
Efficient GPU Usage for Rendering of Volume Data

by

David Ganter, B.A. MCS

Ph.D Thesis

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Doctor of Philosophy in Computer Science

University of Dublin, Trinity College

August 2020

Declaration

I, the undersigned, declare that this work has not previously been submitted

as an exercise for a degree at this, or any other University, and that unless otherwise

stated, is my own work.

David Ganter

August 27, 2020

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

thesis upon request.

David Ganter

August 27, 2020

Acknowledgments

I would like to begin by thank my supervisor, Michael Manzke, for all his guidance

throughout this Ph.D. Without his invaluable input, feedback, and direction this may

never have been finished. To my parents, Martin and Eileen who have given me all

the support that I could ever have needed, and to whom I will forever be grateful.

To all those in GV2 whose insights, talks, and discussions have been invaluable. To

Emma, who has has encouraged my growing caffeine addiction whilst simultaneously

hearing about all the failed ideas and experiments. Deepest thanks to Mairéad, who

warned me in advance of the trials and tribulations of Ph.Ds, but still put up with all

the vents and rants regardless, and has always been excellent lunch company. To Ian,

Dave, Matt, Mel, and Ray, who provided five kilos of chocolate to help me through my

final months, and provided all the “Are you not finished that Ph.D yet?” motivation

a friend could ever ask for. Finally, and most importantly, to Bróna, without whom I

could never have made this journey, who has been utterly supportive in everything I

have done regardless of outcome, who has been through every single high point with

me and pulled me out of every low. To you, I cannot ever show enough gratitude for

everything that you have done for me over the last 5 years and more.

David Ganter

iv

University of Dublin, Trinity College
August 2020

v

Efficient GPU Usage for Rendering of Volume Data

Publication No.

David Ganter, Ph.D

University of Dublin, Trinity College, 2020

Supervisor: Dr. Michael Manzke

Visualising medical images or scientific data that can be shown in 3D poses some

interesting challenges. This thesis investigates two distinct areas of Direct Volume

Rendering (DVR); time-varying datasets on emerging light-field displays, and acceler-

ation data-structures for large, static datasets. Firstly, a novel method to efficiently

display volume data that changes over time (time-varying) on emerging display tech-

nologies is shown to improve upon traditional techniques in the field. The second main

focus is acceleration data-structures in the context of volume rendering. The attention

is on how particular acceleration data-structures are used in current DVR approaches

and why Bounding Volume Hierarchies (BVHs) haven’t been the method of choice

for large-scale volume rendering. This thesis provides an insightful look at how new

hardware implementations in consumer products impact on DVR, and how this may

vi

change the adoption of BVHs in this area. Results show that BVHs coupled with a

pre-clustering step are a viable alternative to standard octree Empty-Space-Skipping

(ESS) techniques.

vii

Contents

Acknowledgments iv

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1
1.1 Investigating the GPU Memory Hierarchy 2
1.2 View Dependent Scheduling for DVR 2
1.3 Light-field DVR for Time-Varying Volumes on GPU 3
1.4 Acceleration Data-structures and DVR 5
1.5 Research Questions . 7
1.6 Contributions . 8
1.7 Summary of Chapters . 8
1.8 Publications . 10

Chapter 2 Background & Related Work 12
2.1 Volume Rendering . 12

2.1.1 Volume Light-Transport Integral 14
2.1.2 Volume Ray-Casting . 15
2.1.3 Object Order & Image Order 18
2.1.4 Time Varying Volume Data . 21
2.1.5 Alternative Representations & Rendering Methods 22

2.2 Graphics Hardware . 23

viii

2.2.1 Parallelism . 24
2.2.2 Fixed Function vs. General Purpose 25
2.2.3 Benchmarking . 26
2.2.4 Memory Efficiency . 27
2.2.5 Out-of-Core Rendering . 30
2.2.6 Acceleration Data Structures 34
2.2.7 Volume Rendering Hardware . 38

2.3 Light-Fields . 38
2.3.1 Light-Field Capturing . 39
2.3.2 Light-Field Displays . 40
2.3.3 Light-Field Volume Rendering 44

2.4 Motivations . 48

Chapter 3 Performance Evaluation of GPU Memory Components 51
3.1 Goals . 51
3.2 Background & Related Work Recap . 52
3.3 2D Texture Patterns . 53

3.3.1 Methodology . 53
3.3.2 Results . 54

3.4 Exact Latencies . 55
3.4.1 Methodology . 57
3.4.2 Results . 58

3.5 3D Textures and Sampling . 58
3.5.1 Methodology . 59
3.5.2 Results . 59

3.6 Conclusions . 61

Chapter 4 View Dependent Scheduling & Load Balancing 62
4.1 Goals . 62
4.2 Background & Related Work Recap . 63
4.3 View Dependent Scheduling & Load Balancing 64

4.3.1 Brick Determination . 64
4.3.2 Empty Space Skipping . 67

ix

4.3.3 Brick Compositing . 67
4.4 Implementation & Results . 68

4.4.1 Implementation . 68
4.4.2 Memory Bandwidth . 69
4.4.3 Overhead . 70

4.5 Conclusion . 70

Chapter 5 Light Field Volume Rendering 72
5.1 Goals . 72
5.2 Background & Related Work Recap . 74
5.3 Pipelined Brick-Based Light-Field DVR 78
5.4 Implementation & Evaluation . 83
5.5 Conclusion . 90

Chapter 6 BVH Direct Volume Rendering on GPU 91
6.1 Goals . 91
6.2 Background & Related Work Recap . 92

6.2.1 Nvidia OptiX & RTX . 93
6.3 Evaluation of BVHs for DVR on GPU 94
6.4 Region Clustering for BVH . 95
6.5 Implementation . 98

6.5.1 Occupancy Information & OptiX 99
6.5.2 Clustering . 99
6.5.3 Brick Pool, Page Table & Sampling 100

6.6 Results & Evaluation . 100
6.6.1 Datasets . 102
6.6.2 Clustering . 103
6.6.3 BVH Build Times . 107
6.6.4 BVH Traversal Costs . 109
6.6.5 With & Without RTX . 110
6.6.6 Render Times . 111

6.7 Conclusions & Future Work . 112

Chapter 7 Conclusions and Future Work 114

x

Appendices 117

Appendix A DVR Sampling Visualisation Tool 118

Appendix B Datasets 121

Bibliography 127

xi

List of Tables

3.1 Comparison between Intel Xeon E5-1620 v3 and Nvidia Quadro K2200. 52
3.2 Latency times of 3D texture lookups. 58

4.1 Memory bandwidth comparison between standard and bricked single-
view ray-casting. 69

6.1 Statistics on varying brick sizes for empty-space skipping information . 106

xii

List of Figures

1.1 Volume rendering examples . 3
1.2 Light-field volume rendering of the supernova dataset 4
1.3 Image of the Looking-glass display . 5
1.4 Visualisation of brick leaf-node complexity for flower dataset 6

2.1 Examples of volume rendering applications. 13
2.2 Accumulation of colour and opacity while sampling a ray through a

volume. 15
2.3 Example of adaptive sampling. 17
2.4 Splitting the ray-integral into segments. 19
2.5 Comparison of the SMMs between Nvidia’s Maxwell and Turing archi-

tectures. 24
2.6 Nvidia’s Maxwell architexture . 27
2.7 Nvidia’s Turing architexture . 28
2.8 Virtual volume with page table and brick pool 32
2.9 Example of an octree for empty-space-skipping acceleration. 34
2.10 Example of a bounding volume hierarchy. 35
2.11 Overview of the ESS method used by Sparseleap. 36
2.12 Light-field two-plane parametrisation and matric of view representation 39
2.13 Vergence-Accommodation Conflict . 42
2.14 Using lens array displays to solve the vergence-accommodation problem 43

3.1 Overview of the memory cache hierarchy in the used Nvidia Quadro K2200 52
3.2 Texel lookup latency for a 10242 texture on a K2200 55
3.3 Texel lookup latency for a non-power-of-two texture on K2200 56

xiii

3.4 Latencies for each layer of a 3D texture on K2200 60

4.1 Memory overhead of ghost voxel padding with reducing brick size . . . 65
4.2 Overlapping processes as part of the rendering pipeline on both the CPU

and GPU. 65
4.3 Flow of single view view-dependant algorithm 67
4.4 Data flow of single view view-dependant algorithm. 68
4.5 Screen-tile based compositing order. 69

5.1 16x16 light-field rendering of Supernova dataset 76
5.2 16x16 light-field of cardiac dataset and a refocussing example using the

light-field . 77
5.3 Overview of proposed light-field DVR pipeline 78
5.4 Light-field DVR sub-buffer minimisation strategy 82
5.5 Bit-mask transfer function testing of bricks 82
5.6 Render times for light-field DVR method with varying view counts and

brick sizes on K2200 . 87
5.7 Render times for light-field DVR method with varying view counts and

brick sizes on GTX 1080 . 87
5.8 Individual pipeline times of proposed light-field DVR approach on GTX

1080 . 88
5.9 Comparison of render times for ESS DVR and proposed light-field DVR 89

6.1 Simplified 2D explanation of leaf clustering approach. 95
6.2 Visual description of the 3DSAT clustering method. 98
6.3 Flower dataset examples showing varying ERT. 101
6.4 Leaf traversal depth complexity in flower dataset 103
6.5 Leaf traversal depth complexity in supernova dataset 104
6.6 Comparison between clustering and no clustering in presented approach. 108
6.7 Broken-down times of stages for Sparseleap and presented approach for

varying sub-divisions . 108
6.8 Render times with sampling on and off to evaluation impact of BVH

traversal. 109
6.9 BVH traversal times with RTX on and off for flower dataset. 110

xiv

6.10 Render time comparison between Sparseleap and presented approach for
BVH ESS . 111

A.1 Memory Access Visualisation tool showing a portion of sampled voxels 119
A.2 Memory Access Visualisation tool showing a portion of unsampled voxels 120

B.1 Supernova Dataset . 122
B.2 Subclavia Dataset . 123
B.3 UZH flower µ-CT dataset . 124
B.4 UZH beechnut µ-CT dataset . 125
B.5 Smoke simulation dataset . 126

xv

Acronyms

AABB Axis-Aligned Bounding Box. xv, 84, 91, 93, 99, 107, 108, 110

AMR Adaptive Mesh Refinement. xv

AR Augmented Reality. xv, 3

BVH Bounding Volume Hierarchy. vi, vii, xv, 1, 5, 6, 8, 26, 63, 91–96, 98–100, 102,
103, 107–113

CFD Computational Fluid Dynamics. xv, 14, 21, 22

CGI Computer Generated Imagary. xv, 14

CNN Convolutional Neural Network. xv, 48

CPU Central Processing Unit. xv, 1, 2, 4, 23, 24

DVR Direct Volume Rendering. vi, xiv, xv, 1, 2, 4–6, 8, 9, 12, 14, 15, 17, 18, 21–23,
26, 37, 44, 46, 63, 67, 91–96, 98–100, 102, 103, 107, 109, 111, 112, 118, 121

ERT Early-Ray-Termination. xv, 19, 75, 103, 109, 111, 120

ESS Empty-Space-Skipping. vii, xv, 1, 5, 26, 30, 33, 67, 79, 84, 91, 93, 96, 97, 100,
109, 110, 112, 123

FPGA Field-Programmable Gate Array. xv, 38

GPU Graphics Processing Unit. xv, 1, 2, 4, 5, 23, 24

xvi

H3DDDA Hierarchical 3D Differential Analyser. xv, 33

HMD Head-Mounted Display. xv, 3, 38, 40, 41, 44

HVS Human Visual System. xv, 41, 42

IBR Image-Based Rendering. xv, 48

LOD Level-of-Detail. xv, 17, 93

SAH Surface-Area Heuristic. xv, 26

SMM Streaming Multi-Processor. xv, 24

VAC Vergence-Accommodation Conflict. xv, 42, 43

VR Virtual Reality. xv, 3

xvii

Chapter 1

Introduction

Visualising medical images or scientific data that can be shown in 3D provides some
interesting challenges. This main two works of this thesis investigate two distinct
areas of DVR; time-varying datasets on emerging light-field displays, and acceleration
data-structures for large, static datasets. Firstly, a novel method to efficiently display
volume data that changes over time (time-varying) on emerging display technologies
is shown. The results show that this method improves upon traditional techniques in
the field [1, 2, 3]. The second major area this thesis investigates is acceleration data-
structures in the ever-expanding large static datasets domain, with focus on single
computer systems. The attention is on how particular acceleration data-structures are
used in current DVR approaches and why specifically BVHs haven’t been the method of
choice for large-scale volume rendering. Since the focus is on simple Central Processing
Unit (CPU) and Graphics Processing Unit (GPU) systems rather than clusters, this
thesis therefore also provides an insightful look at how new hardware implementations
in commodity products impacts on DVR, and how this may change the adoption of
BVHs in this area. It further shows that BVHs are a viable alternative to standard
octree ESS techniques [4, 5, 6], especially when coupled with a pre-clustering step.

Although these are the main aspects of this thesis, this work also includes vital
investigations that are fundamental principles upon which the main topics build upon.
A more in-depth explanation of the core concepts to further outline gaps in the litera-
ture will be presented in the following chapter. For now, the remainder of this chapter
briefly introduces each of the topics of work that this thesis presents in the hope that

1

the reader is given an understanding of the justification to these individual modules.

1.1 Investigating the GPU Memory Hierarchy

The entirety of work in this thesis focuses on improving rendering performance for
volumetric data on commodity CPU and GPU systems. To effectively utilise this
underlying platform the thesis begins by examining the effect of regular-grid, structured
data on the GPU memory hierarchy. This data is representative of the types of scenarios
presented when rendering volume datasets. Benchmarking this is important to give an
understanding of how the GPU reacts to different volumetric data types and sizes.
Furthermore, it informs decisions on the ever important sampling patterns exhibited
by DVR.

The results show that the opaque storage — storage for which the exact layout
is undocumented for commercial reasons — for 3D textures is not quite as simple or
straight-forward as one might imagine. There are clear indications of transposed mem-
ory to suit spatio-temporal coherence in 3D texture sampling. These are fundamental
principles which are then exploited in following work. Observations are also made that
deviation from these principles can result in substantial performance penalties. This
retroactively reinforced the requirement for this investigation.

1.2 View Dependent Scheduling for DVR

The findings of the GPU memory hierarchy investigations are then utilised to formu-
late a method to accelerate the rendering of dense grid volumetric data by scheduling
appropriate regions of the grid to be utilised efficiently. When studying the results of
3D texture sampling, it becomes clear that efficiently sampling the L2-cache should be
a priority for DVR. Thus the shared L2-cache on the GPU was targeted as a source of
coherent memory access when sampling the volume. Scheduling L2-cache-sized regions
of volume data to be rendered therefore seems like an obvious optimization that could
be made. The results — while both positive and negative — were enlightening. Mem-
ory performance statistics were considered to be quite good, however the scheduling
unfortunately comes at a considerable cost. This meant that the overall render per-

2

Figure 1.1: Examples of volume rendering in different domains.

formance of this method were not satisfactory when applied in this scenario. These
results and drawbacks expanded upon in chapter 4. This particular work should be
more seen as groundwork for following evaluations. Since the memory performance was
improved, these methods were then extended to multi-view rendering which exhibits a
more random access pattern.

1.3 Light-field DVR for Time-Varying Volumes on
GPU

Most volume rendering techniques have been focused on single-view, 2D displays but
other emerging technologies should also be considered. For example 3D displays and
Virtual Reality (VR) / Augmented Reality (AR) Head-Mounted Displays (HMDs) have
had huge advances in recent years, becoming more high-fidelity or more responsive in
the case of HMDs. There are of course many advantages to come from these displays.
For example, when using auto-stereoscopic or light-field displays [7, 8, 9, 10], the ad-
ditional views can provide users with considerably more perceptual information from
parallax [11, 12]. Recent emerging light-field display technologies — like the Looking
Glass [7] as shown in figure 1.3 — are making these kind of displays more consumer

3

Figure 1.2: Example of a light-field volume render using a 162 angular resolution of
the supernova dataset.

ready. Since a simple discretised light-field can be represented as a 2D planar grid of
camera angles, it can then be considered as a multi-view render target.

These displays generally need to be provided with multiple views at some stage
in the pipeline. These views of the same scene are offset from each other in specific
ways effectively generating a discretised light-field. For DVR this means rendering the
volume not only twice but many times from unique view points, requiring the volume
to be traversed in a potentially wasteful manner with regards to the physical memory
hierarchy of the CPU or GPU, or indeed both. Unfortunately, the current literature in
this area — especially for using relatively low-cost consumer hardware and setups —
are extremely lacking.

A core theme of this thesis focuses on the efficient scheduling on time-varying
volume data with the intent of targeting on light-field displays. Following on from
the previous evaluations, this is achieved by sub-dividing the volume, determining the
‘active’ regions with respect to the transfer function and creating an over-arching render

4

Figure 1.3: Image of the LookingGlass [7], a horizontal light-field display aimed at
consumers. Parallax that is clearly visible between the left and right images, as a user
moves their head through the horizontal range of projection.

order list. Since light-field synthesis is effectively multi-view rendering, these volume
sub-divisions must be rendered to all views. The render order of sub-divisions may not
necessarily be the same for all views.

The key result of this work is a method to accommodate the partial out-of-
order rendering required to schedule sub-divisions efficiently on the GPU. This method
demonstrates significant improvements over traditional time-varying DVR techniques
which were not designed for multi-view rendering are shown. An in-depth explanation
of this work and its results are presented in chapter 5.

1.4 Acceleration Data-structures and DVR

As a reminder, the overall theme for this thesis is performance of DVR on commod-
ity hardware. It then goes without saying that when a new piece of technology gets
implemented into a new line of consumer available graphics cards — and when this tech-
nology could possibly be beneficial to DVR — an evaluation must then be performed.
ESS for DVR has been a topic of much research. Regular spatially sub-dividing meth-
ods like octrees are a common choice for GPU as they can be easily constructed and
traversed, and can support trivially sub-sampled regions of volume that do not need to
be densely sampled due to its content or distance from the camera. In contrast BVHs

5

Figure 1.4: Cut-away example showing the heat-map of the leaf-node complexity for a
particular data-set with a particular transfer function.

are slightly more complex to traverse and require extra work to support sub-sampled
regions. However, BVHs have been the topic of much research in the graphics industry
due to their effectiveness as a spatial acceleration data-structure for surface geometry,
leading to their prevalence in surface path-tracing. As such, BVH logic has begun to
be integrated into graphics hardware, beginning with Nvidia’s RTX [13] line of GPUs.
Therefore, a re-invigorated evaluation of BVHs in the context of DVR is required. The
results show that BVHs are indeed a viable approach to interactive volume exploration
with real-time transfer function editing.

One major difference between building acceleration data-structures for surface
represented models like meshes and structured volumetric data is the regularity of leaf-
nodes. To be more concise, a BVH suits polygon data due to the potentially arbitrary
positioning of polygons in space. In contrast, sub-dividing a volume results in many
leaf nodes which are adjacent to each other. It then follows that — if a large group
of leaf nodes are present and determined to be active by the current transfer function
— clustering groups of leaf nodes can be beneficial to BVH DVR by reducing tree and
leaf-node complexity. As such, a method is presented to further increase the render
performance of volumes that exhibit highly cluster-able regions of sub-division leaves.
It is shown that cluster leaf-node complexity can be reduced to anywhere between
60% and 5%, although this massively depends on the particular volume and transfer
function. The results of these evaluations are shown in chapter 6.

6

1.5 Research Questions

The scientific, medical and industrial uses of volume rendering have been previously
described. It should be clear that, certainly in some of these applications, time-varying
or real-time volumetric data is required to be rendered. It should also be understood
that the render targets include auto-stereoscopic, multi-view or light-field displays for
their advantages in perceptual information and visual comfort. Combining all of these
factors creates a problem that is quite computationally complex and exhaustive on
memory systems. It is clear that the memory hierarchy plays a major role in volume
rendering, both in terms of source-to-host stages and GPU memory hierarchy. With
this in mind, the initial research question of this thesis is as follows:

What ways can view-dependent information be exploited to efficiently
schedule volume data for rendering?

In this work, this research question is applied not only to single-view volume
rendering, but for multi-view volume rendering in the form of light-fields, where view-
dependent scheduling is shown to have a major impact on rendering performance.

As with all long-term projects, over the course of a piece of research technol-
ogy changes and new features are brought into the consumer domain. One of the most
significant changes that emerged during this thesis was fixed-function ray-tracing hard-
ware in consumer GPUs, specifically targeting BVHs. BVHs had been experimented
with on CPUs for volume rendering, but the literature for using these data-structures
on GPU was virtually non-existent. Therefore, it seemed logical to add another re-
search question during the course of this work:

Are Bounding Volume Hierarchies a viable alternative to other accel-
eration data-structures to use with empty-space-skipping for volume
rendering?

7

1.6 Contributions

The contributions of this thesis can be summarised as follows: Evaluations of the
GPU memory hierarchy with special attention to texture accesses in the context of 3D
textures is presented. These evaluations shed some light on the underlying memory
organisation used in the used GPU architectures and highlight the importance of ad-
hering to optimised L2 cache coherency for volume rendering. Using this knowledge, a
data-scheduling method is devised for single-view volume rendering that aims to make
use of the fact that both the CPU and GPU can run in parallel and as such can be
pipelined with the CPU doing the scheduling work. The evaluation of this approach
showed sub-optimal results, showing a burden of overhead due to scheduling informa-
tion on the GPU. However, taking this work and applying it to multiple-views could
amortize the cost of this overhead. Therefore a method that optimises data-scheduling
in DVR for light-field displays is presented and evaluated, showing considerable im-
provement over prior techniques.

Finally, during the course of this work new ray-tracing hardware became inte-
grated into consumer GPUs. This hardware allowed for accelerated traversal of BVHs,
a data-structure not commonly used in volume rendering. Therefore, an evaluation
of GPU BVH out-of-core DVR in comparison to current popular methods such as oc-
trees was warranted, with emphasis on render performance for static data volumes and
dynamic transfer-function updates. The results show that BVHs are indeed a viable
candidate for GPU based DVR, especially when clustering leaf nodes using a clustering
method.

1.7 Summary of Chapters

This chapter should hopefully have given the reader a basic understanding of the im-
portance of DVR — especially on consumer hardware – and the potential of light-
field technologies and their position relative to DVR. The core theme of this thesis is
maximising the efficiency of GPUs when rendering volumes. At this point the main
contributions should by now be evident but, of course, the justifications, experiments,
and the results need to be presented. The rest of this thesis is set out as follows:

• Chapter 2 (Indirectly Related) gives a detailed explanation of the back-

8

ground for this thesis, and a more in-depth analysis of related work with the aim
of pointing out areas in current research that needed to be addressed, justifying
the work in this thesis.

• Chapter 3 (BVH Adoption and Clustering for GPU DVR) evaluates the
memory hierarchy performance of the GPU and provides a platform upon which
much of this thesis’ work stands.

• Chapter 4 (Conclusions) presents an investigation into a view-dependent ap-
proach for scheduling volume regions for efficient use of the GPU memory hier-
archy.

• Chapter 5 (Conclusion) continues on from the work done in chapter 4 and
extends it to light-fields — the multiple view-point rendering of volumes in a
single pass.

• Chapter 6 (Conclusion) takes a detour from focusing on the memory hierarchy
as an optimisation target and instead looks at using new GPU hardware for
acceleration data structures to speed up empty-space-skipping during DVR.

• Chapter 7 (Conclusions & Future Work) finally summarises the main body
of this thesis and draws conclusions from the results. The work in this thesis is
by no means the stopping point for DVR research, and as such potential future
work paths are outlined in this chapter.

The chapters in this thesis are using these key areas to build platforms upon
which consecutive chapters can build. The author feels that structuring the work in this
packaged way allows the reader to understand the flow of research over the duration
of this thesis. In addition to these chapters, the following appendices are provided to
give additional background and detail omitted from the main work for sake of brevity
and being concise:

• Appendix A (Summary) As part of investigatory work in this thesis, a tool was
made to visualise the sampling characteristics of DVR. Being able to visualise
this information provided valuable information when formulating work in the
data-structure domain. This appendix provides information about this tool.

9

• Appendix B (Summary) provides information about the datasets used and
from where they were obtained.

1.8 Publications

This thesis resulted in publications that are directly related to the research performed,
but also produced methods and algorithms that were used in additional indirectly
related works.

Directly Related

The following is a list of publications that were produced by the author during the
course of this thesis.

• Ganter D., Alain M., Hardman D., Smolic A., Manzke M.: Light-Field DVR on
GPU for Streaming Time-Varying Data. In Pacific Graphics 2018 Short Papers
(Hong Kong, 2018), The Eurographics Association [14]

• Ganter D., Manzke M.: An Analysis of Region Clustered BVH Volume Ren-
dering on GPU. Proceedings of High Performance Graphics 2019 (Strasbourg,
2019) ,The Eurographics Association, and published in Computer Graphics Fo-
rum special issue [15, 16]

Indirectly Related

The indirectly related publications were produced with elements from this thesis’ re-
search — specifically, the work performed in chapter 5 (Conclusion) was then used as
a platform for rendering datasets used in the following publications.

