants, for example fimbria and subiculum, 

but most of the population volumes fell into the 95% CI. The two groups were 

gender-matched (chi-square χ2= 0.4). The statistical analysis was divided into 

two parts. The first analysis explored between-group differences of each HC 

subfield at baseline (Low vs High stress). The second analysis investigated the 

relationship over time between the level of stress experienced across the first two 

time points and the potential changes in the hippocampus subfields. 

3.2.4.1. Cross-Sectional Analysis 

All the participants chosen for this study were considered for the analysis 

(n=329). ANCOVAs were ran in SPSS (IBM, v24.0). Each subfield was 

considered as a dependent variable, and the effect of stress level as group factor. 

Covariates of interest were gender, age, PDS and SES (these last two were first 

standardized) and centre (after being dummy coded). Within-group Pearson’s 

linear correlation was run between each hippocampus subfield and the 

standardized score of Neuroticism from the Neo-Five Factor Inventory (McCrae 

and John 1992), to investigate if the relationship between the level of Neuroticism 

and the volume of the hippocampus subfields is affected by the severity of stress 

experienced. Neuroticism is a personality trait related to emotional stability and 

response to adverse situation. In fact, when people present high level of 
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Neuroticism, their response to stressors influences the interpretation of ordinary 

situations as threatening and more difficult. Each item is scored on 5 levels of 

Likert-type scale (from ‘strongly disagree’ to ‘strongly agree’). 

3.2.4.2. Longitudinal Analysis 

In the longitudinal analysis, five participants (two in the Low stress and three in 

the High stress) were removed as their LEQ scores at time point 2 were missing. 

Demographic information of both time points is shown in Table 3.2. 

 

Table 3.2: Demographic information of participants belonging to the baseline and 

Follow-up 2. For each time point, information is reported for each sub-group (Low and 

High stress). For age, total number of negative events, total score of NLE, values are 

reported 

For the longitudinal analysis, R and the package ‘lme4’ were chosen to run a 

linear mixed model (LME) with a maximum likelihood (ML) method. Data were 

organized in spreadsheets with the ‘long’ format, indicating the three time points 

as a “repeated” measure for each subject. The LME model was chosen because 

it deals with missing values and it does not assume independence between time 

points and variables. In this analysis, the stress level based on baseline was 
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considered as a grouping criterion. The aim was to explore if, starting from the 

level of stress at baseline, the increase of total stress score at the second time 

point affected the volume of hippocampus subfields over time..  

The question of interest was to explore within-group longitudinal changes of the 

hippocampus subfields in adolescents with stress over time. The time different 

between the first two time points was of approximately 5 years. In the linear mixed 

model, an outcome is predicted from fixed components, random components, 

and error. Estimates are the fixed-effect parameters that describe the population 

mean behaviour at each level of the fixed factor. Random effects define the 

subject-specific intercepts in the model, explaining a specific effect for the 

“random” sample considered. The random intercept accounts for the non- 

independence of measures from the same participant. Maximum likelihood (ML) 

estimation methods with Satterthwaite approximations were used to compute 

degrees of freedom employed on each general linear mixed model (Luke 2017). 

The interaction between increase of the total stress scores and time points was 

used as fixed factor, and random intercept was chosen as random factor. Age, 

gender, centre and estimated intracranial volume were used as nuisance 

covariates. Age, LEQ, eTIV were scaled before putting them in the model. 

Outliers were removed by inspecting each dependent variable and taking out the 

values that were higher than three times the inter-quartile. 

The longitudinal analysis was run only on the hippocampus subfields that were 

shown to be more affected by traumatic and stressful experiences or in major 

depressive disorder during adolescence (Teicher, Anderson et al. 2012, Huang, 

Coupland et al. 2013, Tannous, Amaral-Silva et al. 2018, Malhi, Das et al. 2019, 

Postel, Viard et al. 2019). The subfields chosen were hippocampal tail and body, 
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subiculum (divided into head and body), CA1/3/4 (divided into head and body) 

granular and molecular layer of the dentate gyrus (GC-ML-DG) (divided into head 

and body) and the whole hippocampus. Since the hippocampus shows that 

structural maturation could be different across the two hemispheres (Zach, Vales 

et al. 2016, Guadalupe, Mathias et al. 2017), the subfields for both left and right 

side were analysed.  

3.3. Results 

3.3.1. Cross-Sectional Analysis 

3.3.1.1. Between-Group Differences in Hippocampal Subfields 

The results from the ANCOVAs showed a stress effect on the left fimbria (p= 

0.009 unc), the right granule cell and molecular layer of the dentate gyrus (ML-

DG) head (p= 0.047, unc) as well as in the right head of cornu ammonis (CA)3 

(p=0.042, unc), represented by a decrease of the volumes in the High stress 

group (Table 3.3). P-values were corrected for multiple comparisons by using the 

function ‘p-adjust (method=fdr)’ in RStudio (Version 1.1.423). None of the results 

obtained survived correction (all pcorr > 0.05).  
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  Table 3.3: Uncorrected p-values of between-group differences in hippocampus 
subfields at baseline 

 

 

3.3.1.2. Correlation Between Neuroticism and Hippocampal Subfields 

Within-group linear correlations showed a negative relationship between 

Neuroticism and hippocampal subfields, mostly in the left hemisphere of the High 

stress group. Higher levels of Neuroticism were associated with decreased 

volume of the head of the left subiculum (r = -.264), the head of the cornu 

ammonis 1 (r= -.270), the molecular layer of the head of the hippocampus (r = -

.241), the fimbria (r= -.238) and the head of the whole hippocampus (r=-.245). All 

correlation coefficients were FDR corrected for multiple comparisons at the level 

of each hemisphere, showing a corrected p-value < 0.05 (p= .0396). In Figure 

3.3 correlation graphs between two hippocampus subfields (i.e. subiculum and 

hippocampal head) and Neuroticism are shown. Correlation plots between 

Neuroticism and the other subfields can be found in Appendix B. 
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a) 

 
b) 

 
 

Figure 3.3: Negative relationship between Neuroticism and a) the left subiculum and b) 

the whole hippocampal head in High stress group 
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3.3.2. Longitudinal Analysis Results 

In the High stress group, uncorrected p-values showed that stress was a 

predictor of decrease in the volume of the left granular molecular layer of the 

dentate gyrus body (p= 0.02, unc), body of cornu ammonis 4 (p=0.042, unc), as 

well as an increase of the subiculum body (p=0.045, unc). None of the observed 

effects survived correction for multiple comparisons. The right hemisphere did 

not show such effect. In the Low stress group, the right hemisphere show stress 

was associated to a decrease the subiculum volume over time (p= 0.0412, unc), 

and an increasing of the volume in the hippocampal tail (p=0.037, unc), but even 

in this case the effect disappeared when correcting for FDR. Uncorrected p-

values are shown in Appendix B - Table 2. 

3.4. Discussion 

The aim of this of this study was to investigate changes in the volumetric changes 

in the hippocampal structures with the effect of stress. The first part of the 

statistical analysis was focused on potential between-group volumetric 

alterations of the hippocampus subfields in adolescents divided according to their 

level of stress perceived in life (Low vs High). Furthermore, association between 

changes in volume and the level of neuroticism was also part of the analysis. 

Results showed no between-group differences in any of the subfields after 

correcting for multiple comparisons. A negative correlation was found between 

scores of Neuroticism and the head of the left subiculum, the cornu ammonis 1 

(CA1), fimbria, the molecular layer (ML) of the hippocampus head, and the head 

of the whole hippocampus.  
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The second part of the analysis was exploring the effect of stress over time on 

the hippocampus subfields known to be affected by stress-related disorders and 

depressive symptoms in participants who were defined as part of Low or High 

stress group at baseline. To carry out the longitudinal part, the hippocampus 

subfields were obtained by using an automated segmentation method 

implemented in FreeSurfer (v6.0), which created a within-subject template based 

on the number of time points considered. The level of stress was defined by 

looking at the total score of the LEQ across baseline and the second time point. 

Even if there were subfields alterations associated to the level of stress across 

time in both hemispheres, such effect disappeared after correction for multiple 

comparison.  

Most of the studies on hippocampus subfields changes showed volumetric 

alterations in adolescents who experienced childhood maltreatment and trauma 

(Carrion and Wong 2012, Teicher, Anderson et al. 2012, Kuhlman, Geiss et al. 

2018), as well as suffering of PTSD and major depressive disorder (Bremner, 

Narayan et al. 2000, Gerritsen, van Velzen et al. 2015, Chen, Sun et al. 2018, 

Postel, Viard et al. 2019). Results in this study may reflect the type of population 

considered. In fact, the participants of this research did not suffer of any mood or 

emotion-related disorder. They were healthy adolescents who experienced 

negative life events, but that did not report any cognitive or psychiatric disorder 

at the time they were screened. The subfields shown in this study to be affected 

with stress before correcting for multiple comparisons are the same found to be 

structurally altered in mood disorders (Cao, Passos et al. 2017), anxiety (Chen, 

Chen et al. 2018), major depressive disorder (Roddy, Farrell et al. 2019) and 

PTSD (Postel, Viard et al. 2019). This could represent a factor explaining the lack 
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of significant changes in the hippocampal subfields, as well as that the perception 

of stress is not an aggravating factor triggering atrophic processes, but that a 

more severe, or persistent overtime, emotional offense causes alterations in the 

volume of structures related to emotions and behavioural responses in 

adolescents. 

Findings show a significant negative relationship between the volume of the 

hippocampal subfields and the level of neuroticism in adolescents who perceived 

higher levels of stress at baseline. This result is the opposite of what was found 

in another study (Gray, Owens et al. 2018), where no association between 

neuroticism and morphological changes in the hippocampus and amygdala were 

seen. Neuroticism is the tendency of worrying and being anxious that leads to 

unbalanced emotional behaviours in relation to life events (Tzschoppe, Nees et 

al. 2014), representing a potential cause of the development of chronic mood 

disorders. Neuroticism has been associated to influence fear response, 

anticipation of aversive stimuli and emotional regulations (Servaas, van der Velde 

et al. 2013), which are cognitive processes that are particularly enhanced during 

adolescence. 

Literature on changes of volume in the hippocampus subfields is not 

homogeneous in the results. This is mainly due to the choice of the subfield’s 

segmentation, the number of subfields chosen, and the statistical model 

performed. In this study, a linear mixed model was used to account for the 

longitudinal data, and for the variance across participants due to factors, such as 

the different centre were the scans were obtained, which can influence, at least 

partly, the segmentation of the hippocampal structures. The choice of the number 

of time points to create the within-subject template is another factor to consider 
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when results are interpreted. In this study, three time points were used to improve 

the definition of the subfields, but the cognitive measures for the last time point 

were consistently missing, due to the fact data acquisition is currently still going 

on. That led to run the statistical analysis only on the first two time points, which 

was a limitation for this study, since that did not make possible to explore the 

effect of stress across all the three stages of adolescence.  

Future directions will include gathering the missing information and replicate the 

same statistical model. In this explorative analysis, results did not show any 

association of the hippocampal subfields across two stages of adolescence by 

considering the score of stressful events. An alternative approach could be 

considering other cognitive measures to define stress levels, or different grouping 

criteria for the participants. First, further analyses will investigate how the 

participants’ level of stress changes across time, i.e. some of the adolescents 

being categorized as Low stress at baseline could have scored a higher level of 

stress at the second time point, hence would be defined as High stress, and the 

groups size would change. Another interesting approach to answer the question 

of what happens in the hippocampus sub-structures when adolescents 

experience traumatic events could be not only look more broadly at the stress 

component, but also taking into account the development of depressive 

symptoms in adolescents and how they are related to alterations in the sub-

cortical structures related to emotional processing. In fact, the tool in FreeSurfer 

used in this study performed also the segmentation of the amygdala nuclei, the 

thalamic nuclei and the brain stem, which are all part of limbic circuitry and 

responsible for the emotional and mood responses.  
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4. Microstructural Alteration of the Cingulum in Healthy 
Aging 

 

4.1. Brain and Aging 

In normal aging, structural and functional changes of the brain reflect cognitive 

decline in older people (Lockhart and DeCarli 2014). Several studies focused on 

age-related changes in the brain, comparing grey and white matter differences 

between young and old adults (DeCarli, Massaro et al. 2005, Sugiura 2016, Bajaj, 

Alkozei et al. 2017, Cole and Franke 2017), that help understanding what 

happens in the brain structure over time, and which are the brain areas more 

affected during this period of life. Such knowledge is important to identify the 

relationship between anatomical changes and cognitive decline (Fan, Fang et al. 

2019) and to help individuals at risk of developing neurodegenerative diseases 

(Lockhart and DeCarli 2014).  

4.1.1. Age-Related Changes in Grey Matter 

A key study on age-related volumetric changes (DeCarli, Massaro et al. 2005) 

considered more than 2000 MRI of people from 34 to 97 years old, and showed 

that the most affected brain areas with aging were in the frontal lobe, with a 

decrease of volume of 12%, followed by the temporal lobe, with a decrease of 

9%. Other studies focusing on regional changes found grey matter atrophy in the 

hippocampus, parahippocampal gyrus, amygdala and insula, that are involved in 

the limbic system. Additional regions structurally affected with aging were 

temporal gyrus, precuneus, cingulate gyrus, orbital and superior medial frontal 
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lobe, fusiform gyrus, inferior and middle occipital gyrus, bilateral putamen, 

pallidum, thalamus in both hemispheres (Li, Wang et al. 2016) and the 

cerebellum cortex (Lockhart and DeCarli 2014). In particular, hippocampus head 

and body were found to be among those regions used to discriminate old people 

who will develop mild cognitive impairment (MCI) from people who will not, along 

with the entorhinal cortex, all located in the medial temporal lobe (Martin, Smith 

et al. 2010). 

Another study investigating longitudinal WM and GM changes across lifespan 

showed an accelerated GM atrophy in the lateral, medial frontal and anterior 

cingulate cortex, during two specific age ranges, that are between 20 and 40 

years of age, and after 60 years of age (Pfefferbaum, Rohlfing et al. 2013). 

Hippocampus volume decreases were also found with aging, especially in people 

older than 60 years old, when the level of atrophy was accelerated and correlated 

with the cognitive impairment.  

4.1.2. Age-Related Changes in White Matter 

White matter increases until 40 years old of age (Lockhart and DeCarli 2014), 

and then it starts decreasing approximately after 50 years of age (Gunning-Dixon, 

Brickman et al. 2009). Alterations in the microstructural integrity of WM tracts are 

usually investigated with diffusion imaging (DWI), by detecting differences in the 

diffusivity measures, which describe myelination processes and axonal “health” 

(Gunbey, Ercan et al. 2014). Diffusivity measures are described later in this 

chapter. Studies showed WM age-related changes in tracts involved in both 

emotional processing and memory retrieval, namely the genu of the corpus 

callosum (Smith 2012), the cingulum, the fornix, the superior and inferior 
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longitudinal fasciculus, fronto-occipital fasciculus and uncinate fasciculus. Such 

changes are represented by decreases of FA and increase of mean (MD) and 

radial diffusivity (RD) (Stadlbauer, Salomonowitz et al. 2008, Gunbey, Ercan et 

al. 2014, Lockhart and DeCarli 2014, Bajaj, Alkozei et al. 2017), that can indicate 

axonal damage or myelination alterations due to aging processes (Aung, Mar et 

al. 2013). Other studies confirmed a negative relationship between age and FA 

of the left hippocampus and fornix (Stadlbauer, Salomonowitz et al. 2008, 

Gunbey, Ercan et al. 2014, Christiansen, Aggleton et al. 2016), and an increase 

of MD in the left hippocampus (Gunbey, Ercan et al. 2014). 

4.1.3. Age-Related Changes in Brain Connectivity 

Studies showed aging has an impact on brain networks. Alterations in the limbic-

diencephalic network, formed by the medial temporal lobe, the posterior 

cingulate, the anterior thalamus and mammillary bodies, were associated to early 

AD-related symptoms and memory impairment (Acosta-Cabronero and Nestor 

2014). The thalamus has been found to be connected to many cortical areas 

involved in limbic system, and it has a critical role in the fronto-limbic circuitry as 

bridge between tracts connecting parts of the limbic system. In the normal 

memory functioning, the mammillo-thalamic tracts (MTT) are connected to the 

amygdala and hippocampus through the fornix (Kamali, Yousem et al. 2015), and 

such interaction is pivotal for emotional memory processes.  

Throughout adulthood, not all the networks change in the same way with age. 

One study where the brain was divided into several networks (network 1: visual 

network, network 2: somatomotor network, network 3: dorsal attention network, 

network 4: ventral attention network, network 5: limbic network, network 6: fronto-
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parietal network and network 7: default mode network) investigated associations 

between each network and age (Bajaj, Alkozei et al. 2017). Results showed age 

was negatively correlated to the cortical thickness of all the networks considered, 

except for the limbic network, suggesting the limbic network might resist 

structural alterations with aging. Such findings might be explained by the 

increased level of resilience seen in older people (Sampedro-Piquero, Alvarez-

Suarez et al. 2018), reflected by the way they respond to negative situations 

(Mather 2012).  

4.1.4. Age-Related Changes in Neurotransmission  

Dopamine (DA) is a neurotransmitter involved in reward, motivation and in the 

so-called “positive stress”. The dopaminergic innervation starts from the ventral 

tegmental area (VTA) and substantia nigra, and it reaches the amygdala, the 

hippocampus, and prefrontal areas. In the hippocampus (where the 

dopaminergic neurons are mostly found), the dopamine arrives in the CA1-

subiculum subfields (Barili, De Carolis et al. 1998), where regulates and 

modulates learning and memory processes. For example, the hippocampus 

controls, in an excitatory/inhibitory effect, the neural activity of the nucleus 

accumbens and VTA through the prefrontal cortex, regulating functions as spatial 

working memory (Thurm, Schuck et al. 2016). Alterations of these circuits are 

thought to cause neurodegenerative and neuropsychiatric disease, such as 

Parkinson’s disease or schizophrenia, which present imbalances of 

dopaminergic neurotransmission. Dopaminergic neurons and transporters 

decrease in density during aging, leading to a decline in executive functions in 

elderly people, not only related to motor skills, but also episodic memory, visual 

skills and attention levels (Bäckman and Farde 2001). Literature shows that 
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during normal aging the number of dopamine receptors decreases in the 

striatum, frontal and temporal regions, hippocampus and thalamus of about 4-

10% per year after 20 years of age (Rollo 2009). There is also a genetic 

relationship between dopaminergic system efficiency and cognitive abilities, that 

is more evident in late than early life, suggesting a strong influence of genetics in 

the dopamine-related decline (Morcom, Bullmore et al. 2010).  

4.2. Diffusion Imaging 

Diffusion imaging is a neuroimaging technique that measures the movement of 

water particles in biological tissues and in vivo. Particles usually have an isotropy 

diffusion, meaning they are free to move in whichever direction they flow. This 

type of diffusivity is represented by a spherical shape (Assaf and Pasternak 

2008). In the axons, nevertheless, there are myelin sheaths that limit the free 

diffusion of the water molecules, so that in the axons there is a preferred direction. 

This type of diffusivity is defined anisotropic, and the diffusion of water molecules 

reaches a shape of ellipsoid, i.e. stretched out circle. The ellipsoid itself has a 

principal long axis and then two more small axes that describe its width and 

depth. All three of these are perpendicular to each other and cross at the centre 

point of the ellipsoid. The axes are called eigenvectors and the measures of their 

length are defined eigenvalues. In each voxel the preferred direction of the water 

molecules is estimated, and a change of diffusion direction can indicate a 

microstructural damage in that specific voxel (Aung, Mar et al. 2013). 

The diffusion of water in the biological tissues refers to the microstructural 

compositions of neurons; a water molecule has a flow of 60 µm in 1 second. The 

water diffusion in the axons is influenced by several factors, such as temperature, 
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membrane permeability, cellular dimensions, anisotropy level, chemical 

composition of the tissue (Bammer 2003). MRI is the only imaging technique that 

can give information about the water flow in a non-invasive way and in-vivo. 

Changes in this diffusion helps understanding possible alterations in the 

microstructural composition of white matter, which indicate an axonal damage or 

neurodegeneration (Le Bihan, Mangin et al. 2001). The molecules of water in the 

tissues are in constant movement and moving towards dis-homogeneous 

magnetic fields (generated by the resonance gradients) obtain a phase or 

direction change, which is responsible of the attenuation of the signal. That’s why 

we can obtain images where the contrast is determined by the diffusion 

coefficient of the water.  

The acquisition of diffusion images is based on the EPI, rapid sequences that 

produce images with high matrix in few seconds (Taylor, Alhamud et al. 2016). 

Usually in EPI acquisition the matrix size is reduced and it is 64x64, instead of 

the full matrix 128x128 (Assaf and Pasternak 2008).The first gradient causes a 

small distortion of the main magnetic field (B0), so that the frequencies of 

hydrogen nuclei are diphasic. The impulse of 180° has the effect of rotating the 

vector representing each spin of 180°, so that the next gradient brings the spins 

back to the phase. This happens for the nuclei H that are bound to 

macromolecules; for this type of nuclei that are not moving along a direction of 

the gradient, the effect of the second impulse dephasing nullifies the one created 

by the first one and there is no signal attenuation. If the nuclei move in a casual 

way (isotropic diffusion), every nuclear spin undergoes a magnetic field that has 

different intensity during the second pulse. This results in a different intensity of 

the signal, where the areas with high diffusion are less bright than areas with low 
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diffusion, i.e. the intensity of the signal is inverse proportional to the molecule 

movement (Le Bihan, Mangin et al. 2001).  

The signal depends on the proton movement but also on the gradient of the 

magnetic field, defined b-value, which can be defined as the diffusion sensitizing 

factor. Since the diffusion coefficient can be affected and influenced by other 

physiological noise (such as breathing, or capillary perfusion) the parameter that 

is measured in diffusion imaging is called Apparent Diffusion Coefficient (ADC), 

which is measured in mm2/sec. The diffusion in the axons is constrained by the 

myelin sheaths that form axons. The longer is the time of diffusion, the bigger is 

the distance that the water molecules can achieve, meaning that they have higher 

chance of meeting a barrier during their diffusion which can underestimate the 

calculation of ADC (Bammer 2003). Therefore, to get a higher sensitivity of the 

sequence to the diffusion, the b-value should be increased allowing a better 

image quality and estimation of the ADC. The ideal b-value is the one which can 

separate healthy tissue from a damaged one, and it is usually higher than 800 

mm2/sec. The higher the value of ADC is, the less bright the images appear 

(McKinnon, Jensen et al. 2017).  

In a homogenous medium the diffusion is usually casual, defined isotropic; in a 

biological tissue, the diffusion is constrained by cellular and extra-cellular 

structures. In the brain, the grey matter presents an isotropic diffusion, whereas 

in the white matter the diffusion is related to the different orientation of the myelin 

pathways, that determine the diffusion direction. The myelin sheaths represent 

barriers that cause water molecule to diffuse along a preferred direction along 

the main axis of diffusion, making the diffusion anisotropic (Assaf and Pasternak 

2008). The movement of the water molecules is facilitated when they diffuse 
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parallel to the main axis of the axons, while it is constrained when the water 

molecule move perpendicularly to the main axis (Le Bihan, Mangin et al. 2001).  

4.2.1. Diffusion Tensor Imaging 

Diffusion tensor imaging (DTI) is a specific approach of DWI, used to graphically 

represent WM fibre shape, geometry and pathways of the brain. It is also used 

to describe anatomical connections between two different regions of the brain. 

Different gradients of magnetic fields are applied to calculate the direction in each 

voxel, and at least 6 different gradients are needed to get a DTI image, and then 

an algorithm calculates the main direction in that voxel. A colour-map of the tract 

is generated, and different diffusion directions are indicated with different colours: 

red (left-right), green (anterior-posterior) and blue (inferior-superior). The 

diffusivity measures are extracted to measure the integrity of the fibres and the 

diffusivity properties (Shaikh, Kumar et al. 2018).  

Diffusion tensor is a mathematical model that allows the estimation of the 

direction and intensity of the local diffusion in non-isotropic structures, and it is 

determined mainly by the water diffusion in the tissue. The tensor is based on 

using multiple gradients, along six different axes, which maximises the effect of 

anisotropy (Basser and Jones 2002). This model allows reaching values close to 

the mission of the absolute diffusion and allows evaluating the changes of the 

tissue microstructures between different subjects. In the image acquisition with 

the tensor model, the brain regions with isotropic diffusion look dark, while the 

areas with anisotropic diffusion are brighter. The ellipsoid shape and orientation 

are determined by three eigenvalues, λ1, λ2, and λ3, and three eigenvectors, v1, 

v2 and v3, reflecting the magnitude and directions of the three major planes of 
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the diffusion ellipsoid. With DTI, the tensor is calculated at each pixel location, 

creating a map of diffusion that shows the magnitude and the main direction of 

the process (Shaikh, Kumar et al. 2018). 

4.2.2. Tractography 

Tractography is a method generates 3D representations of white matter tracts 

(Ciccarelli et al., 2008). The diffusion tensor gives two important pieces of 

information in each imaging voxel, which are the magnitude of diffusion 

anisotropy and the orientation of the maximum diffusion. Tractography algorithms 

use this information to track the whole white matter pathway by inferring the 

continuity of fibre paths from voxel to voxel (Mori et al., 2002), that is, the direction 

of maximum diffusion in a voxel is followed into an adjacent voxel. If the angle 

between the two directions is less than a predetermined angle, then the two 

voxels are connected, and the process is repeated to proceed the pathway 

(streamline) through the white matter in the brain image. However, if the angle 

between maximum diffusion directions is greater than the chosen threshold, the 

streamline is terminated at that point (Shaikh, Kumar et al. 2018). Tractography 

uses this information about orientation to reconstruct pathways through the 

eigenvector field. This is usually achieved by linking eigenvectors that have 

similar orientation such that the angle between them is less than a given 

threshold (Basser and Jones 2002). There is, then, the ‘anisotropy threshold’ that 

ensures the streamlines advances only if the anisotropy in each voxel is higher 

than a pre-determined threshold (Ciccarelli et al., 2008).  
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4.2.3. Constrained Spherical Deconvolution (CSD) 

One big DTI limitation is that, even if it is growing as technique in the field, it is 

partially incomplete assuming of a single Gaussian diffusing component in each 

voxel. A single tensor cannot, in fact, capture the complex orientation structure 

present in heterogeneous tissue, for example in regions where white matter fibre 

bundles cross (Tournier et al., 2004). To solve this DTI limitation, an alternative 

method is constrained spherical deconvolution (CSD). CSD is based on high-

angular resolution diffusion imaging (HARDI) and it is good in reconstructing the 

fibre orientation distribution (FOD) functions with remarkable reduced noise 

sensitivity (Tournier et al., 2007). Fibres orientation presents a coloured map: red 

(right/left), blue (superior/inferior) and green (anterior/posterior). Usually DTI 

studies have a b-value between 500 and 1200sec/mm2, while CSD approach 

demands a higher b-value. The downside of choosing a higher b-value is the 

higher chance of obtaining a larger signal-to-noise ratio (SNR) (Burdette et al., 

2001), which makes images “noisier”. The CSD method has significant 

advantages over a DTI-based approach, primarily a more accurate segmentation 

of tracts and the reconstruction of the original fibre orientation. An advantage of 

CSD is also there is no need to make any a priori assumption about the fibre 

populations, as required in the DTI-model (Tournier et al., 2004). The DTI model 

can create artefacts when there are more than two different fibre populations in 

the same voxel, whereas the CSD approach reconstructs the fibre orientation 

with more than two fibre populations and solves for the intravoxel fibre orientation 

(Jeurissen et al., 2011). Finally, one of the CSD approach assumptions is that 

the response function seen for a certain fibre population orientation is constant 

throughout the brain. This may change in WM structures where there are different 
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diffusion characteristics, for example in fibre populations with different 

myelination levels or axonal densities. In these cases, the response function 

would change the anisotropy of a small percentage, but the results would be still 

reliable and the fibres orientation would be still preserved (Tournier et al., 2004). 

4.2.4. Atlas Based Tractography (ABT) approach 

In this study, an atlas-based tractography was the method used to compute the 

white matter tracts between the two groups. This is a technique useful to 

calculate the same tract across participants, but a disadvantage of such method 

is represented by alignment errors between subjects belonging to different 

groups, or between healthy and diseased brains. Additionally, the inter-subject 

variability can also produce misleading results in the application to patients (Preti 

et al., 2012). ABT is a tool included in ExploreDTI, that adjusts ROIs drawn for a 

template (that can be a subject picked randomly or the averaged structural image 

of all the scans) to all the subjects’ images. The template must match at least 

partially with the shape of the brain, and in case of patients’ brain, it is important 

to consider the structural alterations that their brains may have. 

 

4.2.5. Diffusivity Measures 

In diffusion imaging, it is possible to quantify the diffusion by extracting diffusivity 

measures related to the water particles movement. These are the fractional 

anisotropy (FA), the mean diffusivity (MD), the radial and axial diffusivity (RD and 

AD) (Thomas, Sadeghi et al. 2018). All these values are based on the 

eigenvalues, which represent the magnitude of the diffusion process (see Figure 

4.1). 
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The FA measures the level of anisotropy of the water molecule in each voxel, the 

MD is the average of all the diffusivity directions along the axon, the RD describes 

the diffusivity perpendicularly to the main axis of the axon, whereas AD is the 

diffusivity parallel to the main axis. The sum of radial and axial diffusivities 

represents the mean diffusivity, which is known also as the apparent diffusion 

coefficient (ADC) (Bammer 2003). The FA formula is: 

𝐹𝐴 =  √
1

2
 
√ (𝜆1 −  𝜆2)2 + (𝜆2 −  𝜆3)2 +  (𝜆3 −  𝜆1)2

√𝜆1
2 +  𝜆2

2 + 𝜆3
2

 

The eigenvalues in the formula are tightly linked to the eigenvectors of the 

ellipsoid, with the major axes and two minors. FA indicates the direction 

selectivity and it is higher in more organized white matter regions. Indeed, it has 

been demonstrated that the higher is FA, the healthier is the WM tract measured 

(Greicius et al., 2009). The FA range goes from 0 (isotropic diffusion) and 1 

(anisotropic diffusion). FA decreases due to the loss of coherence in the main 

preferred diffusion direction, which can occur in brain injury, neurodegeneration 

and neurological trauma. Studies showed vastly how fractional anisotropy 

decreases in normal aging, neuropsychiatric disorders and neurodegenerative 

diseases (Catheline, Periot et al. 2010, Teipel, Walter et al. 2014, Daianu, 

Mendez et al. 2016, Sibilia, Kehoe et al. 2017). Such decrease reflects the loss 

of anisotropy in the damaged connections, i.e. loss of diffusion coherence.  

MD is calculated by the mean of the three eigenvalues and corresponds to the 

molecular diffusion rate, reflecting the average magnitude of molecular 

displacement by diffusion. The higher is MD, the more isotropic is the diffusion 

(Assaf and Pasternak 2008); it is generally low in healthy tracts, starting to 
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increase during neurodegeneration. White matter changes may precede grey 

matter atrophy in some regions of the cortex, such as loss of tracts connecting 

frontal regions to the temporal lobe, through the cingulum which contains fibres 

of different length and connections to all the lobes (Catani et al., 2008). The 

mathematical formulas of the diffusivity measures are represented by the 

eigenvectors: 

𝐴𝑥𝑖𝑎𝑙 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 (𝐴𝐷)  =  𝜆1 

𝑅𝑎𝑑𝑖𝑎𝑙 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 (𝑅𝐷)  =  
𝜆1 + 𝜆2

2
 

𝑀𝑒𝑎𝑛 𝐷𝑖𝑓𝑓𝑢𝑠𝑠𝑖𝑣𝑖𝑡𝑦 (𝑀𝐷)  =  
𝜆1 + 𝜆2 + 𝜆3

3
 

Changes in the axonal diameters or density may also influence RD, which 

represents the average of the two shorter eigenvectors and increases in WM with 

demyelination (Westin et al., 2002). On the other hand, AD has been reported to 

increase with brain maturation, representing the longest eigenvector.  

 

Figure 4.1: Eigenvectors that diffusivity measures AD, RD and MD are based on 
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The results of this study have been published on a scientific journal (Sibilia, 

Kehoe et al. 2017), reference: Sibilia, F., Kehoe, E. G., Farrell, D., Kerskens, C., 

O'Neill, D., McNulty, J. P., Mullins, P., Bokde, A. L. W. (2017). Aging-Related 

Microstructural Alterations Along the Length of the Cingulum Bundle. Brain 

Connect, 7(6), 366-372. doi:10.1089/brain.2017.0493. The entire manuscript is 

part of this thesis and it can be found below.  

