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Abstract—We describe a heuristic-based approach to de-
termining gaze allocation automatically in a multi-modal task
oriented dialogue corpus. We present the development of the
system and the evaluation of its performance and discuss the
findings, including the shortcomings and the perspectives of the
implemented approach.

I. INTRODUCTION

In this work we describe heuristics that enable automated
gaze annotation in order to link gaze as recorded in a multi-
modal corpus with interactional qualities. The multi-modal
corpus adopted is the MULTISIMO corpus of task based
dialogues, each involving two participants collaborating with
each other in the company of a facilitator to estimate popular
opinions. The motivation behind this approach was to create a
system that works out-of-the-box for triadic groups conforming
to the MULTISIMO experimental setup, and that requires
no training data that might otherwise have to be manually
produced. Advantages of a rule-based system include trans-
parency behind classifications and the ability to fine-tune the
heuristics to optimise accuracy across participants — a process
would require retraining a model in a machine learning-based
approach. The resulting annotations are available to support
future research with the MULTISIMO corpus.

This work contributes to cognitive infocommunications
research [[1]-[3]], particularly the thread which attends to lin-
guistic and behavioural interaction [4]], where there is interest
in studying gesture and facial expression alongside linguistic
behaviours as recorded in multi-modal data sets, without
special purpose eye-trackers or the like [5]-[9]. The field
may benefit from using a similar approach to automatic gaze
annotation in support of such analyses. The remainder of
this paper is organised as follows: addresses more of the
relevant literature; describes the corpus and development
of the annotation system; evaluates the performance of the
approach; analysis of the data generated; discusses these
findings; offers a conclusion and some perspectives on
possible future work.

II. RELATED WORK

Kendon theorises that gaze serves three primary functions
in social interaction: monitoring, expression and regulation
[10]. Monitoring describes gaze used as a source of nonverbal
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information from interlocutors, whereas expressive gaze con-
veys information to interlocutors — for example, it is suggested
that mutual gaze duration is used to generate and manage
intimacy [[11]]. Gaze also serves to regulate processes necessary
for successful interaction, including indicating addressee and
managing turn-taking. For example, in turn-taking, the speaker
will link their utterance to what was previously said. They will
then gaze away while they continue to hold the floor, before
gazing back towards the hearer as they [the speaker] provide
a new piece of information. This gaze behaviour and content
together indicate the end of the turn [12]].

Much of the past and current work on gaze tracking
makes use of eye-tracking glasses, motion-capture cameras or
stereo camera setups [[13]]. Such systems are necessary where
highly accurate tracking is required, however, the proposed
system relies only on the availability of a single front-facing
camera per participant and can be used to provide broad gaze
annotation for corpora where facility for automatic annotation
had not previously been considered.

Other work has explored using machine learning ap-
proaches to automatic gaze annotation. Fukuhara and Nakano
[14] use decision trees to make inferences about gaze direction
based on head motion data in their Wizard of Oz experiment.
The VACE corpus uses 2D data to determine head posture,
unless the subject faces the camera directly in which case head
posture is inferred from a dual-camera setup using annealed
particle filtering [15]]. More recently, deep learning approaches
using CNNs have been proposed [|16]. There remains a need to
be able to analyze data for which there is not a sufficient supply
to anticipate that deep learning will supply adequate accuracy.
Especially where knowledge about the recording setup of a
multi-modal dialogue corpus is available, it is sensible to
exploit that knowledge directly.

III. MATERIALS & METHODS

This section describes the methods involved in this re-
search, including an overview of the corpus and the software
libraries used, the processes involved in the video analysis and
the subsequent creation of annotations.

A. Resources

The research described in this paper makes use of the
MULTISIMO corpus [|17] as well as the ELAN editor [18]] and



two Python libraries used in the video analysis component of
the automatic generation of gaze annotation.