• Bruton S., Ganter D., Manzke M.: Fast Approximate Light Field Volume Ren-
dering: Using Volume Data to Improve Light Field Synthesis via Convolutional
Neural Networks. Pending approval in Springer Book of IVAPP 2019, Springer

• Martin S., Bruton S., Ganter D., Manzke M.: Synthesising Light Field Volume
Visualisations Using Image Warping in Real-Time. Pending approval in Springer
Book of GRAPP 2019, Springer

10

• Bruton S., Ganter D., Manzke M.: Synthesising Light Field Volumetric Visu-
alizations in Real-time Using a Compressed Volume Representation. In Proceed-
ings of the 14th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications - Volume 3: IVAPP (Prague,
2019), INSTICC [17]

• Martin S., Bruton S., Ganter D., Manzke M.: Using a Depth Heuristic for
Light Field Volume Rendering. In Proceedings of the 14th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 1: GRAPP (Prague, 2019), INSTICC [18]

11

Chapter 2

Background & Related Work

In this chapter the necessary background is presented on concepts used in this thesis.
This should give the reader a broad comprehension on the underlying fundamentals
which are used not only by this work, but by related works. The cornerstone topics
are DVR, GPUs, acceleration data-structures and light-fields. A brief introduction is
given to each of these areas. This background contains an in-depth survey of the work
relating to this thesis. This is followed by a summary of the aforementioned background
work, and the motivations and rationales for chapters in this thesis.

2.1 Volume Rendering

DVR is a computer graphics method that can be used for visualising three dimensional
regular grids of scalar data with applications ranging from scientific simulation, games,
and medical analysis. Anything that can calculated, simulated or sampled which can
be discretised and represented by a scalar value can be stored and displayed using
volumetric data.

In the medical domain, for example, 3D-MRI machines can capture the density
of a region of space and transform this into data that can be stored as a 3D grid of
numbers. These density values coupled with a function to transform data into colour
— known as a transfer function — can then be displayed to a medical practitioner or
patient.

Scientific research also has provided an important application for volume ren-

12

Figure 2.1: Examples of volume rendering applications. Top-left: Fluid simulation of
smoke being introduced into a volume. Top-right: 3D MRI of a subclavia. Bottom:
The same dataset shown in the top-left but applied to a mixed-media scene using global
illumination (shadows).

13

dering. Computational Fluid Dynamics (CFD) simulations allow researchers and en-
gineers to understand the complexity of fluid mechanics in a myriad of scenarios, quite
a large proportion of which are discretised as volumetric data at some point. Due to
the intricate nature of these simulations, the resulting data can theoretically be mas-
sive dimensionally, or perhaps contain multiple channels of data representing different
phenomena.

The entertainment industry too make use of volumetric data. Examples of this
can be seen in almost any Computer Generated Imagary (CGI) scene that contains
clouds, smoke, or liquids. Although surface approximations are inherently smaller and
potentially faster to render, volumetric representations can give a much higher degree
of realism; for example the forward and backward scattering of light through clouds,
and the varying intensity of shadows they create. This application — while it falls
under the umbrella of volume rendering — is more focused on the accurate simulation
of multiple scattering light transport. As interesting and complex as this topic is, it
is not the main focus of this thesis, although it is worth noting that this field must
combat its own set of problems in addition to those of standard DVR.

Examples of all the above applications can be seen in figure 2.1. These only rep-
resent a handful of the almost endless possibilities for volumetric data and its rendering.
It is important to note that — while these applications all share the fundamental the-
oretical concept of a regular grid of scalar data — the true implementations of data
storage and methods of rendering can vary substantially, and this often results in an
inverse relationship between the level of interaction achievable to the complexity of the
rendering — be that in terms of data size or illumination for example.

2.1.1 Volume Light-Transport Integral

Like the basis for almost all computer graphics techniques, DVR [19] describes the
interaction and propagation of light through the volume. Rendering this data can be
quite costly in terms of bandwidth, memory footprint and computational resources,
especially when the volumetric data is extended into the time domain for time-varying
data-sets on disk or real-time streaming data.

While multiple methods for volume rendering exists, they all share the same
fundamental principle of accumulation of light. As light is propagated through the

14

O
PA

C
IT

Y

RAY DEPTH

Figure 2.2: Accumulation of colour and opacity while sampling a ray through a vol-
ume. Notice that deeper into the ray, the accumulated colour isn’t as effected by the
sample colours because the accumulated opacity scales the contribution of the colour
compositing.

volume towards the eye or the camera, colour and opacity are accumulated. This can
be formally represented by the volume rendering integral listed in equation 2.1.

I(Dn) = I(Dn−1)T (Dn−1, Dn) +
∫ Dn

Dn−1
C(s)T (s,Dn) ds (2.1)

T (p1, p2) = e
−

∫ p2
p1

α(p) dp (2.2)

where α(p) represents the absorption coefficient and C(p) represents the colour
coefficient. This equation represents the irradiance at a point Dn, integrating along the
ray. In equations 2.1 and 2.2, the functions C(p) and α(p) represent the transformation
of a point in volume space p to colour and opacity respectively. These are jointly known
as the transfer function.

2.1.2 Volume Ray-Casting

The potentially most easy to understand and achieve implementation of volume ren-
dering is volume ray-casting. Throughout this work, when the term DVR is used, it
always refers to ray-casting through a volume unless otherwise specified. Looking back
at the volume rendering integral in 2.1, it is important to note that this is presented

15

as a continuous function, however in practice the ray’s are sampled at regular inter-
vals. The discretised version of the volume rendering integral can be represented as a
Riemann sum shown in equation 2.3.

I(Dn) = I(Dn−1)T (Dn−1, Dn) +
Dn∑
Dn−1

C(s)T (s,Dn)∆s (2.3)

In practice, a ray is sampled at regular intervals. In general, the sampling rate is
determined by the voxel spacing. Specifically a sampling rate of half the voxel spacing
prevents the aliasing of data along the ray. In the Riemann sum, this spacing is used
to determine that ∆s. To satisfy the Nyquist theorem, the sample rate could be set
to twice the density of the voxel grid. The value of these samples is a function of the
position in the volume, and different methods can be used. The most common method
uses trilinear interpolation, where eight neighbouring voxels are interpolated to give a
single scalar value. This scalar value is then transformed to a colour and opacity using
a transfer function. This is visualised in figure 2.2. Much like surface geometry alpha
blending [20], these samples are composited in either front-to-back or back-to-front
order. The compositing methods are outlined in equation 2.4 for compositing the color
value and equation 2.5 for alpha.

Cdst ← Cdst + (1− αdst)Csrc (2.4)

αdst ← αdst + (1− αdst)αsrc (2.5)

Equation 2.1 is presented as a continuous function, however the volume data used
in this thesis is generally not presented in such a form. Most of these data are discrete
3D grids of scalar values, generally with a fixed element data type. The resolution of
these discrete volumes varies greatly ranging anywhere from single digit dimensions
to grids potentially greater than 10243. The data type of the volume also plays an
integral part of rendering performance. For example, if each data point is represented
by a 64-bit floating point, the resolution allowed for transfer function manipulation
and the range of values represented is highly flexible, however the space required to
store the volume and the bandwidth needed to transfer the data may be prohibitive.
On the other hand, quantizing data to something small like a byte or a char drastically

16

High Density Sampling

Medium Density Sampling

Low Density Sampling

Figure 2.3: Example of adaptive sampling in a volume that has varying degrees of voxel
density. As the ray traverses through denser regions of the volume, the sample rate is
increased appropriately. The opposite is also true, where the sample rate is decreased
in less-dense regions, saving on memory lookups and accelerating rendering.

reduces the memory footprint of the volume, however the range of values visualisable
reduces accordingly.

It’s worth noting that up to this point, all of this discussion has been assuming
a constant voxel density across the entire volume. This is not always the case, and is
one of the major first steps in DVR optimisation. A prime example of this is almost
directly analogous to Level-of-Detail (LOD) meshes in polygonal rendering. A LOD
mesh is a lower fidelity proxy of a full-scale potentially high poly count model. These
are generally used when rendering objects further away in the scene. This concept can
also be applied to volume rendering, where the volume may have several down-sampled
resolutions, and the appropriate resolution is selected depending on how far the sample
is from the camera plane, and the sample rate can be adjusted. The same approach
can be used for regions of the volume that contain low-frequency data that don’t need
to be sampled as regularly, regardless of proximity to the camera. These methods are
known as adaptive sampling and are a common optimisation [21, 4, 2, 5] for DVR. A
visual description of adaptive sampling can be seen in figure 2.3.

Another analogy to this method is mipmapping for textures. Mipmapping also
tackles another issue in rendering to a discretised 2D plane — aliasing. Aliasing occurs
when textures are sampled at lower frequencies than the data it holds. The same is true

17

for volume data. When two rays from a perspective projection begin to diverge through
the volume, the space between the rays is not sampled, which means important data
may be missing from the final image. By using a down-sampled volume representation
for further regions of the volume, this aliasing effect can be reduced and important
data can be presented to the user [21].

2.1.3 Object Order & Image Order

An important feature of the volume rendering integral to note is the potential to
reduced into different ray segments. This allows us to perform out-of-order rendering
— specifically, this means integrating over several segments of the ray in parallel and
accumulating the result when finished. There is, however, a major caveat; these ray
segments must still be composited in the correct order. It then follows that the volume
may be considered as smaller sub-volumes, or bricks, and may be rendered individually
and composited later [22, 23, 24].

This can have significant advantages and outright suits a specific sub-set of
volume rendering; distributed DVR. When displaying massive datasets, it’s quite often
efficient to distribute the workload by dividing the volume into multiple ‘bricks’ and
load-balancing the rendering of these bricks across a cluster. Each node in the cluster
maintains its own version of the frame buffer, and using potentially advanced techniques
— expanded upon later — the individual frame buffers are composited in order to reach
a final, correct image.

On the smaller scale, it can also be advantageous to sub-divide and render
bricks in parallel, even if the whole volume fits neatly on the GPU. Although this
can be advantageous on the GPU as it forces all sampling to remain in the same
data, thus increasing spatio-temporal cache coherency, each brick is rendered its own
separate screen buffer ‘tile’. This of course can massively increase not only the memory
footprint of the rendering stage, but the complexity of compositing all the tiles to the
final image in the correct order. These individual buffers, or tiles, must be composited
in front-to-back or back-to-front order. This scheme is represented by the equations
2.4 and 2.5.

While rendering bricks out-of-order seems appealing, there are drawbacks that
should be noted from the outset. As mentioned previously, ray-segments must be

18

O
V
E
R

O
V
E
R

O
V
E
R

O
V
E
R

O
V
E
R

O
V
E
R

OVER

Figure 2.4: Splitting the ray-integral into segments which can be rendered out-of-order
and composited at a later stage in-order.

composited in order. This creates an ordered list of how the bricks must be com-
posited. If all bricks are rendered out-of-order, rays cannot take advantage of Early-
Ray-Termination (ERT), where the ray hits such an opacity level that any subsequent
samples will not contribute to the final image. This means there is a chance that a
brick will be rendered out-of-order while perhaps not even contributing to the final
image in the end. These drawbacks are covered in later sections.

Hsu [23] presented a sort-last algorithm where individual CPU cores are assigned
volume bricks and screen buffer regions. The rendering is performed in three phases:
Ray-gathering, integration and accumulation. In the first phase the rays which intersect
the brick are determined, storing this information in a buffer. Phase two integrates
over these rays using the standard volume rendering integral. The accumulated colour
and opacity values are sent to the core in which the ray’s pixel resides. The third and
final phase accumulates all of these ray-segment values to generate the final image.

Ma et al. [25] presented a sort-last method for volume rendering similar to
Hsu[23]. A kd-tree is used to divide the volume into bricks and distribute work. This
same tree is then used to allocate work for the compositing phase where sub-images
are divided and transferred to nodes in the system such that no node is left inactive

19

for the duration of the compositing phase. It is acknowledged that this compositing
allocation method requires a large amount of communication between nodes. They
also draw attention to the need for “data distribution heuristics” to equally distribute
workload.

Law and Yagel [24] presented a direct volume ray-casting algorithm variant
that stems from both image-order and object-order techniques. As with many other
methods their approach divides the volume into smaller bricks. Their aim is to use a
brick once and only once if possible. To accomplish this they use an “advancing ray
front” which creates a front-to-back list of bricks. A processor steps through all of its
ray segments for an individual brick before progressing to the next brick. Unlike Hsu’s
approach [23] they only need to keep one copy of the screen buffer as the ray segments
are inherently ordered front to back.

Palmer et al. [26] build upon the work of Hsu [23] and proposed a distributed,
load-balanced rendering solution using a sort-last method. They evaluate that the
transfer of buffer tiles is less expensive than that of volume bricks. At the start of run-
time, bricks are equally assigned to all nodes. Each brick is assigned a rendering cost
after each frame which is then use in subsequent frames to load-balance by assigning
relatively equal workloads across all nodes.

Samanta et al. [27] presented a polygonal rendering approach that is a hybrid
between sort-first and sort-last for a cluster of PCs, splitting the objects over the
clusters and then dividing the compositing work over the clusters.

Grimm et al. [28] presented a brick-addressing method that builds upon Law
and Yagel’s [24] advancing ray front algorithm. They evaluate the optimum size of
brick and find that bricks that fit into the L2 cache perform best. Their approach is
tailored for hyper-threaded processors such that when one logical thread is waiting for
data from the L2, the other may avail of the otherwise idle execution units. To this
extent a distinction can be drawn between this algorithm on CPU and on GPU where
32 threads will be performing in lock-step in parallel.

Mora et al. [29] used a fine-grained object-order rendering technique that takes
advantage of template shapes in orthographic projections. Each cell (group of voxels)
is projected to the screen using a template shape which, due to orthogonal projection,
all have the same projected outline. They note that it is a drawback of their approach
that they cannot perform perspective projection.

20

Hong et al. [30] presented an algorithm that streams bricks, or “cells”, of volume
data to the GPU while the GPU is simultaneously rendering other bricks. The bricks
are ordered front-to-back and “layers” are created so that bricks that do not overlap
in screen space are rendered in parallel, thus removing the need for a post ray-cast
compositing step. It should be noted that, in their algorithm, brick projection occurs on
the GPU after the data has been uploaded to device memory. This implies that bricks
that do not contribute to the final image due to being off-screen may be transferred
and therefore use bandwidth and computational resources. They make reference to the
fact that CPU perspective projection would be too costly and would make ray-casting
infeasible. They observe that bricks that posses the same Manhattan distance from
the source (entry) brick belong to the same visibility layer, and thus can be rendered
in parallel. The layers are generated using a propagation algorithm, starting with the
source brick and visiting the neighbour bricks. It is at this point that non-contributing
bricks are skipped.

Usher et al. [31] introduced the Distributed Frame Buffer, a framework to
allow in-situ visualisation across multiple distributed nodes, building on Wald et al’s
scientific visualisation framework, OSPRay [32]. This is a prime example of object-
order rendering in practice for visualising massive data-sets.

2.1.4 Time Varying Volume Data

Parts of this work study the effect of time-varying volume data [33] on DVR. This is
volumetric data that has multiple frames representing discrete time steps of the model.
This is especially useful, or even a requirement, in applications such as CFD simulations
or 4D ultrasounds, to name but two. These frames may come from a stored sequence
on disk, via network storage, or even from a real-time source such as medical scanning
devices or in-situ scientific simulations.

The added 4th dimension can add massive amounts of pressure to memory stor-
age or bandwidth systems. To transfer an entire frame of data every single time-step
can be needlessly wasteful unless absolutely required. For example, the supernova
dataset shown in figure 1.1 (right) has over 100 time-steps. In practice, only about
40% of the data contributes to the final image based on the current transfer function.
Determining updated regions of the volume and only transferring those that change is

21

a very simple optimisation that can be made, however there have been many investi-
gations to optimize this step even more by either using compression [34] or by allowing
the GPU to predict the change itself using temporal predictors [35]. Although this
work examines time-varying data as a source of frames, the fields of compression and
predictors to reduce transfer bandwidth are considered out of scope as they can be
seen as an extra layer to the rendering process.

Shekhar et al. [36] use a multi-planar approach to render streaming cardiac data
by bricking the volume data. Zhang et al. [37] present a system to visualise 4D cardiac
data and synchronise its animation to ECG signals, with the option of displaying on
stereoscopic devices. Their approach transfers the entire volume to the GPU rather
than a subset.

In some cases, not touched upon in this work, the data may also be multi-variate,
meaning there maybe multiple values for a given data point that represent different
things. For example, a CFD simulation may have distinction between velocity and
pressure values.

2.1.5 Alternative Representations & Rendering Methods

So far, this work has only discussed the use of regular grids of scalar values that
represent a volume. Is it important to note that these volumes are referred to as
‘dense grids’, and are not the only type of volumetric data that exists, although they
are the primary focus of this thesis. Unstructured tetrahedral grids are another type
of volume representation that exists that — while not as common — can be used in
scientific applications, and have been given attention recently in rendering performance
literature [38].

In terms of the actual rendering, all of the work in this thesis uses volume
ray-casting as the DVR method of choice, however it is useful to highlight that there
are other approaches that may be used to display or visualise volumetric data. Before
programmable shaders made it possible and accessible to implement ray marching loops
on GPU, slice-based rendering was a good choice to make use of the parallelism and
texture mapping hardware made available. In essence this approach sliced the volume
with discrete planes, which were rasterised and then used to re-sample the volume in
the fragment shader. While quite performant, these methods can show visual artefacts

22

in comparison to ray-casting DVR.

Isosurface rendering allowed the visualisation of specific scalar values by trans-
forming the volumetric data into surface representations, showing the boundaries of
volume intensities as a series of discrete shells. One such method to do this is march-
ing cubes. Isosurface rendering can show clear and defined entities in the volume, but
quite often visualising low frequency changes like varying temperature in a fire are
better represented using semi-transparent transfer-functions and DVR. In addition,
generating the isosurfaces can be a time-consuming task, a step which inhibits the
streaming of time-varying data.

2.2 Graphics Hardware

This work takes special interest in using hardware designed for use in computer graph-
ics; specifically GPUs. While CPUs are quite adept at complex logic they tend to lack
the same amount of parallelism as a GPU. For example, at the time of writing, one of
the main GPUs used in this work had 2,944 cores in comparison to the 8 cores avail-
able in the CPUs. These GPUs cores are geared towards highly parallelisable tasks —
specifically those that will perform the same sequence of operations in large groups.
When thought of as ray-marching through a volume sampling at regular intervals,
GPUs become an obvious target for parallelising this rendering work. The remainder
of this section discusses the advantages and disadvantages of the GPU at a relatively
high level so the reader may understand the reasoning behind certain decisions in this
work. The two main GPUs used over the duration of this work were the Nvidia Quadro
K2200 and the Nvidia RTX 2080, and as such both of these are used as examples of
GPU hardware when describing certain traits like core count and memory characteris-
tics. At a more broad level, this means the two graphics architectures explored in this
work are the Maxwell architecture (K22001) and the Turing architecture (RTX2080).

1Although the K2200 has the ‘K’ prefix, it was part of the Maxwell rather than Kepler architecture
unlike the rest of the Quadro ‘K’ series.

23

Figure 2.5: Comparison of the SMMs of Nvidia’s Maxwell architecture [39] (left) and
Turing architecture [13] (right).

2.2.1 Parallelism

The Quadro K2200 has 640 shader cores and the RTX 2080 has 2,944, which both
dramatically outnumber the CPU in terms of computational cores. However, this
most certainly does not mean that the GPU is a candidate to replace the CPU in all
aspects of work. As mentioned previously, the GPU is excellent at highly repetitive
parallelisable tasks, but when it comes to complex, highly branch-divergent code, the
CPU is likely a better candidate. This is a result of how the shader cores in these
Nvidia architectures are arranged and how they are controlled during execution.

Figure 2.5 shows what Nvidia calls the SMM of both the Maxwell and Turing
architectures. Key to understanding how execution occurs on these cores can be seen
in the way the individual cores are laid out. This is easier to see in the Maxwell SMM
on the left where there are clearly 4 sets of 32 cores, with each set being governed by
a warp scheduler. A warp is a group of 32 threads that operate in lockstep — i.e all

24

32 threads perform the same operation at the same time. It is possible for threads to
diverge due to some branch condition, in which case any threads that have diverged
from the rest of the warp are scheduled separately. This is an important consideration
when programming GPUs, and a core reason that CPUs can handle complex logic
better.

Parallelism on these architectures is also limited by register usage. Again, in
figure 2.5, each processing block of 32 cores — or 16 integer and 16 floating point cores
in the case of the Turing architecture — share a register file of 16,384 32-bit registers.
This limits the total amount of threads — and hence warps — that can reside in an
SMM at any one time. In general it is key to keep the register count of a GPU thread
low so as the scheduler can mask warp stalls due to events like memory latency with
another warp that is ready to execute its next instruction.

2.2.2 Fixed Function vs. General Purpose

As requirements of GPUs change over time, their underlying functionality adapts to
meet demands. When GPUs first became a popular consumer piece of hardware, they
were designed with triangular data in mind that took a set of three coordinates in
space, applied a transformation, rasterised them to 2D space, and applied shading and
texturing. All of this was done through fixed-function hardware which allowed for
faster execution of repetitive tasks. Over time the requirements of GPUs got broader,
and more programmability was in demand. To make a long story short, the GPU
evolved into an almost completely programmable many-core device, but retained some
fixed-function hardware for operations like texture reads and rasterisation. This pro-
grammability gave rise to the term General Purpose GPU (GPGPU) programming,
and the massively parallel capabilities made GPGPUs a good candidate for the em-
barrassingly parallel problem of DVR.

What is interesting about recent years is that there is a cyclic trend that is
bringing GPUs back to more dedicated hardware, and few more visible than ray-tracing
fixed-function units. Specifically, the RTCore introduced into the Nvidia Turing ar-
chitecture, that supplies ray-AABB intersection, ray-triangle intersection, and BVH
traversal hardware. This is as a result of a continuing paradigm shift from polygonal
screen-space tricks for real-time global illumination to more realistic light-transport

25

methods using real-time ray-tracing. This paradigm shift is very visible in recent lit-
erature that focuses on hardware support for BVH building [40] and ray-tracing [41].

To elaborate on these fixed-function hardware approaches, Doyle et al. [40]
presented one of the first BVH builders implemented in hardware that supported the
Surface-Area Heuristic (SAH) method. They showed that this fixed function approach
gave drastic improvements over pure CPU-based BVH building. This work was later
elaborated on to support BVH construction for mixed-media visualisation, including
volumetric data [42]. Lee et al. [41] proposed low-power fixed function hardware that
allowed low-power mobile GPUs to complete with desktop GPUs for ray-tracing. These
papers can be seen as the precursors to the dawn of fixed-function ray-tracing hardware
in modern GPUs, although it is worth noting that at the time of writing, it is unclear
if BVH building hardware is present in the Nvidia Turing architecture.

Considering that DVR — or more specifically volume ray-casting — can almost
be considered an extension of ray-tracing, this new hardware can be potentially be
utilised to accelerate the rendering process alongside massively parallel GPGPU meth-
ods. To be more direct, BVH hardware can be considered a target for ESS during
DVR. In this thesis, in chapter 6, BVHs are evaluated as an ESS contender on GPU
and show substantial benefits to be gained by using the RTCores.

2.2.3 Benchmarking

These advancements in GPU architecture are fantastic for the ever-evolving graphics
and compute market. However, because the hardware industry can be competitive,
companies such as Nvidia, Intel or AMD tend to be quite secretive with their designs
and underlying architectures. For example, in the previous section the presence of
certain hardware components is acknowledged — and L1 and L2 cache for example.
However, the actual operation and therefore — critically — performance characteris-
tics are hidden from the public. There has been some literature detailing how GPU
architectures may implement caches, such as Doggett in 2012 [43], but there is no guar-
antee that these still hold true. This sort of information can be absolutely critical when
designing applications and algorithms that are so heavily dependant on the memory
hierarchy, such as DVR.

While the ins-and-outs of these components are generally trade secrets, it is

26

Figure 2.6: Nvidia Maxwell (GM107) architecture [39].

possible in some cases to obtain just enough useful information about their performance
characteristics through methods like micro-benchmarking. Mei et al. [44] used this
approach to dissect the memory hierarchy by performing small, primitive operations
and empirically building upon these to discern the cycles — and the characteristics
by proxy — of caches and texturing hardware. This is a very low-level approach to
building a dictionary of operations to better understand the underlying hardware. In
the case of DVR a mix of low-level and more applied usage characteristics are required
to make informed decisions about memory layouts and spatio-temporal coherency.

2.2.4 Memory Efficiency

While the parallelism and hardware capabilities of GPUs seem like an ideal platform
for DVR, there are some limitations. The potentially first and foremost of these is the
memory hierarchy. When this work began, the memory resources of the GPU were a
fraction of host main memory — 4GB of VRAM vs 32GB of main RAM — and while
this is fine for smaller, static volumes, keeping hold of important data for larger or

27

Figure 2.7: Nvidia Turing (TU102) architecture [13].

28

time-varying data is a complicated task.
Even when a full static volume fits into VRAM, the rest of the memory hierarchy

must be taken into consideration. If DVR can be imagined as a wave-front of ray-
samples traversing through a volume, it follows then that samples are hitting a large
range of memory addresses. In figure 2.5 that shows the SMMs of the Maxwell and
Turing architecture, there is an L1 cache and a few texture units shared over the whole
SMM. Below that, shared by all SMMs in the two architectures is a larger L2 cache,
shown in figures 2.6 and 2.7. Even still, this L2 cache is only 2MB on Maxwell and
6MB on Turing. Coalescing memory accesses has always been considered as GPU
performance tuning 101, and this is no different when performing DVR.

Knittel [45] presented a complete volume rendering system that focuses on the
low-level arrangement of memory, paying particular attention to cache and page struc-
ture, while also making use of hand-optimised assembly and SIMD instructions. Knittel
employs a spread memory layout that uses parts of multiple pages to reduce the chance
of cache trashing and makes use of a cubic-interleaved ordering to keep cubic sets of
voxels in the same cache line, thus providing neighbouring sample points with low-
latency cache accesses. Knittel’s work is implemented and highly optimised for the
Intel Pentium-III processor and only makes use of graphics hardware when magnifying
the result image from 256x256 to 512x512 pixels. While Knittel’s work is useful for
single frame volumes, the approach may not be appropriate for a time-varying dataset
due to the memory footprint proposed.