Further results that are not present in the attached manuscript can be found in 

Appendix C.  

 

4.3. Manuscript – Aging-Related Microstructural Alterations 

Along the Length of the Cingulum Bundle 

4.3.1. Introduction 

During the lifespan, the brain is subject to aging-related changes in volume, 

metabolism and cognition. White matter (WM) volume changes with an inverted 

U shape in relation to aging , increasing until age 40s (Peters 2006), followed by 

a plateau phase till age 60s, and start declining in older ages. Myelin sheaths 

deterioration leads to neural loss, decrease of fibre number and reduction of WM 

volume (Gunbey, Ercan et al. 2014), causing alterations in brain connections 

which underlie cognitive abilities. 

The cingulum bundle (CB) is one of the most prominent fibre bundles in the brain,  

going from the anterior to the posterior part of the brain (Jones, Christiansen et 

al. 2013). It has short and long associative fibres populations, which connect 

different brain areas, including frontal, parietal and temporal regions (Catheline, 
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Periot et al. 2010); functionally, it is involved in attention, memory, problem 

solving, visual and spatial abilities, as well as in regulating heart rate and blood 

pressure (Gunbey, Ercan et al. 2014). 

Previous studies have measured the changes in the CB integrity during aging, 

analysing the average value of the entire tract, not focusing on changes along 

the tract length (Sullivan and Pfefferbaum 2006, Jang, Kwon et al. 2016). Sullivan 

and Pfefferbaum (2006) proposed WM tracts integrity started decreasing in 

frontal circuits, describing an anteroposterior gradient, similar to the pattern of 

cognitive declines found in aging. Jang’s study results (2016) supported this 

hypothesis; the authors divided the cingulum into five parts and observed a WM 

integrity decrease first in the anterior fibre branches.  

Literature about WM changes during normal aging is not homogeneous, but a 

few studies reported no significant differences along the cingulum with healthy 

aging (Stadlbauer, Salomonowitz et al. 2008, Gunbey, Ercan et al. 2014). 

Stadlbauer et al. (2008) did not find any significant age-related modifications in 

the cingulum, either in the diffusivity parameters or in the number of fibres per 

voxel. Furthermore, Gunbey and colleagues (2014) subdivided the fornix, the 

cingulum and the parahippocampal gyrus, finding no FA changes in older healthy 

adults compared to younger people.  

The studies mentioned above used a DTI-based approach, which presents 

limitations in brain areas with complex WM frameworks. In the present study, a 

constrained spherical deconvolution (CSD)-approach tractography (Jeurissen, 

Leemans et al. 2011) was chosen, as it allows a more accurate reconstruction of 



98 
 

fibre pathways and gives a higher sensitivity in identifying microstructural 

anomalies (Reijmer, Leemans et al. 2012).  

The main hypothesis of this study was that aging lead to decreased structural 

integrity of the cingulum compared to healthy young group. The cingulum was 

divided in three segments, based on a ROI-based methodological approach 

(Jones, Christiansen et al. 2013).  The methodological novelty of this study was 

the along-tract analysis for each branch of the cingulum to locate the structural 

changes with aging, as well as segmenting each individual branch.  

 

4.3.2. Material and Methods 

4.3.2.1. Participants  

35 healthy young adults (22.3 ± 2.7 years) and 33 healthy older people (69.5 ± 

3.5 years) were recruited through online advertisement. Demographic 

information is presented in Table 4.1. Each participant went through 

neuropsychological tests and an MRI scan. The study had approval from the 

Research Ethics Committee of the Adelaide and Meath Hospital, incorporating 

the National Children’s Hospital, and St. James Hospital. All participants gave 

written informed consent before taking part in the study. 
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Table 4.1: Demographic characteristics of participants 

 

4.3.2.2. Neuropsychological Testing 

The neuropsychological tests that participants underwent were the Beck’s 

Depression Inventory II (BDI-II) (Beck et al, 1996) and the NART (National Adult 

Reading Test, Nelson et al., 1982); the older group of participants underwent the 

CERAD (Consortium to Establish a Registry for Alzheimer’s Disease (Morris, 

Mohs et al. 1988) and the MMSE (Mini Mental State Examination (Folstein, 

Folstein et al. 1975), in order to exclude any possible cognitive impairment. The 

scores in each sub-test of the CERAD were within 1.5 standard deviation of the 

age-corrected norms, and the scores in the BDI were below 14, as participants 

did not show any significant depressive symptoms (scores from 0 to 13 indicate 

minimal depression). 

Both groups performed the CANTAB (Cambridge Neuropsychological Test 

Automated Battery (Sahakian, Morris et al. 1988)), a computerized group of 

cognitive tests. Three different tests from the CANTAB were included: (a) 

 

Group Young  Old p-value 

Gender M 16  17 p=0.638 

F 19  16  

Age 22.3 ± 2.7  69.5 ± 3.5  p<0.001 

NART 117.27±4.7  114.5 ± 7.8  p=0.09 

Education  

(n. of yrs) 

17.1 ± 2  

 

 13.8 ± 3.7  

 

p<0.001 

MMSE n/a  28.8 ± 0.9   
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learning of abstract images (immediate recognition and delayed recognition 

tests), (b) paired associate learning (PAL), and (c) spatial working memory 

(SWM). The learning task used was the Pattern Recognition Memory (PRM), 

which is a test of visual pattern recognition memory in a 2-choice forced 

discrimination paradigm. The PAL assesses episodic memory and new learning; 

it has twenty-one outcome measures, covering the errors made by the 

participant, the number of trials required to locate the pattern(s) correctly, 

memory scores and stages completed. Lastly, the spatial working memory task 

had different levels of difficulty. These tests were chosen above others because, 

among all the CANTAB tests, these were specifically used to diagnose mild 

cognitive impairment (MCI); in fact, part of the Neuroskill dataset was 

represented by MCI patients, not considered in this study. The scores were 

normalized accounting for age and gender of the participant and included in the 

analysis (Table 4.2 includes group results): PRM initial standardized, PRM delay 

standardized, PAL Total Error Standard, PAL Total Error 6 Standardized (with 

errors recorded when there are 6 different patterns), SWM between-errors 

standardized and SWM Strategy Standardized. 

 

 

Table 4.2: Standardized results from CANTAB test battery 

CANTAB 

 

 

GROUP 

PRM initial 

standard 

PRM-
delayed 
standard 

PAL total 

errors 

standard 

PAL t.e. 6 

shapes 

standard  

SWM 

between 

errors 

standard 

SWM 

strategy 

standard 

Young 0.99± 0.58 -0.3 ± 1.4  0.05± 1.13  0.03 ± 1.0  -0.02 ± 0.9  0.3 ± 1.2 

Old 0.7 ± 0.9  -1.5 ± 1.3  0.04± 1.15  0.1 ± 0.9  0.21 ± 0.8  -0.07 ± 0.9  

p-value p=0.208 p<0.001 p=0.963 p=0.753 p=0.275 p=0.126 
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4.3.2.3. MRI Scanning Protocol 

Scanning was performed on a 3.0 Tesla Philips Achieva system (Best, The 

Netherlands) equipped with an eight-channel head coil. The diffusion weighted 

imaging (DWI) sequence was a whole-brain high angular resolution diffusion 

imaging (HARDI) acquired with a TR = 14,556 ms and TE = 81 ms. A parallel 

sensitivity encoding (SENSE) approach (Pruessmann, Weiger et al. 1999) with a 

reduction factor of 2 was used during the DWI acquisition. Single-shot spin echo-

planar imaging (EPI) was used to acquire the DWI data with following 

parameters: matrix 112 x 112, isotropic voxel of 2 x 2 x 2 mm3 and 60 slices, with 

2 mm thickness, and no gap between the slices. Diffusion gradients were applied 

in 61 isotropically distributed orientations with b = 2000 s/mm2, and four images 

with b = 0 s/mm2 were acquired.  

4.3.2.4. DTI Pre-Processing 

The raw data were par/rec format that were converted to NIFTI format (using 

Chris Rorden’s “dcm2nii” tool, and then read into ExploreDTI v4.8.4 (Leemans 

and Jeurissen, 2009), the software used for the preprocessing and analysis. Data 

quality control was assessed by checking for motion artifacts and image 

orientation; DWI images color maps and gradient components were also 

checked. Correction for head motion, eddy current (EC) and EPI distortion was 

performed thereafter. The data were corrected for distortions and head motion 

using an affine transformation to the non-diffusion-weighted images (Leemans 

and Jones 2009). For EPI susceptibility correction the T1-weighted anatomical 

image was co-registered to the diffusion image. 



102 
 

4.3.2.5. Tractography of the Cingulum 

The cingulum segmentation was based on CSD-based (Jeurissen, Leemans et 

al. 2011) method. This approach has been chosen over a DTI-based one 

because it takes into account complex white matter orientation (Reijmer, 

Leemans et al. 2012). After the pre-processing, a CSD-whole brain tractography 

was performed. Each trajectory was followed until the direction of the pathway 

changed with an angle of more than 60°, that considers the shape of the fiber 

pathway. In this study, the cingulum was divided in three segments, namely 

subgenual, retrosplenial and parahippocampal branches, in both hemispheres. 

The segmentation of each tract was performed following an established method 

(Jones, Christiansen et al. 2013), with a modification in segmenting the 

parahippocampal subdivision, developed in our lab. Regions of interest (ROIs) 

were drawn on the subjects’ native space to define each segment in the most 

accurate way. To get the fibers branches from each participant, an atlas-based 

tractography (ABT) approach was performed, based on the idea of drawing ROIs 

on a template and applying them on other participants’ images after co-

registration (Lebel, Walker et al. 2008). Two templates were picked to account 

for the anatomical variability in the two groups and to get an improved 

segmentation of the cingulum. It should be emphasized that the location of the 

ROIs was not different relative to the anatomical landmarks used to place them 

(described below). 

4.3.2.6. Definition of ROIs  

Figure 4.2 illustrates the location of the ROIs to segment the three branches of 

the cingulum (Jones, Christiansen et al. 2013). The first AND ROI of the 
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subgenual section was drawn five slices anterior the back of the curve of the 

genu and the second AND ROI was placed on the third/fourth coronal slice 

caudal to the most anterior part of the genu. A NOT gate was added on the same 

slice of the first AND gate. The retrosplenial branch was defined placing the first 

AND ROI five slices posterior the front of splenium, while the second AND gate 

was determined by finding the most ventral plane of splenium and identifying the 

horizontal section, that was three or four slices above the base of splenium 

(Jones, Christiansen et al. 2013). The parahippocampal branch was segmented 

by drawing the first AND gate in the same location as the second AND ROI in the 

retrosplenial tract; the second AND ROI was placed in the posterior part of the 

hippocampus. The first NOT gate was positioned above the body of the corpus 

callosum (Jones, Christiansen et al. 2013). A second NOT gate was placed 17 

slices (~25 mm) posterior to the first one, to isolate the tract better. After 

performing ABT, output tracts from ExploreDTI were finally defined using 

additional NOT gates where necessary (see Figure 4.3).  
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Figure 4.2: Definition of each cingulum segment: a) subgenual, b) retrosplenial and c) 

parahippocampal branches, sagittal view. Figures d) and e) show the location of ROIs 

on d) a young subject and e) an old healthy subject. The ventricular enlargement made 

impossible to use the same template for both groups in the ABT approach 
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Figure 4.3: Output of the three different branches of the cingulum after ABT 

tractography. a) subgenual, b) retrosplenial and c) parahippocampal segment. d) the 

three segments with different colors (subgenual = white; retrosplenial = red; 

parahippocampal = blue). 

 

4.3.2.7. Statistical Analysis  

Data statistical analysis was performed using SPSS (SPSS Software 22, IBM). 

The variables were the DTI indexes, namely FA, MD, axial and radial diffusivity 

(AD and RD). The FA and diffusivity measures were analyzed by an along-tract 

analysis, which makes possible to determine WM structural variation along each 

point of the cingulum. It is an approach developed by Colby and colleagues 

(Colby, Soderberg et al. 2012), detecting within-tract heterogeneities. The right 

and the left hemisphere were considered separately. The three fiber bundles 
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were sampled within ExploreDTI, to have the same number of points spread 

along the length in each participant. The number of points was calculated dividing 

the average -across subjects- of the tract length and the voxel size (Colby, 

Soderberg et al. 2012). The left subgenual was divided in 54 points, the left 

retrosplenial presented 51 points and the left parahippocampal was split in 35 

points. In the right hemisphere, the subgenual part was divided into 53 points, 

the retrosplenial in 49 points and the parahippocampal branch in 37 points. Each 

fibre bundle (i.e. set of trajectories) was reduced to a single “averaged” pathway 

and the DTI-based measures (FA, MD, RD, AD) were extracted and analysed in 

a repeated-measures ANOVA model. The p-value chosen was p=0.0028, which 

is a global p<0.05 after Bonferroni correction for multiple comparisons (Nichols 

and Hayasaka 2003), that is divided by the three diffusivity directions, the number 

of branches and the number of hemispheres considered. False discovery rate 

(FDR) correction was used in the along-tract analysis to correct for multiple 

comparisons following the Benjamini and Hochberg FDR procedure (Benjamini 

and Hochberg, 1995) (http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/FDR). 

Independent t-tests were used to localize the points that resulted statistically 

significant after the repeated-measures ANOVA. 

Furthermore, an intra-group linear correlation between the DTI parameters and 

the CANTAB tests was also carried out for each of the three branches. 

4.3.3. Results 

4.3.3.1. Tractography Analysis  

A between-group (healthy young and older) effect was observed in the subgenual 

part of cingulum in the left hemisphere. Results show a statistically significant 

http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/FDR
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decrease in FA (p=0.0013, FDR corrected) and AD (p=0.0024, FDR corrected) 

in the rostral part of the subgenual branch, as well as a statistically significant 

increase of RD (p=0.0011, FDR corrected) in the caudal part of the subgenual 

branch of the healthy older people (Figure 4.4). 
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Figure 4.4: Along-tract analysis in the left hemisphere of the subgenual branch 

between young healthy people (blue line) and older healthy people (green line). 

The data represent the mean of DTI-measures for each point along the tract +/- 1 

 

4.3.3.2. Within-Group Linear Correlation 

A within-group linear correlation was conducted between each of the DTI 

measures and the scores of each test of the CANTAB, both with averaged 

diffusivity and along-tract diffusivity measures. There were no statistically 

significant linear correlations detected between any averaged measures and 

cognitive tests, while the results of the linear correlation with the along-tract 

measure showed linear correlation in the right hemisphere, but did not survive 

the FDR correction.  
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Table 4.3: Between-group effect in the repeated-measures ANOVA before FDR 

correction  

 

4.3.4. Discussion 

The current study advanced our knowledge about aging-related changes by 

employing a CSD-approach to segment the cingulum branches; it analysed the 

fibre integrity measures along the tract length. Previous studies revealed that 

tract-average diffusivity measures change in the older participants represented 

by a decrease in FA and AD and an increase in MD and RD compared to a 

healthy young group (Sullivan and Pfefferbaum 2006, Catheline, Periot et al. 

2010, Jang, Kwon et al. 2016). We performed a group comparison approach to 

determine whether there were changes in diffusivity measures during aging, but 

our analysis didn’t include the measurement of the change magnitude; this could 

be a step to consider in a further analysis.  

Our findings were consistent with the hypothesized anterior-posterior gradient 

pattern in WM demyelination with aging (Sullivan and Pfefferbaum 2006, 

Madden, Bennett et al. 2012), and consistent with other WM studies using a DTI-
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based approach (Head, Buckner et al. 2004, Pfefferbaum, Adalsteinsson et al. 

2005). We found a high similarity with the results of Catheline et al (Catheline, 

Periot et al. 2010). They found a decrease in the FA of the left subgenual between 

healthy young and older adults, while there was no significant difference in the 

other branches. Differently from Catheline et al., we measured changes not only 

in FA, but also in the other diffusivity measures, finding a decrease in AD and 

increase in RD of the left hemisphere.  

The subgenual branch showed a decrease of FA and AD in the rostral part of the 

branch, and an increase of RD in the posterior end. Before the FDR correction, 

diffusivity measures changes were seen in the same points of the branch for FA, 

AD and RD, but after the correction, RD increased only in the posterior end of 

the branch. The relation between cognitive changes and the cingulum points 

showing significant differences is still unknown, even though a previous study 

(Abdul-Rahman, Qiu et al. 2011) on diffusion measures changes in schizophrenia 

patients found an increase of RD in the same points, suggesting a demyelination 

process and disrupt of connectivity. Bennett and colleagues (Bennett et al., 2010) 

explained such variation of DTI measures (FA/AD decrease and RD increase) to 

be associated with an underlying lesion-induced axonal loss and gliosis, found 

already in the internal capsule, the superior corona radiate and the frontal 

forceps, but it is the first time that is detected in the subgenual cingulum.  

The subgenual branch is involved in selective attention, emotional conflict and 

perceptual processing (Jang, Kwon et al. 2016). Madden and colleagues 

(Madden, Bennett et al. 2012) reviewed DTI studies of the WM integrity, 

considering the relation between DTI measures, neurobiological changes and 

decline of cognitive performances in WM structures of older people, including the 
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cingulum. They pointed out that sensory and motor functions (defined fluid 

cognitive abilities), that are associated with the anterior cingulate, tend to decline 

with aging, reflecting changes in the integrity of the WM tracts, while the 

crystallized abilities (referred to expertise and knowledge) remain quite stable. 

Older people are able to compensate for a decrease in the WM density and 

networks efficiency occurring in aging, as explained by Park and Reuter-Lorenz. 

They described studies on functional neuroimaging and aging show how old 

people can perform the same task as younger people, despite their neural 

decline. This is possible when, in older people, both hemispheres are activated 

in cognitive tasks that require only one hemisphere in younger people (Park and 

Reuter-Lorenz 2009).  

Our study supports the idea that aging-related changes are not homogenous 

across the length of the subgenual branch;  this study gives more specific insights 

on the exact locations of the changes along the bundle, previously demonstrated 

only in clinical populations (Abdul-Rahman, Qiu et al. 2011). In the older group, 

significant differences were seen in the rostral part of the branch for AD and FA, 

specifically at the point of the major curve of the segment, corresponding to the 

rostral part of Brodmann area 32. A study about the parcellation of the cingulate 

cortex (Beckmann, Johansen-Berg et al. 2009) suggested the locations of the 

differences found in the subgenual branch correspond to the area where the 

subgenual cingulum is connected to the orbitofrontal and medial prefrontal 

cortex, confirmed by resting-state functional connectivity studies (Cao, Luo et al. 

2014). RD showed statistically significant changes only in the caudal part, where 

the fibres exit the cingulum bundle and reach the precuneus, as seen in primates 

(Heilbronner and Haber 2014). 
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The observed discrepancies between studies may be due to methodological 

differences in anatomical definitions of the cingulum regions, as well as to 

different b-values. DTI studies usually have a b-value between 500 and 1200 

s/mm2, whereas our study had a b-value of 2000 s/mm2. The images with a 

higher b-value appear “noisier” when compared with images with a lower b-value, 

given by a larger signal-to-noise ratio (SNR) (Burdette, Durden et al. 2001). The 

choice of a higher b-value is because we wanted to utilize a CSD-type approach 

to segment the cingulum (Jeurissen, Leemans et al. 2011). The CSD approach 

has significant advantages over a DTI-based approach, primarily a more 

accurate segmentation of the CB, and the reconstruction of the original fibre 

orientation, without any a priori assumption about the number of fibre 

populations, as required in the DTI-model (Tournier, Calamante et al. 2004). The 

CB is one of the biggest fibre bundles in the brain, presenting several fibre 

populations along its length; the DTI-model can create artefacts when there are 

more than two different fibre populations in the same voxel, whereas the CSD-

approach reconstructs the fibre orientation with more than two fibre population 

and solve for the intra-voxel fibre orientation (Jeurissen, Leemans et al. 2011). 

Finally, one of the CSD-approach assumptions is that the response function seen 

for a certain fibre population orientation is constant throughout the brain. This 

may change in WM structures where there are different diffusion characteristics, 

for example in fibres with different myelination levels or axonal densities. In these 

cases, the response function would change the anisotropy of a small percentage, 

but the results would be still reliable and the fibre orientation would be still 

preserved (Tournier, Calamante et al. 2004). 
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In our study variability in regional anatomy influenced the choice of the templates 

required to obtain robust tracts. The atlas-based approach was chosen over the 

manual segmentation to minimize the differences in ROIs size and location that 

could arise with manual drawing (Pievani, Agosta et al. 2010). A first attempt was 

made using one template for both groups, but the lateral ventricles atrophy due 

to aging led to inaccuracies in the segmentation of the tracts, because the ROIs 

were located incorrectly relative to the enlarged ventricles (Figure 1; d) and e)). 

Thus, the large anatomical changes due to aging necessitated the use of two 

templates to correctly place the ROIs, one template with small lateral ventricles 

and another template with enlarged lateral ventricles typically seen in older 

populations. 

Within-group linear correlations were performed between CANTAB scores and 

each branch of the cingulum, to test if there was a linear association between 

memory performance and the fibre microstructure. We did not detect any 

statistically significant association between memory performance and cingulum 

integrity in either group.  

4.3.5. Conclusion 

In the present study, the three branches of the cingulum were investigated using 

constrained spherical deconvolution that allowed for detailed analysis along the 

cingulum. The findings of this study add to our knowledge about the brain during 

aging, and it helps in further elucidating the changes in aging-related disorders.  
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5. General Discussion 

 

5.1. Review of Aims and Results 

5.1.1. Overview of Findings from Chapter 2 

The first study looked at brain connectivity changes in an adolescent population 

divided into two groups, based on the stress level perceived in their life. In the 

analysis both whole-brain connectivity approach and graph theory measures of 

centrality, segregation and integration were considered. Findings showed an 

increase of connectivity strength in the high stress group between the orbito-

frontal cortex and the superior parietal lobule, belonging to the limbic and the 

dorsal attentional networks, as well as between the posterior cingulate and the 

pars opercularis, belonging to the attentional network and salience network 

respectively. In the graph theory analysis, performed over a range of different 

sparsity levels, the high stress group showed a decrease of betweenness 

centrality in the somatomotor cortex, and an increase of degree centrality in the 

visual network and in the dorsal attentional network. Results on the graph theory 

measures indicated sparsity level (i.e. the network density) was an important 

factor influencing the computation of such metrics. 

5.1.2. Overview of Findings from Chapter 3 

The second study could be considered as an extension of the first one. The study 

aimed to answer two questions: the first was to investigate whether volumetric 

changes in the hippocampus subfields were related to stress. The second 

question was to explore if the stress level defined at the first time point might be 

associated to longitudinal changes of the hippocampus subfields across two time 
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points, when participants were in the late adolescence stage (18-20 years of 

age). The subfields segmentation was performed using the developmental 

version of FreeSurfer 6.0, having the advantage to divide the hippocampus into 

head, body and tail. Results of the first analysis showed decreases in the left 

fimbria and right cornu ammonis 3 and granular layer of the dentate gyrus, even 

though such effects disappeared after correction for multiple comparisons. In the 

High stress group, the level of neuroticism was found to be negatively associated 

with the volumes of some subfields of the left hemisphere, namely the subiculum, 

the head of cornu ammonis 1, the molecular layer, the whole head of the 

hippocampus and the fimbria. Such association was lateralized, as no 

relationship was found in the right hemisphere. Results of the longitudinal 

analysis were negative, indicating stress at baseline was not a significant 

predictor of hippocampal subfields changes over time.  

5.1.3. Overview of Findings from Chapter 4 

The aim of the third study was to investigate age-related microstructural changes 

of the cingulum bundle in healthy aging. The analysis was carried out by using 

deterministic tractography with a constrained spherical deconvolution (CSD) 

approach, that is more innovative than the classical DTI method. The cingulum 

bundle was divided manually into three branches by using a ROI-based method, 

and diffusivity measures were extracted at both tract-averaged level and along 

the length of each tract for the two hemispheres. Results showed a decrease in 

fractional anisotropy and axial diffusivity, as well as an increase of radial 

diffusivity in the left subgenual branch of the older group. Averaged-tract results 

showed decreases in the left FA and AD, as well as an increase in the left RD. In 

the right hemisphere there was an increase in mean diffusivity. 
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5.2. Contribution of Findings to Prior Knowledge 

5.2.1. Brain Connectivity Changes Related to Stress in Adolescence 

The results of this study showed adolescents who experienced higher levels of 

stress in their life had altered connectivity in areas involved in emotional and 

mnemonic processes, influencing cognitive processes and behavioural 

responses (Sachser, Kaiser et al. 2013). The connections found to be altered 

with stress were part of networks involved in the integration of sensory, 

emotional, and cognitive information, such as the salience network, sharing those 

areas with limbic circuits (Bolsinger, Seifritz et al. 2018). Findings of this study 

were confirmed by previous research on the relationship between attentional 

deficits and frontal brain areas, such as the orbital cortex in children (Park, 

Leonard et al. 2018), and an increase in connectivity between prefrontal cortex 

and posterior cingulate, putamen and caudate (Fan, Pestke et al. 2015) with 

acute stressful events. 

Even though literature about alteration in graph theory measures in adolescents 

is not vast, the results found in this study are confirmed by previous published 

studies. These studies found decreased nodal centralities in areas belonging to 

the sensorial cortex (Xu, Chen et al. 2018), as well as an increase of nodal 

centrality in the visual areas and regions belonging to the salience network (Suo, 

Lei et al. 2015, Ho, Dennis et al. 2018) in adolescents suffering of PTSD. Authors 

suggested stress could hamper the correct interactions between network 

modules, causing structural disruptions and re-organization of brain networks 

and enhancing the chance to develop neuropsychiatric disorders. Another study 

that used the same parcellation showed reductions of local betweenness 
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centrality in the somatomotor cortex of adolescents suffering of major depressive 

disorders (MDD), whereas global graph metrics changes were not seen in any of 

these studies. This suggested it would take a more severe emotional insult, 

persistent in time, to have network organizational alterations at a global level (Ho, 

Dennis et al. 2018). 

 

Figure 5.1: Representation of the brain regions forming the main large-scale networks 

(Zilverstand et al., 2018) 

  

5.2.2. Stress-Related Changes of Hippocampus Subfields in Adolescence 

Adolescents who experienced different stress levels (low vs. high) in their life did 

not show significant changes in the hippocampus subfields volume, but higher 

levels of Neuroticism were related to decrease in volume of the left subiculum, 

CA1, and hippocampus head in the High stress group. The tendency of 

experiencing that feeling of discomfort and internal pressure were all 

consequences of perceiving stress due to a specific situation. Some studies 

confirmed such association (Montag, Reuter et al. 2013), whereas others showed 

no relationship between the level of neuroticism and hippocampal volume 

changes in young adults (Gray, Owens et al. 2018), suggesting further 
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investigation on Neuroticism being an effect rather than a cause of alterations in  

hippocampal subfields volume.  

A previous published study explored the longitudinal changes of hippocampal 

volumes on an adult population (from 25 till 60 years old) divided into high and 

low stress group using FreeSurfer 5.3 (the previous version than the one used in 

this thesis). They debated whether a smaller hippocampus represented a 

consequence of stress (especially chronic stress), or rather could be a factor 

increasing vulnerability in developing stress-related disorders. They found 

consistent reduced hippocampal volume across the time points, coming to the 

conclusion a volume decrease could enhance the possibility of developing stress-

related disorders rather than a consequence (Lindgren, Bergdahl et al. 2016). 

Translating the same study design on the adolescent brain was of crucial 

importance, as the brain is still maturing in those years, and any offence could 

lead to permanent structural alterations. Not only this, but using a multi-centre 

population, as well as the up-to-date version of FreeSurfer, added value and 

novelty to the existing literature on this topic. 

5.2.3. Microstructural Changes of the Cingulum Bundle in Healthy Aging 

The microstructural changes seen in this study confirmed results found 

previously (Sala, Agosta et al. 2012), where analysis on the cingulum showed 

that decreases of fractional anisotropy and increase of mean diffusivity were 

associated with aging. In particular, what was observed in this study was an age-

related decrease of myelination coherence in the subgenual cingulum, which 

corresponds to the most anterior part. Previous studies that divided the cingulum 

bundle in five parts confirmed such results, finding a similar trend in diffusivity 
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measures changes in the anterior cingulum and anterior superior cingulum (Jang, 

Kwon et al. 2016). The novelty of this study findings was the extraction of 

diffusivity measures along the length of each tract, which contributed to 

pinpointing the right location as to where changes happened. The subgenual 

branch microstructure was found to change at the level of the curve embracing 

the genu of the corpus callosum, reflected by a decrease of FA and AD, as well 

as an increase of RD at the posterior end of the same branch. This might suggest 

a decrease of myelination, or axonal damage, occurring in specific parts along 

the tract as people’s brain age. Finally, the lack of association between 

microstructural alterations and cognitive performance seen in this study might 

indicate the cingulum resistance to cognitive decline with aging (Zahr, Rohlfing 

et al. 2009), and the old people tendency of using compensation mechanisms to 

carry out cognitive tasks.  

5.3. Overall Discussion 

This thesis work aimed to contribute to the existing literature on the changes of 

the limbic system in crucial time periods across lifespan by using structural 

neuroimaging. Findings of the three studies highlighted a common factor, that is 

how both aging processes and traumatic experiences affected brain areas and 

structures belonging to the limbic system. The limbic system is formed by specific 

cortical and sub-cortical structures and connections involved in the emotional 

responses to life situations (Bove et al., 2016). Both stress in adolescence and 

aging were found to affect the structural morphology of this system, reflected in 

altered behavioural responses and cognitive decline. The limbic system 

development is not homogeneous across lifespan (Schneider et al., 2007): sub-



121 
 

cortical structures mature earlier compared to the frontal areas, that are 

responsible for the “rational” response to life events. This is why adolescents tend 

to have a higher level of impulsivity, risk taking behaviours and tendency to 

develop depressive symptoms as response to stressful situations (Merz, He et 

al. 2018). In fact, impulsivity was found to be associated to reduced cortical 

thickness in frontal regions, such as the pars orbitalis and superior frontal gyrus, 

whereas reduced hippocampal volumes were associated to higher number of 

depressive symptoms. The high level of plasticity of the brain during adolescence 

makes the limbic system one of the easiest targets for the development of 

neuropsychiatric disorders. In their multimodal study, Chen and colleagues 

combined structural (voxel-based morphometry) and functional connectivity (FC) 

to investigate changes in the brain structures and connectivity attributed to the 

limbic system (Chen, Wang et al. 2018). A decrease of grey matter was seen in 

the left anterior cingulate cortex (ACC) and right hippocampus of patients 

compared to healthy controls, along with a decrease of connectivity between the 

left ACC and the left orbitofrontal cortex (OFC).  

The limbic circuits and the correct functioning of the HPA axis influence each 

other in situation of chronic and acute stress (Jankord and Herman 2008). The 

reactivity of the HPA axis is, in fact, associated to the pituitary gland volume 

(PGV) development in mid and late adolescence (Ganella, Allen et al. 2015); a 

higher number of childhood stressful experiences can lead to an accelerated 

PGV growth especially in young girls, suggesting a gender-based difference in 

stress response. The underlying mechanisms responsible for the correct 

emotional responses to stress might be affected by the continual activation of the 

HPA and the prolonged release of cortisol. This could cause a substantial 
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anatomical reorganization of stress-related circuits (Jankord and Herman 2008), 

and lead to the premature development of mood-related disorders, reflecting an 

accelerated maturation of brain circuits in the limbic system.  

Stress and the development of depressive symptoms were also shown to 

influence the relation between the HPA axis activation and motivation in 

adolescents (Rudolph, Troop-Gordon et al. 2018). A higher level of motivation 

and engagement was associated to reduced functioning of the HPA, whereas the 

opposite was also seen. Internalization and externalization of depressive 

symptoms were also associated to the activation of the HPA axis (Kuhlman, 

Geiss et al. 2018), representing risk factors for the development of psychiatric 

disorders in adolescents.  

