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Abstract  23 

Purpose The time constant of phase II pulmonary oxygen uptake kinetics (V̇O2τp) is increased when high-intensity 24 

exercise is initiated from an elevated baseline (work-to-work). A high-intensity priming exercise (PE), which 25 

enhances muscle oxygen supply, does not reduce this prolonged V̇O2τp in healthy active individuals, likely 26 

because V̇O2τp is limited by metabolic inertia (rather than oxygen delivery) in these individuals. Since V̇O2τp is 27 

more influenced by oxygen delivery in type 2 diabetes (T2D), this study tested the hypothesis that PE would 28 

reduce V̇O2τp in T2D during work-to-work cycle exercise. Methods Nine middle-aged individuals with T2D and 29 

nine controls (ND) performed four bouts of constant-load, high-intensity work-to-work transitions, each 30 

commencing from a baseline of moderate-intensity. Two bouts were completed without PE and two were preceded 31 

by PE. The rate of muscle deoxygenation ([HHb+Mb]) and surface integrated electromyography (iEMG) were 32 

measured at the right and left vastus lateralis respectively. Results Subsequent to PE, V̇O2τp was reduced 33 

(P=0.001) in T2D (from 59±17 to 37±20s) but not (P=0.24) in ND (44±10 to 38±7s). The amplitude of the V̇O2 34 

slow component (V̇O2As) was reduced (P=0.001) in both groups (T2D: 0.16±0.09 to 0.11±0.04l/min; ND: 35 

0.21±0.13 to 0.13±0.09l/min). This was accompanied by a reduction in ΔiEMG from the onset of V̇O2 slow 36 

component to end-exercise in both groups (P<0.001), while [HHb+Mb] kinetics remained unchanged. 37 

Conclusions PE accelerates V̇O2τp in T2D, likely by negating the O2 delivery limitation extant in the unprimed 38 

condition, and reduces the V̇O2As possibly due to changes in muscle fibre activation.   39 

 40 

 41 

Keywords: near-infrared spectroscopy, oxygen extraction, cycling, oxygen uptake slow component, 42 

electromyography. 43 

 44 

Abbreviations: 45 

A: Amplitude  46 

CP: Critical power 47 

HR: Heart rate 48 

HHb+Mb: deoxygenated haemoglobin and myoglobin 49 

iEMG: Surface integrated electromyography 50 

MRT: Mean response time 51 

ND: Non-diabetic controls  52 
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NIRS: Near-infrared spectroscopy 53 

PE: Priming exercise  54 

TD: Time delay  55 

T2D: Type 2 diabetes  56 

TOI: Tissue oxygenation index  57 

V̇CO2: Expired carbon dioxide 58 

V̇E: Minute ventilation  59 

V̇O2: Oxygen uptake 60 

V̇O2peak: Peak oxygen uptake 61 

VT: Ventilatory threshold 62 

w-to-w: Work-to-work transition 63 

τ: time constant  64 

Δ50%: the sum of the power output at VT and 50% of the difference between the power output at VT and 65 

V̇O2peak 66 

ΔiEMGend-TDs: Difference between iEMG values at end-exercise and at the time point equivalent to the onset of 67 

TD. 68 

  69 
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Introduction 70 

Type 2 diabetes mellitus (T2D), having reached epidemic proportions in the last two decades, poses one of the 71 

main threats to human health in the 21st century. Of significant concern for this clinical population is the consistent 72 

demonstration of a reduced maximal exercise capacity (Green et al. 2015), which is independently correlated with 73 

cardiovascular and all-cause mortality (Kodama et al. 2009). Furthermore, pulmonary oxygen uptake (V̇O2) 74 

kinetics during moderate-intensity (i.e. below ventilatory threshold, (VT)) exercise is significantly blunted by 75 

~30% in young and middle-aged individuals with uncomplicated T2D (Mac Ananey et al. 2011; O'Connor et al. 76 

2015; O'Connor et al. 2012; Kiely et al. 2015; Bauer et al. 2007; Regensteiner et al. 1998). This is evidenced by 77 

a prolonged time constant of the primary phase of the V̇O2 kinetics response (V̇O2 τp) which has been considered 78 

to be a determinant of exercise tolerance (Jones and Poole 2005). Although not universal (Poitras et al. 2015; 79 

Copp et al. 2010), substantial evidence exists to suggest that the impairments in V̇O2 τp in uncomplicated T2D are 80 

influenced by limitations in peripheral oxygen (O2) delivery in the lower limbs (Kiely et al. 2014; Bauer et al. 81 

2007; MacAnaney et al. 2011). In contrast, in non-diabetic active individuals presenting with a fast V̇O2 kinetics, 82 

V̇O2 τp appears to be limited by the adjustment of specific metabolic pathways (i.e. oxidative capacity of 83 

contracting skeletal muscle) rather than O2 delivery.   84 

 85 

In healthy active individuals, the initiation of a transition to heavy-intensity [> VT and < critical power (CP)] or 86 

severe-intensity (> CP) upright cycling from a moderate-intensity (< VT) baseline, referred to as work-to-work 87 

(w-to-w), elicits a significantly longer V̇O2 τp than an on-transition from rest or ‘unloaded’ cycling (Hughson and 88 

Morrissey 1982; Goulding et al. 2018; Wilkerson and Jones 2007, 2006; Dimenna et al. 2009; DiMenna et al. 89 

2008). This prolonged V̇O2 τp may relate to a constrained cellular respiration in the already active muscle fibres 90 

(Nederveen et al. 2017), or a larger recruitment of fast twitch (type II) muscle fibres to meet the augmented 91 

metabolic demand (Whipp 1994; Barstow et al. 1996).  In these healthy active individuals a prior bout of high-92 

intensity priming exercise (PE) does not alter this prolonged V̇O2 τp in subsequent w-to-w transitions. This is 93 

likely because during high-intensity exercise a prior PE appears to facilitate convective and diffusive components 94 

of muscle O2 delivery (Gerbino et al. 1996; Sahlin et al. 2005; Jones et al. 2006) rather than muscle metabolic 95 

pathways. In this regard, DiMenna et al. (DiMenna et al. 2010b) reported that PE significantly reduced V̇O2 τp 96 

during severe-intensity w-to-w cycling in the supine posture, where O2 delivery is limited due to a loss of gravity-97 

enhanced perfusion pressure in active muscle. These effects were, therefore, likely owing to an enhanced 98 

distribution of blood flow to active muscles following priming (DiMenna et al. 2010b). Despite PE not influencing 99 
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V̇O2 τp during heavy/severe-intensity w-to-w upright cycling in healthy active participants, PE reduces the mean 100 

response time (MRT) of the overall V̇O2 dynamic response by increasing the amplitude of the V̇O2 primary phase 101 