Mensmann et al. [46] proposed a GPU volume ray caster which divides the
view frustum into slabs, designed for CUDA. Each ray in a slab is sampled with the
intention that the sampled data fits into each thread blocks shared memory. Subsequent
operations such as gradient calculation for lighting are performed on these samples
instead of the actual volume data. They made note that compared to shader approaches
for GPU ray casting, their slab based approach underperformed in some examples,
namely where early ray termination occurred due to high opaque materials in the
volume. In cases where the volume was considerably transparent and voxels would
have been multiple times for gradient calculation their approach saw significant speed-
ups. They also make note that the more registers available to each thread block, the
better their algorithm appeared to perform.

Bethel et al. [47] perform an analysis on the effect of algorithm parameter

29

variations with respect to overall runtime and L2 cache misses on CPU and GPU.
Among other parameters they vary the size of the screen buffer tiles and the memory
layout of the volume data. Their results on GPU indicate that there is a sweet-spot in
terms of thread-count, but more surprisingly they show that thread counts that have
some of the shortest run-times do not necessarily have the lowest amount of cache
misses. They conclude from this that there is a trade-off to be made between warp
utilisation and good cache performance.

Labshutz et al. [48] alleviate memory transaction bound data structure traversal
by just-in-time compiling the traversal code specifically tailored to the data structure.
For example, rather than performing pointer and key lookups in a binary-search or
kd-tree traversal, the key values are explicitly compiled into the code reducing mem-
ory transactions. Furthermore, they allow the combination of multiple types of data
structures depending on the homogeneity of volume regions. While their work is novel
and most definitely reduces the bandwidth required for traversal lookups, in the case
of large volumes that are highly subdivided their approach transferred from memory
bound to instruction bound with large amounts of branching in JIT compiled code,
along with considerable JIT compilation times.

2.2.5 Out-of-Core Rendering

With so much potential data contained in the volume, reducing the amount of voxels
re-sampled is of prime importance. ESS techniques are an obvious optimisation that
can be made. Just because a volume may be 10243 voxels does not mean that 100% of
the volume is assigned a colour as determined by the current transfer-function. This
means that — using the transfer-function — a regionisation of the volume can be made
containing only those regions that may contribute to the final image, and thus the rest
of the volume can then be skipped over. To extend this idea even further, when both
the bandwidth between CPU and GPU and the VRAM memory constraints are taken
into consideration, only transferring data to the GPU that is necessary for rendering
is an obvious optimisation to make. This is referred to as ‘out-of-core’ rendering, with
techniques tending to be ‘output sensitive’ — that is to say, only data that contributes
to the output are considered.

This out-of-core rendering method does tend to have its drawbacks however.

30

In order to render a single frame, knowledge of the output-sensitive dataset must be
known to transfer from main memory to VRAM. In most state-of-the-art approaches,
this is achieved using a feedback loop between the CPU and GPU [4, 49, 50, 5]. While
these are true output-sensitive solutions, the feedback loop comes at the cost of waiting
over multiple frames to have a correct render. Additionally, maintaining the currently
paged data and sampling said data requires some form of page table [5] and look-up
structure [4], which adds a layer of complexity.

Crassin et al. [4] presented the Gigavoxels system for rendering massive scalar
volumes on the GPU. Their system maintains an octree representation of the scene
with an adaptive loader on the CPU, using a back-and-forth feedback system between
the GPU and the CPU for determining the work-set of bricks — based on the current
transfer-function and view occlusion — needed to render the volume. Their traversal
method is based on the stack-less kd-restart algorithm. At roughly the same time,
Gobetti et al. [2] proposed a very similar approach to Gigavoxels, differing in the
octree attributes. In their method they added pointers to neighbouring bricks allowing
traversal directly to the neighbour rather than restarting from the tree root.

Fogal and Krüger [49] present a cross-platform generalised system for out-of-core
volume rendering with a bricked data representation. The system is designed to run on
GPU systems and, in order to display larger datasets, CPU clusters. In a later paper
[50] they build upon their previous work [49]. Their approach bricks the volume and
begins rendering, without data, on the GPU. During the rendering stage different level-
of-details are determined for each brick and the sampling rate is adjusted accordingly.
When a ray encounters a brick that is not present in device memory the absence is
recorded and eventually a list of the required bricks is communicated back to the CPU.
This back-and-forth communication between the CPU and GPU leads to the volume
being incomplete for several frames until the final result is composited. In addition,
the CPU is not told which bricks are missing until the GPU completes a rendering
pass. This means that the CPU is idling while the GPU is active, and vice-versa.

Hadwiger et al. [5] presented a full volume-rendering system designed to handle
large scale data on GPU. They focus on the scenario of an incomplete volume sourced
by an Electron Microscope (EM) with partial volume data arriving every 15 seconds,
with the intent on displaying the incomplete volume as data arrives. They posit that
— while data-structures like octrees are used in previous systems [2] — when dealing

31

X

Page Table Brick Pool

Virtual Volume = Inactive

= Active and paged

= Active but not paged

Figure 2.8: Example of a virtual volume with a page table and brick pool. As the
virtual volume is sampled, a look-up into the page table is performed, which links to
the brick pool if the brick is active and paged into GPU memory. This is the simplified
basis for methods like Gigavoxels [4], Tuvok [49, 50], and Hadwiger’s works [5, 6].

32

with streaming partial data, a different approach must be used. Their solution to this
problem is to use a virtual paging system on the GPU which conceptually divides the
volume into bricks and overlays these with a multi-resolution hierarchy. The general
ray-casting approach is basically standard DVR, however each sample point looks up
a 3D page table, stored in a 3D texture, with a desired level of detail and a volume
position. This look up will either provide the location of the block data in GPU
memory 2, or generate a “cache miss” which will invoke the CPU to dynamically create
the block data from the partial image data given by the EM. They make note that
cache misses, coupled with the corresponding updates, are effectively distributed across
multiple frames meaning that, although a smoother frame rate is provided, there will
be frames that are not visually correct. It is worth mentioning that their comparisons
versus octree traversal methods use quite dense data as determined by the transfer
function, in comparison to their later work that deals with sparse volumes [6] discussed
later.

Liu et al. [51] presented a volume rendering approach that makes use of an
octree and load balancing traversal and rendering on both the CPU and GPU. They
propose that the CPU is a better candidate for tree traversal and as such the tree cut
is generated on the CPU. Non-empty nodes are then rasterised on the GPU. The paper
also makes use of macro-cells, a further subdivision of bricks, to more tightly collect
active rays and to perform empty space skipping at a sub-brick level. It should be
noted that volume data is stored on a brick scale rather than a macro-cell scale. Liu
et al also make use of tri-cubic interpolation as opposed to trilinear interpolation to
produce smoother results.

Hoetzlein [52] took the multi-level hierarchy structure [53] that is used in Open-
VDB [54] and made it compatible for GPU allowing for the possibility of in-situ sparse
volume simulation and rendering, dubbed GVDB. Although a much more configurable
hierarchy, the principle of ESS in GVDB is an adoption of VDB [53] and also follows
the Hierarchical 3D Differential Analyser (H3DDDA) traversal method [55], which is
more similar in essence to Fogal et al’s [50] that skips to the next brick and samples
at the required resolution rather than determining the resolution at each sample like
Hadwiger et al. [5]

2All bricks, even different resolutions, are said to be stored in the same 3D texture.

33

Figure 2.9: Example of an octree that can be used to accelerate empty-space-skipping.

2.2.6 Acceleration Data Structures

Acceleration data-structures are potentially one of the most important aspects in any
sort of computer rendering and this is especially true with ray-casting and path-tracing.
In essence, a spatial data-structure wraps all geometric primitives in a scene in a
hierarchical graph and allows for a fast search for queries, be it ray intersections queries
for rendering or geometric intersection queries for collision detection. For DVR the
former case is more relevant.

Over the decades there has been a myriad of spatial acceleration data-structures.
Among the most popular and long lasting have been Binary Space Partitioning (BSP)
trees, octrees, kd-trees, and BVHs. Each of these all have their own trade-offs in
terms of build-times, memory footprint, and traversal performance, and the chosen
data-structure for a particular use case tends to have parameters that have the same
trade-offs again — for example the amount of children per node in a BVH or the
amount of leaves in an octree, etc.

The most prevalent data-structure in DVR is — by far — the octree. Hadwiger

34

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3

Figure 2.10: Bounding Volume Hierarchies used in the context of surface representa-
tions of geometry with axis-aligned bounding boxes (AABB). In this example, each
node has two child nodes. An interesting trait of BVHs is that node bounding boxes
may overlap, which adds slightly more traversal complexity in a trade-off for bounding
arbitrary space.

et al. [5, 6], Gobbetti et al. [2], Laine and Terro [56], and Liu et al. [51], among
others, all use octrees as their data-structure basis. Octrees are a regular spatial
subdivision that are well suited to the regular grid data seen in volume rendering. An
example of this is shown in figure 2.9, where a volume is sub-divided in to bricks and
an octree is built based on the sub-divisions. Traversal through an octree is generally
trivial, although due to the currently stack-unfriendly nature of GPU programming,
specialised algorithms like kd-restart and kd-backtrack [57] have been developed and
are used in many of the octree-based DVR approaches. As well as octrees, other data-
structures have been chosen from DVR. Crassin et al. [4] used an N3 tree, although
the format chosen was very similar to an octree. Hoetzlein [52] used a more flexible
hierarchical multi-level grid.

Opposed to the many positives, one drawback of octrees is the inherent depth of
the tree if thin strands of media are present in the volume. In contrast, BVHs handle
thin strands of geometry with fewer inner nodes. However, BVHs were designed with
geometry that resides in continuous space in mind, not a regular grid structure. An
example of a BVH is shown in figure 2.10. Nested bounding boxes are stored in
a hierarchical manner that allows for ray-box intersections to cull searched nodes. In
particular, axis-aligned bounding boxes (AABBs) are popular for BVH representations,

35

Figure 2.11: Sparseleap [6] accelerates ESS by creating a proxy-geometry around active
regions of the volume octree. This figure is over-simplified but sufficient to demonstrate
the core concept. The ESS octree traversal points (red-dots, left) have transitions that
are redundant. By rasterising a tight proxy geometry, ESS entry-exit points are far
reduced.

as the orientation constraint on the bounding box allows for less complex intersection
algorithms, and therefore faster BVH queries and traversals.

Unfortunately, there has been a major lack of research into using BVHs in the
area of volume rendering. The only novel research that really exists comes from Knoll
et al. [58]. They provide a full-resolution DVR solution on the CPU using coherent,
using ray-packet traversal on an implicit BVH — a BVH that contains min-max data
values that is transfer-function independent. They showed that — at the time — the
CPU was a better candidate for large-volume full-resolution rendering than GPUs.
This was due to the more branch-capable CPU hardware, and more significantly the
larger main memory available.

Hadwiger et al. expanded upon their previous large scale out-of-core work [5]
and presented ‘Sparseleap’ [6]. To re-summarise the base work, empty space skipping
was achieved by traversing an octree on the GPU. In this work, however, they note

36

that octree traversal is costly when jumping from brick to brick in a dense region
of the volume. To alleviate this, bounding box geometry is emitted on the CPU
for non-empty or ‘unknown’ bricks. In this case, unknown bricks are bricks which
haven’t been paged from disk — or another source — into main memory, and are as
such unclassified and presumed not needed by the GPU until requested. The emitted
geometry is then rasterised in order to create an on-the-fly compressed linked list of
ray-segments that allow skipping over large regions of the data structure. This work is
very similar in concept to Liu et al’s [51] approach. The key differences are as follows:
Sparseleap supports not-yet-loaded (‘unknown’) regions of the volume in true out-of-
core DVR fashion. Liu et al’s method is a one-shot beginning-to-end rendering of the
volume whereas Sparseleap is progressively refined to make it a true output-sensitive
renderer. Sparseleap doesn’t determine the brick resolution on the CPU like in Liu et
al., but rather is refined during feedback. There are of course pros and cons to both
approaches. It should be noted that while an octree-like structure was used for the
occupancy tree, this is decoupled from the actual underlying volume representation in
their implementation.

Concurrent to work presented in chapter 6, Zellmann et al. [59] presented work
that used a Summed Volume Table — another name for what this work calls a 3D
Summed Area Table — to accelerate the building of kd-tree acceleration structures for
DVR.

As stated before, it is clearly desirable to display volume data on relatively
simple systems with minimal specialised hardware rather than large clusters of systems
working in parallel. These systems are more complex and costly to run in comparison
to single-machine setups. Considerable advancements have been made in computer
graphics hardware. Notably, certain ray-tracing techniques have now been implemented
in hardware allowing for much faster acceleration data-structure traversal, such as
Nvidia’s RTCores in their RTX line of GPUs, which can accelerate ray-tracing via
VulkanRT, DirectX Raytracing (DXR), or their own Nvidia OptiX API [60]. These
data-structures are pivotal concepts in volume rendering, allowing for regions of the
volume which do not contribute to the final image to be ignored and skipped during
rendering.

37

2.2.7 Volume Rendering Hardware

Up to this point, the only graphics hardware covered has been that designed specifically
for surface data, generally in the form of polygons. It is worth noting that volume-
rendering specific hardware — while much less common and researched — does indeed
exist. Most notably VIZARD II [61, 62] and VIZAR [63] are Field-Programmable Gate
Array (FPGA) based systems that were specifically designed for real-time ray-casting
and shading of volumetric data that allowed a certain amount of reconfigurability.

Volume-rendering specific hardware solutions are a massively interesting topic,
however they are not the focus of this thesis, which is to evaluate efficient DVR algo-
rithms and accelerations on non-specialised consumer hardware.

2.3 Light-Fields

Standard 2-D screens have long been the norm for viewing computer generated images,
and have come a long way in fidelity and colour correctness. Both of these factors aid
user perception of a scene, but neither particularly improve the sense of spatial depth
in an image.

Displays in the form of auto-stereoscopic lenticular-lens flat-screens, active stereo-
scopic screens that use alternating light-blocking glasses, or dual-display near-eye
HMDs dramatically improve the users depth perception into a virtual scene. In these
cases depth is determined by the user by the angle of the eyes, called vergence. But
these displays still have a drawback. While vergence is the primary sense for depth in
the human-visual system, in the physical world it is closely coupled with ‘accommoda-
tion’ which is the changing of focus of the eye’s lenses. A mismatch in vergence and
accommodation is present in all of the previously mentioned displays, where depth is
determined by vergence, but the eyes are focused on a flat plane close to the user. This
is called the vergence-accommodation conflict problem and can lead to an uncomfort-
able viewing experience for users.

Potential solutions around this are the emerging light-field display technologies.
A light-field considers the transport of light in a volume of space. The light-field concept
was introduced in [64, 65] as an efficient image-based rendering method. A light-field
aims to capture all light rays passing through a given volume of space, and is commonly

38

…

…

…

… … …

𝑥

𝑦

𝑠

𝑡

𝑓

Π
Ω

𝑃 = (𝑋, 𝑌, 𝑍)
𝑡∗

𝑦∗

Δ𝑠

Δ𝑥
𝑡

𝑠

𝑦

𝑥

Figure 2.12: Light-field two-plane parametrization (left) and matrix of views represen-
tation (right).

parametrized using two parallel planes, as shown on the left in Figure 2.12. It can be
formally represented as a 4D function Ω × Π → R, (x, y, s, t) → L(x, y, s, t) in which
the plane Ω represents the spatial distribution of light rays, indexed by (x, y), while Π
corresponds to their angular distribution, indexed by (s, t). Using this parametrization,
the light-field can be considered as a collection of 2D images, called sub-aperture images
regularly arranged on a 2D grid (see right of Figure 2.12). As the most common in
the literature, two-plane parametrisation can be used to interface multiple rendering
methods [64, 66] and light-field displays [67, 68].

2.3.1 Light-Field Capturing

Light-fields have not only been used for display technologies, but also for photography
[68]. This allows then for a real-world scene to be almost directly shown on a light-
field display or be refocussed at a later point. Both of these applications have huge
benefits to users. While the former has been discussed already, the later application
of moving the focal plane and camera position post-capture allows for considerable
artistic flexibility, although this is not a primary application of this thesis’ work.

Capturing a light-field of a real-world scene poses its own problems with regard

39

to optical hardware and data bandwidth for storing high angular and spatial resolution
images. This is almost analogous to the issues presented when capturing a light-field
in a virtual scene. In essence, a light-field capture of a virtual scene involves rendering
from different view points for the same frame. An example of this can be seen in figure
1.2, where the same volume can be seen from slightly offset positions. This poses the
challenge of how to render this data across multiple view points in computationally
and data efficient manner. This is one of the primary focusses of this thesis.

2.3.2 Light-Field Displays

While the term ‘light-field’ is by no means a new one, recent research is surfacing
on adapting light-fields for HMD display technologies and computer graphics with
companies such as Avegant [8] and Daqri [9] researching light-fields in consumer and
industrial use. Light-field TV-screen like products have been available for some time,
Holografika [10] is one such long-standing manufacturer. but these displays have been
prohibitively expensive for the consumer market. More recently though, small- to mid-
scale light-field displays have been coming to fruition. One such example of this is
the Looking-Glass display [7] which is effectively an auto-stereoscopic lenticular lens
display providing 48 views of horizontal parallax.

Mid-Distance Light-Field Displays

Mid-Distance multi-view or light-field displays tend cover technology that can be multi-
user by using scattering media [69], specially designed monitors / TVs or projector
systems, to name but a few methods. For example, the Visual Computing Group in
CRS4, Italy base a lot of their volume rendering research on a multi-projector light-
field display [1, 3, 70, 71]. Their system, as the name suggests, uses multiple projectors
behind a “sharply transmissive” holographic screen that maintains narrow horizontal
viewing zones, but scatters light correctly in the vertical domain. As such, this is only
a horizontal-parallax display, otherwise called an auto-stereoscopic display. Marton et
al. [71] use the size of this display to their advantage allowing intuitive exploration of
the volume using hand gestures. This, combined with the aforementioned collaborative
property of larger, mid-distance displays, is a definite advantage over near-eye displays
such as HMDs.

40

However, one clear disadvantage of this method is the inherent lack in mobility
of the fixed viewing zones. In general, there is only the area in front of the screen
at a certain distance that provides valid imagery. In contrast to this, methods using
scattering or rotational media have been proposed. For example, Yuasa et al. [72]
interestingly use a projector system directed at a cloud of fog to create the appearance
of floating objects. However, as might be expected with scattering media, the diffusion
of light through the fog tends to result in slightly blurry objects. Another approach
is to use rotational equipment, such as a helix as implemented by Geng [73], with a
high-speed projector system projecting slices of a scene on to the geometry. Mora et
al. [74] use an isotopically emitting display to visualise 3D datasets by creating an
intermediate light-field they dub a “lumi-volume”. Unlike the previously mentioned
displays with have fixed, discrete viewing zones, these methods allow for continuous
movement around the imagery.

Near-Eye Light-Fields

When the Human Visual System (HVS) is developing people learn to recognise depth
from two features of our eyes. Firstly, convergence, where eyes rotate in their sockets to
aim at a point in space. It is this depth cue upon which stereoscopic HMDs build upon.
The second cue comes from our eye’s lens changing shape to focus a point in space
onto our retina. This is referred to the accommodation focus cue. With stereoscopic
HMDs, the eye’s lenses are always focused on the same plane while the HVS gains depth
knowledge from convergence cues, outlined in figure 2.13. It is this disparity that can
lead to eye strain and nausea in some users [75, 76, 77]. This issue particularly occurs
in a certain range of distance in which convergence and accommodation more strongly
work in tandem. Cutting and Vishton [78] performed a wide study on the HVS in the
context of depth perception and found that vergence and accommodation combined
have a useful range of up to 3 meters.

As a side note, a common term in HMD papers that focus on vergence-accommodation
is “dioptre” which is a measurement of distance. In this case it’s used as the distance
from camera/eye and is defined as 1/d where d is the distance in meters. It follows
that objects close to the eye have a large dioptre value (20cm would be 5.0D) and as
the distance increases the value decreases towards zero. As such, objects with what

41

Perceived 3D Object

Vergence Distance

Accommodation Distance

D
is

p
la

y

E
ye

s

Figure 2.13: While the focal plane of a HMD is located at a fixed distance, virtual
objects appear away from that plane. In this case, there is a disparity between the
vergence and accommodation distances.

could be considered at “optical infinity” have a dioptre value extremely close to zero.
It should also be noted that the HVS is very complex and can be tricked into

seeing a good stereoscopic image with some approximations. Bulbul at al. [79] note
that rendering the same scene twice for two camera positions can be an expensive
process especially when lighting effects such as shadows are introduced. Their research
evaluates the effect of Binocular Suppression theory, where the overall perception of a
stereoscopic scene is strongly biased towards the dominant image in the pair. Their
results show that for certain modifications made to the second, reduced quality image,
the resulting stereo image resulted in a pair that was acceptable to users. Techniques
such as up-sampling, specular highlights (or lack thereof), texture re-sampling and
mixed shading worked well. However, they note that there are some modifications that
result in an unacceptable difference, such as mixed-level AA and simplified meshes.

Light-fields in a near-eye context have a remarkable trait that can be seen as
quite important to the future of VR applications. As mentioned before, current market
HMDs such as the Oculus Rift and HTC Vive present the user with vergence-based
focus cues, but on a fixed focal plane. As such the HVS ends up with Vergence-
Accommodation Conflict (VAC). Near-eye light-fields give a solution to this by pre-

42

Circle of
Confusion

In Focus

Retina
Eye LensDisplayEye's Focal Distance

Figure 2.14: The basis behind near-eye light-fields as a solution to VAC. Since the
top, blue object lies on the focal plane, rays projected at appropriate angles through
the display, in this case utilising a lens-array, are refracted through the eye’s lens and
to a relatively singular point on the retina, appearing in focus. In contrast, the red
object appears out of focus. Note that, when the eye’s lens shape changes, the rays are
refracted differently, allowing the red object to come into focus and vice-versa for the
blue object.

senting the eye with rays from different directions at the same points. This effect is
outlined in figure 2.14 where the lower, red object is further from the eye’s focal plane
and as such is projected with a larger circle of confusion on the retina.

Lanman and Luebke [80] propose a head-mounted light-field display, or rather
two separate light-field displays in close proximity to both eyes. Their solution makes
use of existing OLED displays from an established stereoscopic HMD overlaid with a
micro-lens array. The OLED displays show a specifically arranged group of light-field
sub images which, when viewed through the micro-lens arrays at a specific distance,
supports continuous accommodation of the eye in a finite depth of field. This is the
solution that figure 2.14 more closely is based on. Note that in this system the elemental
sub-images are below the lenslets in the lens-array. It then follows that the sub-
images are quite small, and as such are much lower resolution than the entire display.
This is worth keeping in mind when considering the overall graphical computation
requirements.

Huang et al. [68] use dual-layer stacked LCDs combined with non-negative
matrix factorisations to emit a rank-1 approximation of a light-field to the user. They
note that there is a trade-off between accommodation range and spatial resolution,

43

and in this case opted to go for spatial resolutions unlike Lanman and Luebke [80].
Regardless of the technology used to display the data, their work does not go into
rendering optimisations for their display.

2.3.3 Light-Field Volume Rendering

Rendering volumes to multiple views — as is the case in light-field rendering — is a
non-trivial problem if the outcome is to be efficient enough for real-time interaction.
While computer graphics has only relatively recently adopted a light-field as a target
display system, multi-view rendering has a long history.

Most of the current DVR research focuses mainly on rendering volumetric models
for single view render targets and displays. However, in recent years there has been a
large push on multi-view renderings targeting stereoscopic displays like a HMD, large
format stereoscopic screens, and venturing into auto-stereoscopic (horizontal parallax)
and auto-multiscopic (horizontal and vertical parallax) display technologies. All of
these targets require presenting the same scene multiple times across few or many
displays.

As briefly mentioned before, driving these displays potentially requires render-
ing the same scene — or volume — multiple times. For example, in the case of the
Looking-Glass, the same data needs to be presented from up to 48 different view
points. Polygonal methods for multi-view rendering have been researched much more
than DVR multi-view techniques. Unfortunately most of the polygonal solutions can-
not be applied to volumetric data while expecting the same performance enhancements.
To maintain a correct multi-view rendering of a volume, the data must be ray-cast at
least once, but potentially up to the amount of views. Basic knowledge of computer
architecture should then lead the reader to consider how this data could be accessed,
and the temporal-coherency of this re-sampling. What follows is a survey of the cur-
rent approaches to stereoscopic or multi-view DVR. The simplest form of multi-view
rendering is stereoscopic, where two views of the scene or volume are rendered from two
points, mimicking the human visual system. These approaches tend to target HMDs.

44

Stereoscopic

The precursor to multi-view rendering is two-view or stereoscopic rendering. Stereo-
scopic displays have been around for quite some time, and it follows that scientific
visualisation has targeted these almost as soon as they arrived.

Adelson and Hansen [81] presented efficient approach to stereoscopic volume
rendering. They consider the regularity in ray-ray intersection that two parallel pro-
jected cameras would have. Their method takes advantage of the fact that a simple
transformation can relocate an accumulated segment from one view’s ray to a ray in
the other view. Any gaps or incomplete rays in the second view are then completed as
normal. It has been noted that this method can be prone to integer rounding and lead
to unwanted artefacts in the final image [82].

He and Kaufman. [82] present an improvement on Adelson and Hansen’s stereo-
scopic rendering method [81]. In their approach they assume that the cameras use
parallel-projection and notice that while ray-casting the left-eye, a fixed amount of
samples from each ray will always influence a single pixel in the right-eye. To this
extent, they create a scheme which composites segments from the left-eye rays onto
pixels in the right-eye. While this method performs well, the visual results are passable
but do have errors when compared to a ground-truth.