One study investigated the influence that depressive symptoms developed by 

stressful events had on maturation coupling (another term to indicate cortical 

development during adolescence) (Vijayakumar, Allen et al. 2017), especially in 

the amygdala across time. Cognitive and neuroimaging data were acquired at 

three time points, and maturation coupling was negatively associated to the 

number of depressive symptoms, especially in the right amygdala and the 

prefrontal cortex over time. Another longitudinal study investigated the changes 

in cortical thickness, surface area and volume in limbic areas, such as 

hippocampus and amygdala (Bos, Peters et al. 2018) in adolescents divided into 

two groups based on the number of depressive symptoms (Low depression and 

High depression). Over time, adolescents with higher number of depressive 

symptoms showed a more severe reduction of cortical thickness in the frontal 

lobe, specifically in precentral, paracentral and lateral orbitofrontal areas.   
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Throughout adulthood and in aging, literature showed that reduced amount of 

serotonin, a neurotransmitter involved in improving mood and social behaviour, 

appetite and memory (Berger, Gray et al. 2009), could lead old people to be more 

sensitive to negative emotions (Meltzer, Smith et al. 1998). In general, studies on 

the relation between emotional perception and aging affirmed older people have 

the ability of being more stable emotionally (Lim, Zipursky et al. 1990), showing 

no relationship between limbic networks and age, whereas all the other networks 

were found to decrease in connectivity coherence over time (Bajaj, Alkozei et al. 

2017). Nevertheless, when an event or emotion was perceived as negative, older 

people tended to lose this stability (Kaszniak and Menchola 2012), showing 

volumetric and connectivity reductions in brain areas belonging to the limbic 

system (Mather 2012, Gunbey, Ercan et al. 2014). Aging was associated with 

reduction in the hippocampal volume (Lim, Zipursky et al. 1990), as well as with 

structural alterations in the frontal regions involved in emotional processing, such 

as ACC and ventromedial PFC (Mather 2012). One study investigating fibre 

tracts microstructure of the limbic system showed a negative correlation between 

age and the FA of left hippocampus, bilateral parahippocampal gyrus, and fornix. 

The ADC values of right amygdala and left cingulum interestingly also showed a 

negative relationship with age (Gunbey, Ercan et al. 2014), confirming a 

decrease of the anisotropy level in older adults.  

Negative life events and stress may, therefore, affect emotional balance in two 

critical periods of life, such as adolescence and aging. The level of cortisol 

produced as response to adverse situations is regulated by the amount of 

glucocorticoid receptors (GRs) in the body, that have the highest concentration 

in adolescence and older adulthood (Lupien, McEwen et al. 2009), increasing the 
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sensitivity of limbic structures to external events. Furthermore, the high level of 

brain plasticity in those years may lead to structural changes which could be 

permanent and last throughout adulthood, influencing the way people age (Bajaj, 

Alkozei et al. 2017). This can contribute to increase the risk of developing 

psychiatric disorders in adulthood, and to affect brain aging processes, 

accelerating cognitive decline (Mather 2012). 

A large part of this thesis work was related to data analysis, including learning 

new software and statistical models in each project. Methodological approaches 

and study design were thought carefully to answer the research questions of 

interest. This brought to spend a considerable amount of time in self-learning 

neuroimaging methods and coding languages to carry out statistical analyses. In 

the first study, besides understanding the graph theory terminology and concepts 

never used before, a huge amount of work went in data cleaning and sorting all 

the demographic information and cognitive scores used in the analysis. Further 

challenges were found in the computational part to extract networks from GM 

segmentations and adjusting it to the data, as additional steps were required 

before using the program. Finally, the whole graph theory analysis was based on 

Matlab scripts which were developed in the lab, calculated at more than one 

sparsity level, which also protracted the computational times. In the second 

study, the biggest challenge was to segment the hippocampus subfields 

longitudinally, as it extended the computational times considerably. For some 

participants, the segmentation did not run successfully after few attempts, and 

this also delayed the extraction of the volume values and the final statistical 

analysis. The use of TCHPC and the development of a program within it to run 

the segmentation required also time in understanding how to perform this step in 
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the most efficient and time-saving way. Lastly, in the third project, the 

segmentation of the parahippocampal tract developed in the lab was the step that 

required more time. Vast search in previous published literature on the 

hippocampus anatomy and parahippocampal WM tract was done to determine 

the best location to draw the second ROI. Finally, as the tractography was run in 

native space, time was required to inspect tractography output subject by subject. 

In some cases, the ROIs set drawn on the template was not fitting the different 

brain shape of specific subjects, and this led to draw individual ROIs to run 

tractography successfully.   

This PhD work was carried out by using secondary data for all the three projects. 

In the first two studies, data were obtained from the IMAGEN Consortium, 

whereas in the third study data were part of the Neuroskill project. Working with 

secondary data had some strengths, but also many downsides. Having data 

already acquired made possible to focus on data analysis mainly, which gave 

enough time to learn more about methodological approaches and software. Also, 

some steps, for example a first data quality check, were already performed by 

other people of the IMAGEN Consortium, which saved time in excluding bad 

quality MRI images. All the demographic information and scores for 

neuropsychological tests were already organized and sorted in spreadsheets for 

each participant. Regarding the downsides, working with secondary data did not 

give the opportunity to acquire data. This could represent a big limitation in the 

study methodology, as data collection was not designed with the specific 

question in mind. The type of images acquired, or the cognitive tests used might, 

therefore, not always represent the optimum data to answer the research 

question. A lot of time was spent in learning all these steps performed by other 
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people, therefore communication among all the parts involved in the project was 

crucial to have a clear idea of all the data available for the study. On a more 

general level, another step that represented a downside was organizing all the 

data, i.e. excluding participants with missing data across all the demographic 

information and cognitive tests scores, since it required a lot of data cleaning 

before the actual data analysis could be performed. Finally, especially in the first 

study, the Matlab-based program chosen for the extraction of networks from GM 

segmentations required the understanding of the logic behind the software and 

the technical knowledge of the programming language used.  

5.3.1. Limitations 

5.3.1.1. Choice of Brain Parcellation in Connectivity Analysis 

The investigation of brain connectivity changes in adolescents who experienced 

stress was performed by using an ROI-based atlas. The template chosen in this 

study was the 17 networks and four hundred parcellations of Yeo. While the sub-

division in 400 parcellations gave a better understanding of where potential 

structural connectivity changes might occur, one potential disadvantage was that 

parcellations included only the cortex, and none of the sub-cortical structures. 

This represented a limitation in understanding what happens in the brain 

connectivity with stress, without considering networks and connections including 

limbic structures, such as amygdala, basal ganglia and thalamic nuclei. A 

potential solution could be incorporating an additional atlas including these 

missing brain structures. Furthermore, this atlas was built based on resting-state 

functional connectivity, which could be a factor influencing the results in a study 

on structural connectivity. In relation to the cognitive component, only a sub-
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group of questions from the LEQ was chosen, which could determine a different 

sub-division of the population.  

5.3.1.2. Restrictions in Longitudinal Analysis 

In this study, the hippocampal subfields were calculated based on three time 

points, and volumes were extracted for all the time points. Unfortunately, it was 

not possible to investigate longitudinal changes at the third time point as most of 

the cognitive and demographic information were missing. This was due to the 

fact the data used for this analysis are part of a research project still on, and 

information still needed to be gathered and made available. Data being collected 

across different European countries has been a factor that delayed such process. 

Another limitation of this study was that some participants MRI scans did not run 

successfully across the three time points, as FreeSurfer was not able to extract 

volume values in all the participants. Some of them, in fact, had only one time-

point run successfully, other two time points, which led to the choice of removing 

those participants for the longitudinal analysis. Hemispherical differences were 

also seen when volumes were extracted. In fact, for some participants, the 

volume information was obtained only for one hemisphere. Even in this case, 

participants were excluded from the analysis. The results of this analysis were 

explorative, and the criteria used to define the two groups could influence the 

outcome. In fact, in this study, the total score of LEQ was used as a metric to 

measure stress, but a further analysis could be done by considering the number 

of events rather than the score. Another factor to consider was the number of 

subfields and the way they were analysed longitudinally. The methodological 

approach to investigate longitudinal changes only on the subfields associated to 

stress that were most cited in literature, and summing the volumes when the 
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subfields were divided into head and body, was made to reduce the number of 

variables to put in the statistical model, which could affect the final results. 

Another significant limitation for this second study was that the stress levels 

measured at the second timepoint have not been included in the statistical 

analysis. Stress-related differences in the subfields volume were explored 

considering the grouping criteria at baseline. This was the very first question to 

answer to understand the potential effect of two different levels of stress (i.e. Low 

and High stress) on the hippocampal subfields. After answering this question, the 

next step would have been to consider the stress level at follow-up 2 as grouping 

criteria for the longitudinal analysis. Unfortunately, this was not possible for lack 

of time; therefore, investigating how the change of stress level between baseline 

and follow-up 2 might affect the analysis on the hippocampal subfields could 

represent one of the next steps in this study.  

5.3.1.3. Limitations in Running the Tractography in Native Space 

Each branch of the cingulum bundle was manually segmented by using both AND 

and NOT gates. Tracts were obtained with an atlas-based tractography approach 

that was performed on brains in native space. Further inspection and string 

removal were necessary after the ABT. This method was generally faster but has 

a few limitations: it was strictly related to the structure of the participant brain, and 

results needed to be checked to make sure the tractography worked correctly, 

since there could be sporadic fibres not belonging to the tract of interest. This 

happened for approximately 1/3 of the population, as some brains had a very 

different shape compared to the template chosen. In those cases, ROIs were 

drawn manually on those specific subjects and then tractography was run on 
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single participant’s scan. This step was performed visually, and fibres were 

removed manually. The level of precision during this stage could then be a pivotal 

factor influencing the calculation of the diffusivity measures. 

5.5. Future Directions 

The data used for the first two studies have the potential of giving much more 

information needed in relation to the development of psychiatric diseases in 

adolescents and young adults. In this work, only the cognitive component of 

stress was considered, but several other factors might lead to disruption in the 

neural circuits of adolescents. Replicating the same analysis carried out in this 

work with other cognitive measures will give a better understanding of the 

plasticity and the effect that every single event has on the brain. Considering, for 

example, the development of depressive symptoms and how it affects brain 

connectivity and sub-cortical structures represents the next step that could 

explain how stressful events start a process of structural alterations in the brain, 

and trigger the development of mood-related and psychiatric diseases at a young 

age. In IMAGEN, the Development and well-being assessment (DAWBA) is used 

to define depressive symptomatology in youths, where different scores represent 

a different probability to develop depressive symptoms (with a score of 0, the 

percentage is <0.1%, with scores between 1 and 3, the percentage is less or 

equal to 50%, with scores equal to 4 and 5, the percentage is higher than 50%). 

Not only this, but also how the genetic component and the type of lifestyle 

adolescents have may account for the aggravation of brain damage in structure 

and function (Biddle and Asare 2011, Xia and Yao 2015, Sallis, Evans et al. 

2017). A more gender-specific analysis can also be performed. It is known from 

literature that boys and girls experience and process life events in different ways, 
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internalizing feeling in different ways and externalizing them with different 

behavioural responses. It would be interesting then to see if such change in 

behaviours is related to different brain regions affected. The next analysis will 

focus on the effect of depressive symptoms developed across the next two time 

points and explore the relationship they have with potential structural atrophy and 

alterations in organization and properties of brain networks.  

Future research on stress and MRI is crucial to understand that what happens in 

the first years of life can have a lifetime impact on people. More longitudinal 

studies will be of great help in monitoring the brain alterations due to stress on 

different levels. To do so, a multi-modal approach could be used, considering 

more than one aspect of the brain, i.e. not only changes in its structure, but also 

in functionality, chemical and hormonal balance. Nowadays, big data have been 

using in helping answering brain-related questions, combining different 

disciplines, such as neuroimaging, artificial intelligence, data miming and 

machine learning algorithms, to diagnose and predict the development of 

psychiatric disorders on populations.  

5.6. Conclusion  

This thesis work showed how structural imaging can be of great help and 

guidance to investigate anatomical changes in the brain at different stages of life. 

The three studies forming this work illustrate that in crucial life stages as 

adolescence and aging, the brain is particularly sensitive at the level of the limbic 

structures. The microstructural changes of the anterior part of the cingulum, the 

changes in brain connectivity at the level of limbic and salience networks, and 

finally the relationship between hippocampal subfields and level of stress and 
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neuroticism, suggest how the limbic system represents a main target throughout 

life. The structural changes seen in adolescents experiencing high levels of 

stress are found to be part of same brain circuits that are affected in healthy older 

people. Such areas are part of limbic circuits and they suggest an underlying 

accelerated maturation of emotional circuits in the adolescent brain as an 

adaptation mechanism to stress. 

It is important to understand the association between the anatomical brain 

connections between regions involved in the limbic system, to be able then to 

explore the associations between these connections and the behavioural and 

emotional responses to external stimuli. Increasing knowledge on how people’s 

brain is structurally impacted by negative experiences can lead to develop more 

efficient therapeutic approaches to treat psychiatric disorders and diseases 

related to different stages of life. 
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Appendix A 

Supplementary material of the manuscript entitled: 

“STRUCTURAL CONNECTIVITY ALTERATIONS OF THE 

CORTEX IN ADOLESCENTS DUE TO STRESSFUL LIFE 

EVENTS” by Sibilia et al. 

1. Supplementary introduction 

 

Graph theory is a mathematical approach to further understand brain connectivity 

(Sporns 2013), that defines the brain as a network, made of “nodes” (i.e. regions 

of interest, or also called vertices) and “edges” (structural or functional 

connections between brain regions) (van den Heuvel and Sporns 2013). Graphs 

can be distinguished in directed or undirected, where the directed graphs have 

edges connected to vertices in a specific direction (Bullmore and Sporns 2009). 

Connectivity correlation coefficients are estimated between all possible node 

pairs, building a connectivity matrix (or sometimes called also adjacency matrix); 

a threshold is then applied to binarize the weighted correlation matrix, such that 

an edge is present if its value is higher than the threshold (taking on a value of 1; 

if its value is lower than the threshold, then it is 0). The binary adjacency matrix 

is used to compute graph metrics (Tijms, Series et al. 2012). For weighted 

graphs, edges are indicated by weights, which represent the connectivity strength 

between two nodes considered. Metrics used in graph analysis can provide 

information about brain networks at both a “global” level (considering the whole 

brain) and “local” level (describing the properties at the level of each node) in a 

given network (Ho, Dennis et al. 2018).  
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Graph theory measures describe the network properties of segregation, 

integration, centrality and density (Bullmore and Sporns 2009) (Figure A1). 

Segregation allows information flow and processing within highly connected 

groups of brain regions, called clusters; integration refers to the global 

transmission of information across brain regions (Sporns 2013). Segregation and 

integration are two important properties in brain networks, allowing information 

to flow rapidly at a low wiring cost. Cluster coefficient (CP) is a measure of 

functional segregation in the brain, which is the ability of some brain areas to 

cluster because of structural or functional connections; it calculates the number 

of connections among a node's topological neighbours (Sporns 2013), also 

defined as the number of closed triangles that a node’s neighbours form. A brain 

region (node) is defined neighbour of node i when it is connected to node i by 

and edge (Stam and Reijneveld 2007). Cluster coefficient can be measured at a 

local level, indicating the tendency of each node to form clusters with its 

neighbours, and at a global level, calculating the mean cluster coefficient. High 

CP means high resilience of the network against random alterations. 
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Figure A1: Graphical representation of graph theory metrics considered in this study. 

Betweenness and degree are measures of node centrality, cluster coefficient described 

segregation properties and characteristic path length represents the integration property of 

brain networks. The last image represents the organization of the brain as graph, defined 

“small-worldness”, which influences the network economy. 
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2. Supplementary Methods 

 

MRI Quality check 

 
Images were checked and classified as: A (best image quality), B 

(intermediate image quality) or C (bad image quality). The Consortium 

provided material with information on the parameters used to determine 

image quality: 

1) Ring (R1 at R4): Global motion 

2) Blink (BL1 or BL2): eyes motion 

3) Noise (N1 or N2): antenna’s quality, sequence parameters 

4) Small field of view (1 or 2): sequence parameters, operator dependant 

5) Artefacts: sequence parameters (noise on one slice), operator dependant 

(metal object) 

6) Others: anatomical anomalies (cyst, large ventricles)  

Images were classified as “A” (best image quality) if they satisfied the following 

criteria: 

a) R0 

b) BL0 

c) N0 or N1 

d) Small field of view 1 

e) BL at the bottom 
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Figure A2: Diagram describing the steps to obtain the population size used in this 

study, including image quality check and missing demographic information  

 

Figure A3 represents the list of negative life events we considered in our study. 

Life Event Questionnaire is a 39-question test, where each question represents 

a specific life event, which can be classified as negative, neutral or positive. 

Participants were asked to indicate if such event ever happened in their lifetime, 

if it happened in the last year of their life, and to rate the perceived desirability of 

each event on a numerical scale from -2 to +2 (-2= ‘very unhappy’ and +2= ‘very 

happy’). The number of questions are from a previous study (Galinowski, Miranda 

et al. 2015) plus two more, i.e. “changed school” and “got poor grades at school”, 

because we decided these two events representing a potential cause of stress. 
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Figure A3: list of negative life events used in this study Galinowski et al., 

2015), plus two additional questions.  
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2.1. Atlas-based ROI approach 

 

 

Figure A4: Representation of the 400 parcel and 17 network parcellation used in this study to 

carry out an ROI-based analysis (Yeo et al., 2011). 

 

To get the coordinates, we calculated the centroids for each parcel/ROI. To do 

so, we used the command: 3dcalc –prefix output.nii –a input –expr 

‘within(a,nROI, nROI)’ in AFNI to extract each ROI from the brain 

parcellation singularly; afterwards, we used a command in FSL to calculate the 

coordinates of the centroid: fslstats –t output.nii –C. 

 

Figure A5: Sagittal view of the single parcels that form the 17 networks. Different 

colors identify the networks according to the lookup table indicated by Schaefer et 

al., 2018. The list of all the ROI order is available here: 

https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcell

ation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_400Parcels_17

Networks_order.txt. 

https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_400Parcels_17Networks_order.txt
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_400Parcels_17Networks_order.txt
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI/Schaefer2018_400Parcels_17Networks_order.txt
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2.2. Resize of the correlation matrices 

 

Figure A6 describes the steps we did to reshape the correlation matrices for each 

individual in matrices of size 400x400 nodes (i.e. the number of parcels in 

Schaefer template). As shown in the image below, we took all the elements (i.e. 

indices) of the rows belonging to the ROI a, and all the elements of the columns 

belonging to the ROI b. We then calculated the average across all the two ROIs 

values, and we stored the new value in position (a,b) of the reshaped matrix.  

 

Figure A6: Graphical representation of the correlation matrices reshape steps. 
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3. Supplementary Results 

3.1. Results of graph theory comparisons between the two groups with extreme 

stress values (N=487) at each sparsity level  
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Figure A7: 95% confident intervals (CI) values of global graph theory measure, which showed 

no significant differences between groups. Abbreviations: sp=sparsity, LS=Low Stress, HS=High 

Stress, DC= Degree Centrality, CP= Cluster Coefficient, LP=Path Length, GE=Global Efficiency, 

SW=Small Worldness. 

 

4. Supplementary discussion 

It has been shown that grey matter volume changes related to negative life 

events in adolescence are linked to the time of when such events happen, as 

well as the type of event they experience: Tyborowska and colleagues (2018) 

divided the event type into two groups, that is personal events (related to 

adolescents’ relationship with parents and themselves) and social ones (related 

to their relationships with peers) (Tyborowska, Volman et al. 2018). Researchers 

found that adolescents between 14 and 17 years old had lower GMV due to NLE, 

and that such reductions depended on the nature of the negative life experience: 

more personal early-life stressful events were associated with larger reductions 

in GMV over anterior prefrontal cortex, amygdala and insula; whereas ongoing 

stress from the adolescents' interactions with their peers was related to smaller 

reductions over the orbitofrontal lobe and anterior cingulate cortex, which are 

involved in emotional processing and reward system. Researchers suggest that 

early-life stress accelerates pubertal development, whereas a difficult social life 

disturbs brain maturation with potential mental health implications. Another study 

taking into account our same psychological test to measure the stress level in 

adolescents, divided the events in three groups, i.e. event related to family, to 

personal distress and accident, measuring the correlation between functional 

connectivity in limbic regions, finding correlation between the type of events and 

the neural response, specifically for the ‘distress’ sub-scale of stressful events 
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(Burt, Whelan et al. 2016). This highlights the fact that the choice of NLEs 

grouping can affect connectivity analysis. In our study, we divided the two groups 

based on the total number of events each teenager experienced in their lifetime. 

It would be worthy looking at the same type of analysis with a different event 

grouping approach.  

 

Supplementary information 

 

Distribution of nodes based on degree centrality for all the sparsity levels 

(from 5% to 35%) in both groups 

 

      DC value (raw)                DC value (z)                                ROI 

109.1 4.738245748       LH_Limbic_TempPole_1 

106.0833333 4.531392096 RH_Limbic_TempPole_2 

105.825 4.513678109 RH_Limbic_TempPole_1 

90.95277778 3.493885796 LH_Limbic_TempPole_2 

88.64722222 3.335793226 LH_Limbic_TempPole_3 

83.65833333 2.993703762 RH_Limbic_TempPole_3 

81.93333333 2.875420044 RH_Limbic_TempPole_4 

80.975 2.809706867 LH_Limbic_TempPole_4 

78.96388889 2.671804432 LH_VisCent_ExStr_4 

74.80277778 2.386475914 LH_VisCent_ExStr_3 

74.08055556 2.336952941 LH_VisPeri_ExStrSup_4 

72.01944444 2.195621993 LH_DefaultC_Rsp_1 

71.83333333 2.182860303 RH_VisCent_ExStr_4 

69.86944444 2.048195909 RH_VisCent_ExStr_2 

69.675 2.034862801 RH_DefaultC_Rsp_1 

69.54166667 2.025720098 RH_ContC_Cingp_1 

69.24444444 2.00533949 RH_DefaultB_AntTemp_1 

66.31388889 1.8043905 LH_VisCent_ExStr_5 

66.21666667 1.797723946 RH_VisCent_ExStr_5 

65.96111111 1.780200432 RH_DefaultC_PHC_1 

65.32777778 1.736772594 RH_VisPeri_ExStrSup_2 

65.275 1.733153607 LH_VisCent_ExStr_1 

64.79166667 1.700011309 LH_DefaultC_PHC_1 

64.3 1.666297593 LH_SomMotA_19 

63.65833333 1.622298335 LH_DorsAttnB_PostC_9 

63.61111111 1.619060294 RH_VisCent_ExStr_6 
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62.69722222 1.556394685 RH_DefaultB_Temp_2 

61.51111111 1.475062725 LH_ContC_Cingp_1 

61.46111111 1.471634211 RH_DorsAttnA_SPL_4 

61.26388889 1.45811063 RH_Limbic_TempPole_5 

61.16111111 1.45106313 LH_Limbic_TempPole_5 

60.73611111 1.421920764 LH_DefaultB_Temp_1 

60.31944444 1.393349818 RH_TempPar_3 

60.15555556 1.382111912 LH_DefaultC_Rsp_2 

59.74722222 1.354112385 LH_VisPeri_ExStrSup_5 

59.22777778 1.318493939 LH_DefaultB_PFCv_2 

58.43611111 1.26420914 LH_DefaultB_Temp_2 

58.30555556 1.255256911 LH_DefaultC_PHC_3 

58.03611111 1.236781032 RH_Limbic_TempPole_6 

57.91944444 1.228781167 LH_SalVentAttnB_PFCv_1 

57.68333333 1.212590964 LH_Limbic_TempPole_6 

57.45277778 1.196781707 LH_ContC_Cingp_2 

57.33888889 1.188972315 RH_VisPeri_ExStrSup_5 

57.31944444 1.187639004 RH_DorsAttnA_TempOcc_1 

57.13888889 1.175258261 RH_SomMotB_S2_9 

56.83611111 1.154496706 LH_VisPeri_ExStrSup_2 

56.77222222 1.150115828 RH_SomMotA_15 

56.23333333 1.11316407 LH_SomMotA_6 

55.91111111 1.091069205 LH_DorsAttnA_TempOcc_1 

55.75833333 1.080593192 RH_DefaultB_Temp_1 
 

Table A1: Distribution of nodes based on degree centrality at sparsity level 5% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

       DC value (raw)              DC value (z)                              ROI 

109.7322835 4.496596748 LH_Limbic_TempPole_1 

107.4015748 4.346310611 RH_Limbic_TempPole_2 

107.2362205 4.335648419 RH_Limbic_TempPole_1 

94.58267717 3.51973686 LH_Limbic_TempPole_2 

90.15748031 3.23439629 LH_VisCent_ExStr_4 

86.8503937 3.021152447 RH_VisCent_ExStr_4 

85.4488189 2.930777676 RH_Limbic_TempPole_3 

84.56692913 2.873912651 LH_Limbic_TempPole_3 

84.35433071 2.860204119 RH_Limbic_TempPole_4 

83.88188976 2.829740712 LH_VisCent_ExStr_3 

81.76377953 2.693163109 LH_Limbic_TempPole_4 

76.17322835 2.33267947 LH_VisCent_ExStr_5 

74.13385827 2.201179101 RH_ContC_Cingp_1 

72.64566929 2.105219371 LH_VisPeri_ExStrSup_4 

72.22047244 2.077802306 LH_VisCent_ExStr_1 

71.47244094 2.02956858 LH_DefaultC_Rsp_1 
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70.54330709 1.969657214 LH_DefaultB_Temp_1 

70.01574803 1.935639744 RH_VisCent_ExStr_6 

68.17322835 1.816832461 RH_DefaultB_AntTemp_1 

68.08661417 1.811247503 RH_SomMotB_S2_9 

67.70866142 1.786876778 RH_VisCent_ExStr_5 

66.66929134 1.719857285 RH_Limbic_TempPole_5 

66.33070866 1.698025177 RH_DefaultC_Rsp_1 

66.09448819 1.682793474 LH_DorsAttnB_PostC_9 

66.01574803 1.67771624 LH_DefaultC_PHC_1 

65.91338583 1.671115835 RH_VisCent_ExStr_2 

64.23622047 1.562970743 RH_DefaultC_PHC_1 

62.8503937 1.473611419 LH_ContC_Cingp_1 

62.49606299 1.450763864 LH_DefaultB_PFCv_2 

62.00787402 1.419285011 RH_VisPeri_ExStrSup_2 

61.97637795 1.417254118 RH_Limbic_OFC_3 

61.23622047 1.369528115 RH_DorsAttnA_SPL_4 

61.15748031 1.364450881 RH_Limbic_TempPole_6 

60.87401575 1.346172837 RH_SomMotA_15 

60.68503937 1.333987475 LH_VisCent_ExStr_7 

60.38582677 1.314693984 LH_Limbic_OFC_1 

60.16535433 1.300477728 LH_ContC_Cingp_2 

60.16535433 1.300477728 RH_SalVentAttnA_ParMed_2 

59.49606299 1.257321236 RH_SomMotB_S2_5 

58.91338583 1.219749702 LH_SomMotA_6 

57.83464567 1.150191591 RH_SomMotA_20 

57.70866142 1.142068016 LH_Limbic_TempPole_6 

57.7007874 1.141560293 RH_DefaultB_PFCv_1 

57.54330709 1.131405824 LH_DefaultB_Temp_2 

57.22834646 1.111096887 LH_SomMotA_19 

56.62992126 1.072509906 LH_VisPeri_ExStrSup_5 

56.21259843 1.045600564 LH_DorsAttnA_TempOcc_1 

55.75590551 1.016152605 LH_Limbic_TempPole_5 

55.44094488 0.995843667 LH_DefaultC_Rsp_2 

55.41732283 0.994320497 RH_Limbic_OFC_5 
 

Table A2: Distribution of nodes based on degree centrality at sparsity level 5% in High Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

 

    DC value (raw)                DC value (z)                             ROI 

137.85 3.877297334 LH_Limbic_TempPole_1 

137.7527778 3.870781598 RH_Limbic_TempPole_1 

136.65 3.796874541 RH_Limbic_TempPole_2 

128.6972222 3.263887374 LH_Limbic_TempPole_3 
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127.4972222 3.183464582 LH_Limbic_TempPole_2 

121.4138889 2.775765701 RH_Limbic_TempPole_3 

119.8888889 2.673561735 RH_Limbic_TempPole_4 

117.6833333 2.525747621 LH_Limbic_TempPole_4 

115.8527778 2.403065629 LH_VisCent_ExStr_3 

115.6638889 2.390406486 LH_VisCent_ExStr_4 

115.1222222 2.35410453 LH_VisPeri_ExStrSup_4 

111.5888889 2.117304085 RH_DefaultC_Rsp_1 

110.3111111 2.031668704 RH_VisCent_ExStr_4 

110.2611111 2.028317754 LH_DefaultC_Rsp_1 

109.6222222 1.985500063 RH_VisCent_ExStr_2 

109.4611111 1.974702559 LH_DorsAttnB_PostC_9 

108.0805556 1.882179114 LH_SomMotA_19 

107.5888889 1.849228109 RH_DefaultB_AntTemp_1 

107.1277778 1.818324906 RH_DefaultC_PHC_1 

106.5638889 1.78053364 RH_ContC_Cingp_1 

105.4944444 1.708860549 RH_VisCent_ExStr_5 

104.7833333 1.661202598 RH_SalVentAttnA_ParMed_8 

104.2888889 1.628065428 RH_DorsAttnA_SPL_4 

103.6805556 1.58729554 LH_DefaultC_PHC_1 

103.3972222 1.568306825 RH_VisPeri_ExStrSup_2 

103.2944444 1.561418762 LH_VisCent_ExStr_5 

102.8055556 1.528653921 RH_DefaultB_Temp_2 

102.7805556 1.526978446 LH_VisCent_ExStr_1 

102.6555556 1.518601071 RH_VisCent_ExStr_6 

102.6277778 1.516739433 LH_SomMotA_6 

101.925 1.469639973 LH_SomMotA_5 

101.7055556 1.454933027 LH_VisPeri_ExStrSup_5 

101.6472222 1.451023586 LH_SomMotA_13 

101.0638889 1.411929173 LH_DefaultC_Rsp_2 

100.45      1.370786957 RH_SomMotA_15 

99.89722222 1.333740346 RH_VisPeri_ExStrSup_5 

99.60277778 1.314006976 LH_DefaultB_Temp_1 

99.58888889 1.313076156 RH_TempPar_3 

99.19722222 1.28682705 LH_ContC_Cingp_2 

99.10277778 1.280497479 LH_SalVentAttnB_PFCv_1 

99.01666667 1.274726399 LH_DefaultB_PFCv_2 

98.74722222 1.256668503 RH_ContA_Cinga_1 

98.725    1.255179192 LH_Limbic_TempPole_5 

98.50277778 1.240286082 RH_Limbic_TempPole_5 

98.42777778 1.235259658 RH_SomMotB_S2_9 

98.33333333 1.228930086 RH_SalVentAttnA_ParMed_2 

98.21111111 1.220738876 RH_SalVentAttnA_ParMed_5 

97.88055556 1.198585375 LH_ContA_Cinga_1 

97.50555556 1.173453252 RH_DorsAttnA_TempOcc_1 

96.60833333 1.113322321 RH_Limbic_TempPole_6 
 

Table A3: Distribution of nodes based on degree centrality at sparsity level 10% in Low Stress 
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group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