(V̇O2 Ap) and/or blunting the amplitude of the V̇O2 slow component (V̇O2  As), which have been associated with 102 

a PE-induced reduction in the requirement for type II muscle fibre activation, and thus, an improved metabolic 103 

stability of type I fibres (DiMenna et al. 2008).  104 

 105 

Given that T2D is a disease that affects the vasculature and limits the O2 supply to contracting muscle, the 106 

combination of a PE intervention with the w-to-w model may offer further insight into potential mechanisms 107 

implicated in the impaired V̇O2 kinetics response demonstrated by these individuals. Accordingly, the aim of the 108 

present study was to investigate the influence of PE on V̇O2 kinetics  during w-to-w upright cycling exercise 109 

transitions in middle-aged individuals with T2D. We hypothesized that PE would speed V̇O2 τp in the subsequent 110 

high-intensity w-to-w transition in individuals with T2D. Given that muscle fibre distribution appears to be altered 111 

in individuals with T2D (Marin et al. 1994) with reports showing a 2-fold increase in type IIb fibres (Mogensen 112 

et al. 2007), together with the notion that PE induces a reduction in type II muscle fibre activation, we also 113 

hypothesised that PE would reduce the V̇O2 As in individuals with T2D. In attempting to explore the mechanistic 114 

basis of any PE-induced effect on V̇O2 kinetics in T2D, the rate of muscle deoxygenation (i.e., deoxygenated 115 

haemoglobin and myoglobin, HHb+Mb) and muscle electromyography (EMG) were measured to assess the 116 

alterations on muscle fractional O2 extraction and motor unit activation, respectively.  117 

 118 

Methods 119 

Participants 120 

Eighteen individuals, 9 with uncomplicated T2D (5 males/4 females) and 9 healthy controls (5 males/4 females) 121 

volunteered to participate in this study (Table 1). Non-diabetic controls (ND) were recruited from the general 122 

population, whilst participants with T2D were recruited from the Diabetes Outpatient Clinics of St. Columcille’s 123 

Hospital (Louglinstown, Co. Dublin) and St. Vincent’s University Hospital (SVUH, Dublin 4) following chart 124 

review. To avoid the potential confounding effects of age on the T2D-related impairments in exercise tolerance, 125 

previously established in men (Wilkerson et al. 2011; O'Connor et al. 2015), we limited the age of participants to 126 

< 60 yr. 127 

Three female participants were premenopausal (1 T2D and 2 ND) and five were postmenopausal (3 T2D and 2 128 

ND) not undergoing hormone replacement therapy. Participants were classified as physically inactive by self-129 
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 6 

report (≤1.5 h.week-1 of moderate-intensity exercise in the preceding 6 months), which was confirmed by the use 130 

of 5-day RT3 triaxial accelerometry (Stayhealthy Inc, CA) in a subset of participants (Table 1) (Rowlands et al. 131 

2004).  All participants with T2D had a clinical history of diabetes between 3 and 11 years (mean ± SD = 7.3 ± 132 

4.0 yrs.), were treated by oral hypoglycaemic agents and had adequately controlled HbA1c levels (<8.5%). None 133 

of the participants with T2D were taking insulin or beta-blockers and all participants were non-smokers (had not 134 

smoked during the 12-month period preceding the study). One of the healthy controls was on a prescriptive 135 

medication (statins, n = 1), and individuals with T2D were taking oral (n = 8) and/or subcutaneous (n =1) 136 

hypoglycaemic prescription medications (metformin, n = 5; sulphonylurea, n = 1; glucagon-like peptide 1, n = 1; 137 

sodium glucose cotransporter-2 inhibitors, n = 1; dipeptidyl peptidase-4 inhibitors, n = 1). In addition, 3 138 

individuals with T2D were taking antihypertensive prescription drugs (angiotensin converting enzyme inhibitor 139 

& calcium channel blocker, n = 2; angiotensin II receptor blocker, n = 1) and statins. All participants displayed 140 

no clinical evidence of coronary artery disease (12-lead electrocardiogram treadmill stress test following the Bruce 141 

protocol), peripheral arterial disease (0.9 < Ankle-Brachial Index, ABI, < 1.3), kidney dysfunction (consistent 142 

urinary protein > 200 mg.dl-1) or liver dysfunction (urinary creatinine levels > 2.2 mg.dl-1). All participants 143 

provided written informed consent prior to participation. The study was approved by the Faculty of Health 144 

Sciences’ Research Ethics Committee, Trinity College Dublin, and St Vincent’s Healthcare Ethics and Medical 145 

Research Committee, and was performed in line with the principles outlined by the Declaration of Helsinki. 146 

 147 

Study Protocol 148 

Overview. Following the satisfactory completion of the 12-lead ECG stress test, all participants completed two 149 

visits to the laboratory. The controls undertook these tests in the cardiovascular performance laboratory in the 150 

Department of Physiology, Trinity College Dublin; whilst individuals with T2D did so in the exercise testing 151 

facility in St. Columcille’s Hospital. In the first visit all participants performed a ramp incremental (RI) cycling 152 

test to exhaustion to determine V̇O2peak (see visit 1). In the second visit participants performed four w-to-w step 153 

transitions to high-intensity exercise commencing from a baseline of moderate-intensity exercise. Two of these 154 

transitions were completed without PE and the other two transitions were undertaken preceded by a PE (see visit 155 

2). All exercise tests were carried out in an upright position on an electrically braked cycle ergometer (Excalibur 156 

Sport; Lode B.V., Groningen, Netherlands). All participants were asked to refrain from consuming alcohol, 157 

caffeine and non-prescribed nutritional supplements as well as avoiding any strenuous exercise in the 24 hours 158 

prior to testing. All premenopausal participants were tested during the mid-follicular phase (days 5-12) of the 159 
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 7 

menstrual cycle to avoid potential differences, even though the phase of the menstrual cycle does not seem to 160 

affect the V̇O2 kinetics response (Mattu et al. 2020). The mid-follicular phase was self-determined. 161 

 162 

Visit 1: Ramp incremental cycling test to exhaustion. The test started with an initial workload of 10 W for 2 min 163 

(i.e. ‘unloaded’ cycling). This was followed by 10-15 W/min increments in power output for women or 15-20 164 

W/min increments for men based on participants’ activity levels. Pedalling rate was held constant at an 165 

individually selected cadence between 60-75 revolutions per minute (rpm) and was maintained throughout all 166 

further testing. Failure in a test was determined as a drop in cadence exceeding 10 rpm for >5 s. Peak workload 167 

was the power output achieved at the point of failure. V̇O2peak was the highest V̇O2 value (15-s average) attained 168 

during the test. The first ventilatory threshold (VT) was determined by visual inspection as the V̇O2 at which 169 

V̇E/V̇O2 exhibited a systematic non-linear increase without a concomitant increase in V̇E/V̇CO2  and the deflection 170 

point of V̇CO2 vs. V̇O2 (V-slope method) during the ramp incremental test (Beaver et al. 1986). The respiratory 171 

compensation point (RCP) was estimated by identifying the second non-linear increase of V̇E and V̇CO2, whereby 172 

an increase in V̇E/V̇O2 is accompanied by an increase of V̇E/V̇CO2 (Wasserman and McIlroy 1964). 173 