MULTISIMO is a multimodal, multiparty corpus that en-
ables observations related to verbal and non-verbal behavior
during three-party task-based dialogues. The corpus is made up
of sessions involving three participants, with two participants
acting as players and the other acting as facilitator of the
session. The participants play a game intended to elicit cooper-
ation among the players, similar to the popular American game
show Family Feud. The facilitator asks a series of questions and
players must come up with the 3 responses for each, ranked
from most likely to least likely, that they believe will be the
most common answers in a survey of 100 individuals when
asked the same question. The facilitator provides feedback and
guidance until the correct responses and order are achieved.

The corpus contains audio and video recordings from 18
different sessions involving 36 randomly allocated pairs of
players, and 3 individuals who act as facilitators for each
session. High quality video files with a resolution of 960x540
were used for the three participants. All cameras involved in
the setup shoot at 30 frames per second. Audio is captured
by an omnidirectional microphone and the head mics of
each participant. Figure [T] shows the positions of facilitator,
players and cameras for each session. A variety of different
annotations are available for the corpus sessions including
speech transcription, gesture, laughter and facilitator feedback
annotation. Annotations performed in ELAN have 4 important
components: the start time, the end time and the duration of the
period of the annotation, as well as the actual annotation value
itself. Automated gaze annotation provided here may also be
viewed and analysed in ELAN.
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Fig. 1. Plan of the room setup in MULTISIMO sessions

1) Existing Gaze Annotation: Manual gaze annotation al-
ready existed for two corpus sessions as a result of previous
work [19]. The goal of the video analysis and annotation
steps of this research is to replicate the format of these
existing annotations as faithfully as possible, while also using
them as a reference for validating the automatically generated
annotations — though existing annotations will not necessarily
be used as a gold-standard of accuracy for reasons that will be
discussed later. The existing gaze annotation uses a controlled
vocabulary, i.e. a predefined list of possible annotation values
for each of the players: GAZE_PLAYER, GAZE-FACILITATOR,
GAZE_AWAY. An annotation tier also exists for the facilitator,
including the GAZE_AWAY annotation value and 2 values
relating to the subject of the facilitator’s gaze: GAZE_PLAYER-
LEFT, GAZE_PLAYER-RIGHT. Throughout this paper, left and

right will correspond to the perspective of a viewer who faces
the facilitator/player in question.

B. Video Analysis

OpenCV is an open source image processing library built-
in C++ that is intended to provide access to powerful computer
vision techniques that work in near real time [20]. Images
in OpenCV are represented as two-dimensional matrices of
pixels. In RGB colour space, this element will be a tuple
where each value represents a shade of red, green and blue
respectively. Many computer vision techniques only function
in grayscale colour space, where each pixel is represented by
a single integer value, thereby reducing dimensionality that is
prohibitively expensive in terms of memory and processing
time for complex operations. Video in OpenCV is analysed
as a sequence of images, and therefore all the operations
described in the following sections must be applied to each
frame individually. This leads to results that are sometimes
imperfect as each image is analysed without taking the pre-
ceding or succeeding frames in account. However, as discussed
in §II-CI] with some filtering, we can reduce the overall error
rate and improve the quality of the resulting annotations.

Dlib is a C++ software library that provides implementa-
tions of machine learning tools and pretrained models for a
wide variety of applications including image processing. The
frontal face detector followed by the shape predictor are used
to project a number of facial landmarks onto the located face
that will be used for all of the steps described below. These 68
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Fig. 2. DIib’s facial landmarks in action

facial landmarks allow for the tracking and isolation of certain
points and regions of the face.

The most significant landmarks for the subsequent stages
of analysis and their relevant index were: Chin tip — 8; Nose
tip — 33; Left eye region — 36-41; Right eye region — 42-47;
Mouth corners —48 & 54. Visual information is among the
most unconstrained and saturated forms of data to deal with
and performance of computer vision solutions are impacted by
lighting conditions and angles of seats among other factors.

1) Blink Detection: Each eye region was isolated by crop-
ping each frame using the location of the landmarks described
above. The Euclidean distance between the two landmarks
indicating the inner and outer corner of the eye was calculated.