Law and Yagel’s work [24] has already been covered earlier while discussing
object-order and image-order techniques, but it is worth revisiting their approach here.
To re-summarise, they presented an approach that uses volume bricking, with the aim
to use a brick once using an “advancing ray front”. Unlike Hsu’s [23] approach, they
only need to keep one copy of the screen buffer as the ray segments are inherently
ordered front to back.

Koo et al. [83] extend work done by Yagel and Kaufman [84] by using templated
to traverse a volume in object order creating a stereo image in a single pass. Two
templates are created for each view and are both applied to a voxel ‘cell’ allowing for
efficient voxel usage. At the time, their experiments showed that it was faster than
ordinary ray-tracing twice, once for each eye, with comparable image quality but slower
than standard shear-warp algorithms, again run once for each eye, but with much better
resulting quality. There are, however, two notable drawbacks to this approach. Firstly
the algorithm requires three copies of the volume, each transposed to be aligned with

45

the three orthogonal axes XYZ. Secondly, perspective projection with this method was,
at the time, not supported. Both of these issues were being investigated as part of their
future work.

Wan et al. [85] present an approach to rendering volumetric scenes using infor-
mation generated from the left-eye to effectively splat the pixels from the left-eye on to
the right eye and use accelerated ray-casting for holes remaining in the right-eye caused
by occlusion. Their algorithm works for perspective projection for two cameras, left
and right eyes, that reside on the same horizontal plane meaning that each scan-line in
the left image impacts the same scan-line in the right image. The paper mostly focuses
on opaque volumes which results in left-eye pixels having the same intensity as their
re-projected right-eye counterparts. As such, they note that their algorithm works best
in cases where pixel intensity is not view-dependent. However, it can be modified to
accompany lighting models and transparency by partly ray-casting re-projected pixels,
incurring some performance penalty.

There has been previous work done presenting volumetric data in a medical
operating environment on an auto-stereoscopic display [86, 87] in which it is noted
that allowing the operator to move freely in space while still presenting them with
a parallax-correct display from multiple angles can prevent equipment contamination.
Using DVR as the method to generate these different views is a highly computationally
and memory expensive task, especially when the data is streaming and may require a
full-redraw of the volume.

Multi-view Rendering

Stepping up from two-view stereoscopic volume rendering to N-view multi-view ren-
dering requires additional consideration. These issues are then compounded by the
fact that when multi-view targets arrived on the scene, the volume size complexity
had already increased to the point of making it difficult for even single-view DVR.
Nonetheless, there has been some literature in the area, although not a considerable
amount.

Hübner and Pajorola [88] presented a single-pass rendering approach that is
based on texture-based view-aligned slice rendering. Their method makes use of knowl-
edge of the wavelength selective pattern that some auto-stereoscopic displays use and

46

effectively runs a rendering pass based on the component offsets in this pattern mask.
In this case however, since slices are parallel to the centre-view camera plane, the more
offset a view’s camera is from the centre, the lower the sample rate would be through
the volume, as the sample offset is applied parallel to the the aforementioned plane.

Agus et al. [1] present a full system for rendering and displaying volume data on
a projector-based light-field display. Their paper mostly focuses on the translation be-
tween rendering space and projected-pixel space, utilising a relatively standard volume
ray-casting algorithm for the actual rendering which is run once per view. In their ex-
ample the view consists of 96 angles, or views, which each has a resolution of 320x240.
It is mentioned in the paper that the scope did not include acceleration techniques
such as data-structures but that they may be employed. To accomplish near interac-
tive rates they use relatively low-frequency samples with a mipmapped volume, and
batch 16 views at a time. They note this presents artefacts when rotating the volume
or changing the transfer-function but also remind us that due to the auto-stereoscopic
nature of their display system, once all batches are complete the viewer may move
freely independent of refresh-rates.

Guitián et al. [3, 70] adapt stack-less ray-tracing techniques in an out-of-core
rendering environment, coupled with a spatio-temporal refinement process, to render
large (40963) volumes at interactive rates on a projector based light-field display. Their
method makes use of maintaining a view-dependent spatial structure on the CPU with
feedback from previous frames rendered on the GPU. In addition, not all pixels in a
frame are rendered at once. They use a lattice structure to render 1 in every 4 pixels
in a square group at a time, thus converging on a full image in 4 frames in the static-
view scenario or presenting a blurry but acceptable set of images in the dynamic-view
scenario. Their system runs on an cluster of 18 computers with CUDA enabled GPUs
generating 4 images each, implementing a modified version of their previous single-
pass GPU renderer [2]. Each projector view is rendered separately from the others.
While they achieved good interactive rendering times their approach is only applicable
to relatively large-scale systems after pre-processing the volume to create the octree
structure, which they note takes over 12 hours, making this an unlikely candidate for
real-time datasets.

Kwon et al. [89] apply a volume rendering approach to create multi-view el-
emental images for use with an integral imaging 3D display, although the rendering

47

techniques used in this paper are relatively standard.
Battin et al. [90] devise a method to determine the view from which a particular

lenticular display pixel’s chromatic components are derived from. In effect, this allows
them to render the entire light-field for the display in a single pass, rather than render-
ing the data N-times for N-views and compositing the results in a final image, utilising
the OptiX engine to perform DVR. In their work they don’t investigate time-varying
data.

Image-Based Rendering (IBR) techniques have also been used for multi-view
rendering of volumes, specifically targeting light-field rendering. Recently Bruton et
al. [17] and Martin et al. [18] evaluated — and proposed approaches that use —
Convolutional Neural Networks (CNNs) as a method for synthesising novel views from
‘anchor’ views. These approaches can be extremely fast and are an interesting strain
of work, however due to memory constraints on GPU, employing a CNN model that
uses the actual volume can greatly limit the remaining space available in VRAM for
said volume. It is the opinion of this author that IBR techniques are orthogonal to full
volume ray-tracing.

2.4 Motivations

The background has now been presented and it should hopefully be clear where there
are gaps in the literature. In this section a very brief summary of the background is
given, with explicate outlining of these research gaps.

Performance Evaluation of GPU Texture Memory

While not a particularly novel area of research, the current literature of GPU perfor-
mance benchmarking is quite sparse. There are high-level architectural GPU white-
papers, and there are a few very low-level micro-benchmarking papers, but there is a
lack of investigation for specific application oriented benchmarking. In order to have a
solid platform upon which the rest of the work in this thesis is built, an analysis of key
GPU memory components is required, specifically targeting texture memory in both
the 2D and 3D texture domains, presented in chapter 3.

48

View Dependant Scheduling

One of the most prevalent output-sensitive optimisations that can be implemented for
DVR is ray-guided streaming of bricked volumes. This is generally implemented as
a feedback loop between the CPU and GPU where the GPU samples along the ray,
marking bricks that are not paged into VRAM as needed. The CPU then reads this
‘needed’ list and pages them onto the GPU, restarting the sampling. This is repeated
until a full image is generated. While this is output-sensitive with respect to both
view-point and transfer function, the feedback loop makes a fluid pipeline from I/O
to CPU to GPU impossible. Therefore, part of this work investigates sharing the
view-dependant culling work with the CPU as a straight-through pipeline, presented
in chapter 4.

View Dependant Scheduling for Light Field DVR

In addition to reasons mentioned above, view dependent scheduling can have another
significant advantage — optimised cache usage. This becomes ever more important
when the same regions of the volume are projected to multiple screen ‘tiles’ simultane-
ously. This is a very pertinent problem for light-field rendering, where the volume will
be rendered the screen or screens at different view-points in a single frame. Therefore,
scheduling data to be used in a cache efficient manner to target light-field rendering is
an obvious extension of view-dependent scheduling. Research on this topic is presented
in chapter 5.

BVH Adoption and Clustering for GPU DVR

With the presence of larger and larger volumes, ESS is a go-to optimisation for DVR.
ESS strategies almost always depend on some sort of acceleration data-structure to
assist jumping over empty regions or analytically accumulating for constant-space.
The most popular data-structure for ESS has generally been octrees for their inherent
compatibility with regular-grid dense volumes, while BVHs have been avoided for build
times and traversal branch complexity on GPU, with only even little literature for DVR
BVHs on CPU. With the emergence of BVH hardware on consumer GPUs in the form
of Nvidia’s RTCore in the Turing architecture accessible via the OptiX ray-tracing

49

API, it has come time to re-evaluate BVHs as a form of ESS data-structure for DVR.
This research is presented in chapter 6.

50

Chapter 3

Performance Evaluation of GPU
Memory Components

3.1 Goals

The main focus of this thesis is rendering volume data on consumer grade GPUs. One
of the major bottlenecks in rendering on GPUs, especially for volume rendering, is
memory performance. Getting data from source — hard disk or network storage for
example — to screen traverses almost every part of the memory hierarchy on both the
GPU and the host machine. Source to host and host to GPU optimisations generally
take the form of either output-sensitive filtering [5, 51, 49] or compression methods. The
performance of these components is generally well documented and easily benchmarked.

On the other hand, the performance of the memory hierarchy when the data
reaches the GPU is a little more opaque and less documented. Understanding how
texture memory performs on a relatively low-level but application-oriented basis is
vital when formulating new approaches for rendering volume data. The purpose of this
chapter is to give a platform upon which decisions are made in later chapters. Clear
performance penalties and advantages for texture memory which are not documented
in GPU reference manuals are shown. 3D texture benchmarking shows interesting
results which imply sophisticated memory layouts that aim to exploit spatio-temporal
coherency in shaders.

51

Intel Xeon E5-1620 v3 Nvidia Quadro K2200

Cores 8 Logical
(4 Physical using HT)

640 Cores
(5 SMM with 4 groups of 32)

Shared Memory - 96KB per SMM
L1 Cache 32KB D + 32KB I per Core 24KB Unified per SMM
L2 Cache 256KB per Core 2MB shared over all SMMs
L3 Cache 10MB shared over all Cores -

Table 3.1: Comparison between Intel Xeon E5-1620 v3 and Nvidia Quadro K2200.

Figure 3.1: Overview of the memory cache hierarchy in the used Nvidia Quadro K2200.
Note that shared memory is not included in this image.

3.2 Background & Related Work Recap

In this chapter the focus is on understanding the memory components of the GPU
in depth. Specifically this work looks at one of the main GPUs used in the project,
the Nvidia Quadro K2200. In general, CPUs and GPUs differ most in terms of their
computing capabilities. The CPU used in this project is an Intel Xeon E5-1620 v3. In
table 3.1 the difference between the computation and memory capabilities of both the
Intel CPU and the K2200 is shown. It is important to note that the Shared Memory
of the K2200, and Maxwell architecture in general, is not part of the cache hierarchy
and is considered a separate module, much like a scratch pad. This architecture can
be better understood by referencing figure 3.1 which visualises the memory placements
of the K2200.

52

Before beginning to come up with a memory-efficient solution it is important
to understand the penalties of the memory hierarchy in the Quadro K2200, and in
particular how the textures and the texture cache interact with each other. From the
outset there are two obvious figures that need to be determined:

• L1 and L2 cache-hit latency

• L1 and L2 cache-miss penalty

However, in addition to these, how the timings relate to actual texture memory
should be understood. For example, a 2D texture lookup may only require 4 texels if
using bi-linear interpolation. It follows that some texture memory layout could be used
to group neighbouring texels close-by in linear memory. This differs greatly from a 3D
texture lookup where 8 texels are needed for trilinear interpolation and the layouts
required may be more complicated.

These experiments are based on micro-benchmarking techniques [91, 44] to help
us understand in greater detail the exact performance characteristics of the K2200.
In 2010, Wong [91] presented benchmarking techniques to profile segments of the en-
tire GPU, building an understanding of the hardware from the ground up. This was
achieved by running a series of small experiments testing small sections or instructions
of the GPU a large amount of times to determine their latency. From initial results
they build more complex experiments, using their prior information to more accurately
estimate the actual characteristics of the complex routines.

In 2017, Mei [44] built upon the work of Wong [91]. Whereas Wong [91] used
averaging as a technique for determining latencies of their micro-benchmarks, Mei
[44] timed individual lines of code or operations, taking care to compensate for the
overhead that this might present in terms of pipeline latency. It is this method which
the following texture memory experiments are based on.

3.3 2D Texture Patterns

3.3.1 Methodology

As a first step this chapter looks at the behaviour of texture memory and the texture
cache when referring to 2D textures. The goal is to determine what data resides in

53

both the L1 and the L2 when a texture reference is made. To evaluate the lookup
latency of a point in the texture, an experiment was carried out as followed:

1. Random data was created to fill two textures, each larger than the L2 capacity
in terms of raw data.

2. Texture A is transferred to the GPU.

3. Texture B is transferred to the GPU, flushing texture A from the L2.

4. An initial texture lookup at point I occurs on texture A.

5. A warp-timer is started

6. A second texture lookup occurs on texture B at a different point J.

7. The warp-timer is stopped and the time recorded.

In order to evaluate which texels are cached when an initial lookup at point I
is made, all steps in this experiment are re-run for all points in the texture, changing
point J.

3.3.2 Results

This experiment results in the graphs shown in figure 3.2, which shows the lookup
latency for each point J in a 2D texture after an initial lookup at a point I. In this case
the texture size was set to 10242 with a single 32-bit channel. and the initial lookup,
point I, was set to [510, 510] in the left graph and [720, 720] in the right graph. It
can be seen that there are hard-defined areas in both graphs that have a much lower
lookup-latency than the rest of the texture. It is interesting to note that the area of
these regions seems to be constant, yet made of smaller sub-regions 512x128 texels
making up 256KB of data. Four of these regions together make up exactly 1MB of
data, which appears to be brought into the L2, of size 2MB, with the initial texture
reference.

In this example, the size of the sub-regions fits rather well with the overall
texture size. However, this may not always be the case, and texture sizes may not
always be a power-of-two. The same experiment as above was run to determine the

54

Figure 3.2: Texel lookup latency for a 10242 texture with an initial lookup of X:510
Y:510 (left) and X:720, Y:720 (right).

sub-region sizes when a texture of size 725x725 was used. This size was chosen to fulfil
the ‘flushed texture’ nature of the experiment as it just overflows the L2 cache size.

The results of this experiment are shown in figure 3.3. Interestingly, the sub-
regions are still apparent. While they can still be considered to be 512x128 texels,
they begin to ‘wrap’ in the texture, overflowing to areas above. In addition to this,
as hinted in the lower left image in the previous experiment shown in figure 3.2, the
start of textures seem to only consist of the rather odd amount of three sub-regions of
256KB, with following regions being made up of four.

3.4 Exact Latencies

In order to get answers for the two important sets of figures outlined above at the be-
ginning of this section, careful and methodical experiments must be devised, especially
when dealing with many extraneous factors such as compilers, drivers, schedulers, etc.

55

Figure 3.3: Texel lookup latency for a non-power-of-two texture (7252) with an initial
lookup at [0, 0] (top left) and [512, 512] (top right). Note the difference between
the low-latency areas in figure 3.2 and in these charts. Also note the “inter-locking”
appearance of the low-latency areas in the left and right graphs. Also presented is
a magnified region, highlighted in red in top right, showing a much smaller area of
substantially lower latency lookups representing L1 hits (below).

56

3.4.1 Methodology

As an initial probe, experiments testing the latencies of 3D texture lookups were devised
to provide us with baseline figures for L1 and L2 hits and misses. In these experiments
the aim is to determine the amount of warp-cycles and the accuracy of this figure for:

1. Cycles used in calling clock function. This is extremely important as this
figure will be prevalent in figures obtained for experiments 2-6 and as such must
be subtracted from the final results.

2. First texture lookup. This figure, along with its standard deviation should
give us the initial L1 cache penalty after transferring the referenced texture to
the GPU. Note that it is assumed that the texture travels through the GPU’s L2
on the way to DRAM.

3. Second texture lookup in same location. Making a subsequent texture
reference in the exact same location should give us an exact reading on the cycle
count for an L1 hit.

4. Second texture lookup one texel in x-dimension. As can be seen in figure
3.3 (bottom) there is a small region of texture brought into the L1. This verifies
that the same is true for 3D textures.

5. Second texture lookup one texel in y-dimension. This verifies much the
same as the previous step.

6. Second texture lookup one texel in z-dimension. Unlike 2D textures,
adding an additional dimension leaves us at a loss of how much data is brought
into the L1 in the z-dimension. This figure should help us determine such a
number.

In order to get robust numbers for these experiments the following precautions
were used:

• All experiments were run 10,000 times to get an average and a standard deviation.

• The GPU was synchronised immediately before and after the kernel was called
to prevent accidental overlapping kernels.

57

Timer First Lookup Same Location X+1 Y+1 Z+1
Warp Cycles 6 880 190 190 190 420

Table 3.2: Latency times of 3D texture lookups.

• Only one thread ran on the GPU to prevent interference.

• The compiler was given debug and no-optimisation flags.

• The critical sections of the code were written in PTXISA to explicitly specify
steps.

• The compiled PTX was then verified to make sure that the lookup alone was
surrounded by the start and end timer calls.

3.4.2 Results

The results of these experiments are shown in table 3.2. It can seen that there is a
figure for timer cycles, which was step 1. This figure is then used in the rest of the
table to adjust the figures in the row “Adjusted”. As expected, a relatively large cycle
count for the initial texture (experiment 2) lookup at 663 cycles is observed, however
this has an interestingly large standard deviation. For experiments 3, 4 and 5 the exact
same cycle latency of 158 cycles with a very low standard deviation is seen.

The interesting figure in this table comes from experiment 6, which is a texture
lookup one texel in the z-dimension. This equates to ‘not-quite-a-hit’ but also ‘not-
quite-a-miss’. This leads us to believe that, since sample interpolation is active, one
layer of texels needed for the interpolation were present, but the second later was not,
resulting in a ‘half-miss’.

3.5 3D Textures and Sampling

It is important to appreciate the effect that using sub-cache sized bricks makes on the
GPU memory hierarchy. This is a vital statistic that determines much of the decisions
made in later sections of this work.

58

3.5.1 Methodology

In order to determine these figures an experiment was devised to evaluate the cache
statistics of three methods; standard DVR, ray-guided bricking (without sub-sampled
level-of-detail), and load-balanced brick-order ray casting. To properly determine the
cache efficiency of volume data usage, the output buffer was disabled, but every sample
accumulated to a dummy output variable in order to prevent automatic optimisations
compiling out important texture loads.

3.5.2 Results

In figure 3.4 it can seen that a 3D texture is effectively cached as a stacked set of 2D
textures. This covers how data is cached, but it doesn’t indicate how the data is paged.
In section 3.4 an experiment was presented to determine the latencies of every texel in
a 2D after an initial lookup. It should have been made clear that there are effectively
four states in which a texel can be in:

• L1 Cached

• L2 Cached

• Paged

• Not Cached or Paged

It is relatively easy to understand the paging structure for a 2D texture, however
when this is extended to the third dimension, what would be the expected impact?
Since it appears that the 3D texture is effectively a set of stacked 2D textures, will the
first few layers of a volume be paged, or something entirely different?

The results of this experiment, the method of which was the exact same as
previous sections with an additional dimension, are seen in figure 3.4. Contrary to the
initial assumption, the data are not paged in such a straightforward manner. Instead,
there are multiple layers having the same parts paged. It is also interesting to note
that this page size appears to be consistent with the 2D texture page size.

59

Figure 3.4: Latencies for each layer of a 3D texture given an initial lookup at [40, 40,
40], which is in layer 40, visible in the first column, sixth row. Note the interesting
paging pattern. 60

3.6 Conclusions

In this section exploratory work on the characteristics of texture sampling on the Nvidia
Quadro K2200 was shown. This was done specifically with a view to understanding
how 3D textures work on the Maxwell and Turing architectures, with the goal of being
able to make better decisions on how to structure volume data for rendering. The
results shown that making inefficient accesses to a texture or set of textures can result
in large miss penalties. As such, care must be taken to make efficient use of the caching
techniques provided.

An obvious method to exploit cache coherence — especially the shared L2 cache
on the Maxwell and Turing architectures — is to limit the sampling to a cache-sized
region of the volume for an extended period of time. This should be seen as a priority,
especially when considering the limited capacity for swappable thread groups or warps
— in order for more work groups to be instanced on the GPU, older work groups need
to finish up. Imagining direct volume rendering as a group of rays moving in a set of
tiled ray wave fronts, one can see the potential issue of neighbouring wave fronts ending
and beginning temporally far apart, thus the later wave front may have to re-page and
re-cache the data needed for its samples. In later chapters this observation is used as
the target for better performance via volume bricking and aggressive scheduling.

61

Chapter 4

View Dependent Scheduling &
Load Balancing

This chapter presents work done on attempting to make efficient use of the GPU mem-
ory hierarchy when rendering an non pre-processed volume by sub-dividing it into
bricks, generating an ordered list of the contributing bricks in front-to-back order, ren-
dering the bricks in any order and compositing the bricks in the previously determined
order. It can be shown that by using this method the bricks are used in an efficient
manner in terms of memory, however results also determine that there are hindering
drawbacks which nullify the advantages.

4.1 Goals

Following on from evaluations performed in chapter 3 it is clear that optimising a
renderer to make better use of spatio-temporal cache coherence on the GPU should
be a priority. The different levels of the memory hierarchy all have various perfor-
mance traits, but area with potentially the best trade-off in terms of size-available and
performance benefit is the L2 cache.

Additionally, when considering the volume rendering pipeline on a whole, the
entire system should be used to the best of its ability. To be more specific, when data
is being rendered on the GPU, the CPU should be doing work, and vice-versa. The
obvious solution to enable this is pipelining DVR so the CPU queues up work for the

62

GPU to do.
Taking both of these priorities into account, a potential solution appears where

the CPU performs the output-sensitive filtering and scheduling of data that is opti-
mised for the GPU’s L2 cache, and GPU just consumes and renders said data. More
importantly, the GPU should be presented with all the data and information it needs
to render the frame without re-communicating with the CPU. This then allows for a
pipelineable output-sensitive approach for DVR.

4.2 Background & Related Work Recap

Volume rendering in not a new field and has been broadly researched. This section
gives the reader an overview of work relating to the specific aspects of volume rendering
presented in this paper. For a relatively recent review of a large section of volume
rendering research the reader is directed to a 2015 State-of-the-Art paper by Beyer et
al. [92]

Knittel [45] presented a complete DVR system that focused on the low-level
arrangement of memory, while also making use of hand-optimised assembly and SIMD
instructions. While Knittel’s work is useful for single frame volumes, the approach may
not be appropriate for a time-varying dataset due to the memory footprint proposed.

In some volumes it may be the case that there are relatively large sections that
are identical or very similar which, when the transfer function is applied, will have no
impact on the final image. While Knoll et al. [58] follow in the steps of ULTRAVIS
by observing that with highly optimised code the CPU can outperform the GPU when
rendering large volume datasets, they also make use of a BVH for empty space skipping.
However, whilst this approach can be justified for static datasets the overhead in terms
of pre-computing the BVH would be considered a limiting factor.

Fogal et al. [50] bricks the volume and begins rendering — without data — on
the GPU. During the rendering stage different level-of-details are determined for each
brick and the sampling rate is adjusted accordingly. When a ray encounters a brick
that is not present in device memory the absence is recorded and eventually a list of
the required bricks is communicated back to the CPU, resulting in a feedback loop and
an idling CPU or GPU.

Bricking [4, 45, 21, 49, 50, 58] involves breaking the large volume into smaller

63

sub-volumes and only transferring and rendering the data of the bricks that rays inter-
act with. While there would still be un-used data in some of the bricks (for example,
only a single ray hitting the edge of a brick or rays dispersing the deeper they go into
the volume) it can still give a coarse representation of the camera frustum.

However, when dealing with rendering algorithms that require interpolation be-
tween voxels to get an accurate sample, the renderer must either use multiple bricks
for a single sample or pad the brick with duplicated voxels.

In this approach the intention that an SMM only work on a single brick at a
time, implying that the voxels at the edge of a brick are duplicated. It should be
noted and well understood that this duplication can be quite drastic when the brick
size decreases. As seen in figure 4.1 when bricking even a 5123 volume the memory
overhead for the entire volume increases dramatically.

This overhead in particularly emphasised when the padding not only has to
accommodate voxels for interpolation but also gradient calculation for lighting tech-
niques.

There has been work done to mitigate the effects of these ghost voxels by using
previous brick data to generate this duplication on the fly rather than transferring it,
saving on transfer bandwidth [93].

4.3 View Dependent Scheduling & Load Balancing

The aim of this approach is to load balance across the CPU and GPU. To achieve this
a pipeline is created that allows for the CPU to prepare a frame while the GPU is
rendering the previous frame.

This section outlines the different sections of the pipeline starting with the brick
determination on the CPU, brick rasterisation on the GPU and load-balanced rendering
on GPU. These overlapping processes are visualised in figure 4.2.

4.3.1 Brick Determination

In order to load-balance the CPU and GPU, the first step performed is the determina-
tion of which bricks the GPU required to render the volume on the CPU. The algorithm
is designed to be run in-parallel to rendering, meaning that once the algorithm has de-

64

 0

 5x107

 1x108

 1.5x108

 2x108

0310032003300340035003

L2 Cache Size (2MB)

M
em

or
y

O
ve

rh
ea

d
(B

yt
es

)

Brick Size

Memory Overhead (Bytes)

Figure 4.1: When determining the ideal brick size, care must be taken that redundant
data used for ghost voxels (if used) does not become overwhelming.

C
PU

B
O

T
H

G
PU

Brick Determination

Data Gathering

Texture Transfer

Render Kernel

Blending

Time-step 1 Time-step 2

Figure 4.2: Overlapping processes as part of the rendering pipeline on both the CPU
and GPU.