 174 

Visit 2: Priming effect on high-intensity work-to-work cycling exercise. All participants performed four separate 175 

w-to-w transitions to constant-load high-intensity cycling at 50% delta (Δ50%; the sum of the power output at VT 176 

and 50% of the difference between the power output at VT and V̇O2peak obtained during the ramp incremental test) 177 

each commencing from an elevated baseline of 80% VT (80% of each participant’s VT). For all participants the 178 

power output at Δ50% was higher or the same than at RCP (see results). Given that in the present study the mean 179 

response times of V̇O2 during the ramp cycle exercise (Keir et al. 2018) were not accounted for when calculating 180 

these target power outputs, it is likely that power outputs at RCP (and at VT) were slightly overestimated. Thus, 181 

it is reasonable to assume that the Δ50% intensity for participants in the present study was within the lower region 182 

of the severe intensity domain (> critical power). The order of these bouts was fixed for all participants (Fig 1). 183 

Each transition consisted of 3 min of “unloaded” cycling at 10W, immediately followed by 6 min of moderate-184 

intensity (80% VT) cycling which in turn was immediately followed by 6 min of high-intensity (Δ50%) cycling. 185 

Two of these w-to-w transitions were completed without PE (unprimed w-to-w) and two bouts were undertaken 186 

preceded by a bout of PE (primed w-to-w). The unprimed w-to-w bout was used as PE. A pilot study carried out 187 

in our laboratory in young control individuals (n = 6) demonstrated that when a w-to-w bout was used as PE, its 188 

effect on subsequent w-to-w V̇O2 and [HHb+Mb] kinetics was not different compared with a condition where a 189 
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single 6-min 50% Δ bout was used as PE. Exercise was performed continuously with changes in power output 190 

initiated as a step function without giving prior warning to the individual. There was a 12 min rest period between 191 

each of the cycling bouts, except following the first primed w-to-w bout where participants remained seated in a 192 

chair for 45 min. This resting period has been shown to be sufficient for physiological parameters to return to 193 

baseline levels, and therefore, not to influence V̇O2 kinetics responses during subsequent exercise (Burnley et al. 194 

2006). Eight participants (4 from each group) failed to complete 6 min of exercise at Δ50% during the w-to-w 195 

bouts in the unprimed condition, so only physiological responses collected over the same period (i.e., <6 min, 196 

range 2.5 – 5 min) during the unprimed and primed conditions were analysed. Heart rate (HR), gas 197 

exchange/ventilatory variables, muscle oxygenation & deoxygenation and muscle EMG were continuously 198 

measured during each cycling bout.  199 

 200 

Measurements 201 

During exercise, participants wore a facemask to continuously collect expired air using an online metabolic system 202 

(Innocor, Innovision A/S, Odense, Denmark) that measured airflow using a pneumotachometer. Carbon dioxide 203 

analysis was performed by using a photoacoustic gas analyser and oxygen was analysed using an oxygen sensor 204 

(Oxigraf Inc., USA) based on the principle of laser diode absorption spectroscopy. The system was calibrated 205 

prior to each test as per manufacturer’s recommendations. Both the oxygen sensor and photoacoustic gas analyser 206 

require multi-point calibration that is routinely performed by the manufacturer every 6-12 months. Analysis of 207 

expired air allowed determination of pulmonary O2 uptake (V̇O2), CO2 output (V̇CO2), minute ventilation (V̇E) 208 

and the respiratory exchange ratio breath-by-breath. HR was recorded every 5 s (Polar S610i, Polar Ltd, Finland), 209 

with peak HR defined as the highest HR attained within the last 15 s prior to termination of the test. 210 

 211 

A continuous wave NIRS system (Hamamatsu Niro 200Nx; Hamamatsu Photonics, Hamamatsu, Japan), was used 212 

to determine muscle oxygenation status non-invasively through the spatially resolved spectroscopy technique and 213 

modified Beer-Lambert principle with three wavelengths of emitting light (λ = 735, 810, and 850 nm). The 214 

theoretical basis of NIRS and its use in exercise measurements have been described in detail elsewhere (Ferrari et 215 

al. 2011) but briefly, this technique estimates the optical density changes of oxygenated (O2Hb+Mb) and 216 

deoxygenated haemoglobin and myoglobin (HHb+Mb) based on the oxygen dependency of absorption changes 217 

for near-infrared light in these proteins. As the vastus lateralis (VL) muscle is a dominant locomotor muscle during 218 

cycling, the present study examined the concentration of HHb+Mb (Δ[HHb+Mb]), and tissue oxygenation index 219 
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 9 

(TOI) of the right vastus lateralis (VL) muscle. After shaving, cleaning and drying the skin, the probes were placed 220 

on the belly of the muscle, 5-8 cm above the lateral femoral condyle, parallel to the major axis of the thigh with a 221 

3 cm spacing between the emitter and receiver. The probes were housed in a black rubber holder and secured on 222 

the skin surface with bi-adhesive tape and then covered with a dark elastic bandage, which minimised extraneous 223 

movement and the intrusion of stray light throughout the exercise protocol. Since the depth of the measured area 224 

was estimated to be approximately one-half the distance between the emitter and the receiver (~1.5 cm), the 225 

present study determined the thickness of the skin and adipose tissue at the site of the probe placement via 2D 226 

ultrasound operating in B-mode (Zonare Ultra Smart Cart, Software version 4.7, USA), to ensure that data largely 227 

represented absorption of near-infrared light in muscle tissue and not in subcutaneous fat. Individuals presenting 228 

with adiposity >1.5 cm over the site of interrogation on the vastus lateralis were excluded from the study.  229 

 230 

Neuromuscular activity of the vastus lateralis muscle of the left leg was measured using surface electromyography 231 

(EMG). The area of the belly of the muscle was shaved and cleaned using a sterile alcohol wipe and the electrodes 232 

were placed in a bipolar Ag/AgCl arrangement 25mm apart (centre to centre) and in a plane which was estimated 233 

to be parallel to the direction of the muscle shortening during contraction, while a third ground electrode was 234 

placed on the left hip. The electrodes were taped in place and covered in a cloth bandage to prevent excessive 235 

movement during exercise. The EMG signal was measured using a Powerlab 26T (AD instruments, Sydney, 236 

Australia) at a sampling frequency of 1,000 Hz. All raw EMG data were demeaned and band passed filtered 237 

between 20 and 500 Hz with the filtered data then used to calculate integrated EMG (iEMG). Filtered data was 238 

rectified and then integrated for every 50 ms of EMG activity. The iEMG data were averaged in 15 s intervals 239 

throughout exercise, with these values normalized to the average measured during 15–165 s of unloaded cycling 240 

before the initial transition. Therefore, all iEMG data were calculated as a percentage of the initial unloaded 241 

cycling phase. Data from repeat trials were averaged, and iEMG at the time point equivalent to the onset of the 242 