      DC value (raw)               DC value (z)                           ROI 

139.3307087 3.607009761 RH_Limbic_TempPole_2 

139.2913386 3.604616536 LH_Limbic_TempPole_1 

139.2755906 3.603659246 RH_Limbic_TempPole_1 

132.4645669 3.189631221 LH_Limbic_TempPole_2 

132.4015748 3.18580206 LH_VisCent_ExStr_4 

129.1968504 2.990993498 RH_VisCent_ExStr_4 

125.8110236 2.785176098 RH_Limbic_TempPole_3 

124.4330709 2.701413203 RH_Limbic_TempPole_4 

124.0866142 2.680352817 LH_VisCent_ExStr_3 

123.480315 2.643497144 LH_Limbic_TempPole_3 

119.1496063 2.38024233 LH_Limbic_TempPole_4 

116.8346457 2.239520666 LH_VisCent_ExStr_5 

115.3385827 2.148578094 RH_ContC_Cingp_1 

114.9448819 2.124645838 LH_VisPeri_ExStrSup_4 

113.2440945 2.021258493 LH_VisCent_ExStr_1 

113.1181102 2.013600171 LH_DorsAttnB_PostC_9 

112.0708661 1.949940371 RH_SomMotB_S2_9 

110.5669291 1.858519154 LH_DefaultC_Rsp_1 

109.8267717 1.813526513 LH_DefaultB_Temp_1 

108.503937 1.733114133 RH_VisCent_ExStr_6 

107.8661417 1.694343879 RH_SalVentAttnA_ParMed_2 

107.6141732 1.679027235 RH_SomMotA_15 

107.4173228 1.667061107 RH_DefaultB_AntTemp_1 

106.5354331 1.613452854 RH_VisCent_ExStr_2 

105.7322835 1.564631053 RH_VisCent_ExStr_5 

105.3858268 1.543570668 RH_SomMotA_20 

105.3464567 1.541177442 RH_Limbic_TempPole_5 

105.2598425 1.535912346 LH_ContC_Cingp_2 

105.2283465 1.533997765 LH_DefaultC_PHC_1 

104.3543307 1.480868157 LH_SomMotA_6 

103.3385827 1.419122937 RH_DorsAttnA_SPL_4 

102.9606299 1.396147972 LH_SomMotA_19 

102.3307087 1.357856363 RH_DefaultC_Rsp_1 

102.3228346 1.357377718 RH_DefaultC_PHC_1 

102.1653543 1.347804815 LH_DefaultB_PFCv_2 

101.4724409 1.305684045 RH_SomMotA_14 

101.0314961 1.278879919 RH_VisPeri_ExStrSup_2 

100.6771654 1.257340888 RH_ContA_IPS_3 

100.5984252 1.252554437 LH_ContC_Cingp_1 

100.5511811 1.249682567 RH_SomMotA_16 

100.519685 1.247767986 LH_DorsAttnA_SPL_5 

100.503937 1.246810696 LH_Limbic_OFC_1 
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100.3779528 1.239152374 LH_VisCent_ExStr_7 

100.0629921 1.220006569 RH_Limbic_OFC_3 

98.72440945 1.1386369 RH_SomMotB_S2_5 

98.59055118 1.130499933 RH_SomMotA_8 

98.54330709 1.127628062 LH_DefaultC_Rsp_2 

97.83464567 1.084550002 LH_VisPeri_ExStrSup_5 

97.81102362 1.083114066 RH_Limbic_TempPole_6 

97.77165354 1.080720841 LH_TempPar_2 
 

Table A4: Distribution of nodes based on degree centrality at sparsity level 10% in High Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

        

 

      DC value (raw)              DC value (z)                            ROI 

160.1916667 3.269268984 RH_Limbic_TempPole_1 

159.5055556 3.21346505 LH_Limbic_TempPole_3 

158.2138889 3.10840906 RH_Limbic_TempPole_2 

157.4277778 3.044471758 LH_Limbic_TempPole_1 

155.8972222 2.919986058 LH_Limbic_TempPole_2 

151.7944444 2.586292085 RH_Limbic_TempPole_3 

150.6527778 2.493436146 RH_Limbic_TempPole_4 

150.3222222 2.46655085 LH_VisCent_ExStr_3 

147.7027778 2.25350182 LH_VisPeri_ExStrSup_4 

147.4861111 2.235879525 LH_Limbic_TempPole_4 

147.1388889 2.207638668 RH_SalVentAttnA_ParMed_8 

146.6277778 2.166068125 LH_DorsAttnB_PostC_9 

146.025 2.117041997 LH_VisCent_ExStr_4 

145.075 2.03977501 RH_DefaultC_Rsp_1 

144.7305556 2.01176008 LH_SomMotA_19 

144.2527778 1.97290066 RH_VisCent_ExStr_2 

142.7805556 1.853159424 LH_SomMotA_6 

142.0611111 1.794644367 LH_SomMotA_5 

141.9194444 1.783122097 RH_VisCent_ExStr_4 

141.6694444 1.76278868 RH_DefaultC_PHC_1 

141.4416667 1.744262677 LH_DefaultC_Rsp_1 

141.2888889 1.7318367 RH_DefaultB_AntTemp_1 

141.1472222 1.72031443 LH_SomMotA_13 

139.1277778 1.556065602 RH_SomMotA_15 

139.1 1.553806334 RH_VisCent_ExStr_5 

138.7833333 1.528050672 RH_DorsAttnA_SPL_4 

138.2444444 1.484220861 RH_SalVentAttnA_ParMed_5 

138.0916667 1.471794883 RH_SalVentAttnA_ParMed_2 
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137.8694444 1.453720735 RH_VisPeri_ExStrSup_5 

137.2388889 1.402435337 RH_DefaultB_Temp_2 

137.2305556 1.401757557 RH_SomMotA_8 

137.125 1.393172336 LH_DorsAttnB_FEF_3 

137.0555556 1.387524165 LH_DefaultC_PHC_1 

137.0194444 1.384587115 LH_ContA_Cinga_1 

136.9527778 1.379164871 RH_SomMotA_14 

136.9305556 1.377357456 LH_VisPeri_ExStrSup_5 

136.7777778 1.364931479 RH_VisCent_ExStr_6 

136.1472222 1.313646081 LH_DefaultC_Rsp_2 

136.0138889 1.302801592 RH_VisPeri_ExStrSup_2 

135.7527778 1.281564467 LH_VisCent_ExStr_5 

135.6277778 1.271397758 RH_ContC_Cingp_1 

135.4916667 1.260327342 LH_SomMotA_7 

135.3833333 1.251516195 LH_VisCent_ExStr_1 

135.3416667 1.248127292 RH_ContA_Cinga_1 

135.0694444 1.225986459 RH_SomMotA_20 

134.9555556 1.216723458 RH_SomMotA_17 

134.9555556 1.216723458 RH_DorsAttnA_TempOcc_1 

134.8555556 1.208590091 LH_SalVentAttnB_PFCv_1 

134.7805556 1.202490066 LH_DorsAttnB_PostC_2 

134.4555556 1.176056623 LH_ContC_Cingp_2 
 

Table A5: Distribution of nodes based on degree centrality at sparsity level 15% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

 

    DC value (raw)                  DC value (z)                            ROI 

164.6141732 3.166168988 LH_VisCent_ExStr_4 

162.3622047 3.006380963 RH_Limbic_TempPole_1 

161.2834646 2.929839147 RH_Limbic_TempPole_2 

160.8031496 2.895758484 RH_VisCent_ExStr_4 

160.2519685 2.856649527 LH_Limbic_TempPole_2 

159.6850394 2.816423171 LH_Limbic_TempPole_1 

157.3149606 2.648254655 LH_VisCent_ExStr_3 

156.4566929 2.587356422 RH_Limbic_TempPole_3 

155.4488189 2.5158429 RH_Limbic_TempPole_4 

154.7086614 2.463325158 LH_Limbic_TempPole_3 

151.3858268 2.227554016 LH_DorsAttnB_PostC_9 

150.4409449 2.160510089 LH_VisCent_ExStr_5 

149.9370079 2.124753328 LH_VisPeri_ExStrSup_4 

149.4094488 2.087320469 LH_Limbic_TempPole_4 

148.4409449 2.018600445 RH_SalVentAttnA_ParMed_2 

147.3385827 1.94038253 RH_SomMotB_S2_9 
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146.4724409 1.878925598 RH_SomMotA_15 

146.2440945 1.862723315 LH_VisCent_ExStr_1 

146.2047244 1.859929818 RH_SomMotA_20 

145.7874016 1.830318751 RH_ContC_Cingp_1 

144.0708661 1.708522284 LH_DefaultB_Temp_1 

143.0551181 1.636450063 LH_SomMotA_6 

142.9370079 1.628069572 RH_SomMotA_14 

142.8503937 1.621923879 RH_ContA_IPS_3 

142.511811 1.597899805 RH_VisCent_ExStr_2 

141.5984252 1.533090676 RH_SomMotA_8 

141.5905512 1.532531977 LH_SomMotA_19 

141.5826772 1.531973277 RH_SomMotA_16 

141.2834646 1.510742701 RH_DefaultB_AntTemp_1 

140.9133858 1.484483829 LH_ContC_Cingp_2 

140.6535433 1.46604675 LH_DefaultC_Rsp_1 

140.4488189 1.451520565 RH_DorsAttnB_FEF_3 

139.4488189 1.380565743 RH_VisCent_ExStr_6 

139.4094488 1.377772246 LH_DorsAttnB_FEF_3 

139.3307087 1.372185252 LH_DorsAttnA_SPL_5 

139.1181102 1.357100369 RH_DorsAttnA_SPL_4 

138.8818898 1.340339387 RH_Limbic_TempPole_5 

137.5984252 1.249271387 LH_TempPar_2 

137.5669291 1.247036589 LH_DefaultC_Rsp_2 

137.4251969 1.23698 LH_DefaultC_PHC_1 

137.4094488 1.235862602 LH_DefaultB_PFCv_2 

136.8031496 1.192842749 RH_SomMotA_6 

136.6535433 1.18222746 RH_VisCent_ExStr_5 

136.6456693 1.181668761 LH_SalVentAttnA_ParMed_2 

136.5511811 1.174964368 LH_Limbic_OFC_1 

136.3937008 1.16379038 LH_VisCent_ExStr_7 

135.9527559 1.132503215 RH_SomMotA_2 

135.7716535 1.119653129 RH_DorsAttnB_PostC_4 

135.1811024 1.077750675 LH_DorsAttnA_SPL_6 

134.8818898 1.056520098 LH_VisPeri_ExStrSup_5 
 

Table A6: Distribution of nodes based on degree centrality at sparsity level 15% in High Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

     DC value (raw)               DC value (z)                               ROI 

187.2388889 2.932386233 LH_Limbic_TempPole_3 

184.9194444 2.682677393 RH_SalVentAttnA_ParMed_8 

181.9361111 2.361495004 LH_VisCent_ExStr_3 

181.1555556 2.277461251 LH_Limbic_TempPole_2 

179.6555556 2.1159729 LH_DorsAttnB_PostC_9 

179.1805556 2.064834922 RH_Limbic_TempPole_1 
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178.4805556 1.989473691 LH_SomMotA_6 

178.1833333 1.957475073 RH_Limbic_TempPole_3 

178.1305556 1.951793075 LH_SomMotA_5 

177.9916667 1.93684045 RH_Limbic_TempPole_4 

177.1027778 1.841143649 LH_SomMotA_19 

177.0722222 1.837854072 RH_SomMotA_17 

176.6666667 1.794192406 LH_SomMotA_13 

176.525 1.778940729 RH_Limbic_TempPole_2 

176.3444444 1.759502316 LH_VisPeri_ExStrSup_4 

175.9388889 1.715840651 LH_DorsAttnB_FEF_3 

175.9333333 1.715242546 RH_VisCent_ExStr_2 

175.875 1.708962443 RH_SomMotA_14 

175.4777778 1.666197935 RH_SomMotA_8 

175.2027778 1.636591737 RH_SalVentAttnA_ParMed_5 

175.0694444 1.622237217 RH_DefaultC_Rsp_1 

175.0416667 1.619246692 LH_SomMotA_7 

174.7361111 1.586350917 RH_DefaultC_PHC_1 

174.7111111 1.583659444 LH_SalVentAttnA_FrMed_3 

174.5527778 1.566613452 LH_Limbic_TempPole_4 

174.4166667 1.551959879 RH_SomMotA_15 

174.3777778 1.547773144 LH_SomMotA_11 

174.2583333 1.534913886 LH_DorsAttnB_PostC_2 

174.2083333 1.529530941 LH_Limbic_TempPole_1 

173.9916667 1.506204846 LH_VisCent_ExStr_4 

173.8222222 1.487962643 RH_SomMotA_19 

173.7055556 1.475402438 RH_VisPeri_ExStrSup_5 

173.6888889 1.473608123 RH_SalVentAttnA_ParMed_2 

173.3      1.431740773 RH_SomMotA_2 

173.1027778 1.410508045 RH_DefaultB_AntTemp_1 

172.7194444 1.3692388 LH_DefaultB_PFCd_4 

172.0361111 1.295671884 LH_DorsAttnA_SPL_8 

171.8166667 1.272046736 LH_DorsAttnA_SPL_6 

171.7777778 1.267860001 LH_ContA_Cinga_1 

171.6972222 1.259187479 RH_DorsAttnB_PostC_8 

171.6527778 1.254402638 RH_SomMotA_13 

171.65 1.254103586 RH_DorsAttnA_TempOcc_1 

171.3305556 1.219712548 LH_SomMotA_1 

171.1861111 1.204161818 RH_VisCent_ExStr_4 

171.1777778 1.20326466 RH_SomMotA_12 

171.0361111 1.188012983 LH_SomMotA_2 

170.7805556 1.160500153 LH_DefaultA_PFCd_2 

170.5027778 1.130594902 RH_SomMotA_16 

170.4305556 1.122819537 RH_VisCent_ExStr_5 

170.3805556 1.117436592 RH_SomMotA_20 
 

Table A7: Distribution of nodes based on degree centrality at sparsity level 20% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 



184 
 

 

 

    DC value (raw)                 DC value (z)                             ROI 

192.9606299 2.987571981 LH_VisCent_ExStr_4 

189.1653543 2.643559679 RH_VisCent_ExStr_4 

186.3307087 2.38662103 LH_Limbic_TempPole_2 

185.5433071 2.315249183 LH_VisCent_ExStr_3 

185.1259843 2.277422105 RH_SalVentAttnA_ParMed_2 

185.0393701 2.269571201 LH_DorsAttnB_PostC_9 

184.1259843 2.186779859 RH_Limbic_TempPole_4 

183.6141732 2.140388159 RH_Limbic_TempPole_3 

183.2047244 2.103274798 LH_Limbic_TempPole_3 

182.2047244 2.012632553 RH_SomMotA_20 

182.0708661 2.000499339 RH_SomMotA_8 

181.9606299 1.99050728 RH_DorsAttnB_FEF_3 

181.5984252 1.957676231 RH_SomMotA_15 

181.5433071 1.952680201 LH_VisCent_ExStr_5 

181.496063 1.948397891 RH_Limbic_TempPole_1 

180.992126 1.902719909 RH_ContA_IPS_3 

180.6614173 1.872743733 RH_Limbic_TempPole_2 

180.2204724 1.832775499 RH_SomMotA_14 

179.7637795 1.791379827 LH_VisPeri_ExStrSup_4 

179.0314961 1.72500401 RH_SomMotB_S2_9 

178.992126 1.721435418 LH_DorsAttnB_PostC_4 

178.8346457 1.707161048 RH_SomMotA_16 

178.1968504 1.649349852 LH_DorsAttnB_FEF_3 

178.1417323 1.644353823 LH_SalVentAttnA_ParMed_2 

177.9527559 1.62722458 LH_SomMotA_6 

177.7716535 1.610809055 LH_SomMotA_18 

177.5433071 1.590111219 RH_VisCent_ExStr_2 

177.0944882 1.549429267 LH_DorsAttnB_PostC_6 

177.0708661 1.547288111 LH_SalVentAttnA_ParMed_1 

177.0551181 1.545860674 LH_Limbic_TempPole_4 

176.8818898 1.530158868 LH_Limbic_TempPole_1 

176.7952756 1.522307965 LH_DefaultB_Temp_1 

176.0708661 1.456645866 RH_SomMotA_6 

176.007874 1.450936118 LH_SomMotA_11 

175.6692913 1.420246224 LH_DorsAttnA_SPL_5 

175.6692913 1.420246224 LH_DorsAttnA_SPL_8 

175.6614173 1.419532505 LH_VisCent_ExStr_1 

175.6377953 1.41739135 RH_SomMotA_9 

175.4488189 1.400262107 LH_DorsAttnA_SPL_6 

175.4173228 1.397407233 LH_SomMotA_19 

175.3149606 1.388128893 LH_TempPar_2 

174.7874016 1.340309755 RH_DorsAttnB_PostC_7 

174.5748031 1.321039357 RH_DefaultB_AntTemp_1 

174.480315 1.312474735 RH_DorsAttnB_PostC_4 
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174.1338583 1.281071122 LH_DorsAttnB_FEF_1 

173.7165354 1.243244044 LH_SomMotA_2 

173.6692913 1.238961733 RH_SomMotA_2 

173.4645669 1.220405053 LH_SomMotA_7 

173.1259843 1.189715158 LH_ContC_Cingp_2 

173.0551181 1.183291692 LH_DefaultC_Rsp_2 
 

Table A8: Distribution of nodes based on degree centrality at sparsity level 20% in High Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

     DC value (raw)                DC value (z)                            ROI 

219.9944444 2.304922735 RH_SalVentAttnA_ParMed_8 

217.4138889 2.007398262 RH_SomMotA_19 

216.85     1.942384841 RH_SomMotA_17 

216.8388889 1.941103788 RH_SomMotA_7 

216.7194444 1.927332472 LH_SomMotA_9 

216.6666667 1.921247472 LH_DefaultB_PFCl_1 

216.5083333 1.902992472 LH_SomMotA_11 

216.225 1.87032563 LH_DefaultB_PFCl_2 

216.05    1.850149051 RH_SalVentAttnA_ParMed_7 

215.1833333 1.750226946 RH_SomMotA_12 

214.6277778 1.686174315 RH_DorsAttnA_SPL_8 

214.6138889 1.684572999 LH_DorsAttnB_PostC_6 

214.5944444 1.682331157 RH_DorsAttnB_PostC_7 

214.5555556 1.677847473 RH_DorsAttnB_PostC_6 

214.5555556 1.677847473 RH_ContA_PFCd_1 

214.3833333 1.657991157 RH_SomMotA_13 

214.1972222 1.636533525 RH_SomMotA_18 

214.0527778 1.619879841 LH_SomMotA_1 

214.0138889 1.615396157 LH_DefaultA_PFCd_2 

213.775 1.587853525 LH_DorsAttnB_FEF_2 

213.6527778 1.573761946 LH_DorsAttnB_FEF_1 

213.5       1.556147473 LH_SomMotA_16 

213.4166667 1.546539578 LH_SomMotA_7 

213.3666667 1.540774841 LH_SalVentAttnA_FrMed_3 

213.3277778 1.536291157 RH_SomMotA_14 

213.1472222 1.515474052 RH_DefaultA_PFCd_2 

213.0916667 1.509068789 RH_ContB_PFCld_4 

213.0722222 1.506826947 LH_SomMotA_5 

213 1.498500104 RH_SomMotA_11 

212.9888889 1.497219052 RH_ContB_PFCld_3 

212.8222222 1.478003262 RH_SomMotA_5 

212.7861111 1.473839841 LH_Limbic_TempPole_3 

212.6805556 1.461669841 LH_SomMotA_6 

212.6638889 1.459748262 LH_DefaultB_PFCd_5 
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212.5944444 1.451741683 RH_SalVentAttnA_ParMed_1 

212.5916667 1.45142142 LH_DorsAttnB_FEF_3 

212.5861111 1.450780894 LH_DefaultB_PFCd_4 

212.5777778 1.449820105 RH_SomMotA_8 

212.3527778 1.423878789 RH_SalVentAttnA_PrC_1 

211.9805556 1.380963526 LH_ContA_IPS_4 

211.9555556 1.378081157 LH_DorsAttnB_PostC_2 

211.8666667 1.367832736 LH_SomMotA_17 

211.8444444 1.365270631 RH_SomMotA_2 

211.7111111 1.349897999 LH_SalVentAttnA_FrMed_2 

211.325 1.305381421 RH_DorsAttnB_FEF_2 

211.2694444 1.298976157 LH_SomMotA_8 

211.1638889 1.286806157 LH_SomMotA_14 

211.0444444 1.273034842 LH_VisCent_ExStr_3 

211.0388889 1.272394315 LH_SomMotA_2 

210.8833333 1.254459578 LH_ContB_PFCmp_1 
 

Table A9: Distribution of nodes based on degree centrality at sparsity level 25% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

 

      DC value (raw)               DC value (z)                           ROI 

222.0314961 2.315992449 RH_DorsAttnB_FEF_3 

221.4645669 2.256350599 LH_DorsAttnB_PostC_4 

221.3858268 2.248067009 LH_DorsAttnB_PostC_6 

221.0629921 2.214104288 RH_DorsAttnB_PostC_7 

220.5669291 2.161917669 LH_DorsAttnB_FEF_2 

220.2598425 2.129611667 RH_ContB_PFCld_4 

220.1968504 2.122984795 LH_SomMotA_18 

220.0629921 2.108902691 RH_SomMotA_5 

219.9291339 2.094820588 RH_SalVentAttnA_ParMed_2 

219.6456693 2.064999663 LH_DorsAttnB_FEF_1 

219.0393701 2.001216017 RH_SomMotA_8 

218.7637795 1.972223451 LH_SalVentAttnA_ParMed_1 

218.511811 1.945715962 LH_VisCent_ExStr_4 

218.2125984 1.914238319 LH_DefaultA_PFCd_3 

218.1023622 1.902641293 RH_ContA_PFCd_1 

217.4724409 1.83637257 LH_SomMotA_11 

216.5905512 1.743596358 LH_SalVentAttnA_ParMed_2 

216.5748031 1.74193964 RH_SomMotA_13 

216.1102362 1.693066458 LH_SomMotA_15 

216.1023622 1.692238099 LH_DorsAttnB_PostC_9 

215.984252 1.679812713 LH_DorsAttnB_PostC_8 

215.7480315 1.654961942 RH_VisCent_ExStr_4 
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215.6141732 1.640879839 RH_SomMotA_20 

215.2834646 1.606088759 RH_SomMotA_14 

215.2283465 1.600290246 RH_SomMotA_9 

215.1023622 1.587036502 RH_ContA_IPS_3 

215.0314961 1.57958127 LH_DefaultB_PFCd_5 

214.519685 1.525737933 LH_DorsAttnB_FEF_3 

214.0866142 1.480178186 LH_SomMotA_1 

214.007874 1.471894596 RH_DorsAttnB_PostC_3 

213.9527559 1.466096083 RH_SomMotA_15 

213.8897638 1.459469211 RH_SomMotA_19 

213.6377953 1.432961722 LH_DorsAttnA_SPL_6 

213.6377953 1.432961722 RH_SomMotA_16 

213.5433071 1.423021413 RH_SomMotA_6 

213.480315 1.416394541 LH_DorsAttnA_SPL_8 

213.1732283 1.384088539 LH_SalVentAttnA_FrMed_1 

213.1496063 1.381603462 LH_SalVentAttnA_FrMed_2 

213.0708661 1.373319871 LH_SomMotA_7 

212.8818898 1.353439255 LH_ContB_PFCmp_1 

212.7480315 1.339357151 LH_SomMotA_2 

212.5511811 1.318648175 LH_SomMotB_Aud_15 

212.4724409 1.310364585 LH_VisCent_ExStr_3 

212.3779528 1.300424277 LH_ContB_PFCd_1 

212.2913386 1.291312327 RH_SomMotA_12 

212.1732283 1.278886942 RH_DorsAttnB_FEF_2 

212.1102362 1.272260069 RH_ContB_PFCmp_1 

212.0708661 1.268118274 RH_DorsAttnA_SPL_7 

212.0629921 1.267289915 LH_SomMotA_14 

211.8188976 1.241610785 RH_Limbic_TempPole_4 
 

Table A10: Distribution of nodes based on degree centrality at sparsity level 25% in High 

Stress group. The first column contains the DC values, 2nd column are the DC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

    DC value (raw)                 DC value (z)                            ROI 

268.25    2.477131614 LH_SomMotA_9 

267.4361111 2.405763804 LH_DefaultB_PFCl_1 

266.2833333 2.304679705 RH_ContB_PFCld_4 

265.2527778 2.214312956 RH_ContA_PFCd_1 

264.7388889 2.16925137 RH_SomMotA_7 

263.1361111 2.028707936 LH_DefaultB_PFCl_2 

262.1      1.937854035 LH_DefaultB_PFCd_1 

261.9      1.920316553 RH_DefaultA_PFCd_2 

261.8083333 1.91227854 RH_DorsAttnB_PostC_6 

261.6138889 1.89522821 RH_SalVentAttnA_ParMed_7 

260.2916667 1.779285966 LH_ContA_PFCd_1 

260.0361111 1.756876961 RH_SalVentAttnA_ParMed_1 
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259.9388889 1.748351796 RH_SomMotA_5 

259.5694444 1.715956169 LH_ContB_PFCmp_1 

259.3111111 1.693303588 RH_SomMotA_19 

258.7527778 1.644344783 RH_DorsAttnA_SPL_8 

258.6305556 1.633627433 LH_DorsAttnB_FEF_2 

258.6305556 1.633627433 LH_DefaultB_PFCd_5 

258.5222222 1.624127963 RH_DorsAttnB_PostC_7 

257.8944444 1.569079755 LH_DorsAttnB_PostC_6 

257.7666667 1.557875253 RH_SomMotA_18 

257.7444444 1.555926643 RH_DefaultB_PFCd_5 

257.5944444 1.542773532 RH_DorsAttnB_FEF_2 

257.3777778 1.523774593 LH_DorsAttnB_FEF_1 

256.9805556 1.488943204 LH_SalVentAttnA_FrMed_2 

256.7138889 1.465559895 RH_SomMotA_11 

256.6805556 1.462636981 LH_SomMotA_11 

256.6166667 1.45703473 LH_DefaultA_PFCd_2 

256.5916667 1.454842544 RH_SomMotA_12 

256.2527778 1.425126255 LH_SomMotA_4 

255.8888889 1.39321778 LH_SomMotA_16 

255.8083333 1.386154072 RH_ContB_PFCmp_1 

255.5694444 1.365206524 LH_SomMotA_15 

255.5611111 1.364475796 RH_SalVentAttnB_PFCmp_2 

255.5416667 1.362770763 LH_SomMotA_12 

255.4888889 1.358142816 LH_ContA_IPS_4 

255.4555556 1.355219902 RH_SomMotA_13 

255.2777778 1.339631029 RH_ContB_PFCld_2 

255.2333333 1.335733811 RH_DorsAttnB_FEF_1 

255.1916667 1.332080169 LH_SalVentAttnA_FrMed_1 

255.1111111 1.32501646 RH_SalVentAttnA_PrC_1 

255.0916667 1.323311427 RH_SomMotA_17 

254.975 1.313081229 RH_ContB_PFCld_3 

254.9222222 1.308453283 LH_SomMotA_1 

254.7083333 1.28969792 RH_SalVentAttnB_PFCl_4 

254.5333333 1.274352623 RH_DefaultA_PFCd_1 

254.4277778 1.265096729 RH_SalVentAttnA_ParMed_8 

254.3805556 1.260955935 LH_SomMotA_17 

254.2861111 1.252674346 LH_SalVentAttnB_PFCl_2 

254.1305556 1.239034082 LH_DefaultB_PFCd_6 
 

Table A11: Distribution of nodes based on degree centrality at sparsity level 30% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

      

    DC value (raw)                DC value (z)                            ROI 

271.488189 2.850946064 RH_ContB_PFCld_4 

268.3779528 2.569284872 LH_DorsAttnB_FEF_2 
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268.3543307 2.567145673 RH_ContA_PFCd_1 

267.3228346 2.473733987 RH_SomMotA_5 

265.5433071 2.312581001 RH_DorsAttnB_PostC_7 

263.5354331 2.130749092 LH_DorsAttnB_FEF_1 

262.9527559 2.077982185 LH_SomMotA_15 

262.3858268 2.026641411 LH_DorsAttnB_PostC_4 

262.2834646 2.017371549 LH_DorsAttnB_PostC_6 

262.1417323 2.004536355 LH_DefaultA_PFCd_3 

260.7480315 1.878323619 LH_ContB_PFCmp_1 

260.3385827 1.84124417 RH_DefaultA_PFCm_1 

260.2913386 1.836965773 LH_DefaultB_PFCd_5 

260.1023622 1.819852181 LH_SomMotA_18 

259.6929134 1.782772733 RH_DorsAttnB_FEF_3 

258.7716535 1.699343975 LH_SalVentAttnA_FrMed_2 

258.7559055 1.697917842 RH_ContB_PFCmp_1 

258.3385827 1.660125328 RH_DorsAttnA_SPL_7 

258.3149606 1.657986129 LH_DorsAttnB_PostC_8 

258.2204724 1.649429333 RH_DorsAttnB_FEF_2 

258.2047244 1.648003201 LH_SomMotA_11 

257.9291339 1.62304588 LH_DefaultB_PFCl_2 

257.7401575 1.605932288 RH_SomMotA_13 

257.4645669 1.580974968 LH_SalVentAttnA_ParMed_1 

257.3622047 1.571705106 RH_SomMotA_7 

257.1732283 1.554591514 RH_DefaultA_PFCd_2 

256.6614173 1.508242204 LH_DefaultB_PFCl_1 

256.5748031 1.500398475 LH_DefaultB_PFCd_1 

256.519685 1.49540701 RH_SomMotA_11 

256.3464567 1.479719552 LH_SomMotA_1 

256.2519685 1.471162756 RH_SomMotA_8 

256.0944882 1.45690143 LH_SalVentAttnA_FrMed_1 

255.976378 1.446205435 LH_SomMotB_Aud_15 

255.9527559 1.444066236 RH_SomMotA_19 

255.9212598 1.441213971 RH_DorsAttnB_PostC_3 

255.7874016 1.429091844 RH_ContB_PFCld_2 

255.4645669 1.399856125 RH_DorsAttnA_TempOcc_4 

255.0708661 1.36420281 LH_SomMotA_14 

254.9448819 1.352793749 LH_DefaultB_PFCd_6 

254.7637795 1.336393223 RH_DorsAttnA_SPL_8 

254.7244094 1.332827892 LH_ContA_PFCd_1 

254.6299213 1.324271096 LH_SomMotA_9 

254.4015748 1.303592173 RH_SomMotA_12 

253.9606299 1.26366046 LH_SalVentAttnA_ParMed_2 

253.8425197 1.252964465 RH_SomMotA_3 

253.7637795 1.245833802 LH_ContB_PFCd_1 

253.5748031 1.228720211 LH_SalVentAttnB_PFCl_2 

253.5511811 1.226581012 RH_SalVentAttnA_PrC_1 

253.2755906 1.201623691 RH_DorsAttnB_PostC_6 

253.2440945 1.198771426 RH_SomMotA_9 
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Table A12: Distribution of nodes based on degree centrality at sparsity level 30% in High 

Stress group. The first column contains the DC values, 2nd column are the DC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

 

   DC value (raw)                  DC value (z)                          ROI 

314.4055556 2.29736072 RH_ContB_PFCld_4 

314.1638889 2.281226859 LH_SomMotA_9 

312.9722222 2.201670235 LH_DefaultB_PFCl_1 

312.0055556 2.137134791 RH_ContA_PFCd_1 

310.1472222 2.013070964 LH_DefaultB_PFCd_1 

308.7027778 1.916638692 RH_SomMotA_7 

307.9916667 1.869164343 LH_ContA_PFCd_1 

306.9555556 1.799992733 RH_DefaultA_PFCd_2 

306.7638889 1.787196912 LH_DefaultB_PFCl_2 

305.7361111 1.718581642 RH_DorsAttnB_PostC_6 

304.7833333 1.654973432 RH_SalVentAttnA_ParMed_7 

304.7666667 1.653860752 LH_ContB_PFCmp_1 

303.6194444 1.577271274 RH_SomMotA_5 

303.4111111 1.563362773 RH_SalVentAttnA_ParMed_1 

303.0916667 1.542036406 RH_SalVentAttnB_PFCl_4 

302.2055556 1.482878916 RH_DefaultB_PFCd_5 

302.1972222 1.482322576 LH_DefaultB_PFCd_5 

301.9805556 1.467857735 LH_DorsAttnB_FEF_2 

301.6277778 1.444306007 RH_SalVentAttnB_PFCmp_2 

301.4722222 1.433920993 LH_SomMotA_4 

300.9833333 1.401282378 RH_DorsAttnB_FEF_2 

300.8138889 1.389970131 RH_ContB_PFCmp_1 

300.7277778 1.384221284 RH_SomMotA_18 

300.4277778 1.364193043 RH_SomMotA_19 

300.2944444 1.355291602 RH_DorsAttnA_SPL_8 

300.2944444 1.355291602 RH_DorsAttnB_PostC_7 

300.1777778 1.347502842 RH_ContB_PFClv_4 

300.0138889 1.336561488 LH_SomMotA_12 

299.9722222 1.333779788 LH_SalVentAttnB_PFCl_2 

299.9666667 1.333408894 RH_ContB_PFCld_2 

299.9333333 1.331183534 RH_DorsAttnB_FEF_1 

299.6222222 1.310413506 LH_SalVentAttnA_FrMed_2 

299.2361111 1.284636418 LH_SomMotA_15 

299.2222222 1.283709185 LH_DorsAttnB_PostC_6 

298.9861111 1.267946217 LH_ContA_PFCl_4 

298.9722222 1.267018984 RH_DefaultA_PFCd_1 

298.8833333 1.26108469 LH_DorsAttnB_FEF_1 

298.7      1.24884521 RH_DorsAttnA_SPL_7 



191 
 

298.475 1.233824029 RH_SomMotA_11 

298.4333333 1.231042329 LH_DefaultB_PFCd_6 

297.975 1.200443627 RH_SomMotA_12 

297.9333333 1.197661927 RH_DefaultB_PFCd_4 

297.8194444 1.190058613 LH_SomMotA_16 

297.7027778 1.182269853 LH_ContA_IPS_4 

297.5222222 1.170215819 LH_SalVentAttnA_FrMed_1 

297.3805556 1.160758038 RH_DefaultA_PFCm_3 

297.0666667 1.139802564 LH_DefaultA_PFCd_2 

296.9388889 1.131272017 LH_DefaultB_PFCd_2 

296.8027778 1.12218513 RH_ContB_PFCld_1 

296.6916667 1.114767262 LH_SomMotA_11 
 

Table A13: Distribution of nodes based on degree centrality at sparsity level 35% in Low Stress 

group. The first column contains the DC values, 2nd column are the DC values standardized to 

Z values, and 3rd column the name of the ROI. 