\/(332 —z1)?+ (y2 —y1)? (D



No landmarks indicate the centre of the upper and lower
eyelid, but this was approximated by calculating the midpoint
between the two landmarks provided for each lid. Once again,
the Euclidean distance between the two midpoints was found.
Dividing the first distance by the second produces a ratio that
we refer to as the ‘blinking ratio’. Using a blinking ratio rather

Fig. 3.

Calculating the blinking ratio

than a simple pixel count between upper and lower lids ensures
that blinking detection is scale-independent and will function
correctly regardless of the resolution of the source video or
the proximity of the participant to the camera. This ratio was
calculated independently for each eye and then averaged. A
‘blinking’ classification was assigned to a frame if the ratio
value exceeded a specified threshold. Blink detection was a
necessary step both for preventing an error where the eyes
could not be found if closed in a given frame — which caused
the gaze direction analysis step to fail — as well as for the
reason that this data may prove to be useful in the context of
this and/or future research.

2) Gaze Direction Analysis: Once again, each eye region
was isolated using the facial landmarks in the same manner
as the previous step. Initially, an attempt was made to mask
the region surrounding the eye itself in order to exclude parts
of the lids that had been included when the eye was isolated.
However, based on the observation of test runs via webcam and
clips from MULTISIMO sessions, early performance needed
to be improved, and removing this mask was one change that
led to a marked improvement.

The image was then thresholded to separate the two regions
of interest in the eye — the iris and the sclera (‘white’ of
the eye) — by creating a binary image. Binary thresholding
is an operation where each pixel in an image is mapped to
the maximum or minimum possible value (white and black
respectively, in grayscale colour space) based on its initial
value in relation to a specific threshold. For example, if a
threshold of 127 were chosen, all pixels with a value above the
threshold of the grayscale spectrum would be mapped to white
while all values below the threshold would be mapped to black.
Otsu’s method dynamically determines an optimum threshold
based on the image histogram. It performs well for ‘bimodal’
images, i.e. images where a high contrast exists between the
regions we wish to separate. In OpenCV, the threshold value
chosen is the one that maximises the between class variance
o_B? for the ‘“foreground’ and ‘background’ regions ie.
the iris and sclera in our case.

op(T) = wp(T) (s (T) — p)? + wp(T) (e(T) — 1)*  (2)

The above equation is used to calculate this between class
variance for the f (foreground) and b (background) classes,
where T is the threshold value and p and o2 are the mean
value and variance of the image respectively.

A number of operations were used to refine the newly
formed binary regions. Erosion reduces the number of ob-
ject pixels by removing pixels from the perimeter of the
foreground, ensuring a precise edge around the region of
interest. Dilation expands the number of object pixels, filling
any small gaps that may appear within the region of interest.
Together, these two operations improved the quality of the
binary image by ensuring the foreground and background
were cleanly separated into uninterrupted regions with precise
boundaries. The eye region was then split into left and right
halves in a similar manner to that used for blinking detection.
The midpoints between the two landmarks on each lid were
calculated separately and the line between these two midpoints
was used to divide the eye region.

Fig. 4. Thresholding the eye region

It was then necessary to count non-zero elements in each
half. Since white has a value of 255 and black has a value of
0 in grayscale colour space, this is equivalent to counting the
white pixels. Finally, the ratio of the returned value for the left
side of the eye with respect to that of the right side was found.

Gaze direction was classified into three ordinal directions
— left, centre and right — on the basis of this value through
use of an upper and lower threshold. If the ratio value was
less that the lower threshold for a given frame, the participant
was classified as gazing left. If the value lay between the
upper and lower thresholds, the participant was classified as
gazing ahead, or to the ‘centre’. And if the value exceeded
the upper threshold, the participant was classified as gazing
right. The procedure for converting these ordinal conversions
to annotations following the precedent set by existing manual
gaze annotation is described in

3) Head Posture Analysis: Head posture analysis enables
a rotation vector to be calculated that indicates the direction
a participant is facing. The solvePNP function of OpenCV
calculates the relationship between points on a 2D image
representation and their positions in a model of 3D space. In
this case, the two sets of points used were the facial landmarks
located in the image using Dlib, and the positions of these same



landmarks on a hypothetical 3D model of a human head, where
the origin (0,0,0) is found at the tip of the nose.