V̇O2 slow component (TDs, see data analysis) (the 15 s interval before the TDs time point) and at end exercise 243 

(last 15 s of exercise) were calculated. ΔiEMGend-TDs was calculated as the difference between iEMG values at 244 

end-exercise and at the time point equivalent to the onset of TDs. The EMG recordings were re-started prior to 245 

each w-to-w transition (i.e. upon initiation of the 3 min “unloaded” cycling) and were continuously measured for 246 

the duration of each w-to-w transition.  247 

 248 

Data analysis 249 
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 10 

V̇O2 Kinetics: The breath-by-breath V̇O2 data for each transition were linearly interpolated to provide second-by-250 

second values and time aligned such that time 0 represented the onset of exercise. Data from each transition were 251 

ensemble-averaged to yield a single, average response for each individual and further time-averaged into 5 s bins. 252 

During the moderate-intensity bouts, 5 participants (2 T2D and 3 ND during both conditions) revealed a small 253 

V̇O2 slow component suggesting that the power outputs in these participants were slightly above their VT. This 254 

was likely because the mean response times of V̇O2 during the ramp cycle exercise were not accounted for when 255 

calculating the target power outputs (Keir et al. 2018). Thus, averaged and smoothed responses for each participant 256 

for moderate-intensity exercise were fitted to either a monoexponential (Eq. 1) or biexponential (Eq. 2) function, 257 

while for high-intensity exercise responses were fitted to a biexponential function 258 

 259 

V̇O2(t) = V̇O2 baseline + Ap [1-e - (t-TDp)/τp)].F1    (1) 260 

V̇O2(t) = V̇O2 baseline + Ap [1- e - (t-TDp)/τp)].F1 + As [1 – e - (t – TDs)/τs)].F2   (2) 261 

 262 

where V̇O2(t) represents the absolute V̇O2 at a given time t; V̇O2 baseline (for moderate-intensity, in Eq’s 1 & 2) 263 

is the mean V̇O2 in the final 30 s of unloaded cycling, whereas V̇O2 baseline (for high-intensity, in Eq. 2) is the 264 

mean V̇O2 in the final 60 s of the moderate-intensity cycling exercise preceding the step transition to high-intensity 265 

cycling exercise; Ap and As, are the amplitudes of the increase in V̇O2 for the primary and slow component phases; 266 

TDp and TDs are the time delays of these phases, and τp and τs are the time constants of the phases, defined as the 267 

duration of time for which V̇O2 increases to a value equivalent to 63% of the amplitude. The conditional 268 

expressions F1 and F2 limit the fitting of the phase to the period at and beyond the time delay associated with that 269 

phase. The first 20 s of data after the onset of exercise (i.e., the phase I V̇O2 response) were deleted, while still 270 

allowing TD to vary freely (to optimize accuracy of parameter estimates (Murias et al. 2011)). The MRT was 271 

calculated through the fitting of a monoexponential curve to provide information on the “overall” V̇O2 kinetics 272 

during the high-intensity exercise bout, with no distinction made for the various phases of the response. The V̇O2 273 

data were fit using a weighted least-squares non-linear regression procedure (TableCurve 2D, Systat, USA). Data 274 

points lying outside the 95% prediction interval during the initial fit of a model were excluded. For moderate-275 

intensity exercise only estimates representing the primary phase are presented. Whilst the presence of a slow 276 

component was detected in 5 participants during the moderate-intensity bouts, the presence of this phase does not 277 

appear to significantly affect the parameter estimates of the earlier phases (Wilkerson et al. 2004). The end-278 

exercise V̇O2 response, referred to as End A, was calculated as the averaged V̇O2 over the last 30 s. Because the 279 
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asymptomatic value (As) of the exponential term describing the V̇O2 slow component may represent a higher 280 

value than is actually reached at the end of the exercise, the actual amplitude of the slow component was calculated 281 

as the absolute difference between the End A and V̇O2 baseline + Ap. The amplitude of the slow component was 282 

also described relative to the entire V̇O2 response [i.e. As / (Ap + As)].  The functional “gain” of the primary V̇O2 283 

response (Gp) was calculated as the difference between V̇O2 Ap and V̇O2 baseline normalized to the difference in 284 

power outputs between the moderate-intensity exercise and unloaded cycling; and the functional gain of the entire 285 

response at the end of the high-intensity exercise bout (i.e. end-exercise gain) was calculated in a similar manner. 286 

 287 

[HHb+Mb] kinetics and TOI. To provide information on muscle deoxygenation throughout the protocol, we 288 

modelled the [HHb+Mb] response for moderate- and high-intensity exercise, fitting the data to either a 289 

monoexponential (Eq. 1) or biexponential (Eq. 2) function (see above). In the moderate-intensity exercise the 5 290 

participants who showed a small V̇O2 slow component also showed a [HHb+Mb] slow component, so, for these 291 

participants data were fitted using a biexponential function, but only estimates representing the primary phase are 292 

presented. As per the V̇O2 data, the NIRS-derived Δ[HHb+Mb] data for each transition were linearly interpolated 293 

to provide second-by-second values and time aligned. Data from each transition were ensemble-averaged to yield 294 

a single average response for each individual, and further time-averaged into 5 s bins. A time delay (TD) at the 295 

onset of exercise occurs in the [HHb+Mb] profile before it increases with an exponential like time course 296 

(DeLorey et al. 2003) which has been interpreted to reflect a tight coupling between muscle O2 uptake and local 297 

O2 delivery (DeLorey et al. 2003). This was determined in the present study via visual inspection as a systematic 298 

increase above the pre-transition level. [HHb+Mb] data were fitted from the end of this TD to the end of the 299 

exercise bout. For the moderate- and high-intensity exercise, the time course for the primary phase of the 300 

Δ[HHb+Mb] response, referred to as the effective response time (τ'Δ[HHb+Mb]), was determined from the sum 301 

of the TD and τ from the onset of exercise. TOI was determined at baseline (30 s prior to each transition to the 302 

moderate-intensity domain), at every minute during the moderate-intensity cycling exercise; at min 1 and 2 into 303 

the high-intensity exercise transition (15 s bins centred on every 60 s), and at the end exercise (final 30 s) to allow 304 

comparisons between conditions in all participants.  305 

 306 

Statistical analysis 307 

Prior to analysis, normal distribution was assessed using the Shapiro-Wilk’s test. Physical characteristics and 308 

physiological responses derived from the ramp test between groups were compared using the unpaired Student’s 309 
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t-test for parametric analyses, or the Mann-Whitney U test for non-parametric analyses. The kinetics parameter 310 

estimates for V̇O2 and [HHb+Mb], and ΔiEMGend-TDs responses were analysed by using a two-way repeated 311 

measures ANOVA [condition (unprimed, primed) x diabetes status (T2D, ND)] and the post hoc Tukey test. TOI 312 

responses at different time points within the w-to-w transitions were compared using a 3-way repeated measures 313 

ANOVA (time x condition x diabetes status). Finally, correlations between PE-induced absolute changes in V̇O2 314 