 

    DC value (raw)                 DC value (z)                           ROI 

316.0866142 2.581644609 RH_ContB_PFCld_4 

315.5275591 2.541644572 RH_ContA_PFCd_1 

311.6062992 2.261080936 LH_DorsAttnB_FEF_2 

310.9212598 2.212066807 RH_SomMotA_5 

307.4724409 1.965306018 LH_SomMotA_15 

306.8661417 1.921925697 LH_ContB_PFCmp_1 

306.6929134 1.90953132 RH_DorsAttnB_PostC_7 

306.3779528 1.886996088 LH_DefaultB_PFCd_1 

305.8818898 1.851503098 RH_DefaultA_PFCm_1 

305.1259843 1.797418541 LH_DefaultB_PFCl_1 

305.0944882 1.795165018 LH_DorsAttnB_FEF_1 

304.8976378 1.781080498 LH_SomMotA_9 

304.488189 1.751784697 RH_DefaultA_PFCd_2 

304.3622047 1.742770604 LH_DefaultB_PFCl_2 

304.2992126 1.738263558 LH_DefaultA_PFCd_3 

302.7086614 1.624460637 RH_SomMotA_7 

302.3937008 1.601925405 LH_DefaultB_PFCd_5 

302.3464567 1.59854512 RH_ContB_PFCmp_1 

302.2204724 1.589531028 RH_DorsAttnA_SPL_7 

301.2283465 1.518545047 RH_DorsAttnB_FEF_2 

301.2204724 1.517981667 LH_DorsAttnB_PostC_6 

300.8897638 1.494319673 LH_SalVentAttnA_FrMed_2 

300.7874016 1.486995723 LH_ContA_PFCd_1 

300.7795276 1.486432342 RH_ContB_PFCld_2 

300.1889764 1.444178782 LH_SomMotA_18 

299.8267717 1.418263266 LH_DorsAttnB_PostC_4 

299.7952756 1.416009743 RH_DorsAttnB_PostC_6 

299.2519685 1.377136468 RH_DorsAttnA_TempOcc_4 
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299.1811024 1.372066041 RH_SomMotA_11 

298.8976378 1.351784332 LH_DorsAttnB_PostC_8 

298.8740157 1.35009419 RH_SalVentAttnB_PFCmp_2 

298.6850394 1.33657305 LH_DefaultB_PFCd_6 

298.496063 1.323051911 RH_SalVentAttnA_ParMed_1 

298.3700787 1.314037819 LH_SomMotA_14 

298.3543307 1.312911057 RH_SalVentAttnB_PFCl_4 

297.7165354 1.267277213 RH_DorsAttnA_SPL_8 

297.4724409 1.249812408 LH_SomMotA_1 

297.4488189 1.248122266 RH_SomMotA_13 

297.3464567 1.240798315 RH_DorsAttnB_PostC_3 

297.3228346 1.239108173 RH_DorsAttnB_FEF_3 

297.2755906 1.235727888 LH_SomMotB_Aud_15 

297.2283465 1.232347603 LH_ContA_PFCl_4 

297.0393701 1.218826464 LH_SomMotA_11 

297.0314961 1.218263083 RH_SalVentAttnA_ParMed_7 

297.023622 1.217699703 LH_SalVentAttnB_PFCl_2 

297.015748 1.217136322 LH_SalVentAttnA_FrMed_1 

296.9212598 1.210375752 RH_SomMotA_19 

296.8188976 1.203051802 RH_DefaultC_Rsp_2 

296.5354331 1.182770093 RH_ContB_PFClv_4 

296.4094488 1.173756 RH_DefaultB_PFCd_5 
 

Table A14: Distribution of nodes based on degree centrality at sparsity level 35% in High 

Stress group. The first column contains the DC values, 2nd column are the DC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

 

Distribution of nodes based on betweenness centrality for all the sparsity 

levels (from 5% to 35%) in both groups 

     BC value (raw)                BC value (z)                            ROI 

6.374136022 7.376297433 RH_ContC_Cingp_1 

5.162778829 5.791608337 LH_ContC_Cingp_1 

4.5214281 4.952597752 LH_SomMotA_19 

4.056436048 4.344298368 LH_DefaultC_Rsp_1 

3.846999885 4.070315429 LH_DorsAttnB_PostC_9 

3.706372358 3.886347472 LH_VisPeri_ExStrSup_4 

3.429851424 3.524604699 RH_DorsAttnA_SPL_4 

3.126673043 3.12798884 LH_ContC_Cingp_2 

3.093006439 3.083946421 LH_SomMotA_13 

3.078710931 3.065245136 RH_DefaultC_Rsp_1 

2.909428025 2.843790411 LH_DefaultA_PCC_6 

2.87331049 2.796541701 RH_ContA_Cinga_1 

2.670939185 2.531800962 RH_SomMotA_15 
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2.585846894 2.420483815 RH_SomMotB_S2_5 

2.406717134 2.186147503 LH_SomMotA_5 

2.345809127 2.10646807 RH_SomMotB_S2_9 

2.343536519 2.103495059 LH_SalVentAttnA_Ins_4 

2.296620897 2.042120367 LH_SomMotA_6 

2.206050314 1.923636558 LH_ContA_Cinga_1 

2.19530667 1.909581797 RH_SalVentAttnA_ParMed_8 

2.172373718 1.879581068 RH_VisPeri_ExStrSup_2 

2.096919677 1.780872614 RH_SomMotA_8 

2.036645103 1.702021833 RH_SomMotA_20 

1.954288056 1.594282914 RH_SomMotA_14 

1.95379675 1.593640191 RH_SomMotB_S2_12 

1.930255057 1.562843111 RH_SomMotB_S2_13 

1.887578461 1.507013884 RH_SalVentAttnA_ParMed_2 

1.874473265 1.489869757 RH_SalVentAttnA_ParMed_5 

1.869661462 1.483574989 RH_SomMotA_1 

1.83808438 1.442266069 LH_DefaultB_PFCv_2 

1.786153293 1.37433018 LH_ContB_IPL_3 

1.681631507 1.237595504 LH_DefaultC_Rsp_2 

1.676999553 1.231536014 LH_SomMotB_Aud_16 

1.6250506 1.163576753 RH_SomMotA_6 

1.615476247 1.15105165 RH_SomMotB_S2_7 

1.579607223 1.104128042 RH_ContA_IPS_2 

1.564316488 1.084124808 RH_ContC_pCun_1 

1.549903696 1.065270093 RH_TempPar_10 

1.520916983 1.027349876 LH_SalVentAttnB_PFCv_1 

1.464971389 0.954162236 RH_ContA_IPS_3 

1.456519408 0.943105414 LH_SalVentAttnB_PFCv_3 

1.435528976 0.915645876 RH_DefaultA_PCC_5 

1.428643104 0.906637826 RH_SomMotB_S2_4 

1.428268428 0.906147677 RH_SomMotB_S2_11 

1.428186483 0.906040478 LH_SalVentAttnA_FrMed_3 

1.416622871 0.89091304 RH_ContC_Cingp_2 

1.41089549 0.88342052 RH_SalVentAttnA_Ins_5 

1.404872472 0.87554125 LH_DorsAttnB_PostC_2 

1.403054354 0.8731628 LH_DorsAttnB_FEF_3 

1.388387316 0.853975482 LH_SomMotA_7 
 

Table A15: Distribution of nodes based on betweenness centrality at sparsity level 5% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

    BC value (raw)                BC value (z)                          ROI 

6.590557412 7.476650146 RH_ContC_Cingp_1 

5.262942671 5.782030629 LH_ContC_Cingp_1 

4.040491187 4.221645616 LH_DefaultC_Rsp_1 
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3.895330224 4.036356471 RH_DorsAttnA_SPL_4 

3.767766802 3.873529517 LH_ContC_Cingp_2 

3.648095905 3.720776892 LH_DorsAttnB_PostC_9 

3.545549675 3.589882861 LH_VisPeri_ExStrSup_4 

3.144079829 3.077431007 RH_DefaultC_Rsp_1 

3.057129372 2.966444034 RH_SomMotB_S2_9 

3.056579385 2.965742008 RH_SalVentAttnA_ParMed_2 

3.0072831 2.902818298 RH_SomMotA_15 

3.006235468 2.901481059 RH_SomMotB_S2_13 

2.651231832 2.448340497 LH_SomMotA_13 

2.593376949 2.374492255 LH_SomMotA_6 

2.420978639 2.154436292 LH_ContA_Cinga_1 

2.381817517 2.1044495 LH_SomMotA_19 

2.376180169 2.097253768 RH_ContA_Cinga_1 

2.344741683 2.057124452 RH_SomMotB_S2_5 

2.23937521 1.922630554 LH_DefaultB_PFCv_2 

2.217396699 1.89457632 RH_VisPeri_ExStrSup_2 

2.203178292 1.876427387 LH_DefaultA_PCC_6 

2.198521533 1.870483318 RH_SomMotA_20 

2.179843624 1.846642102 RH_SomMotA_16 

2.125912721 1.777802584 RH_SalVentAttnA_ParMed_8 

2.059169577 1.692609016 RH_SomMotA_8 

2.028729752 1.653754431 LH_SalVentAttnA_Ins_4 

2.025737301 1.649934748 RH_SomMotB_S2_7 

1.980145877 1.591740067 RH_SalVentAttnA_ParMed_5 

1.949724815 1.552909431 LH_ContB_IPL_3 

1.900926782 1.490621708 RH_ContA_IPS_3 

1.897634256 1.486418999 RH_DorsAttnB_FEF_3 

1.883169388 1.467955473 RH_SomMotB_S2_4 

1.859343252 1.437542859 LH_DorsAttnA_SPL_5 

1.813076688 1.378486403 RH_TempPar_10 

1.79577798 1.356405654 RH_VisCent_ExStr_4 

1.750981395 1.299225535 RH_SomMotA_1 

1.744808967 1.291346806 RH_Limbic_OFC_6 

1.712038144 1.249516843 LH_VisCent_ExStr_4 

1.663681127 1.187792051 RH_SomMotA_14 

1.651627737 1.17240663 RH_DorsAttnB_PostC_8 

1.637143623 1.153918539 LH_DefaultB_PFCd_4 

1.522169649 1.00716125 LH_DefaultC_Rsp_2 

1.513441751 0.996020619 RH_SomMotA_6 

1.503383906 0.983182391 RH_DefaultA_PFCm_6 

1.494041415 0.97125727 LH_SomMotA_5 

1.491760305 0.968345571 RH_SomMotB_S2_12 

1.452073144 0.917687323 LH_TempPar_2 

1.430208941 0.889778997 LH_DorsAttnB_FEF_3 

1.422363363 0.879764593 LH_SomMotA_7 

1.40383779 0.856117825 RH_VisCent_ExStr_6 
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Table A16: Distribution of nodes based on betweenness centrality at sparsity level 5% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

    BC value (raw)                 BC value (z)                        ROI 

5.311662473 6.425486191 RH_ContC_Cingp_1 

4.352356278 5.025751278 LH_ContC_Cingp_1 

3.868755838 4.320124209 LH_SomMotA_19 

3.510197591 3.796947668 LH_DefaultC_Rsp_1 

3.484858297 3.759974807 LH_DorsAttnB_PostC_9 

3.323507383 3.524545797 LH_VisPeri_ExStrSup_4 

3.191221192 3.331525465 RH_DorsAttnA_SPL_4 

3.083463249 3.174294587 LH_ContC_Cingp_2 

3.067678119 3.151262319 RH_DefaultC_Rsp_1 

2.9574651 2.990449212 LH_SomMotA_13 

2.938686858 2.963049659 RH_ContA_Cinga_1 

2.757772468 2.699075352 LH_DefaultA_PCC_6 

2.662917079 2.560670741 RH_SomMotB_S2_5 

2.555921062 2.4045516 RH_SomMotA_15 

2.530582583 2.367579928 RH_SomMotB_S2_9 

2.523229331 2.356850712 RH_SalVentAttnA_ParMed_8 

2.497812494 2.319764706 LH_SomMotA_5 

2.481390157 2.295802683 LH_SomMotA_6 

2.389970775 2.162411591 LH_SalVentAttnA_Ins_4 

2.225716265 1.92274591 LH_ContA_Cinga_1 

2.17847066 1.853809294 RH_SomMotA_20 

2.160417068 1.827467086 RH_SomMotA_14 

2.127584286 1.779560389 RH_VisPeri_ExStrSup_2 

2.063214705 1.685637979 LH_DefaultB_PFCv_2 

2.062468599 1.684549326 RH_SomMotB_S2_12 

2.046154471 1.660745192 RH_SomMotA_8 

2.040243288 1.652120115 RH_SalVentAttnA_ParMed_2 

1.993446081 1.583837763 RH_SomMotA_1 

1.986359122 1.573497098 RH_SalVentAttnA_ParMed_5 

1.976373164 1.558926469 LH_ContB_IPL_3 

1.968581126 1.547557016 RH_SomMotB_S2_13 

1.859728702 1.388729167 LH_DefaultC_Rsp_2 

1.836370911 1.354647541 RH_SomMotB_S2_7 

1.749732787 1.228232838 RH_ContA_IPS_2 

1.722620187 1.188672526 RH_ContC_pCun_1 

1.712251213 1.173543035 LH_SomMotB_Aud_16 

1.710611777 1.171150915 RH_SomMotA_6 

1.689209862 1.13992313 RH_TempPar_10 

1.68501021 1.133795367 RH_DefaultA_PCC_5 
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1.684324294 1.13279454 RH_SomMotB_S2_4 

1.681128837 1.12813201 LH_SalVentAttnB_PFCv_3 

1.677210253 1.122414359 LH_DorsAttnB_FEF_3 

1.67411386 1.117896376 RH_SalVentAttnA_Ins_5 

1.671975685 1.11477654 RH_ContC_Cingp_2 

1.667078489 1.107630983 LH_SalVentAttnB_PFCv_1 

1.661971006 1.100178595 RH_ContA_IPS_3 

1.661961989 1.100165439 RH_DorsAttnB_FEF_3 

1.625777358 1.047368019 LH_SomMotA_7 

1.622031797 1.041902827 LH_SalVentAttnA_FrMed_3 

1.6057464 1.018140613 LH_DorsAttnB_PostC_2 

   
 

Table A17: Distribution of nodes based on betweenness centrality at sparsity level 10% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

    BC value (raw)                 BC value (z)                           ROI 

5.883207848 6.965755438 RH_ContC_Cingp_1 

4.450612064 4.959974905 LH_ContC_Cingp_1 

3.709491718 3.922330666 LH_ContC_Cingp_2 

3.540938208 3.686338523 LH_DefaultC_Rsp_1 

3.527709379 3.66781681 LH_DorsAttnB_PostC_9 

3.234636221 3.257484431 RH_DorsAttnA_SPL_4 

3.132686107 3.114743852 RH_SalVentAttnA_ParMed_2 

3.006510628 2.938085284 LH_VisPeri_ExStrSup_4 

2.904592266 2.79538916 RH_SomMotA_15 

2.890477081 2.775626457 RH_SomMotB_S2_9 

2.83344814 2.69578011 RH_DefaultC_Rsp_1 

2.803145928 2.653353917 RH_SomMotB_S2_13 

2.700820288 2.510087562 LH_SomMotA_6 

2.536559362 2.280105475 LH_SomMotA_19 

2.530350882 2.271412967 LH_SomMotA_13 

2.477397624 2.197272994 LH_ContA_Cinga_1 

2.465991277 2.181302942 RH_ContA_Cinga_1 

2.450414343 2.159493643 RH_SomMotB_S2_5 

2.401314126 2.090748319 LH_DefaultA_PCC_6 

2.321107977 1.978451513 RH_SomMotA_20 

2.288369214 1.932613898 RH_SalVentAttnA_ParMed_8 

2.270980044 1.908267283 RH_SomMotA_8 

2.244008185 1.870503923 LH_DefaultB_PFCv_2 

2.204965822 1.815840624 RH_SomMotA_16 

2.204348338 1.814976084 RH_ContA_IPS_3 

2.146003794 1.733287758 RH_VisPeri_ExStrSup_2 

2.084857354 1.647676492 LH_DorsAttnA_SPL_5 

2.074511287 1.633190941 LH_DorsAttnB_FEF_3 
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2.035561915 1.578657839 RH_DorsAttnB_FEF_3 

2.025901644 1.565132472 RH_VisCent_ExStr_4 

2.023450709 1.561700913 RH_SomMotB_S2_7 

2.021432694 1.558875485 LH_SalVentAttnA_Ins_4 

2.01228462 1.546067246 RH_TempPar_10 

2.012055341 1.545746232 LH_ContB_IPL_3 

2.006294093 1.537679896 RH_SalVentAttnA_ParMed_5 

1.966638197 1.482157588 RH_SomMotB_S2_4 

1.923865412 1.422271318 RH_SomMotA_1 

1.920264955 1.417230309 LH_DefaultB_PFCd_4 

1.912784904 1.406757473 RH_Limbic_OFC_6 

1.873030711 1.35109754 LH_DefaultC_Rsp_2 

1.824481077 1.28312309 RH_SomMotA_14 

1.819325072 1.275904155 LH_VisCent_ExStr_4 

1.813912614 1.268326162 RH_DorsAttnB_PostC_8 

1.77301069 1.211059287 RH_SalVentAttnA_Ins_5 

1.717451803 1.133271165 RH_DefaultA_PFCm_6 

1.709553748 1.122213082 RH_SomMotA_6 

1.708362778 1.120545601 RH_SomMotB_S2_11 

1.698354741 1.106533326 RH_SomMotB_S2_12 

1.69132672 1.096693379 LH_TempPar_2 

1.672639972 1.070530021 RH_ContA_IPS_2 
 

Table A18: Distribution of nodes based on betweenness centrality at sparsity level 10% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

       BC value (raw)               BC value (z)                         ROI 

3.85934774 5.569526142 RH_ContC_Cingp_1 

3.15530589 4.214562951 LH_ContC_Cingp_1 

3.082759969 4.074944756 LH_SomMotA_19 

2.801306941 3.533274552 LH_DorsAttnB_PostC_9 

2.692775724 3.324400883 LH_DefaultC_Rsp_1 

2.672063345 3.284538892 LH_VisPeri_ExStrSup_4 

2.594530883 3.135323852 LH_ContC_Cingp_2 

2.538693257 3.027861593 RH_DorsAttnA_SPL_4 

2.476477599 2.908124497 LH_SomMotA_13 

2.425065851 2.809180058 RH_DefaultC_Rsp_1 

2.397923086 2.75694247 RH_ContA_Cinga_1 

2.35428979 2.672968045 RH_SomMotB_S2_5 

2.274193428 2.518818653 RH_SalVentAttnA_ParMed_8 

2.208174661 2.391762288 LH_SomMotA_6 

2.206776931 2.389072289 LH_DefaultA_PCC_6 

2.177157977 2.332069154 LH_SomMotA_5 

2.150847108 2.281432592 RH_SomMotB_S2_9 

2.135520208 2.251935216 RH_SomMotA_15 
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2.075474767 2.136374811 LH_SalVentAttnA_Ins_4 

2.040694417 2.069438316 LH_ContA_Cinga_1 

1.953044484 1.900751707 RH_SomMotA_14 

1.945028321 1.885324206 RH_SalVentAttnA_ParMed_2 

1.894779768 1.788618393 LH_DefaultB_PFCv_2 

1.890734714 1.780833488 RH_SomMotA_20 

1.873914447 1.748462055 RH_SomMotB_S2_12 

1.841529415 1.686135467 RH_SomMotA_1 

1.837985258 1.679314563 RH_SomMotA_8 

1.837090795 1.677593125 RH_SomMotB_S2_13 

1.821964288 1.648481418 RH_SalVentAttnA_ParMed_5 

1.7884454 1.583972667 LH_ContB_IPL_3 

1.771934681 1.552196977 RH_VisPeri_ExStrSup_2 

1.758921256 1.527151999 LH_DefaultC_Rsp_2 

1.687241072 1.389199958 RH_DefaultA_PCC_5 

1.665526659 1.347409501 LH_DorsAttnB_FEF_3 

1.658548518 1.333979726 LH_SalVentAttnB_PFCv_3 

1.653177697 1.323643317 RH_ContA_IPS_2 

1.650391689 1.318281507 RH_SomMotB_S2_7 

1.619310242 1.258463733 RH_SomMotB_S2_4 

1.612836821 1.246005316 RH_ContC_Cingp_2 

1.599703385 1.220729372 LH_DorsAttnB_PostC_2 

1.597228623 1.215966569 RH_ContC_pCun_1 

1.590551096 1.20311534 RH_ContA_IPS_3 

1.58048556 1.183743722 LH_DefaultB_PFCd_4 

1.574305538 1.171849965 LH_SomMotA_7 

1.571169336 1.165814189 RH_SomMotA_6 

1.566135421 1.156126172 LH_SalVentAttnB_PFCv_1 

1.565151675 1.154232904 RH_SomMotA_16 

1.558136992 1.140732803 LH_SalVentAttnA_FrMed_3 

1.550727696 1.126473247 LH_SomMotB_Aud_16 

1.543278362 1.112136638 RH_SalVentAttnA_Ins_5 
 

Table A19: Distribution of nodes based on betweenness centrality at sparsity level 15% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

      BC value (raw)                BC value (z)                          ROI 

4.254057965 6.051259976 RH_ContC_Cingp_1 

3.342817262 4.374122829 LH_ContC_Cingp_1 

2.9068389 3.571705307 LH_ContC_Cingp_2 

2.706847072 3.203620647 LH_DorsAttnB_PostC_9 

2.654800238 3.107828526 LH_VisPeri_ExStrSup_4 

2.644916467 3.089637462 RH_DorsAttnA_SPL_4 

2.611506403 3.028146288 LH_DefaultC_Rsp_1 

2.539387968 2.895412417 RH_SomMotB_S2_9 

2.538838275 2.894400709 RH_SalVentAttnA_ParMed_2 
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2.334075647 2.517535398 LH_SomMotA_6 

2.291778192 2.439686996 RH_SomMotA_15 

2.290138198 2.436668588 RH_SomMotB_S2_13 

2.239082479 2.342700615 LH_SomMotA_19 

2.205377828 2.280667254 RH_DefaultC_Rsp_1 

2.202681469 2.275704611 LH_DefaultA_PCC_6 

2.197159011 2.265540535 LH_SomMotA_13 

2.142696214 2.165301839 RH_ContA_IPS_3 

2.105483349 2.096811616 RH_SomMotA_8 

2.097677114 2.082444252 LH_ContA_Cinga_1 

2.071910223 2.035020328 RH_SomMotB_S2_5 

2.051431409 1.997329102 RH_SomMotA_20 

2.044034955 1.983715938 RH_SalVentAttnA_ParMed_8 

1.999043168 1.900908622 RH_ContA_Cinga_1 

1.99402961 1.891681177 LH_DorsAttnB_FEF_3 

1.970697512 1.848738485 RH_SomMotA_16 

1.967887973 1.843567533 LH_DefaultB_PFCv_2 

1.932088289 1.777678268 LH_DorsAttnA_SPL_5 

1.915328736 1.746832336 RH_DorsAttnB_FEF_3 

1.867988517 1.659702733 RH_SomMotB_S2_4 

1.838199929 1.604876882 RH_VisPeri_ExStrSup_2 

1.837031184 1.602725809 LH_ContB_IPL_3 

1.836876925 1.602441896 RH_TempPar_10 

1.805559356 1.544801957 RH_SalVentAttnA_ParMed_5 

1.78935707 1.514981674 LH_SalVentAttnA_Ins_4 

1.782491466 1.50234554 LH_DefaultB_PFCd_4 

1.773441484 1.485689061 RH_VisCent_ExStr_4 

1.745260669 1.433822314 LH_DefaultC_Rsp_2 

1.743549829 1.430673515 RH_Limbic_OFC_6 

1.740250045 1.424600269 RH_SomMotA_1 

1.689532741 1.331255145 RH_SomMotA_6 

1.68942013 1.331047885 RH_SomMotA_2 

1.686425642 1.325536536 LH_DorsAttnA_SPL_8 

1.661086902 1.278900622 RH_SomMotA_14 

1.658929974 1.2749308 RH_SomMotB_S2_3 

1.657531456 1.272356829 RH_SomMotB_S2_11 

1.650180975 1.25882828 RH_SalVentAttnA_Ins_5 

1.639242467 1.238695973 RH_DorsAttnB_PostC_8 

1.637970074 1.236354134 LH_TempPar_2 

1.629644023 1.22103005 RH_DefaultA_PFCm_6 

1.625442043 1.213296312 RH_SomMotB_S2_7 
 

Table A20: Distribution of nodes based on betweenness centrality at sparsity level 15% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 
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      BC value (raw)                BC value (z)                          ROI 

2.694058481 4.738001803 RH_ContC_Cingp_1 

2.322337576 3.707769169 LH_SomMotA_19 

2.302497986 3.652783312 LH_ContC_Cingp_1 

2.263842191 3.545647928 LH_DorsAttnB_PostC_9 

2.08037818 3.037173401 LH_VisPeri_ExStrSup_4 

2.024628904 2.882663061 LH_ContC_Cingp_2 

1.990583884 2.788306542 LH_DefaultC_Rsp_1 

1.984768255 2.772188401 LH_SomMotA_13 

1.943432013 2.6576241 RH_SomMotB_S2_5 

1.941536485 2.652370603 RH_ContA_Cinga_1 

1.93358919 2.630344498 RH_SalVentAttnA_ParMed_8 

1.930484513 2.62173982 RH_DorsAttnA_SPL_4 

1.906038461 2.553987051 RH_DefaultC_Rsp_1 

1.787345281 2.225026303 LH_SomMotA_6 

1.77448241 2.189376573 RH_SomMotB_S2_9 

1.764745826 2.162391416 LH_SomMotA_5 

1.762222781 2.155398743 LH_DefaultA_PCC_6 

1.721901827 2.043648333 RH_SomMotA_15 

1.713658612 2.020802084 LH_SalVentAttnA_Ins_4 

1.681950338 1.932921908 LH_ContA_Cinga_1 

1.662622366 1.879354011 RH_SalVentAttnA_ParMed_2 

1.640772643 1.818797024 RH_SomMotA_14 

1.630306881 1.789790934 RH_SomMotB_S2_13 

1.624911345 1.77483709 RH_SomMotA_8 

1.620933067 1.763811204 RH_SomMotA_20 

1.617051051 1.753052112 LH_DefaultB_PFCv_2 

1.585160408 1.664666495 RH_SomMotB_S2_12 

1.574852516 1.636097947 RH_SomMotA_1 

1.573331392 1.631882118 RH_SalVentAttnA_ParMed_5 

1.562635898 1.602239323 LH_ContB_IPL_3 

1.560614143 1.596635985 LH_SalVentAttnB_PFCv_3 

1.538951268 1.536596851 LH_DorsAttnB_FEF_3 

1.530311199 1.51265071 RH_DefaultA_PCC_5 

1.510123512 1.456700095 LH_DorsAttnB_PostC_2 

1.497170451 1.420800403 LH_DefaultC_Rsp_2 

1.493198365 1.409791679 LH_DefaultB_PFCd_4 

1.492593346 1.408114855 RH_ContA_IPS_2 

1.47688736 1.36458537 LH_SalVentAttnA_FrMed_3 

1.474299077 1.357411887 RH_VisPeri_ExStrSup_2 

1.46893238 1.34253797 LH_SomMotA_7 

1.448661483 1.286356735 RH_SomMotB_S2_4 

1.447474089 1.283065846 RH_SomMotA_17 

1.441660729 1.266953992 RH_SomMotA_16 

1.44005629 1.262507253 RH_ContC_Cingp_2 

1.435852963 1.250857641 RH_SomMotB_S2_7 

1.426070973 1.223746642 RH_SomMotA_6 

1.423752742 1.217321613 RH_SomMotB_S2_3 
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1.418446724 1.202615868 RH_DorsAttnB_FEF_3 

1.414510082 1.191705378 LH_SalVentAttnB_PFCv_1 

1.409637012 1.178199557 RH_ContC_pCun_1 
 

Table A21: Distribution of nodes based on betweenness centrality at sparsity level 20% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

        

BC value (raw)                  BC value (z)                             ROI 

2.899217454 5.016225457 RH_ContC_Cingp_1 

2.350893331 3.578479219 LH_ContC_Cingp_1 

2.137863226 3.019898591 LH_ContC_Cingp_2 

2.126318876 2.989628454 LH_DorsAttnB_PostC_9 

2.098965654 2.917906293 LH_VisPeri_ExStrSup_4 

2.089155454 2.892183225 RH_DorsAttnA_SPL_4 

2.080317392 2.869009175 RH_SalVentAttnA_ParMed_2 

2.033111751 2.745232507 RH_SomMotB_S2_9 

2.000602019 2.659989596 LH_DefaultC_Rsp_1 

1.957129283 2.546000879 LH_SomMotA_6 

1.929496206 2.473544918 RH_SomMotB_S2_13 

1.873961439 2.327928666 LH_SomMotA_19 

1.870933191 2.319988377 RH_SomMotA_15 

1.826177644 2.202636037 RH_DefaultC_Rsp_1 

1.826073278 2.20236238 LH_DorsAttnB_FEF_3 

1.822946709 2.194164286 RH_ContA_IPS_3 

1.800755636 2.13597766 RH_SomMotA_8 

1.75231716 2.008968408 LH_DorsAttnA_SPL_5 

1.743398255 1.98558238 RH_SomMotB_S2_5 

1.739240578 1.974680645 RH_SalVentAttnA_ParMed_8 

1.730693585 1.9522698 LH_SomMotA_13 

1.725379506 1.938335894 LH_DefaultA_PCC_6 

1.70879899 1.894860561 RH_DorsAttnB_FEF_3 

1.708108374 1.893049714 RH_SomMotA_16 

1.703461764 1.880865961 RH_SomMotA_20 

1.687369351 1.838670467 LH_ContA_Cinga_1 

1.667478783 1.786515934 LH_DefaultB_PFCv_2 

1.663915121 1.777171748 RH_ContA_Cinga_1 

1.642323478 1.720556871 RH_SomMotB_S2_4 

1.619515952 1.660753859 RH_SomMotB_S2_11 

1.615675328 1.650683458 LH_ContB_IPL_3 

1.577183105 1.549754016 RH_DefaultA_PFCm_6 

1.576878488 1.548955286 RH_SomMotA_6 

1.567457811 1.524253579 LH_TempPar_2 

1.558850949 1.501685751 LH_DefaultC_Rsp_2 
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1.555342635 1.492486694 LH_DorsAttnA_SPL_8 

1.550614657 1.480089588 RH_TempPar_10 

1.546988246 1.47058087 RH_SomMotA_2 

1.538522462 1.448382962 LH_DorsAttnA_SPL_6 

1.535969344 1.441688498 LH_SalVentAttnA_Ins_4 

1.53136984 1.429628258 RH_Limbic_OFC_6 

1.528594923 1.422352223 RH_SalVentAttnA_Ins_5 

1.52014573 1.400197817 RH_SalVentAttnA_ParMed_5 

1.511994746 1.378825335 RH_DorsAttnB_PostC_8 

1.506959696 1.365623063 LH_DefaultB_PFCd_4 

1.50100951 1.350021237 RH_SomMotA_1 

1.471538423 1.272745877 RH_SomMotB_S2_3 

1.464705527 1.254829519 RH_VisPeri_ExStrSup_2 

1.452281688 1.2222533 RH_SomMotA_14 

1.426406203 1.154405872 RH_VisCent_ExStr_4 
 

Table A22: Distribution of nodes based on betweenness centrality at sparsity level 20% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