65

termined the first brick to be rendered, the information and data is sent through the
pipeline to begin the rendering of said brick.

While complete out-of-order rendering is possible the memory requirements of
this would be quite severe as each brick would render to its own buffer. Bricks closer
to the camera take up a considerable portion of the screen space, leading to hefty
requirements in terms of buffer space.

To address this issue a work tree is created implicitly when sending jobs to the
GPU. Bricks are always determined from nearest to the camera working away through
the volume.This is accomplished by first finding the closest brick to the camera that
is in screen space. the neighbours of this brick are then added to a search stack. The
stack head is popped and screen space tested by projecting the eight corner points to
a tile region. If this tile incorporates part of the screen buffer, it is added to the render
queue. Neighbours of this brick are then added to the search stack. The next brick
on the search stack is popped and the loop is repeated. This process is outlined in
algorithm 1.

Algorithm 1: Brick determination algorithm. Note that when a brick is
pushed to renderList rendering of that brick can begin as soon as the brick
data has been loaded.
1 Brick b = Closest Brick In Frustum;
2 List searchList.push(b.neighbours());
3 List renderList.push(b);
4 while searchList not empty do
5 b = searchList.popHead();
6 List neighbours = b.neighbours();
7 for Brick n in neighbours do
8 if not n.checked then
9 if screen.willTouch(n) then

10 renderList.push(n);
11 searchList.push(n);
12 end
13 n.checked = true;
14 end
15 end
16 end

66

CPU

GPU

Entry Brick
Calculation

Neighbour
Brick Search

Brick Info
Generation

And Allocation

Data
Gathering

Brick Data
Transfer

Ray
Generation

Ray / Brick
Intersection Test

Ray Sampling
Tile

Compositing

Neighbour Search List

Render List

Brick Data Tile Data

Render Buffer

Data Flow Program Flow

Figure 4.3: Flow of proposed view-dependant algorithm.

4.3.2 Empty Space Skipping

As the proposed approach depends on a previous step that will read all voxels in a
brick before parking them to be transferred to the GPU and rendered, it can employ
an ESS technique to reduce computational load on the GPU. By reading all voxels
in a brick the algorithm will know the minimum and maximum values in the voxel
chunk. Much like performing empty space skipping on regular voxel blocks [94], DVR
can simply skip rendering the brick if it knows the applied transfer function will have
no effect on the resulting image.

4.3.3 Brick Compositing

While the working-set of bricks are determined and rendered has now been covered,
this sections show how to make good use of the computational resources to composite
the bricks in an efficient manner. In listing 1, the algorithm to generated an ordered list
of the working set of bricks is shown. Using this list, final-image screen-space is divided
into tiles, which are referred to as screen-tiles to make a distinction from brick-tiles.
Each of these screen-tiles are the work item of a CUDA block, or effectively each SMM
takes a section of the final image to work on.

Each block traverses the ordered list from front to back, first testing each brick-
tile in the list for contribution to the current screen-tile. If there is no contribution to

67

L1 L1 L1 L1 L1

L2 2MB

Tile Buffer Tile Buffer Tile Buffer Tile Buffer

DRAM4GB

Voxel Data Flow Tile Write Through

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

24KB 24KB 24KB 24KB 24KB

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

16KB
(163 Voxels)

Figure 4.4: Data flow of proposed view-dependant algorithm.

the current screen-tile, the brick-tile is skipped and the CUDA block moves on to the
next brick-tile in the list, otherwise the brick-tile is composited onto the final image.
A visual representation of this method is provided in figure 4.5. This method ensures
that a correct final image is composited.

4.4 Implementation & Results

In this section an outline of the implementation specifics is given and present the results
of performance profiling tests.

4.4.1 Implementation

The code for this method was implemented in C++ using CUDA in a cross-platform
capable project. While the project itself is cross-platform, most of the results are col-
lected with the project being built on the Linux operating system, specifically Ubuntu
16.04LTS. The system is a Dell Precision Tower 5810 with hardware consisting of an
Nvidia Quadro K2200 GPU, an Intel Xeon E5-1620 v3 CPU, 16GB of RAM and a
standard 1TB HDD. Bandwidth and cache results were obtained using the Nvidia Vi-

68

0

1

2

3

4

5

6

7

8

9

T
hr

ea
d

B
lo

ck
s

Brick Tiles

Figure 4.5: Screen-tile based compositing. Kernels are launched in a screen-tile based
order to composite the brick render-tiles in front-to-back order. This ensures that each
block uses a brick-tile once and only once.

sual Studio plug-in NSight on Windows and the Nvidia command line tool nvprof on
Linux.

4.4.2 Memory Bandwidth

Table 4.1 shows the memory performance statistics of the brick-order ray caster versus
a standard DVR and ray-guided bricked ray caster, without an output buffer. It is
interesting to note that although the L2 hit rate for brick-order ray casting is sub-
stantially lower than its counterparts, the data transferred between the L2 and L1

Standard DVR Ray-Guided Bricking Brick-Order
DRAM to L2 139.73 MB 322.85 MB 135.33 MB

L2 to L1 1.37 GB 2.13 GB 0.45 GB
L2 Hit Rate 89.6% 92.3% 84.1%
L1 Hit Rate 70.5% 73.7% 88.9%

Table 4.1: Memory bandwidth statistics for different methods of volume rendering on
an Nvidia Quadro K2200 without an output buffer. Note the drastic reduction in
bandwidth between the L2 and L1 for the Brick-Order ray casting method.

69

is drastically reduced. Interestingly the ray-guided bricked ray caster can be seen to
thrash both the L2 cache considerably, drawing this conclusion from the rise in data
between DRAM and L2.

However, when the output buffers are introduced, the memory hierarchy tells
a different story. The author found that maintaining the tile buffers for the bricks
thrashed the cache substantially. Even using shared memory to save a patch of the tile
buffer proved futile, as the available patch area is quite small.

4.4.3 Overhead

In addition to tile buffer drawbacks, the computational overhead for scheduling on
both the CPU and GPU nullified any cache performance gains. With small bricks, the
cost of brick-determination on the CPU is quite high although in hindsight a parallel
method could possibly be devised. Regardless, this time is still less than the GPU
render time and, as such, they could be overlapped.

On the GPU — because of the scheduling parameters and brick-tile information
needed — the approach began to hit a thread-occupancy issue on the GPU. With more
information needed for a kernel to render a brick to a tile, more registers were needed
to keep track of this information. As such, the achieved occupancy begins to drop.

4.5 Conclusion

In this chapter, the scheduling of brick data was implemented and investigated for
single-view sort-last DVR. Unfortunately the results are not satisfactory in terms of
rendering times. While brick re-usage count is low, the scheduling overhead on both
the CPU and the GPU nullifies the gains. In addition to this, a sort-last approach is
difficult to maintain on the GPU due to the memory footprint needed for the brick tile
buffers.

While this approach does not appear to suit single-view rendering systems, there
may be room to extend this solution into multi-view rendering with the possibility
of spreading the overhead costs over all the views. In section 4.4.3 it is noted that
the scheduling costs on the GPU for a single view is quite high. If this method was
parallelised and modified to accommodate multiple views, the overhead might not scale

70

linearly. In addition to this, the drawbacks of tile buffers might be nullified by possibly
re-using tiles that provide little or no information to other views.

71

Chapter 5

Light Field Volume Rendering

Direct Volume Rendering (DVR) of volume data can be quite a memory intensive
task in terms of both footprint and cache-coherency. Ray-guided approaches may
not be the best option when it comes to rendering the volume to multiple-views or
light-fields at interactive rates, as regions of the volume rendered for one view may be
overwritten in the on-chip cache only to be needed by another view at a later point.
Additionally, many approaches are not suitable to streaming time-varying data due
to pre-computation. This chapter presents an approach to schedule volume sub-data
while minimising the footprint of sub-buffers needed, and pipe-lining the work load
between CPU and GPU, showing that there is significant advantage to using such an
approach.

5.1 Goals

For many streaming time-varying volume data applications — i.e 4D MRI, 4D ultra-
sound or scientific simulations — direct volume rendering (DVR) is the method of
choice. It is often desirable for users to view these streaming data-sets in real-time
while simultaneously moving the camera or changing the appearance of the volume us-
ing a transfer-function. Presenting the user with additional perceptual enhancements
like parallax via auto-stereoscopic or light-field displays can give a greater understand-
ing of the data [11, 87, 12]. Light-fields further enhance a user’s perception of the
scene by allowing the eye to accommodate and focus on any point, as shown with

72

near-eye light-field displays [80]. This serves the dual purpose of depth perception and
preventing eye-strain by circumventing the vergence-accommodation conflict problem.

Much work has been done on rendering single-frame volume data in a ray-guided
approach [49, 50, 4], and some work has been done on displaying single-frame volume
data to a light-field display [3, 1]. These approaches are a good solution when data
is static or updates without a real-time requirement [5] and transfer the exact view-
dependent volume data needed by the GPU. However, these ray-guided approaches are
not ideally suited for real-time rendering of streaming time-varying data due to the
requirement of data-structure construction, level-of-detail sub-sampling and feedback-
loops between GPU and CPU. Time-varying DVR has also been well researched [36, 33,
37, 35] but few papers focus on rendering to a light-field display. Approaches that do
[86, 87, 90] are either quite simple or resort to down-sampled or image-based techniques
to minimise latency.

Finally, when rendering a volume to a single-view, rays are generally closely
coupled and sample the data with relatively good spatial locality, taking advantage
of the shared L2 cache on some GPUs. This can change, however, when rendering a
volume to a multi-view or light-field display when sets of rays from multiple different
views can begin to thrash the caches.

Considering this scenario, a pipe-lined approach requiring minimal pre-processing
with the ability to run on commodity hardware is desired. In this chapter a novel
method is shown to make efficient use of existing GPU architectures to simultaneously
project regions of a streaming time-varying volume to all views of a light-field display
in one pass, exploiting the on-chip L2 cache, while sharing the scheduling load with
the CPU in a pipe-lined fashion.

The proposed approach focuses on the performance of light-field DVR on current
commodity hardware at a practical resolution in terms of both screen and volumetric
data dimensions in comparison to an octree empty-space-skipping (ESS) approach.
This is done by projecting sub-volumes that fit in the on-chip GPU L2 cache to all
views before moving on to the next sub-volume, making better use of the cache, rather
than each view sampling from the volume in different locations at different times. The
approach exploits volume regions temporally close in render order to minimise the
amount of intermediate sub-buffers to which bricks project. All of this is presented as
a pipelined approach with the CPU and GPU working in parallel. In summary, the

73

contributions are the following:

• A hybrid approach for spreading the view-dependent working set determination
between the CPU and GPU in a pipe-lined fashion to render reasonably-sized
streaming time-varying volumes to a light-field.

• A method for minimising the amount of unique light-field sub-buffers needed to
render sections of a volume out-of-order, reducing the complexity and memory-
footprint of standard sort-last rendering.

• An evaluation of the proposed method showing significant performance increase in
the render-kernel in comparison to an octree-based empty-space-skipping renderer
as a result of improved L2 cache utilisation.

5.2 Background & Related Work Recap

This section gives an overview of relevant display technologies, their applications, ad-
vantages and disadvantages, with the aim of giving the reader an understanding of why
multi-view or light-field displays are an important research area.

Light-Field DVR

Ruijters et al. [87] expand upon previous work [86] and present an application-oriented
method to reduce latency between data-retrieval and display in a real-time system dis-
played on a lenticular auto-stereoscopic display. To achieve this they adjust the output
resolution of the volume rendering dynamically and, in certain cases, render fewer
views than presented on the auto-stereoscopic display, interpolating between rendered
views to fill in the gaps on the display side. While this method works well for latency
minimisation, rendering artefacts can be present in the interpolated images. Rezk-
Salama et al. [95] convert large volumetric datasets into a light-field representation
in an off-line pre-processing step, relying on spherical light-field parametrization and
depth information. Because this is an off-line method, streaming time-varying data
was not supported. Birklbauer et al.[96] present a combination of light-field and vol-
ume rendering to enable real-time interactive explorations of large static volumetric
data sets, based on efficient light-field caching[97]. They use a spherical light-field

74

parametrization with virtual cameras uniformly distributed on a sphere which encloses
the volume. Agus et al.[1] display volume data on a projector-based light-field dis-
play using fairly standard means of rendering but focusing more on image warping
to present a final projected image. Guitian et al.[3] use rendering methods similar to
Gobetti et al.[2] but displayed on a projector-based light-field display, targeting large
static volume datasets. Battin et al. [90] devise a method to determine the view from
which a particular lenticular display pixel’s chromatic components are derived from.

Volume Data, Bricking & Data-structures

A common strategy used in volume rendering is to sub-divide the volume into regions
or “bricks” and wrapping a data-structure like an octree [50, 49, 4, 3, 56] or a bounding-
volume-hierarchy[58] on top. Construction of these data-structures and sub-sampled
level-of-detail bricks consume valuable CPU time and are not necessarily possible in a
real-time streaming volume environment.

Previous work that uses bricking as an approach for volume rendering has been
covered in previous chapters — such as Knoll et al. [58], ULTRAVIS[45], Gobetti
et al.[2], Crassin et al. [4], Fogal and Krüger [49], Fogal et al. [50] Hadwiger et al.
[6, 5] and Liu et al. [51]. None of these works are designed to work for multi-view or
light-field scenarios, requiring off-line pre-processing and sub-sampling steps, and do
not take advantage of their bricked-structure for temporal cache-coherency.

Object-Order & Image-Order

There are two paradigms used for the rendering of bricks: ‘Sort-first’ or ‘image-order’
rendering refers to systems which render the bricks in-order to the screen-buffer, and
‘sort-last’ or ‘object-order’ rendering which renders the bricks out-of order or in parallel
to sub-buffers and then compositing these sub-buffers in order to the final image [23,
22, 25]. Samanta et al. [27] presented a hybrid between object-order and image-
order rendering, and the proposed approach makes use of this concept but at a much
smaller system-scale and proximity, targeting the GPU rather than a full cluster. Since
the proposed approach is a hybrid of sort-first and sort-last the aforementioned ERT
drawback can be mitigated to some extent.

75

Figure 5.1: 16x16 light-field rendering of super-nova dataset. Note the slight parallax
that can be seen across all the images. This parallax introduces complexity when
determining the render-order of sub-bricks.

76

Figure 5.2: A 16x16 planar light-field (left) of a cardiac data-set, refocused (right)
using the method outlined in [66], presented as a validation of the presented light-field
implementation.

Streaming Time-Varying Data

Time-varying volume data [33] that has multiple frames representing individual time
steps. Shekhar et al. [36] use a multi-planar approach to render streaming cardiac data
by bricking the volume data. Zhang et al. [37] presented a simplistic 4D cardiac data
visualisation synchronised to ECG signals. Noonan et al. [35] use predictive approach
to estimate the change in bricks in a volume, cutting down on data transfer between
the CPU and GPU, but introducing slight data distortions in doing so.

GPU Memory Hierarchy & Thread Scheduling

The GPU memory hierarchy is of particular interest in this work and it is vitally
important to note the placement of the L2 cache in this architecture. For example,
with 5 streaming-multiprocessors (SMM), the GM107 architecture provides us with 640
computational cores in total. A small unified L1 cache is provided to each SMM, and
a larger 2MB L2 cache is shared among these 5 SMMs, followed down to the DRAM
on the device referred to as device memory in both the documentation and this work.
It is the shared L2 cache which this approach aims to exploit by projecting regions of

77

CPU GPU

ESS DVR

Brick-Based LFDVR

Streaming
Data Source

ESS Info
Generation

Transfer
Volume to GPU

View List
Generation

Sub-buffer
Minimisation

Brick Data
Transfer

Render
Kernels

Compositing
Kernel

Entry Points
Kernel

Render
Kernel

Final
Image

Figure 5.3: Overview of the pipelined approach to profile both the brute-force LFDVR
and the bricked LFDVR. Note that the two methods share ESS info generation and
entry/exit points step.

the volume to all light-field views before moving on to the next region, making better
use of the temporal coherence in the L2.

While the computational capacity of the GPU is quite substantial, the amount
of concurrent computation is limited by a few factors such as register or memory usage
per thread. It is easy to consider the rendering of volume data as a set of rays being
stepped along simultaneously, however due to the limited — albeit large — amount
of threads available to fit concurrently on the GPU, in reality the volume is rendered
in tiles, with the possibility of the rays in one tile shooting through the entire volume
before the next tile begins. This leads to the issue where the L2 cache may be thrashed
along the way, before the next set of rays starts and repeats the process. However, since
the render kernel is forced to complete a sub-section of the volume before advancing
to the next volume brick, improved cache coherency can be expected.

5.3 Pipelined Brick-Based Light-Field DVR

The core concepts of the method are:

• Projecting one sub-L2-cache-sized sub-volume brick to all light-field sub-aperture
images before progressing to the next brick, essentially retaining the brick data
in the cache for more efficient sampling access by forcing all GPU thread blocks
to remain in the same volume brick .

• Since the render order of bricks may be different for each sub-aperture image view-
point, each brick should render to an intermediate buffer called a sub-buffer. The

78

algorithm exploits bricks that can use the same sub-buffers as their neighbours
to reduce memory footprint.

• Pipelining the working-set/render-order/sub-buffer determination on the CPU,
and asynchronously rendering of bricks followed by sub-buffer compositing to get
the final image on the GPU.

The pipeline is therefore structured as the following steps, and visualised in 5.3:

1. CPU Empty-space-skipping (ESS) information generation.

2. CPU Per-view view-dependent render-order list determination.

3. CPU Per-view brick sub-buffer amalgamation (minimisation).

4. Both Working-set data transfer.

5. GPU Per-brick render kernels.

6. GPU Sub-buffer compositing kernels to final image.

ESS data-structure generation has been covered in the literature extensively,
and the reader can refer to section 2.2.6 for an overview of this. As such this chapter
only expands upon view-list generation (stage 2 above) and the sub-buffer minimisation
(stage 3 above) in the following sections.

View-List Generation

The rendering process begins by determining the entry brick for a given view. In order
to generate a render list per-view there first needs to be overall order determined in
which the bricks will be rendered. In this approach they are ordered by distance from
the camera plane centre point. Note that bricks that are considered empty are not
placed on this render list, and as such are now excluded from the working-set. With
this information the per-view view-dependent render lists are generated in parallel on
the CPU. These lists represent the order in which bricks need to be rendered for a
particular view to produce the correct result. This method is the same as used in
chapter 4, algorithm 1, except that is is now used per-view and executed in parallel.

79

Algorithm 2: Sub-buffer minimisation algorithm.
1 Function MinimiseSubBuffers (View[] views, Brick[] bricks)
2 for View view in views do
3 List brickList = view.brickListInOrder;
4 List subBuffers = {};
5 while brickList not empty do
6 b = brickList.popHead();
7 if not b.HasSubBufferForView(view) then
8 SubBuffer s = new SubBuffer();
9 subBuffers.push(s);

10 RecursiveAddBuffer(b, view, s);
11 end
12 end
13 end
14 Function RecursiveAddBuffer (Brick b, View v, SubBuffer s)
15 if b.HasSubBufferForView(v) then
16 return;
17 end
18 b.SubBufferForView(v) = s;
19 s.AccommodateBrickProjectionBounds(b);
20 for Brick n in b.forwardNeighbours do
21 if n.renderIndex >b.renderIndex then
22 RecursiveAddBuffer(n, v, s);
23 end
24 end

80

Sub Buffer Minimisation

An important facet of this work is reducing the amount of sub-buffers necessary for
storing brick accumulation values. Reducing the amount of sub-buffers is required to
satisfy both storage requirements and final-image compositing complexity. Algorithm
2 outlines the method used to attempt to minimise the amount of unique sub-buffers
required. The goal is to exploit the fact that — especially for a planar-camera array
— neighbouring bricks will be close enough to each other in the overall render list that
they may share a buffer without breaking the front-to-back compositing order required
for a correct final image, in which case they may share a sub-buffer, expanded to fit
both bricks’ projection regions.

The algorithm begins with the entry brick for each view. A new sub-buffer is
created, with dimensions satisfying the projected region of the starting brick. The
‘forward neighbours’ of each brick (i.e bricks which are further from the view-point by
Manhattan distance) are then recursively traversed, testing for an existing assigned sub-
buffer for the neighbour. If there is no assigned sub-buffer and it is later in the overall
render order, it is assigned the current sub-buffer, and the sub-buffer is ‘expanded’
(only in terms of min/max bounds) to accommodate the neighbouring brick. When
the recursive set of forward neighbours is exhausted, each brick in the current view’s
render list is checked to make sure there is a sub-buffer, running the recursive sub-
buffer assignment algorithm if a brick has no sub-buffer assigned. With all sub-buffer
information generated now the space for these sub-buffers is allocated on the GPU.

Empty Space Skipping

At some point the volumetric data must be transferred to the main memory of the
system — in this case it is assumed that the data streams in from an external data
source. During this process the method can generate ESS information on the fly, by
creating a bit-mask of voxel intensities (not opacities) for a region of the volume. This
approach was chosen to allow a finer granularity of ESS over a min/max approach. In
the case of the brute-force LFDVR algorithm this information is used to generate the
ESS data-structure. In the case of the brick-based LFDVR this information is used to
determine if brick-data should be transferred to the GPU and whether or not a render
kernel should be launched for a brick.

81

Planar Array
Centre

View Point

16 9 4 1 0 3 8 15

24 17 10 5 2 7 14 23

32 25 18 11 6 13 22 31

40 33 26 19 12 21 30 39

48 41 34 27 20 29 38 47

55 49 42 35 28 37 46 54

60 56 50 43 36 45 53 59

63 61 57 51 44 52 58 62

Figure 5.4: Graphic overview of the result of sub-buffer minimisation. Note that bricks
with a different luminance are those which begin the recursive function outlined in
algorithm 2. In this instance, 7 buffers are needed for the associated view point, rather
than 64 unique sub-buffers for each brick.

&

=

TF

Brick

Figure 5.5: By comparing the voxel intensity bitmask of a brick to the intensity con-
tribution bitmask of the working transfer-function’s look-up-table the algorithm can
decide whether or not a brick is considered empty space.

82

Compositing Kernel

In algorithm 2 a list sub-buffers was generated, which can be trivially ordered from
front-to-back. Using this list the final-image’s screen-space is divided into tiles, which
are referred to as screen-tiles. Each of these screen-tiles are the work item of a CUDA
thread block. In essence each SMM takes a section of the final image to work on.

Each thread block traverses the ordered list from front to back, first testing each
sub-buffer in the ordered list for contribution to its target screen-tile. If there is no
contribution to the current screen-tile the brick-tile is skipped and the CUDA block
moves on to the next brick-tile in the list, otherwise the brick-tile is composited onto
the final image. This method ensures that a correct final image is composited.

5.4 Implementation & Evaluation

The proposed approach was implemented as a module — or set of modules rather —
for the open source data visualization tool Inviwo, demonstrating that this approach
is viable as a real-world application. The main system used an Nvidia Quadro K2200
GPU and Intel Xeon E5-1620 v3 CPU. In most cases, the experiments involved a light-
field camera plane rotating a full 360 degrees in 50 steps around a volume. Results
presented were obtained from using a 5123 floating-point volume of a supernova[98],
and similar results were also obtained using other datasets whose size exceed the L2
cache size, excluded for sake of space.

As this method aims to exploit the shared L2 cache on the GPU, it should be
expected that bricks that have a data size of sub-L2 size (2MB) to perform best. In
the case of floating-point data, this is approximately 803 voxels or less. Taking into
account other L2 access requirements for other rendering details in the kernel, brick
sizes of 723 voxels or less are estimated to have better cache performance. Further
to this, considering computational overhead and complexity of smaller brick-sizes, the
expected performant range of bricks can be narrowed to between than 723 to 323 voxels.
In the following experiments it is proved that this is the case.

Since this application area is relatively unresearched, there is little to compare
against. Ray-guided approaches discussed in section 2 require too much off-line pre-
processing for streaming volumes, and multi-view streaming dataset DVR approaches

83

are either quite simple or introduce artefacts via image-based-rendering techniques. A
compromise can be reached by implementing both a standard brute-force DVR ray-
caster and an empty-space-skipping octree DVR ray-caster as comparisons.

The implementation of this approach was written as a set of plugins for Inviwo
[99] using C++ for the CPU code and CUDA for GPU code. The individual plugins
where as follows:

• An ESS information generator, used to determine empty regions of the volume
which was fed into both the octree-based ray-caster and the LFDVR ray-caster.

• A multi-view entry / exit points plugin which generated front-face entry and
back-face exit ray positions of the volume’s bounding box.

• An octree-based ray-caster used to compare against.

• An implementation of the main contribution of this approach, the LFDVR ray-
caster.

• A light-field swizzler, which re-arranged sub-pixels of the light-field grid output
into a format that could be displayed on the LookingGlass.

While the octree-based ray-caster exclusively used the ray entry / exit for ren-
dering, the proposed LFDVR approach only used it for ray-direction, and performed a
quick Axis-Aligned Bounding Box (AABB) intersection to find the entry / exit point
of the brick it was currently rendering.

View-Count & Brick Size

In this experiment the render kernels of an implementation of an octree ESS ray-caster,
and the proposed brick-based ray-caster are isolated, and these sections are timed on
their own. The parameters changed in this experiment are the brick-size which are
varied from 323 up to 5123, and the light-field view-count which are varied from 1 view
to 322 views. This view-count is a sub-division of the target screen resolution. Fur-
thermore, displaying the volume with and without lighting is introduced, introducing
more computation on the GPU along with more intensity on the cache from gradient
sampling.