The landmarks used in this case were the chin tip, the
nose tip, the two corners of the mouth and the outer corner
of each eye. The correspondence between these sets of points
was then calculated using solvePNP, which produces a rotation
vector and translation vector. The data produced in this stage
of analysis was not used in the creation of gaze annotations,
nor in statistical analysis to establish a relationship between
gaze behaviour and conversational dominance as the scale of
the work required to complete other portions of this research
was already extensive. However, it will hopefully serve as a
useful addition to the MULTISIMO corpus for future work.

The results of head posture analysis are perhaps more
useful when the resulting rotation vectors are converted to
Euler angles.
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Fig. 5. The Euler angles

Yaw indicates the left-right turn of the head. Provided with
some labelled training data, a model could be developed that
classifies head posture into left, centre and right categories in
the same manner as gaze direction analysis, which may be used
to augment the accuracy of this previous stage or, alternatively,
to provide an additional dimension of data for analysis.

C. Annotation

The previous three steps produce a data frame containing
a row for every frame of each video with a column each
for the relevant index, ordinal direction, rotation vector and
timestamp (to give an idea of scale, there are 18,000 frames
in a 10 minute video and 3 videos to be analysed per session).
A filtering and merging process is necessary for producing
useful annotations from this. Each annotation in ELAN must
have a start time, an end time, a duration and an annotation
value. Timestamps obtained directly from the source video by
OpenCV were added to the dataframe.

As previously mentioned, the intention of this step was to
produce annotations that reflect the format of human gaze an-
notation as faithfully as possible, with the additional annotation
value of ‘blinking’ for one of the types of annotation produced.
The first step of the process was to convert ordinal direction
values of ‘left’, ‘centre’ and ‘right’ to the desired annotation
value. This annotation value is dependent on the position
of the participant in question to the other two participants,
and therefore the Python script generating annotations from
the video analysis data had to be modified for each video
to ensure each ordinal direction was mapped to the correct

annotation value. For example, in the case of a player found
to the left of the facilitator, a gaze direction of ‘left’ should
be mapped to GAZE-FACILITATOR while ‘right’ should be
mapped to GAZE_PLAYER. For a player found to the right
of the facilitator, these annotation values should be switched.
And for the facilitator, annotation values of GAZE_PLAYER-
LEFT and GAZE_PLAYER-RIGHT are used for the left and
right ordinal directions respectively.

Sequences of frames where the annotation value was the
same were merged into a single annotation, with the start time
being the timestamp for the first frame in this sequence, the end
time being the timestamp for the last, and the duration being
calculated by subtracting the former value from the latter.

1) Types & Filtering: One of the issues faced with video
analysis is a lack of continuous, contextual reasoning across
a series of frames. Our eyes may be fairly easily deceived
momentarily, but our brains are generally quick to make
inferences about reality based on ‘commonsense’ knowledge.
A computer, by contrast, has no such domain knowledge —
including no sense of what behaviours are normal — and
therefore lacks an understanding that it is unlikely that a person
went from gazing left to gazing right and back again in the span
of 33 ms. Rather than trying to implement an algorithm that
accounts for the results of preceding and succeeding frames at
the image processing stage — which would be prohibitively
difficult and technical for a project of this scope — it was
found that some simple heuristics bring the performance of
the system to a level sufficient for our needs.