     BC value (raw)                 BC value (z)                           ROI 

1.83062622 3.646491866 RH_ContC_Cingp_1 

1.760090782 3.340154328 LH_SomMotA_19 

1.708544604 3.11628772 LH_DorsAttnB_PostC_9 

1.59364725 2.617285041 RH_SalVentAttnA_ParMed_8 

1.582990402 2.57100203 LH_ContC_Cingp_1 

1.569839421 2.513886922 LH_SomMotA_13 

1.557365652 2.459712968 RH_SomMotB_S2_5 

1.554795589 2.448551107 LH_VisPeri_ExStrSup_4 

1.548435243 2.420927932 LH_ContC_Cingp_2 

1.538651811 2.37843819 RH_ContA_Cinga_1 

1.523074039 2.310783458 LH_SomMotA_6 

1.519163508 2.293799902 LH_SomMotA_5 

1.513790604 2.270465218 RH_DefaultC_Rsp_1 

1.47941713 2.121180182 LH_DefaultC_Rsp_1 

1.455878837 2.018952664 RH_SomMotB_S2_9 

1.454766218 2.014120525 RH_DorsAttnA_SPL_4 

1.444430991 1.969234326 RH_SomMotA_14 

1.426345696 1.890689344 RH_SomMotA_8 

1.422728942 1.874981671 RH_SalVentAttnA_ParMed_2 

1.42182803 1.871068982 LH_SalVentAttnA_Ins_4 

1.41353816 1.835065828 RH_SomMotA_15 

1.403626066 1.792017303 LH_ContA_Cinga_1 

1.396835407 1.762525267 RH_SomMotB_S2_13 

1.390183223 1.733634629 LH_DefaultB_PFCv_2 
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1.375001921 1.667701779 LH_ContB_IPL_3 

1.369476861 1.643706276 LH_DefaultB_PFCd_4 

1.368191094 1.63812215 LH_DefaultA_PCC_6 

1.36254095 1.613583402 LH_DorsAttnB_FEF_3 

1.362385672 1.612909025 LH_SalVentAttnB_PFCv_3 

1.361866309 1.610653419 RH_SomMotA_17 

1.350070913 1.559425656 RH_SomMotA_20 

1.348940852 1.554517768 LH_SomMotA_7 

1.347894549 1.549973642 RH_SalVentAttnA_ParMed_5 

1.338473672 1.509058488 RH_SomMotA_1 

1.33845384 1.50897236 LH_DorsAttnB_PostC_2 

1.329455277 1.469891329 RH_SomMotB_S2_12 

1.319871962 1.428270699 LH_SalVentAttnA_FrMed_3 

1.31252356 1.396356369 RH_ContA_IPS_2 

1.30575351 1.366953837 RH_SomMotB_S2_3 

1.300497106 1.344125118 RH_SomMotA_16 

1.28614681 1.281801348 RH_DorsAttnB_FEF_3 

1.284474888 1.274540139 RH_DefaultA_PCC_5 

1.280885625 1.258951863 RH_ContC_Cingp_2 

1.280177601 1.255876891 LH_DefaultC_Rsp_2 

1.269988768 1.211626482 RH_SomMotB_S2_7 

1.268921399 1.206990866 LH_SomMotB_Aud_13 

1.268831566 1.206600719 RH_SomMotA_6 

1.267457648 1.200633752 RH_SomMotB_S2_4 

1.25336773 1.139440813 LH_DorsAttnA_SPL_6 

1.252651997 1.136332365 RH_SalVentAttnA_ParMed_6 
 

Table A23: Distribution of nodes based on betweenness centrality at sparsity level 25% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

     BC value (raw)                 BC value (z)                           ROI 

1.973665677 3.958525124 RH_ContC_Cingp_1 

1.705172488 2.875525024 RH_SalVentAttnA_ParMed_2 

1.671205166 2.738513677 LH_DorsAttnB_PostC_9 

1.666088732 2.717875917 RH_DorsAttnA_SPL_4 

1.660361967 2.694776307 LH_ContC_Cingp_2 

1.62292356 2.543763919 LH_VisPeri_ExStrSup_4 

1.614599234 2.510186731 RH_SomMotB_S2_9 

1.604335441 2.468786467 LH_DorsAttnB_FEF_3 

1.583261211 2.383780983 LH_ContC_Cingp_1 

1.568521639 2.324327119 RH_SomMotB_S2_13 

1.546731403 2.236433538 LH_SomMotA_6 

1.544773448 2.228535886 RH_SomMotA_8 

1.540644097 2.211879644 RH_ContA_IPS_3 

1.532520966 2.179114003 RH_DorsAttnB_FEF_3 



204 
 

1.518877854 2.124082843 LH_DefaultC_Rsp_1 

1.510487916 2.090241004 RH_SalVentAttnA_ParMed_8 

1.492228454 2.016589231 LH_SomMotA_19 

1.491111342 2.012083225 RH_SomMotA_15 

1.466133063 1.911330282 LH_DorsAttnA_SPL_5 

1.460077766 1.886905499 RH_SomMotB_S2_4 

1.438924886 1.801582773 RH_SomMotA_20 

1.438224145 1.798756248 LH_ContB_IPL_3 

1.43709111 1.794186012 LH_TempPar_2 

1.430268083 1.766664501 LH_ContA_Cinga_1 

1.430122607 1.766077704 RH_SomMotA_16 

1.420704261 1.728087654 LH_SomMotA_13 

1.415442137 1.706862235 RH_SomMotB_S2_5 

1.411463583 1.690814249 LH_DefaultB_PFCv_2 

1.409498755 1.682888878 RH_SomMotA_2 

1.399064918 1.640802719 LH_DorsAttnA_SPL_6 

1.396782446 1.631596088 RH_SomMotB_S2_11 

1.387034155 1.592275168 RH_DefaultA_PFCm_6 

1.381917522 1.5716366 RH_ContA_Cinga_1 

1.377059225 1.552040068 RH_DefaultC_Rsp_1 

1.371708225 1.530456155 RH_SomMotA_6 

1.342028036 1.410737482 RH_DorsAttnB_PostC_8 

1.34091401 1.406243924 RH_SalVentAttnA_Ins_4 

1.337954519 1.394306455 RH_TempPar_10 

1.335330501 1.383722158 LH_DefaultA_PCC_6 

1.314675246 1.300406659 RH_SalVentAttnA_ParMed_5 

1.311842586 1.288980779 LH_DorsAttnA_SPL_8 

1.310140396 1.282114787 RH_DorsAttnB_PostC_2 

1.308812212 1.276757395 LH_DefaultC_Rsp_2 

1.304417492 1.259030758 LH_DorsAttnB_PostC_4 

1.299426329 1.238898292 LH_SomMotB_Aud_11 

1.299342443 1.238559924 RH_SomMotA_14 

1.29207181 1.20923294 LH_DorsAttnA_SPL_1 

1.286753438 1.187780633 LH_SomMotA_7 

1.284271837 1.177770793 LH_DefaultB_PFCd_4 

1.279926716 1.160244217 RH_ContA_IPS_2 

   
 

Table A24: Distribution of nodes based on betweenness centrality at sparsity level 25% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

     BC value (raw)                BC value (z)                           ROI 

1.346452524 2.422248933 LH_SomMotA_19 

1.343858943 2.404467506 LH_DorsAttnB_PostC_9 

1.34173461 2.389903208 LH_SomMotA_13 



205 
 

1.328502984 2.299187993 RH_SalVentAttnA_ParMed_8 

1.308751802 2.163775105 RH_ContC_Cingp_1 

1.292040663 2.049204563 LH_SomMotA_6 

1.290036251 2.035462436 RH_SomMotA_14 

1.283744855 1.992329015 RH_SomMotB_S2_5 

1.280379894 1.969259046 RH_SomMotA_8 

1.265726872 1.868798834 LH_SomMotA_5 

1.257208628 1.810398275 LH_DefaultB_PFCd_4 

1.24789143 1.746520135 RH_ContA_Cinga_1 

1.245468585 1.729909265 RH_SomMotA_17 

1.236537072 1.668675355 LH_ContC_Cingp_2 

1.225929296 1.595949095 LH_SomMotA_7 

1.221920112 1.568462377 LH_VisPeri_ExStrSup_4 

1.216717502 1.532793609 LH_DorsAttnB_FEF_3 

1.214413856 1.516999951 RH_DefaultC_Rsp_1 

1.20947318 1.48312698 RH_SalVentAttnA_ParMed_2 

1.20795688 1.472731318 LH_DorsAttnB_PostC_2 

1.203829429 1.444433772 LH_SomMotB_Aud_13 

1.197842208 1.403385754 LH_SalVentAttnA_FrMed_3 

1.197412061 1.400436692 RH_SomMotA_15 

1.193650354 1.374646659 LH_DefaultA_PFCd_2 

1.187242776 1.330716696 LH_SomMotA_16 

1.186813794 1.327775625 RH_SomMotB_S2_9 

1.186373176 1.324754775 RH_SomMotA_12 

1.186250236 1.323911902 RH_SalVentAttnA_ParMed_5 

1.184601724 1.312609807 RH_SomMotA_18 

1.181435472 1.290902182 LH_ContB_IPL_3 

1.174633253 1.244266581 LH_SomMotA_8 

1.174370768 1.242467005 RH_DorsAttnA_SPL_4 

1.169811452 1.211208613 LH_SomMotA_18 

1.168738447 1.203852154 RH_SomMotA_1 

1.167788355 1.197338381 RH_SomMotA_19 

1.16718403 1.193195167 RH_SomMotA_10 

1.167157658 1.193014364 LH_ContA_Cinga_1 

1.166038652 1.185342528 RH_DorsAttnB_FEF_3 

1.165443234 1.181260376 LH_SalVentAttnB_PFCv_3 

1.164725028 1.176336405 RH_SomMotB_S2_12 

1.164447318 1.17443244 RH_SomMotB_S2_13 

1.164320272 1.17356142 LH_SalVentAttnA_Ins_4 

1.162875523 1.163656307 RH_DorsAttnB_PostC_5 

1.162289083 1.159635716 RH_DorsAttnB_PostC_3 

1.160866511 1.149882648 RH_SomMotA_16 

1.156530633 1.120156135 RH_SomMotA_13 

1.15639315 1.119213557 RH_SomMotA_6 

1.155190898 1.110970991 RH_SomMotB_S2_3 

1.154065352 1.103254317 RH_SomMotA_20 

1.153330468 1.098215997 RH_ContA_IPS_2 
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Table A25: Distribution of nodes based on betweenness centrality at sparsity level 30% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

 

     BC value (raw)                BC value (z)                           ROI 

1.392197718 2.4889632 RH_SomMotA_8 

1.375829465 2.386633043 LH_DorsAttnB_FEF_3 

1.37543186 2.384147318 RH_SalVentAttnA_ParMed_2 

1.375051741 2.381770914 RH_DorsAttnB_FEF_3 

1.347491093 2.20946875 RH_ContC_Cingp_1 

1.347249101 2.20795588 LH_SomMotA_6 

1.338156461 2.151111005 RH_ContA_IPS_3 

1.316687268 2.016891075 LH_ContC_Cingp_2 

1.306588897 1.953758628 LH_DorsAttnB_PostC_9 

1.300462407 1.91545737 RH_DorsAttnA_SPL_4 

1.280426536 1.790198198 LH_DorsAttnB_PostC_4 

1.277405317 1.771310307 RH_SomMotB_S2_9 

1.276229821 1.763961407 RH_SalVentAttnA_ParMed_8 

1.27183783 1.736503791 LH_ContB_IPL_3 

1.266641569 1.70401809 RH_SomMotA_16 

1.260182821 1.663639641 LH_DorsAttnA_SPL_5 

1.259946777 1.662163954 RH_SomMotB_S2_4 

1.259733741 1.660832107 RH_SomMotB_S2_13 

1.25215507 1.613452184 RH_DefaultA_PFCm_6 

1.247192469 1.582427267 LH_TempPar_2 

1.243803353 1.561239371 LH_SomMotA_19 

1.240199309 1.538707808 LH_VisPeri_ExStrSup_4 

1.238733973 1.5295469 RH_SomMotA_6 

1.231706138 1.485610661 LH_DefaultA_PFCd_3 

1.229683492 1.472965592 RH_DorsAttnB_PostC_8 

1.22633709 1.452044741 LH_SomMotA_18 

1.222654032 1.4290192 RH_SalVentAttnA_Ins_4 

1.222230167 1.426369301 RH_SomMotA_15 

1.22149981 1.421803296 RH_SomMotA_2 

1.217613779 1.39750882 LH_DorsAttnA_SPL_6 

1.215675143 1.385388958 RH_DorsAttnB_PostC_7 

1.215018255 1.381282265 RH_DorsAttnB_PostC_3 

1.21346212 1.371553701 LH_DorsAttnB_FEF_2 

1.213295296 1.370510763 LH_ContA_Cinga_1 

1.208793669 1.342367733 RH_SomMotA_20 

1.202524399 1.303173852 RH_SomMotB_S2_11 

1.202444787 1.302676138 LH_DorsAttnA_SPL_8 

1.199231861 1.282589745 RH_SalVentAttnA_ParMed_5 
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1.199153421 1.282099357 RH_SomMotA_14 

1.189211382 1.219944256 LH_SomMotA_11 

1.188696816 1.21672732 LH_ContC_Cingp_1 

1.185012011 1.193690855 LH_DorsAttnB_FEF_1 

1.184221888 1.18875121 LH_SomMotA_7 

1.183569377 1.184671879 RH_SomMotB_S2_5 

1.182169424 1.175919727 RH_SomMotA_17 

1.180867663 1.167781446 LH_SomMotA_13 

1.18067805 1.166596036 RH_SomMotA_9 

1.1804192 1.164977773 LH_DefaultB_PFCv_2 

1.179624493 1.160009467 LH_DefaultC_Rsp_2 

1.176707327 1.141772085 LH_SomMotA_15 
 

Table A26: Distribution of nodes based on betweenness centrality at sparsity level 30% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

     BC value (raw)                 BC value (z)                         ROI 

1.224111718 1.708260768 RH_ContB_PFCld_4 

1.199378099 1.695274617 RH_SomMotA_18 

1.197815131 1.687817421 RH_SomMotA_7 

1.196917609 1.682147126 LH_SomMotA_9 

1.196235152 1.606919022 RH_DefaultA_PFCd_2 

1.187180959 1.524939106 RH_SalVentAttnA_ParMed_7 

1.177314142 1.508717353 RH_SomMotA_12 

1.175361748 1.498253635 LH_ContA_PFCd_1 

1.174102371 1.479603583 LH_DefaultB_PFCl_1 

1.171857716 1.44389401 LH_SomMotA_16 

1.167559836 1.428450217 RH_SomMotA_19 

1.165701075 1.419765069 LH_DefaultA_PFCd_2 

1.164655761 1.413904154 RH_ContA_PFCd_1 

1.163950361 1.356809647 LH_DefaultB_PFCd_4 

1.157078665 1.355900326 LH_DefaultB_PFCl_2 

1.156969222 1.341486066 RH_SomMotA_17 

1.155234372 1.310982407 LH_SomMotA_13 

1.151563058 1.294487002 RH_DorsAttnB_PostC_7 

1.149577729 1.290398681 RH_SomMotA_14 

1.149085672 1.282667743 LH_DorsAttnB_FEF_2 

1.148155204 1.277734316 LH_ContB_PFCd_1 

1.147561434 1.263697187 RH_SomMotA_11 

1.145871974 1.263599558 RH_DorsAttnB_PostC_6 

1.145860223 1.258207885 LH_SomMotA_8 

1.1452113 1.242723581 RH_SalVentAttnA_ParMed_8 

1.143347663 1.239552503 LH_ContB_PFCmp_1 

1.142966003 1.239311358 RH_SomMotA_13 
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1.14293698 1.219320096 LH_SomMotA_4 

1.140530901 1.21890876 LH_SomMotA_15 

1.140481394 1.185316041 LH_SomMotA_18 

1.136438292 1.184364624 RH_DorsAttnA_SPL_8 

1.136323782 1.167064533 RH_DorsAttnB_FEF_1 

1.134241604 1.15388826 LH_DefaultB_PFCd_5 

1.132655753 1.153640005 LH_SomMotA_14 

1.132625874 1.1414515 LH_SomMotA_6 

1.131158908 1.135912298 RH_ContB_PFCld_3 

1.130492229 1.134776888 LH_SomMotA_12 

1.130355575 1.133111129 LH_DorsAttnB_PostC_8 

1.13015509 1.128730436 LH_SomMotB_Aud_13 

1.129627845 1.126568518 LH_DorsAttnB_PostC_6 

1.129367644 1.104019954 RH_DorsAttnB_PostC_3 

1.126653777 1.095421487 RH_DefaultB_PFCd_5 

1.125618896 1.090534709 RH_SomMotA_8 

1.12503074 1.087019357 RH_SomMotA_5 

1.124607645 1.057436873 LH_SomMotA_11 

1.1210472 1.041791429 LH_DefaultB_PFCd_1 

1.119164169 1.038280126 RH_ContB_PFCmp_1 

1.118741561 1.029812072 LH_DefaultA_PFCd_3 

1.117722375 1.013173271 LH_SomMotA_17 

1.115719787 0.991743581 LH_DorsAttnB_FEF_1 

   
Table A27: Distribution of nodes based on betweenness centrality at sparsity level 35% in Low 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

    BC value (raw)                 BC value (z)                         ROI 

1.267407265 2.136499035 RH_ContB_PFCld_4 

1.263564641 2.106393847 LH_DorsAttnB_FEF_2 

1.257345431 2.057669194 RH_DorsAttnB_FEF_3 

1.244252685 1.955093547 LH_DefaultA_PFCd_3 

1.233713881 1.872526866 LH_ContB_PFCmp_1 

1.230701246 1.848924257 LH_SomMotA_15 

1.221873716 1.779764612 RH_DorsAttnB_PostC_7 

1.21671362 1.739337635 RH_ContA_PFCd_1 

1.214280625 1.720276239 RH_SomMotA_8 

1.211189335 1.696057401 LH_DorsAttnB_FEF_3 

1.20880751 1.677396898 LH_DorsAttnB_PostC_4 

1.207692248 1.668659335 LH_DorsAttnB_FEF_1 

1.199334071 1.603176859 LH_SomMotA_18 

1.199306741 1.60296274 RH_SomMotA_5 

1.18766402 1.51174737 RH_DorsAttnB_PostC_3 

1.18746932 1.510221988 RH_DefaultA_PFCd_2 

1.186942145 1.506091814 RH_ContB_PFCmp_1 
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1.180942703 1.459088945 LH_DorsAttnB_PostC_6 

1.178411025 1.439254411 RH_SalVentAttnA_ParMed_7 

1.174196885 1.406238559 RH_SomMotA_11 

1.170329559 1.375939838 LH_ContA_PFCd_1 

1.167692943 1.355283166 RH_DorsAttnB_PostC_8 

1.16160945 1.307621793 LH_SomMotB_Aud_15 

1.159008044 1.287240973 RH_SalVentAttnA_ParMed_2 

1.158995386 1.287141809 LH_SomMotA_8 

1.154798485 1.254261017 RH_SalVentAttnA_PrC_1 

1.154730091 1.253725177 LH_SomMotA_16 

1.15349917 1.244081478 RH_SomMotA_19 

1.153237504 1.242031444 RH_ContA_IPS_3 

1.151692122 1.229924088 LH_ContB_PFCd_1 

1.150604956 1.22140664 RH_DefaultC_Rsp_2 

1.148158814 1.202242243 LH_SomMotA_6 

1.141743711 1.151982864 RH_SomMotA_6 

1.141066099 1.146674084 RH_SomMotA_7 

1.140350973 1.141071402 LH_DefaultB_PFCl_1 

1.139907877 1.137599948 RH_DefaultA_PCC_1 

1.139450761 1.134018652 RH_SomMotA_12 

1.139196168 1.132024032 LH_DorsAttnB_PostC_8 

1.13735101 1.11756807 LH_ContB_IPL_3 

1.136739805 1.112779559 LH_SomMotA_14 

1.135904854 1.106238103 LH_DorsAttnA_SPL_6 

1.133354354 1.086256106 RH_DorsAttnA_SPL_7 

1.133016356 1.083608049 LH_DefaultB_PFCd_5 

1.132242175 1.077542699 LH_SomMotA_11 

1.131210046 1.069456442 RH_SomMotA_17 

1.130797212 1.066222077 RH_SomMotA_3 

1.12995214 1.059601323 LH_SalVentAttnA_FrMed_2 

1.129641286 1.05716593 RH_SomMotA_13 

1.127997236 1.044285551 LH_SalVentAttnA_ParMed_1 

1.127123377 1.037439271 RH_DefaultA_PFCm_6   
 

Table A28: Distribution of nodes based on betweenness centrality at sparsity level 35% in High 

Stress group. The first column contains the BC values, 2nd column are the BC values 

standardized to Z values, and 3rd column the name of the ROI. 

 

 

Tables A1-28: Nodes ranking based on degree centrality (1-14) and 

betweenness centrality (15-28) at each sparsity level for both groups (Low stress 

and High stress).  
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Figure A6:  Graphical representation of global graph theory measures vary within and between-

group (here only sparsity 5% is shown), even if they were not statistically different. The graph 

theory measures plotted are characteristic path length, cluster coefficient, small-worldness and 

global efficiency.  
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b) 
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d) 

Figure A7: Graphs of nodal degree at all the sparsity levels considered in this study based on 

four different networks: a) visual central, b) limbic – temporal pole, c) somatomotor and d) 

executive control networks. All the networks are displayed for both hemispheres. Error bars 

represents standard error. 
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Appendix B 

 

Table B1: Hippocampal subfields segmented in FreeSurfer6.0. Abbreviations: HATA = 

Hippocampal Amygdalar Transition Area; CA = Cornu Ammonis 
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Figure B1: Beeswarm boxplots showing no between-group differences in some of the 

hippocampal subfields 
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a) 

 
b) 
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c) 

 

Figure B2: Negative linear correlations in the High stress group between the level of 

Neuroticism and a) left CA1-head, b) left fimbria, c) left molecular layer of the 

hippocampal head 
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Table B2: Uncorrected p-values of the linear mixed model for each of the subfields 

considered in both groups. None of the significant results survived FDR correction. 
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Appendix C 

1.1. Along-tract analysis. Analyses along the tract length showed a significant 

increase of MD (p=0.012) and RD (p=0.0098) in the right subgenual branch in 

the older group.  

1.2. Tract averaged-measures analysis. Before correction for multiple 

comparisons, in the subgenual branch, significant decreases were found in the 

left FA (p=0.001), AD (p=0.004) and the volume tract (p=0.001), as well as an 

increase in the left RD (p=0.00000001). In the right hemisphere there was an 

increase in MD (p= 0.005). The retrosplenial tract showed a statistically 

significant increase in the left tract volume (p=0.0005), but in none of the DTI 

measures. Likewise, in the parahippocampal branch, there was a significant 

increase only in the left tract volume (p=0.00005). Overall, these results 

confirmed the along-tract analysis outcomes. 
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Figure C1: Along-tract analysis of the right hemisphere subgenual tract between young 

(blue line) and older (green line) healthy people. a) mean diffusivity, b) radial diffusivity. 

The data represent the mean of DTI-measures for each point along the tract +/- 1 

standard deviation. Stars indicate the location of between-group significant differences. 
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Appendix D 

Instructions to Perform Brain Connectivity and 

Graph Theory Measures Analyses 

 

Overview 

 

To run the brain connectivity and graph theory analysis, the first step is to 

extract the grey matter segmentations using SPM. The version used in this 

study is SPM8 in Matlab 2012a. 

 

After the segmentation, the pipeline developed by Tijms et al., 2012 is 

applied. The github page to get the scripts is:   

https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks. The 

version used in this study is 

“Extract_individual_GM_networks_v20150902”. Following the instructions 

of github, correlation matrices at an individual level are extracted, together 

with other files describing how th matrices were calculated and obtained. 

All the details can be found in the script called 

"batch_extract_networks_v20150902”. This will create a directory called 

‘results’, containing one sub-folder for each subject. Each sub-folder 

contains two sub-directories. In the sub-directory “/data”, the file named 

‘rotcorr.mat’ is the matrix which is used for the calculation of graph theory 

measures. Another file used as input for the analysis is the actual GM 

https://github.com/bettytijms/Single_Subject_Grey_Matter_Networks
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segmentation image, called ‘iso2mm_s(subj_nr)’, which is the resliced 

image with 2x2x2mm3 voxels (details for each file created can found in 

Tijms’ paper and github page). 

Once the analysis has run for all the participants, an atlas is applied to 

each of the GM segmentations. The atlas used in this study is the Schaefer 

template with 400 ROIs and 17 networks. Each GM segmentation was 

registered to the atlas space with a non-linear transformation performed in 

DARTEL in SPM8.  

Since correlation matrices are extracted in native space, (meaning they 

have different sizes across subjects), a further step is necessary to reduce 

the matrix size to 400x400, which are the number of ROIs in the Schaefer 

template.  

The scripts conceived by F.S and A.L.W.B. and developed by C.J.M.  

calculate to the so-called “matrix reshaping”: individual correlation 

matrices (of different size nxn) are “reshaped” to a size of 400x400. 

Starting from this step, Matlab2016a was used. 

The scripts to run this step are:  

-  Create_Schafer_template.m 

-  simplify_bind.m 

-  ber_reshape.m (script that ‘reshapes’ the matrix to 400x400). 

-  Fisher_r2z.m (converting r coefficients in the correspondent z-values 

using Fisher’s r-to-z transformation) 
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To compute graph theory measures, an additional folder with all the 

functions downloaded from Brain Connectivity toolbox (BCT) is needed. 

The web page where to find the list of graph theory measures used in the 

analysis is: https://sites.google.com/site/bctnet/measures/list. 

 

Instructions: 

1) create a directory to store all the subjects run with Tijms’ pipeline 

2) In each subject directory, create a directory (we called it ‘reshape’) 

where to save all the new files generated by the reshaping step 

3) run ‘Create_Schafer_template.m’ and ‘simplify_bind.m’ (we saved these 

output files in the ‘reshape’ folder) 

4) run the script ‘ber_reshape.m’ to obtain the reshaped correlation matrix.  

5) run the script ‘Fisher_r2z.m’ to convert each correlation matrix value in 

its correspondent z-value 

 

To run the graph theory measures analysis:  

- BCT_calculation_Fisher.m: this script calculates graph theory measures 

for each subject at each sparsity level. The files are saved in the subject 

directory and correspondent sparsity sub-folder. Note: the sub-folder 

‘essential functions’ is needed to compute each graph theory. 

- Avg_measures_stressGroups.m: this script loads the graph theory 

measures from each subject folder and it puts them all together in a single 

https://sites.google.com/site/bctnet/measures/list
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.mat file for each measure, after averaging the values both across subjects 

and across nodes. The files generated can be then imported in statistical 

packages (for example, SPSS or R) to run between-group statistical 

comparison.  

 

To run the whole-brain analysis with NBS, two scripts are needed: 

- Create_design_matrix.m 

- Create_ConnectivityMatrix_NBS_ber.m 

The files generated are used as input in NBS gui to run whole-brain 

connectivity analysis.  

 
LIST OF SCRIPTS  
 
(In order of how their appearance) 
 
 

- Avg_measures_stressGroups.m 

- BCT_calculation_Fisher.m 

- ber_reshape.m 

- Create_ConnectityMatrix_NBS_ber.m 

- Create_design_matrix.m 

- Create_Schaefer_template.m 

- Fisher_r2z.m 

- simplify_bind.m 
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function [] = Avg_measures_stressGroups() 
% This function calculates and concatenates measures form BCT to use 

them in statistical analyses 

  

  
% Load the file that contains the subject's index of each stress group 

cd('/path-to-txtfiles'); 
load('HighStress_subgroup.txt'); 
load('LowStress_subgroup.txt'); 

  
betw_allspars_wholeGroup=zeros(400,8); 

  
for k=5:5:35 
tic 

    

     
 %creates the folder that will contain all the other folders 

    BCT_name_dir=strcat('BCT_487_',num2str(k)); 
    mkdir('/path-where-to-save-data/',BCT_name_dir); 

  
% Creates the matrices that will contain the data of each group 

    bet_allnodes_LS=[]; 
    bet_allnodes_HS=[]; 

  
    clust_allnodes_LS=[]; 
    clust_allnodes_HS=[]; 

  
    connections_LS=[]; 
    connections_HS=[]; 

     
    lp_LS=[]; 
    lp_HS=[]; 

  
    gl_efficiency_LS=[]; 
    gl_efficiency_HS=[]; 

     
    degree_allsubj_LS=[]; 
    degree_allsubj_HS=[];  

     
    degree_allnodes_LS=[]; 
    degree_allnodes_HS=[]; 

     
% go through all the subject folders that belong to the low stress 

group 
    for i=1:length(LowStress_subgroup) 

     
% get the IDs of the subjects that belong to the low stress 

group 
        ID_low=LowStress_subgroup(i); 

     
        % Get the name of the folder according to the IDs  
        cd('/path-to-subj-dir'); 
        fold_name =strcat ('*', num2str(ID_low)); 
        all_sub_fold = dir(fold_name); 
        name_sub_fold = {all_sub_fold.name}; 
        subj_fold = strjoin(name_sub_fold); 
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        % go into their folder according to their IDs 
        spar_fold=strcat('/path-to-subj-

dir/',subj_fold,'/conn_matrix_sym/spar',num2str(k)); 
        cd(spar_fold); 

  
        %load the betweenness 
        bet_file=('betw*.mat'); 
        bet_file = dir(bet_file); 
        bet_file_name = { bet_file.name }; 
        load(bet_file_name{1}); 

  
        % concatenate horizontally the betweenness of all the   

400 nodes for all the subjects 
        % of this group 
        bet_allnodes_LS=cat(2,bet_allnodes_LS,betw_S); 
        

betw_allspars_wholeGroup(:,k/5)=betw_allspars_wholeGroup(:,k/5)+

betw_S;   

        

         
        %load the clustering values 
        clust_file=('clust*.mat'); 
        clust_file = dir(clust_file); 
        clust_file_name = { clust_file.name }; 
        load(clust_file_name{1}); 

         
        % concatenate horizontally the clustering of all the 400 

nodes for all the subjects 
        % of this group 
        clust_allnodes_LS=cat(2,clust_allnodes_LS,clustS); 

  
        %load the tot nr connection values 
        connect_file=('connections*.mat'); 
        connect_file = dir(connect_file); 
        connect_file_name = { connect_file.name }; 
        load(connect_file_name{1}); 

         
        % concatenate vertically the number connections of all 

networks that belong to the subjects 
        % of this group 
        connections_LS=cat(1,connections_LS,connections); 

  
        %load the global efficiency 
        gl_eff_file=('gl_efficiency*.mat'); 
        gl_eff_file = dir(gl_eff_file); 
        gl_eff_file_name = { gl_eff_file.name }; 
        load(gl_eff_file_name{1}); 

  
        % concatenate vertically the global efficiency of the 

subjects 
        % of this group for each sparsity (that's why k/5) 
        gl_efficiency_LS=cat(1,gl_efficiency_LS,efficiency); 

  
        % concatenate the degree for all the subjects 
        degree_file=('degree*.mat'); 
        degree_file = dir(degree_file); 
        degree_file_name = {degree_file.name }; 
        load(degree_file_name{1}); 
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        degree_allnodes_LS=cat(2,degree_allnodes_LS,degree); 

         
        degree_allsubj_LS=cat(1,degree_allsubj_LS,mean(degree)); 

         
 %specify the folder and path where Lp is stored, because it is 
different from all the other measures  

lp_fold=strcat('/path-to-subj-

dir/',subj_fold,'/conn_matrix_sym'); 
        cd(lp_fold); 

         
        %load the lp 
        Lp_file=('Lp*.mat'); 
        Lp_file = dir(Lp_file); 
        Lp_file_name = { Lp_file.name }; 
        load(Lp_file_name{1}); 