84

Figure 5.7 shows the results of this experiment with an overall target resolution
of 40962 for view-counts of 4 × 4 upwards on the GTX 1080 respectively. It can be
seen that when the brick-size begins to drop below the L2 cache size (2MB) on the
GPU the proposed BBDVR algorithm out-performs standard octree ESS as much as
×2 in the cases outlined as the expected performant range in the beginning of this
section. This is due to the better temporal cache-coherence gained from only using
a brick once for all views, verified in a later experiment ‘L2 Cache Statistics’. While
the graphs do not display data for view-counts 1 × 1 and 2 × 2 for the sake of figure
space the results are discussed here. The proposed approach performs well in a many-
view small-brick scenario. However, smaller view-counts and larger brick sizes reveal
a computational overhead of the proposed approach in comparison to the octree ESS
method as it no-longer gains data-reuse advantage.

Target Resolution

This work also examines the performance when changing the target buffer resolution
parameter between 10242, 20482 and 40962 and show the average performance gain
for all view-counts with varying brick sizes versus the ESS DVR. The results for these
experiments are shown in figure 5.9. It can be seen that for a relatively small resolu-
tion size of 10242 the BBDVR approach slightly under-performs in relation to the ESS
approach. It can be deduced that this is due to overhead in the kernel to manage ad-
ditional parameters. It is observable, however, that with a brick-size of approximately
643 the BBDVR out-performs ESS regardless of target resolution. Interestingly, for the
10242 target-resolution, the performance plummets with a smaller than 323 brick size.
This again is due to the kernel overhead of scheduling bricks to be used once and only
once, waiting for bricks to be completed before moving to the next one.

Render List & Buffer Minimisation

In figure 5.8 the individual times of the Brick-Based DVR pipeline components is shown.
Firstly, it can be seen that — for most cases — the components can be pipelined and
overlap quite well. The exception to this is when the brick size drops to about 323, in
which event the computational overhead on the CPU rises dramatically. This, coupled
with the overhead on the GPU is reason to keep brick-sizes in the proposed approach

85

in the sweet-spot of approximately 643.

L2 Cache Statistics

As a final confirmation that this approach has achieved what was intended — better
utilisation of the on-chip L2 cache — the application was profiled using the Nvidia
tool ‘nvprof’, querying the metric ‘l2 tex hit rate’ on the Quadro K2200. While it
was attempted to profile the application with a 40962 buffer size, nvprof reported
metric overflow errors and couldn’t record results. Instead the application was profiled
with a 20482 output buffer divided into 32x32 views, with a brick size of 643 floating-
point data, testing the standard brute-force ray-caster, the octree ESS ray-caster and
finally the brick-based ray-caster. As expected a substantial hit-rate improvement was
observed from an ˜50% hit rate for the octree ray-caster, to an ˜87% hit-rate for the
brick-based ray-caster.

Scalability

In addition to the primary system, the performance of the proposed approach with
a more-capable GPU is also timed. The secondary system performed experiments on
used an Nvidia GTX 1080. The difference between render kernel times on the K2200
and the GTX1080 can be seen between figures 5.6 and 5.7. In both figures an expected
dip in render kernel time when the brick data size begins to drop below the L2 cache
size can be observed. This shows that the brick-based approach scales with additional
shader cores.

86

256 128 96 72 64 48 32
0

5

10

15

20

25

30

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

256 128 96 72 64 48 32
0

5

10

15

20

25

30

Simple DVR Octree ESS Brick Based

256 128 96 72 64 48 32
0

5

10

15

20

25

30

256 128 96 72 64 48 32
0

5

10

15

20

25

30

256 128 96 72 64 48 32
Sub-division Size

0

5

10

15

20

25

30

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

256 128 96 72 64 48 32
Sub-division Size

0

5

10

15

20

25

30

256 128 96 72 64 48 32
Sub-division Size

0

5

10

15

20

25

30

256 128 96 72 64 48 32
Sub-division Size

0

5

10

15

20

25

30

N
o
 S

h
a
d

in
g

4x4 Views 8x8 Views 16x16 Views 32x32 Views

S
h

a
d

in
g

Figure 5.6: Render kernel times for multiple configurations of view count and brick
size for an overall buffer size of 40922 rendering a 5123 floating-point volume with and
without shading on the Nvidia Quadro K2200. Note the dip in render kernel time with
the Brick-Based DVR when the brick size begins to drop beneath the L2 cache size.

256 128 96 72 64 48 32
0

1

2

3

4

5

6

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

256 128 96 72 64 48 32
0

1

2

3

4

5

6

Simple DVR Octree ESS Brick Based

256 128 96 72 64 48 32
0

1

2

3

4

5

6

256 128 96 72 64 48 32
0

1

2

3

4

5

6

256 128 96 72 64 48 32
Sub-division Size

0
1
2
3
4
5
6
7
8

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

256 128 96 72 64 48 32
Sub-division Size

0
1
2
3
4
5
6
7
8

256 128 96 72 64 48 32
Sub-division Size

0
1
2
3
4
5
6
7
8

256 128 96 72 64 48 32
Sub-division Size

0
1
2
3
4
5
6
7
8

N
o
 S

h
a
d

in
g

4x4 Views 8x8 Views 16x16 Views 32x32 Views

S
h

a
d

in
g

Figure 5.7: Render kernel times for multiple configurations of view count and brick
size for an overall buffer size of 40922 rendering a 5123 floating-point volume with and
without shading on the Nvidia GTX 1080. A gain in performance is observed when
brick size drops below the L2 cache size.

87

96 72 64 48 32
0.0

0.5

1.0

1.5

2.0

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

96 72 64 48 32
0.0

0.5

1.0

1.5

2.0

View List Generation Render Kernel Buffer Compositing

96 72 64 48 32
0.0

0.5

1.0

1.5

2.0

96 72 64 48 32
0.0

0.5

1.0

1.5

2.0

96 72 64 48 32
Sub-division Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
e
n
d
e
r

K
e
rn

e
l
T
im

e
 (

s)

96 72 64 48 32
Sub-division Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

96 72 64 48 32
Sub-division Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

96 72 64 48 32
Sub-division Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
 S

h
a
d

in
g

4x4 Views 8x8 Views 16x16 Views 32x32 Views

S
h

a
d

in
g

Figure 5.8: Individual times of the Brick-Based DVR pipeline on the GTX 1080 system.
Note that when the brick size drops below 32, the view-list generation stage over-runs
the render-kernel time, adding another computational-overhead reason to keep brick
sizes at approximately 643

88

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)

2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)

2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)

2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)

2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)

2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Kernel Time (s)
2610

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Speedup (%)

0.
5x

1.
0x

1.
5x

2.
0x

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Speedup (%)

0.
5x

1.
0x

1.
5x

2.
0x

Vie
w

Co
un

t
32

2

16
2

42
Br

ick
 S

ize

51
23

25
63

64
3

Speedup (%)

0.
5x

1.
0x

1.
5x

2.
0x

ESS DVR BrickBasedDVR % Speedup

10
24

2
Re

so
lu

ti
on

20
48

2
Re

so
lu

ti
on

40
96

2
Re

so
lu

ti
on

Fi
gu

re
5.

9:
C

om
pa

ris
on

of
re

nd
er

ke
rn

el
tim

es
fo

r
bo

th
th

e
ES

S
D

V
R

m
et

ho
d

an
d

th
e

pr
op

os
ed

Br
ick

Ba
se

d
D

V
R

m
et

ho
d.

T
he

bo
tt

om
ro

w
sh

ow
s

th
e

av
er

ag
ed

sp
ee

d-
up

ac
ro

ss
al

lm
ea

su
re

d
vi

ew
-c

ou
nt

s
w

ith
di

ffe
re

nt
br

ick
-s

iz
es

.
N

ot
e

th
e

sp
ee

d-
up

ga
in

ed
fo

r
br

ick
siz

es
ar

ou
nd

64
3

fo
r

al
lr

es
ol

ut
io

ns
an

d
vi

ew
-c

ou
nt

s.

89

5.5 Conclusion

This chapter has presented a novel approach in the relatively untapped area of light-
field volume rendering of streaming time-varying datasets. It argues that ray-guided
approaches require too much pre-processing to handle streaming datasets on-the-fly,
and current light-field rendering methods for streaming volumes are either simplistic or
image-based, introducing artefacts. Results have shown that by forcing an increased
spatio-temporal sampling coherency, DVR can benefit substantially when rendering
streaming time-varying volumetric data to a light-field. By limiting regions of the
volume to a certain size and using them once and only once, DVR can exploit the
temporal-coherency leverage given to us by the shared L2 cache on a GPU, and return
a very significant performance increase of up to 2x in contrast to an octree ESS approach
when multiple views must be presented. Furthermore, it is shown that this approach
scales with additional shader cores. Finally, due to the pipelined nature of this approach
with the CPU performing working-set determination and data scheduling, and the GPU
performing the rendering and compositing, it is compatible with streaming time-varying
volume data without need for extensive pre-processing or sub-sampling.

This chapter was presented as a short-paper in Pacific Graphics 2018 [14] and
has been used as a practical platform for other papers — both published [18, 17] and
pending publication — from the same research group.

90

Chapter 6

BVH Direct Volume Rendering on
GPU

6.1 Goals

In almost all recent GPU DVR applications octrees in some way or form are the preva-
lent acceleration data-structures used. There are clear benefits that octrees provide
to DVR; easy-to-implement ESS, clear and defined volume paging and caching, and
trivially sub-sampled data support are to name but a few. Octrees have long been a
natural acceleration data-structure for volumes on GPU due thanks to the clear, de-
fined and easy to implement subdivision pattern, with predictable traversal times and
well researched algorithms.

BVHs have also been investigated as a form of acceleration for DVR, however
most of this research has been geared towards CPU rather than GPU. BVHs are de-
signed to handle regions of varying size by using AABBs to spatially group surface
data like polygons. While AABBs transition nicely to the regular grid structure of
volume data, little research has been done on their performance for volume rendering
on GPU. This is partly due to the impression that BVH build times impede interactive
exploration via transfer function updates. Additionally, it may seem wasteful to create
a BVH tree around groups of adjacent active regions that may be considered dense and
thus may as well share a leaf node to reduce build and traversal complexity. Recent
advancements in GPU technology have provided hardware-based BVH traversal and

91

ray-primitive intersections which has the potential to make the GPU a more viable
candidate for BVH DVR.

In this chapter, an investigation into the characteristics of BVHs on GPU in
terms of render-performance, render-complexity, and build times is presented. This
is additionally compared against a recent state-of-the-art approach, Sparseleap [6]. A
method to cluster acceleration leaves that has a significant impact on render times due
to reduced tree- and depth-complexity is presented, exhibiting leaf-count reductions
of up to 50% in the average case, improving render times by roughly 10-15%. This
work proposes that using BVHs on GPU for DVR is now a viable approach and that
tree-build times do not impede interactive exploration and are in fact one of the lowest
costing stages of the pipeline. It is finally shown that render times using BVHs can
be 20-40% faster than a state-of-the-art implementation with less deviation from the
average during exploration.

6.2 Background & Related Work Recap

Volume rendering, and more specifically DVR, has been a well researched topic in the
field of computer graphics. Fundamentally it is the accumulation of light through a
potentially heterogenous medium represented as a regular grid of data. This data is
re-sampled as the DVR algorithm steps along a ray, accumulating colour and opacity
[19, 100].

CPU volume rendering has also been well researched, but in general has been
focused more on large-scale volume data [101, 102] citing larger memory real-estate in
RAM and removing the need to transfer data to GPU. Some CPU-focused work has
used BVHs to accelerate data traversal [58, 103, 104]. These approaches all work well
for large data and can scale well to clusters of systems, however in this work a single
CPU - single GPU system is assumed. In this scenario the GPU currently massively
surpasses the CPU in parallelism and is rapidly improving in terms of memory capacity
and bandwidth.

GPU volume rendering has come a long way and a comprehensive state of the
art report has been presented by Beyer et al[92]. The works that are most relevant
are Fogal’s Tuvok renderer[49, 50], Liu et al[51] and Hadwiger et al[5, 6]. All of these
works share a common theme of some form of hierarchical data-structure. For example

92

[49, 50, 51] use octrees for ESS and data paging/sampling. Hadwiger et al. [5] instead
used a multi-level hierarchical data structure to facilitate paging of peta-scale volumes,
and expand upon that work[6] by using an octree-like occupancy histogram tree to
generate occupancy geometry for rasterized ESS traversal. It can then be seen that
octrees have been the data structure of choice for large scale volume rendering in most
relevant works [4, 105, 51, 49, 50, 5], chosen for its logarithmic search times and inherent
adaptability for LOD data. However, as recent works make note [48, 6], octrees can
be more of a hindrance for dense regions of the volume where overhead is introduced
traversing from brick to brick in sparse volumes with potential thin strands of opaque
media.

6.2.1 Nvidia OptiX & RTX

In terms of actual BVH research, there has been recent work into hardware acceleration
of construction [42], traversal and intersection test [41], and some of these concepts have
finally been implemented in consumer hardware. With surface path-tracing being the
topic of an immense amount of research, it was only a matter of time before some of
these concepts were this happened. While the OptiX SDK by Nvidia [60] has been
around for a while now, it has been utilising the massive parallel compute power that
was already present in hardware and exposed in CUDA, albeit with insider-knowledge
and clever scheduling. Only recently have they accelerated this by implementing some
core path-tracing concepts like BVH traversal, AABB and ray-triangle intersection
hardware with their new RTX line of GPUs.

While octrees may be a more trivially suitable candidate for DVR, it was time
that a proper investigation and evaluation of hardware accelerated BVHs in the context
of GPU DVR was warranted. This means analysing the traversal characteristics and
performance of both octrees and BVH. For interactive DVR exploration especially, how
either data-structure’s build time and traversal change with respect to transfer-function
updates are vitally important to the end-user scenario.

93

6.3 Evaluation of BVHs for DVR on GPU

There are many reasons why a BVH approach may be chosen over a more regular
acceleration data-structure such as an octree. For example, even if both an octree
and a BVH share the same leaf-size in a sub-divided volume, sparsely populated data
may require fewer inner tree nodes to be traversed to achieve the same amount of
skipped empty space. Secondly, using a BVH allows for the seamless integration into
existing path-tracing tools, such as Nvidia’s OptiX which can then be used in pro-
duction renderers for offline path-tracing when volumetric media needs to be used —
clouds or smoke for example. Following that, by using OptiX, much of the hard work
can be accomplished by the existing library, and offloaded to hardware accelerated
implementations.

However, advantages aside, as discussed previously there has been little investi-
gation into performance characteristics of BVH DVR on GPUs. To emphasise again,
especially with new hardware acceleration, an evaluation of BVHs needs to be per-
formed on GPUs. In particular, this work is interested in two major parts of the
interactive DVR pipeline: transfer function editing and spatial exploration. In the
first example, a user may tweak a transfer function making certain data less or more
visible. When data that was previously completely transparent becomes visible, this
means that the acceleration data-structure needs to be updated. In the case of the
BVH, this potentially means that a new leaf-node needs to be added to the scene and
the hierarchy needs to be updated. It is this build time that needs to be evaluated if
hardware accelerated BVH DVR is to be a viable candidate.

For the second task — spatial exploration — it needs to be determined how
BVH traversal handles many potentially transparent regions of volume data that may
be redundantly touching (more about that in section 6.4) creating additional depth
complexity. In a current state-of-the-art approach [6] rasterization of occupancy geom-
etry — which can loosely be thought of as an octree although the actual geometry skips
levels depending on the transfer function — generates a list of ray-segments which can
be traversed in order to efficiently skip empty space. Because these ray-segments can
be compressed on the fly, continuous regions of active leaves can compressed into a sin-
gle ray segment. In comparison to BVH ray-traversal, exiting one leaf and entering an
adjacent leaf can require a restart of the BVH search. This work evaluates the impact

94

this has on DVR with both opaque and mostly transparent transfer functions which
generate the same amount of leaves, only differing in the amount of early terminated
rays. In the next section, it is shown how this effect can be greatly mitigated.

6.4 Region Clustering for BVH

Figure 6.1: In this approach active bricks in a volume are clustered to reduce spatial
complexity in the data structure. Note that these clusters are not tied to a regular
spatial subdivision like octrees and this can cluster arbitrary groups of active bricks.

A core contribution of this work is reduction of data structure complexity by
spatially clustering active subdivision leaves in the volume. There are two major ad-
vantages that justify this step: Firstly, BVH construction complexity can be reduced
substantially facilitating faster refit or rebuild times when the transfer function changes,
although in section 6.6 results show that BVH build times are quite fast even without
this step.

Secondly — and perhaps more importantly — BVH traversal complexity can
be reduced substantially. By clustering active leaves in the subdivision the amount
of BVH leaves can be massively reduced, lessening the complexity of the hierarchy
and thus improving ray traversal times. This is demonstrated in section 6.6.2. These
benefits do however come at a cost, which is the actual clustering phase which are
performed on the CPU. There are two major challenges to face in this task.

95

The first challenge lies in the complexity and performance of finding ideal or
close to perfect clustering that minimises the leaf node count. A simple näıve single-
pass approach could begin by traversing the bricks in a scanline fashion, attempting to
group as many bricks as possible. While simple and easy to implement, this has the
major drawback of increased fragmentation as the scanline proceeds leading to larger
clusters at the beginning of the scanline and many smaller clusters towards the end. In
the proposed solution a greedy-like algorithm is used to cluster bricks in descending size
using a copy of a vector of booleans representing the active leaves in the subdivision,
coupled with a 3D version of a summed area table[106] (3DSAT).

The process begins by creating a vector of booleans — or a long bit string — that
represents the active leaves in the subdivision. Then a 3DSAT the same dimensions as
the subdivision grid is filled. If a leaf is active the sum is increased by 1 and the general
process for populating an SAT is used to generate the 3DSAT. When clustering the
leaves the 3DSAT is queried to determine if there are the same amount of active leaves
as the amount of leaves that are needed to cluster — for example if the algorithm is
attempting to cluster an 83 group of leaves, the 3DSAT is queried for the sum of all
active leaves in an 83 window. If the result is exactly 83 then is is known that all the
leaves in the region are active. This is coupled with checking the 8 corners of the 83

window against the active leaf mask. If all 8 corners are active, this region has not
been clustered before. When a region is clustered, the active leaf mask is updated so
that all leaves grouped by the cluster are marked as ‘inactive’, and are therefore not
considered in following checks. This sliding window can be thought of as a form of
convolution kernel, albeit in serial.

An outline of this process is shown in algorithm 3. It’s important to note about
this algorithm that a copy of the active list of bricks is used. When a cluster is found,
the leaves that are covered by that clustered are marked as inactive in the copied list,
effectively acting as a mask preventing any of those leaves being added to a different
cluster. A visual example of what this would look like is shown in figure 6.2.

The second challenge faced lies with the brick pool: What is the easiest way for
the brick pool to handle clustered regions of ESS information? The short answer is to
decouple the ESS from the actual DVR sampling. In this solution inspiration is taken
from Hadwiger et al’s 2012 [5] and 2018 (Sparseleap) [6] works, that separates the ESS
information from the actual volume sampling layer. This means that the BVH can use

96

Algorithm 3: Greedy algorithm to cluster regions of ESS leaf nodes. Note
that clusterSizeList is in descending order and that maxClusterSize is a
volume size limited, user defined variable.
1 activeList = getActiveLeaves();
2 sat = generateSAT(activeList);
3 clusterSizeList = {maxClusterSize .. 1};
4 clusterList = {};
5 for c in clusterSizeList do
6 area = c * c * c;
7 for z in numLeaves.z - c do
8 for y in numLeaves.y - c do
9 for x in numLeaves.x - c do

10 vec3 min = {x, y, z};
11 vec3 max = min + {c, c, c};
12 if !cornersActive(min, max) then
13 continue;
14 end
15 if sat.sumBetween(min, max) == area then
16 clusterList.push(min, max);
17 activeList.mask(min, max);
18 end
19 end
20 end
21 end
22 end

97

1
0 1 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 0 1
0 0 0 1 0 1 1 1
0 0 0 1 1 1 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0

0 1 1 1 1 1 1 1
0 2 3 4 5 5 5 5
0 2 4 6 8 9 9 9
0 2 5 8 11 13 13 14
0 2 5 9 12 15 16 18
0 2 5 10 14 18 19 22
0 2 5 10 15 19 20 23
0 2 5 10 16 21 22 25

SAT
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Clustered Mask

1-2+1+11=9

All Zero

Active Bricks Mask

0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1
0 2 3 4 5 5 5 5
0 2 4 6 8 9 9 9
0 2 5 8 11 13 13 14
0 2 5 9 12 15 16 18
0 2 5 10 14 18 19 22
0 2 5 10 15 19 20 23
0 2 5 10 16 21 22 25

SAT

3

2

Clustered Mask
4

Figure 6.2: Visual outline of the 3DSAT clustering method, simplified to a 2D example.

a fine-grained leaf size and the volume pool can use a brick size that suits I/O needs
or page table complexity, a trait that can be important in massive-scale DVR. While
Sparseleap use a multi-level page structure, for the intents and purposes of this work,
a minimised version is used. The implementation of this brick pool and page table are
discussed in more detail in section 6.5.3.

6.5 Implementation

This approach was implemented using Nvidia’s OptiX 6.0 SDK which allows for use
of the hardware accelerated BVH tools. Their new line of graphics cards that provide
hardware acceleration for BVH traversal were targeted as the platform for the proposed
solution.

98

6.5.1 Occupancy Information & OptiX

The first stage of the pipeline is occupancy information. The volume is subdivided
into bricks of identical sizes, storing some information about the brick contents; i.e.
min/max value or a bitmask of value ranges. In this implementation just min/max
values for a brick are used, rather than full bitmasks as in chapter 5. This information
will be tested against the transfer function when there is an interaction. This content
information is stored in an array in RAM, and can be saved to disk for future re-use
of the volume.

When the transfer function is updated the content information array is tested in
parallel — using OpenMP in this implementation — and the active/inactive flags are
stored in a bitmask array or vector of booleans. At this point, if clustering is not en-
abled, the active/inactive flags can then be used to generate bounding box information
— in this implementation world-space min/max coordinates of each region are used as
an AABB. This information is stored in a buffer which effectively represents separate
primitives in an OptiX geometry instance.

6.5.2 Clustering

If clustering is enabled the method outlined in section 6.4 and listed in algorithm 3
is used to generate a STL vector of min-leaf-index to max-leaf-index bounds which is
then used to generate AABB min/max bounds. In the implementation this clustering
method is single-threaded and a potentially näıve method of getting the job done, how-
ever this should be seen as a proof-of-concept method to accelerate stages later in the
BVH DVR pipeline like build times and ray-traversal in both opaque and transparent
volumes.

Regardless of if clustering is enabled or not, the AABB information is stored in
an OptiX buffer and used as geometry primitives in a single geometry instance that
has a single material assigned to it. During development this was found to be much
more performant than a geometry instance per AABB.

99

6.5.3 Brick Pool, Page Table & Sampling

The underlying sampling technique used in both the OptiXDVR approach and the
implementation of SparseLeap [6] is a simplified version of Hadwiger et al’s earlier
work [5]. During sampling perform a look-up into a page table is performed. This
look-up determines if the region that the sample resides is active. This look-up also
gives an offset into a large brick-pool where the actual volume data resides. As noted
in SparseLeap [6], this allows the disconnection of ESS and sampling/paging. A visual
example of this was shown in chapter 2 in figure 2.8.

Since the efficient sampling of volumes is not the primary focus of this chapter’s
work relative to empty-space-skipping, the implementation of this method is simplified
by assuming two things. Firstly, it’s assumed that the volumes are small enough to
not use a multi-level paging technique, and as such just use one page table for the
whole volume. This still allows considerably large volumes to be visualised. Secondly,
it’s assumed that the volume content information is known at run-time and there are
no ‘unknown’ regions of the volume. Regardless of whether this is done offline or in a
pre-processing step, streaming incomplete data is not evaluated as part of this work,
although the underlying sampling can be updated to facilitate this.

It is important to again stress at this time that the sampling part of this DVR
implementation can be made more complex to accommodate these requirements if
needed with few changes need to be made to the BVH ESS part of the pipeline.

6.6 Results & Evaluation

In this section an evaluation of the performance characteristics on the BVH clustering
approach is performed when using different parameters, i.e. volume, transfer function,
clustering, leaf size, brick size, etc. The approach is additionally compared to an im-
plementation of SparseLeap [6], which is implemented this to the best of the authors
ability using the pseudo-code provided in the original work. Much of the same char-
acteristics as shown in their evaluations are observed and verified. The same OpenGL
ARB extension ARB fragment shader interlock is used to process occupancy geometry
in order per-fragment. For linked-list generation inspiration was taken — like Sparse-
leap — from Yang et al. [107]

100

TF1 Colour TF1 ERT

TF2 Colour TF2 ERT

Figure 6.3: Examples of the flower dataset used with the two different transfer functions
used. Note that the ERT rays are highlighted in red and are substantially less prevalent
in the second transfer function. Also note that both transfer functions set the exact
same amount of active/inactive regions, thus the only difference is amount of ERT.

101

While SparseLeap is implemented in OpenGL and the BVH DVR approach is
using OptiX, most of the underlying code for occupancy information, paging, etc, are
common to both, minimising differences as much as possible and making fair compar-
isons. The underlying sampling method are briefly discussed in section 6.5.3. Both
the OpenGL SparseLeap implementation and the BVH OptiX implementation use the
exact same underlying implementation and data for the page table and brick-pool, the
only differences being that SparseLeap uses OpenGL textures and the BVH DVR uses
rtBuffer objects and rtTextureSampler.

In the following experiments the appropriate sections are timed using the system
clock, starting and stopping a timer before and after the evaluated stats. For OpenGL,
glFinish() is called before starting the timer and before stopping the timer.