Two versions of annotation were created for each video.
The first fine-grained annotation is a closer representative
of the actual output of video analysis. All entries with a
duration of 100ms or less (approximately 3 frames of footage)
were removed on the basis that there was a reasonably high
probability that these could be misclassifications and, even
if it were possible to filter out these misclassifications, such
fleeting annotations were unnecessary for the purposes of this
paper. Entries where the value was BLINKING were maintained
regardless of brevity, as blinking is a very rapid process.
Secondly, broad-grained annotations were produced at a later
stage that are a better approximation of the type of annotation
a human annotator might provide. Entries where value was
BLINKING were removed, and neighbouring entries extended
in order to fill the resulting gaps. This step was necessary
both for the assessment of inter-annotator agreement — as the
lack of annotation for blinking in the human annotations would
make comparison difficult — and for the purpose of the analysis
in subsequent research, as blinking behaviour disrupts the
continuity of gaze annotation in a way that is incompatible with
the metrics used. This blinking annotation may be transferred
to another tier with ELAN.

2) Importing into ELAN: The CSV files generated by the
annotation phase can be viewed in ELAN using the built-in
functionality for importing this file type. Then it is relatively
simple to add the relevant video source as a linked file and save
the project as an EAF file, enabling all research and analysis to
be performed in the same manner as with human annotations.

3) Inter-Annotator Agreement: The reliability of annotation
was assessed by comparison with a human annotation for the
same session. Note that granularity difference resulting from



frame-by-frame analysis — a level of detail that is not be
feasible in manual annotation — means that it is not a gold-
standard but rather an independent alternative for comparison.

ELAN offers a facility for assessment of inter-annotator
agreement between two EAF files. In this case, a modified
Kappa statistic with a minimum of 60% overlap required was
used. Raw agreement is insufficient for assessing reliability.
If, for example, there are two possible annotation values and
one occurs more frequently than the other in ground truth, an
annotator could simply provide this more common value for all
annotations and achieve a relatively high raw agreement score.
By contrast, Cohen’s Kappa is a chance-corrected agreement
index that normalizes the observed agreement by the amount
that could be expected by chance alone [22]. Even for humans,
separating something continuous like the angle of gaze into
discrete categories — such as left, centre and right — is difficult,
with the exact point where one category meets another varying
between annotators, so perfect agreement was not expected.

IV. EVALUATION

Evaluation is considered with respect to corpus coverage

(§IV-A) and annotator agreement (§IV-B).

A. Corpus coverage

Inadequate performance on 12 video files excluded 11
sessions from close evaluation. A session had to be entirely
disregarded in the context of this research if even 1 of the
3 videos posed an issue for automatic annotation. However,
automatic annotation was performed successfully for 42 out
of 54 total video files, leading to an overall coverage of
approximately 78% of the corpus, if only 39% of the ses-
sions. Misclassifications impacting performance may broadly
be organised into two categories. The first encompasses those
resulting from true failures of the system to adequately locate
the iris position. Causes included glare on the glasses of
a participant — which prevented proper thresholding of the
eye region — occlusion of the eye region by the frames of
glasses, and deep shadows cast over the eye region caused
by overhead lighting and bowed head posture. The second
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Fig. 6. A problematic room setup

source of misclassification results from the relative angles
and positions of participants and cameras (see Fig. [0). In a
number of sessions a camera and/or the chair of a player
moved, meaning that, although the system was adequately
able to locate the iris and therefore determine the direction of
gaze, problems arose in the conversion of ordinal directions

to annotation values. As usual, frames where the iris was
found in a central location were annotated as GAZE_AWAY,
while frames where the iris occupied the left side of the pupil
were annotated as GAZE_PLAYER (where the player being
analysed was found to the right of the facilitator). However,
due to the closer proximity of the camera (filming the player
being analysed) and the other player, the movement of the iris
between a central position — which ought to be annotated as
GAZE_AWAY - and a central position — which ought to be
annotated as GAZE_PLAYER — was not large enough to be
detected. This resulted in many misleading annotations.

The annotations for the remaining 7 of the 18 sessions
were subjected to close evaluation. Three separate video files
had to be annotated for each session (one per participant) and
sessions lasted 10 minutes on average, meaning the following
statistical analysis is based on approximately 210 minutes
of video footage. The execution of the video analysis was
observed for all 54 video files, and these 7 sessions were
chosen on the basis of the assessment that classification of
gaze direction was of at least as high a quality as those that
would be produced by a human annotator.