As and ΔiEMGend-TDs were established using the Pearson product-moment correlation coefficient (Pearson r). A 315 

power analysis indicated that 9 participants per group were required to detect a PE-induced reduction of ~30% in 316 

V̇O2 τp during the w-to-w transitions (primary outcome) with a power of 0.80 and alpha of 0.05. This was based 317 

on previously published data on the effect of PE on subsequent V̇O2 τp during cycling w-to-w transitions in the 318 

supine posture (i.e. when O2 delivery to the active muscles was reduced at the outset) (DiMenna et al. 2010b). 319 

Statistical significance was accepted as P < 0.05. All values are expressed as mean ± standard deviation (SD) or 320 

as median and interquartile ranges for data that were deemed not normally distributed. 321 

 322 

Results 323 

Physical characteristics and activity levels. 324 

Participants’ physical characteristics are presented in Table 1. Both groups were well matched according to sex, 325 

age, body mass, body mass index and activity levels. As expected, participants with T2D displayed higher HbA1c 326 

and fasting plasma glucose levels.  327 

 328 

Performance data from ramp incremental cycling test 329 

Absolute V̇O2peak (T2D: 1.94 ± 0.53 L.min-1; ND: 2.47 ± 0.54 L.min-1; P = 0.049) and V̇O2peak normalised to body 330 

mass (T2D: 22.4 ± 4.3 mL.kg-1.min-1; ND: 29.7 ± 7.7 mL.kg-1.min-1; P = 0.012) were significantly reduced in 331 

individuals with T2D compared with healthy controls while peak power output tended to be lower in T2D (T2D: 332 

149 ± 45 W; ND: 192 ± 57 W; P = 0.092). The power outputs equivalent to 80% VT were lower in T2D (T2D: 333 

64 ± 17 W; ND: 96 ± 44 W; P = 0.043) while power outputs equivalent to Δ50% (T2D: 116 ± 33 W; ND: 158 ± 334 

58 W; P = 0.076) and RCP (T2D: 112 ± 33 W; ND: 153 ± 55 W; P = 0.073) showed a tendency to be reduced in 335 

diabetes.  336 

 337 

Effect of PE on V̇O2 kinetics, EMG and NIRS-derived responses during high-intensity exercise of the w-to-w 338 

transition 339 
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V̇O2 kinetics. The parameter estimates of the V̇O2 kinetics response for the high-intensity exercise bouts with and 340 

without a prior PE are presented in Table 2, and responses for representative individuals are shown in Fig 2. In 341 

the unprimed transition the V̇O2 τp and overall V̇O2 MRT were significantly (P = 0.035 & P = 0.049 respectively) 342 

longer in T2D compared with controls. PE resulted in a significant reduction in the V̇O2 MRT in both groups, 343 

while V̇O2 τp values were also reduced following PE in T2D (P = 0.001) but not in controls (P = 0.24). Subsequent 344 

to PE V̇O2 As was reduced in both groups (P = 0.001) while V̇O2 Ap was elevated (main effect, priming condition, 345 

P = 0.015). 346 

Δ[HHb+Mb] kinetics. Kinetics parameters for Δ[HHb+Mb] as well as TOI baseline & amplitude values are 347 

displayed in Table 3 while TOI values during the w-to-w transitions are shown in Fig 3. In the unprimed condition, 348 

the parameter estimates for the [HHb+Mb] kinetics responses were similar between groups. PE induced a 349 

reduction in the Δ[HHb+Mb] Ap in both groups (main effect, priming condition, P = 0.004), but it did not affect 350 

the effective response time of the Δ[HHb+Mb] response in either group. TOI values were higher during the primed 351 

high-intensity exercise bout in both groups (main effect, priming condition, P = 0.002).  The magnitude of the 352 

change in TOI from baseline to end-exercise was not affected by prior PE. Participants with T2D showed lower 353 

TOI than controls (main effect, diabetes status, P = <0.001).  354 

EMG. Representative iEMG responses during the w-to-w transitions are shown in Fig 4, while relative iEMG 355 

responses between the time points equivalent to end-exercise and the onset of V̇O2 slow component are shown in 356 

Fig 5. The ΔiEMGend-TDs was significantly reduced subsequent to PE in both groups (main effect, priming 357 

condition, P = <0.001) (T2D unprimed: 22 ± 18 %, T2D primed: 1 ± 10%; controls unprimed: 30 ± 37%, controls 358 

primed: 3 ± 20%). Absolute changes in V̇O2 As and ΔiEMGend-TDs from unprimed to primed conditions were not 359 

correlated in controls (r = 0.09, P = 0.85), or among individuals with T2D (r = 0.49, P = 0.22). 360 

 361 

Effect of PE on V̇O2 kinetics and NIRS-derived responses at moderate-intensity exercise of the w-to-w transition 362 

The parameter estimates of the V̇O2 kinetics response for the moderate-intensity exercise bouts are presented in 363 

Table 2. In both, the unprimed and primed conditions V̇O2 τp was significantly slower in T2D compared with 364 

controls (main effect, group, P = 0.016), while PE accelerated V̇O2 τp in both groups (main effect, priming 365 

condition, P = 0.007). Kinetics parameters for Δ[HHb+Mb] are displayed in Table 3. Parameter estimates were 366 

similar between groups in the umprimed condition. PE did not affect the amplitude or the effective response time 367 

of the Δ[HHb+Mb] response in either group. TOI responses were higher during the primed moderate-intensity 368 
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exercise bout in both groups (Fig 3 & Table 3). In addition, the magnitude of the change in TOI from baseline to 369 

end-exercise was larger following PE in both groups (main effect, priming condition, P < 0.001). 370 

 371 

Discussion 372 

To our knowledge this is the first study to explore the influence of PE on the temporal relationship between the 373 

adaptation of muscle O2 consumption and delivery during high-intensity cycling initiated from a moderate-374 

intensity baseline in T2D. In agreement with our primary hypothesis, PE reduced V̇O2 τp during the high-intensity 375 

cycling bout of the w-to-w transition in T2D in the absence of significant changes in the dynamic response of 376 

Δ[HHb+Mb]. Additionally, consistent with our second hypothesis, PE significantly reduced the V̇O2 As during 377 

the high-intensity exercise bout, accompanied with a reduction in muscle electromyographic activity between the 378 

end-exercise and the time point equivalent to the onset of V̇O2 slow component. Together, these priming effects 379 

resulted in a reduction in the MRT of the overall V̇O2 response.   380 

 381 

Effect of PE on V̇O2 τp during high-intensity exercise of the w-to-w transition 382 

In the present study, PE did not significantly reduce V̇O2 τp during the subsequent high-intensity bout of the w-383 

to-w transition among ND participants; and these findings are consistent to those observed during unprimed and 384 

primed upright severe-intensity w-to-w transitions (~42  vs.  ~42 s respectively) in healthy individuals (DiMenna 385 

et al. 2008).  Given that PE facilitates convective and diffusive muscle O2 delivery, (Gerbino et al. 1996; Sahlin 386 

et al. 2005; Jones et al. 2006), our findings, and those by DiMenna et al (DiMenna et al. 2010b), suggest that the 387 