The system used for the following experiments was a Dell Precision Tower 5810
with an 8-core Intel Xeon E5-1620 v2 CPU and an Nvidia GeForce RTX2080 using
Ubuntu 18.04.2 LTS. The OptiX SDK was version 6.0, OpenGL version was 4.5, and
the Nvidia driver used was 418.43.

6.6.1 Datasets

To best maintain a level of fair comparisons a multitude of datasets are used during
experimentation. The primary dataset shown in this chapter is a µCT scan of a flower
with a resolution 10243 8-bit integers obtained from UZH [108]. Examples of this
dataset are shown in figure 6.3. The beechnut dataset also obtained from UZH is
16-bit unsigned integer 10242x1546, and although not shown in any of the images or
figures, exhibited similar results to the Flower dataset. Both of these datasets obtain
a decent level of clustering while maintaining regions of thin strands that are difficult
to cluster.

In contrast to this, a frame from a Supernova simulation previously obtained
from UC Davis [98] is used. This data is upscaled from 4323 to 20483 8-bit unsigned
integer data. The Supernova with the tested transfer function exhibited large amounts
of clusterable regions. An example of this dataset is shown in figure 6.5. The website
for this dataset is no-longer available when last checked, but copies of the data can be
supplied on request.

Both the Flower and the Supernova datasets are chosen to represent varying

102

Figure 6.4: Depth complexity comparison of a head-on view of the flower dataset with
a leaf size of 163 voxels. See section 6.6.2 for explanation of heatmap colour coding,
and table 6.1 for statistics on the amount of clusters present.

degrees of clusterability, the percentages of which can be seen in the ‘% of BActive’
column in table 6.1. However, in addition to different datasets, it is important to
emulate the interactive nature of DVR applications by using different transfer functions
on the same volume. In figure 6.3 two different transfer functions are shown on the
same volume. This is necessary to evaluate the impact that large amounts of sub-
division leaf nodes has on depth complexity for both the SparseLeap implementation
and the BVH OptiX DVR, as such TF1 has a high ratio of ERT relative to rays which
actually sample the volume (rays which enter at least one active leaf). TF2 is quite
the opposite with very little ERT, allowing rays to traverse through the volume almost
entirely. It is important to note that both TF1 and TF2 exhibit the exact same amount
of active leaves in the subdivision and only differ in opacity accumulation.

6.6.2 Clustering

In table 6.1 comprehensive statistics are shown about both the leaf subdivision and
clustering statistics of the clustered BVH method. It can be observed that for the
flower dataset using both transfer functions a reduction of between approximately 40%
to 50% is achieved. For the Supernova dataset — which has much more contiguous

103

Figure 6.5: Depth complexity comparison of a head-on view of the flower dataset with
a leaf size of 323 voxels. Top row shows colour image of rendering (left) and the early-
terminated rays (right). The bottom row shows the depth complexity with clustering
off (left) and on (right). See section 6.6.2 for explanation of heatmap colour coding,
and table 6.1 for statistics on the amount of clusters present.

104

space — a more substantially reduced leaf complexity of 5% to 35% is obtained.

105

B
si
z
e

B
T
o
ta
l

B
A
ct
iv
e

(%
of
B
T
o
ta
l)

T
tf

B
C
lu
st
er
s

(%
of
B
A
ct
iv
e
)

T
C
lu
st
er

12
8

51
2

26
1

50
.9

8%
0.

01
m

s
13

9
53

.2
6%

0.
05

m
s

64
4,

09
6

1,
12

6
27

.4
9%

0.
08

m
s

56
6

50
.2

7%
0.

37
m

s
Fl

ow
er

32
32

,7
68

4,
88

3
14

.9
0%

0.
73

m
s

2,
60

6
53

.3
7%

1.
89

m
s

16
26

2,
14

4
22

,0
58

8.
41

%
1.

58
m

s
10

,6
05

48
.0

8%
17

.6
3m

s
8

2,
09

7,
15

2
11

2,
13

9
5.

35
%

7.
48

m
s

43
,6

03
38

.8
8%

11
2.

46
m

s
12

8
4,

09
6

81
1

19
.8

0%
0.

03
m

s
26

8
33

.0
5%

0.
08

m
s

64
32

,7
68

5,
32

4
16

.2
5%

0.
14

m
s

10
43

19
.5

9%
1.

67
m

s
Su

pe
rn

ov
a

32
26

2,
14

4
4,

88
3

14
.6

3%
0.

60
m

s
52

32
13

.6
4%

13
.0

0m
s

16
2,

09
7,

15
2

29
0,

86
4

13
.8

7%
5.

98
m

s
23

94
7

8.
23

%
10

7.
33

m
s

8
16

,7
77

,2
16

2,
26

2,
81

1
13

.4
9%

27
.6

8m
s

11
28

01
4.

98
%

10
90

.0
2m

s

Ta
bl

e
6.

1:
St

at
ist

ic
s

on
su

bd
iv

isi
on

le
af

cl
us

te
rin

g
fo

r
di

ffe
re

nt
le

af
-s

iz
es

(‘B
si
z
e
’)

sh
ow

in
g

th
e

to
ta

l
nu

m
be

r
of

su
bd

iv
isi

on
le

av
es

(‘B
T
o
ta
l’)

,t
he

nu
m

be
r

of
ac

tiv
e

le
av

es
(‘B

A
ct
iv
e
’)

fo
r

th
e

gi
ve

n
tr

an
sfe

r
fu

nc
tio

n
an

d
th

at
nu

m
be

r
as

a
pe

rc
en

ta
ge

of
th

e
to

ta
ln

um
be

ro
fl

ea
ve

s(
‘%

of
B
T
ot
a
l’)

,t
he

am
ou

nt
of

tim
e

ta
ke

n
to

te
st

al
ll

ea
ve

sa
ga

in
st

th
e

tr
an

sfe
rf

un
ct

io
n

(‘T
tf

’),
th

e
am

ou
nt

of
cl

us
te

re
d

le
av

es
(‘B

C
lu
st
er
s
’),

al
so

re
pr

es
en

te
d

as
a

pe
rc

en
ta

ge
of

th
e

am
ou

nt
of

ac
tiv

e
le

av
es

(‘%
of
B
A
ct
iv
e
’)

an
d

fin
al

ly
th

e
am

ou
nt

of
tim

e
ta

ke
n

to
cl

us
te

r
th

e
le

av
es

(‘T
C
lu
st
er

’).

106

Visual comparisons of depth complexity both with and without clustering en-
abled are shown in figures 6.4 and 6.5. The colours range from blue to red rep-
resenting a depth complexity of 1 to MaxDC which is defined as the Manhattan
distance from one corner to the opposite corner of the volumes going by bricks, i.e.
numLeaves.x+numLeaves.y+numLeaves.z. Note that none of the displayed images
ever reach a depth complexity of 100% since there is always a portion of the volume
that is skipped and the experiments are mostly run on the horizontal x-plane.

Using the flower dataset results in figure 6.4 show that there is an observable
reduction in depth complexity straight through the middle of the volume. There is
however a substantial amount of un-clusterable regions — or regions that were already
relatively low in depth-complexity — around the fringes of the volume. Looking at
figure 6.3 which shows a side-view of the volume, it can be seen that the strands of
active regions are thin enough to make it difficult to cluster.

On the other hand, using something like the Supernova dataset shown in figure
6.5 which exhibits large amounts of adjacent subdivision leaves, a considerable reduc-
tion of depth complexity throughout the volume is evident. These claims are backed
up by statistics in table 6.1 and the render performance benefits can be observed in
figure 6.6.

6.6.3 BVH Build Times

BVH build times have been an major factor in the lack of adoption for DVR. To
evaluate the actual implications, the transfer function is varied to increase the amount
of active leaves in the subdivision. In figure 6.7 build times are shown with a varying
active leaf rate of approximately 8% to 100% for a leaf-size of 163 using the flower
dataset. Note that this time includes the time it takes for creating AABB information
and uploading to the GPU. Results show that there is a relatively linear increase in
time, but remains well below 20ms for this dataset.

This only tells part of the story however. In table 6.1 data relating to clustering
time for different configurations is presented. For the most part, the time taken to
cluster a volume dwarfs the time taken for the BVH build. It is important to note
however, that this clustering implementation should be considered näıve since it is
a proof-of-concept for leaf complexity in BVH building and ray traversal, and can

107

 0

 5

 10

 15

 20

Flower16 TF1 Flower32 TF1 Flower64 TF1

Ti
m

e
 (

m
s)

 0

 20

 40

 60

 80

 100

 120

Supernova 16 Supernova 32 Supernova 64

No Clustering
Clustering

Figure 6.6: Difference in render times with clustering off/on for differing subdivision
leaf sizes of 163 (‘B16’), 323 (‘B32’) and 643 (‘B64’) for the Flower dataset using transfer
function 1 (‘TF1’) shown in figure 6.3 and the Supernova dataset shown in 6.5. Massive
stability in render times can be seen by using clustering for the Supernova. In the
Flower case, improvements are seen even for mostly opaque transfer functions. This
is important so as BVH traversal complexity is reduced in the event many leaf nodes
are not needed for rendering, rather than having a deep hierarchy where most of the
leaves aren’t even touched.

 0

 5

 10

 15

 20

0 150K 300K

Ti
m

e
 (

m
s)

Active Leaves

SparseLeap Tree Update
BVH Build Time (RTX)

BVH Build Time (RTX Off)

AABB Info Build
Common TF Test Time

Figure 6.7: Comparison of times for different renderers and configurations with varying
amount of active subdivision leaves. Both the SparseLeap and OptiX DVR implemen-
tations share the same transfer-function leaf-test code (‘Common TF Test Time’).
Because the SparseLeap tree size doesn’t change, the update time remains almost con-
stant (‘SparseLeap Tree Update’). This shows results for the BVH build time with and
without RTX enabled (‘BVH Build Time (RTX [Off])’) which includes the time taken
to generate and upload the AABB bounds (‘AABB Info Build’) and thus should be
offset by this value to find the actual build time.

108

 0

 5

 10

 15

 20

 25

 30

 16 24 32 40 48 56 64

Ti
m

e
 (

m
s)

Brick Size

Sampled
Not Sampled

Figure 6.8: Average render times Flower dataset using TF2 (no ERT) with sampling
on and off to evaluate the portion of rendering responsible for BVH traversal and
scheduling in OptiX.

potentially be improved upon substantially.
Also compared are the BVH build times versus the occupancy geometry gener-

ation step of SparseLeap [6]. It is observed that both the occupancy tree update time
(which included geometry emission) and the occupancy geometry render order time
were relatively consistent at 16ms (shown in figure 6.7) and 2ms respectively.

6.6.4 BVH Traversal Costs

An important part of evaluation is BVH traversal performance for DVR using OptiX.
One can roughly estimate the portion that belongs to OptiX based on the difference of
rendering a volume with and without sampling the data while varying the brick size.
This was achieved by stubbing the sampling code in the first-hit OptiX program by use
of a run-time flag. In figure 6.8 the results of this experiment are shown. As expected,
the rising cost of BVH traversal (‘Not Sampled’) can be observed as the brick size
decreases and the subdivision count increases. This clearly has an observable impact
on the end render time (‘Sampled’). Interestingly, and again as expected, removing the
cost of BVH traversal from the overall render time — the difference between ‘Sampled’
and ‘Not Sampled’ — reveals the actual cost of sampling the volume, which has a mostly
reducing trajectory. This justifies using smaller bricks for tighter ESS granularity, but
indicates the requirement for a reduction in data-structure traversal complexity. It is
this reason that a clustering approach is proposed.

109

 0

 5

 10

 15

 20

 16 24 32 40 48 56 64

Ti
m

e
 (

m
s)

Brick Size

RTX On
RTX Off

Figure 6.9: Difference in BVH traversal times with RTX off/on for differing subdivision
leaf sizes for the Flower dataset. Inner volume sampling loop is stubbed to get an
estimation of just the BVH performance. Clustering is not enabled for this experiment
to force a larger amount of leaf nodes. See table 6.1 for indicative leaf counts, This
shows clear benefit for using the RT core hardware when spatially subdividing a volume.

6.6.5 With & Without RTX

A core evaluation performed is the actual benefit of the new RT cores hardware. Start-
ing with the first step in the pipeline, BVH build times are evaluated. In figure 6.7 the
build times are shown — including AABB information creation and upload — with
and without RTX. Interestingly, although the author is not aware of any advertised
hardware for BVH construction, there is a substantial performance increase observed
— dropping from approximately 10ms to less than 5ms when removing AABB infor-
mation build time from the respective BVH build times. This is potentially due to
whatever underlying data organisation used by the RTCore hardware. Unfortunately,
no public information about this was found.

The major part of the pipeline that RTX and RTCores are expected to show
massive performance benefit is during rendering. In figure 6.9 the difference in just
traversal times is shown to highlight any improvement between configurations. It can
be seen substantial benefits to using the RT core hardware acceleration, especially
as the leaf size reduces, improving ESS granularity but maintaining a steady level of
performance.

110

 0

 5

 10

 15

 20

 25

 30

B16 TF1 B32 TF1 B64 TF1 B16 TF2 B32 TF2 B64 TF2

Ti
m

e
 (

m
s)

SparseLeap
Optix Cluster

Figure 6.10: Render times comparison of SparseLeap [6] to this chapter’s approach
using the Flower dataset with different leaf sizes (‘Bxx’) and the two different transfer
functions (‘TF1’ and ‘TF2’). The underlying sampling layer used a brick size of 323.
Note that the SparseLeap times do not include the geometry rasterisation step required
for when the camera moves.

6.6.6 Render Times

Finally, and potentially most importantly, the actual performance of DVR for both this
clustered BVH approach and the implementation of SparseLeap is evaluated. Figure
6.10 shows render-time results using both TF1 and TF2. The intent being to high-
light the differences between performance when ERT is a prevalent feature during ray
traversal. In all of these tests, the underlying sampling method used a brick pool with
a brick size of 323, which was found to be the most performant in this case for both
approaches. The results were obtained by performing 50 full rotations in 360 steps
with the volume filling as much of the view-port without being cut off, timing the ap-
propriate stages using the method outlined at the beginning of this section. Examples
of frame 90 — a side-on view of the volume — can be seen in figure 6.3.

In almost all cases a substantial performance benefit was observed using the
clustered BVH approach in terms of average render times. The exception to this rule is
when there is little ERT and the leaf size is relatively large. In the case of SparseLeap
one can see that a small leaf-size can sometimes be a hinderance during rendering.
A smaller leaf-size in general means a finer level of granularity, but for a relatively
fragmented volume such as the flower, segment counts can become quite substantial
creating extra work for the fragment shader, showing there is a balance to strike.

In comparison, it was observed that the average render performance for clus-

111

tered BVH DVR is significantly better in most cases than the best-case SparseLeap
configuration. For the flower volume using TF1 results showed an almost 40% improve-
ment in render times, a statistic echoed using TF2. Another important quality that
is often overlooked is render performance stability. In figure 6.10 it can be seen that
while there is deviation of minimum and maximum render times from the average, it
is quite stable relative to SparseLeap. This is considered an important quality in DVR
when exploring a volume.

6.7 Conclusions & Future Work

This work has shown that BVHs are an extremely viable candidate for DVR on modern
GPUs that implement new hardware for ray-tracing, giving us tight-wrapping empty-
space-skipping structures with little effort. It has presented a method of leaf-clustering
to help ray-traversal performance during rendering and prove the benefits in terms of
both depth-complexity and traversal times. It should be noted that — while cluster-
ing improves the aforementioned stages — the actual clustering times can become a
bottleneck for transfer function update times. This could potentially be alleviated by
performing a GPU-accelerated clustering.

Additionally, the 3DSAT added considerable CPU memory pressure when fine
grained subdivisions were used. It is necessary to keep in mind that this is a relatively
näıve clustering implementation used as a proof-of-concept to demonstrate a method
of reducing leaf complexity for BVHs. Their performance may be improved with more
efficient algorithms, potentially using fast convolution kernels and using the massive
parallelism on the GPU. It is important to re-iterate that one of the main reasons BVHs
were previously avoided for interactive DVR was build-times. Results have shown that
these build times — including the necessary steps to facilitate the build — are highly
interactive and should not be considered a limiting factor.

While all of this work focuses on the ESS stage of DVR, it was observed that
the main bottleneck in volume rendering is I/O, both in terms of loading data from
disk/network and then uploading to the GPU. While this work does not consider
this field relevant to its contributions, it is nonetheless a vital consideration for any
large-scale DVR. It is also important to reiterate that in this implementation there
is a separation between ESS information and the actual volume data insofar that the

112

sampling and the space-skipping do not necessarily need to share the same data — a
trait also present in Hadwiger’s works [5, 6].

In addition to the presented non-illuminated or locally illuminated rendering,
the author believes that this approach could augment global-illumination — more
specifically soft shadows — in volume rendering by using BVH leaf information to
quickly perform any-hit shadow calculations, an approach seen in Lacewell et al’s 2008
paper [109] for surface geometry.

This chapter has been presented as a full-length paper co-published in both
the High-Performance Graphics conference 2019 [15] and a special issue of Computer
Graphics Forum [16].

113

Chapter 7

Conclusions and Future Work

At this point, in chapters 3 to 6, the investigatory work has been presented, each with
their own individual summaries and brief conclusions. In this chapter, a reiteration
of these works and their results is presented, with the goal of giving more concrete
conclusions with an outlook on how this work can be expanded upon in the future.

GPU Cache Performance

In chapter 3 the thesis’ investigations begin with evaluation of volume-rendering rele-
vant components of the GPU memory hierarchy, which helps give a solid platform upon
which the later chapters are built. It profiles texture accesses in different configura-
tions, both in 2D and 3D texture space. This investigation highlighted the importance
of prioritising cache-coherence when designing a GPU solution. Granted, the current
state of GPU architecture is geared towards instruction-level-parallelism style latency
hiding for memory references, but this can only go so far, especially with the shader
complexity and register pressure needed for DVR. Therefore, targeting efficient cache
performance is paramount. Ideally, optimised L1 cache accesses would be the gold
standard, however in the context of volume rendering, the L1 doesn’t provide a huge
amount of practical real-estate for data to be rendered to screen. It follows then that
the L2 provides a good balance between available footprint and cache-hit performance.
Chapter 3 verifies this, along with evidence of 3D texture rearrangement for better
spatio-temporal coherence, which is important to keep in mind for volumetric data
accesses. This worked profiled these statistics on an Nvidia Quadro K2200 — the

114

Maxwell architecture, even though it has the K-prefix — and even though the general
memory hierarchy architecture hasn’t been totally redesigned, the author would en-
courage those that take inspiration from this work to perform the same evaluation on
later models.

View Dependent Scheduling

In chapter 4 the performance evaluation work in chapter 3 was used to formulate a
view-dependent cache-coherent DVR approach. While output-sensitive filtering ap-
proaches aren’t new in the realm of volume rendering, they generally required some
form of feedback loop between the CPU and the GPU. This meant that neither sys-
tem could be fully utilised in parallel. This work presented an approach that can be
pipelined such that the CPU can work independently, feeding view-dependent schedul-
ing information to the GPU. This view-dependent information is targeted towards L2
cache optimisation for sampling the volume, by completing all samples in an L2-sized
region of the volume before continuing to the next region. The results of this work
showed better GPU cache performance, but came at the cost of both CPU and GPU
overhead for generating and consuming the scheduling information respectively. As
the brick-size reduced, the complexity of managing determining the view-dependent
working set on the CPU in a serial fashion became too much of a burden and became
the major bottleneck.

Light Field DVR

Following on from this, this improved cache performance approach while sharing the
load with the CPU could be utilised for multi-view volume rendering. In chapter 5, the
L2 cache on the GPU is still targeted as a source of performance gain. This time, each
region is projected to all views in a light field rendering simultaneously, before moving
on to the next region. The scheduling information was again generated on the CPU,
but due to the additional work that the GPU had the do, it no longer was a bottle neck.
Furthermore, in order to allow each region to render to all views, there must be support
for out-of-order rendering and therefore multiple off-screen buffers for each region and
view. A greedy algorithm to minimize the amount of off-screen buffers and reduce
memory footprint was used to mitigate this issue to good success. Improvements are

115

shown in the overall render performance of light field volume rendering, resulting from
much better cache coherency. Having said this, as the region count grew — by either
the volume growing or the regions becoming smaller — the overhead again becomes a
bottleneck.

It’s worth noting that this investigation used a fairly näıve approach for the
CPU-stage scheduling information generation and off-screen buffer minimisation, and
could be improved to become less of a bottleneck in future work. Another potential
stream of follow-on investigation could look at using this efficient multi-view scheduling
approach in global-illumination to generate multiple shadow maps for light-sources in
a scene surrounding a volume.

It might also be possible to further exploit frame-to-frame coherency both in
terms of view-list generation and memory allocation, or perhaps leverage a light-weight
easy-to-update data-structure to accelerate the working-set determination. Fundamen-
tally, more work also needs to be done in the I/O domain, potentially integrating this
work with brick-based compression streaming techniques.

Clustered BVH Empty-Space-Skipping on GPU

Chronologically, during work presented in chapter 5, Nvidia announced their RTCore
technology, and hardware-accelerated ray-tracing enabled line of GPUs in the form of
RTX. This presented an interesting opportunity to study BVHs in the context of ESS
for volume rendering on GPUs. Previously, evaluations of BVHs for DVR had only
been done on CPUs citing build times and traversal complexity in contrast to relatively
simple octree traversal logic. Therefore, in chapter 6 an evaluation of using BVHs on
ray-tracing hardware enabled GPUs is presented. This is compared to a state-of-the-
art approach — Sparseleap [6] — which rasterizes tight-fitting proxy geometry around
active volume regions, using a hierarchical space-cutting approach with an ESS octree.
It is shown that BVH build times are actually quite quick which is suitable for user
interaction with a transfer-function, and rendering times are substantially better when
using the ray-tracing hardware and BVH ESS.

While this was true for relatively sparse geometry like the flower dataset, a
densely compacted dataset such as the supernova had a redundant amount of BVH
leaf nodes which was found to have dramatically increased rendering times due to ESS

116

depth complexity. The natural course to follow was to then reduce the leaf-node count
in dense regions of the volume by performing a clustering step before building the BVH
structure. This was shown to both decrease the BVH build time and increase render
performance, further pushing the gain against the state-of-the-art.

In essence, this is the main contribution of this thesis; an analysis that BVHs
can be very viable alternative to ESS data-structures on GPUs, especially when some
clustering approach is applied beforehand. But this is — of course — not the be all and
end all for ESS data-structures, or even BVH ESS implementations. For instance, the
primary method of building BVHs is generally grounded on the principal of a surface-
area-heuristic, which is focused more towards surface representations of geometry. This
is not necessarily the best approach for volumetric information at all, however the
RTX and OptiX APIs don’t (at the time of writing) provide a way of building custom
BVH data-structures with arbitrary heuristics for grouping. As such, this would be an
interesting topic to investigation.

Additionally, accelerating global-illumination using BVHs has been seen in the
realm of soft shadows for surface geometry [109], and using the ESS BVH tree in the
same fashion for volumetric soft shadows could be another use, potentially in real-time
applications like games that use dynamic smoke or clouds.

Summary

To finally conclude this thesis, evaluations and investigations have been presented on
GPU cache performance in the context of volume rendering, a hybrid architecture using
both the CPU and GPU for pipelined view-dependent DVR on a single-view target,
which was then adapted to light field technologies with success. Then following the
theme of efficient use of GPUs for DVR, new ray-tracing hardware was evaluated for
empty space skipping to the benefit of final render performance. The implementa-
tion from this final piece of work in chapter 6 has been made publicly available at
gitgub.com/ganterd/optixdvr.

117

Appendix A

DVR Sampling Visualisation Tool

While the author has covered predictable patterns of texture sampling in chapter 3,
this thesis has an application in mind it is worth investigating the actual sampling
pattern of DVR. As part of this work, a tool was built to visualise the access pattern of
DVR, showing a 3D heat-map of the voxels in the volume and indicating which voxels
aren’t touched at all.

Images of this program at work are shown in figures A.1 and A.2. In figure A.1,
a slice of voxels are shown after rendering the supernova dataset. Since this dataset
in particular has a large amount of opaque structure, it can be seen that rays can
benefit from early-ray-termination (ERT) as the voxels in the middle of the volume
are effectively not sampled at all. Figure A.2 shows the voxels that are not touched
by rays at all in green. This layer is the farthest in the volume from the camera. It is
interesting to notice the lattice pattern that appears due to rays separating, effectively
aliasing data at a distance.

118

Figure A.1: Screen shot of the Memory Access Visualisation tool built as part of this
work to visualise the access patterns of direct volume rendering. In this example, a
portion of the accessed voxels of the Supernova dataset

119

Figure A.2: Memory Access Visualisation tool showing a portion of the unsampled
voxels of the Supernova data-set. This shows both the effect of ERT and spread as
rays get further into the volume.

120

Appendix B

Datasets

In this appendix the author provides a list of the volume datasets most commonly used
over the duration of this thesis. A detailed description of each dataset is given along
with traits that exhibit different performance characteristics and problems for DVR.
While other datasets may have been used during the research, these were the main test
subjects.

121

Figure B.1: Example rendering of a frame the Supernova dataset [98].

Supernova

The Supernova dataset [98] shown in figure B.1 is one of the most substantial time-
varying datasets this project used, and represents a simulation of the few moments
of a supernova. The dimensions of the volume are 4323 32-bit floating-point values,
with over 300 individual frames of data. Variations of this dataset were created with
differing data types (e.g. 8-bit unsigned integers) and up-scaled dimensions.

This dataset contains a large amount of empty-space around the sphere-like
entity and — in general — regardless of the transfer function, there are many regions
of the volume that would generate large groups of active sub-division leaves.

122

Figure B.2: Example rendering of the Subclavia dataset, provided as part of the open-
source Inviwo application.