         
  % concatenate vertically the characteristic path length of the 

subjects of this group for each sparsity (that's why k/5) 
        lp_LS=cat(1,lp_LS,Lp(k/5)); % since th efile of LP has 

the values for each sparsity, we divide k/5 so that for each 

iteration it gets only one Lp value according to each sparsity 

level 

     
    end 

     
    % Average the betweenness for each node of all the subjects 

of this group  
    avgBet_allnodes_LS=mean(bet_allnodes_LS,2); 

     

     
    % Average the clustering for each node of all the subjects of 

this group 
    avgClust_allnodes_LS=mean(clust_allnodes_LS,2); 

     
    % average the degree for each node of all the subjects of 

this group 
    avgDegree_allnodes_LS=mean(degree_allnodes_LS,2); 

     

     
    % go through all the subject folders that belong to the high 

stress group 
    for i=1:length(HighStress_subgroup) 

         
        % get the IDs of the subjects that belong to the low 

stress group 
        ID_high=HighStress_subgroup(i); 

         
        % Get the name of the folder according to the IDs 
        cd('/path-to-subj-dir/'); 
        fold_name =strcat ('*', num2str(ID_high)); 
        all_sub_fold = dir(fold_name); 
        name_sub_fold = {all_sub_fold.name}; 
        subj_fold = strjoin(name_sub_fold); 

  
        % go into their folder according to their IDs 
        spar_fold=strcat('/path-to-subj-

dir/',subj_fold,'/conn_matrix_sym/spar',num2str(k)); 
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        cd(spar_fold); 

  
        %load the betweenness 
        bet_file=('betw*.mat'); 
        bet_file = dir(bet_file); 
        bet_file_name = { bet_file.name }; 
        load(bet_file_name{1}); 

  
        % concatenate horizontally the betweenness of all the 400 

nodes for all the subjects of this group 
        bet_allnodes_HS=cat(2,bet_allnodes_HS,betw_S); 
        

betw_allspars_wholeGroup(:,k/5)=betw_allspars_wholeGroup(:,k/5)+b

etw_S; 

         
        %load the clustering values 
        clust_file=('clust*.mat'); 
        clust_file = dir(clust_file); 
        clust_file_name = { clust_file.name }; 
        load(clust_file_name{1}); 

  
        % concatenate horizontally the clustering of all the 400 

nodes for all the subjects of this group 
        clust_allnodes_HS=cat(2,clust_allnodes_HS,clustS); 

  
        %load the clustering values 
        connect_file=('connections*.mat'); 
        connect_file = dir(connect_file); 
        connect_file_name = { connect_file.name }; 
        load(connect_file_name{1}); 

     

        % concatenate vertically the number connections of all 

networks that belong to the subjects of this group 
        connections_HS=cat(1,connections_HS,connections); 

         
        %load the clustering values 
        gl_eff_file=('gl_efficiency*.mat'); 
        gl_eff_file = dir(gl_eff_file); 
        gl_eff_file_name = { gl_eff_file.name }; 
        load(gl_eff_file_name{1}); 

     
        % concatenate vertically the global efficiency of the 

subjects of this group for each sparsity (that's why k/5) 
        gl_efficiency_HS=cat(1,gl_efficiency_HS,efficiency); 

         
        % concatenate the degree for all the subjects 
        degree_file=('degree*.mat'); 
        degree_file = dir(degree_file); 
        degree_file_name = {degree_file.name }; 
        load(degree_file_name{1}); 

         
        degree_allnodes_HS=cat(2,degree_allnodes_HS,degree); 

         
        degree_allsubj_HS=cat(1,degree_allsubj_HS,mean(degree)); 

         
        lp_fold=strcat('/path-to-subj-

dir/',subj_fold,'/conn_matrix_sym'); 
        cd(lp_fold); 
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        %load the lp 
        Lp_file=('Lp*.mat'); 
        Lp_file = dir(Lp_file); 
        Lp_file_name = { Lp_file.name }; 
        load(Lp_file_name{1}); 

  
        % concatenate vertically the characteristic path length 

of the subjects of this group for each sparsity (that's why k/5) 
        lp_HS=cat(1,lp_HS,Lp(k/5)); 

         
    end 

  
    % Average the betweenness for each node of all the subject of 

this group 
    avgBet_allnodes_HS=mean(bet_allnodes_HS,2); 

     
    % Average the clustering for each node of all the subject of 

this group 
    avgClust_allnodes_HS=mean(clust_allnodes_HS,2); 

     
    % average the degree for each node of all the subjects of 

this group 
    avgDegree_allnodes_HS=mean(degree_allnodes_HS,2); 

     
    % Calculate the mean of each column and take the transposed 

matrix 
    bet_allsubj_LS=mean(bet_allnodes_LS,1)'; 
    bet_allsubj_HS=mean(bet_allnodes_HS,1)'; 

     
    clust_allsubj_LS=mean(clust_allnodes_LS,1)'; 
    clust_allsubj_HS=mean(clust_allnodes_HS,1)'; 

  
    save_dir=strcat('/path-where-to-save-

data/BCT_487_',num2str(k));   
    cd(save_dir); 

  
    % save all the file with the sparsity level inside of their 

names 
    save (['avgBet_allnodes' num2str(k) '_LS.mat'], 

'avgBet_allnodes_LS'); 
    save (['avgBet_allnodes' num2str(k) '_HS.mat'], 

'avgBet_allnodes_HS'); 

  
    save (['bet_allnodes' num2str(k) '_LS.mat'], 

'bet_allnodes_LS'); 
    save (['bet_allnodes' num2str(k) '_HS.mat'], 

'bet_allnodes_HS'); 

  
    save (['avgClust_allnodes' num2str(k) '_LS.mat'], 

'avgClust_allnodes_LS'); 
    save (['avgClust_allnodes' num2str(k) '_HS.mat'], 

'avgClust_allnodes_HS'); 

  
    save (['clust_allnodes' num2str(k) '_LS.mat'], 

'clust_allnodes_LS'); 
    save (['clust_allnodes' num2str(k) '_HS.mat'], 

'clust_allnodes_HS'); 
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    save (['connections' num2str(k) '_LS.mat'], 

'connections_LS'); 
    save (['connections' num2str(k) '_HS.mat'], 

'connections_HS'); 

     

   
    save (['lp' num2str(k) '_LS.mat'], 'lp_LS'); 
    save (['lp' num2str(k) '_HS.mat'], 'lp_HS'); 

  
    save (['gl_efficiency' num2str(k) '_LS.mat'], 

'gl_efficiency_LS'); 
    save (['gl_efficiency' num2str(k) '_HS.mat'], 

'gl_efficiency_HS'); 

     
    save (['degree_allnodes' num2str(k) '_LS.mat'], 

'degree_allnodes_LS'); 
    save (['degree_allnodes' num2str(k) '_HS.mat'], 

'degree_allnodes_HS'); 

     
    save (['degree_allsubj' num2str(k) '_LS.mat'], 

'degree_allsubj_LS'); 
    save (['degree_allsubj' num2str(k) '_HS.mat'], 

'degree_allsubj_HS'); 

     
    save (['avgDegree_allnodes' num2str(k) '_LS.mat'], 

'avgDegree_allnodes_LS'); 
    save (['avgDegree_allnodes' num2str(k) '_HS.mat'], 

'avgDegree_allnodes_HS'); 

 
    % save the metrics averaged for each subject  
    save (['bet_allsubj' num2str(k) '_LS.mat'], 

'bet_allsubj_LS'); 
    save (['bet_allsubj' num2str(k) '_HS.mat'], 

'bet_allsubj_HS'); 

     
    save (['clust_allsubj' num2str(k) '_LS.mat'], 

'clust_allsubj_LS'); 
    save (['clust_allsubj' num2str(k) '_HS.mat'], 

'clust_allsubj_HS'); 

  
toc 

     
end 

  
betw_allspars_wholeGroup = 

betw_allspars_wholeGroup/(length(LowStress_subgroup)+length(HighS

tress_subgroup)); 

  
cd('/path-where-to-save-data'); 
save betw_allspars_wholeGroup.mat betw_allspars_wholeGroup 

  
end 
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% This script calculates all the measures from the correlation 

matrix with Fisher transformed matrices 
% 
% INPUTS: 
%   - The z-transformed correlation matrix according to the 

schaefer template 
%   - The excel file that contain all the name of the ROIs 
%    
% % % NEED TO CHANGE: 
% % % Line 49: The path to the excel file (ROI names) 
% % % Line 50: The name of the excel file 
% % % Line 61: The path to run the functions 
% % % Line 65: Define the number of the subjects in the study 
% % % Line 66: Define the number of nodes of the atlas chosen 
% % % Line 68: The path where the list of IDs for both groups is 

saved 
% % % Line 73&74: path where the correlation matrices are stored 
% % % Line 82&83: path where to save graph theory calculated 
% % % Line 81: The path to go inside the subject folder and to 

create the folder that will contain the measures 
 

% OUTPUTS: 
%      For each sparcity level: 
%       -treshold.mat 
%       -connections.mat 
%       -tresh_matrix.mat 
%       -clust.mat 
%       -BET_S.mat 
%       -betw_S.mat 
%       -M_S.mat 
%       -Q_S.mat 
%       -LV_S.mat 
%       -ord_S.mat 
%       -number.mat 
%       -plot.fig 

 
%      For each subject 
%       -cp_allspars.mat 
%       -Lp_allspars.mat 
%       -LV_allspars.mat 
%       -ord_allspars.mat 
%       -bet_allspars.mat 
%       -M_allspars.mat 
%       -gamma_allspars.mat 
%       -lambda_allspars.mat 
%       -lp_rand_allspars.mat' 
%       -cp_rand_allspars.mat 
%----------------------------------------------------------------

--------  

  
random=1000;    %number of random permutation for lambda and 

gamma parameter  

  
%Read the excel file to get the name of all the ROI 
cd('/path-to-the-rois-list-directory'); %go to where the file 

with the roi list is stored 
[A1,txt]=xlsread('Schaefer_rois.xlsx',1); 
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%Initialize the values for the sparcity level 
x=400; 
y=400; 
sparcity=(0.05:0.05:0.35); %values of sparcity that you want to 

test  
max=y*y;  %values of maximum values possible in the matrix  
k=max.*sparcity; 

  
% Initialize the path to run the functions needed to compute 

graph theory measures (here the folder name is essential_folder) 
function_dir='/path-to-the-BCT-functions-

directory/essential_functions'; 

  
num_sub=487;   % number of participants 
nb_nodes = 400; % nr of nodes/Schafer_400 

  
txtFileFolder = '/path-where-the-text-files-of-the-two-groups-

are-stored'; %indicate directory where the text files for both 

groups are stored 
txt_file_HS= 'HighStress_IDs.txt'; %load the txt files 
txt_file_LS= 'LowStress_IDs.txt'; 

  
%load the folders containing z-transformed matrices for both 

groups 
matrix_fold_HS= '/path/Ztransf_mat_HS';  
matrix_fold_LS= '/path/Ztransf_mat_LS'; 

  
% load the txt files for both groups 
cd(txtFileFolder); 
load(txt_file_HS); 
load(txt_file_LS); 

  

  
mkdir('/path-where-store-the-measures-

folder/graphTheoryFolder_name'); %create new folder to store 

graph theory measures will be computed -indicate path and name of 

the folder 
subj_dir=('/path-where-store-the-measures-

folder/graphTheoryFolder_name'); %define the new folder as 

'subj_dir' 
cd(subj_dir); %go to that directory 

  

  
for t = 1:length(HighStress_IDs)  %for loop for the HS  

       
    ID_High = HighStress_IDs(t); 
    matrix_filename = ['ber_zTransf_',num2str(ID_High),'.mat'];  

     
    cd(matrix_fold_HS); % go tp the matrix folder 
    load(matrix_filename);   % load the matrix 

   
    mkdir( subj_dir, 'graph_theory_z_HS');  % Create the 

directory that will contains the folder of each subject of HS 
    connectivity_dir = 

strcat(subj_dir,'/graph_theory_z_HS/GT_',num2str(ID_High));% 

Initialize the path to this new folder and create folder for each 

subject 
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    %initialization of the different parameters 
    cp=zeros(size(k)); 
    Lp=zeros(size(k)); 
    Lambda=zeros(size(k)); 
    Gamma=zeros(size(k)); 
    lp_rand=zeros(size(k)); 
    cp_rand=zeros(size(k)); 
    M_allspars = []; 
    bet_allspars = []; 
    LV_allspars = []; 
    ord_allspars = []; 

     
    for n = 1:length(k) 

         
        % Go to the directory to run the functions 
        cd(function_dir');  

  
        % Calculate all the different threshold and binary 

connection matrix 
        % compared to the different values of the sparcity 
        [ bin_matrix,err,treshold,connections] = 

binary_bis(ber_zTransf_HS,k(n));        

  
        %apply the threshold to the correlation matrix  
        tresh_matrix = zeros(x,y); 

  
        for i=1:x                     
           for j=1:y 
               if abs(ber_zTransf_HS(i,j) ) >= abs(treshold) % to 

calculate the thresholded matrix, the absolute values are 

considered, which removes any issue regarding the negative 

correlations! 
                   tresh_matrix(i,j) = ber_zTransf_HS(i,j); 
               end 
           end    
        end 

         

         
        % Calculate the clustering coefficient of each node and 

mean cp 
        clustS = clustering_coef_bu(bin_matrix); 
        cp(n) = mean(clustS); 

  
        % Calculate the length path   
        Lp(n) = lp_prog( bin_matrix );  

  
        % Calculate the lambda and gamma parameter with 1000 

random permutation  
        

[Lambda(n),Gamma(n),lp_rand(n),cp_rand(n)]=Copy_of_lambda( 

Lp(n),cp(n),bin_matrix,random,connections); 

      
        % Calculate the betweenness of each node 
        BET_S=betweenness_bin(bin_matrix);   

         
        BET_S=BET_S';  %transposed matrix is used just for the 

visibility of the matrix 
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        % Normalize the betweenness 
        b=BET_S; 
        BET_S(BET_S==0)=[]; 
        betw_S=b/mean(BET_S); 

         
        %store in a matrix the normalized betweenness for all the 

sparcity 
        bet_allspars=cat(2,bet_allspars,betw_S); 

  
        % louvain parameter 
        [M_S, Q_S] = community_louvain(bin_matrix,0); 

         
        %store in a matrix the M_S for all the sparcity   
        M_allspars = cat ( 2, M_allspars, M_S); 

  
        % Put all the area that have the same louvain parameter 

values in the same lines  
        [LV_S,ord_S,number]=Copy_of_order(M_S,txt); 

           
        LV_allspars = cat( 1, LV_allspars, LV_S); 
        ord_allspars = cat( 1, ord_allspars , ord_S); 

         
        % Plot matrix          
        plot=figure(n); 
        set(gcf,'Visible', 'off');  
            plot_order( number,tresh_matrix ); 
            title(strcat('spar=',num2str(sparcity(n)*100))); 
            colorbar; 

         
        % Create a folder for each sparcity level and go into it  
        spar_dir_name=strcat('spar',int2str(n*5)); 
        mkdir(connectivity_dir,spar_dir_name); 
        cd(strcat(connectivity_dir,'/',spar_dir_name)); 

         
        %saving all the measures calculate for each sparcity 
        save(['bin_matrix' num2str(n*5) '.mat'],'bin_matrix'); 
        save(['treshold' num2str(n*5) '.mat'],'treshold'); 
        save(['connections' num2str(n*5) '.mat'],'connections'); 
        save(['tresh_matrix' num2str(n*5) '.mat'], 

'tresh_matrix'); 
        save(['clust' num2str(n*5) '.mat'], 'clustS') ; 
        save(['BET_S' num2str(n*5) '.mat'], 'BET_S'); 
        save(['betw_S' num2str(n*5) '.mat'], 'betw_S'); 
        save(['M_S' num2str(n*5) '.mat'], 'M_S'); 
        save(['Q_S' num2str(n*5) '.mat'], 'Q_S'); 
        save(['LV_S' num2str(n*5) '.mat'], 'LV_S'); 
        save(['ord_S' num2str(n*5) '.mat'], 'ord_S'); 
        save(['number' num2str(n*5) '.mat'], 'number'); 
        savefig( plot, [ 'plot_spar' num2str(n*5) ] ); 

         
        Sparcity_level_done=num2str(n*5) %to know where the 

scripts is        
    end 

     
    %saving all the averaged measures calculate for each subject 
    cd(connectivity_dir); 
    save('cp_allspars.mat', 'cp'); 
    save('Lp_allspars.mat', 'Lp'); 
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    save('LV_allspars.mat', 'LV_allspars'); 
    save('ord_allspars.mat', 'ord_allspars'); 
    save('bet_allspars.mat', 'bet_allspars'); 
    save('M_allspars.mat', 'M_allspars'); 
    save('gamma_allspars.mat','Gamma' ); 
    save('lambda_allspars.mat','Lambda' ); 
    save('lp_rand_allspars.mat','lp_rand' ); 
    save('cp_rand_allspars.mat','cp_rand' ); 

     
    Subject_done=num2str(t) %to know where the scripts is 

     
end 

  
%do it for Low stress 

  
for t = 1:length(LowStress_IDs)  %for loop for the LS  

       
    ID_Low = LowStress_IDs(t); 
    matrix_filename = ['ber_zTransf_',num2str(ID_Low),'.mat'];  

     
    cd(matrix_fold_LS);         % go to the matrix folder 
    load(matrix_filename);   % load the matrix 

   
    mkdir( subj_dir, 'graph_theory_z_LS');  % Create the 

directory that will contains the folder of each subject of LS 
    connectivity_dir = 

strcat(subj_dir,'/graph_theory_z_LS/GT_',num2str(ID_Low)); % 

Initialize the path to this new folder and create folder for each 

subject 

     

     
    %initialization of the different parameters 
    cp=zeros(size(k)); 
    Lp=zeros(size(k)); 
    Lambda=zeros(size(k)); 
    Gamma=zeros(size(k)); 
    lp_rand=zeros(size(k)); 
    cp_rand=zeros(size(k)); 
    M_allspars = []; 
    bet_allspars = []; 
    LV_allspars = []; 
    ord_allspars = []; 

     
    for n = 1:length(k) 

         
        % Go to the directory to run the functions 
        cd(function_dir');  

  
        % Calculate all the different thresholds and binary 

connection matrix at different sparsity levels 
        [ bin_matrix,err,treshold,connections] = 

binary_bis(ber_zTransf_LS,k(n));        

  
        %define the thresholded correlation matrix  
        tresh_matrix = zeros(x,y); 

  
        for i=1:x                   %apply the threshold to the 

correlation matrix  
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           for j=1:y 
               if abs(ber_zTransf_LS(i,j) ) >= abs(treshold) 
                   tresh_matrix(i,j) = ber_zTransf_LS(i,j); 
               end 
           end    
        end 

         

         
        % Calculate the clustering coefficient 
        clustS = clustering_coef_bu(bin_matrix); 
        cp(n) = mean(clustS); 

  
        % Calculate the length path  
        Lp(n) = lp_prog( bin_matrix );  

  
        % Calculate the lambda and gamma parameter with 1000 

random permutation  
        

[Lambda(n),Gamma(n),lp_rand(n),cp_rand(n)]=Copy_of_lambda( 

Lp(n),cp(n),bin_matrix,random,connections); 

       
        % Calculate the betweenness of each node 
        BET_S=betweenness_bin(bin_matrix);   

         
        BET_S=BET_S';  %transposed matrix is used just for the 

visibility of the matrix 

         
        % Normalize the betweenness 
        b=BET_S; 
        BET_S(BET_S==0)=[]; 
        betw_S=b/mean(BET_S); 

         
        %store in a matrix the normalized betweenness for all the 

sparcity 
        bet_allspars=cat(2,bet_allspars,betw_S); 

  
        % louvain parameter 
        [M_S, Q_S] = community_louvain(bin_matrix,0); 

         
        %store in a matrix the M_S for all the sparcity   
        M_allspars = cat ( 2, M_allspars, M_S); 

  
        % Put all the area that have the same louvain parameter 

values in the same lines  
        [LV_S,ord_S,number]=Copy_of_order(M_S,txt); 

           
        LV_allspars = cat( 1, LV_allspars, LV_S); 
        ord_allspars = cat( 1, ord_allspars , ord_S); 

         
        % Plot all matrices  
        plot=figure(n); 
        set(gcf,'Visible', 'off');  
            plot_order( number,tresh_matrix ); 
            title(strcat('spar=',num2str(sparcity(n)*100))); 
            colorbar; 

         
        % Create a folder for each sparcity level and go into it  
        spar_dir_name=strcat('spar',int2str(n*5)); 
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        mkdir(connectivity_dir,spar_dir_name); 
        cd(strcat(connectivity_dir,'/',spar_dir_name)); 

         
        %saving all the measures calculate for each sparcity 
        save(['bin_matrix' num2str(n*5) '.mat'],'bin_matrix'); 
        save(['treshold' num2str(n*5) '.mat'],'treshold'); 
        save(['connections' num2str(n*5) '.mat'],'connections'); 
        save(['tresh_matrix' num2str(n*5) '.mat'], 

'tresh_matrix'); 
        save(['clust' num2str(n*5) '.mat'], 'clustS') ; 
        save(['BET_S' num2str(n*5) '.mat'], 'BET_S'); 
        save(['betw_S' num2str(n*5) '.mat'], 'betw_S'); 
        save(['M_S' num2str(n*5) '.mat'], 'M_S'); 
        save(['Q_S' num2str(n*5) '.mat'], 'Q_S'); 
        save(['LV_S' num2str(n*5) '.mat'], 'LV_S'); 
        save(['ord_S' num2str(n*5) '.mat'], 'ord_S'); 
        save(['number' num2str(n*5) '.mat'], 'number'); 
        savefig( plot, [ 'plot_spar' num2str(n*5) ] ); 

         
        Sparcity_level_done=num2str(n*5)  %to know where the 

scripts is        
    end 

     
    %saving all the averaged measures calculated for each subject 
    cd(connectivity_dir); 
    save('cp_allspars.mat', 'cp'); 
    save('Lp_allspars.mat', 'Lp'); 
    save('LV_allspars.mat', 'LV_allspars'); 
    save('ord_allspars.mat', 'ord_allspars'); 
    save('bet_allspars.mat', 'bet_allspars'); 
    save('M_allspars.mat', 'M_allspars'); 
    save('gamma_allspars.mat','Gamma' ); 
    save('lambda_allspars.mat','Lambda' ); 
    save('lp_rand_allspars.mat','lp_rand' ); 
    save('cp_rand_allspars.mat','cp_rand' ); 

     
    Subject_done=num2str(t) %to know where the scripts is 

     
end 
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function ber_reshape 
%This function creates the reshaped matrix from betty scripts to 

400*400 matrices (schaefer)  

  
% Determine the number of subjects to analyse 
files = dir('/subj-dir'); 
directory_subject_names = {files([files.isdir]).name}; 
directory_subject_names = 

directory_subject_names(~ismember(directory_subject_names,{'.','.

.'})); 
num_sub = length( directory_subject_names); 

  
% go through all the subjects 
for i = 1 : num_sub 
 tic    
    sub_fold=strjoin(directory_subject_names(i)); 

     
    % load the correlation matrix in the 'data' directory 
    rotcorr_dir= strcat('/path-to-subj-

dir/',sub_fold,'/data/rotation'); 
    cd(rotcorr_dir); 
    load('rotcorr.mat'); 

  
    %load the sheafer template 
    schaefer_dir = strcat('/path-to-subj-

dir/',sub_fold,'/reshape'); 
    cd(schaefer_dir); 
    load('schaefer_template.mat'); 

  
    % initialize the reshaped matrix 
    reshape_ber=zeros(400,400,'double'); 

  
    % go through all the columns of the schaefer template (--> to 

all the ROIs) to know wich cube belong to the xth ROI 
    for x=1:400 

         
        ind_voxels_x=schaefer_template(:,x); % read the xth 

column to get all the indices of the cubes that belong to th xth 

ROI 

         
        ind_voxels_x(~any(ind_voxels_x,2), :) = []; % suppress 

zeros at the end of the columns if any 

         
        for y=x+1:400 %go through all the upper triangle of the 

matrices (without taking into account the diagonal because y 

represent the column and always begin at x+1) 

            
            sum_values=[]; % reinitialize the vector that sums up 

all the correlation coefficients, representing the new 

correlation coefficient 

             
            % read the yth columns to get all the indices of the 

cubes that belong to the yth ROI and supress the zeros at the end 

of the columns if there are 
            ind_voxels_y=schaefer_template(:,y); 
            ind_voxels_y(~any(ind_voxels_y,2), :) = []; 
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            for i=1:length(ind_voxels_x) % go through all the 

cubes indices of the xth ROI 
                for j=1:length(ind_voxels_y)% go through all the 

cubes indices of the yth ROI 
                    % put all the correlation coefficient that 

belong to the two ROIs (when the cube indices of the xth ROI 

cross the cube indices of the yth ROI in rotcorr) 
                    sum_values = cat(1,sum_values , 

rotcorr(ind_voxels_x(i),ind_voxels_y(j))); % all the values are 

concatenated in an horizontal vector 
                end 
            end 
            % Do the mean of the vector that contains all the 

correlation coefficients and store it in position xth-yth (ROI) 

in the reshaped matrix 
            reshape_ber(x,y)=mean(sum_values);  
            reshape_ber(isnan(reshape_ber))=0; 
        end 
    end  

     
    % take the transposed matrix (lower triangle) and add it to 

the upper to create symmetric matrix 
    reshape_ber = reshape_ber + reshape_ber'; 

     
    % save the new correlation matrix 
    save_dir=strcat('/path-to-subj-dir/',sub_fold,'/reshape'); 
    cd(save_dir); 
    save reshape_ber.mat reshape_ber 
 toc    
end 
end 
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function [] = Create_ConnectityMatrix_NBS_ber() 
% This function gathers in one 3d matrices all the connectivity 

matrices in the right order according to  
% the order of the stress level (low first and then high level) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
%%%% Change those values to get the design matrix that you want 

%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  
 %number of subjects 
nb_sub=487;    
nb_nodes = 400; % number of nodes in a matrix (here 400 x 400) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  

  
% Create the 3d matrix that will contain all the matrix  
all_corr_z=zeros(nb_nodes,nb_nodes,nb_sub); 

  
% Load the file that contains the subject's index of each stress 

group 
cd('/path-where-txtfiles-are-stored'); 
load('LowStress_ID.txt'); 
load('HighStress_ID.txt'); 

  
% Initialize the index that count the slice of the 3d matrix 
l=1;  

  
% Add to the 3d matrix all the low stress matrices in first 
for i=1:length(LowStress_IDs) 

  
    ID_low=LowStress_IDs(i); 

  
    cd('/path-to-correl-matrices'); 
    corr_z_file=['correl_coeff_LS',num2str(ID_low),'.mat']; 
    file = dir(corr_z_file); 
    file_name = { file.name }; 
    load(file_name{1}); 

  
    all_corr_z(:,:,l)= corr_coeff; 
    l=l+1; 
end 

  
% Add to the 3d matrix all the high stress matrices in second 
for i=1:length(HighStress_IDs) 

  
    ID_high=HighStress_IDs(i); 

  
    cd('/path-to-correl-matrices'); 
    corr_z_file=['corr_coeff_HS_',num2str(ID_high),'.mat']; 
    file = dir(corr_z_file); 
    file_name = { file.name }; 
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    load(file_name{1}); 

  
    all_corr_z(:,:,l)=correl_coeff; 
    l=l+1; 

  
end  

  
cd('/path-where-to-save-matrix'); 
all_corr_z =real(all_corr_z); 
save all_corr_z.mat all_corr_z; 

     
end 
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function [] = Create_design_matrix 
% CREATE_DESIGN_MATRIX This function creates the design matrix to 

analyse the connectivity matrices with NBS.  
% BE CAREFUL!!!!: this design matrix needs to be used with the 

connectivity matrices organized in a special order --> the 

connectivity matrices of all the subjects of one sparcity level 

first, then all the connectivity matrices of all the subjects of 

another sparcity level (the sparcity level should be organized in 

the numerical order) 
% MOREOVER!!!! the connectivity matrices have to be organized 

with the low level stress before the high level stress if the 

stress level is take into account 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%% Change those values to get the design matrix that you want 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% 
nb_sub=487;    %number of subjects 
nb_spar=1;      %number of sparsity level 
stress_division=1; % if =1 the group will be divided in 2 

according to the stress level, if =0, don't take into account the 

stress level for the analyse    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  
l=1;%%% used if the sparsity level if above 1 (see script from 

line 37) 

  

% if you want to have the influence of the stress of not 
if stress_division==1 

     
    % Go to the directory where the file with the ID of subject 

for each stress level is 
    cd('/path-to-subj-dir'); 
    load('LowStr_IDs.txt'); %%% comment this out if you don't 

want to divide to create 2 group according to the stress level 

and change the 'for loop' and the 'if' conditions 

  
    % Create the design matrix according to the parameters 
    design_matrix=zeros(nb_sub*nb_spar,2); 

     
    if nb_spar==1 
        for i=1:size(design_matrix,1) %this goes from the first 

to the last row 
            if i<=length(LowStr_IDs) 
                design_matrix(i,1)=1;  % put a 1 in the 1st 

column if in the low stress group 
            else 
                design_matrix(i,2)=1;  % put a 1 in the 2nd 

column if in the high stress group 
            end   
        end 

         
        save designMatrix_stress.mat design_matrix 
    else 
        % Do the same thing as above but repeated for each 

sparsity level 
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        for k=1:nb_spar 
            j=1; 
            for i=l:l+nb_sub-1 %this goes from the first to the 

last row 
                if j<=length(LowStr_IDs) 
                    design_matrix(i,1)=1; 
                    j=j+1; 
                else 
                    design_matrix(i,2)=1; 
                    j=j+1; 
                end   
            end 
            l=l+nb_sub; 
        end 
        save (['designMatrix_stress_' num2str(nb_spar) '.mat'], 

'design_matrix') 
    end 

  
% If the stress level is not taken into account  
elseif stress_division==0 

     
    cd('/path-to-subj-dir'); 

     
    design_matrix=zeros(nb_sub*nb_spar,nb_spar); 

     
    % with 1 sparsity level, put ones everywhere 
    if nb_spar==1 
        for i=1:size(design_matrix,1) 
            design_matrix(i,1)=1; 
        end 

         
    % if several sparcity level, put 'nb_sub'ones in each column 

after each other  
    else 
        for k=1:nb_spar 
            for i=l:l+nb_sub-1 
                design_matrix(i,k)=1; 
            end 
            l=l+nb_sub; 
        end 
    end 

     
    save (['designMatrix_average' num2str(nb_spar) '.mat'], 

'design_matrix') 
end 

     
end  
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function [schaefer_template] = 

Create_Schaefer_template(schaefer_image ,new_bind, nb_par, dimx, 

dimy ,dimz) 
%CREATE_SCHEAFER_TEMPLATE is a function that creates a matrix 

containingin each column (that represents each ROI) the index of 

the cubes thatbelong to this ROI 

  
% Create the matrix that will contains the cube value for each 

ROI 
schaefer_template = zeros(1000,nb_par); 

  
% Initialize the voxel counter 
vox_count = 1; 

  
% Initialize the cube counter 
cube_count = 1; 

  
% Initialize the counting that allows us to know how many values 

are store at each moment in a column  
ROI_count = ones(1,nb_par); 

  
% For each voxel, look up if the index of the cube is in the bind 

and store 
% the index of the cube (that correspond to the index in the 
% correlation matrix)  in the schaefer_template in the ROI 

column) corresponding 
for z = 1 : dimz 
    for y = 1 : dimy 
        for x = 1 : dimx 
            roi_ind = schaefer_image(x,y,z); 
             if roi_ind == 0 
                 vox_count = vox_count +1; 
             else 
                if (find( new_bind == vox_count)) ~= 0 
                    schaefer_template( ROI_count(roi_ind) , 

roi_ind)= cube_count; 
                    cube_count = cube_count + 1; 
                    ROI_count( roi_ind ) = ROI_count( roi_ind ) 

+1; 
                end 
                vox_count = vox_count +1; 
             end 
        end 
    end 
end 

  
% Delete all the rows full of zeros at the bottom 
schaefer_template( ~any( schaefer_template , 2 ), : ) = []; 

  
end 
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function [] = Fisher_r2z() 
% This function transforms each connectivity matrix with Fishers 
% transformation. I have two groups (LowStress & HighStress), and 

in the 
% two txt files at the beginning, I "select" the connectivity 

matrices that 
% I want to use in this analysis. In the text files there are IDs 

of 
% participants whose I want to use the conn matrix.  

  
 ber_zTransf_LS=zeros(400,400); %Initiate the output matrices for 

each groups 
 ber_zTransf_HS=zeros(400,400); 

  

  
% Load the file that contains the subject IDs of each stress 

group 
cd('/path-to-two-groups-txtfiles'); 
load('HighStress_IDs.txt'); %here there are 417 IDs, which 

correspond to the matrices it's going to consider 
load('LowStress_IDs.txt'); 
%here there are 559 

  
save_dir= 

mkdir('/media/SeagateBU/FRAN/ConnectivityAnalysis/BCT_976/Ben_scr

ipt_try/Ztransf_mat_LS'); 

  
for i=1:length(LowStress_IDs) 
    tic 
     ID_low=LowStress_IDs(i); 

     

    % Get the name of the folder according to the IDs  
     cd('/subj-dir'); %in this directory I have a list of tot 

subjects and each subject folder has 4 subfolders; in one of this 

subfolder there is the connectivity matrix 
     fold_name =strcat ('*', num2str(ID_low)); 
     all_sub_fold = dir(fold_name); 
     name_sub_fold = {all_sub_fold.name}; 
     subj_fold = strjoin(name_sub_fold); 

     
    %go to reshape_ber (that's the name of the connectivity 

matrix) directory 
    reshape_ber_dir= strcat('/subj-dir/',subj_fold,'/reshape'); 

%reshape is the directory name where the reshape_ber connect 

matrix is saved 
    cd(reshape_ber_dir); 
    load('reshape_ber.mat'); 

     

     
    ber_fTransf_LS=atanh(reshape_ber); 
    ber_zTransf_LS= real(ber_fTransf_LS); 

  
    cd('/path/Ztransf_mat_LS'); 
    save (['ber_zTransf_',num2str(ID_low),'.mat'], 

'ber_zTransf_LS'); 
    toc 
end 
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%do the same for the HighStress group (here I didn’t comment 

because I want to do exactly the same thing as above) 

  
save_dir= mkdir('/path/Ztransf_mat_HS'); 

  
for i=1:length(HighStress_IDs) 

     
     ID_high=HighStress_IDs(i); 

     
    % Get the name of the folder according to the IDs  
     cd('/subj-dir'); 
     fold_name =strcat ('*', num2str(ID_high)); 
     all_sub_fold = dir(fold_name); 
     name_sub_fold = {all_sub_fold.name}; 
     subj_fold = strjoin(name_sub_fold); 

     
    reshape_ber_dir= strcat('/subj-dir/',subj_fold,'/reshape'); 
    cd(reshape_ber_dir); 
    load('reshape_ber.mat'); 

     

  
     ber_fTransf_HS=atanh(reshape_ber); 
     ber_zTransf_HS= real(ber_fTransf_HS); 

     
    cd('/path/Ztransf_mat_HS'); 
    save (['ber_zTransf_',num2str(ID_high),'.mat'], 

'ber_zTransf_HS'); 
end   

     
end 
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function [ new_bind ] = simplify_bind ( bind ) 
%SIMPLIFY_BIND is a function that create the new_bind vector that 

just contains the index of the 14th voxels of each cube (i.e. the 

center of the cube) 

  
% Create the vector new_bind that will store the voxels index 
new_bind = []; 

  
% Store values of all the 14th voxels of each cube in new_bind 
i = 14 : 27 : (length(bind)-13); 
new_bind = bind(i); 

  
% Save the new_bind into the right directory 
save new_bind.mat new_bind; 

  
end 
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List of scripts needed to run ‘BCT_calculation_Fisher.m’, found in the 

‘essential_scripts’ folder: 

 

- betweenness_bin.m 

- binary_bis.m 

- charpath.m 

- clustering_coef_bu.m 

- community_louvain.m 

- Copy_of_lambda.m 

- Copy_of_lp_prog.m 

- Copy_of_order.m 

- degrees_und.m 

- distance_bin.m 

- modularity_und.m 

- nbrone.m 

- plot_order.m 
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function BC=betweenness_bin(G) 
%BETWEENNESS_BIN    Node betweenness centrality 

 
%   BC = betweenness_bin(A); 

 
%   Node betweenness centrality is the fraction of all shortest 

paths in the network that contain a given node. Nodes with high 

values of betweenness centrality participate in a large number of 

shortest paths. 