V̇O2 τp responses in the control condition were not impaired by O2 delivery limitation. In contrast, for T2D, V̇O2 388 

τp responses during w-to-w transitions following PE were significantly reduced (~36% reduction) bringing the 389 

V̇O2 τp in T2D on a par with control counterparts (~37 s). This effect was also evidenced in healthy participants 390 

during severe-intensity cycling w-to-w transitions in the supine position (DiMenna et al. 2010b), thus, 391 

compromising exercising muscle perfusion pressure and O2 delivery (Egaña and Green 2005, 2007). Specifically, 392 

PE subsequently induced a significant reduction in the lengthened V̇O2 τp during the supine posture, aligning it 393 

with that observed in the unprimed upright posture. This was likely by negating the constrained O2 delivery, 394 

attributed to a loss of gravity-enhanced perfusion pressure in the active muscles (Jones et al. 2006; Egaña et al. 395 

2013; Egaña et al. 2010a; Egaña et al. 2010b). 396 

 397 
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Given that the impaired V̇O2 τp in T2D appears to be mediated, at least in part by limitations in O2 supply to 398 

contracting muscle (Kiely et al. 2014; Bauer et al. 2007; MacAnaney et al. 2011), it is likely that the priming-399 

induced speeding in V̇O2 τp in T2D herein was elicited by an enhanced O2 supply. The increased O2 availability 400 

at exercise onset in the primed exercise bout, evidenced by the elevated TOI further substantiates this notion. It is 401 

likely that this was mediated by a PE-induced greater vasodilation and muscle blood flow at the onset of exercise 402 

(Hughson et al. 2003; Gerbino et al. 1996) and increased lactic acidosis, via an enhanced blood-to-myocyte O2 403 

diffusion gradient through a rightward shift of the oxyhaemoglobin dissociation curve (Boning et al. 1991; 404 

Wasserman et al. 1991); even if this effect is not apparent following prior arm cranking exercise (Fukuba et al. 405 

2002). However, we cannot exclude the possibility that the priming-augmented V̇O2 τp observed herein, was also 406 

partially mediated by the upregulation of rate-limiting mitochondrial oxidative enzymes (Gurd et al. 2006, 2009).   407 

 408 

Effect of PE on V̇O2  As and iEMG during high-intensity exercise of the w-to-w transition 409 

In the present study, in addition to decreasing V̇O2 τp, PE significantly reduced the amplitude of the V̇O2 slow 410 

component during the high-intensity bout of the w-to-w transition in participants with T2D. In addition, despite 411 

PE not influencing V̇O2 τp in the controls, PE reduced the V̇O2 As during the high-intensity bout, thus, shortening 412 

the overall MRT of the V̇O2 response. These PE-induced reductions in the V̇O2 As, without altering V̇O2 τp in 413 

healthy controls are in accordance with the literature centred on the influence of PE on heavy/severe-intensity 414 

upright cycle exercise, both, from an elevated and an unloaded baseline (Burnley et al. 2006; Jones et al. 2008; 415 

Jones et al. 2006; Scheuermann et al. 2001; Wilkerson and Jones 2007; Goulding et al. 2017; Burnley et al. 2000; 416 

Fukuba et al. 2002); however, the governing mechanisms remain to be elucidated. 417 

 418 

One such mechanism relates to priming-induced changes in the motor unit recruitment pattern. In this regard, in 419 

the present study, the difference in iEMG between end-exercise and the time point equivalent to the onset of V̇O2 420 

As (ΔiEMGend-TDs) in the unprimed bout was significantly reduced following PE in both groups. Our findings are 421 

consistent with reductions in ΔiEMG between end-exercise and min 2 during primed compared with unprimed 422 

upright severe-intensity w-to-w cycling transitions in young active participants (DiMenna et al. 2008). Given the 423 

transition to high-intensity exercise from an elevated baseline would mandate the recruitment of predominantly 424 

type II muscle fibres, it is plausible that PE elicited a reduction in the requirement for additional type II muscle 425 

fibre activation as the exercise proceeded, and as such, the associated V̇O2 cost of that activation was reduced 426 

(DiMenna et al. 2008). Further extending this notion, DiMenna and colleagues (Dimenna et al. 2010a) 427 
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demonstrated a PE-induced reductions in the amplitudes of the [PCr] and V̇O2 slow components (50% and 46% 428 

respectively) during prone knee-extension w-to-w transitions concomitant with a blunting of the ΔiEMG. A 429 

reduction in the recruitment of these less efficient muscle fibres could serve to dampen the increase in the sustained 430 

metabolic acidosis, deemed a likely driving force behind the slow components of both [PCr] and V̇O2, (Rossiter 431 

et al. 2002; Krustrup et al. 2004). The combined iEMG and tissue oxygenation data in the present study may also 432 

suggest a priming-enhanced distribution of intramuscular blood flow. Consequently, the anaerobic contribution 433 

would decrease, precluding the recruitment of additional motor units, whilst favouring a more homogenous pool 434 

of highly oxidative type 1 muscle fibres (DiMenna et al. 2010b). By the same token, we cannot negate the 435 

upregulation of enzymatic processes within the type I fibres already recruited, improving the metabolic stability 436 

within. Subsequently, a smaller reduction in [PCr] and Gibbs free energy of ATP hydrolysis, as well as a smaller 437 

increase in [Pi] and [ADP] are ensured, thus sparing the activation of type 1 motor units herein. 438 

 439 

Given that PE herein facilitated a reduction in the V̇O2 As of the severe-intensity w-to-w transition in individuals 440 

with T2D, combined with a reduction in ΔiEMGend-TDs of that same bout, it is likely that the priming-induced 441 

reduction in V̇O2 As herein may also be related to modified motor unit recruitment patterns. However, in addition, 442 

given that type II fibres operate at a lower microvascular PO2, the priming-enhanced O2 delivery plausibly 443 

increased the blood-to-myocyte flux and thus intramyocyte PO2. This is all the more pertinent considering an 444 

altered muscle fibre distribution has been evidenced in individuals with T2D (Marin et al. 1994) showing increased 445 

proportions in type IIb fibres (Mogensen et al. 2007). However, it should be noted that given the variability 446 

associated with measurement and normalisation of iEMG, some previous studies do not support the association 447 

between neuromuscular activation and the V̇O2 slow component (Scheuermann et al. 2001). In addition, we did 448 

not observe a significant correlation between PE-induced absolute reductions in ΔiEMGend-TDs with reductions in 449 

As.  450 

 451 

Effect of PE on V̇O2 τp during moderate-intensity exercise of the w-to-w transition 452 

During the unprimed moderate-intensity cycling bout and in line with previous findings (reviewed by Green et al 453 