Subclavia

This dataset, shown in figure B.2 represents an anatomical CT scan of the heart and
the subclavian arteries. This dataset is provided as part of the open-source Inviwo
visualisation application [99]. The volume itself is one of the smaller datasets used
at a resolution of 512x512x96 voxels of 8-bit unsigned integers. Depending on the
transfer function used, this dataset can exhibit an interesting problem for ESS, as
long, thin strands of data are prevalent throughout the volume, with much empty
space in between.

123

Figure B.3: Example rendering of the UZH Flower dataset.

UZH Flower

The Flower dataset is provided by University of Zurich (UZH) as part of an open-
access libary of µ-CT scanned objects [108]. This particular dataset is a µ-CT of a
leucadendron rubrum flower. This, along with the beechnut dataset discussed later,
is one of the most high-resolution datasets used in this project without being up-
scaled. The volume dimensions are 10243 voxels of 8-bit unsigned integers, measuring
at exactly 1GB of data. The volume exhibits a large amount of empty-space, but due
to the complex construction of the flower, the amount of active regions in the volume
rarely changes much, thanks to the thin strands of plant media present.

124

Figure B.4: Example rendering of the UZH beechnut µ-CT dataset.

UZH Beechnut

This µ-CT of a dried beechnut is also provided as part of the UZH research dataset
library [108]. Larger in both dimensions and bit-depth than the flower dataset, the
beechnut µ-CT volume is 1024x1024x1546 with 16-bit unsigned integer voxels.

125

Figure B.5: Example rendering of a single frame from the smoke simulation dataset.

Smoke Simulation

This dataset is one of the only datasets created as part of the project in which this
thesis was a part of, used primarily in Noonan et al’s work [35]. The smoke simulation
volume is a relatively small, time-varying volume of 2563 8-bit unsigned integer voxels
with 300 individual frames of data.

126

Bibliography

[1] M. Agus, E. Gobbetti, J. A. I. Guitián, F. Marton, and G. Pintore, “GPU accel-
erated direct volume rendering on an interactive light field display,” Computer
Graphics Forum, vol. 27, no. 2, pp. 231–240, 2008.

[2] E. Gobbetti, F. Marton, and J. A. Iglesias Guitián, “A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive volumetric
datasets,” Visual Computer, vol. 24, no. 7-9, pp. 797–806, 2008.

[3] J. A. I. Guitián, E. Gobbetti, F. Marton, J. A. Iglesias?Guitián, E. Gobbetti,
and F. Marton, “View-dependent exploration of massive volumetric models on
large-scale light field displays,” in Visual Computer, vol. 26, pp. 1037–1047, jun
2010.

[4] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “GigaVoxels: Ray-guided
Streaming for Efficient and Detailed Voxel Rendering,” in Proceedings of the 2009
symposium on Interactive 3D graphics and games - I3D ’09, I3D ’09, (New York,
NY, USA), p. 15, ACM, 2009.

[5] M. Hadwiger, J. Beyer, W. K. Jeong, and H. Pfister, “Interactive volume explo-
ration of petascale microscopy data streams using a visualization-driven virtual
memory approach,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 18, pp. 2285–2294, dec 2012.

[6] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister, “SparseLeap:
Efficient Empty Space Skipping for Large-Scale Volume Rendering,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24, no. 1, pp. 974–983,
2018.

127

[7] L.-G. Factory, “Looking-glass product website.”
https://lookingglassfactory.com/products/the-looking-glass/. Accessed: 2019-
09-23.

[8] Avegant, “Avegant light-field technology web page.”
https://www.avegant.com/light-field. Accessed: 2019-09-23.

[9] Daqri, “Daqri web page.” https://daqri.com/. Accessed: 2019-09-23.

[10] Holografika, “Holografika web page.” https://holografika.com/. Accessed: 2019-
09-23.

[11] T. M. Peters, C. J. Henri, P. Munger, A. M. Takahashi, A. C. Evans, B. Davey,
and A. Olivier, “Integration of stereoscopic DSA and 3D MRI for image-guided
neurosurgery,” Computerized Medical Imaging and Graphics, vol. 18, no. 4,
pp. 289–299, 1994.

[12] T. Sielhorst, C. Bichlmeier, S. M. Heining, and N. Navab, “Depth Perception
âĂŞ A Major Issue in Medical AR: Evaluation Study by Twenty Surgeons,” in
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006
(R. Larsen, M. Nielsen, and J. Sporring, eds.), (Berlin, Heidelberg), pp. 364–372,
Springer Berlin Heidelberg, 2006.

[13] Nvidia, “Nvidia turing architecture whitepaper.”
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf. Accessed: 2019-01-06.

[14] D. Ganter, D. Hardman, and M. Alain, “Light-Field DVR on GPU for Streaming
Time-Varying Data,” in Pacific Graphics, 2018.

[15] D. Ganter and M. Manzke, “An analysis of region clustered bvh volume rendering
on gpu,” in High-Performance Graphics 2019, The Eurographics Association and
John Wiley & Sons Ltd., 2019.

[16] D. Ganter and M. Manzke, “An analysis of region clustered bvh volume rendering
on gpu,” Computer Graphics Forum, vol. 38, no. 8, pp. 13–21, 2019.

128

[17] S. Bruton., D. Ganter., and M. Manzke., “Synthesising light field volumetric visu-
alizations in real-time using a compressed volume representation,” in Proceedings
of the 14th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 2: IVAPP,, pp. 96–105,
INSTICC, SciTePress, 2019.

[18] S. Martin, S. Bruton., D. Ganter., and M. Manzke., “Using a depth heuristic
for light field volume rendering,” in Proceedings of the 14th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - Volume 3: GRAPP,, pp. 134–144, INSTICC, SciTePress, 2019.

[19] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics
and Applications, vol. 8, pp. 29–37, may 1988.

[20] T. Porter and T. Duff, “Compositing digital images,” in ACM Siggraph Computer
Graphics, vol. 18, pp. 253–259, ACM, 1984.

[21] K. Engel, M. Kraus, and T. Ertl, “High-quality Pre-integrated Volume Ren-
dering Using Hardware-accelerated Pixel Shading,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS ’01,
(New York, NY, USA), pp. 9–16, ACM, 2001.

[22] K. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “A Data Distributed,
Parallel Algorithm for Ray-traced Volume Rendering,” in Proceedings of the 1993
Symposium on Parallel Rendering, PRS ’93, (New York, NY, USA), pp. 15–22,
ACM, 1993.

[23] W. M. Hsu, “Segmented Ray Casting for Data Parallel Volume Rendering,” in
Proceedings of the 1993 symposium on Parallel rendering - PRS ’93, PRS ’93,
(New York, NY, USA), pp. 7–14, ACM, 1993.

[24] A. Law and R. Yagel, “Multi-Frame Thrashless Ray Casting with Advancing
Ray-Front,” in Proceedings of the Conference on Graphics Interface ’96, vol. i
of GI ’96, (Toronto, Ont., Canada, Canada), pp. 70–77, Canadian Information
Processing Society, 1996.

129

[25] K.-L. L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “Parallel Volume
Rendering Using Binary-Swap Compositing,” IEEE Computer Graphics and Ap-
plications, vol. 14, pp. 59–68, jul 1994.

[26] M. E. Palmer, S. Taylor, and B. Totty, “Exploiting Deep Parallel Memory Hierar-
chies for Ray Casting Volume Rendering,” in Proceedings of the IEEE Symposium
on Parallel Rendering, PRS ’97, (New York, NY, USA), pp. 15—-ff., ACM, 1997.

[27] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrid sort-first and sort-
last parallel rendering with a cluster of PCs,” in ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware (HWWS ’00), HWWS ’00, (New York, NY,
USA), pp. 97–108, ACM, 2000.

[28] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller, “A refined data addressing
and processing scheme to accelerate volume raycasting,” Computers & Graphics,
vol. 28, no. 5, pp. 719–729, 2004.

[29] B. Mora, J. P. Jessel, and R. Caubet, “A New Object-order Ray-casting Algo-
rithm,” in Proceedings of the Conference on Visualization ’02, VIS ’02, (Wash-
ington, DC, USA), pp. 203–210, IEEE Computer Society, 2002.

[30] W. Hong, F. Qiu, and A. Kaufman, “GPU-based object-order ray-casting for
large datasets,” in Fourth International Workshop on Volume Graphics, 2005.,
pp. 177–240, jun 2005.

[31] W. Usher, I. Wald, J. Amstutz, J. GÃĳnther, C. Brownlee, and V. Pascucci,
“Scalable ray tracing using the distributed framebuffer,” Computer Graphics Fo-
rum, vol. 38, no. 3, pp. 455–466, 2019.

[32] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Günther,
and P. Navrátil, “Ospray-a cpu ray tracing framework for scientific visualization,”
IEEE transactions on visualization and computer graphics, vol. 23, no. 1, pp. 931–
940, 2016.

[33] J. Clyne and J. Dennis, “Interactive Direct Volume Rendering of Time-Varying
Data,” in Proceedings of the 1st Joint IEEE VGTC - EUROGRAPHICS Sym-

130

posium on Visualization (VisSym˜’99) (E. Gröller, H. Löffelmann, and W. Rib-
arsky, eds.), (Vienna), pp. 109–120, Springer Vienna, 1999.

[34] M. Balsa Rodŕıguez, E. Gobbetti, J. A. Iglesias Guitián, M. Makhinya, F. Mar-
ton, R. Pajarola, and S. K. Suter, “State-of-the-art in compressed GPU-based
direct volume rendering,” Computer Graphics Forum, vol. 33, no. 6, pp. 77–100,
2014.

[35] T. Noonan, L. Campoalegre, and J. Dingliana, “Temporal Coherence Predictor
for Time Varying Volume Data Based on Perceptual Functions,” in Vision, Mod-
eling & Visualization (D. Bommes, T. Ritschel, and T. Schultz, eds.), pp. 33–40,
The Eurographics Association, 2015.

[36] R. Shekhar and V. Zagrodsky, “Cine MPR: Interactive Multiplanar Reformatting
of Four-Dimensional Cardiac Data Using Hardware-Accelerated Texture Map-
ping,” IEEE Transactions on Information Technology in Biomedicine, vol. 7,
pp. 384–393, dec 2003.

[37] Q. Zhang, R. Eagleson, and T. M. Peters, “Dynamic real-time 4D cardiac MDCT
image display using GPU-accelerated volume rendering,” Computerized Medical
Imaging and Graphics, vol. 33, no. 6, pp. 461–476, 2009.

[38] N. Morrical, W. Usher, and I. Wald, “Efficient Space Skipping and Adaptive
Sampling of Unstructured Volumes Using Hardware Accelerated Ray Tracing,”
vol. 1.

[39] Nvidia, “Nvidia gm107 architecture whitepa-
per.” http://international.download.nvidia.com/geforce-
com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf. Accessed:
2019-01-06.

[40] M. J. Doyle, C. Fowler, and M. Manzke, “A hardware unit for fast SAH-optimised
BVH construction,” ACM Transactions on Graphics, vol. 32, p. 1, jul 2013.

[41] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee, H.-S. Park,
and T.-D. Han, “SGRT: a mobile GPU architecture for real-time ray tracing,”

131

in Proceedings of the 5th High-Performance Graphics Conference on - HPG ’13,
(New York, New York, USA), pp. 109–119, ACM Press, 2013.

[42] M. J. Doyle, C. Tuohy, and M. Manzke, “Evaluation of a BVH construction
accelerator architecture for high-quality visualization,” IEEE Transactions on
Multi-Scale Computing Systems, vol. 4, pp. 83–94, jan 2018.

[43] M. Doggett, “Texture caches,” IEEE Micro, vol. 32, no. 3, pp. 136–141, 2012.

[44] X. Mei and X. Chu, “Dissecting GPU Memory Hierarchy Through Microbench-
marking,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
pp. 72–86, jan 2017.

[45] G. Knittel, “The ULTRAVIS System,” in IEEE Symposium on Volume Visual-
ization, VV 2000, pp. 71–79, oct 2000.

[46] J. Mensmann, T. Ropinski, and K. H. Hinrichs, “An Advanced Volume Raycast-
ing Technique using GPU Stream Processing,” in International Conference on
Computer Graphics Theory and Applications (GRAPP ’10), pp. 190–198, 2010.

[47] E. W. Bethel and M. Howison, “Multi-core and many-core shared-memory paral-
lel raycasting volume rendering optimization and tuning,” International Journal
of High Performance Computing Applications, vol. 26, pp. 399–412, nov 2012.

[48] M. Labschutz, S. Bruckner, M. E. Groller, M. Hadwiger, and P. Rautek, “JiT-
Tree: A Just-in-Time Compiled Sparse GPU Volume Data Structure,” IEEE
Transactions on Visualization and Computer Graphics, vol. 22, pp. 1025–1034,
jan 2016.

[49] T. Fogal and J. H. Krüger, “Tuvok - An Architecture for Large Scale Volume
Rendering,” in 15th Vision, Modeling and Visualization Workshop ’10, pp. 139–
146, 2010.

[50] T. Fogal, A. Schiewe, and J. Kruger, “An analysis of scalable GPU-based ray-
guided volume rendering,” in IEEE Symposium on Large Data Analysis and Vi-
sualization 2013, LDAV 2013 - Proceedings, pp. 43–51, IEEE, oct 2013.

132

[51] B. Liu, G. J. Clapworthy, F. Dong, and E. C. Prakash, “Octree rasterization: Ac-
celerating high-quality out-of-core GPU volume rendering,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, pp. 1732–1745, oct 2013.

[52] R. K. Hoetzlein, “GVDB: Raytracing Sparse Voxel Database Structures on the
GPU,” High Performance Graphics, pp. 109–117, 2016.

[53] K. Museth, “VDB: high-resolution sparse volumes with dynamic topography,”
ACM Transactions on Graphics, vol. 32, no. 3, pp. 1–22, 2013.

[54] OpenVDB, “OpenVDB.”

[55] K. Museth, “Hierarchical digital differential analyzer for efficient ray-marching
in OpenVDB,” vol. 3, pp. 1–1, 2014.

[56] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 8, pp. 1048–1059, 2011.

[57] T. Foley and J. Sugerman, “KD-tree acceleration structures for a GPU ray-
tracer,” in Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics
Hardware, vol. 2005, (New York, New York, USA), pp. 15–22, ACM Press, 2005.

[58] A. Knoll, S. Thelen, I. Wald, C. D. Hansen, H. Hagen, and M. E. Papka, “Full-
resolution interactive CPU volume rendering with coherent BVH traversal,” in
IEEE Pacific Visualization Symposium 2011, PacificVis 2011, pp. 3–10, IEEE,
2011.

[59] S. Zellmann, J. P. Schulze, and U. Lang, “Binned k-d tree construction for sparse
volume data on multi-core and gpu systems,” IEEE Transactions on Visualization
and Computer Graphics, pp. 1–1, 2019.

[60] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke,
D. McAllister, M. McGuire, K. Morley, A. Robison, and M. Stich, “OptiX: A
General Purpose Ray Tracing Engine,” ACM Transactions on Graphics, vol. 29,
no. 4, p. 1, 2010.

133

[61] M. Meißner, M. Doggett, J. Hirche, and U. Kanus, “Efficient space leaping for ray
casting architectures,” in Volume Graphics 2001 (K. Mueller and A. E. Kaufman,
eds.), (Vienna), pp. 149–161, Springer Vienna, 2001.

[62] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer,
M. Doggett, P. Forthmann, and R. Proksa, “Vizard ii: A reconfigurable
interactive volume rendering system,” in Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS ’02,
(Aire-la-Ville, Switzerland, Switzerland), pp. 137–146, Eurographics Association,
2002.

[63] M. C. Doggett and G. R. Hellestrand, “A hardware architecture for video rate
smooth shading of volume data,” Computers & Graphics, vol. 19, no. 5, pp. 695
– 704, 1995.

[64] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques - SIGGRAPH
’96, SIGGRAPH ’96, (New York, NY, USA), pp. 31–42, ACM, 1996.

[65] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’96, (New York, New York, USA), pp. 43–54, ACM
Press, 1996.

[66] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light
fields,” in Proceedings of the 27th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’00, SIGGRAPH ’00, (New York, NY, USA),
pp. 297–306, ACM Press/Addison-Wesley Publishing Co., 2000.

[67] G. Wetzstein, D. R. Lanman, M. W. Hirsch, and R. Raskar, “Tensor displays:
compressive light field synthesis using multilayer displays with directional back-
lighting,” ACM Transactions on Graphics, vol. 31, pp. 1–11, jul 2012.

[68] F.-C. Huang, D. Luebke, G. Wetzstein, K. Chen, and G. Wetzstein, “The Light
Field Stereoscope: Immersive Computer Graphics via Factored Near-eye Light
Field Displays with Focus Cues,” ACM SIGGRAPH 2015 Emerging Technologies
on - SIGGRAPH ’15, vol. 34, pp. 60:1—-60:12, jul 2015.

134

[69] N. A. Dodgson, “Autostereoscopic 3D Displays,” Computer, vol. 38, pp. 31–36,
aug 2005.

[70] J. A. I. Guitián and J. A. Iglesias Guitian, Real-time GPU-accelerated Out-of-
Core Rendering and Light-field Display Visualization for Improved Massive Vol-
ume Understanding. PhD thesis, Iglesias Guitian, Jose A., 2011.

[71] F. Marton, M. Agus, E. Gobbetti, G. Pintore, and M. B. Rodriguez, “Natural
exploration of 3D massive models on large-scale light field displays using the FOX
proximal navigation technique,” Computers & Graphics, vol. 36, no. 8, pp. 893–
903, 2012.

[72] E. Yuasa, F. Sakaue, and J. Sato, “Generating 5D Light Fields in Scattering
Media for Representing 3D Images,” in IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), vol. 2017-July, pp. 1287–1294,
jul 2017.

[73] J. Geng, “A volumetric 3D display based on a DLP projection engine,” Displays,
vol. 34, no. 1, pp. 39–48, 2013.

[74] B. Mora, R. Maciejewski, M. Chen, and D. S. Ebert, “Visualization and Com-
puter Graphics on Isotropically Emissive Volumetric Displays,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 15, pp. 221–234, mar 2009.

[75] S. K. Rushton and P. M. Riddell, “Developing visual systems and exposure to
virtual reality and stereo displays: some concerns and speculations about the
demands on accommodation and vergence,” Applied Ergonomics, vol. 30, no. 1,
pp. 69–78, 1999.

[76] G. Kramida, “Resolving the Vergence-Accommodation Conflict in Head-Mounted
Displays,” IEEE Transactions on Visualization and Computer Graphics, vol. 22,
pp. 1912–1931, jul 2016.

[77] G.-A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, “Accommodation and
Comfort in Head-mounted Displays,” ACM Trans. Graph., vol. 36, pp. 87:1—-
87:11, jul 2017.

135

[78] J. E. Cutting and P. M. Vishton, “Potency, and contextual use of different infor-
mation about depth,” Perception of space and motion, vol. 69, 1995.

[79] A. Bulbul, Z. Cipiloglu, and T. Capin, “A perceptual approach for stereoscopic
rendering optimization,” Computers & Graphics, vol. 34, no. 2, pp. 145–157,
2010.

[80] D. Lanman and D. Luebke, “Near-eye Light Field Displays,” ACM Transactions
on Graphics, vol. 32, pp. 1–10, nov 2013.

[81] S. J. Adelson and C. D. Hansen, “Fast Stereoscopic Images with Ray-traced Vol-
ume Rendering,” in Proceedings of the 1994 Symposium on Volume Visualization,
VVS ’94, (New York, NY, USA), pp. 3–9, ACM, 1994.

[82] T. He and A. Kaufman, “Fast stereo volume rendering,” in Visualization ’96.
Proceedings., pp. 49–56, oct 1996.

[83] Y.-M. M. Koo, C.-H. H. Lee, and Y.-G. G. Shin, “Object-order template-based
approach for stereoscopic volume rendering,” The Journal of Visualization and
Computer Animation, vol. 10, no. 3, pp. 133–142, 1999.

[84] R. Yagel and A. Kaufman, “Template-Based Volume Viewing,” Computer Graph-
ics Forum, vol. 11, no. 3, pp. 153–167, 1992.

[85] M. Wan, N. Zhang, H. Qu, and A. E. Kaufman, “Interactive stereoscopic ren-
dering of volumetric environments,” IEEE Transactions on Visualization and
Computer Graphics, vol. 10, pp. 15–28, jan 2004.

[86] D. Ruijters, “Dynamic resolution in GPU-accelerated volume rendering to au-
tostereoscopic multiview lenticular displays,” Eurasip Journal on Advances in
Signal Processing, vol. 2009, 2009.

[87] D. Ruijters, S. Zinger, L. Do, and P. H. N. de With, “Latency optimization for
autostereoscopic volumetric visualization in image-guided interventions,” Neuro-
computing, vol. 144, pp. 119–127, 2014.

[88] T. Hübner and R. Pajarola, “Single-pass multi-view volume rendering,” in Pro-
ceedings of International Conference Computer Graphics and Visualization, 2007.

136

[89] K.-C. Kwon, C. Park, M.-U. Erdenebat, J.-S. Jeong, J.-H. Choi, N. Kim, J.-H.
Park, Y.-T. Lim, and K.-H. Yoo, “High speed image space parallel processing for
computer-generated integral imaging system,” Optics Express, vol. 20, p. 732,
jan 2012.

[90] B. Battin, G. Valette, J. Lehuraux, Y. Remion, and L. Lucas, “A premixed au-
tostereoscopic OptiX-based volume rendering,” in 2015 International Conference
on 3D Imaging, IC3D 2015 - Proceedings, vol. 31 of SIGGRAPH ’11, (New York,
NY, USA), pp. 3–10, IEEE, mar 2016.

[91] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “De-
mystifying GPU microarchitecture through microbenchmarking,” in ISPASS
2010 - IEEE International Symposium on Performance Analysis of Systems and
Software, pp. 235–246, mar 2010.

[92] J. Beyer, M. Hadwiger, and H. Pfister, “State-of-the-Art in GPU-Based Large-
Scale Volume Visualization,” Computer Graphics Forum, vol. 34, no. 8, pp. 13–37,
2015.

[93] M. Isenburg, P. Lindstrom, and H. Childs, “Parallel and streaming generation
of ghost data for structured grids,” IEEE Computer Graphics and Applications,
no. 3, pp. 32–44, 2010.

[94] W. Li, K. Mueller, A. E. Kaufman, Wei Li, K. Mueller, and A. E. Kaufman,
“Empty space skipping and occlusion clipping for texture-based volume render-
ing,” in Proceedings of the 14th IEEE Visualization 2003 (VIS’03), vol. 4400,
p. 42, IEEE Computer Society, 2003.

[95] C. Rezk-Salama, S. Todt, and A. Kolb, “Raycasting of light field galleries from
volumetric data,” Computer Graphics Forum, vol. 27, no. 3, pp. 839–846, 2008.

[96] C. Birklbauer and O. Bimber, “Light-field supported fast volume rendering,”
ACM SIGGRAPH 2012 Posters on - SIGGRAPH ’12, p. 1, 2012.

[97] S. Opelt and O. Bimber, “Light-field caching,” in ACM SIGGRAPH 2011 Posters
on - SIGGRAPH ’11, (New York, New York, USA), p. 1, ACM Press, 2011.

137

[98] J. Blondin, “Supernova Modelling,” 2007.

[99] D. Jönsson, P. Steneteg, E. Sundén, R. Englund, S. Kottravel, M. Falk, A. Yn-
nerman, I. Hotz, and T. Ropinski, “Inviwo - a visualization system with usage
abstraction levels,” IEEE Transactions on Visualization and Computer Graphics,
2019.

[100] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, D. Weiskopf,
C. Rezk-Salama, and D. Weiskopf, Real-time volume graphics. CRC Press, 2006.

[101] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Günther,
and P. Navratil, “OSPRay - A CPU Ray Tracing Framework for Scientific Visu-
alization,” IEEE Transactions on Visualization and Computer Graphics, vol. 23,
pp. 931–940, jan 2017.

[102] Q. Wu, W. Usher, S. Petruzza, S. Kumar, F. Wang, I. Wald, V. Pascucci, and
C. D. Hansen, “VisIt-OSPRay : Toward an Exascale Volume Visualization Sys-
tem,” Eurographics Symposium on Parallel Graphics and Visualization, vol. Vi,
2018.

[103] A. Knoll, I. Wald, P. A. Navrátil, M. E. Papka, and K. P. Gaither, “Ray trac-
ing and volume rendering large molecular data on multi-core and many-core
architectures,” in Proceedings of the 8th International Workshop on Ultrascale
Visualization - UltraVis ’13, (New York, New York, USA), pp. 1–8, ACM Press,
2013.

[104] A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M. E. Papka, and K. Gaither,
“RBF volume ray casting on multicore and manycore CPUs,” Computer Graphics
Forum, vol. 33, pp. 71–80, jun 2014.

[105] D. Ruijters and A. Vilanova, “Optimizing GPU Volume Rendering,” Winter
School of Computer Graphics (WSCG), vol. 14, 2006.

[106] F. C. Crow, “Summed-area tables for texture mapping,” ACM SIGGRAPH Com-
puter Graphics, vol. 18, no. 3, pp. 207–212, 1984.

138

[107] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz, “Real-Time Concurrent
Linked List Construction on the GPU,” Computer Graphics Forum, vol. 29,
pp. 1297–1304, aug 2010.

[108] UZH, “Research datasets.” https://www.ifi.uzh.ch/en/vmml/research/datasets.html.
Accessed: 2019-01-05.

[109] D. Lacewell, B. Burley, S. Boulos, and P. Shirley, “Raytracing prefiltered oc-
clusion for aggregate geometry,” in 2008 IEEE Symposium on Interactive Ray
Tracing, pp. 19–26, IEEE, 2008.

139