 
%   Input:  A,binary (directed/undirected) connection matrix. 
%   Output: BC, node betweenness centrality vector. 
% 
%   Note: Betweenness centrality may be normalised to the range 

[0,1] as  BC/[(N-1)(N-2)], where N is the number of nodes in the 

network. 
% 
%Reference: Kintali (2008) arXiv:0809.1906v2 [cs.DS]          

(generalization to directed and disconnected graphs) 

 
%   Mika Rubinov, UNSW/U Cambridge, 2007-2012 

  

  
n=length(G);                %number of nodes 
I=eye(n)~=0;                %logical identity matrix 
d=1;                        %path length 
NPd=G;                      %number of paths of length |d| 
NSPd=NPd;                %number of shortest paths of length |d| 
NSP=NSPd; NSP(I)=1;      %number of shortest paths of any length 
L=NSPd; L(I)=1;             %length of shortest paths 

  

%calculate NSP and L 
while find(NSPd,1) 
    d=d+1; 
    NPd=NPd*G; 
    NSPd=NPd.*(L==0); 
    NSP=NSP+NSPd; 
    L=L+d.*(NSPd~=0); 
end 
L(~L)=inf; L(I)=0;          %L for disconnected vertices is inf 
NSP(~NSP)=1;                %NSP for disconnected vertices is 1 

  
Gt=G.'; 
DP=zeros(n);                %vertex on vertex dependency 
diam=d-1;                   %graph diameter 

  
%calculate DP 
for d=diam:-1:2 
    DPd1=(((L==d).*(1+DP)./NSP)*Gt).*((L==(d-1)).*NSP); 
    DP=DP + DPd1; %DPd1:dependencies on vertices |d-1| from 

source 
end 

  
BC=sum(DP,1);               %compute betweenness 

 

function [ Abin,err,tresh,bin ] = binary_bis( Acorr,K) 
%UNTITLED5 Summary of this function goes here 
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%   Detailed explanation goes here 
%     input:  matrix of the networks 
%                stats: threshold to have an edge compared to 

correlation values   
%     output: Abin binary connection matrix with K values not 

equal to zeros  
%     tresh: is the values that it stay K one on the binary 

connection matrix Abin 

  
%   this programs convert the correlation matrix to a binary 

connection matrix  

  
% THIS IS THE ORIGINAL BINARY_BIS WRITTEN BY COLINE, I HAVEN'T 

EDITED 

  
a=1; 
corr=2; 

  
[n,m]=size(Acorr); 
% stats=mean(mean(Acorr));    % random threshold to begin    
stats=0.8; 
Abin=zeros(n,m); 
error=0;         
% resol_stats=0.01;    %resolution to calculate threshold 
 resol_stats=0.1; 
% max_corr=max(max(Acorr)); 
% min_corr=min(min(Acorr)); 
% max_error1=max(1/resol_stats,floor(abs((max_corr-

1)/resol_stats))); 
% max_error=max(max_error1,floor(abs((min_corr-1)/resol_stats))); 

%max range for find threshold 
max_error1=11; 
err=0; 
b=0; 
range=1; 

  
while a==1 
    error=error+1; 

     
    for i=1:n 
        for j=1:m 
             if abs(Acorr(i,j))>= stats   %convert all lower than 

stats in zero( no connectivity) and upper in 1 (connect)  
            Abin(i,j)=1; 
            else 
            Abin(i,j)=0; 

             
            end  
        end 
    Abin(i,i)=0; 
    end 
    bin=nbrone(Abin,corr);    %calculate the number of connection  

     
    if bin>=(K-range)  %if they keep 70% to 80% of maximum 

connection is good 
        if bin<=(K+range) 
            a=0; 
        end 
    end 



257 
 

     
    if bin<(K-range) 
        stats=stats-resol_stats;        %if threshold is to high, 

decrease of threshold  
    end 

     
    if bin>(K+range) 
        stats=stats+resol_stats;        %if threshold is to low, 

increase of threshold 
    end 

     
    if error>=max_error1                % case of to high 

resolution for threshold  
        b=b+1; 
        if b<4 
        resol_stats=resol_stats/10; 
%         max_error1=max(1/resol_stats,abs((max_corr-

1)/resol_stats)); 
%         max_error=max(max_error1,abs((min_corr-

1)/resol_stats)); 
        error=0; 
        else 
            range=20; 
            error=0; 
        end 

         
        if b==3 
           range=2; 
        end 

         
        if b==7 
           a=0; 
           err=1; 
           disp('problem of threshold, perhaps correlation number 

are too close, change perhaps resolution stats');  
        end      
    end 
    if b==4 && error==1 
        resol_stats=resol_stats/10; 
    end 
end 

  
 tresh=stats; 

  
end 
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function  [lambda,efficiency,ecc,radius,diameter] = 

charpath(D,diagonal_dist,infinite_dist) 
%CHARPATH       Characteristic path length, global efficiency and 

related statistics 
% 
%   lambda = charpath(D); 
%   lambda = charpath(D); 
%   [lambda,efficiency] = charpath(D); 
%   [lambda,efficiency,ecc,radius,diameter] = 

charpath(D,diagonal_dist,infinite_dist); 
% 
%   The network characteristic path length is the average 

shortest path length between all pairs of nodes in the network. 

The global efficiency is the average inverse shortest path length 

in the network. The nodal eccentricity is the maximal path length 

between a node and any other node in the network. The radius is 

the minimal eccentricity, and the diameter is the maximal 

eccentricity. 
% 
%   Input: D,  distance matrix 
%          diagonal_dist   optional argument            

                           include distances on the main diagonal 
%                          (default: diagonal_dist=0) 
%          infinite_dist   optional argument    

                           include infinite distances in 

calculation 
%                           (default: infinite_dist=1) 
% 
%   Outputs: lambda, network characteristic path length 
%            efficiency, network global efficiency 
%            ecc, nodal eccentricity 
%            radius, network radius 
%            diameter, network diameter 
% 
%   Notes:  The input distance matrix may be obtained with any of 

the distance functions, e.g. distance_bin, distance_wei. 
%       Characteristic path length is defined here as the mean 

shortest  path length between all pairs of nodes, for consistency 

with common usage. Note that characteristic path length is also 

defined as the median of the mean shortest path length from each 

node to all other nodes. 
%       Infinitely long paths (i.e. paths between disconnected 

nodes) are included in computations by default. This behavior may 

be modified with via the infinite_dist argument. 
% 
% 
%   Olaf Sporns, Indiana University, 2002/2007/2008 
%   Mika Rubinov, U Cambridge, 2010/2015 

  
%   Modification history 
%   2002: original (OS) 
%   2010: incorporation of global efficiency (MR) 
%   2015: exclusion of diagonal weights by default (MR) 
%   2016: inclusion of infinite distances by default (MR) 

  
n = size(D,1); 
if any(any(isnan(D))) 
    error('The distance matrix must not contain NaN values'); 
end 
if ~exist('diagonal_dist','var') || ~diagonal_dist || 

isempty(diagonal_dist) 



259 
 

    D(1:n+1:end) = NaN;           % set diagonal distance to NaN 
end 
if  exist('infinite_dist','var') && ~infinite_dist 
    D(isinf(D))  = NaN;           % ignore infinite path lengths 
end 

  
Dv = D(~isnan(D));                % get non-NaN indices of D 

  
% Mean of entries of D(G) 
lambda     = mean(Dv); 

  
% Efficiency: mean of inverse entries of D(G) 
efficiency = mean(1./Dv); 

  
% Eccentricity for each vertex 
ecc        = nanmax(D,[],2); 

  
% Radius of graph 
radius     = min(ecc); 

  
% Diameter of graph 
diameter   = max(ecc); 
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function C=clustering_coef_bu(G) 
%CLUSTERING_COEF_BU     Clustering coefficient 
% 
%   C = clustering_coef_bu(A); 
% 
%   The clustering coefficient is the fraction of triangles 

around a node(equiv. the fraction of node's neighbours that are 

neighbours of each other). 
% 
%   Input:      A,      binary undirected connection matrix 
% 
%   Output:     C,      clustering coefficient vector 
% 
%   Reference: Watts and Strogatz (1998) Nature 393:440-442. 
% 
% 
%   Mika Rubinov, UNSW, 2007-2010 

  
n=length(G); 
C=zeros(n,1); 

  
for u=1:n 
    V=find(G(u,:)); 
    k=length(V); 
    if k>=2                 %degree must be at least 2 
        S=G(V,V); 
        C(u)=sum(S(:))/(k^2-k); 
    end 
end 
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function [M,Q]=community_louvain(W,gamma,M0,B) 
%COMMUNITY_LOUVAIN     Optimal community structure 
% 
%   M     = community_louvain(W); 
%   [M,Q] = community_louvain(W,gamma); 
%   [M,Q] = community_louvain(W,gamma,M0); 
%   [M,Q] = community_louvain(W,gamma,M0,'potts'); 
%   [M,Q] = community_louvain(W,gamma,M0,'negative_asym'); 
%   [M,Q] = community_louvain(W,[],[],B); 
% 
%   The optimal community structure is a subdivision of the network 

into nonoverlapping groups of nodes which maximizes the number of 

within-group edges, and minimizes the number of between-group 

edges. This function is a fast and accurate multi-iterative 

generalization of the Louvain community detection algorithm. This 

function subsumes and improves upon, modularity_louvain_und.m, 

modularity_finetune_und.m, modularity_louvain_dir.m,  

modularity_finetune_dir.m, modularity_louvain_und_sign.m, and 

additionally allows to optimize other objective functions (includes 
built-in Potts-model Hamiltonian, allows for custom objective-

function matrices). 
% 
%   Inputs:  W, directed/undirected weighted/binary connection 

matrix with positive and possibly negative weights. 
%       gamma,  resolution parameter (optional) 
%               gamma>1,        detects smaller modules 
%               0<=gamma<1,     detects larger modules 
%               gamma=1,        classic modularity (default) 
%       M0,     initial community affiliation vector (optional) 
%    B, objective-function type or custom objective matrix 

(optional) 
%           'modularity',       modularity (default) 
%           'potts', Potts-model Hamiltonian (for binary networks) 
%         'negative_sym', symmetric treatment of negative weights 
%           'negative_asym',asymmetric treatment of negative weights 
%           B,   custom objective-function matrix 
% 
%         Note: see Rubinov and Sporns (2011) for a discussion of 
%           symmetric vs. asymmetric treatment of negative weights. 
% 
%   Outputs: 
%       M,  community affiliation vector 
%       Q,  optimized community-structure statistic (modularity by 

default) 
% 
%   Example: 
%       % Iterative community finetuning. 
%       % W is the input connection matrix. 
%       n  = size(W,1);             % number of nodes 
%       M  = 1:n;                   % initial community affiliations 
%       Q0 = -1; Q1 = 0;            % initialize modularity values 
%       while Q1-Q0>1e-5;           % while modularity increases 
%           Q0 = Q1;                % perform community detection 
%           [M, Q1] = community_louvain(W, [], M); 
%       end 
% 
%   References: 
%       Blondel et al. (2008)  J. Stat. Mech. P10008. 
%       Reichardt and Bornholdt (2006) Phys. Rev. E 74, 016110. 
%       Ronhovde and Nussinov (2008) Phys. Rev. E 80, 016109 
%       Sun et al. (2008) Europhysics Lett 86, 28004. 
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%       Rubinov and Sporns (2011) Neuroimage 56:2068-79. 
% 
%   Mika Rubinov, U Cambridge 2015-2016 

  
%   Modification history 
%   2015: Original 
%   2016: Included generalization for negative weights. 
%         Enforced binary network input for Potts-model Hamiltonian. 
%         Streamlined code and expanded documentation. 

  
W=double(W);                            % convert to double format 
n=length(W);                                % get number of nodes 
s=sum(sum(W));                              % get sum of edges 

  
if ~exist('B','var') || isempty(B) 
    type_B = 'modularity'; 
elseif ischar(B) 
    type_B = B; 
else 
    type_B = 0; 
    if exist('gamma','var') && ~isempty(gamma) 
        warning('Value of gamma is ignored in generalized mode.') 
    end 
end 
if ~exist('gamma','var') || isempty(gamma) 
    gamma = 1; 
end 

  
if strcmp(type_B,'negative_sym') || strcmp(type_B,'negative_asym') 
    W0 = W.*(W>0);                          %positive weights matrix 
    s0 = sum(sum(W0));                   %weight of positive links 
    B0 = W0-gamma*(sum(W0,2)*sum(W0,1))/s0; %positive modularity 

     
    W1 =-W.*(W<0);                          %negative weights matrix 
    s1 = sum(sum(W1));                   %weight of negative links 
    if s1                                   %negative modularity 
        B1 = W1-gamma*(sum(W1,2)*sum(W1,1))/s1; 
    else 
        B1 = 0; 
    end 
elseif min(min(W))<-1e-10 
    err_string = [ 
        'The input connection matrix contains negative 

weights.\nSpecify ' ... 
        '''negative_sym'' or ''negative_asym'' objective-function 

types.']; 
    error(sprintf(err_string))              %#ok<SPERR> 
end 
if strcmp(type_B,'potts') && any(any(W ~= logical(W))) 
    error('Potts-model Hamiltonian requires a binary W.') 
end 

  
if type_B 
    switch type_B 
        case 'modularity';      B = (W-

gamma*(sum(W,2)*sum(W,1))/s)/s; 
        case 'potts';           B =  W-gamma*(~W); 
        case 'negative_sym';    B = B0/(s0+s1) - B1/(s0+s1); 
        case 'negative_asym';   B = B0/s0      - B1/(s0+s1); 
        otherwise;              error('Unknown objective function.'); 
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    end 
else                 % custom objective function matrix as input 
    B = double(B); 
    if ~isequal(size(W),size(B)) 
        error('W and B must have the same size.') 
    end 
end 
if ~exist('M0','var') || isempty(M0) 
    M0=1:n; 
elseif numel(M0)~=n 
    error('M0 must contain n elements.') 
end 

  
[~,~,Mb] = unique(M0); 
M = Mb; 

  
B = (B+B.')/2;                      % symmetrize modularity matrix 
Hnm=zeros(n,n);                          % node-to-module degree 
for m=1:max(Mb)                          % loop over modules 
    Hnm(:,m)=sum(B(:,Mb==m),2); 
end 

  
Q0 = -inf; 
Q = sum(B(bsxfun(@eq,M0,M0.')));    % compute modularity 
first_iteration = true; 
while Q-Q0>1e-10 
    flag = true;                % flag for within-hierarchy search 
    while flag 
        flag = false; 
        for u=randperm(n)     % loop over all nodes in random order 
            ma = Mb(u);                  % current module of u 
            dQ = Hnm(u,:) - Hnm(u,ma) + B(u,u); 
            dQ(ma) = 0;         % (line above) algorithm condition 

             
            [max_dQ,mb] = max(dQ);            % maximal increase 

in modularity and corresponding module 
            if max_dQ>1e-10       % if maximal increase is positive 
                flag = true; 
                Mb(u) = mb;                 % reassign module 

                 
                Hnm(:,mb) = Hnm(:,mb)+B(:,u);     % change node-

to-module strengths 
                Hnm(:,ma) = Hnm(:,ma)-B(:,u); 
            end 
        end 
    end 
    [~,~,Mb] = unique(Mb);      % new module assignments 

     
    M0 = M; 
    if first_iteration 
        M=Mb; 
        first_iteration=false; 
    else 
        for u=1:n           % loop through initial module assignments 
            M(M0==u)=Mb(u);                  % assign new modules 
        end 
    end 

     
    n=max(Mb);                          % new number of modules 
    B1=zeros(n);                               % new weighted matrix 
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    for u=1:n 
        for v=u:n 
            bm=sum(sum(B(Mb==u,Mb==v))); % pool weights of nodes in 

same module 
            B1(u,v)=bm; 
            B1(v,u)=bm; 
        end 
    end 
    B=B1; 

     
    Mb=1:n;                               % initial module assignments 
    Hnm=B;                               % node-to-module strength 

     
    Q0=Q; 
    Q=trace(B);                                % compute modularity 
end 
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function [ lamb,gamm,lamrand,gamrand ] = Copy_of_lambda( 

lp,cp,Abin,krandom,bin ) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 

  
% [x,y]=size(Abin); 

  
% L=zeros(x*y,1); 
%  
% for i=1:x*y 
%     L(i)=i; 
% end 

  
lp_RAND=zeros(krandom,1); 
cp_RAND=zeros(krandom,1); 

  
% L1=L; 
for m=1:krandom 
    Abin_bis=zeros(size(Abin)); 
    Abin_bis(randperm(numel(Abin_bis), floor(bin))) = 1; 
%     L1=L; 
%     for i=1:bin 
%         len=length(L1); 
%         k=randi([1,len]); 
%         Abin_bis(L1(k))=1; 
%         L1(k)=[];    
%     end 

     
    lp_RAND(m)=lp_prog(Abin_bis); 
    cp_RAND(m)=mean(clustering_coef_bu(Abin_bis)); 
end 

  
lamrand=mean(lp_RAND); 
gamrand=mean(cp_RAND); 
lamb=lp/lamrand; 
gamm=cp/gamrand; 

  
end 
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function [ Lp , efficiency] = Copy_of_lp_prog( A ) 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 

  
% input:  A :binarry connection matrix  
% output: Lp= charactheristic path length of the matrix A  

  
D=distance_bin(A);       % D is the distance matrix  

  
%%remove all the infynite values  
Lia = ismember(D,Inf); 
[x,y]=size(D); 

  
a=0; 
err=0; 
lim=0.8*x; 
while a==0 
    err=err+1;     
for i=1:x 
    if (sum(Lia(x-i+1,:))>=lim) == 1 
        D(x-i+1,:)=[]; 
    end 
    if (sum(Lia(:,x-i+1))>=lim) == 1  
       D(:,x-i+1)=[]; 
    end 
end 
Lia = ismember(D,Inf); 
if sum(sum(Lia))==0 
    a=1; 
end 

  
if err==10  
    disp('probelms, infiny is always in the matrix') 
end 

  

  
[Lp,efficiency]=charpath(D);    % calculate parameters of the 

distance matrix  

  

  

  
end 
end 
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function [ A,ordre,number ] = Copy_of_order( M,txt) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
% aim: put all the region in list compared to theire values of M  
%  
% input : M list of values ,  
%         txt the name of all the area correspond to the M list  
%          
% output : A name of the area, each lines is for one values of 

the M list,  
%         order, is a list that contains the values of the lines 

of the A matrix  
%         number is the number of the column, area of each region 

of the A matrix  

  

  
x=length(M); 
M_bis=unique(M); 
x_bis=length(M_bis); 
A=zeros(x_bis,x); 
A=num2cell(A); 
number=zeros(x,x); 
ordre=zeros(x_bis,1); 

  
for i=1:x_bis 

     
    f=find(M==M_bis(i)); 
    for j=1:length(f) 
        A(i,j)=txt(f(j)); 
        number(i,j)=f(j); 
        ordre(i,1)=M_bis(i); 

         
    end 
end 

  
end 
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function [deg] = degrees_und(CIJ) 
%DEGREES_UND        Degree 
% 
%   deg = degrees_und(CIJ); 
% 
%   Node degree is the number of links connected to the node. 
% 
%   Input:   CIJ,  undirected (binary/weighted) connection matrix 
% 
%   Output:  deg,    node degree 
% 
%   Note: Weight information is discarded. 
% 
% 
%   Olaf Sporns, Indiana University, 2002/2006/2008 

  

  
% ensure CIJ is binary... 

  
CIJ = double(CIJ~=0); 

  
deg = sum(CIJ); 
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function D=distance_bin(A) 
%DISTANCE_BIN       Distance matrix 
% 
%   D = distance_bin(A); 
% 
%   The distance matrix contains lengths of shortest paths 

between all pairs of nodes. An entry (u,v) represents the length 

of shortest path from node u to node v. The average shortest 

path length is the characteristic path length of the network. 
% 
%   Input:      A,  binary directed/undirected connection matrix 
% 
%   Output:     D,  distance matrix 
% 
%   Notes:  
%       Lengths between disconnected nodes are set to Inf. 
%       Lengths on the main diagonal are set to 0. 
% 
%   Algorithm: Algebraic shortest paths. 
% 
% 
%   Mika Rubinov, U Cambridge 
%   Jonathan Clayden, UCL 
%   2007-2013 

  
% Modification history: 
% 2007: Original (MR) 
% 2013: Bug fix, enforce zero distance for self-connections (JC) 

  
A=double(A~=0);           %binarize and convert to double format 

  
l=1;                            %path length 
Lpath=A;                        %matrix of paths l 
D=A;                            %distance matrix 

  
Idx=true; 
while any(Idx(:)) 
    l=l+1; 
    Lpath=Lpath*A; 
    Idx=(Lpath~=0)&(D==0); 
    D(Idx)=l; 
end 

  
D(~D)=inf;                    %assign inf to disconnected nodes 
D(1:length(A)+1:end)=0;         %clear diagonal 
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function [Ci,Q]=modularity_und(A,gamma) 
%MODULARITY_UND     Optimal community structure and modularity 
% 
%   Ci = modularity_und(W); 
%   [Ci Q] = modularity_und(W,gamma); 
% 
%   The optimal community structure is a subdivision of the network 

into nonoverlapping groups of nodes in a way that maximizes the 

number of  within-group edges, and minimizes the number of between-

group edges. 
%   The modularity is a statistic that quantifies the degree to 

which the network may be subdivided into such clearly delineated 

groups. 
% 
%   Inputs: 
%       W,        undirected weighted/binary connection matrix 
%       gamma,    resolution parameter (optional) 
%               gamma>1,        detects smaller modules 
%               0<=gamma<1,     detects larger modules 
%               gamma=1,        classic modularity (default) 
% 
%   Outputs:   Ci,     optimal community structure 
%              Q,      maximized modularity 
% 
%   Note:  This algorithm is essentially deterministic. The only 

potential source of stochasticity occurs at the iterative 

finetuning step, in the presence of non-unique optimal swaps. 

However, the present implementation always makes the first 

available optimal swap and is therefore deterministic. 
% 
%   References:  
%       Newman (2006) -- Phys Rev E 74:036104, PNAS 23:8577-8582. 
%       Reichardt and Bornholdt (2006) Phys Rev E 74:016110. 
% 
%   2008-2016 
%   Mika Rubinov, UNSW 
%   Jonathan Power, WUSTL 
%   Dani Bassett, UCSB 
%   Xindi Wang, Beijing Normal University 
%   Roan LaPlante, Martinos Center for Biomedical Imaging 

  
%   Modification History: 
%   Jul 2008: Original (Mika Rubinov) 
%   Oct 2008: Positive eigenvalues made insufficient for division 

(Jonathan Power) 
%   Dec 2008: Fine-tuning made consistent with Newman's description 

(Jonathan Power) 
%   Dec 2008: Fine-tuning vectorized (Mika Rubinov) 
%   Sep 2010: Node identities permuted (Dani Bassett) 
%   Dec 2013: Gamma resolution parameter included (Mika Rubinov) 
%   Dec 2013: Detection of maximum real part of eigenvalues enforced 

(Mika Rubinov) 
%   Thanks to Mason Porter and Jack Setford, University of Oxford 
%   Dec 2015: Single moves during fine-tuning enforced (Xindi Wang) 
%   Jan 2017: Removed node permutation and updated documentation 

(Roan LaPlante) 

  
if ~exist('gamma','var') 
    gamma = 1; 
end 
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N=length(A);                            %number of vertices 
% n_perm = randperm(N);        %DB: randomly permute order of nodes 
% A = A(n_perm,n_perm);%DB: use permuted matrix for subsequent 

analysis 
K=sum(A);                          %degree 
m=sum(K);   %number of edges (each undirected edge is counted twice) 
B=A-gamma*(K.'*K)/m;                    %modularity matrix 
Ci=ones(N,1);                           %community indices 
cn=1;                                   %number of communities 
U=[1 0];                       %array of unexamined communites  
ind=1:N; 
Bg=B; 
Ng=N; 

  
while U(1)                           %examine community U(1) 
    [V,D]=eig(Bg); 
    [~,i1]=max(real(diag(D)));  %maximal positive (real part of) 

eigenvalue of Bg 
    v1=V(:,i1);               %corresponding eigenvector 

  
    S=ones(Ng,1); 
    S(v1<0)=-1; 
    q=S.'*Bg*S;              %contribution to modularity 

  
    if q>1e-10             %contribution positive: U(1) is divisible 
        qmax=q;            %maximal contribution to modularity 
        Bg(logical(eye(Ng)))=0; %Bg is modified, to enable fine-

tuning 
        indg=ones(Ng,1);                %array of unmoved indices 
        Sit=S; 
        while any(indg)                 %iterative fine-tuning 
            Qit=qmax-4*Sit.*(Bg*Sit);  %this line is equivalent to: 
            [qmax,imax]=max(Qit.*indg); %for i=1:Ng 
            Sit(imax)=-Sit(imax);       %   Sit(i)=-Sit(i); 
            indg(imax)=nan;             %   Qit(i)=Sit.'*Bg*Sit; 
            if qmax>q                   %   Sit(i)=-Sit(i); 
                q=qmax;                 %end 
                S=Sit; 
            end 
        end 

  
        if abs(sum(S))==Ng          %unsuccessful splitting of U(1) 
            U(1)=[]; 
        else 
            cn=cn+1; 
            Ci(ind(S==1))=U(1);   %split old U(1) into new U(1) and 

into cn 
            Ci(ind(S==-1))=cn; 
            U=[cn U];                   %#ok<AGROW> 
        end 
    else               %contribution nonpositive: U(1) is indivisible 
        U(1)=[]; 
    end 

  
    ind=find(Ci==U(1));       %indices of unexamined community U(1) 
    bg=B(ind,ind); 
    Bg=bg-diag(sum(bg));                %modularity matrix for U(1) 
    Ng=length(ind);                     %number of vertices in U(1) 
end 
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s=Ci(:,ones(1,N));                      %compute modularity 
Q=~(s-s.').*B/m; 
Q=sum(Q(:)); 
% Ci_corrected = zeros(N,1);              % DB: initialize 

Ci_corrected 
% Ci_corrected(n_perm) = Ci;              % DB: return order of 

nodes to the order used at the input stage. 
% Ci = Ci_corrected;                      % DB: output corrected 

community assignments 
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function [ bin ] = nbrone( Abin,c) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 
bin=0; 
[n,m]=size(Abin); 

  

  
for i=1:n 
    for j=1:m 
        if Abin(i,j)==1 
            bin=bin+1; 
        end 
    end 
end 
bin=bin/c; 

  

  
end 
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function plot_order( number,Atresh ) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 

  
% input : list of area number that have the same louvain parameter 

values,  
%       A tresh, matrix that have the values of the linear correlation 

of the area after applied treshold  
%          
% output: make a graph with linear correlation matrix reorder by 

low to high louvain parameter values  

  

  
[x1,y1]=size(number); 
[x,y]=size(Atresh); 
A_treshbis=zeros(); 
L=zeros(1,x); 
a=1; 
for i=1:x1 %make a list of area low to high louvain parameter 

values, L 
    for j=1:y1 
        if number(i,j)>=1 
            L(1,a)=number(i,j); 
            a=a+1; 
        end 
    end 
end 

  
for i=1:x %make A_treshbis the matrix of linear correlation values 

with area list is order low to high louvain parameter values 
    for j=1:x 
        z=L(1,i); 
        e=L(1,j); 

  
        A_treshbis(i,j)=Atresh(z,e); 
    end 
end 

  

  
[x_tresh,y_tresh]=size(A_treshbis); 
X_axis=zeros(x_tresh,y_tresh);     % matrix of position X,Y,Z 
Y_axis=zeros(x_tresh,y_tresh); 
Z_axis=ones(x_tresh,y_tresh);        

  
 for i=1:x_tresh  %create the matrix of position for each points 

for use surf  
     for j=1:y_tresh 
         X_axis(i,j)=j; 
            if j<=x_tresh 
                Y_axis(i,j)=x_tresh-i-1; 

                 

                 
            end 
         if j>=floor(x_tresh/2)+1 
             Y_axis(i,j)=Y_axis(i,j-floor(x_tresh/2)); 

              
        end 
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     end 

   

      
 end  
     surf(X_axis,Y_axis,Z_axis,A_treshbis); 

   
end 

  

 

 

 

 

 