B. Annotation Quality

Inter-annotator reliability was used to measure the agree-
ment between automatically generated annotations for one
session and the corresponding manual annotations. Manual
annotations were also available for a second session, however,
this session had to be excluded from analysis due to lighting
conditions impairing performance for one of the participants:
shadows on the eye region created by overhead lighting
meant that establishing a threshold value that could adequately
separate the iris from the sclera in a binary image was not
possible, preventing accurate gaze annotation.

As mentioned in Cohen’s Kappa is a metric
that normalises the observed agreement by the probability of
chance agreement, with O indicating that the two annotations
in question are in total disagreement, while 1 indicates total
agreement. A variant of Cohen’s Kappa requiring a minimum
of 60% overlap for a match to occur was used.

Participant | Kappa | Raw Agreement
P006 0.8416 0.9028
P0O07 0.6629 0.7841

Facilitator 0.875 0.9338
Average 0.7932 0.8736

TABLE L MODIFIED KAPPA RESULTS FOR SESSION 2

The results of inter-annotator agreement assessment ex-
cluding unlinked values are presented in Table [ The average
Cohen’s Kappa for the three participants in Session 2 is 0.79,
with a raw agreement value of 87%. Some researchers suggest
that Kappa value of from 0.6 to 0.79 indicates substantial
agreement while 0.8 to 1 indicates almost perfect agreement.
Our value is found precisely on the cusp of the two. Others,
however, are more demanding, however, with a Kappa value
of 0.8 or higher providing good reliability, while a value of
0.67 to 0.79 allows tentative conclusions to be drawn [23]].

V. DISCUSSION

Annotation coverage of 78% the corpus provides a basis for
future research. Manual annotation of gaze is an extraordinarily



labour-intensive process, taking approximately 20 minutes to
annotate 1 minute of footage for the MULTISIMO corpus [[19],
i.e. it would have taken approximately 70 hours to annotate
the 210 minutes of video footage whose annotation is used
for statistical analysis in this research. By contrast, it takes
approximately 2.5 minutes to provide annotation for 1 minute
of footage using this automatic system. This enables large
quantities of data to be produced quickly and reliably, with
only light supervision required at the beginning of analysis of
each file to ensure environmental factors are not preventing
accurate classification, thereby speeding annotation.

The quality of annotation and therefore utility of an auto-
matic rule-based system such as this is contingent on assump-
tions about the environment, and its robustness is challenged in
adverse conditions (poor lighting, inconsistent positioning of
chairs and cameras, glare produced by the reflection of light on
some participants’ glasses). It is possible that 100% coverage is
achieved with automatic gaze annotation in a corpus developed
with consideration of this system’s constraints. While the
resulting data is evidently not as precise as that produced
by e.g. gaze-tracking eyewear, it does allow rapid and low
cost annotation (both in terms of labour and computational
resources) without the need for specialist equipment.

In relation to the Kappa measure of 0.79, while this is only
based on one session, it provides validation that the system
worked correctly in this case and suggests that the performance
in other 6 sessions would be similar, given that these were
hand-picked based on observed accuracy. There was a fairly
significant number of unlinked annotations between the manual
and automatic versions as 633 were annotations provided
across the three participants in the manually annotated version
versus 779 annotations by the automatic annotator (represent-
ing a 23% increase). This granularity difference will almost
certainly have suppressed the Kappa statistic to a degree,
meaning accuracy could indeed be even higher than measured.

VI. CONCLUSION

Performance of the automatic annotator could perhaps be
improved by incorporating the head posture data generated,
either by using it as a factor contributing to the process
of classifying gaze direction or to flag potentially inaccurate
classifications where a contradiction occurs. Alternatively, as
gaze and head posture are two factors that are related but
by no means dependent, head posture data could provide an
additional tier of data for analysis.
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