(Green et al. 2015)), individuals with T2D displayed a significantly longer V̇O2 τp than their healthy counterparts 454 

(~35 vs. ~44 s, respectively). Subsequent to PE both groups demonstrated similar reductions in the V̇O2 τp, 455 

consistent with recent findings from our group in a larger number of middle-aged individuals with T2D (Rocha et 456 

al. 2019), and in several previous studies involving young and older untrained healthy individuals presenting with 457 
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initially slow V̇O2 τp (DeLorey et al. 2004; Gurd et al. 2005; De Roia et al. 2012). NIRS-derived overall muscle 458 

deoxygenation kinetics (τ’[HHb+Mb]) herein, were not affected by PE in any of the groups; therefore, it is likely 459 

that the speeding of the V̇O2 kinetics response was attributed to a better matching of microvascular O2 delivery to 460 

utilisation. 461 

 462 

Limitations  463 

While a subset of participants (4 in each group) did not complete the required 6 min of high-intensity cycling 464 

exercise during the w-to-w transitions, we believe this had little influence on the interpretation of our findings 465 

given that the majority (8 in each group) completed at least 4 min of the bout and showed a clear V̇O2 slow 466 

component phase. Although the current protocol did not allow the random assignment of unprimed and primed 467 

conditions, this likely has a small impact on the results given that the sequence of the exercise transitions was the 468 

same for all participants. We acknowledge the NIRS-derived oxygenation and deoxygenation data was limited to 469 

one superficial muscle. Thus, the structural and functional heterogeneity extant within individual muscles, in 470 

particular relating to vascularity and fibre type, fibre recruitment, vascular control, and blood flow (Koga et al. 471 

2011; McDonough et al. 2005), in addition to variances identified both between muscles and within deep and 472 

superficial muscle segments  (Okushima et al. 2015; Saitoh et al. 2009), warrant consideration. Additionally, 3 473 

participants with T2D were classified as hypertensive and also had hyperlipidaemia; whereas all controls 474 

were normotensive, with one presenting with hyperlipidaemia. Further studies are needed to better establish if 475 

the higher rates of hypertension and/or hyperlipidaemia observed within the T2D group in the present study may 476 

have any significant impact on the findings presented herein. 477 

 478 

Conclusions  479 

The present study primarily demonstrated that priming exercise accelerates the primary time constant of V̇O2 480 

during high-intensity w-to-w transitions in middle-aged individuals with T2D. This effect was likely mediated by 481 

a priming-induced increase in O2 delivery within the microvasculature of the working muscle, serving to alleviate 482 

the metabolic strain to maintain V̇O2. In addition, PE decreased the amplitude of the V̇O2 slow component which 483 

was likely influenced by an augmented motor unit recruitment pattern. Thus, from a physiological perspective the 484 

combination of a PE intervention with the w-to-w model helps expand the insight that the impaired V̇O2 kinetics 485 

in T2D are influenced by limitations in O2 delivery. From a practical perspective, employing the work-to-work 486 

protocol is of great relevance as it replicates metabolic transitions from light to higher metabolic rates akin to 487 
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those in daily life.  Given individuals with T2D perceive light to moderate exercise as being more difficult than 488 

healthy counterparts (Huebschmann et al. 2009), a more sedentary lifestyle is likely, which is independently 489 

associated with worsening of cardiovascular outcomes in this burgeoning population. Therefore, the potential that 490 

lies within an acute intervention such as priming or warm-up exercise which serves to heighten the oxidative 491 

capacity of muscles and increase the therapeutic effect of exercise warrants further recognition. 492 
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 714 
Figure legends 715 

 716 

Fig 1 Schematic representation of the protocol. Unprimed and primed work-to-work cycling step transitions 717 

performed at high-intensity cycling exercise (Δ50%; the sum of the power output at VT and 50% of the difference 718 

between the power output at VT and V̇O2peak), each commencing from an elevated baseline of moderate-intensity 719 

(power output corresponding to 80% of each participant’s first ventilatory threshold, VT). All step transitions, 720 

each lasting 6 min, were preceded by 3 min of cycling at 10 W (i.e. ‘baseline’ cycling). Unprimed and primed 721 

work-to-work transitions were separated by 12 min of passive rest. The 2 step transitions (unprimed and primed 722 

work-to-work) were repeated following 45 min of passive rest within the same laboratory visit. 723 

 724 

Fig 2. Oxygen uptake (V̇O2) responses for a representative individual with type 2 diabetes (A) and a healthy 725 

control (B) during high-intensity work-to-work cycling transitions without priming exercise (open circles) and 726 

with priming exercise (solid circles). The continuous lines of best fit illustrate the primary phase of the oxygen 727 

uptake (V̇O2) response. Note the relatively slower response of the primary phase of the V̇O2 response in the 728 

unprimed compared with the primed bout in T2D. 729 

 730 

Fig 3. Mean ± SD total oxygenation index (TOI) at moderate and high-intensity exercise during the work-to-work 731 

transitions without priming exercise (open circles) and with priming exercise (solid circles) in T2D (A) and 732 

healthy controls (B). * P < 0.05 vs. unprimed within same diabetes status group (i.e. within controls or within 733 

Type 2 diabetes). 734 

 735 

Fig 4: Integrated surface electromyographic (iEMG) responses for a representative  individual with type 2 diabetes 736 

(A) and a healthy control (B) during moderate and high-intensity work-to-work cycling transitions without 737 

priming exercise (open circles) and with priming exercise (solid circles). The arrows indicate the time point 738 

equivalent to the onset of the V̇O2 slow component. 739 

 740 

Fig 5: Individual and mean ± SD (bar graph) changes in integrated surface electromyographic (iEMG) responses 741 

between end-exercise and the time point equivalent to the oxygen uptake slow component (V̇O2 TDs) (ΔiEMGend-742 

TDs) during high-intensity work-to-work transitions without priming exercise (unprimed) and with priming 743 
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exercise (primed) in T2D (A) and healthy controls (B). * P < 0.05 vs. unprimed within same diabetes status group 744 

(i.e. within controls or within Type 2 diabetes).  745 
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Table 1. Physical characteristics and activity levels. 

 Controls T2D P Value 

n 9 9  

Physical characteristics    

   Sex (male, female), n 5, 4 5, 4  

   Age, yr 45 ± 12 48 ± 9 0.48 

   Stature, m 1.67 ± 0.07 1.70 ± 0.08 0.46 

   BMI, kg/m2 30 (4) 28 (8) 0.72 

   Body Mass, kg 82.0 (8.5) 79.0 (32.8) 0.57 

   Fat layer VL, mm 12.7 (10.2) 6.5 (2.8) 0.23 

   HbA1c, % 5.1 (0.2)* 6.9 (1.4) 0.02 

   FPG, mmol/L 4.4 ± 0.8* 7.2 ± 1.3 0.01 

   Time since diagnosis, yr  7.3 ± 4.0  

   Total cholesterol, mmol/L 3.85 ± 0.88 4.50 ± 0.77 0.59 

   LDL-C, mmol/L 2.14 ± 0.86 2.43 ± 0.76 0.65 

   HDL-C, mmol/L 1.20 ± 0.17 1.00 ± 0.17 0.10 

   Triglycerides, mmol/L 1.12 ± 0.48 2.33 ± 1.29 0.07 

Habitual physical activity    

   Inactive, h/day 19.2 ± 1.7  18.3 ± 1.4 0.40 

   Light, h/day 3.8 ± 1.1 5.1 ± 1.3 0.13 

   Moderate, h/day 0.73 ± 0.50 0.48 ± 0.28 0.39 

   Vigorous, h/day 0.20 (0.25) 0.05 (0.33) 0.35 

 
Values are means ± SD for variables that were normally distributed and median with interquartile range 
in parentheses for variables which showed significant skewness and were not normally distributed in one 
or both groups. n, no. of participants. Some variables have missing values, and the sample sizes are as 
follows: fat layer vastus lateralis (VL), n = 7 [nondiabetic control (ND)] and 8 [type 2 diabetes (T2D)]; 
glycosylated haemoglobin (HbA1c), n = 4 (ND) and 7 (T2D); fasting plasma glucose (FPG), n = 6 (ND) 
and 6 (T2D); total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), and triglycerides, n = 6 (ND) and 5 (T2D); habitual physical activity, n = 6 (ND) 
and 4 (T2D). BMI, body mass index; VL, vastus lateralis. *Significantly different from T2D (P < 0.05). 
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Table 2. Dynamic response characteristics of oxygen uptake (V̇O2) during moderate-intensity and high-intensity 

cycling exercise of the work-to-work transitions 

 

 Unprimed Primed 
 Controls Type 2 diabetes Controls Type 2 diabetes 

N 9 9 9 9 

Moderate-intensity      

Baseline V̇O2, L/min  0.77 ± 0.13 0.89 ± 0.27 0.82 ±.11 0.90 ± 0.23 

V̇O2 Ap, L/min 0.82 ± 0.44 0.50 ± 0.21 0.85 ± 0.51 0.51 ± 0.19 

V̇O2 τp, s  34.6 ± 7.3† 43.8 ± 11.2 25.6 ± 7.7†*                  33.2 ± 11.5* 

CI95 V̇O2 τp, s 4.4 ± 2.1 5.1 ± 1.9 4.0 ± 1.2 4.7 ± 0.8 

V̇O2 end A, L/min 1.64 ± 0.54 1.44 ± 0.39 1.73 ± 0.65 1.43 ± 0.33 

V̇O2 Gp mL.min-1.W-1  9.6 ± 1.7 9.4 ± 2.5 9.3 ± 2.3 9.5 ± 2.3 

High-intensity  5.1 ± 1.9 5.1 ± 1.9 5.1 ± 1.9 5.1 ± 1.9 

Baseline V̇O2, L/min  1.64 ± 0.54 1.44 ± 0.39 1.73 ± 0.65 1.43 ± 0.33 

V̇O2 Ap, L/min  0.53 ± 0.15† 0.33 ± 0.12 0.55 ± 0.15†* 0.40 ± 0.16* 

V̇O2 τp, s  43.6 ± 9.8† 58.6 ± 16.6 37.7 ± 6.9 37.2 ± 19.9* 

CI95 V̇O2 τp, s 8.8 ± 2.4 8.7 ± 2.9 9.0 ± 1.9 8.0 ± 2.8 

V̇O2 As, L/min 0.21 ± 0.13 0.16 ± 0.09 0.13 ± 0.09* 0.11 ± 0.04* 

V̇O2 As, % 27.5 ± 10.3 32.7 ± 11.0 18.5 ± 10.6* 22.5 ± 7.5* 

V̇O2 TDs, s 127 ± 47 119 ± 7 129 ± 50 106 ± 43 

V̇O2 end A, L/min 2.37 ± 0.61 1.93 ± 0.50 2.41 ± 0.66  1.95 ± 0.50 

V̇O2 MRT, s 73 ± 15† 94 ± 31 57 ± 17* 59 ± 22* 

CI95 V̇O2 MRT, s 7.4 ± 2.3 7.9 ± 1.4 7.1 ± 2.1 7.1 ± 2.5 
End-exercise V̇O2 gain, 
mL.min-1.W-1 11.2 ± 1.6 10.3 ± 1.7 11.0 ± 1.9 10.2 ± 1.7 

Values are means ± SD; n = no. of participants. A, amplitude; τ, time constant; end A, steady-state oxygen uptake 

(V̇O2) response; CI95 95% confidence interval; G, oxygen uptake (V̇O2) gain; TD, time delay; p, primary phase; s 

slow component phase.  

* P < 0.05 vs. unprimed within same diabetes status group (i.e. within controls or within Type 2 diabetes). † P < 

0.05 vs. participants with type 2 diabetes within same condition (i.e. within unprimed or primed). 
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Table 3 Dynamic response characteristics of Δ[HHb+Mb] during moderate-intensity and high-intensity cycling 

exercise of the work-to-work transitions 

 

 Unprimed Primed 
 Controls Type 2 diabetes Controls Type 2 diabetes 

n 9 9 9 9 

Moderate-intensity      

Δ[HHb+Mb] A, μM*cm  77.1 ± 74.7 101.4 ± 87.4 77.5 ± 72.7 110.4 ± 77.9 

Δ[HHb+Mb] τ', s 29.4 ± 10.4 31.5 ± 4.8 30.7 ± 6.9 32.7 ± 5.8 

Baseline TOI, % 75.4 ± 4.6 69.5 ± 4.5 79.0 ± 5.4* 72.9 ± 4.6* 

TOI A, %  2.2 ± 4.7 4.1.8 ± 3.9 3.1 ± 4.8* 6.4 ± 5.1* 

High-intensity      

Δ[HHb+Mb] Ap, μM*cm  34.4 ± 35.7  41.6 ± 24.6 31.4 ± 34.3* 29.9 ± 12.1* 

Δ[HHb+Mb] τ', s 31.0 ± 20.5 31.8 ± 17.2 29.1 ±11.3 29.1 ± 7.2 

Δ[HHb+Mb] As, μM*cm 11.7 ± 14.4 6.4 ± 3.7 5.2 ± 6.8 4.5 ± 5.7 

Baseline TOI, % 73.3 ± 8.2 65.7 ± 5.9 76.0 ± 9.0* 66.6 ± 7.3* 

TOI A, %  2.4 ± 1.9 3.5 ± 1.9 2.4 ± 1.1 2.5 ± 0.7 
 

Values are means ± SD; n = no. of participants. A, amplitude; τ, time constant; p, primary phase; s slow component 

phase; τ’, effective response time (τ + TD); TOI, tissue oxygenation index; [HHb+Mb], deoxygenated 

haemoglobin and myoglobin concentration. 

* P < 0.05 vs. unprimed within same diabetes status group (i.e. within controls or within Type 2 diabetes).  
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